PropAgent / app.py
cafierom's picture
Update app.py
1ba356b verified
import torch
from typing import Annotated, TypedDict, Literal
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.tools import tool
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, trim_messages, AIMessage, HumanMessage, ToolCall
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_huggingface import ChatHuggingFace
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.runnables import chain
from uuid import uuid4
import re
import matplotlib.pyplot as plt
import PIL.Image as Image
import gradio as gr
import spaces
from rdkit import Chem
from rdkit.Chem import AllChem, QED
from rdkit.Chem import Draw
from rdkit import rdBase
from rdkit.Chem import rdMolAlign
import os
from rdkit import RDConfig
from rdkit.Chem.Features.ShowFeats import _featColors as featColors
from rdkit.Chem.FeatMaps import FeatMaps
fdef = AllChem.BuildFeatureFactory(os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef'))
fmParams = {}
for k in fdef.GetFeatureFamilies():
fparams = FeatMaps.FeatMapParams()
fmParams[k] = fparams
device = "cuda" if torch.cuda.is_available() else "cpu"
hf = HuggingFacePipeline.from_model_id(
#model_id= "swiss-ai/Apertus-8B-Instruct-2509",
model_id= "microsoft/Phi-4-mini-instruct",
task="text-generation",
pipeline_kwargs = {"max_new_tokens": 500, "temperature": 0.4})
chat_model = ChatHuggingFace(llm=hf)
class State(TypedDict):
'''
The state of the agent.
'''
messages: Annotated[list, add_messages]
query_smiles: str
query_task: str
query_path: str
query_reference: str
tool_choice: tuple
which_tool: int
props_string: str
loop_again: str
#(Literal["lipinski_tool", "substitution_tool", "pharm_feature_tool"],
# Literal["lipinski_tool", "substitution_tool", "pharm_feature_tool"])
def substitution_node(state: State) -> State:
'''
A simple substitution routine that looks for a substituent on a phenyl ring and
substitutes different fragments in that location. Returns a list of novel molecules and their
QED score (1 is most drug-like, 0 is least drug-like).
Args:
smiles: the input smiles string
Returns:
new_smiles_string: a string of novel molecules and their QED scores.
'''
print("substitution tool")
print('===================================================')
smiles = state["query_smiles"]
current_props_string = state["props_string"]
new_fragments = ["c(Cl)c", "c(F)c", "c(O)c", "c(C)c", "c(OC)c", "c([NH3+])c",
"c(Br)c", "c(C(F)(F)(F))c"]
new_smiles = []
for fragment in new_fragments:
m = re.findall(r"c(\D\D*)c", smiles)
if len(m) != 0:
for group in m:
#print(group)
if fragment not in group:
new_smile = smiles.replace(group[1:], fragment)
new_smiles.append(new_smile)
qeds = []
for new_smile in new_smiles:
qeds.append(get_qed(new_smile))
original_qed = get_qed(smiles)
new_smiles_string = "Substitution or Analogue creation tool results: \n"
new_smiles_string += f"The original molecule SMILES was {smiles} with QED {original_qed}.\n"
new_smiles_string += "Novel Molecules or Analogues and QED values: \n"
for i in range(len(new_smiles)):
new_smiles_string += f"SMILES: {new_smiles[i]}, QED: {qeds[i]:.3f}\n"
new_mols = [Chem.MolFromSmiles(x) for x in new_smiles]
if len(new_smiles) > 0:
img = Draw.MolsToGridImage(new_mols, molsPerRow=3, subImgSize=(200,200), legends=[f"QED: {qeds[i]:.3f}" for i in range(len(new_smiles))])
img.save('Substitution_image.png')
else:
new_smiles_string += "No valid substitutions were found.\n"
print(new_smiles_string)
new_smiles_string = new_smiles_string.replace('#', '~')
current_props_string += new_smiles_string
state["props_string"] = current_props_string
state["which_tool"] += 1
return state
def get_qed(smiles):
'''
Helper function to compute QED for a given molecule.
Args:
smiles: the input smiles string
Returns:
qed: the QED score of the molecule.
'''
mol = Chem.MolFromSmiles(smiles)
qed = Chem.QED.default(mol)
return qed
def lipinski_node(state: State) -> State:
'''
A tool to calculate QED and other lipinski properties of a molecule.
Args:
smiles: the input smiles string
Returns:
props_string: a string of the QED and other lipinski properties of the molecule,
including Molecular Weight, LogP, HBA, HBD, Polar Surface Area,
Rotatable Bonds, Aromatic Rings and Undesireable Moieties.
