Spaces:
Sleeping
Sleeping
Initial commit
Browse files- app.py +229 -31
- requirements.txt +17 -1
- tools.py +461 -0
app.py
CHANGED
@@ -1,34 +1,201 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
print("BasicAgent initialized.")
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
def run_and_submit_all(
|
23 |
"""
|
24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
and displays the results.
|
26 |
"""
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID")
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -55,16 +222,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
print(f"Error fetching questions: {e}")
|
63 |
return f"Error fetching questions: {e}", None
|
64 |
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
except Exception as e:
|
69 |
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -76,26 +243,54 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
|
|
79 |
if not task_id or question_text is None:
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {
|
|
|
|
|
|
|
|
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
# 5. Submit
|
100 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
@@ -162,20 +357,19 @@ with gr.Blocks() as demo:
|
|
162 |
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
-
status_output = gr.Textbox(
|
|
|
|
|
166 |
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -183,14 +377,18 @@ if __name__ == "__main__":
|
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(
|
|
|
|
|
190 |
else:
|
191 |
-
print(
|
|
|
|
|
192 |
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import litellm
|
4 |
import requests
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from doctest import debug
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from smolagents import (
|
11 |
+
CodeAgent,
|
12 |
+
# HfApiModel,
|
13 |
+
LiteLLMModel,
|
14 |
+
# OpenAIServerModel,
|
15 |
+
Tool,
|
16 |
+
FinalAnswerTool,
|
17 |
+
)
|
18 |
+
|
19 |
+
from tools import (
|
20 |
+
DuckDuckGoSearchTool,
|
21 |
+
FileDownloaderTool,
|
22 |
+
HtmlTableExtractorTool,
|
23 |
+
ImagesAnalyzerTool,
|
24 |
+
LoadTextFileTool,
|
25 |
+
LoadXlsxFileTool,
|
26 |
+
RelevantInfoRetrieverTool,
|
27 |
+
ReverseStringTool,
|
28 |
+
# SpeechToTextTool,
|
29 |
+
VideoAnalyzerTool,
|
30 |
+
VisitWebpageTool,
|
31 |
+
WebpageTablesContextRetrieverTool,
|
32 |
+
# YoutubeTranscriptTool,
|
33 |
+
WikipediaSearchTool,
|
34 |
+
YoutubeVideoDownloaderTool,
|
35 |
+
)
|
36 |
+
|
37 |
+
load_dotenv()
|
38 |
+
|
39 |
+
|
40 |
+
HF_TOKEN = os.getenv("HF_U1ACAPP_TOKEN")
|
41 |
+
|
42 |
# (Keep Constants as is)
|
43 |
# --- Constants ---
|
44 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
45 |
|
46 |
+
|
47 |
+
LLM_API_BASE = os.getenv("LLM_API_BASE")
|
48 |
+
LLM_API_KEY = os.getenv("LLM_API_KEY")
|
49 |
+
LLM_MODEL_ID = os.getenv("LLM_MODEL_ID")
|
50 |
+
|
51 |
+
# Tools to use
|
52 |
+
reverse_string_tool = ReverseStringTool()
|
53 |
+
# speech_to_text_tool = SpeechToTextTool()
|
54 |
+
trascriber_tool = Tool.from_space(
|
55 |
+
space_id="hf-audio/whisper-large-v3-turbo",
|
56 |
+
name="transcriber",
|
57 |
+
description="Transcribe an audio file or youtube video either from path or from url",
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
wikipedia_search_tool = WikipediaSearchTool()
|
62 |
+
web_search_tool = DuckDuckGoSearchTool()
|
63 |
+
visit_webpage_tool = VisitWebpageTool()
|
64 |
+
relevant_info_tool = RelevantInfoRetrieverTool()
|
65 |
+
youtube_video_downloader_tool = YoutubeVideoDownloaderTool()
|
66 |
+
video_analyzer_tool = VideoAnalyzerTool()
|
67 |
+
images_analyzer_tool = ImagesAnalyzerTool()
|
68 |
+
file_downloader_tool = FileDownloaderTool()
|
69 |
+
load_xls_file_tool = LoadXlsxFileTool()
|
70 |
+
load_text_file_tool = LoadTextFileTool()
