Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,150 +1,105 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
import
|
4 |
-
import
|
|
|
|
|
5 |
import logging
|
6 |
-
from datetime import datetime, timezone
|
7 |
|
8 |
# Set up logging
|
9 |
logging.basicConfig(level=logging.DEBUG)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
DB_CONFIG = {
|
17 |
-
"host": "127.0.0.1",
|
18 |
-
"port": 5434,
|
19 |
-
"database": "postgres",
|
20 |
-
"user": "postgres",
|
21 |
-
"password": "password"
|
22 |
-
}
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
message = message.lower()
|
42 |
-
|
43 |
-
if "average current" in message:
|
44 |
-
return """
|
45 |
-
SELECT AVG("CT_Avg") as avg_current
|
46 |
-
FROM machine_current_log
|
47 |
-
WHERE created_at >= NOW() - INTERVAL '1 day';
|
48 |
-
""", "Here's the average current over the past 24 hours:"
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
SELECT MAX(created_at)
|
56 |
-
FROM machine_current_log
|
57 |
-
)
|
58 |
-
LIMIT 5;
|
59 |
-
""", "Here are the latest machine statuses:"
|
60 |
-
|
61 |
-
elif "current readings" in message:
|
62 |
-
return """
|
63 |
-
SELECT mac, created_at, "CT1", "CT2", "CT3", "CT_Avg"
|
64 |
-
FROM machine_current_log
|
65 |
-
ORDER BY created_at DESC
|
66 |
-
LIMIT 5;
|
67 |
-
""", "Here are the latest current readings:"
|
68 |
-
|
69 |
-
elif "fault status" in message:
|
70 |
-
return """
|
71 |
-
SELECT fault_status, COUNT(*)
|
72 |
-
FROM machine_current_log
|
73 |
-
WHERE created_at >= NOW() - INTERVAL '1 day'
|
74 |
-
GROUP BY fault_status;
|
75 |
-
""", "Here's the distribution of fault statuses in the last 24 hours:"
|
76 |
-
|
77 |
-
elif "firmware versions" in message:
|
78 |
-
return """
|
79 |
-
SELECT DISTINCT fw_version, COUNT(*)
|
80 |
-
FROM machine_current_log
|
81 |
-
GROUP BY fw_version;
|
82 |
-
""", "Here are the firmware versions in use:"
|
83 |
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
#
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# Clean and format result
|
98 |
-
db_info = "\n".join(str(row) for row in result)
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
messages.append({"role": "user", "content": message})
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
temperature=temperature,
|
116 |
-
top_p=top_p,
|
117 |
-
):
|
118 |
-
token = message.choices[0].delta.content
|
119 |
-
response += token
|
120 |
-
yield response
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
- Machine status and state duration
|
130 |
-
- Fault status
|
131 |
-
- Firmware versions
|
132 |
-
"""
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.ChatInterface(
|
136 |
-
respond,
|
137 |
-
additional_inputs=[
|
138 |
-
gr.Textbox(
|
139 |
-
value="You are an expert AI assistant for machine monitoring. Help users understand machine metrics and status using the latest database values.",
|
140 |
-
label="System message"
|
141 |
-
),
|
142 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
143 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
144 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
145 |
-
],
|
146 |
-
)
|
147 |
|
148 |
-
# Run
|
149 |
if __name__ == "__main__":
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sqlalchemy import create_engine, Table, Column, String, Integer, Float, Text, TIMESTAMP, MetaData
|
2 |
+
from sqlalchemy.dialects.postgresql import UUID
|
3 |
+
from sqlalchemy import text
|
4 |
+
from llama_index.core import SQLDatabase
|
5 |
+
from llama_index.core.query_engine import NLSQLTableQueryEngine
|
6 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
7 |
import logging
|
|
|
8 |
|
9 |
# Set up logging
|
10 |
