import logging import numpy as np import torch from lerobot.common.policies.act.modeling_act import ACTPolicy from lerobot.common.utils.utils import init_logging from torchvision import transforms from .base_inference import BaseInferenceEngine logger = logging.getLogger(__name__) class ACTInferenceEngine(BaseInferenceEngine): """ ACT (Action Chunking Transformer) inference engine. Handles image preprocessing, joint normalization, and action prediction for ACT models with proper action chunking. """ def __init__( self, policy_path: str, camera_names: list[str], device: str | None = None, ): super().__init__(policy_path, camera_names, device) # ACT-specific configuration self.chunk_size = 10 # Default chunk size for ACT self.action_history = [] # Store recent actions for chunking async def load_policy(self): """Load the ACT policy from the specified path.""" logger.info(f"Loading ACT policy from: {self.policy_path}") # Initialize hydra config for LeRobot init_logging() # Load the ACT policy self.policy = ACTPolicy.from_pretrained(self.policy_path) self.policy.to(self.device) self.policy.eval() # Set up image transforms based on policy config if hasattr(self.policy, "config"): self._setup_image_transforms() self.is_loaded = True logger.info(f"ACT policy loaded successfully on {self.device}") def _setup_image_transforms(self): """Set up image transforms based on the policy configuration.""" # Get image size from policy config config = self.policy.config image_size = getattr(config, "image_size", 224) # Create transforms for each camera for camera_name in self.camera_names: # Use policy-specific transforms if available if hasattr(self.policy, "image_processor"): # Use the policy's image processor self.image_transforms[camera_name] = self.policy.image_processor else: # Fall back to default transform with correct size self.image_transforms[camera_name] = transforms.Compose([ transforms.Resize((image_size, image_size)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) async def predict( self, images: dict[str, np.ndarray], joint_positions: np.ndarray, **kwargs ) -> np.ndarray: """ Run ACT inference to predict actions. Args: images: Dictionary of {camera_name: rgb_image_array} joint_positions: Current joint positions in LeRobot standard order **kwargs: Additional arguments (unused for ACT) Returns: Array of predicted actions (chunk of actions for ACT) """ if not self.is_loaded: msg = "Policy not loaded. Call load_policy() first." raise RuntimeError(msg) # Preprocess inputs processed_images = self.preprocess_images(images) processed_joints = self.preprocess_joint_positions(joint_positions) # Prepare batch inputs for ACT batch = self._prepare_batch(processed_images, processed_joints) # Run inference with torch.no_grad(): # ACT returns a chunk of actions action_chunk = self.policy.predict(batch) # Convert to numpy if isinstance(action_chunk, torch.Tensor): action_chunk = action_chunk.cpu().numpy() # Store in action history self.action_history.append(action_chunk) if len(self.action_history) > 10: # Keep last 10 chunks self.action_history.pop(0) return action_chunk def _prepare_batch( self, images: dict[str, torch.Tensor], joints: torch.Tensor ) -> dict: """ Prepare batch inputs for ACT model. Args: images: Preprocessed images joints: Preprocessed joint positions Returns: Batch dictionary for ACT model """ batch = {} # Add images to batch for camera_name, image_tensor in images.items(): # Add batch dimension if needed if len(image_tensor.shape) == 3: image_tensor = image_tensor.unsqueeze(0) batch[f"observation.images.{camera_name}"] = image_tensor # Add joint positions if len(joints.shape) == 1: joints = joints.unsqueeze(0) batch["observation.state"] = joints return batch def reset(self): """Reset ACT-specific state.""" super().reset() self.action_history = [] # Reset ACT model state if it has one if self.policy and hasattr(self.policy, "reset"): self.policy.reset()