|
71 |
+
webpage_tables_context_retriever_tool = WebpageTablesContextRetrieverTool()
|
72 |
+
html_table_extractor_tool = HtmlTableExtractorTool()
|
73 |
+
|
74 |
+
trascriber_tool.device = "cpu"
|
75 |
+
|
76 |
+
final_answer_tool = FinalAnswerTool()
|
77 |
+
final_answer_tool.description = """Returns the final answer that adheres strictly to the following guidelines:
|
78 |
+
- Includes ONLY explicitly requested content in the exact format specified
|
79 |
+
- Never includes:
|
80 |
+
* Explanations, reasoning blocks, or step-by-step working
|
81 |
+
* Measurements, units, or abbreviations unless required by the task
|
82 |
+
* Any content not specified in the task
|
83 |
+
- Matches requested formats precisely (e.g., CSV lists as "a, b, c")
|
84 |
+
- Preserves all specified delimiters, brackets, or structures when requested
|
85 |
+
- No Markdown, code blocks, or rich formatting unless explicitly asked
|
86 |
+
- In comma separated lists makes sure that there is a space character after each comma
|
87 |
+
- Provides ONLY the final output with:
|
88 |
+
* No introductory text
|
89 |
+
* No closing remarks
|
90 |
+
* No supplemental information
|
91 |
+
"""
|
92 |
+
|
93 |
+
|
94 |
# --- Basic Agent Definition ---
|
95 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
96 |
class BasicAgent:
|
97 |
def __init__(self):
|
98 |
print("BasicAgent initialized.")
|
99 |
+
|
100 |
+
# model = OpenAIServerModel(
|
101 |
+
# model_id="qwen/qwen2.5-vl-7b",
|
102 |
+
# api_base="http://localhost:1234/v1",
|
103 |
+
# api_key="not-needed",
|
104 |
+
# max_tokens=8192,
|
105 |
+
# )
|
106 |
+
|
107 |
+
model = LiteLLMModel(
|
108 |
+
model_id=LLM_MODEL_ID,
|
109 |
+
api_base=LLM_API_BASE,
|
110 |
+
api_key=LLM_API_KEY,
|
111 |
+
num_ctx=8192,
|
112 |
+
# flatten_messages_as_text=False,
|
113 |
+
)
|
114 |
+
|
115 |
+
# model = HfApiModel(
|
116 |
+
# max_tokens=4096,
|
117 |
+
# temperature=0.5,
|
118 |
+
# provider="novita",
|
119 |
+
# model_id="Qwen/Qwen3-32B",
|
120 |
+
# custom_role_conversions=None,
|
121 |
+
# token=HF_TOKEN,
|
122 |
+
# )
|
123 |
+
|
124 |
+
self.agent = CodeAgent(
|
125 |
+
tools=[
|
126 |
+
file_downloader_tool,
|
127 |
+
reverse_string_tool,
|
128 |
+
wikipedia_search_tool,
|
129 |
+
# youtube_transcript_tool,
|
130 |
+
web_search_tool,
|
131 |
+
visit_webpage_tool,
|
132 |
+
youtube_video_downloader_tool,
|
133 |
+
trascriber_tool,
|
134 |
+
video_analyzer_tool,
|
135 |
+
images_analyzer_tool,
|
136 |
+
webpage_tables_context_retriever_tool,
|
137 |
+
html_table_extractor_tool,
|
138 |
+
load_xls_file_tool,
|
139 |
+
load_text_file_tool,
|
140 |
+
final_answer_tool,
|
141 |
+
# relevant_info_tool,
|
142 |
+
],
|
143 |
+
model=model,
|
144 |
+
# executor_type="e2b",
|
145 |
+
additional_authorized_imports=[
|
146 |
+
"bs4",
|
147 |
+
"datetime",
|
148 |
+
"json",
|
149 |
+
"numpy",
|
150 |
+
"pandas",
|
151 |
+
"requests",
|
152 |
+
"lxml",
|
153 |
+
# "youtube_dl",
|
154 |
+
],
|
155 |
+
add_base_tools=True, # Add any additional base tools
|
156 |
+
planning_interval=3, # Enable planning every 3 steps
|
157 |
+
# max_steps=12,
|
158 |
+
)
|
159 |
+
|
160 |
+
def __call__(
|
161 |
+
self, question: str, task_id: str = None, attached_file: bool = False
|
162 |
+
) -> str:
|
163 |
+
"""Calling the agent
|
164 |
+
:param question: the initial query
|
165 |
+
:type question: str
|
166 |
+
:param task_id: Required if attached_file is True; used to retrieve the file, defaults to None
|
167 |
+
:type task_id: str, optional
|
168 |
+
:param attached_file: If True, file content for task_id is appended to the question, defaults to False
|
169 |
+
:type attached_file: bool, optional
|
170 |
+
:raises ValueError: If attached_file is True but task_id is not provided.
