Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import numpy as np | |
import math | |
from super_gradients.training import models | |
from super_gradients.training.processing import (DetectionCenterPadding,StandardizeImage, | |
ImagePermute, ComposeProcessing, | |
DetectionLongestMaxSizeRescale) | |
from deep_sort_pytorch.utils.parser import get_config | |
from deep_sort_pytorch.deep_sort import DeepSort | |
import streamlit as st | |
file_path = 'coco-labels-paper.txt' | |
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1) | |
names = [] | |
with open(file_path, 'r') as file: | |
for line in file: | |
names.append(line.strip()) | |
st.header(":hand: Welcome To YoLo Nas Object Detection and Tracking : ") | |
st.info(""" | |
This app uses the cutting-edge YOLO Nas algorithm to detect objects in real-time video streams. | |
But that's not all it also employs the powerful DeepSort algorithm to track these objects, | |
providing you with seamless tracking capabilities. Easily upload a video feed, | |
and watch as our app identifies and tracks objects with precision. | |
It's simple, efficient, and ready to help you monitor and analyze moving objects effortlessly! | |
""") | |
with st.sidebar : | |
device_name =st.selectbox("Device : " , ["cpu" , "cuda"]) | |
if device_name == 'cuda' : | |
device = torch.device("cuda:0") | |
else : | |
device = torch.device("cpu") | |
source_name = st.selectbox("select you source feed : " , ["URL"]) | |
conf = st.slider("Select threshold confidence value : " , min_value=0.1 , max_value=1.0 , value=0.25) | |
iou = st.slider("Select Intersection over union (iou) value : " , min_value=0.1 , max_value=1.0 , value=0.5) | |
#model=models.get('yolo_nas_s',num_classes=len(names) , | |
# checkpoint_path="yolo_nas_s_coco.pth").to(device) | |
if source_name == "URL" : | |
source = st.text_input("Input your Url Camera feed and press Entre ex : http://IP:8080/video") | |
cap = cv2.VideoCapture(source) | |
model=models.get('yolo_nas_s', pretrained_weights="coco").to(device) | |
model.set_dataset_processing_params( | |
class_names=names, | |
image_processor=ComposeProcessing( | |
[DetectionLongestMaxSizeRescale(output_shape=(636, 636)), | |
DetectionCenterPadding(output_shape=(640, 640), | |
pad_value=114), | |
StandardizeImage(max_value=255.0), | |
ImagePermute(permutation=(2, 0, 1)),]), | |
iou=iou ,conf=conf) | |
cfg_deep = get_config() | |
cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml") | |
deepsort = DeepSort(cfg_deep.DEEPSORT.REID_CKPT, | |
max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE, | |
nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, | |
max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE, | |
max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, | |
nn_budget=cfg_deep.DEEPSORT.NN_BUDGET, | |
use_cuda=False) | |
def compute_color_for_labels(label): | |
""" | |
Simple function that adds fixed color depending on the class | |
""" | |
if label == 0: #person | |
color = (85,45,255) | |
elif label == 2: # Car | |
color = (222,82,175) | |
elif label == 3: # Motobike | |
color = (0, 204, 255) | |
elif label == 5: # Bus | |
color = (0, 149, 255) | |
else: | |
color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette] | |
return tuple(color) | |
def draw_boxes(img, bbox, identities=None, categories=None, names=None, offset=(0,0)): | |
for i, box in enumerate(bbox): | |
x1, y1, x2, y2 = [int(i) for i in box] | |
x1 += offset[0] | |
x2 += offset[0] | |
y1 += offset[0] | |
y2 += offset[0] | |
cat = int(categories[i]) if categories is not None else 0 | |
id = int(identities[i]) if identities is not None else 0 | |
cv2.rectangle(img, (x1, y1), (x2, y2), color= compute_color_for_labels(cat),thickness=2, lineType=cv2.LINE_AA) | |
label = str(id) + ":" + names[cat] | |
(w,h), _ = cv2.getTextSize(str(label), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1/2, thickness=1) | |
t_size=cv2.getTextSize(str(label), cv2.FONT_HERSHEY_SIMPLEX, fontScale=1/2, thickness=1)[0] | |
c2=x1+t_size[0], y1-t_size[1]-3 | |
cv2.rectangle(img, (x1, y1), c2, color=compute_color_for_labels(cat), thickness=-1, lineType=cv2.LINE_AA) | |
cv2.putText(img, str(label), (x1, y1-2), 0, 1/2, [255, 255, 255], thickness=1, lineType=cv2.LINE_AA) | |
return img | |
if st.button("Start detection and Tracking") : | |
frame_window = st.image( [] ) | |
while True: | |
xywh_bboxs = [] | |
confs = [] | |
oids = [] | |
ret, frame = cap.read() | |
if ret: | |
result = list(model.predict(frame))[0] | |
bbox_xyxys = result.prediction.bboxes_xyxy.tolist() | |
confidences = result.prediction.confidence | |
labels = result.prediction.labels.tolist() | |
for (bbox_xyxy, confidence, cls) in zip(bbox_xyxys, confidences, labels): | |
bbox = np.array(bbox_xyxy) | |
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
conf = math.ceil((confidence*100))/100 | |
cx, cy = int((x1+x2)/2), int((y1+y2)/2) | |
bbox_width = abs(x1-x2) | |
bbox_height = abs(y1-y2) | |
xcycwh = [cx, cy, bbox_width, bbox_height] | |
xywh_bboxs.append(xcycwh) | |
confs.append(conf) | |
oids.append(int(cls)) | |
xywhs = torch.tensor(xywh_bboxs) | |
confss= torch.tensor(confs) | |
outputs = deepsort.update(xywhs, confss, oids, frame) | |
if len(outputs)>0: | |
bbox_xyxy = outputs[:,:4] | |
identities = outputs[:, -2] | |
object_id = outputs[:, -1] | |
draw_boxes(frame, bbox_xyxy, identities, object_id , names=names) | |
#output.write(frame) | |
#cv2.imshow('Video', frame) | |
#if cv2.waitKey(25) & 0xFF == ord('q'): | |
# break | |
frame = cv2.cvtColor( frame , cv2.COLOR_BGR2RGB) | |
frame_window.image(frame) | |
else: | |
break |