WebCrawler / src /agent /deep_research /deep_research_agent.py
Carlos Gonzalez
Add application file
b1f90a5
import asyncio
import json
import logging
import os
import threading
import uuid
from pathlib import Path
from typing import Any, Dict, List, Optional, TypedDict
from browser_use.browser.browser import BrowserConfig
from langchain_community.tools.file_management import (
ListDirectoryTool,
ReadFileTool,
WriteFileTool,
)
# Langchain imports
from langchain_core.messages import (
AIMessage,
BaseMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import StructuredTool, Tool
# Langgraph imports
from langgraph.graph import StateGraph
from pydantic import BaseModel, Field
from browser_use.browser.context import BrowserContextConfig
from src.agent.browser_use.browser_use_agent import BrowserUseAgent
from src.browser.custom_browser import CustomBrowser
from src.controller.custom_controller import CustomController
from src.utils.mcp_client import setup_mcp_client_and_tools
logger = logging.getLogger(__name__)
# Constants
REPORT_FILENAME = "report.md"
PLAN_FILENAME = "research_plan.md"
SEARCH_INFO_FILENAME = "search_info.json"
_AGENT_STOP_FLAGS = {}
_BROWSER_AGENT_INSTANCES = {}
async def run_single_browser_task(
task_query: str,
task_id: str,
llm: Any, # Pass the main LLM
browser_config: Dict[str, Any],
stop_event: threading.Event,
use_vision: bool = False,
) -> Dict[str, Any]:
"""
Runs a single BrowserUseAgent task.
Manages browser creation and closing for this specific task.
"""
if not BrowserUseAgent:
return {
"query": task_query,
"error": "BrowserUseAgent components not available.",
}
# --- Browser Setup ---
# These should ideally come from the main agent's config
headless = browser_config.get("headless", False)
window_w = browser_config.get("window_width", 1280)
window_h = browser_config.get("window_height", 1100)
browser_user_data_dir = browser_config.get("user_data_dir", None)
use_own_browser = browser_config.get("use_own_browser", False)
browser_binary_path = browser_config.get("browser_binary_path", None)
wss_url = browser_config.get("wss_url", None)
cdp_url = browser_config.get("cdp_url", None)
disable_security = browser_config.get("disable_security", False)
bu_browser = None
bu_browser_context = None
try:
logger.info(f"Starting browser task for query: {task_query}")
extra_args = []
if use_own_browser:
browser_binary_path = os.getenv("BROWSER_PATH", None) or browser_binary_path
if browser_binary_path == "":
browser_binary_path = None
browser_user_data = browser_user_data_dir or os.getenv("BROWSER_USER_DATA", None)
if browser_user_data:
extra_args += [f"--user-data-dir={browser_user_data}"]
else:
browser_binary_path = None
bu_browser = CustomBrowser(
config=BrowserConfig(
headless=headless,
browser_binary_path=browser_binary_path,
extra_browser_args=extra_args,
wss_url=wss_url,
cdp_url=cdp_url,
new_context_config=BrowserContextConfig(
window_width=window_w,
window_height=window_h,
)
)
)
context_config = BrowserContextConfig(
save_downloads_path="./tmp/downloads",
window_height=window_h,
window_width=window_w,
force_new_context=True,
)
bu_browser_context = await bu_browser.new_context(config=context_config)
# Simple controller example, replace with your actual implementation if needed
bu_controller = CustomController()
# Construct the task prompt for BrowserUseAgent
# Instruct it to find specific info and return title/URL
bu_task_prompt = f"""
Research Task: {task_query}
Objective: Find relevant information answering the query.
Output Requirements: For each relevant piece of information found, please provide:
1. A concise summary of the information.
2. The title of the source page or document.
3. The URL of the source.
Focus on accuracy and relevance. Avoid irrelevant details.
PDF cannot directly extract _content, please try to download first, then using read_file, if you can't save or read, please try other methods.
"""
bu_agent_instance = BrowserUseAgent(
task=bu_task_prompt,
llm=llm, # Use the passed LLM
browser=bu_browser,
browser_context=bu_browser_context,
controller=bu_controller,
use_vision=use_vision,
source="webui",
)
# Store instance for potential stop() call
task_key = f"{task_id}_{uuid.uuid4()}"
_BROWSER_AGENT_INSTANCES[task_key] = bu_agent_instance
# --- Run with Stop Check ---
# BrowserUseAgent needs to internally check a stop signal or have a stop method.
# We simulate checking before starting and assume `run` might be interruptible
# or have its own stop mechanism we can trigger via bu_agent_instance.stop().
if stop_event.is_set():
logger.info(f"Browser task for '{task_query}' cancelled before start.")
return {"query": task_query, "result": None, "status": "cancelled"}
# The run needs to be awaitable and ideally accept a stop signal or have a .stop() method
# result = await bu_agent_instance.run(max_steps=max_steps) # Add max_steps if applicable
# Let's assume a simplified run for now
logger.info(f"Running BrowserUseAgent for: {task_query}")
result = await bu_agent_instance.run() # Assuming run is the main method
logger.info(f"BrowserUseAgent finished for: {task_query}")
final_data = result.final_result()
if stop_event.is_set():
logger.info(f"Browser task for '{task_query}' stopped during execution.")
