Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException, status
|
2 |
from pydantic import BaseModel, ValidationError
|
3 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
import torch
|
@@ -14,6 +14,10 @@ app = FastAPI(
|
|
14 |
version="1.0.0"
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
17 |
# Load model globally to avoid reloading on each request
|
18 |
# This block runs once when the FastAPI application starts.
|
19 |
try:
|
@@ -24,29 +28,26 @@ try:
|
|
24 |
logger.info("Model loaded successfully.")
|
25 |
except Exception as e:
|
26 |
logger.exception("Failed to load model or tokenizer during startup!")
|
27 |
-
# Depending on the deployment, you might want to raise an exception here
|
28 |
-
# to prevent the app from starting if the model can't be loaded.
|
29 |
-
# For now, we'll let it potentially start and fail on prediction.
|
30 |
raise RuntimeError(f"Could not load model: {e}")
|
31 |
|
32 |
class InferenceRequest(BaseModel):
|
33 |
"""
|
34 |
-
Request model for the
|
35 |
Expects a single string field 'text' containing the sentence with [MASK] tokens.
|
36 |
"""
|
37 |
text: str
|
38 |
|
39 |
class PredictionResult(BaseModel):
|
40 |
"""
|
41 |
-
Response model for individual predictions from the
|
42 |
"""
|
43 |
sequence: str # The full sequence with the predicted token filled in
|
44 |
score: float # Confidence score of the prediction
|
45 |
token: int # The ID of the predicted token
|
46 |
token_str: str # The string representation of the predicted token
|
47 |
|
48 |
-
@
|
49 |
-
"/predict"
|
50 |
response_model=list[PredictionResult],
|
51 |
summary="Predicts masked tokens in a given text",
|
52 |
description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
|
@@ -74,7 +75,7 @@ async def predict_masked_lm(request: InferenceRequest):
|
|
74 |
masked_token_indices = torch.where(inputs["input_ids"] == masked_token_id)[1]
|
75 |
|
76 |
if not masked_token_indices.numel():
|
77 |
-
logger.warning("No [MASK] token found in the input text.")
|
78 |
raise HTTPException(
|
79 |
status_code=status.HTTP_400_BAD_REQUEST,
|
80 |
detail="Input text must contain at least one '[MASK]' token."
|
@@ -129,22 +130,32 @@ async def predict_masked_lm(request: InferenceRequest):
|
|
129 |
detail=f"An internal server error occurred: {e}"
|
130 |
)
|
131 |
|
132 |
-
@
|
133 |
-
"/",
|
134 |
summary="Health Check",
|
135 |
description="Returns a simple message indicating the API is running."
|
136 |
)
|
137 |
-
async def
|
138 |
"""
|
139 |
Provides a basic health check endpoint for the API.
|
140 |
"""
|
141 |
logger.info("Health check endpoint accessed.")
|
142 |
return {"message": "NeuroBERT-Tiny API is running!"}
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# This block is for running the app directly, typically used for local development.
|
145 |
# In a Docker container, Uvicorn (or Gunicorn) is usually invoked via the CMD in Dockerfile.
|
146 |
if __name__ == "__main__":
|
147 |
import uvicorn
|
148 |
-
|
149 |
-
# For production in a Docker container, it's typically omitted for performance.
|
150 |
-
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, status, APIRouter, Request
|
2 |
from pydantic import BaseModel, ValidationError
|
3 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
import torch
|
|
|
14 |
version="1.0.0"
|
15 |
)
|
16 |
|
17 |
+
# Create an API Router to manage endpoints.
|
18 |
+
# This approach can sometimes help with routing issues in proxied environments.
|
19 |
+
api_router = APIRouter()
|
20 |
+
|
21 |
# Load model globally to avoid reloading on each request
|
22 |
# This block runs once when the FastAPI application starts.
|
23 |
try:
|
|
|
28 |
logger.info("Model loaded successfully.")
|
29 |
except Exception as e:
|
30 |
logger.exception("Failed to load model or tokenizer during startup!")
|
|
|
|
|
|
|
31 |
raise RuntimeError(f"Could not load model: {e}")
|
32 |
|
33 |
class InferenceRequest(BaseModel):
|
34 |
"""
|
35 |
+
Request model for the main prediction endpoint.
|
36 |
Expects a single string field 'text' containing the sentence with [MASK] tokens.
|
37 |
"""
|
38 |
text: str
|
39 |
|
40 |
class PredictionResult(BaseModel):
|
41 |
"""
|
42 |
+
Response model for individual predictions from the API.
|
43 |
"""
|
44 |
sequence: str # The full sequence with the predicted token filled in
|
45 |
score: float # Confidence score of the prediction
|
46 |
token: int # The ID of the predicted token
|
47 |
token_str: str # The string representation of the predicted token
|
48 |
|
49 |
+
@api_router.post(
|
50 |
+
"/", # Changed from "/predict" to "/" to funnel all POST requests to the root
|
51 |
response_model=list[PredictionResult],
|
52 |
summary="Predicts masked tokens in a given text",
|
53 |
description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
|
|
|
75 |
masked_token_indices = torch.where(inputs["input_ids"] == masked_token_id)[1]
|
76 |
|
77 |
if not masked_token_indices.numel():
|
78 |
+
logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.")
|
79 |
raise HTTPException(
|
80 |
status_code=status.HTTP_400_BAD_REQUEST,
|
81 |
detail="Input text must contain at least one '[MASK]' token."
|
|
|
130 |
detail=f"An internal server error occurred: {e}"
|
131 |
)
|
132 |
|
133 |
+
@api_router.get(
|
134 |
+
"/health", # Health check moved to /health
|
135 |
summary="Health Check",
|
136 |
description="Returns a simple message indicating the API is running."
|
137 |
)
|
138 |
+
async def health_check():
|
139 |
"""
|
140 |
Provides a basic health check endpoint for the API.
|
141 |
"""
|
142 |
logger.info("Health check endpoint accessed.")
|
143 |
return {"message": "NeuroBERT-Tiny API is running!"}
|
144 |
|
145 |
+
# Include the API router in the main FastAPI application
|
146 |
+
app.include_router(api_router)
|
147 |
+
|
148 |
+
# Optional: Add a catch-all route for any unhandled paths.
|
149 |
+
# This can help log when requests are hitting the app but to an unknown path.
|
150 |
+
# This should now catch anything not / or /health
|
151 |
+
@app.api_route("/{path_name:path}", methods=["GET", "POST", "PUT", "DELETE", "PATCH", "OPTIONS", "HEAD"])
|
152 |
+
async def catch_all(request: Request, path_name: str):
|
153 |
+
logger.warning(f"Unhandled route accessed: {request.method} {path_name}")
|
154 |
+
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Not Found")
|
155 |
+
|
156 |
+
|
157 |
# This block is for running the app directly, typically used for local development.
|
158 |
# In a Docker container, Uvicorn (or Gunicorn) is usually invoked via the CMD in Dockerfile.
|
159 |
if __name__ == "__main__":
|
160 |
import uvicorn
|
161 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
|
|
|