Spaces:
Sleeping
Sleeping
Delete kaggle_loader.py
Browse files- kaggle_loader.py +0 -240
kaggle_loader.py
DELETED
@@ -1,240 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
-
import json
|
4 |
-
from typing import List, Optional
|
5 |
-
from langchain_core.documents import Document
|
6 |
-
from langchain_community.document_loaders import CSVLoader, JSONLoader
|
7 |
-
import kaggle
|
8 |
-
|
9 |
-
class KaggleDataLoader:
|
10 |
-
"""Load and process Kaggle datasets for RAG."""
|
11 |
-
|
12 |
-
def __init__(self, kaggle_username: Optional[str] = None, kaggle_key: Optional[str] = None):
|
13 |
-
"""
|
14 |
-
Initialize Kaggle loader.
|
15 |
-
|
16 |
-
Args:
|
17 |
-
kaggle_username: Your Kaggle username (optional if using kaggle.json)
|
18 |
-
kaggle_key: Your Kaggle API key (optional if using kaggle.json)
|
19 |
-
"""
|
20 |
-
self.kaggle_username = kaggle_username
|
21 |
-
self.kaggle_key = kaggle_key
|
22 |
-
|
23 |
-
# Try to load credentials from kaggle.json first
|
24 |
-
self._load_kaggle_credentials()
|
25 |
-
|
26 |
-
# Set Kaggle credentials (either from kaggle.json or parameters)
|
27 |
-
if self.kaggle_username and self.kaggle_key:
|
28 |
-
os.environ['KAGGLE_USERNAME'] = self.kaggle_username
|
29 |
-
os.environ['KAGGLE_KEY'] = self.kaggle_key
|
30 |
-
print("Kaggle credentials loaded successfully")
|
31 |
-
else:
|
32 |
-
print("Warning: No Kaggle credentials found. Please set up kaggle.json or provide credentials.")
|
33 |
-
|
34 |
-
def _load_kaggle_credentials(self):
|
35 |
-
"""Load Kaggle credentials from kaggle.json file."""
|
36 |
-
# Common locations for kaggle.json
|
37 |
-
possible_paths = [
|
38 |
-
os.path.expanduser("~/.kaggle/kaggle.json"),
|
39 |
-
os.path.expanduser("~/kaggle.json"),
|
40 |
-
"./kaggle.json",
|
41 |
-
os.path.join(os.getcwd(), "kaggle.json")
|
42 |
-
]
|
43 |
-
|
44 |
-
for path in possible_paths:
|
45 |
-
if os.path.exists(path):
|
46 |
-
try:
|
47 |
-
with open(path, 'r') as f:
|
48 |
-
credentials = json.load(f)
|
49 |
-
|
50 |
-
# Extract username and key from kaggle.json
|
51 |
-
if 'username' in credentials and 'key' in credentials:
|
52 |
-
self.kaggle_username = credentials['username']
|
53 |
-
self.kaggle_key = credentials['key']
|
54 |
-
print(f"Loaded Kaggle credentials from {path}")
|
55 |
-
return
|
56 |
-
else:
|
57 |
-
print(f"Invalid kaggle.json format at {path}. Expected 'username' and 'key' fields.")
|
58 |
-
|
59 |
-
except Exception as e:
|
60 |
-
print(f"Error reading kaggle.json from {path}: {e}")
|
61 |
-
|
62 |
-
print("No valid kaggle.json found in common locations:")
|
63 |
-
for path in possible_paths:
|
64 |
-
print(f" - {path}")
|
65 |
-
print("Please create kaggle.json with your Kaggle API credentials.")
|
66 |
-
|
67 |
-
def download_dataset(self, dataset_name: str, download_path: str = "./data") -> str:
|
68 |
-
"""
|
69 |
-
Download a Kaggle dataset.
