File size: 32,652 Bytes
b1f90a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
import gradio as gr
from gradio.components import Component
from src.webui.webui_manager import WebuiManager


def create_documentation_tab(webui_manager: WebuiManager):
    """
    Creates a documentation tab with detailed project analysis.
    """
    tab_components = {}

    with gr.Group():
        gr.Markdown(
            """
            # Browser Use WebUI Documentation
            
            This documentation provides a comprehensive overview of the Browser Use WebUI project.
            """,
            elem_classes=["tab-header-text"],
        )

    with gr.Tabs() as doc_tabs:
        with gr.TabItem("Project Overview"):
            gr.Markdown(
                """
                ## Project Overview
                
                Browser Use WebUI is a Gradio-based interface for controlling and interacting with web browsers using AI assistance. 
                It provides a user-friendly way to automate browser tasks and research using large language models.
                
                ### Key Features
                
                - **AI-Controlled Browser**: Control Chrome or other browsers with AI assistance
                - **OpenAI LLM Support**: Compatible with OpenAI models including GPT-4 and GPT-3.5
                - **Custom Browser Support**: Use your own browser with persistent sessions
                - **Deep Research Agent**: Specialized agent for conducting in-depth web research
                
                ### Recent Updates
                
                As of the latest version, the system has been streamlined to support only OpenAI as the LLM provider. This change:
                
                - Simplifies the codebase and reduces dependencies
                - Focuses development efforts on optimizing the OpenAI integration
                - Ensures consistent behavior across all agent interactions
                - Improves reliability and reduces potential configuration issues
                
                If you were using other LLM providers with previous versions, please update your configurations to use OpenAI.
                """
            )
            
        with gr.TabItem("Submit Task Flow"):
            gr.Markdown(
                """
                ## BrowserUse Agent: Submit Task Flow Documentation

                This documentation provides a detailed overview of what happens when you click the "Submit Task" button in the BrowserUse agent tab.

                ### Files Involved

                - **browser_use_agent_tab.py**: Creates the UI for the BrowserUse agent tab and handles the submit task workflow.
                - **webui_manager.py**: Maintains the state of the web UI and stores components and agent instances.
                - **browser_use_agent.py**: Implements the core BrowserUse agent functionality for running tasks.
                - **custom_controller.py**: Handles the execution of browser actions requested by the agent.
                - **custom_browser.py**: Custom browser implementation for the BrowserUse agent.
                - **custom_context.py**: Manages browser contexts for the BrowserUse agent.

                ### Step-by-Step Process

                #### Step 1: User Submits a Task
                
                The process begins when a user enters a task in the text input field and clicks the "Submit Task" button, triggering the `handle_submit` function.

                #### Step 2: Task Initialization
                
                The `run_agent_task` function retrieves the user's task from UI components, updates the chat history, and initializes UI components for the task execution.

                #### Step 3: Browser and Context Setup
                
                The system initializes or reuses an existing browser instance and browser context, which provide the environment for the agent to interact with web pages.

                #### Step 4: Agent Initialization
                
                The system creates a new BrowserUseAgent instance or updates an existing one with the new task. It also registers callbacks for step updates and task completion.

                #### Step 5: Task Execution
                
                The system executes the agent's `run` method in a new task and waits for its completion, updating the UI with progress.

                #### Step 6: BrowserUseAgent Run Method
                
                The agent's `run` method is the core execution logic that performs the task through a series of steps, each interacting with the browser to accomplish the given task.

                #### Step 7: Step Processing Callback
                
                The `_handle_new_step` callback is called after each agent step, updating the UI with the latest screenshot and agent output.

                #### Step 8: Task Completion Callback
                
                The `_handle_done` callback is triggered when the agent completes the task (success or failure), updating the UI with the final results and metrics.

