File size: 10,382 Bytes
7e4e0ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7827d6
7e4e0ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39c376
 
f7827d6
7e4e0ac
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib import collections as mc
import matplotlib.pyplot as plt
import math
from aris import BEAM_WIDTH_DIR
import cv2

from dataloader import create_dataloader_aris


STANDARD_FIG_SIZE = (16, 9)
OUT_PDF_FILE_NAME = 'multipage_pdf.pdf'


def make_pdf(i, state, result, table_headers):

    fish_info = result["fish_info"][i]
    fish_table = result["fish_table"][i]
    json_result = result['json_result'][i]
    metadata = json_result['metadata']
    aris_input = result["aris_input"][i]

    with PdfPages(OUT_PDF_FILE_NAME) as pdf:
        plt.rcParams['text.usetex'] = False
        
        generate_title_page(pdf, metadata, state)
        
        generate_global_result(pdf, fish_info)

        generate_fish_list(pdf, table_headers, fish_table)


        dataset = None
        if (aris_input is not None):
            dataloader, dataset = create_dataloader_aris(aris_input, BEAM_WIDTH_DIR, None)

        for i, fish in enumerate(json_result['fish']):
            calculate_fish_paths(json_result, dataset, i)
        
        draw_combined_fish_graphs(pdf, json_result)

        for i, fish in enumerate(json_result['fish']):
            generate_fish_tracks(pdf, json_result, i)

        # We can also set the file's metadata via the PdfPages object:
        d = pdf.infodict()
        d['Title'] = 'Multipage PDF Example'
        d['Author'] = 'Oskar Åström'
        d['Subject'] = 'How to create a multipage pdf file and set its metadata'
        d['Keywords'] = ''
        d['CreationDate'] = datetime.datetime.today()
        d['ModDate'] = datetime.datetime.today()


def generate_title_page(pdf, metadata, state):
    # set up figure that will be used to display the opening banner
    fig = plt.figure(figsize=STANDARD_FIG_SIZE)
    plt.axis('off')

    title_font_size = 40
    minor_font_size = 20

    # stuff to be printed out on the first page of the report
    plt.text(0.5,-0.5,f'{metadata["FILE_NAME"].split("/")[-1]}',fontsize=title_font_size, horizontalalignment='center')

    plt.text(0,1,f'Duration: {metadata["TOTAL_TIME"]}',fontsize=minor_font_size)
    plt.text(0,1.5,f'Frames: {metadata["TOTAL_FRAMES"]}',fontsize=minor_font_size)
    plt.text(0,2,f'Frame Rate: {metadata["FRAME_RATE"]}',fontsize=minor_font_size)

    plt.text(0.5,1,f'Time of filming: {metadata["DATE"]} ({metadata["START"]} - {metadata["END"]})',fontsize=minor_font_size)
    plt.text(0.5,1.5,f'Web app version: {state["version"]}',fontsize=minor_font_size)

    plt.text(1.1,4.5,f'PDF generated on {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}',fontsize=minor_font_size, horizontalalignment='right')

    plt.ylim([-1, 4])
    plt.xlim([0, 1])
    plt.gca().invert_yaxis()
    
    pdf.savefig(fig)
    plt.close(fig)

def generate_global_result(pdf, fish_info):
    # set up figure that will be used to display the opening banner
    fig = plt.figure(figsize=STANDARD_FIG_SIZE)
    plt.axis('off')
    # stuff to be printed out on the first page of the report

    minor_font_size = 18

    headers = ["Result", "Camera Info", "Hyperparameters"]
    info_col_1 = []
    info_col_2 = []
    info_col = info_col_1
    row_state = -1
    for row in fish_info:
        if row_state >= 0:
            info_col.append([row[0].replace("**","").replace("_", " ").lower(), row[1], 'normal'])
        if (row[0] == "****"):
            row_state += 1
            if row_state == 2: info_col = info_col_2
            info_col.append([headers[row_state], "", 'bold'])
    for row_i, row in enumerate(info_col_1):
        h = -1 + 5*row_i/len(info_col_1)
        plt.text(0,    h, row[0], fontsize=minor_font_size, weight=row[2])
        plt.text(0.25, h, row[1], fontsize=minor_font_size, weight=row[2])
    for row_i, row in enumerate(info_col_2):
        h = -1 + 5*row_i/len(info_col_2)
        plt.text(0.5,  h, row[0], fontsize=minor_font_size, weight=row[2])
        plt.text(0.75, h, row[1], fontsize=minor_font_size, weight=row[2])
    plt.ylim([-1, 4])
    plt.xlim([0, 1])
    plt.gca().invert_yaxis()
    
    pdf.savefig(fig)
    plt.close(fig)

def generate_fish_list(pdf, table_headers, fish_table):
    # set up figure that will be used to display the opening banner
    fig = plt.figure(figsize=STANDARD_FIG_SIZE)
    plt.axis('off')
    # stuff to be printed out on the first page of the report

    title_font_size = 40
    header_font_size = 12
    body_font_size = 20

    # Title
    plt.text(0.5,-1.3,f'{"Identified Fish"}',fontsize=title_font_size, horizontalalignment='center', weight='bold')

    # Identified fish
    row_h = 0.25
    col_start = 0
    row_l = 1
    dropout_i = None
    for col_i, col in enumerate(table_headers):
        x = col_start + row_l*(col_i+0.5)/len(table_headers)
        if col == "TOTAL": col = "ID"
        if col == "DETECTION_DROPOUT": 
            col = "frame drop rate"
            dropout_i = col_i
        col = col.lower().replace("_", " ")
        plt.text(x, -1, col, fontsize=header_font_size, horizontalalignment='center', weight="bold")
        plt.plot([col_start*2, -col_start*2 + row_l], [-1 + 0.05, -1 + 0.05], color='black')

    for row_i, row in enumerate(fish_table):
        y = -1 + (row_i+1)*row_h
        plt.plot([col_start*2, -col_start*2 + row_l], [y+0.05, y+0.05], color='black')
        for col_i, col in enumerate(row):
            x = col_start + row_l*(col_i+0.5)/len(row)
            if (col_i == dropout_i):
                col = str(int(col*100)) + "%"
            elif type(col) == float:
                col = "{:.4f}".format(col)
            plt.text(x, y, col, fontsize=body_font_size, horizontalalignment='center')
    plt.ylim([-1, 4])
    plt.xlim([0, 1])
    plt.gca().invert_yaxis()
    
    pdf.savefig(fig)
    plt.close(fig)

def calculate_fish_paths(result, dataset, id):

    fish = result['metadata']['FISH'][id]
    start_frame = fish['START_FRAME']
    end_frame = fish['END_FRAME']

    # Extract base frame (first frame for that fish)
    w, h = 1, 2
    img = None
    if (dataset is not None):
        
        images = dataset.didson.load_frames(start_frame=start_frame, end_frame=start_frame+1)
        img = images[0]

        frame_height = 2
        scale_factor = frame_height / h
        h = frame_height
        w = int(scale_factor*w)

    fish['base_frame'] = img
    fish['scaled_frame_size'] = (w, h)


    # Find frames for this fish
    bboxes = []
    for frame in result['frames'][start_frame:end_frame+1]:
        bbox = None
        for ann in frame['fish']:
            if ann['fish_id'] == id+1:
                bbox = ann
        bboxes.append(bbox)


    # Calculate tracks through frames
    missed = 0
    X = []
    Y = []
    V = []
    certainty = []
    for bbox in bboxes:
        if bbox is not None:

            # Find fish centers
            x = (bbox['bbox'][0] + bbox['bbox'][2])/2
            y = (bbox['bbox'][1] + bbox['bbox'][3])/2

            # Calculate velocity
            v = None
            if len(X) > 0:
                last_x = X[-1]
                last_y = Y[-1]
                dx = result['image_meter_width']*(last_x - x)/(missed+1)
                dy = result['image_meter_height']*(last_y - y)/(missed+1)
                v = math.sqrt(dx*dx + dy*dy)

            # Interpolate over missing frames
            if missed > 0:    
                for i in range(missed):
                    p = (i+1)/(missed+1)
                    X.append(last_x*(1-p) + p*x)
                    Y.append(last_y*(1-p) + p*y)
                    V.append(v)
                    certainty.append(False)
            
            # Append new track frame
            X.append(x)
            Y.append(y)
            if v is not None: V.append(v)
            certainty.append(True)
            missed = 0
        else:
            missed += 1

    fish['path'] = {
        'X': X,
        'Y': Y,
        'certainty': certainty,
        'V': V
    }


def draw_combined_fish_graphs(pdf, result):
    vel = []
    log_vel = []
    for fish in result['metadata']['FISH']:
        vel += fish['path']['V']
        log_vel += [math.log(v) for v in fish['path']['V']]

    fig, axs = plt.subplots(2, 2, sharey=True, figsize=STANDARD_FIG_SIZE)
    axs[0,0].hist(log_vel, bins=20)
    axs[0,0].set_title('Fish Log-Velocities between frames')
    axs[0,0].set_xlabel("Log-Velocity (log(m/frame))")
    axs[0,1].hist(vel, bins=20)
    axs[0,1].set_title('Fish Velocities between frames')
    axs[0,1].set_xlabel("Velocity (m/frame)")

    pdf.savefig(fig)
    plt.close(fig)
    

def generate_fish_tracks(pdf, result, id):

    fish = result['metadata']['FISH'][id]
    start_frame = fish['START_FRAME']
    end_frame = fish['END_FRAME']

    fig, ax = plt.subplots(figsize=STANDARD_FIG_SIZE)
    plt.axis('off')

    w, h = fish['scaled_frame_size']
    if (fish['base_frame'] is not None):
        img = fish['base_frame']
        img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
        plt.imshow(img, extent=(0, h, 0, w), cmap=plt.colormaps['Greys'])

    # Title
    plt.text(h/2,1.1,f'Fish {id+1} (frames {start_frame}-{end_frame})',fontsize=40, color="red", horizontalalignment='center', zorder=5)

    X = fish['path']['X']
    Y = fish['path']['Y']
    certainty = fish['path']['certainty']
    
    plt.text(h*(1-Y[0]), w*(1-X[0]), "Start", fontsize=15, weight="bold")
    plt.text(h*(1-Y[-1]), w*(1-X[-1]), "End", fontsize=15, weight="bold")

    colors = [""]
    for i in range(1, len(X)):

        certain = certainty[i]
        fully_certain = certain
        half_certain = certain
        if i > 0: 
            fully_certain &= certainty[i-1]
            half_certain |= certainty[i-1]
            
        #color = 'yellow' if certain else 'orangered'
        #plt.plot(h*(1-y), w*(1-x), marker='o', markersize=3, color=color, zorder=3)
        col = 'yellow' if fully_certain else ('darkorange' if half_certain else 'orangered')
        colors.append(col)
        ax.plot([h*(1-Y[i-1]), h*(1-Y[i])], [w*(1-X[i-1]), w*(1-X[i])], color=col, linewidth=1)
    
    print(len(X))
    print(len(Y))
    print(len(colors))
    for i in range(1, len(X)):
        ax.plot(h*(1-Y[i]), w*(1-X[i]), color=colors[i], marker='o', markersize=3)
    

    plt.ylim([0, w])
    plt.xlim([0, h])
    pdf.savefig(fig)
    plt.close(fig)