return {"query": task_query, "result": final_data, "status": "stopped"}
else:
logger.info(f"Browser result for '{task_query}': {final_data}")
return {"query": task_query, "result": final_data, "status": "completed"}
except Exception as e:
logger.error(
f"Error during browser task for query '{task_query}': {e}", exc_info=True
)
return {"query": task_query, "error": str(e), "status": "failed"}
finally:
if bu_browser_context:
try:
await bu_browser_context.close()
bu_browser_context = None
logger.info("Closed browser context.")
except Exception as e:
logger.error(f"Error closing browser context: {e}")
if bu_browser:
try:
await bu_browser.close()
bu_browser = None
logger.info("Closed browser.")
except Exception as e:
logger.error(f"Error closing browser: {e}")
if task_key in _BROWSER_AGENT_INSTANCES:
del _BROWSER_AGENT_INSTANCES[task_key]
class BrowserSearchInput(BaseModel):
queries: List[str] = Field(
description="List of distinct search queries to find information relevant to the research task."
)
async def _run_browser_search_tool(
queries: List[str],
task_id: str, # Injected dependency
llm: Any, # Injected dependency
browser_config: Dict[str, Any],
stop_event: threading.Event,
max_parallel_browsers: int = 1,
) -> List[Dict[str, Any]]:
"""
Internal function to execute parallel browser searches based on LLM-provided queries.
Handles concurrency and stop signals.
"""
# Limit queries just in case LLM ignores the description
queries = queries[:max_parallel_browsers]
logger.info(
f"[Browser Tool {task_id}] Running search for {len(queries)} queries: {queries}"
)
results = []
semaphore = asyncio.Semaphore(max_parallel_browsers)
async def task_wrapper(query):
async with semaphore:
if stop_event.is_set():
logger.info(
f"[Browser Tool {task_id}] Skipping task due to stop signal: {query}"
)
return {"query": query, "result": None, "status": "cancelled"}
# Pass necessary injected configs and the stop event
return await run_single_browser_task(
query,
task_id,
llm, # Pass the main LLM (or a dedicated one if needed)
browser_config,
stop_event,
# use_vision could be added here if needed
)
tasks = [task_wrapper(query) for query in queries]
search_results = await asyncio.gather(*tasks, return_exceptions=True)
processed_results = []
for i, res in enumerate(search_results):
query = queries[i] # Get corresponding query
if isinstance(res, Exception):
logger.error(
f"[Browser Tool {task_id}] Gather caught exception for query '{query}': {res}",
exc_info=True,
)
processed_results.append(
{"query": query, "error": str(res), "status": "failed"}
)
elif isinstance(res, dict):
processed_results.append(res)
else:
logger.error(
f"[Browser Tool {task_id}] Unexpected result type for query '{query}': {type(res)}"
)
processed_results.append(
{"query": query, "error": "Unexpected result type", "status": "failed"}
)
logger.info(
f"[Browser Tool {task_id}] Finished search. Results count: {len(processed_results)}"
)
return processed_results
def create_browser_search_tool(
llm: Any,
browser_config: Dict[str, Any],
task_id: str,
stop_event: threading.Event,
max_parallel_browsers: int = 1,
) -> StructuredTool:
"""Factory function to create the browser search tool with necessary dependencies."""
# Use partial to bind the dependencies that aren't part of the LLM call arguments
from functools import partial
bound_tool_func = partial(
_run_browser_search_tool,
task_id=task_id,
llm=llm,
browser_config=browser_config,
stop_event=stop_event,
max_parallel_browsers=max_parallel_browsers,
)
return StructuredTool.from_function(
coroutine=bound_tool_func,
name="parallel_browser_search",
description=f"""Use this tool to actively search the web for information related to a specific research task or question.
It runs up to {max_parallel_browsers} searches in parallel using a browser agent for better results than simple scraping.
