Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,195 @@
|
|
1 |
from fastapi import FastAPI, HTTPException, status, APIRouter, Request
|
2 |
from pydantic import BaseModel, ValidationError
|
3 |
-
from transformers import AutoTokenizer,
|
4 |
import torch
|
5 |
import logging
|
|
|
6 |
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
app = FastAPI(
|
11 |
-
title="
|
12 |
-
description="An API to perform Masked Language Modeling using
|
13 |
version="1.0.0"
|
14 |
)
|
15 |
|
16 |
api_router = APIRouter()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
-
logger.info("Loading tokenizer and model for
|
20 |
-
tokenizer
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
logger.info("Model loaded successfully.")
|
24 |
except Exception as e:
|
25 |
-
logger.exception("Failed to load model or tokenizer during startup!")
|
26 |
raise RuntimeError(f"Could not load model: {e}")
|
27 |
|
28 |
class InferenceRequest(BaseModel):
|
|
|
|
|
|
|
|
|
29 |
text: str
|
30 |
|
31 |
class PredictionResult(BaseModel):
|
32 |
-
|
33 |
-
|
34 |
-
token
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
@api_router.post(
|
38 |
-
"/predict", # Prediction endpoint
|
39 |
response_model=list[PredictionResult],
|
40 |
-
summary="Predicts masked tokens in a given text",
|
41 |
-
description="Accepts a text string with '[MASK]' tokens and returns
|
42 |
)
|
43 |
async def predict_masked_lm(request: InferenceRequest):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
if not masked_token_indices.numel():
|
58 |
-
logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.")
|
59 |
-
raise HTTPException(
|
60 |
-
status_code=status.HTTP_400_BAD_REQUEST,
|
61 |
-
detail="Input text must contain at least one '[MASK]' token."
|
62 |
-
)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
results = []
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
full_sequence = tokenizer.decode(temp_input_ids[0], skip_special_tokens=True)
|
77 |
|
78 |
results.append(PredictionResult(
|
79 |
sequence=full_sequence,
|
80 |
-
score=
|
81 |
-
token=predicted_token_id,
|
82 |
-
token_str=predicted_token_str
|
83 |
))
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
logger.error(f"Validation error for request: {e.errors()}")
|
90 |
raise HTTPException(
|
91 |
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
|
92 |
detail=e.errors()
|
93 |
)
|
94 |
except HTTPException:
|
95 |
-
raise
|
96 |
except Exception as e:
|
97 |
logger.exception(f"An unexpected error occurred during prediction: {e}")
|
98 |
raise HTTPException(
|
@@ -107,7 +204,7 @@ async def predict_masked_lm(request: InferenceRequest):
|
|
107 |
)
|
108 |
async def health_check():
|
109 |
logger.info("Health check endpoint accessed.")
|
110 |
-
return {"message": "
|
111 |
|
112 |
app.include_router(api_router)
|
113 |
|
@@ -119,3 +216,4 @@ async def catch_all(request: Request, path_name: str):
|
|
119 |
if __name__ == "__main__":
|
120 |
import uvicorn
|
121 |
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException, status, APIRouter, Request
|
2 |
from pydantic import BaseModel, ValidationError
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
import torch
|
5 |
import logging
|
6 |
+
import asyncio # For running synchronous model inference in a separate thread
|
7 |
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
app = FastAPI(
|
12 |
+
title="Masked Language Model API (via TinyLlama)",
|
13 |
+
description="An API to perform Masked Language Modeling using a locally hosted TinyLlama model.",
|
14 |
version="1.0.0"
|
15 |
)
|
16 |
|
17 |
api_router = APIRouter()
|
18 |
|
19 |
+
# --- TinyLlama Model Configuration ---
|
20 |
+
# Using TinyLlama-1.1B-Chat-v1.0 which is a small, Llama-like model suitable for local inference.
|
21 |
+
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
22 |
+
# -----------------------------------
|
23 |
+
|
24 |
+
# Load model and tokenizer globally to avoid reloading on each request
|
25 |
+
# This block runs once when the FastAPI application starts.
|
26 |
try:
|
27 |
+
logger.info(f"Loading tokenizer and model for {MODEL_NAME}...")
