File size: 11,723 Bytes
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721393
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d8f00
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01c4c02
 
 
 
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4fb72
 
 
 
 
 
 
 
 
 
 
 
 
1fdaf11
 
 
7c4fb72
 
 
 
 
 
 
 
 
1fdaf11
7c4fb72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fdaf11
d2d2d94
7c4fb72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fdaf11
7c4fb72
 
 
 
 
 
 
 
 
 
 
 
1fdaf11
7c4fb72
 
 
 
 
 
 
 
 
 
01c4c02
7c4fb72
 
 
 
 
1fdaf11
d2d2d94
7c4fb72
 
 
 
 
 
 
 
 
 
 
 
 
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721393
 
1fdaf11
 
 
 
 
 
 
 
 
 
 
b6f2734
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6f2734
7c4fb72
1fdaf11
 
 
 
 
 
b6f2734
1fdaf11
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr

from src import argilla_utils
from src import dataset
from src import spaces


def refresh_dataset_settings_view(
    columns,
    question_columns,
    field_columns,
    split,
    settings,
    dataset_name,
    argilla_dataset_name,
    mapping,
):
    """This is a utility function to refresh the gradio applications state variables when a new dataset is loaded."""
    columns = dataset.load_columns()
    field_columns = dataset.get_field_columns()
    question_columns = []
    metadata_columns = []
    split = dataset.load_split()
    settings = None
    dataset_name = dataset.load_dataset_name()
    argilla_dataset_name = dataset.load_argilla_dataset_name()
    mapping = None
    return (
        columns,
        field_columns,
        question_columns,
        metadata_columns,
        split,
        settings,
        dataset_name,
        argilla_dataset_name,
        mapping,
    )


with gr.Blocks() as app:
    ##############################################
    # Define the app state
    ##############################################

    columns = gr.State(dataset.load_columns)
    question_columns = gr.State(dataset.get_question_columns)
    field_columns = gr.State(dataset.get_field_columns)
    split = gr.State(dataset.load_split)
    settings = gr.State(None)
    dataset_name = gr.State(dataset.load_dataset_name)
    argilla_dataset_name = gr.State(dataset.load_argilla_dataset_name)
    mapping = gr.State(None)

    state_variables = [
        columns,
        question_columns,
        field_columns,
        split,
        settings,
        dataset_name,
        argilla_dataset_name,
        mapping,
    ]

    ##############################################
    # Define the app dataset and argilla space
    ##############################################

    gr.Markdown(
        """# 🚂 Argilla Direct
        A direct connection from a Hub dataset to an Argilla dataset.
        This app allows you to create an Argilla dataset from a Hugging Face dataset. 
        You will need to load a dataset from the Hugging Face Hub, create an Argilla space, 
        define the dataset's settings, and add records to the dataset.
        """
    )

    gr.LoginButton()
    with gr.Group():
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        dataset_name_input = gr.Textbox(
                            label="Dataset Repo ID", value=dataset.load_dataset_name()
                        )
                    with gr.Column():
                        split_input = gr.Dropdown(
                            label="Dataset Split",
                            choices=dataset.load_split_choices(),
                            allow_custom_value=True,
                            value=dataset.load_split(),
                        )
                    load_dataset_btn = gr.Button(value="1️⃣ Load Dataset")
            with gr.Column():
                argilla_space_name = gr.Textbox(
                    label="Argilla Space Name", value=f"{dataset_name.value}_argilla"
                )
                create_argilla_space_btn = gr.Button(value="2️⃣ Create Argilla Space")
    argilla_space_url = gr.Textbox(
        label="Argilla Space URL",
        info="Create a new Argilla space or add the URL of an existing one here",
    )

    ##############################################
    # Define the Argilla dataset configuration
    ##############################################

    gr.Markdown(
        """## 3️⃣ Define Argilla Dataset
        Define the settings for the Argilla dataset including fields, questions, metadata, and vectors.
        Select the columns from the Hugging Face dataset to be used as Argilla dataset attributes.
        """
    )

    with gr.Row():
        with gr.Group():
            with gr.Column():
                # DATASET SETTINGS

                # Argilla dataset name
                argilla_dataset_name_view = gr.Textbox(
                    label="Dataset Name",
                    info="The name of the dataset in Argilla to be created or used",
                    value=dataset.load_argilla_dataset_name(),
                )
                argilla_dataset_name_view.change(
                    fn=lambda value: gr.update(
                        value=dataset.load_argilla_dataset_name()
                    ),
                    inputs=[argilla_dataset_name_view],
                    outputs=[argilla_dataset_name_view],
                )

                # Field columns
                with gr.Accordion(label="Fields", open=True):
                    field_columns_view = gr.Dropdown(
                        label="Column",
                        info="Columns to be used as fields in the Argilla dataset",
                        choices=dataset.load_columns(),
                        multiselect=True,
                        value=dataset.get_field_columns(),
                    )
                    field_columns_view.change(
                        fn=lambda value: gr.update(value=[]),
                        inputs=[field_columns_view],
                        outputs=[field_columns_view],
                    )

