Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
MODEL_NAME = "google/gemma-3-1b-it" #"TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
# Load tokenizer and model | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
print("Tokenizer loaded.") | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
print("Loading model...") | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
) | |
print("Model loaded.") | |
if torch.cuda.is_available(): | |
print("Moving model to GPU...") | |
model.to("cuda") | |
model.eval() | |
print("Model ready.") | |
def generate_text(prompt, max_new_tokens=100, temperature=0.7, top_k=50): | |
if not prompt: | |
return "Please enter a prompt." | |
messages = [{"role": "user", "content": prompt}] | |
encoded = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
padding=True, | |
return_attention_mask=True, | |
) | |
input_ids = encoded["input_ids"] | |
attention_mask = encoded["attention_mask"] | |
if torch.cuda.is_available(): | |
input_ids = input_ids.to("cuda") | |
attention_mask = attention_mask.to("cuda") | |
output_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_k, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True) | |
return response | |
# Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt"), | |
gr.Slider(minimum=10, maximum=500, value=100, label="Max New Tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"), | |
gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top K") | |
], | |
outputs=gr.Textbox(label="Generated Text"), | |
title="gemma-3-1b-it Gradio API", | |
description="Use this via UI or API via `/run/predict`" | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |