Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,115 +1,202 @@
|
|
| 1 |
-
import re
|
| 2 |
-
import PyPDF2
|
| 3 |
-
from langchain_community.embeddings import OllamaEmbeddings
|
| 4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
-
from langchain_community.vectorstores import Chroma
|
| 6 |
-
from langchain.chains import ConversationalRetrievalChain
|
| 7 |
-
from langchain_community.chat_models import ChatOllama
|
| 8 |
-
from langchain_groq import ChatGroq
|
| 9 |
-
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
| 10 |
-
import chainlit as cl
|
| 11 |
-
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
|
| 12 |
-
import logging
|
| 13 |
-
import pypandoc
|
| 14 |
-
import pdfkit
|
| 15 |
-
from paddleocr import PaddleOCR
|
| 16 |
-
import fitz
|
| 17 |
-
import asyncio
|
| 18 |
-
from langchain_nomic.embeddings import NomicEmbeddings
|
| 19 |
-
|
| 20 |
-
llm_groq = ChatGroq(
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Initialize anonymizer
|
| 25 |
-
anonymizer = PresidioReversibleAnonymizer(analyzed_fields=['PERSON', 'EMAIL_ADDRESS', 'PHONE_NUMBER', 'IBAN_CODE', 'CREDIT_CARD', 'CRYPTO', 'IP_ADDRESS', 'LOCATION', 'DATE_TIME', 'NRP', 'MEDICAL_LICENSE', 'URL'], faker_seed=18)
|
| 26 |
-
|
| 27 |
-
def extract_text_from_pdf(file_path):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def has_sufficient_selectable_text(page, threshold=50):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
async def get_text(file_path):
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
output_path = ".".join(input_path.split(".")[:-1]) + ".pdf"
|
| 70 |
-
pypandoc.convert_file(input_path, 'html', outputfile=html_path)
|
| 71 |
-
pdfkit.from_file(html_path, output_path)
|
| 72 |
-
logging.info("DOCX Format Handled")
|
| 73 |
-
return output_path
|
| 74 |
-
|
| 75 |
-
async def extract_text_from_mixed_pdf(file_path):
|
| 76 |
-
pdf = PyPDF2.PdfReader(file_path)
|
| 77 |
-
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
| 78 |
-
pdf_text = ""
|
| 79 |
-
for i, page in enumerate(pdf.pages):
|
| 80 |
-
text = page.extract_text()
|
| 81 |
-
if not has_sufficient_selectable_text(page):
|
| 82 |
-
logging.info(f"Page {i+1} has insufficient selectable text, performing OCR.")
|
| 83 |
-
pdf_document = fitz.open(file_path)
|
| 84 |
-
pdf_page = pdf_document.load_page(i)
|
| 85 |
-
pix = pdf_page.get_pixmap()
|
| 86 |
-
image_path = f"page_{i+1}.png"
|
| 87 |
-
pix.save(image_path)
|
| 88 |
-
result = ocr.ocr(image_path, cls=True)
|
| 89 |
-
for idx in range(len(result)):
|
| 90 |
-
res = result[idx]
|
| 91 |
-
for line in res:
|
| 92 |
-
text += line[1][0] + " "
|
| 93 |
-
pdf_text += text
|
| 94 |
-
return pdf_text
|
| 95 |
|
|
|
|
|
|
|
|
|
|
| 96 |
@cl.on_chat_start
|
| 97 |
async def on_chat_start():
|
| 98 |
|
| 99 |
-
files = None
|
| 100 |
|
| 101 |
# Wait for the user to upload a file
|
| 102 |
while files is None:
|
| 103 |
files = await cl.AskFileMessage(
|
| 104 |
content="Please upload a pdf file to begin!",
|
| 105 |
-
# accept=["application/pdf"],
|
| 106 |
accept=["application/pdf", "image/jpeg", "image/png", "application/vnd.openxmlformats-officedocument.wordprocessingml.document"],
|
| 107 |
max_size_mb=100,
|
| 108 |
timeout=180,
|
| 109 |
).send()
|
| 110 |
|
| 111 |
-
file = files[0]
|
| 112 |
-
|
| 113 |
# Inform the user that processing has started
|
| 114 |
msg = cl.Message(content=f"Processing `{file.name}`...")
