Spaces:
Sleeping
Sleeping
File size: 11,357 Bytes
63ed3a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import logging
import os
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from inference_server.models import list_supported_policies
from inference_server.session_manager import SessionManager
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
# Global session manager
session_manager = SessionManager()
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Handle app startup and shutdown."""
logger.info("🚀 Inference Server starting up...")
yield
logger.info("🔄 Inference Server shutting down...")
await session_manager.cleanup_all_sessions()
logger.info("✅ Inference Server shutdown complete")
# FastAPI app
app = FastAPI(
title="Inference Server",
description="Multi-Policy Model Inference Server for Real-time Robot Control",
version="1.0.0",
lifespan=lifespan,
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify actual origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Request/Response models
class CreateSessionRequest(BaseModel):
session_id: str
policy_path: str
camera_names: list[str] = ["front"] # Support multiple cameras
arena_server_url: str = "http://localhost:8000"
workspace_id: str | None = None # Optional workspace ID
policy_type: str = "act" # Policy type: act, pi0, pi0fast, smolvla, diffusion
language_instruction: str | None = None # For vision-language policies
class CreateSessionResponse(BaseModel):
workspace_id: str
camera_room_ids: dict[str, str] # {camera_name: room_id}
joint_input_room_id: str
joint_output_room_id: str
class SessionStatusResponse(BaseModel):
session_id: str
status: str
policy_path: str
policy_type: str
camera_names: list[str] # Multiple camera names
workspace_id: str
rooms: dict
stats: dict
inference_stats: dict | None = None
error_message: str | None = None
# Health check
@app.get("/", tags=["Health"])
async def root():
"""Health check endpoint."""
return {"message": "Inference Server is running", "status": "healthy"}
@app.get("/health", tags=["Health"])
async def health_check():
"""Detailed health check."""
return {
"status": "healthy",
"active_sessions": len(session_manager.sessions),
"session_ids": list(session_manager.sessions.keys()),
}
@app.get("/policies", tags=["Policies"])
async def list_policies():
"""List supported policy types."""
return {
"supported_policies": list_supported_policies(),
"description": "Available policy types for inference",
}
# Session management endpoints
@app.post("/sessions", response_model=CreateSessionResponse, tags=["Sessions"])
async def create_session(request: CreateSessionRequest):
"""
Create a new inference session.
If workspace_id is provided, all rooms will be created in that workspace.
If workspace_id is not provided, a new workspace will be generated automatically.
All rooms for a session (cameras + joints) are always created in the same workspace.
"""
try:
room_ids = await session_manager.create_session(
session_id=request.session_id,
policy_path=request.policy_path,
camera_names=request.camera_names,
arena_server_url=request.arena_server_url,
workspace_id=request.workspace_id,
policy_type=request.policy_type,
language_instruction=request.language_instruction,
)
return CreateSessionResponse(**room_ids)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
logger.exception(f"Failed to create session {request.session_id}")
raise HTTPException(status_code=500, detail=f"Failed to create session: {e!s}")
@app.get("/sessions", response_model=list[SessionStatusResponse], tags=["Sessions"])
async def list_sessions():
"""List all sessions."""
sessions = await session_manager.list_sessions()
return [SessionStatusResponse(**session) for session in sessions]
@app.get(
"/sessions/{session_id}", response_model=SessionStatusResponse, tags=["Sessions"]
)
async def get_session_status(session_id: str):
"""Get status of a specific session."""
try:
status = await session_manager.get_session_status(session_id)
return SessionStatusResponse(**status)
except KeyError:
raise HTTPException(status_code=404, detail=f"Session {session_id} not found")
@app.post("/sessions/{session_id}/start", tags=["Control"])
async def start_inference(session_id: str):
"""Start inference for a session."""
try:
await session_manager.start_inference(session_id)
return {"message": f"Inference started for session {session_id}"}
except KeyError:
raise HTTPException(status_code=404, detail=f"Session {session_id} not found")
except Exception as e:
logger.exception(f"Failed to start inference for session {session_id}")
raise HTTPException(status_code=500, detail=f"Failed to start inference: {e!s}")
@app.post("/sessions/{session_id}/stop", tags=["Control"])
async def stop_inference(session_id: str):
"""Stop inference for a session."""