|
171 |
+
:return: the agent's answer
|
172 |
+
:rtype: str
|
173 |
+
"""
|
174 |
+
|
175 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
176 |
+
if attached_file and not task_id:
|
177 |
+
raise ValueError("task_id must be provided when attached_file is True")
|
178 |
+
|
179 |
+
additional_args = None
|
180 |
+
|
181 |
+
if attached_file:
|
182 |
+
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
|
183 |
+
additional_args = {"file_url": file_url}
|
184 |
+
|
185 |
+
agent_answer = self.agent.run(question, additional_args=additional_args)
|
186 |
+
return agent_answer
|
187 |
+
|
188 |
|
189 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
190 |
"""
|
191 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
192 |
and displays the results.
|
193 |
"""
|
194 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
195 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
196 |
|
197 |
if profile:
|
198 |
+
username = f"{profile.username}"
|
199 |
print(f"User logged in: {username}")
|
200 |
else:
|
201 |
print("User not logged in.")
|
|
|
222 |
response.raise_for_status()
|
223 |
questions_data = response.json()
|
224 |
if not questions_data:
|
225 |
+
print("Fetched questions list is empty.")
|
226 |
+
return "Fetched questions list is empty or invalid format.", None
|
227 |
print(f"Fetched {len(questions_data)} questions.")
|
228 |
except requests.exceptions.RequestException as e:
|
229 |
print(f"Error fetching questions: {e}")
|
230 |
return f"Error fetching questions: {e}", None
|
231 |
except requests.exceptions.JSONDecodeError as e:
|
232 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
233 |
+
print(f"Response text: {response.text[:500]}")
|
234 |
+
return f"Error decoding server response for questions: {e}", None
|
235 |
except Exception as e:
|
236 |
print(f"An unexpected error occurred fetching questions: {e}")
|
237 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
243 |
for item in questions_data:
|
244 |
task_id = item.get("task_id")
|
245 |
question_text = item.get("question")
|
246 |
+
|
247 |
if not task_id or question_text is None:
|
248 |
print(f"Skipping item with missing task_id or question: {item}")
|
249 |
continue
|
250 |
try:
|
251 |
+
file_attached = item.get("file_name", "") != ""
|
252 |
+
submitted_answer = agent(question_text, task_id, file_attached)
|
253 |
+
answers_payload.append(
|
254 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
255 |
+
)
|
256 |
+
results_log.append(
|
257 |
+
{
|
258 |
+
"Task ID": task_id,
|
259 |
+
"Question": question_text,
|
260 |
+
"Submitted Answer": submitted_answer,
|
261 |
+
}
|
262 |
+
)
|
263 |
except Exception as e:
|
264 |
+
print(f"Error running agent on task {task_id}: {e}")
|
265 |
+
results_log.append(
|
266 |
+
{
|
267 |
+
"Task ID": task_id,
|
268 |
+
"Question": question_text,
|
269 |
+
"Submitted Answer": f"AGENT ERROR: {e}",
|
270 |
+
}
|
271 |
+
)
|
272 |
|
273 |
if not answers_payload:
|
274 |
print("Agent did not produce any answers to submit.")
|
275 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
276 |
|
277 |
+
# 4. Prepare Submission
|
278 |
+
submission_data = {
|
279 |
+
"username": username.strip(),
|
280 |
+
"agent_code": agent_code,
|
281 |
+
"answers": answers_payload,
|
282 |
+
}
|
283 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
284 |
print(status_update)
|
285 |
|
286 |
+
try:
|
287 |
+
import json
|
288 |
+
|
289 |
+
with open("answers.json", "w", encoding="utf-8") as ans_fp:
|
290 |
+
json.dump(answers_payload, ans_fp)
|
291 |
+
except Exception as e:
|
292 |
+
print(f"Could not save answers to a file: {e}.")