'''
print("lipinski tool")
print('===================================================')
smiles = state["query_smiles"]
current_props_string = state["props_string"]
mol = Chem.MolFromSmiles(smiles)
qed = Chem.QED.default(mol)
p = Chem.QED.properties(mol)
mw = p[0]
logP = p[1]
hba = p[2]
hbd = p[3]
psa = p[4]
rb = p[5]
ar = p[6]
um = p[7]
props_string = "Lipinski tool results: \n"
props_string += f'''QED and other lipinski properties of the molecule:
SMILES: {smiles},
QED: {qed:.3f},
Molecular Weight: {mw:.3f},
LogP: {logP:.3f},
Hydrogen bond acceptors: {hba},
Hydrogen bond donors: {hbd},
Polar Surface Area: {psa:.3f},
Rotatable Bonds: {rb},
Aromatic Rings: {ar},
Undesireable moieties: {um}
'''
current_props_string += props_string
state["props_string"] = current_props_string
state["which_tool"] += 1
return state
def pharmfeature_node(state: State) -> State:
'''
A tool to compare the pharmacophore features of a query molecule against
a those of a reference molecule and report the pharmacophore features of both and the feature
score of the query molecule.
Args:
known_smiles: the reference smiles string
test_smiles: the query smiles string
Returns:
props_string: a string of the pharmacophore features of both molecules and the feature
score of the query molecule.
'''
print("pharmfeature tool")
print('===================================================')
test_smiles = state["query_smiles"]
known_smiles = state["query_reference"]
current_props_string = state["props_string"]
smiles = [known_smiles, test_smiles]
mols = [Chem.MolFromSmiles(x) for x in smiles]
mols = [Chem.AddHs(m) for m in mols]
ps = AllChem.ETKDGv3()
for m in mols:
AllChem.EmbedMolecule(m,ps)
o3d = rdMolAlign.GetO3A(mols[1],mols[0])
o3d.Align()
keep = ('Donor', 'Acceptor', 'NegIonizable', 'PosIonizable', 'ZnBinder', 'Aromatic', 'LumpedHydrophobe')
feat_hash = {'Donor': 'Hydrogen bond donors', 'Acceptor': 'Hydrogen bond acceptors',
'NegIonizable': 'Negatively ionizable groups', 'PosIonizable': 'Positively ionizable groups',
'ZnBinder': 'Zinc Binders', 'Aromatic': 'Aromatic rings', 'LumpedHydrophobe': 'Hydrophobic/non-polar groups' }
feat_vectors = []
for m in mols:
rawFeats = fdef.GetFeaturesForMol(m)
feat_vectors.append([f for f in rawFeats if f.GetFamily() in keep])
feat_maps = [FeatMaps.FeatMap(feats = x,weights=[1]*len(x),params=fmParams) for x in feat_vectors]
test_score = feat_maps[0].ScoreFeats(feat_maps[1].GetFeatures())/(feat_maps[0].GetNumFeatures())
feats_known = {}
feats_test = {}
for feat in feat_vectors[0]:
if feat.GetFamily() not in feats_known.keys():
feats_known[feat.GetFamily()] = 1
else:
feats_known[feat.GetFamily()] += 1
for feat in feat_vectors[1]:
if feat.GetFamily() not in feats_test.keys():
feats_test[feat.GetFamily()] = 1
else:
feats_test[feat.GetFamily()] += 1
props_string = "PharmFeature tool results: \n"
props_string += f"The Pharmacophore Feature Overlap Score of the test molecule \
versus the reference molecule is {test_score:.3f}. \n\n"
for feat in feats_known.keys():
props_string += f"There are {feats_known[feat]} {feat_hash[feat]} in the reference molecule. \n"
for feat in feats_test.keys():
props_string += f"There are {feats_test[feat]} {feat_hash[feat]} in the test molecule. \n"
current_props_string += props_string
state["props_string"] = current_props_string
state["which_tool"] += 1
return state
def first_node(state: State) -> State:
'''
The first node of the agent. This node receives the input and asks the LLM
to determine which is the best tool to use to answer the QUERY TASK.
Input: the initial prompt from the user. should contain only one of more of the following:
smiles: the smiles string, task: the query task, path: the path to the file,
reference: the reference smiles
the value should be separated from the name by a ':' and each field should
be separated from the previous one by a ','.