                ### System Flow Diagram

                ```
                User submits task β†’ Task initialization β†’ Browser setup β†’ Agent initialization
                                                                                   ↓
                Task completion ← Agent run method ← Step processing callback ← Task execution
                ```
                """
            )

        with gr.TabItem("Architecture"):
            gr.Markdown(
                """
                ## System Architecture
                
                The project follows a modular architecture with clear separation of concerns:
                
                ### Core Components
                
                1. **WebUI Module (`src/webui/`)**: 
                   - Interface management using Gradio
                   - Tab components for different functionalities
                   - User input/output handling
                
                2. **Browser Module (`src/browser/`)**: 
                   - Custom browser implementation extending browser-use library
                   - Browser context management
                   - Screenshot and session handling
                
                3. **Agent Module (`src/agent/`)**: 
                   - Browser Use Agent: General-purpose browser automation
                   - Deep Research Agent: Specialized for research tasks
                   - Agent state and history management
                
                4. **Controller Module (`src/controller/`)**: 
                   - Action registry for browser control
                   - MCP client integration
                   - Custom action implementations
                
                5. **Utils Module (`src/utils/`)**: 
                   - OpenAI LLM integration
                   - Configuration helpers
                   - MCP client setup
                
                ### Data Flow
                
                1. User inputs task via WebUI
                2. WebUI Manager initializes components
                3. Agent receives task and configures OpenAI LLM
                4. Browser is launched or connected
                5. Agent iteratively performs actions via controller
                6. Results display in WebUI with screenshots
                """
            )
            
        with gr.TabItem("Browser Control"):
            gr.Markdown(
                """
                ## Browser Control System
                
                The browser control functionality is built on the browser-use library, with custom extensions:
                
                ### Browser Features
                
                - **Custom Browser Integration**: Connect to existing browser instances
                - **Browser Context Management**: Create and manage browser contexts
                - **Session Persistence**: Keep browser open between tasks
                - **Screenshot Capture**: Take and display screenshots of browser state
                - **DOM Interaction**: Interact with web page elements
                - **Action Registry**: Comprehensive set of browser actions
                
                ### Actions Supported
                
                - Navigate to URLs
                - Click elements
                - Input text
                - Extract content
                - Scroll pages
                - Search Google
                - Wait for page load
                - Handle alerts and dialogs
                - Upload files
                - And more through the registry system
                """
            )
            
        with gr.TabItem("Agent System"):
            gr.Markdown(
                """
                ## Agent System
                
                The application provides two main agent types:
                
                ### Browser Use Agent
                
                Extends the base Agent class from browser-use library to provide:
                
                - Task execution with dynamic tool selection
                - LLM integration with multiple providers
                - Browser control through registered actions
                - Error handling and recovery
                - Execution history tracking
                
                ### Deep Research Agent
                
                Specialized agent using LangGraph for:
                
                - Research planning through LLM
                - Web search and content extraction
                - Information synthesis
                - Structured research report generation
                - Multi-browser parallel processing
                
                ### Agent Components
                
                - **State Management**: Track agent state during execution
                - **History Recording**: Record steps and results
                - **Output Formatting**: Format results for display
                - **Tool Calling**: Different methods based on LLM capabilities
                """
            )
            
        with gr.TabItem("LLM Integration"):
            gr.Markdown(
                """
                ## LLM Integration
                
                The system supports OpenAI LLM:
                
                ### Supported Provider
                
                - **OpenAI**: GPT-4o, GPT-4, GPT-3.5
                
                ### Integration Features
                
                - **Vision Support**: Vision capabilities with compatible models
                - **Temperature Control**: Adjust randomness in model outputs
                - **Context Length Management**: Handle different model context limits
                - **API Key Management**: Secure handling of API credentials
                - **Tool Calling Methods**: Different methods based on model capabilities (function_calling, json_mode, raw)
                """
            )
            
        with gr.TabItem("Web UI Components"):
            gr.Markdown(
                """
                ## Web UI Components
                
                The interface is built with Gradio and organized into tabs:
                