Provide a list of distinct search queries(up to {max_parallel_browsers}) that are likely to yield relevant information.""",
args_schema=BrowserSearchInput,
)
# --- Langgraph State Definition ---
class ResearchTaskItem(TypedDict):
# step: int # Maybe step within category, or just implicit by order
task_description: str
status: str # "pending", "completed", "failed"
queries: Optional[List[str]]
result_summary: Optional[str]
class ResearchCategoryItem(TypedDict):
category_name: str
tasks: List[ResearchTaskItem]
# Optional: category_status: str # Could be "pending", "in_progress", "completed"
class DeepResearchState(TypedDict):
task_id: str
topic: str
research_plan: List[ResearchCategoryItem] # CHANGED
search_results: List[Dict[str, Any]]
llm: Any
tools: List[Tool]
output_dir: Path
browser_config: Dict[str, Any]
final_report: Optional[str]
current_category_index: int
current_task_index_in_category: int
stop_requested: bool
error_message: Optional[str]
messages: List[BaseMessage]
# --- Langgraph Nodes ---
def _load_previous_state(task_id: str, output_dir: str) -> Dict[str, Any]:
state_updates = {}
plan_file = os.path.join(output_dir, PLAN_FILENAME)
search_file = os.path.join(output_dir, SEARCH_INFO_FILENAME)
loaded_plan: List[ResearchCategoryItem] = []
next_cat_idx, next_task_idx = 0, 0
found_pending = False
if os.path.exists(plan_file):
try:
with open(plan_file, "r", encoding="utf-8") as f:
current_category: Optional[ResearchCategoryItem] = None
lines = f.readlines()
cat_counter = 0
task_counter_in_cat = 0
for line_num, line_content in enumerate(lines):
line = line_content.strip()
if line.startswith("## "): # Category
if current_category: # Save previous category
loaded_plan.append(current_category)
if not found_pending: # If previous category was all done, advance cat counter
cat_counter += 1
task_counter_in_cat = 0
category_name = line[line.find(" "):].strip() # Get text after "## X. "
current_category = ResearchCategoryItem(category_name=category_name, tasks=[])
elif (line.startswith("- [ ]") or line.startswith("- [x]") or line.startswith(
"- [-]")) and current_category: # Task
status = "pending"
if line.startswith("- [x]"):
status = "completed"
elif line.startswith("- [-]"):
status = "failed"
task_desc = line[5:].strip()
current_category["tasks"].append(
ResearchTaskItem(task_description=task_desc, status=status, queries=None,
result_summary=None)
)
if status == "pending" and not found_pending:
next_cat_idx = cat_counter
next_task_idx = task_counter_in_cat
found_pending = True
if not found_pending: # only increment if previous tasks were completed/failed
task_counter_in_cat += 1
if current_category: # Append last category
loaded_plan.append(current_category)
if loaded_plan:
state_updates["research_plan"] = loaded_plan
if not found_pending and loaded_plan: # All tasks were completed or failed
next_cat_idx = len(loaded_plan) # Points beyond the last category
next_task_idx = 0
state_updates["current_category_index"] = next_cat_idx
state_updates["current_task_index_in_category"] = next_task_idx
logger.info(
f"Loaded hierarchical research plan from {plan_file}. "
f"Next task: Category {next_cat_idx}, Task {next_task_idx} in category."
)
else:
logger.warning(f"Plan file {plan_file} was empty or malformed.")
except Exception as e:
logger.error(f"Failed to load or parse research plan {plan_file}: {e}", exc_info=True)
state_updates["error_message"] = f"Failed to load research plan: {e}"
else:
logger.info(f"Plan file {plan_file} not found. Will start fresh.")
if os.path.exists(search_file):
try:
with open(search_file, "r", encoding="utf-8") as f:
state_updates["search_results"] = json.load(f)
logger.info(f"Loaded search results from {search_file}")
except Exception as e:
logger.error(f"Failed to load search results {search_file}: {e}")
state_updates["error_message"] = (
state_updates.get("error_message", "") + f" Failed to load search results: {e}").strip()
return state_updates
def _save_plan_to_md(plan: List[ResearchCategoryItem], output_dir: str):
plan_file = os.path.join(output_dir, PLAN_FILENAME)
try:
with open(plan_file, "w", encoding="utf-8") as f:
f.write(f"# Research Plan\n\n")
for cat_idx, category in enumerate(plan):
f.write(f"## {cat_idx + 1}. {category['category_name']}\n\n")
for task_idx, task in enumerate(category['tasks']):
marker = "- [x]" if task["status"] == "completed" else "- [ ]" if task[
"status"] == "pending" else "- [-]" # [-] for failed
f.write(f" {marker} {task['task_description']}\n")
f.write("\n")
logger.info(f"Hierarchical research plan saved to {plan_file}")
except Exception as e:
logger.error(f"Failed to save research plan to {plan_file}: {e}")
def _save_search_results_to_json(results: List[Dict[str, Any]], output_dir: str):
"""Appends or overwrites search results to a JSON file."""
search_file = os.path.join(output_dir, SEARCH_INFO_FILENAME)
try:
# Simple overwrite for now, could be append
with open(search_file, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
logger.info(f"Search results saved to {search_file}")
except Exception as e:
logger.error(f"Failed to save search results to {search_file}: {e}")
def _save_report_to_md(report: str, output_dir: Path):
"""Saves the final report to a markdown file."""
report_file = os.path.join(output_dir, REPORT_FILENAME)
try:
with open(report_file, "w", encoding="utf-8") as f:
f.write(report)
logger.info(f"Final report saved to {report_file}")
except Exception as e:
logger.error(f"Failed to save final report to {report_file}: {e}")
async def planning_node(state: DeepResearchState) -> Dict[str, Any]:
logger.info("--- Entering Planning Node ---")
if state.get("stop_requested"):
logger.info("Stop requested, skipping planning.")
return {"stop_requested": True}
llm = state["llm"]
topic = state["topic"]
existing_plan = state.get("research_plan")
output_dir = state["output_dir"]
if existing_plan and (
state.get("current_category_index", 0) > 0 or state.get("current_task_index_in_category", 0) > 0):
logger.info("Resuming with existing plan.")
_save_plan_to_md(existing_plan, output_dir) # Ensure it's saved initially
# current_category_index and current_task_index_in_category should be set by _load_previous_state
return {"research_plan": existing_plan}
logger.info(f"Generating new research plan for topic: {topic}")
prompt_text = f"""You are a meticulous research assistant. Your goal is to create a hierarchical research plan to thoroughly investigate the topic: "{topic}".
The plan should be structured into several main research categories. Each category should contain a list of specific, actionable research tasks or questions.
Format the output as a JSON list of objects. Each object represents a research category and should have:
1. "category_name": A string for the name of the research category.
2. "tasks": A list of strings, where each string is a specific research task for that category.