All of these values are saved to the state
Output: the tool choice
'''
query_smiles = None
state["query_smiles"] = query_smiles
query_task = None
state["query_task"] = query_task
query_path = None
state["query_path"] = query_path
query_reference = None
state["query_reference"] = query_reference
props_string = ""
state["props_string"] = props_string
state["loop_again"] = None
raw_input = state["messages"][-1].content
parts = raw_input.split(',')
for part in parts:
if 'smiles' in part:
query_smiles = part.split(':')[1]
if query_smiles.lower() == 'none':
query_smiles = None
state["query_smiles"] = query_smiles
if 'task' in part:
query_task = part.split(':')[1]
state["query_task"] = query_task
if 'path' in part:
query_path = part.split(':')[1]
if query_path.lower() == 'none':
query_path = None
state["query_path"] = query_path
if 'reference' in part:
query_reference = part.split(':')[1]
if query_reference.lower() == 'none':
query_reference = None
state["query_reference"] = query_reference
prompt = f'For the QUERY_TASK given below, determine if one or two of the tools descibed below \
can complete the task. If so, reply with only the tool names followed by "#". If two tools \
are required, reply with both tool names separated by a comma and followed by "#". \
If the tools cannot complete the task, reply with "None #".\n \
QUERY_TASK: {query_task}.\n \
Tools: \n \
lipinski_tool: this tool can calculate the following properties: Quantitative \
Estimate of Drug-likeness (QED), Molecular weight, LogP (measures lipophilicity, higher is more lipophilic), \
HBA, HBD, Polar Surface Area, Rotatable Bonds, Aromatic Rings and Undesireable Moieties. \n \
substitution_tool: this tool can generate analogues of the molecule by substituting \
different chemical groups on the original molecule. Returns a list of novel molecules and their \
QED score (1 is most drug-like, 0 is least drug-like). \n \
pharm_feature_tool: this tool can compare the pharmacophore features of a query molecule against \
a those of a reference molecule and report the pharmacophore features of both and the feature \
score of the query molecule. This score tells how the common features score against each other, but \
does not inform about features unique to each molecule.'
res = chat_model.invoke(prompt)
tool_choices = str(res).split('<|assistant|>')[1].split('#')[0].strip()
tool_choices = tool_choices.split(',')
if len(tool_choices) == 1:
tool1 = tool_choices[0].strip()
if tool1.lower() == 'none':
tool_choice = (None, None)
else:
tool_choice = (tool1, None)
elif len(tool_choices) == 2:
tool1 = tool_choices[0].lower().strip()
tool2 = tool_choices[1].lower().strip()
if tool1.lower() == 'none' and tool2.lower() == 'none':
tool_choice = (None, None)
elif tool1.lower() == 'none' and tool2.lower() != 'none':
tool_choice = (None, tool2)
elif tool2.lower() == 'none' and tool1.lower() != 'none':
tool_choice = (tool1, None)
else:
tool_choice = (tool1, tool2)
else:
tool_choice = (None, None)
state["tool_choice"] = tool_choice
state["which_tool"] = 0
print(f"The chosen tools are: {tool_choice}")
return state
def retry_node(state: State) -> State:
'''
If the previous loop of the agent does not get enough information from the
tools to answer the query, this node is called to retry the previous loop.
Input: the previous loop of the agent.
