faq / app.py
brendon-ai's picture
Update app.py
5c04962 verified
raw
history blame
6.45 kB
from fastapi import FastAPI, HTTPException, status
from pydantic import BaseModel, ValidationError
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
import logging
# Configure logging to output information, warnings, and errors
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="NeuroBERT-Tiny Masked Language Model API",
description="An API to perform Masked Language Modeling using the boltuix/NeuroBERT-Tiny model.",
version="1.0.0"
)
# Load model globally to avoid reloading on each request
# This block runs once when the FastAPI application starts.
try:
logger.info("Loading tokenizer and model for boltuix/NeuroBERT-Tiny...")
tokenizer = AutoTokenizer.from_pretrained("boltuix/NeuroBERT-Tiny")
model = AutoModelForMaskedLM.from_pretrained("boltuix/NeuroBERT-Tiny")
model.eval() # Set model to evaluation mode for inference
logger.info("Model loaded successfully.")
except Exception as e:
logger.exception("Failed to load model or tokenizer during startup!")
# Depending on the deployment, you might want to raise an exception here
# to prevent the app from starting if the model can't be loaded.
# For now, we'll let it potentially start and fail on prediction.
raise RuntimeError(f"Could not load model: {e}")
class InferenceRequest(BaseModel):
"""
Request model for the /predict endpoint.
Expects a single string field 'text' containing the sentence with [MASK] tokens.
"""
text: str
class PredictionResult(BaseModel):
"""
Response model for individual predictions from the /predict endpoint.
"""
sequence: str # The full sequence with the predicted token filled in
score: float # Confidence score of the prediction
token: int # The ID of the predicted token
token_str: str # The string representation of the predicted token
@app.post(
"/predict",
response_model=list[PredictionResult],
summary="Predicts masked tokens in a given text",
description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
)
async def predict_masked_lm(request: InferenceRequest):
"""
Predicts the most likely tokens for [MASK] positions in the input text.
Returns a list of top 5 predictions for each masked token, including the full sequence, score, and token details.
"""
try:
text = request.text
logger.info(f"Received prediction request for text: '{text}'")
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt")
# Perform inference without tracking gradients
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
masked_token_id = tokenizer.convert_tokens_to_ids("[MASK]")
# Find all masked token positions in the input IDs
masked_token_indices = torch.where(inputs["input_ids"] == masked_token_id)[1]
if not masked_token_indices.numel():
logger.warning("No [MASK] token found in the input text.")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Input text must contain at least one '[MASK]' token."
)
results = []
# Iterate over each masked token found in the input
for masked_index in masked_token_indices:
# Get top 5 predictions (logits and their corresponding token IDs) for the current masked position
top_5_logits = torch.topk(logits[0, masked_index], 5).values
top_5_tokens = torch.topk(logits[0, masked_index], 5).indices
# For each of the top 5 predictions
for i in range(5):
# Calculate the softmax score for the predicted token
score = torch.nn.functional.softmax(logits[0, masked_index], dim=-1)[top_5_tokens[i]].item()
predicted_token_id = top_5_tokens[i].item()
predicted_token_str = tokenizer.decode(predicted_token_id)
# Create a temporary input_ids tensor to replace the [MASK] token
# with the current predicted token for generating the full sequence.
temp_input_ids = inputs["input_ids"].clone()
temp_input_ids[0, masked_index] = predicted_token_id
# Decode the entire sequence, skipping special tokens, to get the complete predicted sentence.
full_sequence = tokenizer.decode(temp_input_ids[0], skip_special_tokens=True)
# Append the prediction result to our list
results.append(PredictionResult(
sequence=full_sequence,
score=score,
token=predicted_token_id,
token_str=predicted_token_str
))
logger.info(f"Successfully processed request. Returning {len(results)} predictions.")
return results
except ValidationError as e:
logger.error(f"Validation error for request: {e.errors()}")
raise HTTPException(
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
detail=e.errors()
)
except HTTPException:
# Re-raise explicit HTTPExceptions (e.g., 400 for missing [MASK])
raise
except Exception as e:
logger.exception(f"An unexpected error occurred during prediction: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"An internal server error occurred: {e}"
)
@app.get(
"/",
summary="Health Check",
description="Returns a simple message indicating the API is running."
)
async def root():
"""
Provides a basic health check endpoint for the API.
"""
logger.info("Health check endpoint accessed.")
return {"message": "NeuroBERT-Tiny API is running!"}
# This block is for running the app directly, typically used for local development.
# In a Docker container, Uvicorn (or Gunicorn) is usually invoked via the CMD in Dockerfile.
if __name__ == "__main__":
import uvicorn
# The 'reload=True' is great for local development for auto-reloading changes.
# For production in a Docker container, it's typically omitted for performance.
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")