Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,143 +1,273 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException,
|
2 |
-
from pydantic import BaseModel,
|
3 |
-
from
|
4 |
-
import
|
|
|
5 |
import logging
|
|
|
|
|
6 |
|
|
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
|
|
10 |
app = FastAPI(
|
11 |
-
title="
|
12 |
-
description="
|
13 |
-
version="1.0.0"
|
|
|
|
|
14 |
)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
# --- NeuroBERT-Tiny Model Configuration ---
|
19 |
-
# Using boltuix/NeuroBERT-Tiny for Masked Language Modeling.
|
20 |
-
MODEL_NAME = "boltuix/NeuroBERT-Tiny"
|
21 |
-
# ----------------------------------------
|
22 |
-
|
23 |
-
# Load model globally to avoid reloading on each request
|
24 |
-
# This block runs once when the FastAPI application starts.
|
25 |
-
try:
|
26 |
-
logger.info(f"Loading tokenizer and model for {MODEL_NAME}...")
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
28 |
-
model = AutoModelForMaskedLM.from_pretrained(MODEL_NAME)
|
29 |
-
model.eval() # Set model to evaluation mode
|
30 |
-
logger.info("Model loaded successfully.")
|
31 |
-
except Exception as e:
|
32 |
-
logger.exception(f"Failed to load model or tokenizer for {MODEL_NAME} during startup!")
|
33 |
-
raise RuntimeError(f"Could not load model: {e}")
|
34 |
-
|
35 |
-
class InferenceRequest(BaseModel):
|
36 |
-
"""
|
37 |
-
Request model for the /predict endpoint.
|
38 |
-
Expects a single string field 'text' containing the sentence with [MASK] tokens.
|
39 |
-
"""
|
40 |
-
text: str
|
41 |
-
|
42 |
-
class PredictionResult(BaseModel):
|
43 |
-
"""
|
44 |
-
Response model for individual predictions from the /predict endpoint.
|
45 |
-
"""
|
46 |
-
sequence: str # The full sequence with the predicted token filled in
|
47 |
-
score: float # Confidence score of the prediction
|
48 |
-
token: int # The ID of the predicted token
|
49 |
-
token_str: str # The string representation of the predicted token
|
50 |
-
|
51 |
-
@api_router.post(
|
52 |
-
"/predict", # Prediction endpoint
|
53 |
-
response_model=list[PredictionResult],
|
54 |
-
summary="Predicts masked tokens in a given text using NeuroBERT-Tiny",
|
55 |
-
description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
|
56 |
-
)
|
57 |
-
async def predict_masked_lm(request: InferenceRequest):
|
58 |
-
"""
|
59 |
-
Predicts the most likely tokens for [MASK] positions in the input text using the NeuroBERT-Tiny model.
|
60 |
-
Returns a list of top 5 predictions for each masked token, including the full sequence, score, and token details.
|
61 |
-
"""
|
62 |
-
try:
|
63 |
-
text = request.text
|
64 |
-
logger.info(f"Received prediction request for text: '{text}'")
|
65 |
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
raise # Re-raise custom HTTPExceptions
|
118 |
except Exception as e:
|
119 |
-
logger.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
raise HTTPException(
|
121 |
-
status_code=
|
122 |
-
detail=
|
123 |
)
|
|
|
|
|
|
|
124 |
|
125 |
-
@
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
)
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
|
134 |
-
app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
@app.