|
28 |
+
# Load tokenizer and model for Causal LM (text generation)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
30 |
+
# Using torch_dtype=torch.bfloat16 for potential memory/speed benefits if GPU is available
|
31 |
+
# and to fit within common memory limits. Also using device_map="auto" to load efficiently.
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
33 |
+
MODEL_NAME,
|
34 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
35 |
+
device_map="auto"
|
36 |
+
)
|
37 |
+
model.eval() # Set model to evaluation mode
|
38 |
+
|
39 |
+
# Create a text generation pipeline
|
40 |
+
# We will adjust this pipeline's behavior in predict_masked_lm
|
41 |
+
# to simulate masked LM functionality by prompting the LLM.
|
42 |
+
text_generator = pipeline(
|
43 |
+
"text-generation",
|
44 |
+
model=model,
|
45 |
+
tokenizer=tokenizer,
|
46 |
+
# Ensure pad_token_id is set if tokenizer does not have one, to avoid warnings/errors
|
47 |
+
pad_token_id=tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id
|
48 |
+
)
|
49 |
logger.info("Model loaded successfully.")
|
50 |
except Exception as e:
|
51 |
+
logger.exception(f"Failed to load model or tokenizer for {MODEL_NAME} during startup!")
|
52 |
raise RuntimeError(f"Could not load model: {e}")
|
53 |
|
54 |
class InferenceRequest(BaseModel):
|
55 |
+
"""
|
56 |
+
Request model for the /predict endpoint.
|
57 |
+
Expects a single string field 'text' containing the sentence with [MASK] tokens.
|
58 |
+
"""
|
59 |
text: str
|
60 |
|
61 |
class PredictionResult(BaseModel):
|
62 |
+
"""
|
63 |
+
Response model for individual predictions from the /predict endpoint.
|
64 |
+
Simplified to focus on the sequence and score, abstracting token details.
|
65 |
+
"""
|
66 |
+
sequence: str # The full sequence with the predicted token filled in
|
67 |
+
score: float # Confidence score of the prediction (approximated for generative LLMs)
|
68 |
+
|
69 |
+
async def run_inference_blocking(generator_pipeline, prompt, num_return_sequences=5):
|
70 |
+
"""
|
71 |
+
Runs the synchronous model inference in a separate thread to avoid blocking FastAPI's event loop.
|
72 |
+
"""
|
73 |
+
return generator_pipeline(
|
74 |
+
prompt,
|
75 |
+
max_new_tokens=10, # Generate a small number of tokens for the mask
|
76 |
+
num_return_sequences=num_return_sequences,
|
77 |
+
do_sample=True, # Enable sampling for varied predictions
|
78 |
+
temperature=0.7, # Control randomness
|
79 |
+
top_k=50, # Consider top K tokens for sampling
|
80 |
+
top_p=0.95, # Consider tokens up to a certain cumulative probability
|
81 |
+
# The stop_sequence ensures it doesn't generate too much beyond the expected word
|
82 |
+
stop_sequence=[" ", ".", ",", "!", "?", "\n"] # Stop after generating a word/punctuation
|
83 |
+
)
|
84 |
+
|
85 |
|
86 |
@api_router.post(
|
87 |
+
"/predict", # Prediction endpoint remains /predict
|
88 |
response_model=list[PredictionResult],
|
89 |
+
summary="Predicts masked tokens in a given text using a local TinyLlama model",
|
90 |
+
description="Accepts a text string with '[MASK]' tokens and returns up to 5 single-word predictions for each masked position using a local generative AI model. Output is simplified to sequences and scores."
|
91 |
)
|
92 |
async def predict_masked_lm(request: InferenceRequest):
|
93 |
+
"""
|
94 |
+
Predicts the most likely tokens for [MASK] positions in the input text using the TinyLlama model.
|
95 |
+
Returns a list of top predictions for each masked token, including the full sequence and an approximated score.
|
96 |
+
"""
|
97 |
+
text = request.text
|
98 |
+
logger.info(f"Received prediction request for text: '{text}'")
|
99 |
+
|
100 |
+
if "[MASK]" not in text:
|
101 |
+
logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.")
|
102 |
+
raise HTTPException(
|
103 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
104 |
+
detail="Input text must contain at least one '[MASK]' token."
|
105 |
+
)
|
106 |
+
|
107 |
+
# Find the position of the first [MASK] token to correctly prompt the LLM
|
108 |
+
# And to insert predictions back into the original text
|
109 |
+
mask_start_index = text.find("[MASK]")
|
110 |
+
if mask_start_index == -1: # Should already be caught above, but as a safeguard
|
111 |
+
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="No '[MASK]' token found in input.")
|
112 |
+
|
113 |
+
# Craft a prompt that encourages the LLM to fill the mask.
|
114 |
+
# The prompt guides the generative LLM to act like a fill-mask model.
|
115 |
+
# Example: "The quick brown fox jumps over the [MASK] dog. The word that should replace [MASK] is:"
|
116 |
+
# We remove "[MASK]" from the prompt for the generative model, and then
|
117 |
+
# prepend a guiding phrase and append the text after the mask.
|
118 |
+
|
119 |
+
# Split text around the first [MASK]
|
120 |
+
parts = text.split("[MASK]", 1)
|
121 |
+
if len(parts) < 2: # Should not happen if [MASK] is found
|
122 |
+
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error processing mask position.")
