Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load the ViT+GPT2 image-to-text pipeline with bfloat16 precision
|
6 |
+
captioner = pipeline(
|
7 |
+
"image-to-text",
|
8 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
9 |
+
torch_dtype=torch.bfloat16
|
10 |
+
)
|
11 |
+
|
12 |
+
def generate_caption(image):
|
13 |
+
"""
|
14 |
+
Takes a PIL image and returns a generated caption.
|
15 |
+
"""
|
16 |
+
outputs = captioner(image)
|
17 |
+
return outputs[0]["generated_text"]
|
18 |
+
|
19 |
+
# Build the Gradio interface
|
20 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
21 |
+
gr.Markdown(
|
22 |
+
"""
|
23 |
+
# 🖼️ Image Caption Generator
|
24 |
+
Upload an image to generate a descriptive caption using ViT+GPT2.
|
25 |
+
"""
|
26 |
+
)
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
30 |
+
caption_output = gr.Textbox(label="Generated Caption", lines=2)
|
31 |
+
|
32 |
+
generate_btn = gr.Button("Generate Caption")
|
33 |
+
generate_btn.click(fn=generate_caption, inputs=input_image, outputs=caption_output)
|
34 |
+
|
35 |
+
gr.Markdown(
|
36 |
+
"""
|
37 |
+
---
|
38 |
+
Built with 🤗 Transformers (`nlpconnect/vit-gpt2-image-captioning`) and 🚀 Gradio
|
39 |
+
"""
|
40 |
+
)
|
41 |
+
|
42 |
+
demo.launch()
|