Example JSON Output:
[
{{
"category_name": "Understanding Core Concepts and Definitions",
"tasks": [
"Define the primary terminology associated with '{topic}'.",
"Identify the fundamental principles and theories underpinning '{topic}'."
]
}},
{{
"category_name": "Historical Development and Key Milestones",
"tasks": [
"Trace the historical evolution of '{topic}'.",
"Identify key figures, events, or breakthroughs in the development of '{topic}'."
]
}},
{{
"category_name": "Current State-of-the-Art and Applications",
"tasks": [
"Analyze the current advancements and prominent applications of '{topic}'.",
"Investigate ongoing research and active areas of development related to '{topic}'."
]
}},
{{
"category_name": "Challenges, Limitations, and Future Outlook",
"tasks": [
"Identify the major challenges and limitations currently facing '{topic}'.",
"Explore potential future trends, ethical considerations, and societal impacts of '{topic}'."
]
}}
]
Generate a plan with 3-10 categories, and 2-6 tasks per category for the topic: "{topic}" according to the complexity of the topic.
Ensure the output is a valid JSON array.
"""
messages = [
SystemMessage(content="You are a research planning assistant outputting JSON."),
HumanMessage(content=prompt_text)
]
try:
response = await llm.ainvoke(messages)
raw_content = response.content
# The LLM might wrap the JSON in backticks
if raw_content.strip().startswith("```json"):
raw_content = raw_content.strip()[7:-3].strip()
elif raw_content.strip().startswith("```"):
raw_content = raw_content.strip()[3:-3].strip()
logger.debug(f"LLM response for plan: {raw_content}")
parsed_plan_from_llm = json.loads(raw_content)
new_plan: List[ResearchCategoryItem] = []
for cat_idx, category_data in enumerate(parsed_plan_from_llm):
if not isinstance(category_data,
dict) or "category_name" not in category_data or "tasks" not in category_data:
logger.warning(f"Skipping invalid category data: {category_data}")
continue
tasks: List[ResearchTaskItem] = []
for task_idx, task_desc in enumerate(category_data["tasks"]):
if isinstance(task_desc, str):
tasks.append(
ResearchTaskItem(
task_description=task_desc,
status="pending",
queries=None,
result_summary=None,
)
)
else: # Sometimes LLM puts tasks as {"task": "description"}
if isinstance(task_desc, dict) and "task_description" in task_desc:
tasks.append(
ResearchTaskItem(
task_description=task_desc["task_description"],
status="pending",
queries=None,
result_summary=None,
)
)
elif isinstance(task_desc, dict) and "task" in task_desc: # common LLM mistake
tasks.append(
ResearchTaskItem(
task_description=task_desc["task"],
status="pending",
queries=None,
result_summary=None,
)
)
else:
logger.warning(
f"Skipping invalid task data: {task_desc} in category {category_data['category_name']}")
new_plan.append(
ResearchCategoryItem(
category_name=category_data["category_name"],
tasks=tasks,
)
)
if not new_plan:
logger.error("LLM failed to generate a valid plan structure from JSON.")
return {"error_message": "Failed to generate research plan structure."}
logger.info(f"Generated research plan with {len(new_plan)} categories.")
_save_plan_to_md(new_plan, output_dir) # Save the hierarchical plan
return {
"research_plan": new_plan,
"current_category_index": 0,
"current_task_index_in_category": 0,
"search_results": [],
}
except json.JSONDecodeError as e:
logger.error(f"Failed to parse JSON from LLM for plan: {e}. Response was: {raw_content}", exc_info=True)
return {"error_message": f"LLM generated invalid JSON for research plan: {e}"}
except Exception as e:
logger.error(f"Error during planning: {e}", exc_info=True)
return {"error_message": f"LLM Error during planning: {e}"}
async def research_execution_node(state: DeepResearchState) -> Dict[str, Any]:
logger.info("--- Entering Research Execution Node ---")
if state.get("stop_requested"):
logger.info("Stop requested, skipping research execution.")
return {
"stop_requested": True,
"current_category_index": state["current_category_index"],
"current_task_index_in_category": state["current_task_index_in_category"],
}
plan = state["research_plan"]
cat_idx = state["current_category_index"]
task_idx = state["current_task_index_in_category"]
llm = state["llm"]
tools = state["tools"]
output_dir = str(state["output_dir"])
task_id = state["task_id"] # For _AGENT_STOP_FLAGS
# This check should ideally be handled by `should_continue`
if not plan or cat_idx >= len(plan):
logger.info("Research plan complete or categories exhausted.")
return {} # should route to synthesis
current_category = plan[cat_idx]
if task_idx >= len(current_category["tasks"]):
logger.info(f"All tasks in category '{current_category['category_name']}' completed. Moving to next category.")
# This logic is now effectively handled by should_continue and the index updates below
# The next iteration will be caught by should_continue or this node with updated indices
return {
"current_category_index": cat_idx + 1,
"current_task_index_in_category": 0,
"messages": state["messages"] # Pass messages along
}
current_task = current_category["tasks"][task_idx]
if current_task["status"] == "completed":
logger.info(
f"Task '{current_task['task_description']}' in category '{current_category['category_name']}' already completed. Skipping.")
# Logic to find next task
next_task_idx = task_idx + 1
next_cat_idx = cat_idx
if next_task_idx >= len(current_category["tasks"]):
next_cat_idx += 1
next_task_idx = 0
return {
"current_category_index": next_cat_idx,
"current_task_index_in_category": next_task_idx,
"messages": state["messages"] # Pass messages along
}
logger.info(
f"Executing research task: '{current_task['task_description']}' (Category: '{current_category['category_name']}')"
)
llm_with_tools = llm.bind_tools(tools)
# Construct messages for LLM invocation
task_prompt_content = (
f"Current Research Category: {current_category['category_name']}\n"
f"Specific Task: {current_task['task_description']}\n\n"
"Please use the available tools, especially 'parallel_browser_search', to gather information for this specific task. "
"Provide focused search queries relevant ONLY to this task. "
"If you believe you have sufficient information from previous steps for this specific task, you can indicate that you are ready to summarize or that no further search is needed."
)
current_task_message_history = [
HumanMessage(content=task_prompt_content)
]
if not state["messages"]: # First actual execution message
invocation_messages = [
SystemMessage(
content="You are a research assistant executing one task of a research plan. Focus on the current task only."),
] + current_task_message_history
else:
invocation_messages = state["messages"] + current_task_message_history
try:
logger.info(f"Invoking LLM with tools for task: {current_task['task_description']}")
ai_response: BaseMessage = await llm_with_tools.ainvoke(invocation_messages)
logger.info("LLM invocation complete.")
tool_results = []
executed_tool_names = []
current_search_results = state.get("search_results", []) # Get existing search results
if not isinstance(ai_response, AIMessage) or not ai_response.tool_calls:
logger.warning(
f"LLM did not call any tool for task '{current_task['task_description']}'. Response: {ai_response.content[:100]}..."
)
current_task["status"] = "pending" # Or "completed_no_tool" if LLM explains it's done
current_task["result_summary"] = f"LLM did not use a tool. Response: {ai_response.content}"
current_task["current_category_index"] = cat_idx
current_task["current_task_index_in_category"] = task_idx
return current_task
# We still save the plan and advance.
else:
# Process tool calls
for tool_call in ai_response.tool_calls:
tool_name = tool_call.get("name")
tool_args = tool_call.get("args", {})
tool_call_id = tool_call.get("id")
logger.info(f"LLM requested tool call: {tool_name} with args: {tool_args}")
executed_tool_names.append(tool_name)
selected_tool = next((t for t in tools if t.name == tool_name), None)
if not selected_tool:
logger.error(f"LLM called tool '{tool_name}' which is not available.")
tool_results.append(
ToolMessage(content=f"Error: Tool '{tool_name}' not found.", tool_call_id=tool_call_id))
continue
try:
stop_event = _AGENT_STOP_FLAGS.get(task_id)
if stop_event and stop_event.is_set():
logger.info(f"Stop requested before executing tool: {tool_name}")
current_task["status"] = "pending" # Or a new "stopped" status
_save_plan_to_md(plan, output_dir)
return {"stop_requested": True, "research_plan": plan, "current_category_index": cat_idx,
"current_task_index_in_category": task_idx}
logger.info(f"Executing tool: {tool_name}")
tool_output = await selected_tool.ainvoke(tool_args)
logger.info(f"Tool '{tool_name}' executed successfully.")
if tool_name == "parallel_browser_search":
current_search_results.extend(tool_output) # tool_output is List[Dict]
else: # For other tools, we might need specific handling or just log
logger.info(f"Result from tool '{tool_name}': {str(tool_output)[:200]}...")
# Storing non-browser results might need a different structure or key in search_results
current_search_results.append(
{"tool_name": tool_name, "args": tool_args, "output": str(tool_output),
"status": "completed"})
tool_results.append(ToolMessage(content=json.dumps(tool_output), tool_call_id=tool_call_id))
except Exception as e:
logger.error(f"Error executing tool '{tool_name}': {e}", exc_info=True)
tool_results.append(
ToolMessage(content=f"Error executing tool {tool_name}: {e}", tool_call_id=tool_call_id))
current_search_results.append(
{"tool_name": tool_name, "args": tool_args, "status": "failed", "error": str(e)})
# After processing all tool calls for this task
step_failed_tool_execution = any("Error:" in str(tr.content) for tr in tool_results)
# Consider a task successful if a browser search was attempted and didn't immediately error out during call
# The browser search itself returns status for each query.
browser_tool_attempted_successfully = "parallel_browser_search" in executed_tool_names and not step_failed_tool_execution
if step_failed_tool_execution:
current_task["status"] = "failed"
current_task[
"result_summary"] = f"Tool execution failed. Errors: {[tr.content for tr in tool_results if 'Error' in str(tr.content)]}"
elif executed_tool_names: # If any tool was called
current_task["status"] = "completed"
current_task["result_summary"] = f"Executed tool(s): {', '.join(executed_tool_names)}."
# TODO: Could ask LLM to summarize the tool_results for this task if needed, rather than just listing tools.
else: # No tool calls but AI response had .tool_calls structure (empty)
current_task["status"] = "failed" # Or a more specific status
current_task["result_summary"] = "LLM prepared for tool call but provided no tools."
