bobotheparrot commited on
Commit
8e5c202
·
verified ·
1 Parent(s): f95f08f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -4
app.py CHANGED
@@ -1,7 +1,145 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+ import os # For Hugging Face token
5
 
6
+ # Import spaces for ZeroGPU if you need to decorate specific functions
7
+ # For models loaded via transformers and run on a device managed by ZeroGPU,
8
+ # explicit @spaces.GPU might not always be needed directly on the inference function
9
+ # if the entire space is on ZeroGPU hardware. However, for clarity or complex setups:
10
+ # import spaces # Uncomment if using @spaces.GPU decorator
11
 
12
+ # --- Configuration ---
13
+ HF_TOKEN = os.getenv("HF_TOKEN") # Recommended to store your Hugging Face token as a Space secret
14
+
15
+ MODEL_OPTIONS = {
16
+ "Qwen1.5-1.8B-Chat": "Qwen/Qwen1.5-1.8B-Chat",
17
+ "Qwen2.5-Coder-3B": "Qwen/Qwen2.5-Coder-3B", # Example for a Qwen code model around 3B params
18
+ }
19
+
20
+ # --- Model Loading Cache ---
21
+ # This dictionary will cache loaded models and tokenizers to avoid reloading on every call
22
+ loaded_models = {}
23
+
24
+ def get_model_and_tokenizer(model_name_key):
25
+ if model_name_key not in loaded_models:
26
+ model_id = MODEL_OPTIONS[model_name_key]
27
+ print(f"Loading model: {model_id}...")
28
+ try:
29
+ # Ensure you have accepted the terms of use for these models on Hugging Face Hub
30
+ model = AutoModelForCausalLM.from_pretrained(
31
+ model_id,
32
+ torch_dtype="auto", # Let transformers decide the best dtype
33
+ device_map="auto", # Automatically maps model to available device (GPU on ZeroGPU)
34
+ token=HF_TOKEN # Use token if model is private or requires it
35
+ )
36
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
37
+ loaded_models[model_name_key] = (model, tokenizer)
38
+ print(f"Model {model_id} loaded successfully.")
39
+ except Exception as e:
40
+ print(f"Error loading model {model_id}: {e}")
41
+ # Fallback or error handling
42
+ if model_name_key in loaded_models: # Remove if partially loaded
43
+ del loaded_models[model_name_key]
44
+ raise gr.Error(f"Failed to load model {model_name_key}. Please check the model ID and your Hugging Face token permissions. Error: {e}")
45
+ return loaded_models[model_name_key]
46
+
47
+ # --- Inference Function ---
48
+ # If you need finer-grained control over GPU allocation for specific parts:
49
+ # @spaces.GPU(duration=120) # Example: Request GPU for 120 seconds for this function
50
+ def generate_response(prompt_text, model_choice, max_new_tokens=512, temperature=0.7, top_p=0.9):
51
+ if not prompt_text:
52
+ return "Please enter a prompt."
53
+ if not model_choice:
54
+ return "Please select a model."
55
+
56
+ try:
57
+ model, tokenizer = get_model_and_tokenizer(model_choice)
58
+ except Exception as e:
59
+ return str(e) # Display loading error to user
60
+
61
+ device = model.device # Get the device the model is on
62
+
63
+ if "Chat" in model_choice: # Apply chat template for chat models
64
+ messages = [
65
+ {"role": "system", "content": "You are a helpful assistant."},
66
+ {"role": "user", "content": prompt_text}
67
+ ]
68
+ try:
69
+ input_text = tokenizer.apply_chat_template(
70
+ messages,
71
+ tokenize=False,
72
+ add_generation_prompt=True
73
+ )
74
+ except Exception as e: # Fallback if apply_chat_template has issues or is not applicable
75
+ print(f"Warning: Could not apply chat template for {model_choice}: {e}. Using prompt as is.")
76
+ input_text = prompt_text
77
+
78
+ else: # For code or non-chat models, use the prompt directly or adjust as needed
79
+ input_text = prompt_text
80
+
81
+ model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
82
+
83
+ try:
84
+ generated_ids = model.generate(
85
+ model_inputs.input_ids,
86
+ max_new_tokens=max_new_tokens,
87
+ temperature=temperature,
88
+ top_p=top_p,
89
+ do_sample=True # Necessary for temperature and top_p to have an effect
90
+ )
91
+ # For some models, the input prompt is included in the generated_ids.
92
+ # We need to decode only the newly generated tokens.
93
+ # This slicing can vary based on the model and tokenizer.
94
+ # A common approach is to slice based on the input_ids length:
95
+ response_ids = generated_ids[0][model_inputs.input_ids.shape[-1]:]
96
+ response_text = tokenizer.decode(response_ids, skip_special_tokens=True)
97
+
98
+ except Exception as e:
99
+ print(f"Error during generation with {model_choice}: {e}")
100
+ return f"Error generating response: {e}"
101
+
102
+ return response_text
103
+
104
+ # --- Gradio Interface ---
105
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
106
+ gr.Markdown("# LLM Coding & Math Experiment")
107
+ gr.Markdown("Query Qwen1.5-1.8B-Chat or Qwen Code models using ZeroGPU.")
108
+
109
+ with gr.Row():
110
+ model_dropdown = gr.Dropdown(
111
+ label="Select Model",
112
+ choices=list(MODEL_OPTIONS.keys()),
113
+ value=list(MODEL_OPTIONS.keys())[0] # Default to the first model
114
+ )
115
+ with gr.Row():
116
+ prompt_input = gr.Textbox(label="Enter your prompt:", lines=4, placeholder="e.g., Write a Python function to calculate factorial, or What is the capital of France?")
117
+ with gr.Row():
118
+ output_text = gr.Textbox(label="Model Response:", lines=8, interactive=False)
119
+
120
+ with gr.Row():
121
+ submit_button = gr.Button("Generate Response", variant="primary")
122
+
123
+ with gr.Accordion("Advanced Settings", open=False):
124
+ max_new_tokens_slider = gr.Slider(minimum=32, maximum=2048, value=512, step=32, label="Max New Tokens")
125
+ temperature_slider = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.05, label="Temperature")
126
+ top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P")
127
+
128
+
129
+ # Event listener for the button
130
+ submit_button.click(
131
+ fn=generate_response,
132
+ inputs=[prompt_input, model_dropdown, max_new_tokens_slider, temperature_slider, top_p_slider],
133
+ outputs=output_text,
134
+ api_name="generate" # Exposes an API endpoint
135
+ )
136
+
137
+ gr.Markdown("## Notes:")
138
+ gr.Markdown(
139
+ "- Ensure you have accepted the terms of use for the selected Qwen models on the Hugging Face Hub.\n"
140
+ "- Model loading can take some time, especially on the first run or when switching models.\n"
141
+ "- This Space runs on ZeroGPU, which means GPU resources are allocated dynamically."
142
+ )
143
+
144
+ if __name__ == "__main__":
145
+ demo.launch()