|
70 |
-
|
71 |
-
Args:
|
72 |
-
dataset_name: Dataset name in format 'username/dataset-name'
|
73 |
-
download_path: Where to save the dataset
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
Path to downloaded dataset
|
77 |
-
"""
|
78 |
-
if not self.kaggle_username or not self.kaggle_key:
|
79 |
-
raise ValueError("Kaggle credentials not found. Please set up kaggle.json or provide credentials.")
|
80 |
-
|
81 |
-
try:
|
82 |
-
# Create a unique directory for this dataset
|
83 |
-
dataset_dir = dataset_name.replace('/', '_')
|
84 |
-
full_download_path = os.path.join(download_path, dataset_dir)
|
85 |
-
|
86 |
-
# Create the directory if it doesn't exist
|
87 |
-
os.makedirs(full_download_path, exist_ok=True)
|
88 |
-
|
89 |
-
kaggle.api.authenticate()
|
90 |
-
kaggle.api.dataset_download_files(dataset_name, path=full_download_path, unzip=True)
|
91 |
-
print(f"Dataset {dataset_name} downloaded successfully to {full_download_path}")
|
92 |
-
return full_download_path
|
93 |
-
except Exception as e:
|
94 |
-
print(f"Error downloading dataset: {e}")
|
95 |
-
raise
|
96 |
-
|
97 |
-
def load_csv_dataset(self, file_path: str, text_columns: List[str], chunk_size: int = 100) -> List[Document]:
|
98 |
-
"""Load documents from a CSV file."""
|
99 |
-
try:
|
100 |
-
df = pd.read_csv(file_path)
|
101 |
-
documents = []
|
102 |
-
|
103 |
-
# For FAQ datasets, try to combine question and answer columns
|
104 |
-
if 'Questions' in df.columns and 'Answers' in df.columns:
|
105 |
-
print(f"Processing FAQ dataset with {len(df)} Q&A pairs")
|
106 |
-
for idx, row in df.iterrows():
|
107 |
-
question = str(row['Questions']).strip()
|
108 |
-
answer = str(row['Answers']).strip()
|
109 |
-
|
110 |
-
# Create a document with question prominently featured for better retrieval
|
111 |
-
content = f"QUESTION: {question}\n\nANSWER: {answer}"
|
112 |
-
documents.append(Document(
|
113 |
-
page_content=content,
|
114 |
-
metadata={"source": file_path, "type": "faq", "question_id": idx, "question": question}
|
115 |
-
))
|
116 |
-
else:
|
117 |
-
# Fallback to original method for other CSV files
|
118 |
-
print(f"Processing regular CSV with columns: {text_columns}")
|
119 |
-
for idx, row in df.iterrows():
|
120 |
-
# Combine specified text columns
|
121 |
-
text_parts = []
|
122 |
-
for col in text_columns:
|
123 |
-
if col in df.columns and pd.notna(row[col]):
|
124 |
-
text_parts.append(str(row[col]).strip())
|
125 |
-
|
126 |
-
if text_parts:
|
127 |
-
content = " ".join(text_parts)
|
128 |
-
documents.append(Document(
|
129 |
-
page_content=content,
|
130 |
-
metadata={"source": file_path, "row": idx}
|
131 |
-
))
|
132 |
-
|
133 |
-
print(f"Created {len(documents)} documents from CSV")
|
134 |
-
return documents
|
135 |
-
|
136 |
-
except Exception as e:
|
137 |
-
print(f"Error loading CSV dataset: {e}")
|
138 |
-
return []
|
139 |
-
|
140 |
-
def load_json_dataset(self, file_path: str, text_field: str = "text",
|
141 |
-
metadata_fields: Optional[List[str]] = None) -> List[Document]:
|
142 |
-
"""
|
143 |
-
Load JSON data and convert to documents.