                ### Main Tabs
                
                1. **Agent Settings**: Configure OpenAI models and parameters
                2. **Browser Settings**: Set up browser preferences and options
                3. **Run Agent**: Execute browser tasks and view results
                4. **Agent Marketplace**: Access specialized agents like Deep Research
                5. **Documentation**: Comprehensive project documentation (you are here)
                6. **Load & Save Config**: Save and load UI configurations
                
                ### Interface Features
                
                - **Chatbot Interface**: View agent interactions and results
                - **Task Input**: Submit tasks to the agent
                - **Control Buttons**: Start, stop, pause, and clear agent execution
                - **Configuration Forms**: Set up OpenAI and browser parameters
                - **Results Display**: View agent output including screenshots
                """
            )

        with gr.TabItem("API & Libraries"):
            gr.Markdown(
                """
                ## Core Libraries & Dependencies
                
                The project relies on several key libraries:
                
                ### Primary Dependencies
                
                - **browser-use**: Core browser automation library
                - **gradio**: Web UI framework
                - **langchain**: LLM integration framework
                - **langgraph**: Graph-based workflows for agents
                - **playwright**: Browser automation and control
                - **pyperclip**: Clipboard interaction
                - **dotenv**: Environment variable management
                
                ### API Integration
                
                - **LLM APIs**: OpenAI, Google, Azure, Anthropic, etc.
                - **MCP (Modular Coordination Protocol)**: Tool integration protocol
                - **MainContentExtractor**: Web content extraction
                
                ### Browser APIs
                
                - **CDP (Chrome DevTools Protocol)**: Browser communication
                - **WSS**: WebSocket connections for browser control
                """
            )
            
        with gr.TabItem("File Structure"):
            gr.Markdown(
                """
                ## Project File Structure
                
                ```
                web-ui/
                β”œβ”€β”€ src/
                β”‚   β”œβ”€β”€ agent/
                β”‚   β”‚   β”œβ”€β”€ browser_use/
                β”‚   β”‚   β”‚   └── browser_use_agent.py
                β”‚   β”‚   └── deep_research/
                β”‚   β”‚       └── deep_research_agent.py
                β”‚   β”œβ”€β”€ browser/
                β”‚   β”‚   β”œβ”€β”€ custom_browser.py
                β”‚   β”‚   └── custom_context.py
                β”‚   β”œβ”€β”€ controller/
                β”‚   β”‚   └── custom_controller.py
                β”‚   β”œβ”€β”€ utils/
                β”‚   β”‚   β”œβ”€β”€ config.py
                β”‚   β”‚   β”œβ”€β”€ llm_provider.py
                β”‚   β”‚   └── mcp_client.py
                β”‚   β”œβ”€β”€ webui/
                β”‚   β”‚   β”œβ”€β”€ components/
                β”‚   β”‚   β”‚   β”œβ”€β”€ agent_settings_tab.py
                β”‚   β”‚   β”‚   β”œβ”€β”€ browser_settings_tab.py
                β”‚   β”‚   β”‚   β”œβ”€β”€ browser_use_agent_tab.py
                β”‚   β”‚   β”‚   β”œβ”€β”€ deep_research_agent_tab.py
                β”‚   β”‚   β”‚   β”œβ”€β”€ documentation_tab.py
                β”‚   β”‚   β”‚   └── load_save_config_tab.py
                β”‚   β”‚   β”œβ”€β”€ interface.py
                β”‚   β”‚   └── webui_manager.py
                β”‚   └── __init__.py
                β”œβ”€β”€ assets/
                β”œβ”€β”€ tmp/
                β”œβ”€β”€ tests/
                β”œβ”€β”€ .venv/
                β”œβ”€β”€ webui.py
                β”œβ”€β”€ Dockerfile
                β”œβ”€β”€ docker-compose.yml
                β”œβ”€β”€ requirements.txt
                β”œβ”€β”€ setup.py
                └── README.md
                ```
                """
            )
            
        with gr.TabItem("Setup & Usage"):
            gr.Markdown(
                """
                ## Setup & Usage Guide
                