                # Question columns

                with gr.Accordion(label="Questions", open=True):
                    question_type = gr.Dropdown(
                        label="Type",
                        info="The type of question to be added to the Argilla dataset",
                        choices=["Text", "Label", "Rating"],
                    )
                    question_column = gr.Dropdown(
                        label="Column",
                        info="Column in the hub dataset to be used as question suggestions in the Argilla dataset",
                        choices=dataset.load_columns(),
                        allow_custom_value=True,
                    )

                    question_name = gr.Textbox(
                        label="Name",
                        info="The name of the question to be added to the Argilla dataset",
                    )
                    question_column.select(
                        fn=lambda value: value,
                        inputs=[question_column],
                        outputs=[question_name],
                    )
                    add_question_btn = gr.Button(value="Add Question")
                    question_columns_view = gr.Dropdown(
                        label="Question Columns",
                        info="Columns to be used as question suggestions in the Argilla dataset",
                        multiselect=True,
                        allow_custom_value=True,
                        value=[],
                    )

                    # question_columns_view.change(
                    #     fn=lambda value: gr.update(value=[]),
                    #     inputs=[question_columns_view],
                    #     outputs=[question_columns_view],
                    # )

                    add_question_btn.click(
                        fn=lambda type, name, column, questions: questions
                        + [(type, name, column)],
                        inputs=[
                            question_type,
                            question_name,
                            question_column,
                            question_columns_view,
                        ],
                        outputs=[question_columns_view],
                    )

                # Metadata columns

                with gr.Accordion(label="Metadata", open=True):
                    metadata_type = gr.Dropdown(
                        label="Type",
                        info="The type of metadata to be added to the Argilla dataset",
                        choices=["Integer", "Float", "Term"],
                    )
                    metadata_column = gr.Dropdown(
                        label="Column",
                        info="Column in the hub dataset to be used as metadata suggestions in the Argilla dataset",
                        choices=dataset.load_columns(),
                        allow_custom_value=True,
                    )

                    metadata_name = gr.Textbox(
                        label="Name",
                        info="The name of the metadata to be added to the Argilla dataset",
                    )
                    metadata_column.select(
                        fn=lambda value: value,
                        inputs=[metadata_column],
                        outputs=[metadata_name],
                    )
                    add_metadata_btn = gr.Button(value="Add Metadata")
                    metadata_columns_view = gr.Dropdown(
                        label="Metadata Columns",
                        info="Columns to be used as metadata suggestions in the Argilla dataset",
                        multiselect=True,
                        allow_custom_value=True,
                        value=[],
                    )

                    add_metadata_btn.click(
                        fn=lambda type, name, column, metadata: metadata
                        + [(type, name, column)],
                        inputs=[
                            metadata_type,
                            metadata_name,
                            metadata_column,
                            metadata_columns_view,
                        ],
                        outputs=[metadata_columns_view],
                    )

                n_records = gr.Slider(1, 10000, 100, label="Number of Records")
                create_argilla_dataset_btn = gr.Button(value="Create Argilla Dataset")
                add_records_btn = gr.Button(value="Add Records to Argilla")
                delete_dataset_btn = gr.Button(value="Delete Argilla Dataset")

        with gr.Column():
            dataset_view = gr.Dataframe(
                label="Dataset Viewer",
                column_widths="20%",
                headers=columns.value,
                wrap=True,
            )
            records_view = gr.Text(label="Status", value="")

    ##############################################
    # Define the app logic
    ##############################################

    load_dataset_btn.click(
        fn=dataset.load_dataset_from_hub,
        inputs=[dataset_name_input],
        outputs=[dataset_view],
    ).then(
        fn=refresh_dataset_settings_view,
        inputs=state_variables,
        outputs=[
            columns,
            field_columns_view,
            question_columns_view,
            metadata_columns_view,
            split_input,
            settings,
            dataset_name,
            argilla_dataset_name_view,
            mapping,
        ],
    )

    create_argilla_space_btn.click(
        fn=spaces.create_argilla_space,
        inputs=[argilla_space_name],
        outputs=[argilla_space_url],
    )

    delete_dataset_btn.click(
        fn=argilla_utils.delete_dataset,
        inputs=[argilla_dataset_name_view],
        outputs=[records_view],
    )

    create_argilla_dataset_btn.click(
        fn=argilla_utils.define_dataset_setting,
        inputs=[
            argilla_dataset_name_view,
            field_columns_view,
            question_columns_view,
            metadata_columns_view,
            argilla_space_url,
            # vector_columns_view,
        ],
        outputs=[records_view, mapping],
    )

    add_records_btn.click(
        fn=argilla_utils.add_records,
        inputs=[argilla_dataset_name_view, mapping, n_records, argilla_space_url],
        outputs=[records_view],
    )


if __name__ == "__main__":
    app.launch()