Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,32 @@
|
|
1 |
from fastapi import FastAPI, HTTPException, status, APIRouter, Request
|
2 |
from pydantic import BaseModel, ValidationError
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
import torch
|
5 |
import logging
|
6 |
-
import asyncio # For running synchronous model inference in a separate thread
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
app = FastAPI(
|
12 |
-
title="Masked Language Model API
|
13 |
-
description="An API to perform Masked Language Modeling using
|
14 |
version="1.0.0"
|
15 |
)
|
16 |
|
17 |
api_router = APIRouter()
|
18 |
|
19 |
-
# ---
|
20 |
-
# Using
|
21 |
-
MODEL_NAME = "
|
22 |
-
#
|
23 |
|
24 |
-
# Load model
|
25 |
# This block runs once when the FastAPI application starts.
|
26 |
try:
|
27 |
logger.info(f"Loading tokenizer and model for {MODEL_NAME}...")
|
28 |
-
# Load tokenizer and model for Causal LM (text generation)
|
29 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
30 |
-
|
31 |
-
# and to fit within common memory limits. Also using device_map="auto" to load efficiently.
|
32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
33 |
-
MODEL_NAME,
|
34 |
-
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
35 |
-
device_map="auto"
|
36 |
-
)
|
37 |
model.eval() # Set model to evaluation mode
|
38 |
-
|
39 |
-
# Create a text generation pipeline
|
40 |
-
# We will adjust this pipeline's behavior in predict_masked_lm
|
41 |
-
# to simulate masked LM functionality by prompting the LLM.
|
42 |
-
text_generator = pipeline(
|
43 |
-
"text-generation",
|
44 |
-
model=model,
|
45 |
-
tokenizer=tokenizer,
|
46 |
-
# Ensure pad_token_id is set if tokenizer does not have one, to avoid warnings/errors
|
47 |
-
pad_token_id=tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id
|
48 |
-
)
|
49 |
logger.info("Model loaded successfully.")
|
50 |
except Exception as e:
|
51 |
logger.exception(f"Failed to load model or tokenizer for {MODEL_NAME} during startup!")
|
@@ -61,124 +42,69 @@ class InferenceRequest(BaseModel):
|
|
61 |
class PredictionResult(BaseModel):
|
62 |
"""
|
63 |
Response model for individual predictions from the /predict endpoint.
|
64 |
-
Simplified to focus on the sequence and score, abstracting token details.
|
65 |
"""
|
66 |
sequence: str # The full sequence with the predicted token filled in
|
67 |
-
score: float # Confidence score of the prediction
|
68 |
-
|
69 |
-
|
70 |
-
"""
|
71 |
-
Runs the synchronous model inference in a separate thread to avoid blocking FastAPI's event loop.
|
72 |
-
"""
|
73 |
-
return generator_pipeline(
|
74 |
-
prompt,
|
75 |
-
max_new_tokens=10, # Generate a small number of tokens for the mask
|
76 |
-
num_return_sequences=num_return_sequences,
|
77 |
-
do_sample=True, # Enable sampling for varied predictions
|
78 |
-
temperature=0.7, # Control randomness
|
79 |
-
top_k=50, # Consider top K tokens for sampling
|
80 |
-
top_p=0.95, # Consider tokens up to a certain cumulative probability
|
81 |
-
# The stop_sequence ensures it doesn't generate too much beyond the expected word
|
82 |
-
stop_sequence=[" ", ".", ",", "!", "?", "\n"] # Stop after generating a word/punctuation
|
83 |
-
)
|
84 |
-
|
85 |
|
86 |
@api_router.post(
|
87 |
-
"/predict", # Prediction endpoint
|
88 |
response_model=list[PredictionResult],
|
89 |
-
summary="Predicts masked tokens in a given text using
|
90 |
-
description="Accepts a text string with '[MASK]' tokens and returns
|
91 |
)
|
92 |
async def predict_masked_lm(request: InferenceRequest):
|
93 |
"""
|
94 |
-
Predicts the most likely tokens for [MASK] positions in the input text using the
|
95 |
-
Returns a list of top predictions for each masked token, including the full sequence and
|
96 |
"""
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
-
|
101 |
-
logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.")
|
102 |
-
raise HTTPException(
|
103 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
104 |
-
detail="Input text must contain at least one '[MASK]' token."
