Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, status, APIRouter, Request | |
from pydantic import BaseModel, ValidationError | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
import logging | |
import asyncio # For running synchronous model inference in a separate thread | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
app = FastAPI( | |
title="Masked Language Model API (via TinyLlama)", | |
description="An API to perform Masked Language Modeling using a locally hosted TinyLlama model.", | |
version="1.0.0" | |
) | |
api_router = APIRouter() | |
# --- TinyLlama Model Configuration --- | |
# Using TinyLlama-1.1B-Chat-v1.0 which is a small, Llama-like model suitable for local inference. | |
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
# ----------------------------------- | |
# Load model and tokenizer globally to avoid reloading on each request | |
# This block runs once when the FastAPI application starts. | |
try: | |
logger.info(f"Loading tokenizer and model for {MODEL_NAME}...") | |
# Load tokenizer and model for Causal LM (text generation) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
# Using torch_dtype=torch.bfloat16 for potential memory/speed benefits if GPU is available | |
# and to fit within common memory limits. Also using device_map="auto" to load efficiently. | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" | |
) | |
model.eval() # Set model to evaluation mode | |
# Create a text generation pipeline | |
# We will adjust this pipeline's behavior in predict_masked_lm | |
# to simulate masked LM functionality by prompting the LLM. | |
text_generator = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
# Ensure pad_token_id is set if tokenizer does not have one, to avoid warnings/errors | |
pad_token_id=tokenizer.eos_token_id if tokenizer.pad_token_id is None else tokenizer.pad_token_id | |
) | |
logger.info("Model loaded successfully.") | |
except Exception as e: | |
logger.exception(f"Failed to load model or tokenizer for {MODEL_NAME} during startup!") | |
raise RuntimeError(f"Could not load model: {e}") | |
class InferenceRequest(BaseModel): | |
""" | |
Request model for the /predict endpoint. | |
Expects a single string field 'text' containing the sentence with [MASK] tokens. | |
""" | |
text: str | |
class PredictionResult(BaseModel): | |
""" | |
Response model for individual predictions from the /predict endpoint. | |
Simplified to focus on the sequence and score, abstracting token details. | |
""" | |
sequence: str # The full sequence with the predicted token filled in | |
score: float # Confidence score of the prediction (approximated for generative LLMs) | |
async def run_inference_blocking(generator_pipeline, prompt, num_return_sequences=5): | |
""" | |
Runs the synchronous model inference in a separate thread to avoid blocking FastAPI's event loop. | |
""" | |
return generator_pipeline( | |
prompt, | |
max_new_tokens=10, # Generate a small number of tokens for the mask | |
num_return_sequences=num_return_sequences, | |
do_sample=True, # Enable sampling for varied predictions | |
temperature=0.7, # Control randomness | |
top_k=50, # Consider top K tokens for sampling | |
top_p=0.95, # Consider tokens up to a certain cumulative probability | |
# The stop_sequence ensures it doesn't generate too much beyond the expected word | |
stop_sequence=[" ", ".", ",", "!", "?", "\n"] # Stop after generating a word/punctuation | |
) | |
async def predict_masked_lm(request: InferenceRequest): | |
""" | |
Predicts the most likely tokens for [MASK] positions in the input text using the TinyLlama model. | |
Returns a list of top predictions for each masked token, including the full sequence and an approximated score. | |
""" | |
text = request.text | |
logger.info(f"Received prediction request for text: '{text}'") | |
if "[MASK]" not in text: | |
logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.") | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail="Input text must contain at least one '[MASK]' token." | |
) | |
# Find the position of the first [MASK] token to correctly prompt the LLM | |
# And to insert predictions back into the original text | |
mask_start_index = text.find("[MASK]") | |
if mask_start_index == -1: # Should already be caught above, but as a safeguard | |
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="No '[MASK]' token found in input.") | |
# Craft a prompt that encourages the LLM to fill the mask. | |
# The prompt guides the generative LLM to act like a fill-mask model. | |
# Example: "The quick brown fox jumps over the [MASK] dog. The word that should replace [MASK] is:" | |
# We remove "[MASK]" from the prompt for the generative model, and then | |
# prepend a guiding phrase and append the text after the mask. | |
# Split text around the first [MASK] | |
parts = text.split("[MASK]", 1) | |
if len(parts) < 2: # Should not happen if [MASK] is found | |
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error processing mask position.") | |
pre_mask_text = parts[0].strip() | |
post_mask_text = parts[1].strip() | |
# Construct the prompt to guide TinyLlama | |
# "Fill in the blank: 'The quick brown fox jumps over the ______ dog.' Best options are:" | |
prompt = f"Complete the missing word in the following sentence. Give 5 single-word options. Sentence: '{pre_mask_text} ____ {post_mask_text}' Options:" | |
try: | |
# Run inference in a separate thread to not block the main event loop | |
# The model's output will be a list of dicts, e.g., [{"generated_text": "Prompt + predicted word"}] | |
raw_predictions = await run_inference_blocking(text_generator, prompt) | |
results = [] | |
seen_words = set() # To ensure unique predictions | |
for i, pred_item in enumerate(raw_predictions): | |
generated_text = pred_item.get("generated_text", "") | |
# Extract only the predicted word from the generated text | |
# This is heuristic and might need fine-tuning based on actual model output | |
# We look for text that comes *after* our prompt and try to extract the first word. | |
if prompt in generated_text: | |
completion_text = generated_text.split(prompt, 1)[-1].strip() | |
# Try to extract the first word if it contains spaces | |
predicted_word = completion_text.split(' ', 1)[0].strip().replace('.', '').replace(',', '') | |
# Filter out numbers, common filler words, or very short non-alpha words | |
if not predicted_word.isalpha() or len(predicted_word) < 2: | |
continue | |
# Further refine by splitting on common word separators, taking the first valid word | |
valid_words = [w for w in predicted_word.split() if w.isalpha() and len(w) > 1] | |
if not valid_words: continue | |
predicted_word = valid_words[0].lower() # Normalize to lowercase | |
# Ensure unique predictions | |
if predicted_word in seen_words: | |
continue | |
seen_words.add(predicted_word) | |
# Construct the full sequence with the predicted word | |
full_sequence = text.replace("[MASK]", predicted_word, 1) | |
# Approximate score (generative LLMs don't give scores directly for words) | |
mock_score = 0.95 - (i * 0.01) # Slightly decrease confidence for lower ranks | |
results.append(PredictionResult( | |
sequence=full_sequence, | |
score=mock_score | |
)) | |
if len(results) >= 5: # Stop after getting 5 valid results | |
break | |
if not results: | |
logger.warning("No valid predictions could be formatted from LLM response.") | |
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Could not extract predictions from TinyLlama output.") | |
logger.info(f"Successfully processed request via TinyLlama. Returning {len(results)} predictions.") | |
return results | |
except ValidationError as e: | |
logger.error(f"Validation error for request: {e.errors()}") | |
raise HTTPException( | |
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, | |
detail=e.errors() | |
) | |
except HTTPException: | |
raise # Re-raise custom HTTPExceptions | |
except Exception as e: | |
logger.exception(f"An unexpected error occurred during prediction: {e}") | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=f"An internal server error occurred: {e}" | |
) | |
async def health_check(): | |
logger.info("Health check endpoint accessed.") | |
return {"message": "Masked Language Model API (via TinyLlama) is running!"} | |
app.include_router(api_router) | |
async def catch_all(request: Request, path_name: str): | |
logger.warning(f"Unhandled route accessed: {request.method} {path_name}") | |
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Not Found") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info") |