File size: 6,005 Bytes
63ed3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import logging

import numpy as np
import torch
from lerobot.common.policies.pi0.modeling_pi0 import PI0Policy
from lerobot.common.utils.utils import init_logging

from .base_inference import BaseInferenceEngine

logger = logging.getLogger(__name__)


class Pi0InferenceEngine(BaseInferenceEngine):
    """
    Pi0 (Physical Intelligence) inference engine.

    Handles image preprocessing, joint normalization, and action prediction
    for Pi0 models with language instruction support.
    """

    def __init__(
        self,
        policy_path: str,
        camera_names: list[str],
        use_custom_joint_names: bool = True,
        device: str | None = None,
        language_instruction: str | None = None,
    ):
        super().__init__(policy_path, camera_names, use_custom_joint_names, device)

        # Pi0-specific configuration
        self.language_instruction = language_instruction
        self.supports_language = True

    async def load_policy(self):
        """Load the Pi0 policy from the specified path."""
        logger.info(f"Loading Pi0 policy from: {self.policy_path}")

        try:
            # Initialize hydra config for LeRobot
            init_logging()

            # Load the Pi0 policy
            self.policy = PI0Policy.from_pretrained(self.policy_path)
            self.policy.to(self.device)
            self.policy.eval()

            # Set up image transforms based on policy config
            if hasattr(self.policy, "config"):
                self._setup_image_transforms()

            self.is_loaded = True
            logger.info(f"✅ Pi0 policy loaded successfully on {self.device}")

        except Exception as e:
            logger.exception(f"Failed to load Pi0 policy from {self.policy_path}")
            msg = f"Failed to load Pi0 policy: {e}"
            raise RuntimeError(msg) from e

    def _setup_image_transforms(self):
        """Set up image transforms based on the policy configuration."""
        try:
            # Get image size from policy config
            config = self.policy.config
            image_size = getattr(config, "image_size", 224)

            # Create transforms for each camera
            for camera_name in self.camera_names:
                # Use policy-specific transforms if available
                if hasattr(self.policy, "image_processor"):
                    self.image_transforms[camera_name] = self.policy.image_processor
                else:
                    # Fall back to default transform
                    from torchvision import transforms

                    self.image_transforms[camera_name] = transforms.Compose([
                        transforms.Resize((image_size, image_size)),
                        transforms.ToTensor(),
                        transforms.Normalize(
                            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                        ),
                    ])

        except Exception as e:
            logger.warning(f"Could not set up image transforms: {e}. Using defaults.")

    async def predict(
        self, images: dict[str, np.ndarray], joint_positions: np.ndarray, **kwargs
    ) -> np.ndarray:
        """
        Run Pi0 inference to predict actions.

        Args:
            images: Dictionary of {camera_name: rgb_image_array}
            joint_positions: Current joint positions in LeRobot standard order
            task: Optional language instruction (overrides instance language_instruction)

        Returns:
            Array of predicted actions

        """
        if not self.is_loaded:
            msg = "Policy not loaded. Call load_policy() first."
            raise RuntimeError(msg)

        try:
            # Preprocess inputs
            processed_images = self.preprocess_images(images)
            processed_joints = self.preprocess_joint_positions(joint_positions)

            # Get language instruction
            task = kwargs.get("task", self.language_instruction)

            # Prepare batch inputs for Pi0
            batch = self._prepare_batch(processed_images, processed_joints, task)

            # Run inference
            with torch.no_grad():
                action = self.policy.predict(batch)

                # Convert to numpy
                if isinstance(action, torch.Tensor):
                    action = action.cpu().numpy()

                logger.debug(f"Pi0 predicted action shape: {action.shape}")
                return action

        except Exception as e:
            logger.exception("Pi0 inference failed")
            msg = f"Pi0 inference failed: {e}"
            raise RuntimeError(msg) from e

    def _prepare_batch(
        self,
        images: dict[str, torch.Tensor],
        joints: torch.Tensor,
        task: str | None = None,
    ) -> dict:
        """
        Prepare batch inputs for Pi0 model.

        Args:
            images: Preprocessed images
            joints: Preprocessed joint positions
            task: Language instruction

        Returns:
            Batch dictionary for Pi0 model

        """
        batch = {}

        # Add images to batch
        for camera_name, image_tensor in images.items():
            # Add batch dimension if needed
            if len(image_tensor.shape) == 3:
                image_tensor = image_tensor.unsqueeze(0)
            batch[f"observation.images.{camera_name}"] = image_tensor

        # Add joint positions
        if len(joints.shape) == 1:
            joints = joints.unsqueeze(0)
        batch["observation.state"] = joints

        # Add language instruction if provided
        if task:
            batch["task"] = task

        return batch

    def get_model_info(self) -> dict:
        """Get Pi0-specific model information."""
        info = super().get_model_info()
        info.update({
            "policy_type": "pi0",
            "supports_language": self.supports_language,
            "language_instruction": self.language_instruction,
        })
        return info