Spaces:
Sleeping
Sleeping
import aiofiles | |
import asyncio | |
import base64 | |
import cv2 | |
import fitz | |
import glob | |
import io | |
import json | |
import logging | |
import math | |
import mistune | |
import os | |
import pandas as pd | |
import pytz | |
import random | |
import re | |
import requests | |
import shutil | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import sys | |
import textract | |
import time | |
import torch | |
import zipfile | |
from audio_recorder_streamlit import audio_recorder | |
from bs4 import BeautifulSoup | |
from collections import deque | |
from contextlib import redirect_stdout | |
from dataclasses import dataclass | |
from datetime import datetime | |
from diffusers import StableDiffusionPipeline | |
from dotenv import load_dotenv | |
from gradio_client import Client, handle_file | |
from huggingface_hub import InferenceClient | |
from io import BytesIO | |
from moviepy import VideoFileClip | |
from openai import OpenAI | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel | |
from typing import Optional | |
from urllib.parse import quote | |
from xml.etree import ElementTree as ET | |
# OpenAI client initialization | |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) | |
# Logging setup | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
log_records = [] | |
class LogCaptureHandler(logging.Handler): | |
def emit(self, record): | |
log_records.append(record) | |
logger.addHandler(LogCaptureHandler()) | |
# Streamlit configuration | |
st.set_page_config( | |
page_title="AI Multimodal Titan 🚀", | |
page_icon="🤖", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a Bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "AI Multimodal Titan: PDFs, OCR, Image Gen, Audio/Video, Code Execution, and More! 🌌" | |
} | |
) | |
# Session state initialization | |
for key in ['history', 'messages', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'search_queries']: | |
st.session_state.setdefault(key, [] if key in ['history', 'messages', 'search_queries'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else 0 if key == 'unique_counter' else None) | |
st.session_state.setdefault('builder', None) | |
st.session_state.setdefault('model_loaded', False) | |
st.session_state.setdefault('selected_model_type', "Causal LM") | |
st.session_state.setdefault('selected_model', "None") | |
st.session_state.setdefault('gallery_size', 2) | |
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty()) | |
st.session_state.setdefault('cam0_file', None) | |
st.session_state.setdefault('cam1_file', None) | |
st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13") | |
# Model configurations | |
class ModelConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
model_type: str = "causal_lm" | |
def model_path(self): | |
return f"models/{self.name}" | |
class DiffusionConfig: | |
name: str | |
base_model: str | |
size: str | |
domain: Optional[str] = None | |
def model_path(self): | |
return f"diffusion_models/{self.name}" | |
class ModelBuilder: | |
def __init__(self): | |
self.config = None | |
self.model = None | |
self.tokenizer = None | |
self.jokes = [ | |
"Why did the AI go to therapy? Too many layers to unpack! 😂", | |
"Training complete! Time for a binary coffee break. ☕", | |
"I told my neural network a joke; it couldn't stop dropping bits! 🤖", | |
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' 😄", | |
"Debugging my code is like a stand-up routine—always a series of exceptions! 😆" | |
] | |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): | |
with st.spinner(f"Loading {model_path}... ⏳"): | |
self.model = AutoModelForCausalLM.from_pretrained(model_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
if config: | |
self.config = config | |
self.model.to("cuda" if torch.cuda.is_available() else "cpu") | |
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.model.save_pretrained(path) | |
self.tokenizer.save_pretrained(path) | |
st.success(f"Model saved at {path}! ✅") | |
class DiffusionBuilder: | |
def __init__(self): | |
self.config = None | |
self.pipeline = None | |
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): | |
with st.spinner(f"Loading diffusion model {model_path}... ⏳"): | |
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu") | |
if config: | |
self.config = config | |
st.success("Diffusion model loaded! 🎨") | |
return self | |
def save_model(self, path: str): | |
with st.spinner("Saving diffusion model... 💾"): | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
self.pipeline.save_pretrained(path) | |
st.success(f"Diffusion model saved at {path}! ✅") | |
def generate(self, prompt: str): | |
return self.pipeline(prompt, num_inference_steps=20).images[0] | |
# Utility functions | |
def generate_filename(sequence, ext="png", prompt=None): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
if prompt: | |
safe_prompt = re.sub(r'[<>:"/\\|?*\n]', '_', prompt)[:240] | |
return f"{safe_date_time}_{safe_prompt}.{ext}" | |
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}" | |
def pdf_url_to_filename(url): | |
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf" | |