Output: the tool choice
'''
query_task = state["query_task"]
query_smiles = state["query_smiles"]
query_reference = state["query_reference"]
prompt = f'You were previously given the QUERY_TASK below, and asked to determine if one \
or two of the tools described below could complete the task. The tool choices did not succeed. \
Please re-examine the tool choices and determine if one or two of the tools described below \
can complete the task. If so, reply with only the tool names followed by "#". If two tools \
are required, reply with both tool names separated by a comma and followed by "#". \
If the tools cannot complete the task, reply with "None #".\n \
The information provided by the user is:\n \
QUERY_SMILES: {query_smiles}.\n \
QUERY_REFERENCE: {query_reference}.\n \
The task is: \
QUERY_TASK: {query_task}.\n \
Tool options: \n \
lipinski_tool: this tool can calculate the following properties: Quantitative \
Estimate of Drug-likeness (QED), Molecular weight, LogP (measures lipophilicity, higher is more lipophilic), \
HBA, HBD, Polar Surface Area, Rotatable Bonds, Aromatic Rings and Undesireable Moieties. \n \
substitution_tool: this tool can generate analogues of the molecule by substituting \
different chemical groups on the original molecule. Returns a list of novel molecules and their \
QED score (1 is most drug-like, 0 is least drug-like). \n \
pharm_feature_tool: this tool can compare the pharmacophore features of a query molecule against \
a those of a reference molecule and report the pharmacophore features of both and the feature \
score of the query molecule. This score tells how the common features score against each other, but \
does not inform about features unique to each molecule. \n'
res = chat_model.invoke(prompt)
tool_choices = str(res).split('<|assistant|>')[1].split('#')[0].strip()
tool_choices = tool_choices.split(',')
if len(tool_choices) == 1:
tool1 = tool_choices[0].strip()
if tool1.lower() == 'none':
tool_choice = (None, None)
else:
tool_choice = (tool1.lower().strip(), None)
elif len(tool_choices) > 1:
tool1 = tool_choices[0].lower().strip()
tool2 = tool_choices[1].lower().strip()
if tool1.lower() == 'none' and tool2.lower() == 'none':
tool_choice = (None, None)
elif tool1.lower() == 'none' and tool2.lower() != 'none':
tool_choice = (None, tool2)
elif tool2.lower() == 'none' and tool1.lower() != 'none':
tool_choice = (tool1, None)
else:
tool_choice = (tool1, tool2)
else:
tool_choice = (None, None)
state["tool_choice"] = tool_choice
state["which_tool"] = 0
print(f"The chosen tools are (Retry): {tool_choice}")
return state
def loop_node(state: State) -> State:
'''
This node accepts the tool returns and decides if it needs to call another
tool or go on to the parser node.
Input: the tool returns.
Output: the next node to call.
'''
return state
def parser_node(state: State) -> State:
'''
This is the third node in the agent. It receives the output from the tool,
puts it into a prompt as CONTEXT, and asks the LLM to answer the original
query.
Input: the output from the tool.
Output: the answer to the original query.
'''
props_string = state["props_string"]
query_task = state["query_task"]
tool_choice = state["tool_choice"]
if type(tool_choice) != tuple and tool_choice == None:
state["loop_again"] = "finish_gracefully"
return state
elif type(tool_choice) == tuple and (tool_choice[0] == None) and (tool_choice[1] == None):
state["loop_again"] = "finish_gracefully"
return state
prompt = f'Using the CONTEXT below, answer the original query, which \
was to answer the QUERY_TASK. End your answer with a "#" \
QUERY_TASK: {query_task}.\n \
CONTEXT: {props_string}.\n '
res = chat_model.invoke(prompt)
trial_answer = str(res).split('<|assistant|>')[1]
print('parser 1 ', trial_answer)
state["messages"] = res
check_prompt = f'Determine if the TRIAL ANSWER below answers the original \
QUERY TASK. If it does, respond with "PROCEED #" . If the TRIAL ANSWER did not \
answer the QUERY TASK, respond with "LOOP #" \n \
Only loop again if the TRIAL ANSWER did not answer the QUERY TASK. \
TRIAL ANSWER: {trial_answer}.\n \
QUERY_TASK: {query_task}.\n'
res = chat_model.invoke(check_prompt)
print('parser, loop again? ', res)
if str(res).split('<|assistant|>')[1].split('#')[0].strip().lower() == "loop":
state["loop_again"] = "loop_again"
return state
elif str(res).split('<|assistant|>')[1].split('#')[0].strip().lower() == "proceed":
state["loop_again"] = None
print('trying to break loop')
elif "proceed" in str(res).split('<|assistant|>')[1].lower():
state["loop_again"] = None
print('trying to break loop')
return state
def reflect_node(state: State) -> State:
'''
This is the fourth node of the agent. It recieves the LLMs previous answer and
tries to improve it.
Input: the LLMs last answer.
Output: the improved answer.
