import gradio as gr from gradio_scripts.file_reader import File from InferenceConfig import InferenceConfig, TrackerType models = { 'master': 'models/v5m_896_300best.pt', 'elwha': 'models/YsEE20.pt', 'elwha+kenai_val': 'models/YsEKvE20.pt', 'elwha+kenai_train': 'models/YsEKtE20.pt', } def Upload_Gradio(gradio_components): with gr.Tabs(): # Tab - uploading aris files for inference with gr.Tab("Infer ARIS"): gr.HTML("
Submit an .aris file to analyze result.
") default_settings = InferenceConfig() settings = [] with gr.Accordion("Advanced Settings", open=False): settings.append(gr.Dropdown(label="Model", value=default_settings.find_model(models), choices=list(models.keys()))) gr.Markdown("Detection Parameters") with gr.Row(): settings.append(gr.Slider(0, 1, value=default_settings.conf_thresh, label="Confidence Threshold", info="Confidence cutoff for detection boxes")) settings.append(gr.Slider(0, 1, value=default_settings.nms_iou, label="NMS IoU", info="IoU threshold for non-max suppression")) gr.Markdown("Tracking Parameters") with gr.Row(): settings.append(gr.Slider(0, 100, value=default_settings.min_hits, label="Min Hits", info="Minimum number of frames a fish has to appear in to count")) settings.append(gr.Slider(0, 100, value=default_settings.max_age, label="Max Age", info="Max age of occlusion before track is split")) tracker = gr.Dropdown(["None", "Confidence Boost", "ByteTrack"], value=TrackerType.toString(default_settings.associative_tracker), label="Associative Tracking") settings.append(tracker) with gr.Row(visible=False) as track_row: settings.append(gr.Slider(0, 5, value=default_settings.boost_power, label="Boost Power", info="")) settings.append(gr.Slider(0, 1, value=default_settings.boost_decay, label="Boost Decay", info="")) tracker.change(lambda x: gr.update(visible=(x=="Confidence Boost")), tracker, track_row) with gr.Row(visible=False) as track_row: settings.append(gr.Slider(0, 1, value=default_settings.byte_low_conf, label="Low Conf Threshold", info="")) settings.append(gr.Slider(0, 1, value=default_settings.byte_high_conf, label="High Conf Threshold", info="")) tracker.change(lambda x: gr.update(visible=(x=="ByteTrack")), tracker, track_row) gr.Markdown("Other") with gr.Row(): settings.append(gr.Slider(0, 3, value=default_settings.min_length, label="Min Length", info="Minimum length of fish (meters) in order for it to count")) settings.append(gr.Slider(0, 5, value=default_settings.min_travel, label="Min Travel", info="Minimum travel distance of track (meters) in order for it to count")) gradio_components['hyperparams'] = settings with gr.Row(): settings.append(gr.CheckboxGroup(["Annotated Video", "Manual Marking", "PDF"], label="Output formats", interactive=True, value=["Annotated Video", "Manual Marking"])) #Input field for aris submission gradio_components['input'] = File(file_types=[".aris", ".ddf"], type="binary", label="ARIS Input", file_count="multiple") # Tab - uploading old result files to review with gr.Tab("Open Result"): gr.HTML("""Submit an old zip file of results to visualize.
If you want to edit annotations, also submit an aris file.
""") # Input for .zip result file gradio_components['result_input'] = File(file_types=[".zip"], type="binary", label="Upload result file", file_count="multiple") # Optional input for aris file to help with annotation editing gradio_components['result_aris_input'] = File(file_types=[".aris", ".ddf"], type="binary", label="Upload aris file (optional)", file_count="multiple") # Button for initializing review gradio_components['preview_result_btn'] = gr.Button("View Result")