|
| 115 |
await msg.send()
|
|
@@ -130,7 +217,6 @@ async def on_chat_start():
|
|
| 130 |
docsearch = await cl.make_async(Chroma.from_texts)(
|
| 131 |
[anonymized_text], embeddings, metadatas=[{"source": "0-pl"}]
|
| 132 |
)
|
| 133 |
-
# }
|
| 134 |
|
| 135 |
# Initialize message history for conversation
|
| 136 |
message_history = ChatMessageHistory()
|
|
@@ -155,26 +241,7 @@ async def on_chat_start():
|
|
| 155 |
# Let the user know that the system is ready
|
| 156 |
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
| 157 |
await msg.update()
|
|
|
|
| 158 |
# Store the chain in user session
|
| 159 |
cl.user_session.set("chain", chain)
|
| 160 |
|
| 161 |
-
|
| 162 |
-
@cl.on_message
|
| 163 |
-
async def main(message: cl.Message):
|
| 164 |
-
|
| 165 |
-
# Retrieve the chain from user session
|
| 166 |
-
chain = cl.user_session.get("chain")
|
| 167 |
-
# Callbacks happen asynchronously/parallel
|
| 168 |
-
cb = cl.AsyncLangchainCallbackHandler()
|
| 169 |
-
|
| 170 |
-
# Call the chain with user's message content
|
| 171 |
-
res = await chain.ainvoke(message.content, callbacks=[cb])
|
| 172 |
-
answer = anonymizer.deanonymize(
|
| 173 |
-
res["answer"]
|
| 174 |
-
)
|
| 175 |
-
text_elements = []
|
| 176 |
-
|
| 177 |
-
# Return results
|
| 178 |
-
await cl.Message(content=answer, elements=text_elements).send()
|
| 179 |
-
|
| 180 |
-
|
|
|
|
| 1 |
+
# import re
|
| 2 |
+
# import PyPDF2
|
| 3 |
+
# from langchain_community.embeddings import OllamaEmbeddings
|
| 4 |
+
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
# from langchain_community.vectorstores import Chroma
|
| 6 |
+
# from langchain.chains import ConversationalRetrievalChain
|
| 7 |
+
# from langchain_community.chat_models import ChatOllama
|
| 8 |
+
# from langchain_groq import ChatGroq
|
| 9 |
+
# from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
| 10 |
+
# import chainlit as cl
|
| 11 |
+
# from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
|
| 12 |
+
# import logging
|
| 13 |
+
# import pypandoc
|
| 14 |
+
# import pdfkit
|
| 15 |
+
# from paddleocr import PaddleOCR
|
| 16 |
+
# import fitz
|
| 17 |
+
# import asyncio
|
| 18 |
+
# from langchain_nomic.embeddings import NomicEmbeddings
|
| 19 |
+
|
| 20 |
+
# llm_groq = ChatGroq(
|
| 21 |
+
# model_name='llama3-70b-8192'
|
| 22 |
+
# )
|
| 23 |
+
|
| 24 |
+
# # Initialize anonymizer
|
| 25 |
+
# anonymizer = PresidioReversibleAnonymizer(analyzed_fields=['PERSON', 'EMAIL_ADDRESS', 'PHONE_NUMBER', 'IBAN_CODE', 'CREDIT_CARD', 'CRYPTO', 'IP_ADDRESS', 'LOCATION', 'DATE_TIME', 'NRP', 'MEDICAL_LICENSE', 'URL'], faker_seed=18)
