brendon-ai commited on
Commit
3557791
·
verified ·
1 Parent(s): 7045c5f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -0
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
6
+
7
+ # Load tokenizer and model
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
9
+ if tokenizer.pad_token is None:
10
+ tokenizer.pad_token = tokenizer.eos_token
11
+
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ MODEL_NAME,
14
+ torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
15
+ )
16
+ if torch.cuda.is_available():
17
+ model.to("cuda")
18
+ model.eval()
19
+
20
+ def generate_text(prompt, max_new_tokens=100, temperature=0.7, top_k=50):
21
+ if not prompt:
22
+ return "Please enter a prompt."
23
+
24
+ messages = [{"role": "user", "content": prompt}]
25
+ encoded = tokenizer.apply_chat_template(
26
+ messages,
27
+ add_generation_prompt=True,
28
+ return_tensors="pt",
29
+ padding=True,
30
+ return_attention_mask=True,
31
+ )
32
+
33
+ input_ids = encoded["input_ids"]
34
+ attention_mask = encoded["attention_mask"]
35
+
36
+ if torch.cuda.is_available():
37
+ input_ids = input_ids.to("cuda")
38
+ attention_mask = attention_mask.to("cuda")
39
+
40
+ output_ids = model.generate(
41
+ input_ids,
42
+ attention_mask=attention_mask,
43
+ max_new_tokens=max_new_tokens,
44
+ do_sample=True,
45
+ temperature=temperature,
46
+ top_k=top_k,
47
+ pad_token_id=tokenizer.eos_token_id
48
+ )
49
+
50
+ response = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True)
51
+ return response
52
+
53
+ # Gradio interface
54
+ demo = gr.Interface(
55
+ fn=generate_text,
56
+ inputs=[
57
+ gr.Textbox(label="Prompt"),
58
+ gr.Slider(minimum=10, maximum=500, value=100, label="Max New Tokens"),
59
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"),
60
+ gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top K")
61
+ ],
62
+ outputs=gr.Textbox(label="Generated Text"),
63
+ title="TinyLlama Gradio API",
64
+ description="Use this via UI or API via `/run/predict`"
65
+ )
66
+
67
+ if __name__ == "__main__":
68
+ demo.launch(server_name="0.0.0.0", server_port=7860)