                ### Installation
                
                #### Local Installation
                
                1. Clone the repository
                   ```bash
                   git clone https://github.com/browser-use/web-ui.git
                   cd web-ui
                   ```
                
                2. Set up Python environment
                   ```bash
                   uv venv --python 3.11
                   source .venv/bin/activate  # Linux/Mac
                   .venv\\Scripts\\activate    # Windows
                   ```
                
                3. Install dependencies
                   ```bash
                   uv pip install -r requirements.txt
                   playwright install --with-deps
                   ```
                
                4. Configure environment
                   ```bash
                   cp .env.example .env
                   # Edit .env to add your API keys
                   ```
                
                5. Run the application
                   ```bash
                   python webui.py --ip 127.0.0.1 --port 7788
                   ```
                
                #### Docker Installation
                
                ```bash
                docker compose up --build
                ```
                
                ### Usage Examples
                
                1. **Simple Web Search**
                   - Configure LLM in Agent Settings
                   - Configure browser in Browser Settings
                   - In Run Agent tab, enter: "Search for the latest news about AI"
                   - Click Submit Task
                
                2. **Deep Research**
                   - Configure LLM in Agent Settings
                   - Go to Agent Marketplace > Deep Research
                   - Enter research topic: "Advances in renewable energy in 2023"
                   - Click Run
                
                3. **Using Custom Browser**
                   - In Browser Settings, check "Use Own Browser"
                   - Configure paths to browser and user data
                   - Submit tasks as normal
                """
            )
            
        with gr.TabItem("Source Code Analysis"):
            gr.Markdown(
                """
                ## Detailed Source Code Analysis
                
                This section provides a deep dive into the code structure and implementation details of key components.
                
                ### WebUI Manager Class
                
                The `WebuiManager` class in `src/webui/webui_manager.py` serves as the central component managing UI elements and application state:
                
                ```python
                class WebuiManager:
                    def __init__(self, settings_save_dir: str = "./tmp/webui_settings"):
                        self.id_to_component: dict[str, Component] = {}
                        self.component_to_id: dict[Component, str] = {}
                        self.settings_save_dir = settings_save_dir
                        os.makedirs(self.settings_save_dir, exist_ok=True)
                ```
                
                Key functions:
                - `add_components()`: Registers UI components with unique IDs
                - `get_component_by_id()`: Retrieves components using their ID
                - `save_config()`: Serializes UI settings to JSON
                - `load_config()`: Loads settings from JSON
                - `init_browser_use_agent()`: Creates browser agent instances
                
                ### Custom Browser Implementation
                
                The `CustomBrowser` class in `src/browser/custom_browser.py` extends the base `Browser` class from the browser-use library:
                
                ```python
                class CustomBrowser(Browser):
                    async def new_context(self, config: BrowserContextConfig | None = None) -> CustomBrowserContext:
                        browser_config = self.config.model_dump() if self.config else {}
                        context_config = config.model_dump() if config else {}
                        merged_config = {**browser_config, **context_config}
                        return CustomBrowserContext(config=BrowserContextConfig(**merged_config), browser=self)
                ```
                
                Key features:
                - Extends the browser-use Browser class
                - Creates custom browser contexts
                - Configures Chrome arguments for different environments
                - Handles screen resolution and window dimensions
                
                ### Browser Use Agent
                
                The `BrowserUseAgent` class in `src/agent/browser_use/browser_use_agent.py` extends the Agent class:
                
                ```python
                class BrowserUseAgent(Agent):
                    def _set_tool_calling_method(self) -> ToolCallingMethod | None:
                        tool_calling_method = self.settings.tool_calling_method
                        if tool_calling_method == 'auto':
                            if is_model_without_tool_support(self.model_name):
                                return 'raw'
                            elif self.chat_model_library == 'ChatGoogleGenerativeAI':
                                return None
                            elif self.chat_model_library == 'ChatOpenAI':
                                return 'function_calling'
                            # Additional models...
                ```
                