|
105 |
-
)
|
106 |
-
|
107 |
-
# Find the position of the first [MASK] token to correctly prompt the LLM
|
108 |
-
# And to insert predictions back into the original text
|
109 |
-
mask_start_index = text.find("[MASK]")
|
110 |
-
if mask_start_index == -1: # Should already be caught above, but as a safeguard
|
111 |
-
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="No '[MASK]' token found in input.")
|
112 |
-
|
113 |
-
# Craft a prompt that encourages the LLM to fill the mask.
|
114 |
-
# The prompt guides the generative LLM to act like a fill-mask model.
|
115 |
-
# Example: "The quick brown fox jumps over the [MASK] dog. The word that should replace [MASK] is:"
|
116 |
-
# We remove "[MASK]" from the prompt for the generative model, and then
|
117 |
-
# prepend a guiding phrase and append the text after the mask.
|
118 |
-
|
119 |
-
# Split text around the first [MASK]
|
120 |
-
parts = text.split("[MASK]", 1)
|
121 |
-
if len(parts) < 2: # Should not happen if [MASK] is found
|
122 |
-
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error processing mask position.")
|
123 |
-
|
124 |
-
pre_mask_text = parts[0].strip()
|
125 |
-
post_mask_text = parts[1].strip()
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
try:
|
132 |
-
# Run inference in a separate thread to not block the main event loop
|
133 |
-
# The model's output will be a list of dicts, e.g., [{"generated_text": "Prompt + predicted word"}]
|
134 |
-
raw_predictions = await run_inference_blocking(text_generator, prompt)
|
135 |
-
|
136 |
results = []
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
#
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
continue
|
152 |
-
|
153 |
-
# Further refine by splitting on common word separators, taking the first valid word
|
154 |
-
valid_words = [w for w in predicted_word.split() if w.isalpha() and len(w) > 1]
|
155 |
-
if not valid_words: continue
|
156 |
-
predicted_word = valid_words[0].lower() # Normalize to lowercase
|
157 |
-
|
158 |
-
# Ensure unique predictions
|
159 |
-
if predicted_word in seen_words:
|
160 |
-
continue
|
161 |
-
seen_words.add(predicted_word)
|
162 |
-
|
163 |
-
# Construct the full sequence with the predicted word
|
164 |
-
full_sequence = text.replace("[MASK]", predicted_word, 1)
|
165 |
-
|
166 |
-
# Approximate score (generative LLMs don't give scores directly for words)
|
167 |
-
mock_score = 0.95 - (i * 0.01) # Slightly decrease confidence for lower ranks
|
168 |
|
169 |
results.append(PredictionResult(
|
170 |
sequence=full_sequence,
|
171 |
-
score=
|
|
|
|
|
172 |
))
|
173 |
-
|
174 |
-
if len(results) >= 5: # Stop after getting 5 valid results
|
175 |
-
break
|
176 |
|
177 |
-
|
178 |
-
logger.warning("No valid predictions could be formatted from LLM response.")
|
179 |
-
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Could not extract predictions from TinyLlama output.")
|
180 |
-
|
181 |
-
logger.info(f"Successfully processed request via TinyLlama. Returning {len(results)} predictions.")
|
182 |
return results
|
183 |
|
184 |
except ValidationError as e:
|
@@ -203,7 +129,7 @@ async def predict_masked_lm(request: InferenceRequest):
|
|
203 |
)
|
204 |
async def health_check():
|
205 |
logger.info("Health check endpoint accessed.")
|
206 |
-
return {"message": "
|
207 |
|
208 |
app.include_router(api_router)
|
209 |
|
@@ -214,4 +140,4 @@ async def catch_all(request: Request, path_name: str):
|
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
import uvicorn
|
217 |
-
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
|
|
1 |
from fastapi import FastAPI, HTTPException, status, APIRouter, Request
|
2 |
from pydantic import BaseModel, ValidationError
|
3 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
import torch
|
5 |
import logging
|
|
|
6 |
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
app = FastAPI(
|
11 |
+
title="NeuroBERT-Tiny Masked Language Model API",
|
12 |
+
description="An API to perform Masked Language Modeling using the boltuix/NeuroBERT-Tiny model.",
|
13 |
version="1.0.0"
|
14 |
)
|
15 |
|
16 |
api_router = APIRouter()
|
17 |
|
18 |
+
# --- NeuroBERT-Tiny Model Configuration ---
|
19 |
+
# Using boltuix/NeuroBERT-Tiny for Masked Language Modeling.
|
20 |
+
MODEL_NAME = "boltuix/NeuroBERT-Tiny"
|
21 |
+
# ----------------------------------------
|
22 |
|
23 |
+
# Load model globally to avoid reloading on each request
|
24 |
# This block runs once when the FastAPI application starts.
|
25 |
try:
|
26 |
logger.info(f"Loading tokenizer and model for {MODEL_NAME}...")
