import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 ) if torch.cuda.is_available(): model.to("cuda") model.eval() def generate_text(prompt, max_new_tokens=100, temperature=0.7, top_k=50): if not prompt: return "Please enter a prompt." messages = [{"role": "user", "content": prompt}] encoded = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt", padding=True, return_attention_mask=True, ) input_ids = encoded["input_ids"] attention_mask = encoded["attention_mask"] if torch.cuda.is_available(): input_ids = input_ids.to("cuda") attention_mask = attention_mask.to("cuda") output_ids = model.generate( input_ids, attention_mask=attention_mask, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_k=top_k, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True) return response # Gradio interface demo = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt"), gr.Slider(minimum=10, maximum=500, value=100, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"), gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top K") ], outputs=gr.Textbox(label="Generated Text"), title="TinyLlama Gradio API", description="Use this via UI or API via `/run/predict`" ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)