Spaces:
Sleeping
Sleeping
import logging | |
import cv2 | |
import numpy as np | |
import torch | |
from lerobot.common.policies.act.modeling_act import ACTPolicy | |
from lerobot.common.utils.utils import init_logging | |
from .base_inference import BaseInferenceEngine | |
logger = logging.getLogger(__name__) | |
class ACTInferenceEngine(BaseInferenceEngine): | |
""" | |
ACT (Action Chunking Transformer) inference engine. | |
Handles image preprocessing, joint normalization, and action prediction | |
for ACT models with proper action chunking. | |
""" | |
def __init__( | |
self, | |
policy_path: str, | |
camera_names: list[str], | |
use_custom_joint_names: bool = True, | |
device: str | None = None, | |
): | |
super().__init__(policy_path, camera_names, use_custom_joint_names, device) | |
# ACT-specific configuration | |
self.chunk_size = 10 # Default chunk size for ACT | |
self.action_history = [] # Store recent actions for chunking | |
async def load_policy(self): | |
"""Load the ACT policy from the specified path.""" | |
logger.info(f"Loading ACT policy from: {self.policy_path}") | |
try: | |
# Initialize hydra config for LeRobot | |
init_logging() | |
# Load the ACT policy | |
self.policy = ACTPolicy.from_pretrained(self.policy_path) | |
self.policy.to(self.device) | |
self.policy.eval() | |
# Set up image transforms based on policy config | |
if hasattr(self.policy, "config"): | |
self._setup_image_transforms() | |
self.is_loaded = True | |
logger.info(f"✅ ACT policy loaded successfully on {self.device}") | |
except Exception as e: | |
logger.exception(f"Failed to load ACT policy from {self.policy_path}") | |
msg = f"Failed to load ACT policy: {e}" | |
raise RuntimeError(msg) from e | |
def _setup_image_transforms(self): | |
"""Set up image transforms based on the policy configuration.""" | |
try: | |
# Get image size from policy config | |
config = self.policy.config | |
image_size = getattr(config, "image_size", 224) | |
# Create transforms for each camera | |
for camera_name in self.camera_names: | |
# Use policy-specific transforms if available | |
if hasattr(self.policy, "image_processor"): | |
# Use the policy's image processor | |
self.image_transforms[camera_name] = self.policy.image_processor | |
else: | |
# Fall back to default transform with correct size | |
from torchvision import transforms | |
self.image_transforms[camera_name] = transforms.Compose([ | |
transforms.Resize((image_size, image_size)), | |
transforms.ToTensor(), | |
transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
), | |
]) | |
except Exception as e: | |
logger.warning(f"Could not set up image transforms: {e}. Using defaults.") | |
async def predict( | |
self, images: dict[str, np.ndarray], joint_positions: np.ndarray, **kwargs | |
) -> np.ndarray: | |
""" | |
Run ACT inference to predict actions. | |
Args: | |
images: Dictionary of {camera_name: rgb_image_array} | |
joint_positions: Current joint positions in LeRobot standard order | |
**kwargs: Additional arguments (unused for ACT) | |
Returns: | |
Array of predicted actions (chunk of actions for ACT) | |
""" | |
if not self.is_loaded: | |
msg = "Policy not loaded. Call load_policy() first." | |
raise RuntimeError(msg) | |
try: | |
# Preprocess inputs | |
processed_images = self.preprocess_images(images) | |
processed_joints = self.preprocess_joint_positions(joint_positions) | |
# Prepare batch inputs for ACT | |
batch = self._prepare_batch(processed_images, processed_joints) | |
# Run inference | |
with torch.no_grad(): | |
# ACT returns a chunk of actions | |
action_chunk = self.policy.predict(batch) | |
# Convert to numpy | |
if isinstance(action_chunk, torch.Tensor): | |
action_chunk = action_chunk.cpu().numpy() | |
# Store in action history | |
self.action_history.append(action_chunk) | |
if len(self.action_history) > 10: # Keep last 10 chunks | |
self.action_history.pop(0) | |
logger.debug(f"ACT predicted action chunk shape: {action_chunk.shape}") | |
return action_chunk | |
except Exception as e: | |
logger.exception("ACT inference failed") | |
msg = f"ACT inference failed: {e}" | |
raise RuntimeError(msg) from e | |
def _prepare_batch( | |
self, images: dict[str, torch.Tensor], joints: torch.Tensor | |
) -> dict: | |
""" | |
Prepare batch inputs for ACT model. | |
Args: | |
images: Preprocessed images | |
joints: Preprocessed joint positions | |
Returns: | |
Batch dictionary for ACT model | |
""" | |
batch = {} | |
# Add images to batch | |
for camera_name, image_tensor in images.items(): | |
# Add batch dimension if needed | |
if len(image_tensor.shape) == 3: | |
image_tensor = image_tensor.unsqueeze(0) | |
batch[f"observation.images.{camera_name}"] = image_tensor | |
# Add joint positions | |
if len(joints.shape) == 1: | |
joints = joints.unsqueeze(0) | |
batch["observation.state"] = joints | |
return batch | |
def reset(self): | |
"""Reset ACT-specific state.""" | |
super().reset() | |
self.action_history = [] | |
# Reset ACT model state if it has one | |
if self.policy and hasattr(self.policy, "reset"): | |
self.policy.reset() | |
def get_model_info(self) -> dict: | |
"""Get ACT-specific model information.""" | |
info = super().get_model_info() | |
info.update({ | |
"policy_type": "act", | |
"chunk_size": self.chunk_size, | |
"action_history_length": len(self.action_history), | |
}) | |
return info | |
# Utility functions for data transformation | |
def image_bgr_to_rgb(image: np.ndarray) -> np.ndarray: | |
"""Convert BGR image to RGB (useful for OpenCV cameras).""" | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
def resize_image(image: np.ndarray, target_size: tuple[int, int]) -> np.ndarray: | |
"""Resize image to target size (width, height).""" | |
return cv2.resize(image, target_size) | |