import project_path from lib.yolov5.utils.torch_utils import select_device from lib.yolov5.utils.general import clip_boxes, scale_boxes import argparse from datetime import datetime import torch import os from dataloader import create_dataloader_frames_only from inference import setup_model, do_detection, do_suppression, do_confidence_boost, format_predictions, do_tracking from visualizer import generate_video_batches import json from tqdm import tqdm import numpy as np def main(args, config={}, verbose=True): """ Main processing task to be run in gradio - Writes aris frames to dirname(filepath)/frames/{i}.jpg - Writes json output to dirname(filepath)/{filename}_results.json - Writes manual marking to dirname(filepath)/{filename}_marking.txt - Writes video output to dirname(filepath)/{filename}_results.mp4 - Zips all results to dirname(filepath)/{filename}_results.zip Args: filepath (str): path to aris file TODO: Separate into subtasks in different queues; have a GPU-only queue. """ # setup config if "conf_threshold" not in config: config['conf_threshold'] = 0.3#0.001 if "nms_iou" not in config: config['nms_iou'] = 0.3#0.6 if "min_length" not in config: config['min_length'] = 0.3 if "max_age" not in config: config['max_age'] = 20 if "iou_threshold" not in config: config['iou_threshold'] = 0.01 if "min_hits" not in config: config['min_hits'] = 11 if "use_associative" not in config: config['use_associative'] = False if "boost_power" not in config: config['boost_power'] = 1 if "boost_decay" not in config: config['boost_decay'] = 1 print(config) locations = [ "kenai-val" ] for loc in locations: in_loc_dir = os.path.join(args.detections, loc) out_loc_dir = os.path.join(args.output, loc, args.tracker, "data") os.makedirs(out_loc_dir, exist_ok=True) metadata_path = os.path.join(args.metadata, loc + ".json") print(in_loc_dir) print(out_loc_dir) print(metadata_path) track_location(in_loc_dir, out_loc_dir, metadata_path, config, verbose) def track_location(in_loc_dir, out_loc_dir, metadata_path, config, verbose): seq_list = os.listdir(in_loc_dir) with tqdm(total=len(seq_list), desc="...", ncols=0) as pbar: for seq in seq_list: pbar.update(1) if (seq.startswith(".")): continue pbar.set_description("Processing " + seq) track(in_loc_dir, out_loc_dir, metadata_path, seq, config, verbose) def track(in_loc_dir, out_loc_dir, metadata_path, seq, config, verbose): json_path = os.path.join(in_loc_dir, seq, 'pred.json') inference_path = os.path.join(in_loc_dir, seq, 'inference.pt') out_path = os.path.join(out_loc_dir, seq + ".txt") device_name = 'cuda:0' if torch.cuda.is_available() else 'cpu' device = torch.device(device_name) inference = torch.load(inference_path, map_location=device) # read detection with open(json_path, 'r') as f: detection = json.load(f) image_shapes = detection['image_shapes'] width = detection['width'] height = detection['height'] # read metadata image_meter_width = -1 image_meter_height = -1 with open(metadata_path, 'r') as f: json_object = json.loads(f.read()) for sequence in json_object: if sequence['clip_name'] == seq: image_meter_width = sequence['x_meter_stop'] - sequence['x_meter_start'] image_meter_height = sequence['y_meter_start'] - sequence['y_meter_stop'] outputs = do_suppression(inference, conf_thres=config['conf_threshold'], iou_thres=config['nms_iou'], verbose=verbose) if config['use_associative']: do_confidence_boost(inference, outputs, conf_power=config['boost_power'], conf_decay=config['boost_decay'], verbose=verbose) outputs = do_suppression(inference, conf_thres=config['conf_threshold'], iou_thres=config['nms_iou'], verbose=verbose) all_preds, real_width, real_height = format_predictions(image_shapes, outputs, width, height, verbose=verbose) results = do_tracking(all_preds, image_meter_width, image_meter_height, min_length=config['min_length'], max_age=config['max_age'], iou_thres=config['iou_threshold'], min_hits=config['min_hits'], verbose=verbose) mot_rows = [] for frame in results['frames']: for fish in frame['fish']: bbox = fish['bbox'] row = [] right = bbox[0]*real_width top = bbox[1]*real_height w = bbox[2]*real_width - bbox[0]*real_width h = bbox[3]*real_height - bbox[1]*real_height row.append(str(frame['frame_num'] + 1)) row.append(str(fish['fish_id'] + 1)) row.append(str(int(right))) row.append(str(int(top))) row.append(str(int(w))) row.append(str(int(h))) row.append("-1") row.append("-1") row.append("-1") row.append("-1") mot_rows.append(",".join(row)) mot_text = "\n".join(mot_rows) with open(out_path, 'w') as f: f.write(mot_text) def argument_parser(): parser = argparse.ArgumentParser() parser.add_argument("--detections", required=True, help="Path to frame directory. Required.") parser.add_argument("--output", required=True, help="Path to output directory. Required.") parser.add_argument("--metadata", required=True, help="Path to output directory. Required.") parser.add_argument("--tracker", default='tracker', help="Path to output directory. Required.") return parser if __name__ == "__main__": args = argument_parser().parse_args() main(args)