                Key capabilities:
                - Automatically selects tool calling method based on LLM
                - Handles agent execution with configurable steps
                - Provides pause/resume functionality
                - Manages execution history and state
                - Implements error handling and recovery
                
                ### Deep Research Agent
                
                The `DeepResearchAgent` class in `src/agent/deep_research/deep_research_agent.py` implements a specialized research agent:
                
                ```python
                class DeepResearchAgent:
                    def __init__(
                        self,
                        llm: Any,
                        browser_config: Dict[str, Any],
                        mcp_server_config: Optional[Dict[str, Any]] = None,
                    ):
                        # Initialize agent with LLM and browser config
                ```
                
                Key components:
                - Uses LangGraph for structured research workflows
                - Implements planning, research, and synthesis nodes
                - Manages parallel browser instances for efficiency
                - Generates structured research reports
                - Handles task state persistence
                
                ### Custom Controller
                
                The `CustomController` class in `src/controller/custom_controller.py` extends the Controller class:
                
                ```python
                class CustomController(Controller):
                    def __init__(self, exclude_actions: list[str] = [],
                                output_model: Optional[Type[BaseModel]] = None,
                                ask_assistant_callback: Optional[...] = None):
                        super().__init__(exclude_actions=exclude_actions, output_model=output_model)
                        self._register_custom_actions()
                        self.ask_assistant_callback = ask_assistant_callback
                        self.mcp_client = None
                        self.mcp_server_config = None
                ```
                
                Key features:
                - Registers custom browser actions
                - Integrates with MCP (Modular Coordination Protocol)
                - Provides file upload capabilities
                - Implements human assistance features
                - Handles action execution with error management
                
                ### UI Components
                
                The UI is built using Gradio components:
                
                ```python
                def create_ui(theme_name="Ocean"):
                    with gr.Blocks(title="Browser Use WebUI", theme=theme_map[theme_name], css=css, js=js_func) as demo:
                        with gr.Tabs() as tabs:
                            with gr.TabItem("βš™οΈ Agent Settings"):
                                create_agent_settings_tab(ui_manager)
                            # Additional tabs...
                ```
                
                Key UI features:
                - Modular tab-based interface
                - Customizable themes
                - Responsive layout
                - Dark mode support
                - Configuration persistence
                """
            )
            
        with gr.TabItem("Technical Challenges"):
            gr.Markdown(
                """
                ## Technical Challenges & Solutions
                
                This section covers key technical challenges faced during development and the solutions implemented.
                
                ### Browser Integration Challenges
                
                **Challenge**: Connecting to existing browser instances with proper user profiles.
                
                **Solution**: Custom implementation using CDP (Chrome DevTools Protocol) and WebSocket connections:
                
                ```python
                # Implementation in custom_browser.py
                chrome_args = {
                    f'--remote-debugging-port={self.config.chrome_remote_debugging_port}',
                    *(CHROME_DOCKER_ARGS if IN_DOCKER else []),
                    *(CHROME_HEADLESS_ARGS if self.config.headless else []),
                    # Additional args...
                }
                
                # Check existing port conflicts
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    if s.connect_ex(('localhost', self.config.chrome_remote_debugging_port)) == 0:
                        chrome_args.remove(f'--remote-debugging-port={self.config.chrome_remote_debugging_port}')
                ```
                
                ### OpenAI LLM Integration
                
                **Challenge**: Configuring and optimizing OpenAI models for browser automation.
                
                **Solution**: Provider abstraction and method detection:
                
                ```python
                # In browser_use_agent.py
                def _set_tool_calling_method(self) -> ToolCallingMethod | None:
                    tool_calling_method = self.settings.tool_calling_method
                    if tool_calling_method == 'auto':
                        if is_model_without_tool_support(self.model_name):
                            return 'raw'
                        else:
                            return 'function_calling'
                ```
                
