Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
|
4 |
-
# Initialize
|
5 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
|
|
6 |
|
7 |
def analyze_sentiment(text):
|
8 |
-
if not text.strip():
|
9 |
-
return "Please enter some text to analyze"
|
10 |
-
|
11 |
result = sentiment_analyzer(text)[0]
|
12 |
return {
|
13 |
-
"
|
14 |
-
"
|
|
|
15 |
}
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
with gr.Column():
|
27 |
-
json_output = gr.JSON(label="Analysis Results")
|
28 |
-
|
29 |
-
# Additional examples
|
30 |
-
gr.Examples(
|
31 |
-
examples=[
|
32 |
-
"I love this product! It's amazing!",
|
33 |
-
"I'm really disappointed with the service.",
|
34 |
-
"The weather is nice today."
|
35 |
-
],
|
36 |
-
inputs=text_input
|
37 |
-
)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
# Launch the app
|
46 |
if __name__ == "__main__":
|
47 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
|
5 |
+
# Initialize models
|
6 |
sentiment_analyzer = pipeline("sentiment-analysis")
|
7 |
+
text_generator = pipeline("text-generation", model="gpt2")
|
8 |
|
9 |
def analyze_sentiment(text):
|
|
|
|
|
|
|
10 |
result = sentiment_analyzer(text)[0]
|
11 |
return {
|
12 |
+
"text": text,
|
13 |
+
"sentiment": result["label"],
|
14 |
+
"confidence": f"{result['score']*100:.1f}%"
|
15 |
}
|
16 |
|
17 |
+
def generate_text(prompt, length=50):
|
18 |
+
generated = text_generator(prompt, max_length=length, num_return_sequences=1)
|
19 |
+
return generated[0]["generated_text"]
|
20 |
+
|
21 |
+
with gr.Blocks(title="Multi-Function NLP App", theme=gr.themes.Soft()) as demo:
|
22 |
+
gr.Markdown("""
|
23 |
+
# 🚀 Advanced NLP Playground
|
24 |
+
*Powered by Hugging Face Transformers*
|
25 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
with gr.Tab("Sentiment Analysis"):
|
28 |
+
with gr.Row():
|
29 |
+
with gr.Column():
|
30 |
+
sentiment_input = gr.Textbox(label="Input Text", placeholder="Enter text to analyze...")
|
31 |
+
sentiment_button = gr.Button("Analyze")
|
32 |
+
with gr.Column():
|
33 |
+
sentiment_output = gr.JSON(label="Results")
|
34 |
+
|
35 |
+
sentiment_examples = gr.Examples(
|
36 |
+
examples=[
|
37 |
+
"I'm absolutely thrilled with this service!",
|
38 |
+
"The product didn't meet my expectations.",
|
39 |
+
"It's okay, nothing special."
|
40 |
+
],
|
41 |
+
inputs=sentiment_input
|
42 |
+
)
|
43 |
+
sentiment_button.click(analyze_sentiment, inputs=sentiment_input, outputs=sentiment_output)
|
44 |
+
|
45 |
+
with gr.Tab("Text Generation"):
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
gen_input = gr.Textbox(label="Prompt", placeholder="Start typing your idea...")
|
49 |
+
gen_slider = gr.Slider(20, 100, value=50, label="Output Length")
|
50 |
+
gen_button = gr.Button("Generate")
|
51 |
+
with gr.Column():
|
52 |
+
gen_output = gr.Textbox(label="Generated Text", lines=5)
|
53 |
+
|
54 |
+
gen_button.click(generate_text, inputs=[gen_input, gen_slider], outputs=gen_output)
|
55 |
+
|
56 |
+
gr.Markdown("---")
|
57 |
+
gr.HTML("<center>Built with ❤️ using Gradio and Hugging Face</center>")
|
58 |
|
|
|
59 |
if __name__ == "__main__":
|
60 |
+
demo.launch(share=True)
|