File size: 4,523 Bytes
523a361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from absl import app
from absl import flags
from colorsys import hls_to_rgb
import json
import numpy as np
import os
import xml.etree.ElementTree as ET

from fish_length import Fish_Length
from tracker import Tracker

flags.DEFINE_string(
	'json_dump_path', None, 'Path to json containing annotated clip info.'
)
flags.DEFINE_string(
	'xml_dir', None, 'Directory containing xml annotation files.'
)
flags.DEFINE_string(
	'output_path', None, 'Directory to output clip annotation jsons.'
)
flags.mark_flag_as_required('json_dump_path')
flags.mark_flag_as_required('xml_dir')
flags.mark_flag_as_required('output_path')
FLAGS = flags.FLAGS

def get_annotation_from_clip(clip):
	root = ET.parse(os.path.join(FLAGS.xml_dir, clip['clip_name']+'.xml')).getroot()

	data = {}
	data['clip_id'] = clip['clip_id']
	data['aris_filename'] = clip['aris_filename']
	data['start_frame'] = clip['start_frame']
	data['end_frame'] = clip['end_frame']
	data['upstream_direction'] = clip['upstream_direction']
	data['image_meter_width'] = clip['aris_info']['pixel_meter_size']*clip['aris_info']['xdim']

	# Create image entries
	frames = []
	for i in range(int(root.findall('object')[0].findtext('startFrame')), 1 + int(root.findall('object')[0].findtext('endFrame'))):
		frame = {
			'frame_num': clip['start_frame'] + i,
			'fish': []
		}
		frames.append(frame)

	fishes = []
	# Populate images with bboxes
	for track_id, object in enumerate(root.findall('object')):
		fish = {}
		fish['id'] = track_id
		fish['length'] = -1
		fish['direction'] = 'N/A'
		fish['start_frame_index'] = -1
		fish['end_frame_index'] = -1
		fish['color'] = Tracker.selectColor(track_id)

		fishes.append(fish)

		last_drawn = None
		stat_interp = []
		lengths = []
		for polygon in object.findall('polygon'):
			if int(polygon.findtext('pt/l')) == -1:
				continue
			
			index = int(polygon.find('t').text)

			frame = frames[index]
			
			frame_entry = {}
			frame_entry['fish_id'] = track_id
			frame_entry['bbox'] = None
			frame_entry['visible'] = 1
			frame_entry['human_labeled'] = int(polygon.findtext('pt/l'))

			frame['fish'].append(frame_entry)
			
			# Determine if polygon is stationary
			if polygon.findtext('s') is not None and int(polygon.findtext('s')):
				stat_interp.append(frame_entry)
			else:
				frame_entry['bbox'] = list(np.array([int(polygon.findtext('pt/x'))/clip['aris_info']['xdim'], int(polygon.findtext('pt/y'))/clip['aris_info']['ydim'],
					int(polygon.findall('pt/x')[2].text)/clip['aris_info']['xdim'], int(polygon.findall('pt/y')[1].text)/clip['aris_info']['ydim']]))
				
				# Coordinates of greater than 1.1 will cause training to fail
				if (np.array(frame_entry['bbox']) > 1.1).any():
					print('Error: Invalid bbox.')
					frame['fish'].pop()
					continue

				lengths.append(int(polygon.findall('pt/x')[2].text)-int(polygon.findtext('pt/x')))

				# Interpolate if there are stationary boxes
				if stat_interp:
					bbox_interp = last_drawn + np.dot(1 + np.array(range(len(stat_interp)))[:,np.newaxis], (np.array(frame_entry['bbox']) - np.array(last_drawn))[np.newaxis])/(len(stat_interp) + 1)
					for frame_entry, bbox in zip(stat_interp, bbox_interp):	
						frame_entry['bbox'] = list(bbox)
					stat_interp = []
				last_drawn = frame_entry['bbox']
			
			if fish['start_frame_index'] == -1:
				fish['start_frame_index'] = index
			fish['end_frame_index'] = index

		if stat_interp:
			for frame_entry in stat_interp:
				frame_entry['bbox'] = last_drawn

	data['frames'] = frames
	data['fish'] = fishes

	# Add track
	for fish in fishes:
		for frame_entry in frames[fish['start_frame_index']]['fish']:
			if frame_entry['fish_id'] == fish['id']:
				start_bbox = frame_entry['bbox']
				break
		else:
			raise RuntimeWarning(f'Start box of fish {fish["id"]} in {clip["clip_name"]} is not defined.')

		for frame_entry in frames[fish['end_frame_index']]['fish']:
			if frame_entry['fish_id'] == fish['id']:
				end_bbox = frame_entry['bbox']
				break
		else:
			raise RuntimeWarning(f'End box of fish {fish["id"]} in {clip["clip_name"]} is not defined.')

		fish['direction'] = Tracker.get_direction(start_bbox, end_bbox)

	return Fish_Length.add_lengths(data)

def main(argv):
	with open(FLAGS.json_dump_path) as json_file:
		json_dump = json.load(json_file)
	
	for clip in json_dump:
		data = get_annotation_from_clip(clip)

		with open(os.path.join(FLAGS.output_path, f'{clip["clip_name"]}.json'), 'w') as output_file:
			json.dump(data, output_file, indent=2)

if __name__ == '__main__':
	app.run(main)