|
293 |
+
|
294 |
# 5. Submit
|
295 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
296 |
try:
|
|
|
357 |
|
358 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
359 |
|
360 |
+
status_output = gr.Textbox(
|
361 |
+
label="Run Status / Submission Result", lines=5, interactive=False
|
362 |
+
)
|
363 |
# Removed max_rows=10 from DataFrame constructor
|
364 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
365 |
|
366 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
367 |
|
368 |
if __name__ == "__main__":
|
369 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
370 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
371 |
space_host_startup = os.getenv("SPACE_HOST")
|
372 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
373 |
|
374 |
if space_host_startup:
|
375 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
377 |
else:
|
378 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
379 |
|
380 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
381 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
382 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
383 |
+
print(
|
384 |
+
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
385 |
+
)
|
386 |
else:
|
387 |
+
print(
|
388 |
+
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
389 |
+
)
|
390 |
|
391 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
392 |
|
393 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
394 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1,2 +1,18 @@
|
|
|
|
1 |
gradio
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bs4
|
2 |
gradio
|
3 |
+
gradio[oauth]
|
4 |
+
python-dotenv
|
5 |
+
requests
|
6 |
+
smolagents
|
7 |
+
smolagents[litellm, toolkit, transformers, e2b]
|
8 |
+
openpyxl
|
9 |
+
opencv-python
|
10 |
+
protobuf
|
11 |
+
sentencepiece
|
12 |
+
soundfile
|
13 |
+
torch
|
14 |
+
transformers
|
15 |
+
youtube-transcript-api
|
16 |
+
yt-dlp
|
17 |
+
langchain-community
|
18 |
+
wikipedia-api
|
tools.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
|
4 |
+
from typing import Dict, List, Optional
|
5 |
+
|
6 |
+
from bs4 import BeautifulSoup
|
7 |
+
import yt_dlp
|
8 |
+
import pandas as pd
|
9 |
+
import requests
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from langchain_community.document_loaders import YoutubeLoader
|
13 |
+
from langchain_community.retrievers import BM25Retriever
|
14 |
+
from langchain_community.tools import BearlyInterpreterTool
|
15 |
+
from langchain.docstore.document import Document
|
16 |
+
from smolagents import (
|
17 |
+
DuckDuckGoSearchTool,
|
18 |
+
SpeechToTextTool,
|
19 |
+
Tool,
|
20 |
+
VisitWebpageTool,
|
21 |
+
WikipediaSearchTool,
|
22 |
+
)
|
23 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
24 |
+
|
25 |
+
|
26 |
+
class RelevantInfoRetrieverTool(Tool):
|
27 |
+
name = "relevant_info_retriever"
|
28 |
+
description = "Retrieves relevant to the query information."
|
29 |
+
inputs = {
|
30 |
+
"query": {
|
31 |
+
"type": "string",
|
32 |
+
"description": "The query for which to retrieve information.",
|
33 |
+
},
|
34 |
+
"docs": {
|
35 |
+
"type": "string",
|
36 |
+
"description": "The source documents from which to choose in order to retrieve relevant information",
|
37 |
+
},
|
38 |
+
}
|
39 |
+
output_type = "string"
|
40 |
+
|
41 |
+
def forward(self, query: str, docs: List[Document]):
|
42 |
+
self.retriever = BM25Retriever.from_documents(docs)
|
43 |
+
results = self.retriever.get_relevant_documents(query)
|
44 |
+
if results:
|
45 |
+
return "\n\n".join([doc.page_content for doc in results])
|
46 |
+
else:
|
47 |
+
return "No relevant information found."
|
48 |
+
|
49 |
+
|
50 |
+
class YoutubeTranscriptTool(Tool):
|
51 |
+
name = "youtube_transcript"
|
52 |
+
description = "Fetches youtube video's transcript."
