import argparse import torch import os import json from tqdm import tqdm import project_subpath from backend.dataloader import create_dataloader_frames_only from backend.inference import setup_model, do_detection, do_suppression from backend.InferenceConfig import InferenceConfig from lib.yolov5.utils.general import clip_boxes, scale_boxes def main(args, config=InferenceConfig(), verbose=False): """ Construct and save MOT format detections from yolov5 based on a frame directory Args: frames (str): path to image directory output (str): where MOT detections will be stored weights (str): path to model weights """ print("In task...") print("Cuda available in task?", torch.cuda.is_available()) print("Config:", config.to_dict()) model, device = setup_model(args.weights) in_loc_dir = os.path.join(args.frames, args.location) out_loc_dir = os.path.join(args.output, args.location) metadata_path = os.path.join(args.metadata, args.location + ".json") print(in_loc_dir) print(out_loc_dir) print(metadata_path) detect_location(in_loc_dir, out_loc_dir, metadata_path, config, model, device, verbose) def detect_location(in_loc_dir, out_loc_dir, metadata_path, config, model, device, verbose): seq_list = os.listdir(in_loc_dir) with tqdm(total=len(seq_list), desc="...", ncols=0) as pbar: for seq in seq_list: image_meter = (-1, -1) with open(metadata_path, 'r') as f: json_object = json.loads(f.read()) for sequence in json_object: if sequence['clip_name'] == seq: image_meter = ( sequence['x_meter_stop'] - sequence['x_meter_start'], sequence['y_meter_stop'] - sequence['y_meter_start'] ) pbar.update(1) if (seq.startswith(".")): continue pbar.set_description("Processing " + seq) in_seq_dir = os.path.join(in_loc_dir, seq) out_seq_dir = os.path.join(out_loc_dir, seq) os.makedirs(out_seq_dir, exist_ok=True) detect_seq(in_seq_dir, out_seq_dir, image_meter, config, model, device, verbose) def detect_seq(in_seq_dir, out_seq_dir, image_meter, config, model, device, verbose): ann_list = [] frame_list = detect(in_seq_dir, image_meter, config, model, device, verbose) for frame in frame_list: if frame is not None: for ann in frame: ann_list.append({ 'image_id': ann[5], 'category_id': 0, 'bbox': [ann[0], ann[1], ann[2] - ann[0], ann[3] - ann[1]], 'score': ann[4] }) result = json.dumps(ann_list) with open(os.path.join(out_seq_dir, 'pred.json'), 'w') as f: f.write(result) def detect(in_dir, image_meter, config, model, device, verbose): #progress_log = lambda p, m: 0 # create dataloader dataloader = create_dataloader_frames_only(in_dir) inference, image_shapes, width, height = do_detection(dataloader, model, device, verbose=verbose) outputs = do_suppression(inference, image_meter_width=image_meter[0], image_pixel_width=image_meter[1], conf_thres=config.conf_thresh, iou_thres=config.nms_iou, verbose=verbose) file_names = dataloader.files frame_list = [] for batch_i, batch in enumerate(outputs): batch_shapes = image_shapes[batch_i] # Format results for si, pred in enumerate(batch): (image_shape, original_shape) = batch_shapes[si] # Clip boxes to image bounds and resize to input shape clip_boxes(pred, (height, width)) boxes = pred[:, :4].clone() # xyxy confs = pred[:, 4].clone().tolist() scale_boxes(image_shape, boxes, original_shape[0], original_shape[1]) # to original shape frame = [ [*bb, conf] for bb, conf in zip(boxes.tolist(), confs) ] file_name = file_names[batch_i*32 + si] for ann in frame: ann.append(file_name) frame_list.append(frame) return frame_list def argument_parser(): parser = argparse.ArgumentParser() parser.add_argument("--frames", required=True, help="Path to frame directory. Required.") parser.add_argument("--metadata", required=True, help="Path to frame directory. Required.") parser.add_argument("--location", required=True, help="Name of location dir. Required.") parser.add_argument("--output", required=True, help="Path to output directory. Required.") parser.add_argument("--weights", default='models/v5m_896_300best.pt', help="Path to saved YOLOv5 weights. Default: ../models/v5m_896_300best.pt") return parser if __name__ == "__main__": args = argument_parser().parse_args() main(args)