|
| 26 |
+
|
| 27 |
+
# def extract_text_from_pdf(file_path):
|
| 28 |
+
# pdf = PyPDF2.PdfReader(file_path)
|
| 29 |
+
# pdf_text = ""
|
| 30 |
+
# for page in pdf.pages:
|
| 31 |
+
# pdf_text += page.extract_text()
|
| 32 |
+
# return pdf_text
|
| 33 |
+
|
| 34 |
+
# def has_sufficient_selectable_text(page, threshold=50):
|
| 35 |
+
# text = page.extract_text()
|
| 36 |
+
# if len(text.strip()) > threshold:
|
| 37 |
+
# return True
|
| 38 |
+
# return False
|
| 39 |
+
|
| 40 |
+
# async def get_text(file_path):
|
| 41 |
+
# text = ""
|
| 42 |
+
# try:
|
| 43 |
+
# logging.info("Starting OCR process for file: %s", file_path)
|
| 44 |
+
# extension = file_path.split(".")[-1].lower()
|
| 45 |
+
# allowed_extension = ["jpg", "jpeg", "png", "pdf", "docx"]
|
| 46 |
+
# if extension not in allowed_extension:
|
| 47 |
+
# error = "Not a valid File. Allowed Format are jpg, jpeg, png, pdf, docx"
|
| 48 |
+
# logging.error(error)
|
| 49 |
+
# return {"error": error}
|
| 50 |
+
|
| 51 |
+
# if extension == "docx":
|
| 52 |
+
# file_path = convert_docx_to_pdf(file_path)
|
| 53 |
|
| 54 |
+
# ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
| 55 |
+
# result = ocr.ocr(file_path, cls=True)
|
| 56 |
+
# for idx in range(len(result)):
|
| 57 |
+
# res = result[idx]
|
| 58 |
+
# for line in res:
|
| 59 |
+
# text += line[1][0] + " "
|
| 60 |
+
# logging.info("OCR process completed successfully for file: %s", file_path)
|
| 61 |
+
# except Exception as e:
|
| 62 |
+
# logging.error("Error occurred during OCR process for file %s: %s", file_path, e)
|
| 63 |
+
# text = "Error occurred during OCR process."
|
| 64 |
+
# logging.info("Extracted text: %s", text)
|
| 65 |
+
# return text
|
| 66 |
+
|
| 67 |
+
# def convert_docx_to_pdf(input_path):
|
| 68 |
+
# html_path = input_path.replace('.docx', '.html')
|
| 69 |
+
# output_path = ".".join(input_path.split(".")[:-1]) + ".pdf"
|
| 70 |
+
# pypandoc.convert_file(input_path, 'html', outputfile=html_path)
|
| 71 |
+
# pdfkit.from_file(html_path, output_path)
|
| 72 |
+
# logging.info("DOCX Format Handled")
|
| 73 |
+
# return output_path
|
| 74 |
+
|
| 75 |
+
# async def extract_text_from_mixed_pdf(file_path):
|
| 76 |
+
# pdf = PyPDF2.PdfReader(file_path)
|
| 77 |
+
# ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
| 78 |
+
# pdf_text = ""
|
| 79 |
+
# for i, page in enumerate(pdf.pages):
|
| 80 |
+
# text = page.extract_text()
|
| 81 |
+
# if not has_sufficient_selectable_text(page):
|
| 82 |
+
# logging.info(f"Page {i+1} has insufficient selectable text, performing OCR.")
|
| 83 |
+
# pdf_document = fitz.open(file_path)
|
| 84 |
+
# pdf_page = pdf_document.load_page(i)
|
| 85 |
+
# pix = pdf_page.get_pixmap()
|
| 86 |
+
# image_path = f"page_{i+1}.png"
|
| 87 |
+
# pix.save(image_path)
|
| 88 |
+
# result = ocr.ocr(image_path, cls=True)
|
| 89 |
+
# for idx in range(len(result)):
|
| 90 |
+
# res = result[idx]
|
| 91 |
+
# for line in res:
|
| 92 |
+
# text += line[1][0] + " "
|
| 93 |
+
# pdf_text += text
|
| 94 |
+
# return pdf_text
|
| 95 |
+
|
| 96 |
+
# @cl.on_chat_start
|
| 97 |
+
# async def on_chat_start():
|
| 98 |
+
|
| 99 |
+
# files = None # Initialize variable to store uploaded files
|
| 100 |
+
|
| 101 |
+
# # Wait for the user to upload a file
|
| 102 |
+
# while files is None:
|
| 103 |
+
# files = await cl.AskFileMessage(
|
| 104 |
+
# content="Please upload a pdf file to begin!",
|
| 105 |
+
# # accept=["application/pdf"],
|
| 106 |
+
# accept=["application/pdf", "image/jpeg", "image/png", "application/vnd.openxmlformats-officedocument.wordprocessingml.document"],