def get_download_link(file_path, mime_type="application/pdf", label="Download"): | |
with open(file_path, "rb") as f: | |
data = base64.b64encode(f.read()).decode() | |
return f'<a href="data:{mime_type};base64,{data}" download="{os.path.basename(file_path)}">{label}</a>' | |
def zip_directory(directory_path, zip_path): | |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
for root, _, files in os.walk(directory_path): | |
for file in files: | |
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) | |
def get_model_files(model_type="causal_lm"): | |
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"] | |
def get_gallery_files(file_types=["png", "pdf", "md", "wav", "mp4"]): | |
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")})) | |
def get_pdf_files(): | |
return sorted(glob.glob("*.pdf")) | |
def download_pdf(url, output_path): | |
try: | |
response = requests.get(url, stream=True, timeout=10) | |
if response.status_code == 200: | |
with open(output_path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
return True | |
except requests.RequestException as e: | |
logger.error(f"Failed to download {url}: {e}") | |
return False | |
# Processing functions | |
async def process_pdf_snapshot(pdf_path, mode="single"): | |
start_time = time.time() | |
status = st.empty() | |
status.text(f"Processing PDF Snapshot ({mode})... (0s)") | |
try: | |
doc = fitz.open(pdf_path) | |
output_files = [] | |
if mode == "single": | |
page = doc[0] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
output_file = generate_filename("single", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
elif mode == "twopage": | |
if len(doc) >= 2: | |
pix1 = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
pix2 = doc[1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples) | |
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples) | |
combined_img = Image.new("RGB", (pix1.width + pix2.width, max(pix1.height, pix2.height))) | |
combined_img.paste(img1, (0, 0)) | |
combined_img.paste(img2, (pix1.width, 0)) | |
output_file = generate_filename("twopage", "png") | |
combined_img.save(output_file) | |
output_files.append(output_file) | |
else: | |
page = doc[0] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
output_file = generate_filename("single", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
elif mode == "allpages": | |
for i in range(len(doc)): | |
page = doc[i] | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
output_file = generate_filename(f"page_{i}", "png") | |
pix.save(output_file) | |
output_files.append(output_file) | |
doc.close() | |
elapsed = int(time.time() - start_time) | |
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!") | |
return output_files | |
except Exception as e: | |
status.error(f"Failed to process PDF: {str(e)}") | |
return [] | |
async def process_ocr(image, output_file): | |
start_time = time.time() | |
status = st.empty() | |
status.text("Processing GOT-OCR2_0... (0s)") | |
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True) | |
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval() | |
temp_file = generate_filename("temp", "png") | |
image.save(temp_file) | |
result = model.chat(tokenizer, temp_file, ocr_type='ocr') | |
os.remove(temp_file) | |
elapsed = int(time.time() - start_time) | |
status.text(f"GOT-OCR2_0 completed in {elapsed}s!") | |
async with aiofiles.open(output_file, "w") as f: | |
await f.write(result) | |
return result | |
async def process_image_gen(prompt, output_file): | |
start_time = time.time() | |
status = st.empty() | |
status.text("Processing Image Gen... (0s)") | |
pipeline = (st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")) | |
gen_image = pipeline(prompt, num_inference_steps=20).images[0] | |
elapsed = int(time.time() - start_time) | |
status.text(f"Image Gen completed in {elapsed}s!") | |
gen_image.save(output_file) | |
return gen_image | |
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"): | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}] | |
try: | |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"Error processing image with GPT: {str(e)}" | |
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"): | |
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}] | |
try: | |
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"Error processing text with GPT: {str(e)}" | |
def process_text(text_input): | |
if text_input: | |
st.session_state.messages.append({"role": "user", "content": text_input}) | |
with st.chat_message("user"): | |
st.markdown(text_input) | |
with st.chat_message("assistant"): | |
completion = client.chat.completions.create(model=st.session_state["openai_model"], messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False) | |
return_text = completion.choices[0].message.content | |
st.write("Assistant: " + return_text) | |
filename = generate_filename(text_input, "md") | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(text_input + "\n\n" + return_text) | |
st.session_state.messages.append({"role": "assistant", "content": return_text}) | |
return return_text | |
def process_audio(audio_input, text_input=''): | |