|
137 |
-
async def
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
import uvicorn
|
143 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
2 |
+
from pydantic import BaseModel, Field
|
3 |
+
from typing import List, Optional, Dict, Any
|
4 |
+
import httpx
|
5 |
+
import asyncio
|
6 |
import logging
|
7 |
+
import time
|
8 |
+
import json
|
9 |
|
10 |
+
# Configure logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
+
# FastAPI app
|
15 |
app = FastAPI(
|
16 |
+
title="Ollama API Server",
|
17 |
+
description="REST API for running Ollama models",
|
18 |
+
version="1.0.0",
|
19 |
+
docs_url="/docs",
|
20 |
+
redoc_url="/redoc"
|
21 |
)
|
22 |
|
23 |
+
# Ollama server configuration
|
24 |
+
OLLAMA_BASE_URL = "http://localhost:11434"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Pydantic models
|
27 |
+
class ChatMessage(BaseModel):
|
28 |
+
role: str = Field(..., description="Role of the message sender (user, assistant, system)")
|
29 |
+
content: str = Field(..., description="Content of the message")
|
30 |
|
31 |
+
class ChatRequest(BaseModel):
|
32 |
+
model: str = Field(..., description="Model name to use for chat")
|
33 |
+
messages: List[ChatMessage] = Field(..., description="List of chat messages")
|
34 |
+
temperature: Optional[float] = Field(0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
35 |
+
top_p: Optional[float] = Field(0.9, ge=0.0, le=1.0, description="Top-p sampling parameter")
|
36 |
+
max_tokens: Optional[int] = Field(512, ge=1, le=4096, description="Maximum tokens to generate")
|
37 |
+
stream: Optional[bool] = Field(False, description="Whether to stream the response")
|
38 |
|
39 |
+
class GenerateRequest(BaseModel):
|
40 |
+
model: str = Field(..., description="Model name to use for generation")
|
41 |
+
prompt: str = Field(..., description="Input prompt for text generation")
|
42 |
+
temperature: Optional[float] = Field(0.7, ge=0.0, le=2.0, description="Sampling temperature")
|
43 |
+
top_p: Optional[float] = Field(0.9, ge=0.0, le=1.0, description="Top-p sampling parameter")
|
44 |
+
max_tokens: Optional[int] = Field(512, ge=1, le=4096, description="Maximum tokens to generate")
|
45 |
+
stream: Optional[bool] = Field(False, description="Whether to stream the response")
|
46 |
|
47 |
+
class ModelPullRequest(BaseModel):
|
48 |
+
model: str = Field(..., description="Model name to pull (e.g., 'llama2:7b')")
|
49 |
|
50 |
+
class ChatResponse(BaseModel):
|
51 |
+
model: str
|
52 |
+
response: str
|
53 |
+
done: bool
|
54 |
+
total_duration: Optional[int] = None
|
55 |
+
load_duration: Optional[int] = None
|
56 |
+
prompt_eval_count: Optional[int] = None
|
57 |
+
eval_count: Optional[int] = None
|
58 |
|
59 |
+
class GenerateResponse(BaseModel):
|
60 |
+
model: str
|
61 |
+
response: str
|
62 |
+
done: bool
|
63 |
+
total_duration: Optional[int] = None
|
64 |
+
load_duration: Optional[int] = None
|
65 |
+
prompt_eval_count: Optional[int] = None
|
66 |
+
eval_count: Optional[int] = None
|
67 |
+
|
68 |
+
# HTTP client for Ollama API
|
69 |
+
async def get_ollama_client():
|
70 |
+
return httpx.AsyncClient(timeout=300.0) # 5 minute timeout
|
71 |
+
|
72 |
+
@app.get("/health")
|
73 |
+
async def health_check():
|
74 |
+
"""Health check endpoint"""
|
75 |
+
try:
|
76 |
+
async with await get_ollama_client() as client:
|
77 |
+
response = await client.get(f"{OLLAMA_BASE_URL}/api/version")
|
78 |
+
if response.status_code == 200:
|
79 |
+
return {
|
80 |
+
"status": "healthy",
|
81 |
+
"ollama_status": "running",
|
82 |
+
"ollama_version": response.json(),
|
83 |
+
"timestamp": time.time()
|
84 |
+
}
|
85 |
+
else:
