File size: 1,757 Bytes
e674a51
1e6822b
e674a51
555f172
 
3e69d5d
555f172
 
9091051
 
 
f8e5f02
e674a51
 
 
49ecfa7
555f172
9f453e8
5bce228
49ecfa7
 
e674a51
9091051
6b3b146
 
 
 
 
 
 
e674a51
 
 
 
 
 
 
692215d
 
e674a51
4b9df27
692215d
9f453e8
e674a51
 
 
 
 
 
5bce228
 
49ecfa7
 
 
 
 
 
 
e674a51
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
from transformers import pipeline

models = {
    "MagicPrompt": "pszemraj/distilgpt2-magicprompt-SD",
    "DistilGPT2 SD": "FredZhang7/distilgpt2-stable-diffusion",
    "Llama-SmolTalk-3.2-1B": "prithivMLmods/Llama-SmolTalk-3.2-1B-Instruct"
}
pipelines = {}

for key, value in models.items():
    pipelines[value] = pipeline("text-generation", model=value)

def respond(
    message,
    _: list[tuple[str, str]],
    model: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int
):
    yield pipelines[model](
        message,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k
    )[0]['generated_text']


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    title="Prompt Enhancer Test",
    type="messages",
    additional_inputs=[
        gr.Radio(list(models.items()), value="pszemraj/distilgpt2-magicprompt-SD", type="value", label="Model"),
        # gr.Textbox(value="Enhance the provided text so that it is more vibrant and detailed.", label="System prompt"),
        gr.Slider(minimum=8, maximum=128, value=64, step=8, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=10,
            maximum=100,
            value=30,
            step=5,
            label="Top-k",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()