|
144 |
-
|
145 |
-
Args:
|
146 |
-
file_path: Path to JSON file
|
147 |
-
text_field: Field name containing the main text
|
148 |
-
metadata_fields: Fields to include as metadata
|
149 |
-
|
150 |
-
Returns:
|
151 |
-
List of Document objects
|
152 |
-
"""
|
153 |
-
with open(file_path, 'r') as f:
|
154 |
-
data = json.load(f)
|
155 |
-
|
156 |
-
documents = []
|
157 |
-
|
158 |
-
for item in data:
|
159 |
-
text_content = item.get(text_field, "")
|
160 |
-
|
161 |
-
# Create metadata
|
162 |
-
metadata = {"source": file_path}
|
163 |
-
if metadata_fields:
|
164 |
-
for field in metadata_fields:
|
165 |
-
if field in item:
|
166 |
-
metadata[field] = item[field]
|
167 |
-
|
168 |
-
documents.append(Document(
|
169 |
-
page_content=text_content,
|
170 |
-
metadata=metadata
|
171 |
-
))
|
172 |
-
|
173 |
-
return documents
|
174 |
-
|
175 |
-
def load_text_dataset(self, file_path: str, chunk_size: int = 1000) -> List[Document]:
|
176 |
-
"""
|
177 |
-
Load plain text data and convert to documents.
|
178 |
-
|
179 |
-
Args:
|
180 |
-
file_path: Path to text file
|
181 |
-
chunk_size: Number of characters per document
|
182 |
-
|
183 |
-
Returns:
|
184 |
-
List of Document objects
|
185 |
-
"""
|
186 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
187 |
-
text = f.read()
|
188 |
-
|
189 |
-
documents = []
|
190 |
-
|
191 |
-
for i in range(0, len(text), chunk_size):
|
192 |
-
chunk = text[i:i+chunk_size]
|
193 |
-
|
194 |
-
documents.append(Document(
|
195 |
-
page_content=chunk,
|
196 |
-
metadata={
|
197 |
-
"source": file_path,
|
198 |
-
"chunk_id": i // chunk_size,
|
199 |
-
"start_char": i,
|
200 |
-
"end_char": min(i + chunk_size, len(text))
|
201 |
-
}
|
202 |
-
))
|
203 |
-
|
204 |
-
return documents
|
205 |
-
|
206 |
-
# Example usage functions
|
207 |
-
def load_kaggle_csv_example():
|
208 |
-
"""Example: Load a CSV dataset from Kaggle."""
|
209 |
-
# Initialize loader (replace with your credentials)
|
210 |
-
loader = KaggleDataLoader("your_username", "your_api_key")
|
211 |
-
|
212 |
-
# Download dataset (example: COVID-19 dataset)
|
213 |
-
dataset_path = loader.download_dataset("gpreda/covid-world-vaccination-progress")
|
214 |
-
|
215 |
-
# Load CSV data
|
216 |
-
csv_file = os.path.join(dataset_path, "country_vaccinations.csv")
|
217 |
-
documents = loader.load_csv_dataset(
|
218 |
-
csv_file,
|
219 |
-
text_columns=["country", "vaccines", "source_name"],
|
220 |
-
chunk_size=100
|
221 |
-
)
|
222 |
-
|
223 |
-
return documents
|
224 |
-
|
225 |
-
def load_kaggle_json_example():
|
226 |
-
"""Example: Load a JSON dataset from Kaggle."""
|
227 |
-
loader = KaggleDataLoader("your_username", "your_api_key")
|
228 |
-
|
229 |
-
# Download dataset (example: news articles)
|
230 |
-
dataset_path = loader.download_dataset("rmisra/news-category-dataset")
|
231 |
-
|
232 |
-
# Load JSON data
|
233 |
-
json_file = os.path.join(dataset_path, "News_Category_Dataset_v3.json")
|
234 |
-
documents = loader.load_json_dataset(
|
235 |
-
json_file,
|
236 |
-
text_field="headline",
|
237 |
-
metadata_fields=["category", "date"]
|
238 |
-
)
|
239 |
-
|
240 |
-
return documents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|