|
| 107 |
+
# max_size_mb=100,
|
| 108 |
+
# timeout=180,
|
| 109 |
+
# ).send()
|
| 110 |
+
|
| 111 |
+
# file = files[0] # Get the first uploaded file
|
| 112 |
+
|
| 113 |
+
# # Inform the user that processing has started
|
| 114 |
+
# msg = cl.Message(content=f"Processing `{file.name}`...")
|
| 115 |
+
# await msg.send()
|
| 116 |
+
|
| 117 |
+
# # Extract text from PDF, checking for selectable and handwritten text
|
| 118 |
+
# if file.name.endswith('.pdf'):
|
| 119 |
+
# pdf_text = await extract_text_from_mixed_pdf(file.path)
|
| 120 |
+
# else:
|
| 121 |
+
# pdf_text = await get_text(file.path)
|
| 122 |
+
|
| 123 |
+
# # Anonymize the text
|
| 124 |
+
# anonymized_text = anonymizer.anonymize(
|
| 125 |
+
# pdf_text
|
| 126 |
+
# )
|
| 127 |
+
|
| 128 |
+
# embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
|
| 129 |
+
|
| 130 |
+
# docsearch = await cl.make_async(Chroma.from_texts)(
|
| 131 |
+
# [anonymized_text], embeddings, metadatas=[{"source": "0-pl"}]
|
| 132 |
+
# )
|
| 133 |
+
# # }
|
| 134 |
+
|
| 135 |
+
# # Initialize message history for conversation
|
| 136 |
+
# message_history = ChatMessageHistory()
|
| 137 |
+
|
| 138 |
+
# # Memory for conversational context
|
| 139 |
+
# memory = ConversationBufferMemory(
|
| 140 |
+
# memory_key="chat_history",
|
| 141 |
+
# output_key="answer",
|
| 142 |
+
# chat_memory=message_history,
|
| 143 |
+
# return_messages=True,
|
| 144 |
+
# )
|
| 145 |
+
|
| 146 |
+
# # Create a chain that uses the Chroma vector store
|
| 147 |
+
# chain = ConversationalRetrievalChain.from_llm(
|
| 148 |
+
# llm = llm_groq,
|
| 149 |
+
# chain_type="stuff",
|
| 150 |
+
# retriever=docsearch.as_retriever(),
|
| 151 |
+
# memory=memory,
|
| 152 |
+
# return_source_documents=True,
|
| 153 |
+
# )
|
| 154 |
+
|
| 155 |
+
# # Let the user know that the system is ready
|
| 156 |
+
# msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
| 157 |
+
# await msg.update()
|
| 158 |
+
# # Store the chain in user session
|
| 159 |
+
# cl.user_session.set("chain", chain)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
# @cl.on_message
|
| 163 |
+
# async def main(message: cl.Message):
|
| 164 |
|
| 165 |
+
# # Retrieve the chain from user session
|
| 166 |
+
# chain = cl.user_session.get("chain")
|
| 167 |
+
# # Callbacks happen asynchronously/parallel
|
| 168 |
+
# cb = cl.AsyncLangchainCallbackHandler()
|
| 169 |
+
|
| 170 |
+
# # Call the chain with user's message content
|
| 171 |
+
# res = await chain.ainvoke(message.content, callbacks=[cb])
|
| 172 |
+
# answer = anonymizer.deanonymize(
|
| 173 |
+
# res["answer"]
|
| 174 |
+
# )
|
| 175 |
+
# text_elements = []
|
| 176 |
+
|
| 177 |
+
# # Return results
|
| 178 |
+
# await cl.Message(content=answer, elements=text_elements).send()
|
| 179 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# v2:
|
| 184 |
@cl.on_chat_start
|
| 185 |
async def on_chat_start():
|
| 186 |
|
| 187 |
+
files = None # Initialize variable to store uploaded files
|
| 188 |
|
| 189 |
# Wait for the user to upload a file
|
| 190 |
while files is None:
|
| 191 |
files = await cl.AskFileMessage(
|
| 192 |
content="Please upload a pdf file to begin!",
|
|
|
|
| 193 |
accept=["application/pdf", "image/jpeg", "image/png", "application/vnd.openxmlformats-officedocument.wordprocessingml.document"],
|
| 194 |
max_size_mb=100,
|
| 195 |
timeout=180,
|
| 196 |
).send()
|
| 197 |
|
| 198 |
+
file = files[0] # Get the first uploaded file
|
| 199 |
+
|
| 200 |
# Inform the user that processing has started
|
| 201 |
msg = cl.Message(content=f"Processing `{file.name}`...")
|
| 202 |
await msg.send()
|
|
|
|
| 217 |
docsearch = await cl.make_async(Chroma.from_texts)(
|
| 218 |
[anonymized_text], embeddings, metadatas=[{"source": "0-pl"}]
|
| 219 |
)
|
|
|
|
| 220 |
|
| 221 |
# Initialize message history for conversation
|
| 222 |
message_history = ChatMessageHistory()
|
|
|
|
| 241 |
# Let the user know that the system is ready
|
| 242 |
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
| 243 |
await msg.update()
|
| 244 |
+
|
| 245 |
# Store the chain in user session
|
| 246 |
cl.user_session.set("chain", chain)
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|