|
53 |
+
inputs = {
|
54 |
+
"youtube_url": {
|
55 |
+
"type": "string",
|
56 |
+
"description": "The youtube video url",
|
57 |
+
},
|
58 |
+
"source_langs": {
|
59 |
+
"type": "array",
|
60 |
+
"description": "A list of language codes in a descending priority for the video trascript.",
|
61 |
+
"items": {"type": "string"},
|
62 |
+
"default": ["en"],
|
63 |
+
"required": False,
|
64 |
+
"nullable": True,
|
65 |
+
},
|
66 |
+
"target_lang": {
|
67 |
+
"type": "string",
|
68 |
+
"description": "The language to which the transcript will be translated.",
|
69 |
+
"default": "en",
|
70 |
+
"required": False,
|
71 |
+
"nullable": True,
|
72 |
+
},
|
73 |
+
}
|
74 |
+
output_type = "string"
|
75 |
+
|
76 |
+
def forward(
|
77 |
+
self,
|
78 |
+
youtube_url: str,
|
79 |
+
source_langs: Optional[List[str]] = ["en"],
|
80 |
+
target_lang: Optional[str] = "en",
|
81 |
+
):
|
82 |
+
try:
|
83 |
+
loader = YoutubeLoader.from_youtube_url(
|
84 |
+
youtube_url,
|
85 |
+
add_video_info=True,
|
86 |
+
language=source_langs,
|
87 |
+
translation=target_lang,
|
88 |
+
# transcript_format=TranscriptFormat.CHUNKS,
|
89 |
+
# chunk_size_seconds=30,
|
90 |
+
)
|
91 |
+
transcript_docs = loader.load()
|
92 |
+
return transcript_docs
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
return f"Error fetching video's transcript: {e}"
|
96 |
+
|
97 |
+
|
98 |
+
class ReverseStringTool(Tool):
|
99 |
+
name = "reverse_string"
|
100 |
+
description = "Reverses the input string."
|
101 |
+
inputs = {
|
102 |
+
"string": {
|
103 |
+
"type": "string",
|
104 |
+
"description": "The string that needs to be reversed.",
|
105 |
+
}
|
106 |
+
}
|
107 |
+
output_type = "string"
|
108 |
+
|
109 |
+
def forward(self, string: str):
|
110 |
+
try:
|
111 |
+
return string[-1::-1]
|
112 |
+
except Exception as e:
|
113 |
+
return f"Error reversing string: {e}"
|
114 |
+
|
115 |
+
|
116 |
+
class SmolVLM2:
|
117 |
+
"""The parent class for visual analyzer tools (using SmolVLM2-500M-Video model)"""
|
118 |
+
|
119 |
+
def __init__(self):
|
120 |
+
"""Initializations for the analyzer tool"""
|
121 |
+
model_path = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct"
|
122 |
+
device = "cpu" # "cuda" if torch.cuda.is_available() else "cpu"
|
123 |
+
self.processor = AutoProcessor.from_pretrained(model_path)
|
124 |
+
self.model = AutoModelForImageTextToText.from_pretrained(
|
125 |
+
model_path,
|
126 |
+
torch_dtype=torch.bfloat16,
|
127 |
+
# _attn_implementation="flash_attention_2",
|
128 |
+
).to(device)
|
129 |
+
|
130 |
+
|
131 |
+
class ImagesAnalyzerTool(Tool, SmolVLM2):
|
132 |
+
name = "image_analyzer"
|
133 |
+
description = "Analyzes each input image according to the query"
|
134 |
+
inputs = {
|
135 |
+
"query": {
|
136 |
+
"type": "string",
|
137 |
+
"description": "The query according to which the image will be analyzed.",
|
138 |
+
},
|
139 |
+
"images_urls": {
|
140 |
+
"type": "array",
|
141 |
+
"description": "A list of strings containing the images' urls",
|
142 |
+
"items": {"type": "string"},
|
143 |
+
},
|
144 |
+
}
|
145 |
+
output_type = "string"
|
146 |
+
|
147 |
+
def __init__(self):
|
148 |
+
Tool.__init__(self)
|
149 |
+
SmolVLM2.__init__(self)
|
150 |
+
|
151 |
+
def forward(self, query: str, images_urls: List[str]):
|
152 |
+
|
153 |
+
try:
|
154 |
+
|
155 |
+
# Image message entities for the different images' urls
|
156 |
+
image_message_ents = [{"type": "image", "url": iu} for iu in images_urls]
|
157 |
+
|
158 |
+
messages = [
|
159 |
+
{
|
160 |
+