'''
previous_answer = state["messages"][-1].content
props_string = state["props_string"]
prompt = f'Look at the PREVIOUS ANSWER below which you provided and the \
TOOL RESULTS. Write an improved answer based on the PREVIOUS ANSWER and the \
TOOL RESULTS by adding additional clarifying and enriching information. End \
your new answer with a "#" \
PREVIOUS ANSWER: {previous_answer}.\n \
TOOL RESULTS: {props_string}. '
res = chat_model.invoke(prompt)
return {"messages": res}
def graceful_exit_node(state: State) -> State:
'''
Called when the Agent cannot assign any tools for the task
'''
props_string = state["props_string"]
prompt = f'Summarize the information in the CONTEXT, including any useful chemical information. Start your answer with: \
Here is what I found: \n \
CONTEXT: {props_string}'
res = chat_model.invoke(prompt)
return {"messages": res}
def get_chemtool(state):
'''
'''
which_tool = state["which_tool"]
tool_choice = state["tool_choice"]
if tool_choice is None or tool_choice == (None, None):
return None
if which_tool == 0 or which_tool == 1:
current_tool = tool_choice[which_tool]
if current_tool is None:
return None
elif which_tool > 1:
current_tool = None
return current_tool
def loop_or_not(state):
'''
'''
print(f"(line 482) Loop? {state['loop_again']}")
if state["loop_again"] == "loop_again":
return True
elif state["loop_again"] == "finish_gracefully":
return 'lets_get_outta_here'
else:
return False
def pretty_print(answer):
final = str(answer['messages'][-1]).split('<|assistant|>')[-1].split('#')[0].strip("n").strip('\\').strip('n').strip('\\')
for i in range(0,len(final),100):
print(final[i:i+100])
def print_short(answer):
for i in range(0,len(answer),100):
print(answer[i:i+100])
builder = StateGraph(State)
builder.add_node("first_node", first_node)
builder.add_node("retry_node", retry_node)
builder.add_node("substitution_node", substitution_node)
builder.add_node("lipinski_node", lipinski_node)
builder.add_node("pharmfeature_node", pharmfeature_node)
builder.add_node("loop_node", loop_node)
builder.add_node("parser_node", parser_node)
builder.add_node("reflect_node", reflect_node)
builder.add_node("graceful_exit_node", graceful_exit_node)
builder.add_edge(START, "first_node")
builder.add_conditional_edges("first_node", get_chemtool, {
"substitution_tool": "substitution_node",
"lipinski_tool": "lipinski_node",
"pharm_feature_tool": "pharmfeature_node",
None: "parser_node"})
builder.add_conditional_edges("retry_node", get_chemtool, {
"substitution_tool": "substitution_node",
"lipinski_tool": "lipinski_node",
"pharm_feature_tool": "pharmfeature_node",
None: "parser_node"})
builder.add_edge("lipinski_node", "loop_node")
builder.add_edge("substitution_node", "loop_node")
builder.add_edge("pharmfeature_node", "loop_node")
builder.add_conditional_edges("loop_node", get_chemtool, {
"substitution_tool": "substitution_node",
"lipinski_tool": "lipinski_node",
"pharm_feature_tool": "pharmfeature_node",
None: "parser_node"})
builder.add_conditional_edges("parser_node", loop_or_not, {
True: "retry_node",
'lets_get_outta_here': "graceful_exit_node",
False: "reflect_node"})
builder.add_edge("reflect_node", END)
builder.add_edge("graceful_exit_node", END)
graph = builder.compile()
@spaces.GPU
def PropAgent(task, smiles, reference):
#if Substitution_image.png exists, remove it
if os.path.exists('Substitution_image.png'):
os.remove('Substitution_image.png')
input = {
"messages": [
HumanMessage(f'query_smiles: {smiles}, query_task: {task}, query_reference: {reference}')
]
}
#print(input)
replies = []
for c in graph.stream(input): #, stream_mode='updates'):
m = re.findall(r'[a-z]+\_node', str(c))
if len(m) != 0:
reply = c[str(m[0])]['messages']
if 'assistant' in str(reply):
reply = str(reply).split("<|assistant|>")[-1].split('#')[0].strip()
replies.append(reply)
#check if image exists
if os.path.exists('Substitution_image.png'):
img_loc = 'Substitution_image.png'
img = Image.open(img_loc)
#else create a dummy blank image
else:
img = Image.new('RGB', (250, 250), color = (255, 255, 255))
return replies[-1], img
with gr.Blocks(fill_height=True) as forest:
gr.Markdown('''
# Properties Agent
- uses RDKit to calculate lipinski properties
- finds pharmacophore similarity between two molecules
- generated analogues of a molecule
''')
name, smiles = None, None
with gr.Row():
with gr.Column():
smiles = gr.Textbox(label="Molecule SMILES of interest (optional): ", placeholder='none')
ref = gr.Textbox(label="Reference molecule SMILES of interest (optional): ", placeholder='none')
task = gr.Textbox(label="Task for Agent: ")
calc_btn = gr.Button(value = "Submit to Agent")
with gr.Column():
props = gr.Textbox(label="Agent results: ", lines=20 )
pic = gr.Image(label="Molecule")
calc_btn.click(PropAgent, inputs = [task, smiles, ref], outputs = [props, pic])
task.submit(PropAgent, inputs = [task, smiles, ref], outputs = [props, pic])
forest.launch(debug=False, mcp_server=True)