logging.basicConfig(level=logging.DEBUG)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
+
# PostgreSQL DB connection (converted from JDBC)
|
14 |
+
engine = create_engine("postgresql+psycopg2://postgres:password@localhost:5434/postgres")
|
15 |
|
16 |
+
metadata_obj = MetaData()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Define the machine_current_log table
|
19 |
+
machine_current_log_table = Table(
|
20 |
+
"machine_current_log",
|
21 |
+
metadata_obj,
|
22 |
+
Column("mac", Text, primary_key=True),
|
23 |
+
Column("created_at", TIMESTAMP(timezone=True), primary_key=True),
|
24 |
+
Column("CT1", Float),
|
25 |
+
Column("CT2", Float),
|
26 |
+
Column("CT3", Float),
|
27 |
+
Column("CT_Avg", Float),
|
28 |
+
Column("total_current", Float),
|
29 |
+
Column("state", Text),
|
30 |
+
Column("state_duration", Integer),
|
31 |
+
Column("fault_status", Text),
|
32 |
+
Column("fw_version", Text),
|
33 |
+
Column("machineId", UUID),
|
34 |
+
Column("hi", Text),
|
35 |
+
)
|
36 |
|
37 |
+
# Create the table
|
38 |
+
metadata_obj.create_all(engine)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Convert to TimescaleDB hypertable
|
41 |
+
with engine.connect() as conn:
|
42 |
+
conn.execute(text("SELECT create_hypertable('machine_current_log', 'created_at', if_not_exists => TRUE);"))
|
43 |
+
print("TimescaleDB hypertable created")
|
44 |
+
conn.commit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Query 1: Get all MAC addresses
|
47 |
+
print("\nQuerying all MAC addresses:")
|
48 |
+
with engine.connect() as con:
|
49 |
+
rows = con.execute(text("SELECT mac from machine_current_log"))
|
50 |
+
for row in rows:
|
51 |
+
print(row)
|
52 |
|
53 |
+
# Query 2: Get all data and count
|
54 |
+
print("\nQuerying all data and count:")
|
55 |
+
stmt = text("""
|
56 |
+
SELECT mac, created_at, CT1, CT2, CT3, CT_Avg,
|
57 |
+
total_current, state, state_duration, fault_status,
|
58 |
+
fw_version, machineId
|
59 |
+
FROM machine_current_log
|
60 |
+
""")
|
61 |
|
62 |
+
with engine.connect() as connection:
|
63 |
+
print("hello")
|
64 |
+
count_stmt = text("SELECT COUNT(*) FROM machine_current_log")
|
65 |
+
count = connection.execute(count_stmt).scalar()
|
66 |
+
print(f"Total number of rows in table: {count}")
|
67 |
+
results = connection.execute(stmt).fetchall()
|
68 |
+
print(results)
|
|
|
|
|
69 |
|
70 |
+
# Set up LlamaIndex natural language querying
|
71 |
+
sql_database = SQLDatabase(engine)
|
72 |
|
73 |
+
llm = HuggingFaceLLM(
|
74 |
+
model_name="HuggingFaceH4/zephyr-7b-beta",
|
75 |
+
context_window=2048,
|
76 |
+
max_new_tokens=256,
|
77 |
+
generate_kwargs={"temperature": 0.7, "top_p": 0.95},
|
78 |
+
)
|
|
|
79 |
|
80 |
+
query_engine = NLSQLTableQueryEngine(
|
81 |
+
sql_database=sql_database,
|
82 |
+
tables=["machine_current_log"],
|
83 |
+
llm=llm
|
84 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
def natural_language_query(question: str):
|
87 |
+
try:
|
88 |
+
response = query_engine.query(question)
|
89 |
+
return str(response)
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Query error: {e}")
|
92 |
+
return f"Error processing query: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
94 |
if __name__ == "__main__":
|
95 |
+
# Natural language query examples
|
96 |
+
print("\nNatural Language Query Examples:")
|
97 |
+
questions = [
|
98 |
+
"What is the average CT1 reading?",
|
99 |
+
"Which machine has the highest total current?",
|
100 |
+
"Show me the latest fault status for each machine"
|
101 |
+
]
|
102 |
+
|
103 |
+
for question in questions:
|
104 |
+
print(f"\nQuestion: {question}")
|
105 |
+
print("Answer:", natural_language_query(question))
|