File size: 12,686 Bytes
b1f90a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import pdb

from dotenv import load_dotenv

load_dotenv()
import sys

sys.path.append(".")
import asyncio
import os
import sys
from pprint import pprint

from browser_use import Agent
from browser_use.agent.views import AgentHistoryList

from src.utils import utils


async def test_browser_use_agent():
    from browser_use.browser.browser import Browser, BrowserConfig
    from browser_use.browser.context import (
        BrowserContextConfig
    )
    from browser_use.agent.service import Agent

    from src.browser.custom_browser import CustomBrowser
    from src.controller.custom_controller import CustomController
    from src.utils import llm_provider
    from src.agent.browser_use.browser_use_agent import BrowserUseAgent

    llm = llm_provider.get_llm_model(
        provider="openai",
        model_name="gpt-4o",
        temperature=0.8,
    )

    # llm = llm_provider.get_llm_model(
    #     provider="google",
    #     model_name="gemini-2.0-flash",
    #     temperature=0.6,
    #     api_key=os.getenv("GOOGLE_API_KEY", "")
    # )

    # llm = utils.get_llm_model(
    #     provider="deepseek",
    #     model_name="deepseek-reasoner",
    #     temperature=0.8
    # )

    # llm = utils.get_llm_model(
    #     provider="deepseek",
    #     model_name="deepseek-chat",
    #     temperature=0.8
    # )

    # llm = utils.get_llm_model(
    #     provider="ollama", model_name="qwen2.5:7b", temperature=0.5
    # )

    # llm = utils.get_llm_model(
    #     provider="ollama", model_name="deepseek-r1:14b", temperature=0.5
    # )

    window_w, window_h = 1280, 1100

    # llm = llm_provider.get_llm_model(
    #     provider="azure_openai",
    #     model_name="gpt-4o",
    #     temperature=0.5,
    #     base_url=os.getenv("AZURE_OPENAI_ENDPOINT", ""),
    #     api_key=os.getenv("AZURE_OPENAI_API_KEY", ""),
    # )

    mcp_server_config = {
        "mcpServers": {
            # "markitdown": {
            #     "command": "docker",
            #     "args": [
            #         "run",
            #         "--rm",
            #         "-i",
            #         "markitdown-mcp:latest"
            #     ]
            # },
            "desktop-commander": {
                "command": "npx",
                "args": [
                    "-y",
                    "@wonderwhy-er/desktop-commander"
                ]
            },
        }
    }
    controller = CustomController()
    await controller.setup_mcp_client(mcp_server_config)
    use_own_browser = True
    use_vision = True  # Set to False when using DeepSeek

    max_actions_per_step = 10
    browser = None
    browser_context = None

    try:
        extra_browser_args = []
        if use_own_browser:
            browser_binary_path = os.getenv("BROWSER_PATH", None)
            if browser_binary_path == "":
                browser_binary_path = None
            browser_user_data = os.getenv("BROWSER_USER_DATA", None)
            if browser_user_data:
                extra_browser_args += [f"--user-data-dir={browser_user_data}"]
        else:
            browser_binary_path = None
        browser = CustomBrowser(
            config=BrowserConfig(
                headless=False,
                browser_binary_path=browser_binary_path,
                extra_browser_args=extra_browser_args,
                new_context_config=BrowserContextConfig(
                    window_width=window_w,
                    window_height=window_h,
                )
            )
        )
        browser_context = await browser.new_context(
            config=BrowserContextConfig(
                trace_path=None,
                save_recording_path=None,
                save_downloads_path="./tmp/downloads",
                window_height=window_h,
                window_width=window_w,
            )
        )
        agent = BrowserUseAgent(
            # task="download pdf from https://arxiv.org/pdf/2311.16498 and rename this pdf to 'mcp-test.pdf'",
            task="give me nvidia stock price",
            llm=llm,
            browser=browser,
            browser_context=browser_context,
            controller=controller,
            use_vision=use_vision,
            max_actions_per_step=max_actions_per_step,
            generate_gif=True
        )
        history: AgentHistoryList = await agent.run(max_steps=100)

        print("Final Result:")
        pprint(history.final_result(), indent=4)

        print("\nErrors:")
        pprint(history.errors(), indent=4)

    except Exception:
        import traceback
        traceback.print_exc()
    finally:
        if browser_context:
            await browser_context.close()
        if browser:
            await browser.close()
        if controller:
            await controller.close_mcp_client()


async def test_browser_use_parallel():
    from browser_use.browser.browser import Browser, BrowserConfig
    from browser_use.browser.context import (
        BrowserContextConfig,
    )
    from browser_use.agent.service import Agent

    from src.browser.custom_browser import CustomBrowser
    from src.controller.custom_controller import CustomController
    from src.utils import llm_provider
    from src.agent.browser_use.browser_use_agent import BrowserUseAgent

    # llm = utils.get_llm_model(
    #     provider="openai",
    #     model_name="gpt-4o",
    #     temperature=0.8,
    #     base_url=os.getenv("OPENAI_ENDPOINT", ""),
    #     api_key=os.getenv("OPENAI_API_KEY", ""),
    # )

    # llm = utils.get_llm_model(
    #     provider="google",
    #     model_name="gemini-2.0-flash",
    #     temperature=0.6,
    #     api_key=os.getenv("GOOGLE_API_KEY", "")
    # )

    # llm = utils.get_llm_model(
    #     provider="deepseek",
    #     model_name="deepseek-reasoner",
    #     temperature=0.8
    # )

    # llm = utils.get_llm_model(
    #     provider="deepseek",
    #     model_name="deepseek-chat",
    #     temperature=0.8
    # )

