import argparse import torch import os import json from tqdm import tqdm import project_subpath from backend.InferenceConfig import InferenceConfig from backend.dataloader import create_dataloader_frames_only from backend.inference import do_full_tracking, setup_model, do_detection def main(args, config=InferenceConfig(), verbose=True): """ Perform inference on a directory of frames and saves the tracking json result Args: frames (str): Path to frame directory. Required. metadata (str): Path to metadata directory. Required. output (str): Path to output directory. Required. weights (str): Path to saved YOLOv5 weights. Default: ../models/v5m_896_300best.pt """ print("In task...") print("Cuda available in task?", torch.cuda.is_available()) print("Config:", config.to_dict()) dirname = args.frames loc = args.location in_loc_dir = os.path.join(dirname, loc) out_dir = os.path.join(args.output, loc, "tracker", "data") metadata_path = os.path.join(args.metadata, loc + ".json") os.makedirs(out_dir, exist_ok=True) print(in_loc_dir) print(out_dir) print(metadata_path) # run detection + tracking model, device = setup_model(args.weights) seq_list = os.listdir(in_loc_dir) idx = 1 with tqdm(total=len(seq_list), desc="...", ncols=0) as pbar: for seq in seq_list: pbar.update(1) pbar.set_description("Processing " + seq) if verbose: print(" ") print("(" + str(idx) + "/" + str(len(seq_list)) + ") " + seq) print(" ") idx += 1 in_seq_dir = os.path.join(in_loc_dir, seq) infer_seq(in_seq_dir, out_dir, config, seq, model, device, metadata_path, verbose) def infer_seq(in_dir, out_dir, config, seq_name, model, device, metadata_path, verbose): #progress_log = lambda p, m: 0 image_meter_width = -1 image_meter_height = -1 with open(metadata_path, 'r') as f: json_object = json.loads(f.read()) for seq in json_object: if seq['clip_name'] == seq_name: image_meter_width = seq['x_meter_stop'] - seq['x_meter_start'] image_meter_height = seq['y_meter_stop'] - seq['y_meter_start'] if (image_meter_height == -1): print("No metadata found for file " + seq_name) return # create dataloader dataloader = create_dataloader_frames_only(in_dir) try: inference, image_shapes, width, height = do_detection(dataloader, model, device, verbose=verbose) except: print("Error in " + seq_name) with open(os.path.join(out_dir, "ERROR_" + seq_name + ".txt"), 'w') as f: f.write("ERROR") return real_width = image_shapes[0][0][0][1] real_height = image_shapes[0][0][0][0] results = do_full_tracking(inference, image_shapes, image_meter_width, image_meter_height, width, height, config=config, gp=None, verbose=verbose) mot_rows = [] for frame in results['frames']: for fish in frame['fish']: bbox = fish['bbox'] row = [] right = bbox[0]*real_width top = bbox[1]*real_height w = bbox[2]*real_width - bbox[0]*real_width h = bbox[3]*real_height - bbox[1]*real_height row.append(str(frame['frame_num'] + 1)) row.append(str(fish['fish_id'] + 1)) row.append(str(int(right))) row.append(str(int(top))) row.append(str(int(w))) row.append(str(int(h))) row.append("-1") row.append("-1") row.append("-1") row.append("-1") mot_rows.append(",".join(row)) mot_text = "\n".join(mot_rows) with open(os.path.join(out_dir, seq_name + ".txt"), 'w') as f: f.write(mot_text) return def argument_parser(): parser = argparse.ArgumentParser() parser.add_argument("--frames", required=True, help="Path to frame directory. Required.") parser.add_argument("--location", required=True, help="Name of location dir. Required.") parser.add_argument("--metadata", required=True, help="Path to metadata directory. Required.") parser.add_argument("--output", required=True, help="Path to output directory. Required.") parser.add_argument("--weights", default='models/v5m_896_300best.pt', help="Path to saved YOLOv5 weights. Default: ../models/v5m_896_300best.pt") return parser if __name__ == "__main__": args = argument_parser().parse_args() main(args)