try:
await session_manager.stop_inference(session_id)
return {"message": f"Inference stopped for session {session_id}"}
except KeyError:
raise HTTPException(status_code=404, detail=f"Session {session_id} not found")
@app.post("/sessions/{session_id}/restart", tags=["Control"])
async def restart_inference(session_id: str):
"""Restart inference for a session."""
try:
await session_manager.restart_inference(session_id)
return {"message": f"Inference restarted for session {session_id}"}
except KeyError:
raise HTTPException(status_code=404, detail=f"Session {session_id} not found")
except Exception as e:
logger.exception(f"Failed to restart inference for session {session_id}")
raise HTTPException(
status_code=500, detail=f"Failed to restart inference: {e!s}"
)
@app.delete("/sessions/{session_id}", tags=["Sessions"])
async def delete_session(session_id: str):
"""Delete a session."""
try:
await session_manager.delete_session(session_id)
return {"message": f"Session {session_id} deleted"}
except KeyError:
raise HTTPException(status_code=404, detail=f"Session {session_id} not found")
# Debug endpoints for enhanced monitoring
@app.get("/debug/system", tags=["Debug"])
async def get_system_info():
"""Get system information for debugging."""
import psutil
import torch
try:
# System info
system_info = {
"cpu_percent": psutil.cpu_percent(interval=1),
"memory": {
"total": psutil.virtual_memory().total,
"available": psutil.virtual_memory().available,
"percent": psutil.virtual_memory().percent,
},
"disk": {
"total": psutil.disk_usage("/").total,
"used": psutil.disk_usage("/").used,
"percent": psutil.disk_usage("/").percent,
},
}
# GPU info if available
if torch.cuda.is_available():
system_info["gpu"] = {
"device_count": torch.cuda.device_count(),
"current_device": torch.cuda.current_device(),
"device_name": torch.cuda.get_device_name(),
"memory_allocated": torch.cuda.memory_allocated(),
"memory_cached": torch.cuda.memory_reserved(),
}
return system_info
except Exception as e:
return {"error": f"Failed to get system info: {e}"}
@app.get("/debug/logs", tags=["Debug"])
async def get_recent_logs():
"""Get recent log entries for debugging."""
try:
# This is a simple implementation - in production you might want to read from actual log files
return {
"message": "Log endpoint available",
"note": "Implement actual log reading if needed",
"active_sessions": len(session_manager.sessions),
}
except Exception as e:
return {"error": f"Failed to get logs: {e}"}
@app.post("/debug/sessions/{session_id}/reset", tags=["Debug"])
async def debug_reset_session(session_id: str):
"""Reset a session's internal state for debugging."""
try:
if session_id not in session_manager.sessions:
raise HTTPException(
status_code=404, detail=f"Session {session_id} not found"
)
session = session_manager.sessions[session_id]
# Reset inference engine if available
if session.inference_engine:
session.inference_engine.reset()
# Clear action queue
session.action_queue.clear()
# Reset flags
for camera_name in session.camera_names:
session.images_updated[camera_name] = False
session.joints_updated = False
return {"message": f"Session {session_id} state reset successfully"}
except Exception as e:
logger.exception(f"Failed to reset session {session_id}")
raise HTTPException(status_code=500, detail=f"Failed to reset session: {e}")
@app.get("/debug/sessions/{session_id}/queue", tags=["Debug"])
async def get_session_queue_info(session_id: str):
"""Get detailed information about a session's action queue."""
try:
if session_id not in session_manager.sessions:
raise HTTPException(
status_code=404, detail=f"Session {session_id} not found"
)
session = session_manager.sessions[session_id]
return {
"session_id": session_id,
"queue_length": len(session.action_queue),
"queue_maxlen": session.action_queue.maxlen,
"n_action_steps": session.n_action_steps,
"control_frequency_hz": session.control_frequency_hz,
"inference_frequency_hz": session.inference_frequency_hz,
"last_queue_cleanup": session.last_queue_cleanup,
"data_status": {
"has_joint_data": session.latest_joint_positions is not None,
"images_status": {
camera: camera in session.latest_images
for camera in session.camera_names
},
"images_updated": session.images_updated.copy(),
"joints_updated": session.joints_updated,
},
}
except Exception as e:
logger.exception(f"Failed to get queue info for session {session_id}")
raise HTTPException(status_code=500, detail=f"Failed to get queue info: {e}")
# Main entry point
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 8001))
uvicorn.run(
"inference_server.main:app",
host="0.0.0.0",
port=port,
reload=False,
log_level="info",
)
|