"role": "user",
|
161 |
+
"content": [
|
162 |
+
{
|
163 |
+
"type": "text",
|
164 |
+
"text": query,
|
165 |
+
},
|
166 |
+
]
|
167 |
+
+ image_message_ents,
|
168 |
+
},
|
169 |
+
]
|
170 |
+
|
171 |
+
inputs = self.processor.apply_chat_template(
|
172 |
+
messages,
|
173 |
+
add_generation_prompt=True,
|
174 |
+
tokenize=True,
|
175 |
+
return_dict=True,
|
176 |
+
return_tensors="pt",
|
177 |
+
).to(self.model.device, dtype=torch.bfloat16)
|
178 |
+
|
179 |
+
generated_ids = self.model.generate(
|
180 |
+
**inputs, do_sample=False, max_new_tokens=64
|
181 |
+
)
|
182 |
+
generated_texts = self.processor.batch_decode(
|
183 |
+
generated_ids,
|
184 |
+
skip_special_tokens=True,
|
185 |
+
)
|
186 |
+
return generated_texts[0]
|
187 |
+
except Exception as e:
|
188 |
+
return f"Error analyzing image(s): {e}"
|
189 |
+
|
190 |
+
|
191 |
+
class VideoAnalyzerTool(Tool, SmolVLM2):
|
192 |
+
name = "video_analyzer"
|
193 |
+
description = "Analyzes video at a specified path according to the query"
|
194 |
+
inputs = {
|
195 |
+
"query": {
|
196 |
+
"type": "string",
|
197 |
+
"description": "The query according to which the video will be analyzed.",
|
198 |
+
},
|
199 |
+
"video_path": {
|
200 |
+
"type": "string",
|
201 |
+
"description": "A string containing the video path",
|
202 |
+
},
|
203 |
+
}
|
204 |
+
output_type = "string"
|
205 |
+
|
206 |
+
def __init__(self):
|
207 |
+
Tool.__init__(self)
|
208 |
+
SmolVLM2.__init__(self)
|
209 |
+
|
210 |
+
def forward(self, query: str, video_path: str) -> str:
|
211 |
+
try:
|
212 |
+
messages = [
|
213 |
+
{
|
214 |
+
"role": "user",
|
215 |
+
"content": [
|
216 |
+
{"type": "video", "path": video_path},
|
217 |
+
{"type": "text", "text": query},
|
218 |
+
],
|
219 |
+
},
|
220 |
+
]
|
221 |
+
|
222 |
+
inputs = self.processor.apply_chat_template(
|
223 |
+
messages,
|
224 |
+
add_generation_prompt=True,
|
225 |
+
tokenize=True,
|
226 |
+
return_dict=True,
|
227 |
+
return_tensors="pt",
|
228 |
+
).to(self.model.device, dtype=torch.bfloat16)
|
229 |
+
|
230 |
+
generated_ids = self.model.generate(
|
231 |
+
**inputs, do_sample=False, max_new_tokens=64
|
232 |
+
)
|
233 |
+
generated_texts = self.processor.batch_decode(
|
234 |
+
generated_ids,
|
235 |
+
skip_special_tokens=True,
|
236 |
+
)
|
237 |
+
|
238 |
+
return generated_texts[0]
|
239 |
+
except Exception as e:
|
240 |
+
return f"Error analyzing video: {e}"
|
241 |
+
finally:
|
242 |
+
# Cleanup if needed
|
243 |
+
if video_path and os.path.exists(video_path):
|
244 |
+
os.remove(video_path)
|
245 |
+
|
246 |
+
|
247 |
+
class FileDownloaderTool(Tool):
|
248 |
+
name = "file_downloader"
|
249 |
+
description = "Downloads a file returning the name of the temporarily saved file"
|
250 |
+
inputs = {
|
251 |
+
"file_url": {
|
252 |
+
"type": "string",
|
253 |
+
"description": "The url from which the file shall be downloaded.",
|
254 |
+
},
|
255 |
+
}
|
256 |
+
output_type = "string"
|
257 |
+
|
258 |
+
def forward(self, file_url: str) -> str:
|
259 |
+
response = requests.get(file_url, stream=True)
|
260 |
+
response.raise_for_status()
|
261 |
+
original_filename = (
|
262 |
+
response.headers.get("content-disposition", "")
|
263 |
+
.split("=", -1)[-1]
|
264 |
+
.strip('"')
|
265 |
+
)
|
266 |
+
|
267 |
+
# Even if original_filename is empty or there is no extension, ext will be ""
|
268 |
+
ext = os.path.splitext(original_filename)[-1]
|
269 |
+
|
270 |
+
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp_file:
|
271 |
+