|
|
|
27 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
28 |
+
model = AutoModelForMaskedLM.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
model.eval() # Set model to evaluation mode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
logger.info("Model loaded successfully.")
|
31 |
except Exception as e:
|
32 |
logger.exception(f"Failed to load model or tokenizer for {MODEL_NAME} during startup!")
|
|
|
42 |
class PredictionResult(BaseModel):
|
43 |
"""
|
44 |
Response model for individual predictions from the /predict endpoint.
|
|
|
45 |
"""
|
46 |
sequence: str # The full sequence with the predicted token filled in
|
47 |
+
score: float # Confidence score of the prediction
|
48 |
+
token: int # The ID of the predicted token
|
49 |
+
token_str: str # The string representation of the predicted token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@api_router.post(
|
52 |
+
"/predict", # Prediction endpoint
|
53 |
response_model=list[PredictionResult],
|
54 |
+
summary="Predicts masked tokens in a given text using NeuroBERT-Tiny",
|
55 |
+
description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
|
56 |
)
|
57 |
async def predict_masked_lm(request: InferenceRequest):
|
58 |
"""
|
59 |
+
Predicts the most likely tokens for [MASK] positions in the input text using the NeuroBERT-Tiny model.
|
60 |
+
Returns a list of top 5 predictions for each masked token, including the full sequence, score, and token details.
|
61 |
"""
|
62 |
+
try:
|
63 |
+
text = request.text
|
64 |
+
logger.info(f"Received prediction request for text: '{text}'")
|
65 |
|
66 |
+
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = model(**inputs)
|
70 |
+
|
71 |
+
logits = outputs.logits
|
72 |
+
masked_token_id = tokenizer.convert_tokens_to_ids("[MASK]")
|
73 |
+
|
74 |
+
# Find all masked tokens
|
75 |
+
masked_token_indices = torch.where(inputs["input_ids"] == masked_token_id)[1]
|
76 |
+
|
77 |
+
if not masked_token_indices.numel():
|
78 |
+
logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.")
|
79 |
+
raise HTTPException(
|
80 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
81 |
+
detail="Input text must contain at least one '[MASK]' token."
|
82 |
+
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
84 |
results = []
|
85 |
+
for masked_index in masked_token_indices:
|
86 |
+
# Get top 5 predictions for the masked token
|
87 |
+
top_5_logits = torch.topk(logits[0, masked_index], 5).values
|
88 |
+
top_5_tokens = torch.topk(logits[0, masked_index], 5).indices
|
89 |
+
|
90 |
+
for i in range(5):
|
91 |
+
score = torch.nn.functional.softmax(logits[0, masked_index], dim=-1)[top_5_tokens[i]].item()
|
92 |
+
predicted_token_id = top_5_tokens[i].item()
|
93 |
+
predicted_token_str = tokenizer.decode(predicted_token_id)
|
94 |
+
|
95 |
+
# Replace the [MASK] with the predicted token for the full sequence
|
96 |
+
temp_input_ids = inputs["input_ids"].clone()
|
97 |
+
temp_input_ids[0, masked_index] = predicted_token_id
|
98 |
+
full_sequence = tokenizer.decode(temp_input_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
results.append(PredictionResult(
|
101 |
sequence=full_sequence,
|
102 |
+
score=score,
|
103 |
+
token=predicted_token_id,
|
104 |
+
token_str=predicted_token_str
|
105 |
))
|
|
|
|
|
|
|
106 |
|
107 |
+
logger.info(f"Successfully processed request. Returning {len(results)} predictions.")
|
|
|
|
|
|
|
|
|
108 |
return results
|
109 |
|
110 |
except ValidationError as e:
|
|
|
129 |
)
|
130 |
async def health_check():
|
131 |
logger.info("Health check endpoint accessed.")
|
132 |
+
return {"message": "NeuroBERT-Tiny API is running!"}
|
133 |
|
134 |
app.include_router(api_router)
|
135 |
|
|
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
import uvicorn
|
143 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|