# Save progress
_save_plan_to_md(plan, output_dir)
_save_search_results_to_json(current_search_results, output_dir)
# Determine next indices
next_task_idx = task_idx + 1
next_cat_idx = cat_idx
if next_task_idx >= len(current_category["tasks"]):
next_cat_idx += 1
next_task_idx = 0
updated_messages = state["messages"] + current_task_message_history + [ai_response] + tool_results
return {
"research_plan": plan,
"search_results": current_search_results,
"current_category_index": next_cat_idx,
"current_task_index_in_category": next_task_idx,
"messages": updated_messages,
}
except Exception as e:
logger.error(f"Unhandled error during research execution for task '{current_task['task_description']}': {e}",
exc_info=True)
current_task["status"] = "failed"
_save_plan_to_md(plan, output_dir)
# Determine next indices even on error to attempt to move on
next_task_idx = task_idx + 1
next_cat_idx = cat_idx
if next_task_idx >= len(current_category["tasks"]):
next_cat_idx += 1
next_task_idx = 0
return {
"research_plan": plan,
"current_category_index": next_cat_idx,
"current_task_index_in_category": next_task_idx,
"error_message": f"Core Execution Error on task '{current_task['task_description']}': {e}",
"messages": state["messages"] + current_task_message_history # Preserve messages up to error
}
async def synthesis_node(state: DeepResearchState) -> Dict[str, Any]:
"""Synthesizes the final report from the collected search results."""
logger.info("--- Entering Synthesis Node ---")
if state.get("stop_requested"):
logger.info("Stop requested, skipping synthesis.")
return {"stop_requested": True}
llm = state["llm"]
topic = state["topic"]
search_results = state.get("search_results", [])
output_dir = state["output_dir"]
plan = state["research_plan"] # Include plan for context
if not search_results:
logger.warning("No search results found to synthesize report.")
report = f"# Research Report: {topic}\n\nNo information was gathered during the research process."
_save_report_to_md(report, output_dir)
return {"final_report": report}
logger.info(
f"Synthesizing report from {len(search_results)} collected search result entries."
)
# Prepare context for the LLM
# Format search results nicely, maybe group by query or original plan step
formatted_results = ""
references = {}
ref_count = 1
for i, result_entry in enumerate(search_results):
query = result_entry.get("query", "Unknown Query") # From parallel_browser_search
tool_name = result_entry.get("tool_name") # From other tools
status = result_entry.get("status", "unknown")
result_data = result_entry.get("result") # From BrowserUseAgent's final_result
tool_output_str = result_entry.get("output") # From other tools
if tool_name == "parallel_browser_search" and status == "completed" and result_data:
# result_data is the summary from BrowserUseAgent
formatted_results += f'### Finding from Web Search Query: "{query}"\n'
formatted_results += f"- **Summary:**\n{result_data}\n" # result_data is already a summary string here
# If result_data contained title/URL, you'd format them here.
# The current BrowserUseAgent returns a string summary directly as 'final_data' in run_single_browser_task
formatted_results += "---\n"
elif tool_name != "parallel_browser_search" and status == "completed" and tool_output_str:
formatted_results += f'### Finding from Tool: "{tool_name}" (Args: {result_entry.get("args")})\n'
formatted_results += f"- **Output:**\n{tool_output_str}\n"
formatted_results += "---\n"
elif status == "failed":
error = result_entry.get("error")
q_or_t = f"Query: \"{query}\"" if query != "Unknown Query" else f"Tool: \"{tool_name}\""
formatted_results += f'### Failed {q_or_t}\n'
formatted_results += f"- **Error:** {error}\n"
formatted_results += "---\n"
# Prepare the research plan context
plan_summary = "\nResearch Plan Followed:\n"
for cat_idx, category in enumerate(plan):
plan_summary += f"\n#### Category {cat_idx + 1}: {category['category_name']}\n"
for task_idx, task in enumerate(category['tasks']):
marker = "[x]" if task["status"] == "completed" else "[ ]" if task["status"] == "pending" else "[-]"
plan_summary += f" - {marker} {task['task_description']}\n"
synthesis_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""You are a professional researcher tasked with writing a comprehensive and well-structured report based on collected findings.
The report should address the research topic thoroughly, synthesizing the information gathered from various sources.
Structure the report logically:
1. Briefly introduce the topic and the report's scope (mentioning the research plan followed, including categories and tasks, is good).
2. Discuss the key findings, organizing them thematically, possibly aligning with the research categories. Analyze, compare, and contrast information.
3. Summarize the main points and offer concluding thoughts.
Ensure the tone is objective and professional.
If findings are contradictory or incomplete, acknowledge this.
""", # Removed citation part for simplicity for now, as browser agent returns summaries.
),
(
"human",
f"""
**Research Topic:** {topic}
{plan_summary}
**Collected Findings:**
```
{formatted_results}
```
Please generate the final research report in Markdown format based **only** on the information above.
""",
),
]
)
try:
response = await llm.ainvoke(
synthesis_prompt.format_prompt(
topic=topic,
plan_summary=plan_summary,
formatted_results=formatted_results,
).to_messages()
)
final_report_md = response.content
# Append the reference list automatically to the end of the generated markdown
if references:
report_references_section = "\n\n## References\n\n"
# Sort refs by ID for consistent output
sorted_refs = sorted(references.values(), key=lambda x: x["id"])
for ref in sorted_refs:
report_references_section += (
f"[{ref['id']}] {ref['title']} - {ref['url']}\n"
)
final_report_md += report_references_section
logger.info("Successfully synthesized the final report.")