for chunk in response.iter_content(chunk_size=8192):
|
272 |
+
tmp_file.write(chunk)
|
273 |
+
return tmp_file.name
|
274 |
+
|
275 |
+
|
276 |
+
class YoutubeVideoDownloaderTool(Tool):
|
277 |
+
name = "youtube_video_downloader"
|
278 |
+
description = "Downloads the video from the specified url and returns the path where the video was saved"
|
279 |
+
inputs = {
|
280 |
+
"video_url": {
|
281 |
+
"type": "string",
|
282 |
+
"description": "A string containing the video url",
|
283 |
+
},
|
284 |
+
}
|
285 |
+
output_type = "string"
|
286 |
+
|
287 |
+
def forward(self, video_url: str) -> str:
|
288 |
+
try:
|
289 |
+
saved_video_path = ""
|
290 |
+
temp_dir = tempfile.gettempdir()
|
291 |
+
ydl_opts = {
|
292 |
+
"outtmpl": f"{temp_dir}/%(title)s.%(ext)s", # Absolute or relative path
|
293 |
+
"quiet": True,
|
294 |
+
}
|
295 |
+
|
296 |
+
# Download youtube video as a file in tmp directory
|
297 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
298 |
+
info = ydl.extract_info(video_url, download=True)
|
299 |
+
saved_video_path = ydl.prepare_filename(info)
|
300 |
+
return saved_video_path
|
301 |
+
except Exception as e:
|
302 |
+
return f"Error downloading video: {e}"
|
303 |
+
|
304 |
+
|
305 |
+
class LoadXlsxFileTool(Tool):
|
306 |
+
name = "load_xlsx_file"
|
307 |
+
description = "This tool loads xlsx file into pandas and returns it"
|
308 |
+
inputs = {"file_path": {"type": "string", "description": "File path"}}
|
309 |
+
output_type = "object"
|
310 |
+
|
311 |
+
def forward(self, file_path: str) -> object:
|
312 |
+
return pd.read_excel(file_path)
|
313 |
+
|
314 |
+
|
315 |
+
class LoadTextFileTool(Tool):
|
316 |
+
name = "load_text_file"
|
317 |
+
description = "This tool loads any text file"
|
318 |
+
inputs = {"file_path": {"type": "string", "description": "File path"}}
|
319 |
+
output_type = "string"
|
320 |
+
|
321 |
+
def forward(self, file_path: str) -> str:
|
322 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
323 |
+
return file.read()
|
324 |
+
|
325 |
+
|
326 |
+
class WebpageTablesContextRetrieverTool(Tool):
|
327 |
+
name = "webpage_tables_context_retriever"
|
328 |
+
description = """Retrieves structural context for all tables on a webpage.
|
329 |
+
Returns table indexes with captions, headers, and surrounding text to help identify relevant tables.
|
330 |
+
Use this first to determine which table index to extract."""
|
331 |
+
inputs = {
|
332 |
+
"url": {"type": "string", "description": "The URL of the webpage to analyze"}
|
333 |
+
}
|
334 |
+
output_type = "object"
|
335 |
+
|
336 |
+
def forward(self, url: str) -> Dict:
|
337 |
+
"""Retrieve context information for all tables on the page"""
|
338 |
+
try:
|
339 |
+
response = requests.get(url, timeout=15)
|
340 |
+
response.raise_for_status()
|
341 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
342 |
+
|
343 |
+
tables = soup.find_all("table")
|
344 |
+
if not tables:
|
345 |
+
return {
|
346 |
+
"status": "success",
|
347 |
+
"tables": [],
|
348 |
+
"message": "No tables found on page",
|
349 |
+
"url": url,
|
350 |
+
}
|
351 |
+
|
352 |
+
results = []
|
353 |
+
for i, table in enumerate(tables):
|
354 |
+
context = {
|
355 |
+
"index": i,
|
356 |
+
"id": table.get("id", ""),
|
357 |
+
"class": " ".join(table.get("class", [])),
|
358 |
+
"summary": table.get("summary", ""),
|
359 |
+
"caption": self._get_table_caption(table),
|
360 |
+
"preceding_header": self._get_preceding_header(table),
|
361 |
+
"surrounding_text": self._get_surrounding_text(table),