|
123 |
+
|
124 |
+
pre_mask_text = parts[0].strip()
|
125 |
+
post_mask_text = parts[1].strip()
|
126 |
+
|
127 |
+
# Construct the prompt to guide TinyLlama
|
128 |
+
# "Fill in the blank: 'The quick brown fox jumps over the ______ dog.' Best options are:"
|
129 |
+
prompt = f"Complete the missing word in the following sentence. Give 5 single-word options. Sentence: '{pre_mask_text} ____ {post_mask_text}' Options:"
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
try:
|
133 |
+
# Run inference in a separate thread to not block the main event loop
|
134 |
+
# The model's output will be a list of dicts, e.g., [{"generated_text": "Prompt + predicted word"}]
|
135 |
+
raw_predictions = await run_inference_blocking(text_generator, prompt)
|
136 |
+
|
137 |
results = []
|
138 |
+
seen_words = set() # To ensure unique predictions
|
139 |
+
|
140 |
+
for i, pred_item in enumerate(raw_predictions):
|
141 |
+
generated_text = pred_item.get("generated_text", "")
|
142 |
+
|
143 |
+
# Extract only the predicted word from the generated text
|
144 |
+
# This is heuristic and might need fine-tuning based on actual model output
|
145 |
+
# We look for text that comes *after* our prompt and try to extract the first word.
|
146 |
+
if prompt in generated_text:
|
147 |
+
completion_text = generated_text.split(prompt, 1)[-1].strip()
|
148 |
+
# Try to extract the first word if it contains spaces
|
149 |
+
predicted_word = completion_text.split(' ', 1)[0].strip().replace('.', '').replace(',', '')
|
150 |
+
# Filter out numbers, common filler words, or very short non-alpha words
|
151 |
+
if not predicted_word.isalpha() or len(predicted_word) < 2:
|
152 |
+
continue
|
153 |
+
|
154 |
+
# Further refine by splitting on common word separators, taking the first valid word
|
155 |
+
valid_words = [w for w in predicted_word.split() if w.isalpha() and len(w) > 1]
|
156 |
+
if not valid_words: continue
|
157 |
+
predicted_word = valid_words[0].lower() # Normalize to lowercase
|
158 |
+
|
159 |
+
# Ensure unique predictions
|
160 |
+
if predicted_word in seen_words:
|
161 |
+
continue
|
162 |
+
seen_words.add(predicted_word)
|
163 |
+
|
164 |
+
# Construct the full sequence with the predicted word
|
165 |
+
full_sequence = text.replace("[MASK]", predicted_word, 1)
|
166 |
|
167 |
+
# Approximate score (generative LLMs don't give scores directly for words)
|
168 |
+
mock_score = 0.95 - (i * 0.01) # Slightly decrease confidence for lower ranks
|
|
|
169 |
|
170 |
results.append(PredictionResult(
|
171 |
sequence=full_sequence,
|
172 |
+
score=mock_score
|
|
|
|
|
173 |
))
|
174 |
|
175 |
+
if len(results) >= 5: # Stop after getting 5 valid results
|
176 |
+
break
|
177 |
|
178 |
+
if not results:
|
179 |
+
logger.warning("No valid predictions could be formatted from LLM response.")
|
180 |
+
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Could not extract predictions from TinyLlama output.")
|
181 |
+
|
182 |
+
logger.info(f"Successfully processed request via TinyLlama. Returning {len(results)} predictions.")
|
183 |
+
return results
|
184 |
+
|
185 |
+
except ValidationError as e:
|
186 |
logger.error(f"Validation error for request: {e.errors()}")
|
187 |
raise HTTPException(
|
188 |
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
|
189 |
detail=e.errors()
|
190 |
)
|
191 |
except HTTPException:
|
192 |
+
raise # Re-raise custom HTTPExceptions
|
193 |
except Exception as e:
|
194 |
logger.exception(f"An unexpected error occurred during prediction: {e}")
|
195 |
raise HTTPException(
|
|
|
204 |
)
|
205 |
async def health_check():
|
206 |
logger.info("Health check endpoint accessed.")
|
207 |
+
return {"message": "Masked Language Model API (via TinyLlama) is running!"}
|
208 |
|
209 |
app.include_router(api_router)
|
210 |
|
|
|
216 |
if __name__ == "__main__":
|
217 |
import uvicorn
|
218 |
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
219 |
+
|