|
86 |
+
return {
|
87 |
+
"status": "degraded",
|
88 |
+
"ollama_status": "error",
|
89 |
+
"error": f"Ollama returned status {response.status_code}",
|
90 |
+
"timestamp": time.time()
|
91 |
+
}
|
|
|
92 |
except Exception as e:
|
93 |
+
logger.error(f"Health check failed: {e}")
|
94 |
+
return {
|
95 |
+
"status": "unhealthy",
|
96 |
+
"ollama_status": "unreachable",
|
97 |
+
"error": str(e),
|
98 |
+
"timestamp": time.time()
|
99 |
+
}
|
100 |
+
|
101 |
+
@app.get("/models")
|
102 |
+
async def list_models():
|
103 |
+
"""List available models"""
|
104 |
+
try:
|
105 |
+
async with await get_ollama_client() as client:
|
106 |
+
response = await client.get(f"{OLLAMA_BASE_URL}/api/tags")
|
107 |
+
response.raise_for_status()
|
108 |
+
return response.json()
|
109 |
+
except httpx.HTTPError as e:
|
110 |
+
logger.error(f"Failed to list models: {e}")
|
111 |
+
raise HTTPException(status_code=500, detail=f"Failed to list models: {str(e)}")
|
112 |
+
|
113 |
+
@app.post("/models/pull")
|
114 |
+
async def pull_model(request: ModelPullRequest, background_tasks: BackgroundTasks):
|
115 |
+
"""Pull a model from Ollama registry"""
|
116 |
+
try:
|
117 |
+
async with await get_ollama_client() as client:
|
118 |
+
# Start the pull request
|
119 |
+
pull_data = {"name": request.model}
|
120 |
+
response = await client.post(
|
121 |
+
f"{OLLAMA_BASE_URL}/api/pull",
|
122 |
+
json=pull_data,
|
123 |
+
timeout=1800.0 # 30 minute timeout for model pulling
|
124 |
+
)
|
125 |
+
|
126 |
+
if response.status_code == 200:
|
127 |
+
return {
|
128 |
+
"status": "success",
|
129 |
+
"message": f"Successfully initiated pull for model '{request.model}'",
|
130 |
+
"model": request.model
|
131 |
+
}
|
132 |
+
else:
|
133 |
+
error_detail = response.text
|
134 |
+
logger.error(f"Failed to pull model: {error_detail}")
|
135 |
+
raise HTTPException(
|
136 |
+
status_code=response.status_code,
|
137 |
+
detail=f"Failed to pull model: {error_detail}"
|
138 |
+
)
|
139 |
+
except httpx.TimeoutException:
|
140 |
raise HTTPException(
|
141 |
+
status_code=408,
|
142 |
+
detail="Model pull request timed out. Large models may take longer to download."
|
143 |
)
|
144 |
+
except Exception as e:
|
145 |
+
logger.error(f"Error pulling model: {e}")
|
146 |
+
raise HTTPException(status_code=500, detail=f"Error pulling model: {str(e)}")
|
147 |
|
148 |
+
@app.delete("/models/{model_name}")
|
149 |
+
async def delete_model(model_name: str):
|
150 |
+
"""Delete a model"""
|
151 |
+
try:
|
152 |
+
async with await get_ollama_client() as client:
|
153 |
+
response = await client.delete(f"{OLLAMA_BASE_URL}/api/delete", json={"name": model_name})
|
154 |
+
response.raise_for_status()
|
155 |
+
return {"status": "success", "message": f"Model '{model_name}' deleted successfully"}
|
156 |
+
except httpx.HTTPError as e:
|
157 |
+
logger.error(f"Failed to delete model: {e}")
|
158 |
+
raise HTTPException(status_code=500, detail=f"Failed to delete model: {str(e)}")
|
159 |
|
160 |
+
@app.post("/chat", response_model=ChatResponse)
|
161 |
+
async def chat_with_model(request: ChatRequest):
|
162 |
+
"""Chat with a model"""
|
163 |
+
try:
|
164 |
+
# Convert messages to Ollama format
|
165 |
+
chat_data = {
|
166 |
+
"model": request.model,
|
167 |
+
"messages": [{"role": msg.role, "content": msg.content} for msg in request.messages],
|
168 |
+
"stream": request.stream,
|
169 |
+
"options": {
|
170 |
+
"temperature": request.temperature,
|
171 |
+
"top_p": request.top_p,
|
172 |
+
"num_predict": request.max_tokens
|
173 |
+
}
|
174 |
+
}
|
175 |
+
|
176 |
+
async with await get_ollama_client() as client:
