awaisdero123 commited on
Commit
c8f5bac
·
verified ·
1 Parent(s): 2eede89

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +209 -0
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+
3
+ import gradio as gr
4
+ from tryon_inference import run_inference
5
+ import os
6
+ import numpy as np
7
+ from PIL import Image
8
+ import tempfile
9
+ import torch
10
+ from diffusers import FluxTransformer2DModel, FluxFillPipeline
11
+ import subprocess
12
+
13
+ subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
14
+ dtype = torch.bfloat16
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+
17
+ print('Loading diffusion model ...')
18
+ transformer = FluxTransformer2DModel.from_pretrained(
19
+ "xiaozaa/catvton-flux-alpha",
20
+ torch_dtype=dtype
21
+ )
22
+ pipe = FluxFillPipeline.from_pretrained(
23
+ "black-forest-labs/FLUX.1-dev",
24
+ transformer=transformer,
25
+ torch_dtype=dtype
26
+ ).to(device)
27
+ print('Loading Finished!')
28
+
29
+ @spaces.GPU(duration=120)
30
+ def gradio_inference(
31
+ image_data,
32
+ garment,
33
+ num_steps=50,
34
+ guidance_scale=30.0,
35
+ seed=-1,
36
+ width=768,
37
+ height=1024
38
+ ):
39
+ """Wrapper function for Gradio interface"""
40
+ # Check if mask has been drawn
41
+ if image_data is None or "layers" not in image_data or not image_data["layers"]:
42
+ raise gr.Error("Please draw a mask over the clothing area before generating!")
43
+
44
+ # Check if mask is empty (all black)
45
+ mask = image_data["layers"][0]
46
+ mask_array = np.array(mask)
47
+ if np.all(mask_array < 10):
48
+ raise gr.Error("The mask is empty! Please draw over the clothing area you want to replace.")
49
+
50
+ # Use temporary directory
51
+ with tempfile.TemporaryDirectory() as tmp_dir:
52
+ # Save inputs to temp directory
53
+ temp_image = os.path.join(tmp_dir, "image.png")
54
+ temp_mask = os.path.join(tmp_dir, "mask.png")
55
+ temp_garment = os.path.join(tmp_dir, "garment.png")
56
+
57
+ # Extract image and mask from ImageEditor data
58
+ image = image_data["background"]
59
+ mask = image_data["layers"][0] # First layer contains the mask
60
+
61
+ # Convert to numpy array and process mask
62
+ mask_array = np.array(mask)
63
+ is_black = np.all(mask_array < 10, axis=2)
64
+ mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
65
+
66
+ # Save files to temp directory
67
+ image.save(temp_image)
68
+ mask.save(temp_mask)
69
+ garment.save(temp_garment)
70
+
71
+ try:
72
+ # Run inference
73
+ _, tryon_result = run_inference(
74
+ pipe=pipe,
75
+ image_path=temp_image,
76
+ mask_path=temp_mask,
77
+ garment_path=temp_garment,
78
+ num_steps=num_steps,
79
+ guidance_scale=guidance_scale,
80
+ seed=seed,
81
+ size=(width, height)
82
+ )
83
+ return tryon_result
84
+ except Exception as e:
85
+ raise gr.Error(f"Error during inference: {str(e)}")
86
+
87
+ with gr.Blocks() as demo:
88
+ gr.Markdown("""
89
+ # CATVTON FLUX Virtual Try-On Demo
90
+ Upload a model image, draw a mask, and a garment image to generate virtual try-on results.
91
+
92
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha)
93
+ [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux)
94
+ """)
95
+
96
+ # gr.Video("example/github.mp4", label="Demo Video: How to use the tool")
97
+
98
+ with gr.Column():
99
+ gr.Markdown("""
100
+ ### ⚠️ Important:
101
+ 1. Choose a model image or upload your own
102
+ 2. Use the Pen tool to draw a mask over the clothing area you want to replace
103
+ 3. Choose a garment image or upload your own
104
+ """)
105
+
106
+ with gr.Row():
107
+ with gr.Column():
108
+ image_input = gr.ImageMask(
109
+ label="Model Image (Click 'Edit' and draw mask over the clothing area)",
110
+ type="pil",
111
+ height=600,
112
+ width=300
113
+ )
114
+ gr.Examples(
115
+ examples=[
116
+ ["./example/person/00008_00.jpg"],
117
+ ["./example/person/00055_00.jpg"],
118
+ ["./example/person/00057_00.jpg"],
119
+ ["./example/person/00067_00.jpg"],
120
+ ["./example/person/00069_00.jpg"],
121
+ ],
122
+ inputs=[image_input],
123
+ label="Person Images",
124
+ )
125
+ with gr.Column():
126
+ garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300)
127
+ gr.Examples(
128
+ examples=[
129
+ ["./example/garment/04564_00.jpg"],
130
+ ["./example/garment/00055_00.jpg"],
131
+ ["./example/garment/00396_00.jpg"],
132
+ ["./example/garment/00067_00.jpg"],
133
+ ["./example/garment/00069_00.jpg"],
134
+ ],
135
+ inputs=[garment_input],
136
+ label="Garment Images",
137
+ )
138
+ with gr.Column():
139
+ tryon_output = gr.Image(label="Try-On Result", height=600, width=300)
140
+
141
+ with gr.Row():
142
+ num_steps = gr.Slider(
143
+ minimum=1,
144
+ maximum=100,
145
+ value=30,
146
+ step=1,
147
+ label="Number of Steps"
148
+ )
149
+ guidance_scale = gr.Slider(
150
+ minimum=1.0,
151
+ maximum=50.0,
152
+ value=30.0,
153
+ step=0.5,
154
+ label="Guidance Scale"
155
+ )
156
+ seed = gr.Slider(
157
+ minimum=-1,
158
+ maximum=2147483647,
159
+ step=1,
160
+ value=-1,
161
+ label="Seed (-1 for random)"
162
+ )
163
+ width = gr.Slider(
164
+ minimum=256,
165
+ maximum=1024,
166
+ step=64,
167
+ value=768,
168
+ label="Width"
169
+ )
170
+ height = gr.Slider(
171
+ minimum=256,
172
+ maximum=1024,
173
+ step=64,
174
+ value=1024,
175
+ label="Height"
176
+ )
177
+
178
+
179
+ submit_btn = gr.Button("Generate Try-On", variant="primary")
180
+
181
+
182
+ with gr.Row():
183
+ gr.Markdown("""
184
+ ### Notes:
185
+ - The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation.
186
+ - The mask should indicate the region where the garment will be placed.
187
+ - The garment image should be on a clean background.
188
+ - The model is not perfect. It may generate some artifacts.
189
+ - The model is slow. Please be patient.
190
+ - The model is just for research purpose.
191
+ """)
192
+
193
+ submit_btn.click(
194
+ fn=gradio_inference,
195
+ inputs=[
196
+ image_input,
197
+ garment_input,
198
+ num_steps,
199
+ guidance_scale,
200
+ seed,
201
+ width,
202
+ height
203
+ ],
204
+ outputs=[tryon_output],
205
+ api_name="try-on"
206
+ )
207
+
208
+
209
+ demo.launch()