                ### Execution State Management
                
                **Challenge**: Maintaining agent state across steps and allowing pause/resume.
                
                **Solution**: Custom execution loop with state management:
                
                ```python
                # In browser_use_agent.py
                async def run(self, max_steps: int = 100, on_step_start: AgentHookFunc | None = None,
                        on_step_end: AgentHookFunc | None = None) -> AgentHistoryList:
                    
                    # Execution loop with state management
                    for step in range(max_steps):
                        # Check pause state
                        if self.state.paused:
                            signal_handler.wait_for_resume()
                            signal_handler.reset()
                            
                        # Check for stop
                        if self.state.stopped:
                            logger.info('Agent stopped')
                            break
                            
                        # Execute step with callbacks
                        if on_step_start is not None:
                            await on_step_start(self)
                            
                        step_info = AgentStepInfo(step_number=step, max_steps=max_steps)
                        await self.step(step_info)
                        
                        if on_step_end is not None:
                            await on_step_end(self)
                ```
                
                ### Multi-Browser Research Orchestration
                
                **Challenge**: Managing multiple parallel browser instances for research tasks.
                
                **Solution**: LangGraph-based workflow with parallel task execution:
                
                ```python
                # In deep_research_agent.py
                async def _run_browser_search_tool(
                    queries: List[str],
                    task_id: str,
                    llm: Any,
                    browser_config: Dict[str, Any],
                    stop_event: threading.Event,
                    max_parallel_browsers: int = 1,
                ) -> List[Dict[str, Any]]:
                    
                    # Execute tasks in parallel with limit
                    tasks = []
                    results = []
                    
                    semaphore = asyncio.Semaphore(max_parallel_browsers)
                    
                    async def task_wrapper(query):
                        async with semaphore:
                            return await run_single_browser_task(
                                query, task_id, llm, browser_config, stop_event
                            )
                            
                    # Create and gather tasks
                    for query in queries:
                        tasks.append(asyncio.create_task(task_wrapper(query)))
                    
                    results = await asyncio.gather(*tasks)
                    return results
                ```
                
                ### UI State Synchronization
                
                **Challenge**: Keeping UI state synchronized with backend operations.
                
                **Solution**: Component tracking and event-based updates:
                
                ```python
                # In webui_manager.py
                def add_components(self, tab_name: str, components_dict: dict[str, "Component"]) -> None:
                    for comp_name, component in components_dict.items():
                        comp_id = f"{tab_name}.{comp_name}"
                        self.id_to_component[comp_id] = component
                        self.component_to_id[component] = comp_id
                
                # In browser_use_agent_tab.py
                async def handle_submit(webui_manager: WebuiManager, components: Dict[gr.components.Component, Any]):
                    # Get component values and update UI state
                    task_input = _get_config_value(webui_manager, components, "user_input", "")
                    webui_manager.bu_chat_history.append({"role": "user", "content": task_input})
                    # Additional UI updates...
                ```
                
                ### Docker Environment Challenges
                
                **Challenge**: Running browser automation in Docker containers.
                
                **Solution**: Special Docker configuration for browser support:
                
                ```python
                # In custom_browser.py
                CHROME_DOCKER_ARGS = [
                    "--no-sandbox",
                    "--disable-dev-shm-usage",
                    # Additional docker-specific args...
                ]
                
                # In docker-compose.yml
                services:
                  web-ui:
                    build:
                      context: .
                    volumes:
                      - ./tmp:/app/tmp
                    ports:
                      - "7788:7788"
                      - "6080:6080"  # VNC for browser viewing
                    environment:
                      - DISPLAY=:1
                      # Additional environment variables...
                ```
                """
            )

    tab_components.update(dict(
        doc_tabs=doc_tabs,
    ))
    
    webui_manager.add_components("documentation", tab_components)
    
    return tab_components