|
362 |
+
}
|
363 |
+
results.append(context)
|
364 |
+
|
365 |
+
return {
|
366 |
+
"status": "success",
|
367 |
+
"tables": results,
|
368 |
+
"url": url,
|
369 |
+
"message": f"Found {len(results)} tables with context information",
|
370 |
+
"suggestion": "Use html_table_extractor with the most relevant index",
|
371 |
+
}
|
372 |
+
|
373 |
+
except Exception as e:
|
374 |
+
return {
|
375 |
+
"status": "error",
|
376 |
+
"url": url,
|
377 |
+
"message": f"Failed to retrieve table contexts: {str(e)}",
|
378 |
+
}
|
379 |
+
|
380 |
+
def _get_table_caption(self, table) -> str:
|
381 |
+
"""Extract table caption text if available"""
|
382 |
+
caption = table.find("caption")
|
383 |
+
return caption.get_text(strip=True) if caption else ""
|
384 |
+
|
385 |
+
def _get_preceding_header(self, table) -> str:
|
386 |
+
"""Find the nearest preceding heading"""
|
387 |
+
for tag in table.find_all_previous(["h1", "h2", "h3", "h4", "h5", "h6"]):
|
388 |
+
return tag.get_text(strip=True)
|
389 |
+
return ""
|
390 |
+
|
391 |
+
def _get_surrounding_text(self, table, chars=150) -> str:
|
392 |
+
"""Get relevant text around the table"""
|
393 |
+
prev_text = " ".join(
|
394 |
+
t.strip()
|
395 |
+
for t in table.find_all_previous(string=True, limit=3)
|
396 |
+
if t.strip()
|
397 |
+
)
|
398 |
+
next_text = " ".join(
|
399 |
+
t.strip() for t in table.find_all_next(string=True, limit=3) if t.strip()
|
400 |
+
)
|
401 |
+
return f"...{prev_text[-chars:]} [TABLE] {next_text[:chars]}..."
|
402 |
+
|
403 |
+
|
404 |
+
class HtmlTableExtractorTool(Tool):
|
405 |
+
name = "html_table_extractor"
|
406 |
+
description = """Extracts a specific HTML table as structured data.
|
407 |
+
Use after webpage_tables_context_retriever to get the correct table index."""
|
408 |
+
inputs = {
|
409 |
+
"page_url": {
|
410 |
+
"type": "string",
|
411 |
+
"description": "The webpage URL containing the table",
|
412 |
+
},
|
413 |
+
"table_index": {
|
414 |
+
"type": "integer",
|
415 |
+
"description": "0-based index of the table to extract (from webpage_tables_context_retriever)",
|
416 |
+
},
|
417 |
+
}
|
418 |
+
output_type = "object"
|
419 |
+
|
420 |
+
def forward(self, page_url: str, table_index: int) -> Dict:
|
421 |
+
"""Extract a specific table by index"""
|
422 |
+
try:
|
423 |
+
# First verify the URL is accessible
|
424 |
+
test_request = requests.head(page_url, timeout=5)
|
425 |
+
test_request.raise_for_status()
|
426 |
+
|
427 |
+
# Read all tables
|
428 |
+
tables = pd.read_html(page_url)
|
429 |
+
|
430 |
+
if not tables:
|
431 |
+
return {
|
432 |
+
"status": "error",
|
433 |
+
"message": "No tables found at URL",
|
434 |
+
"url": page_url,
|
435 |
+
}
|
436 |
+
|
437 |
+
# Validate index
|
438 |
+
if table_index < 0 or table_index >= len(tables):
|
439 |
+
return {
|
440 |
+
"status": "error",
|
441 |
+
"message": f"Invalid table index {table_index}. Page has {len(tables)} tables.",
|
442 |
+
"url": page_url,
|
443 |
+
"available_indexes": list(range(len(tables))),
|
444 |
+
}
|
445 |
+
|
446 |
+
# Convert DataFrame to JSON-serializable format
|
447 |
+
df = tables[table_index]
|
448 |
+
return {
|
449 |
+
"status": "success",
|
450 |
+
"table_index": table_index,
|
451 |
+
"table_data": df,
|
452 |
+
"url": page_url,
|
453 |
+
}
|
454 |
+
|
455 |
+
except Exception as e:
|
456 |
+
return {
|
457 |
+
"status": "error",
|
458 |
+
"message": f"Table extraction failed: {str(e)}",
|
459 |
+
"url": page_url,
|
460 |
+
"table_index": table_index,
|
461 |
+
}
|