    # llm = utils.get_llm_model(
    #     provider="ollama", model_name="qwen2.5:7b", temperature=0.5
    # )

    # llm = utils.get_llm_model(
    #     provider="ollama", model_name="deepseek-r1:14b", temperature=0.5
    # )

    window_w, window_h = 1280, 1100

    llm = llm_provider.get_llm_model(
        provider="azure_openai",
        model_name="gpt-4o",
        temperature=0.5,
        base_url=os.getenv("AZURE_OPENAI_ENDPOINT", ""),
        api_key=os.getenv("AZURE_OPENAI_API_KEY", ""),
    )

    mcp_server_config = {
        "mcpServers": {
            # "markitdown": {
            #     "command": "docker",
            #     "args": [
            #         "run",
            #         "--rm",
            #         "-i",
            #         "markitdown-mcp:latest"
            #     ]
            # },
            "desktop-commander": {
                "command": "npx",
                "args": [
                    "-y",
                    "@wonderwhy-er/desktop-commander"
                ]
            },
            # "filesystem": {
            #     "command": "npx",
            #     "args": [
            #         "-y",
            #         "@modelcontextprotocol/server-filesystem",
            #         "/Users/xxx/ai_workspace",
            #     ]
            # },
        }
    }
    controller = CustomController()
    await controller.setup_mcp_client(mcp_server_config)
    use_own_browser = True
    use_vision = True  # Set to False when using DeepSeek

    max_actions_per_step = 10
    browser = None
    browser_context = None

    try:
        extra_browser_args = []
        if use_own_browser:
            browser_binary_path = os.getenv("BROWSER_PATH", None)
            if browser_binary_path == "":
                browser_binary_path = None
            browser_user_data = os.getenv("BROWSER_USER_DATA", None)
            if browser_user_data:
                extra_browser_args += [f"--user-data-dir={browser_user_data}"]
        else:
            browser_binary_path = None
        browser = CustomBrowser(
            config=BrowserConfig(
                headless=False,
                browser_binary_path=browser_binary_path,
                extra_browser_args=extra_browser_args,
                new_context_config=BrowserContextConfig(
                    window_width=window_w,
                    window_height=window_h,
                )
            )
        )
        browser_context = await browser.new_context(
            config=BrowserContextConfig(
                trace_path=None,
                save_recording_path=None,
                save_downloads_path="./tmp/downloads",
                window_height=window_h,
                window_width=window_w,
                force_new_context=True
            )
        )
        agents = [
            BrowserUseAgent(task=task, llm=llm, browser=browser, controller=controller)
            for task in [
                'Search Google for weather in Tokyo',
                # 'Check Reddit front page title',
                # 'Find NASA image of the day',
                # 'Check top story on CNN',
                # 'Search latest SpaceX launch date',
                # 'Look up population of Paris',
                'Find current time in Sydney',
                'Check who won last Super Bowl',
                # 'Search trending topics on Twitter',
            ]
        ]

        history = await asyncio.gather(*[agent.run() for agent in agents])
        print("Final Result:")
        pprint(history.final_result(), indent=4)

        print("\nErrors:")
        pprint(history.errors(), indent=4)

        pdb.set_trace()

    except Exception:
        import traceback

        traceback.print_exc()
    finally:
        if browser_context:
            await browser_context.close()
        if browser:
            await browser.close()
        if controller:
            await controller.close_mcp_client()


async def test_deep_research_agent():
    from src.agent.deep_research.deep_research_agent import DeepResearchAgent, PLAN_FILENAME, REPORT_FILENAME
    from src.utils import llm_provider

    llm = llm_provider.get_llm_model(
        provider="openai",
        model_name="gpt-4o",
        temperature=0.5
    )

    # llm = llm_provider.get_llm_model(
    #     provider="bedrock",
    # )

    mcp_server_config = {
        "mcpServers": {
            "desktop-commander": {
                "command": "npx",
                "args": [
                    "-y",
                    "@wonderwhy-er/desktop-commander"
                ]
            },
        }
    }

    browser_config = {"headless": False, "window_width": 1280, "window_height": 1100, "use_own_browser": False}
    agent = DeepResearchAgent(llm=llm, browser_config=browser_config, mcp_server_config=mcp_server_config)
    research_topic = "Give me investment advices of nvidia and tesla."
    task_id_to_resume = ""  # Set this to resume a previous task ID

    print(f"Starting research on: {research_topic}")

    try:
        # Call run and wait for the final result dictionary
        result = await agent.run(research_topic,
                                 task_id=task_id_to_resume,
                                 save_dir="./tmp/deep_research",
                                 max_parallel_browsers=1,
                                 )

        print("\n--- Research Process Ended ---")
        print(f"Status: {result.get('status')}")
        print(f"Message: {result.get('message')}")
        print(f"Task ID: {result.get('task_id')}")

        # Check the final state for the report
        final_state = result.get('final_state', {})
        if final_state:
            print("\n--- Final State Summary ---")
            print(
                f"  Plan Steps Completed: {sum(1 for item in final_state.get('research_plan', []) if item.get('status') == 'completed')}")
            print(f"  Total Search Results Logged: {len(final_state.get('search_results', []))}")
            if final_state.get("final_report"):
                print("  Final Report: Generated (content omitted). You can find it in the output directory.")
                # print("\n--- Final Report ---") # Optionally print report
                # print(final_state["final_report"])
            else:
                print("  Final Report: Not generated.")
        else:
            print("Final state information not available.")


    except Exception as e:
        print(f"\n--- An unhandled error occurred outside the agent run ---")
        print(e)


if __name__ == "__main__":
    asyncio.run(test_browser_use_agent())
    # asyncio.run(test_browser_use_parallel())
    # asyncio.run(test_deep_research_agent())