_save_report_to_md(final_report_md, output_dir)
return {"final_report": final_report_md}
except Exception as e:
logger.error(f"Error during report synthesis: {e}", exc_info=True)
return {"error_message": f"LLM Error during synthesis: {e}"}
# --- Langgraph Edges and Conditional Logic ---
def should_continue(state: DeepResearchState) -> str:
logger.info("--- Evaluating Condition: Should Continue? ---")
if state.get("stop_requested"):
logger.info("Stop requested, routing to END.")
return "end_run"
if state.get("error_message") and "Core Execution Error" in state["error_message"]: # Critical error in node
logger.warning(f"Critical error detected: {state['error_message']}. Routing to END.")
return "end_run"
plan = state.get("research_plan")
cat_idx = state.get("current_category_index", 0)
task_idx = state.get("current_task_index_in_category", 0) # This is the *next* task to check
if not plan:
logger.warning("No research plan found. Routing to END.")
return "end_run"
# Check if the current indices point to a valid pending task
if cat_idx < len(plan):
current_category = plan[cat_idx]
if task_idx < len(current_category["tasks"]):
# We are trying to execute the task at plan[cat_idx]["tasks"][task_idx]
# The research_execution_node will handle if it's already completed.
logger.info(
f"Plan has potential pending tasks (next up: Category {cat_idx}, Task {task_idx}). Routing to Research Execution."
)
return "execute_research"
else: # task_idx is out of bounds for current category, means we need to check next category
if cat_idx + 1 < len(plan): # If there is a next category
logger.info(
f"Finished tasks in category {cat_idx}. Moving to category {cat_idx + 1}. Routing to Research Execution."
)
# research_execution_node will update state to {current_category_index: cat_idx + 1, current_task_index_in_category: 0}
# Or rather, the previous execution node already set these indices to the start of the next category.
return "execute_research"
# If we've gone through all categories and tasks (cat_idx >= len(plan))
logger.info("All plan categories and tasks processed or current indices are out of bounds. Routing to Synthesis.")
return "synthesize_report"
# --- DeepSearchAgent Class ---
class DeepResearchAgent:
def __init__(
self,
llm: Any,
browser_config: Dict[str, Any],
mcp_server_config: Optional[Dict[str, Any]] = None,
):
"""
Initializes the DeepSearchAgent.
Args:
llm: The Langchain compatible language model instance.
browser_config: Configuration dictionary for the BrowserUseAgent tool.
Example: {"headless": True, "window_width": 1280, ...}
mcp_server_config: Optional configuration for the MCP client.
"""
self.llm = llm
self.browser_config = browser_config
self.mcp_server_config = mcp_server_config
self.mcp_client = None
self.stopped = False
self.graph = self._compile_graph()
self.current_task_id: Optional[str] = None
self.stop_event: Optional[threading.Event] = None
self.runner: Optional[asyncio.Task] = None # To hold the asyncio task for run
async def _setup_tools(
self, task_id: str, stop_event: threading.Event, max_parallel_browsers: int = 1
) -> List[Tool]:
"""Sets up the basic tools (File I/O) and optional MCP tools."""
tools = [
WriteFileTool(),
ReadFileTool(),
ListDirectoryTool(),
] # Basic file operations
browser_use_tool = create_browser_search_tool(
llm=self.llm,
browser_config=self.browser_config,
task_id=task_id,
stop_event=stop_event,
max_parallel_browsers=max_parallel_browsers,
)
tools += [browser_use_tool]
# Add MCP tools if config is provided
if self.mcp_server_config:
try:
logger.info("Setting up MCP client and tools...")
if not self.mcp_client:
self.mcp_client = await setup_mcp_client_and_tools(
self.mcp_server_config
)
mcp_tools = self.mcp_client.get_tools()
logger.info(f"Loaded {len(mcp_tools)} MCP tools.")
tools.extend(mcp_tools)
except Exception as e:
logger.error(f"Failed to set up MCP tools: {e}", exc_info=True)
elif self.mcp_server_config:
logger.warning(
"MCP server config provided, but setup function unavailable."
)
tools_map = {tool.name: tool for tool in tools}
return tools_map.values()
async def close_mcp_client(self):
if self.mcp_client:
await self.mcp_client.__aexit__(None, None, None)
self.mcp_client = None
def _compile_graph(self) -> StateGraph:
"""Compiles the Langgraph state machine."""
workflow = StateGraph(DeepResearchState)
# Add nodes
workflow.add_node("plan_research", planning_node)
workflow.add_node("execute_research", research_execution_node)
workflow.add_node("synthesize_report", synthesis_node)
workflow.add_node(
"end_run", lambda state: logger.info("--- Reached End Run Node ---") or {}
) # Simple end node
# Define edges
workflow.set_entry_point("plan_research")
workflow.add_edge(
"plan_research", "execute_research"
) # Always execute after planning
# Conditional edge after execution
workflow.add_conditional_edges(
"execute_research",
should_continue,
{
"execute_research": "execute_research", # Loop back if more steps
"synthesize_report": "synthesize_report", # Move to synthesis if done
"end_run": "end_run", # End if stop requested or error
},
)
workflow.add_edge("synthesize_report", "end_run") # End after synthesis
app = workflow.compile()
return app
async def run(
self,
topic: str,
task_id: Optional[str] = None,
save_dir: str = "./tmp/deep_research",
max_parallel_browsers: int = 1,
) -> Dict[str, Any]:
"""
Starts the deep research process (Async Generator Version).