|
177 |
+
response = await client.post(
|
178 |
+
f"{OLLAMA_BASE_URL}/api/chat",
|
179 |
+
json=chat_data,
|
180 |
+
timeout=300.0
|
181 |
+
)
|
182 |
+
response.raise_for_status()
|
183 |
+
result = response.json()
|
184 |
+
|
185 |
+
return ChatResponse(
|
186 |
+
model=result.get("model", request.model),
|
187 |
+
response=result.get("message", {}).get("content", ""),
|
188 |
+
done=result.get("done", True),
|
189 |
+
total_duration=result.get("total_duration"),
|
190 |
+
load_duration=result.get("load_duration"),
|
191 |
+
prompt_eval_count=result.get("prompt_eval_count"),
|
192 |
+
eval_count=result.get("eval_count")
|
193 |
+
)
|
194 |
+
|
195 |
+
except httpx.HTTPError as e:
|
196 |
+
logger.error(f"Chat request failed: {e}")
|
197 |
+
if e.response.status_code == 404:
|
198 |
+
raise HTTPException(
|
199 |
+
status_code=404,
|
200 |
+
detail=f"Model '{request.model}' not found. Try pulling it first with POST /models/pull"
|
201 |
+
)
|
202 |
+
raise HTTPException(status_code=500, detail=f"Chat request failed: {str(e)}")
|
203 |
+
except Exception as e:
|
204 |
+
logger.error(f"Unexpected error in chat: {e}")
|
205 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
|
206 |
+
|
207 |
+
@app.post("/generate", response_model=GenerateResponse)
|
208 |
+
async def generate_text(request: GenerateRequest):
|
209 |
+
"""Generate text completion"""
|
210 |
+
try:
|
211 |
+
generate_data = {
|
212 |
+
"model": request.model,
|
213 |
+
"prompt": request.prompt,
|
214 |
+
"stream": request.stream,
|
215 |
+
"options": {
|
216 |
+
"temperature": request.temperature,
|
217 |
+
"top_p": request.top_p,
|
218 |
+
"num_predict": request.max_tokens
|
219 |
+
}
|
220 |
+
}
|
221 |
+
|
222 |
+
async with await get_ollama_client() as client:
|
223 |
+
response = await client.post(
|
224 |
+
f"{OLLAMA_BASE_URL}/api/generate",
|
225 |
+
json=generate_data,
|
226 |
+
timeout=300.0
|
227 |
+
)
|
228 |
+
response.raise_for_status()
|
229 |
+
result = response.json()
|
230 |
+
|
231 |
+
return GenerateResponse(
|
232 |
+
model=result.get("model", request.model),
|
233 |
+
response=result.get("response", ""),
|
234 |
+
done=result.get("done", True),
|
235 |
+
total_duration=result.get("total_duration"),
|
236 |
+
load_duration=result.get("load_duration"),
|
237 |
+
prompt_eval_count=result.get("prompt_eval_count"),
|
238 |
+
eval_count=result.get("eval_count")
|
239 |
+
)
|
240 |
+
|
241 |
+
except httpx.HTTPError as e:
|
242 |
+
logger.error(f"Generate request failed: {e}")
|
243 |
+
if e.response.status_code == 404:
|
244 |
+
raise HTTPException(
|
245 |
+
status_code=404,
|
246 |
+
detail=f"Model '{request.model}' not found. Try pulling it first with POST /models/pull"
|
247 |
+
)
|
248 |
+
raise HTTPException(status_code=500, detail=f"Generate request failed: {str(e)}")
|
249 |
+
except Exception as e:
|
250 |
+
logger.error(f"Unexpected error in generate: {e}")
|
251 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
|
252 |
|
253 |
+
@app.get("/")
|
254 |
+
async def root():
|
255 |
+
"""Root endpoint with API information"""
|
256 |
+
return {
|
257 |
+
"message": "Ollama API Server",
|
258 |
+
"version": "1.0.0",
|
259 |
+
"endpoints": {
|
260 |
+
"health": "/health",
|
261 |
+
"models": "/models",
|
262 |
+
"pull_model": "/models/pull",
|
263 |
+
"chat": "/chat",
|
264 |
+
"generate": "/generate",
|
265 |
+
"docs": "/docs"
|
266 |
+
},
|
267 |
+
"status": "running"
|
268 |
+
}
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
import uvicorn
|
272 |
+
logger.info("Starting Ollama API server...")
|
273 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|