Args:
topic: The research topic.
task_id: Optional existing task ID to resume. If None, a new ID is generated.
Yields:
Intermediate state updates or messages during execution.
"""
if self.runner and not self.runner.done():
logger.warning(
"Agent is already running. Please stop the current task first."
)
# Return an error status instead of yielding
return {
"status": "error",
"message": "Agent already running.",
"task_id": self.current_task_id,
}
self.current_task_id = task_id if task_id else str(uuid.uuid4())
output_dir = os.path.join(save_dir, self.current_task_id)
os.makedirs(output_dir, exist_ok=True)
logger.info(
f"[AsyncGen] Starting research task ID: {self.current_task_id} for topic: '{topic}'"
)
logger.info(f"[AsyncGen] Output directory: {output_dir}")
self.stop_event = threading.Event()
_AGENT_STOP_FLAGS[self.current_task_id] = self.stop_event
agent_tools = await self._setup_tools(
self.current_task_id, self.stop_event, max_parallel_browsers
)
initial_state: DeepResearchState = {
"task_id": self.current_task_id,
"topic": topic,
"research_plan": [],
"search_results": [],
"messages": [],
"llm": self.llm,
"tools": agent_tools,
"output_dir": Path(output_dir),
"browser_config": self.browser_config,
"final_report": None,
"current_category_index": 0,
"current_task_index_in_category": 0,
"stop_requested": False,
"error_message": None,
}
if task_id:
logger.info(f"Attempting to resume task {task_id}...")
loaded_state = _load_previous_state(task_id, output_dir)
initial_state.update(loaded_state)
if loaded_state.get("research_plan"):
logger.info(
f"Resuming with {len(loaded_state['research_plan'])} plan categories "
f"and {len(loaded_state.get('search_results', []))} existing results. "
f"Next task: Cat {initial_state['current_category_index']}, Task {initial_state['current_task_index_in_category']}"
)
initial_state["topic"] = (
topic # Allow overriding topic even when resuming? Or use stored topic? Let's use new one.
)
else:
logger.warning(
f"Resume requested for {task_id}, but no previous plan found. Starting fresh."
)
# --- Execute Graph using ainvoke ---
final_state = None
status = "unknown"
message = None
try:
logger.info(f"Invoking graph execution for task {self.current_task_id}...")
self.runner = asyncio.create_task(self.graph.ainvoke(initial_state))
final_state = await self.runner
logger.info(f"Graph execution finished for task {self.current_task_id}.")
# Determine status based on final state
if self.stop_event and self.stop_event.is_set():
status = "stopped"
message = "Research process was stopped by request."
logger.info(message)
elif final_state and final_state.get("error_message"):
status = "error"
message = final_state["error_message"]
logger.error(f"Graph execution completed with error: {message}")
elif final_state and final_state.get("final_report"):
status = "completed"
message = "Research process completed successfully."
logger.info(message)
else:
# If it ends without error/report (e.g., empty plan, stopped before synthesis)
status = "finished_incomplete"
message = "Research process finished, but may be incomplete (no final report generated)."
logger.warning(message)
except asyncio.CancelledError:
status = "cancelled"
message = f"Agent run task cancelled for {self.current_task_id}."
logger.info(message)
# final_state will remain None or the state before cancellation if checkpointing was used
except Exception as e:
status = "error"
message = f"Unhandled error during graph execution for {self.current_task_id}: {e}"
logger.error(message, exc_info=True)
# final_state will remain None or the state before the error
finally:
logger.info(f"Cleaning up resources for task {self.current_task_id}")
task_id_to_clean = self.current_task_id
self.stop_event = None
self.current_task_id = None
self.runner = None # Mark runner as finished
if self.mcp_client:
await self.mcp_client.__aexit__(None, None, None)
# Return a result dictionary including the status and the final state if available
return {
"status": status,
"message": message,
"task_id": task_id_to_clean, # Use the stored task_id
"final_state": final_state
if final_state
else {}, # Return the final state dict
}
async def _stop_lingering_browsers(self, task_id):
"""Attempts to stop any BrowserUseAgent instances associated with the task_id."""
keys_to_stop = [
key for key in _BROWSER_AGENT_INSTANCES if key.startswith(f"{task_id}_")
]
if not keys_to_stop:
return
logger.warning(
f"Found {len(keys_to_stop)} potentially lingering browser agents for task {task_id}. Attempting stop..."
)
for key in keys_to_stop:
agent_instance = _BROWSER_AGENT_INSTANCES.get(key)
try:
if agent_instance:
# Assuming BU agent has an async stop method
await agent_instance.stop()
logger.info(f"Called stop() on browser agent instance {key}")
except Exception as e:
logger.error(
f"Error calling stop() on browser agent instance {key}: {e}"
)
async def stop(self):
"""Signals the currently running agent task to stop."""
if not self.current_task_id or not self.stop_event:
logger.info("No agent task is currently running.")
return
logger.info(f"Stop requested for task ID: {self.current_task_id}")
self.stop_event.set() # Signal the stop event
self.stopped = True
await self._stop_lingering_browsers(self.current_task_id)
def close(self):
self.stopped = False