if isinstance(audio_input, str): | |
with open(audio_input, "rb") as file: | |
audio_input = file.read() | |
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input) | |
st.session_state.messages.append({"role": "user", "content": transcription.text}) | |
with st.chat_message("assistant"): | |
st.markdown(transcription.text) | |
SpeechSynthesis(transcription.text) | |
filename = generate_filename(transcription.text, "wav") | |
create_audio_file(filename, audio_input, True) | |
filename = generate_filename(transcription.text, "md") | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(transcription.text + "\n\n" + transcription.text) | |
return transcription.text | |
def process_video(video_path, user_prompt): | |
base64Frames, audio_path = process_video_frames(video_path) | |
with open(video_path, "rb") as file: | |
transcription = client.audio.transcriptions.create(model="whisper-1", file=file) | |
response = client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"}, | |
{"role": "user", "content": [ | |
"These are the frames from the video.", | |
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), | |
{"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{user_prompt}"} | |
]} | |
], | |
temperature=0, | |
) | |
video_response = response.choices[0].message.content | |
filename_md = generate_filename(video_path + '- ' + video_response, "md") | |
with open(filename_md, "w", encoding="utf-8") as f: | |
f.write(video_response) | |
return video_response | |
def process_video_frames(video_path, seconds_per_frame=2): | |
base64Frames = [] | |
base_video_path, _ = os.path.splitext(video_path) | |
video = cv2.VideoCapture(video_path) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = video.get(cv2.CAP_PROP_FPS) | |
frames_to_skip = int(fps * seconds_per_frame) | |
curr_frame = 0 | |
while curr_frame < total_frames - 1: | |
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) | |
success, frame = video.read() | |
if not success: | |
break | |
_, buffer = cv2.imencode(".jpg", frame) | |
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | |
curr_frame += frames_to_skip | |
video.release() | |
audio_path = f"{base_video_path}.mp3" | |
try: | |
clip = VideoFileClip(video_path) | |
clip.audio.write_audiofile(audio_path, bitrate="32k") | |
clip.audio.close() | |
clip.close() | |
except: | |
logger.info("No audio track found in video.") | |
return base64Frames, audio_path | |
def execute_code(code): | |
buffer = io.StringIO() | |
try: | |
with redirect_stdout(buffer): | |
exec(code, {}, {}) | |
return buffer.getvalue(), None | |
except Exception as e: | |
return None, str(e) | |
finally: | |
buffer.close() | |
def extract_python_code(markdown_text): | |
pattern = r"```python\s*(.*?)\s*```" | |
matches = re.findall(pattern, markdown_text, re.DOTALL) | |
return matches | |
def SpeechSynthesis(result): | |
documentHTML5 = f''' | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Read It Aloud</title> | |
<script type="text/javascript"> | |
function readAloud() {{ | |
const text = document.getElementById("textArea").value; | |
const speech = new SpeechSynthesisUtterance(text); | |
window.speechSynthesis.speak(speech); | |
}} | |
</script> | |
</head> | |
<body> | |
<h1>🔊 Read It Aloud</h1> | |
<textarea id="textArea" rows="10" cols="80">{result}</textarea> | |
<br> | |
<button onclick="readAloud()">🔊 Read Aloud</button> | |
</body> | |
</html> | |
''' | |
components.html(documentHTML5, width=1280, height=300) | |
def search_arxiv(query): | |
start_time = time.strftime("%Y-%m-%d %H:%M:%S") | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
response1 = client.predict(message="Hello!!", llm_results_use=5, database_choice="Semantic Search", llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", api_name="/update_with_rag_md") | |
Question = f'### 🔎 {query}\r\n' | |
References = response1[0] | |
References2 = response1[1] | |
filename = generate_filename(query, "md") | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(Question + References + References2) | |
st.session_state.messages.append({"role": "assistant", "content": References + References2}) | |
response2 = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm") | |
if len(response2) > 10: | |
Answer = response2 | |
SpeechSynthesis(Answer) | |
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + References2 | |
return results | |
return References + References2 | |
roleplaying_glossary = { | |
"🤖 AI Concepts": { | |
"MoE (Mixture of Experts) 🧠": [ | |
"As a leading AI health researcher, provide an overview of MoE, MAS, memory, and mirroring in healthcare applications.", | |
"Explain how MoE and MAS can be leveraged to create AGI and AMI systems for healthcare, as an AI architect." | |
], | |
"Multi Agent Systems (MAS) 🤝": [ | |
"As a renowned MAS researcher, describe the key characteristics of distributed, autonomous, and cooperative MAS.", | |
"Discuss how MAS is applied in robotics, simulations, and decentralized problem-solving, as an AI engineer." | |
] | |
} | |
} | |
def display_glossary_grid(roleplaying_glossary): | |
search_urls = { | |
"🚀🌌ArXiv": lambda k: f"/?q={quote(k)}", | |
"📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", | |
"🔍": lambda k: f"https://www.google.com/search?q={quote(k)}" | |
} | |
for category, details in roleplaying_glossary.items(): | |
st.write(f"### {category}") | |
cols = st.columns(len(details)) | |
for idx, (game, terms) in enumerate(details.items()): | |
with cols[idx]: | |
st.markdown(f"#### {game}") | |
for term in terms: | |
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) | |
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True) | |
def create_zip_of_files(files): | |
zip_name = "assets.zip" | |
with zipfile.ZipFile(zip_name, 'w') as zipf: | |
for file in files: | |
zipf.write(file) | |
return zip_name | |
def get_zip_download_link(zip_file): | |
with open(zip_file, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
def FileSidebar(): | |
all_files = glob.glob("*.md") | |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] | |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) | |
Files1, Files2 = st.sidebar.columns(2) | |
with Files1: | |
if st.button("🗑 Delete All"): | |
for file in all_files: | |
os.remove(file) | |
st.rerun() | |
with Files2: | |
if st.button("⬇️ Download"): | |
zip_file = create_zip_of_files(all_files) | |
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) | |
file_contents = '' | |
file_name = '' | |
next_action = '' | |
for file in all_files: | |
col1, col2, col3, col4, col5 = st.sidebar.columns([1, 6, 1, 1, 1]) | |
with col1: | |
if st.button("🌐", key=f"md_{file}"): | |
with open(file, "r", encoding='utf-8') as f: | |
file_contents = f.read() | |
file_name = file | |
next_action = 'md' | |
st.session_state['next_action'] = next_action | |
with col2: | |
st.markdown(get_download_link(file, "text/markdown", file)) | |
with col3: | |
if st.button("📂", key=f"open_{file}"): | |
with open(file, "r", encoding='utf-8') as f: | |
file_contents = f.read() | |
file_name = file | |
next_action = 'open' | |
st.session_state['lastfilename'] = file | |
st.session_state['filename'] = file | |
st.session_state['filetext'] = file_contents | |
st.session_state['next_action'] = next_action | |
with col4: | |
if st.button("▶️", key=f"read_{file}"): | |
with open(file, "r", encoding='utf-8') as f: | |
file_contents = f.read() | |
file_name = file | |
next_action = 'search' | |
st.session_state['next_action'] = next_action | |
with col5: | |
if st.button("🗑", key=f"delete_{file}"): | |
os.remove(file) | |
file_name = file | |
st.rerun() | |
next_action = 'delete' | |
st.session_state['next_action'] = next_action | |
if len(file_contents) > 0: | |
if next_action == 'open': | |
if 'lastfilename' not in st.session_state: | |
st.session_state['lastfilename'] = '' | |
if 'filename' not in st.session_state: | |
st.session_state['filename'] = '' | |
if 'filetext' not in st.session_state: | |
st.session_state['filetext'] = '' | |
open1, open2 = st.columns([.8, .2]) | |
with open1: | |
file_name_input = st.text_input(key='file_name_input', label="File Name:", value=file_name) | |
file_content_area = st.text_area(key='file_content_area', label="File Contents:", value=file_contents, height=300) | |
if file_name_input != file_name: | |
os.rename(file_name, file_name_input) | |
st.markdown(f'Renamed file {file_name} to {file_name_input}.') | |
if file_content_area != file_contents: | |
with open(file_name_input, 'w', encoding='utf-8') as f: | |
f.write(file_content_area) | |
st.markdown(f'Saved {file_name_input}.') | |
if next_action == 'search': | |
st.text_area("File Contents:", file_contents, height=500) | |
filesearch = "Create a streamlit python user app with full code listing: " + file_contents | |
st.markdown(filesearch) | |
if st.button(key='rerun', label='🔍Re-Code'): | |
result = search_arxiv(filesearch) | |
st.markdown(result) | |
if next_action == 'md': | |
st.markdown(file_contents) | |
SpeechSynthesis(file_contents) | |
FileSidebar() | |
# Tabs | |
tabs = st.tabs(["Camera 📷", "Download 📥", "OCR 🔍", "Build 🌱", "Image Gen 🎨", "PDF 📄", "Image 🖼️", "Audio 🎵", "Video 🎥", "Code 🧑💻", "Gallery 📚", "Search 🔎"]) | |
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery, tab_search) = tabs | |
with tab_camera: | |
st.header("Camera Snap 📷") | |
cols = st.columns(2) | |
for i, cam_key in enumerate(["cam0", "cam1"]): | |
with cols[i]: | |
cam_img = st.camera_input(f"Take a picture - Cam {i}", key=cam_key) | |
if cam_img: | |
filename = generate_filename(f"cam{i}", "png") | |
if st.session_state[f'cam{i}_file'] and os.path.exists(st.session_state[f'cam{i}_file']): | |
os.remove(st.session_state[f'cam{i}_file']) | |
with open(filename, "wb") as f: | |
f.write(cam_img.getvalue()) | |
st.session_state[f'cam{i}_file'] = filename | |
st.session_state['history'].append(f"Snapshot from Cam {i}: {filename}") | |
st.image(Image.open(filename), caption=f"Camera {i}", use_container_width=True) | |
with tab_download: | |
st.header("Download PDFs 📥") | |
if st.button("Examples 📚"): | |
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703"] | |
st.session_state['pdf_urls'] = "\n".join(example_urls) | |
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200) | |
if st.button("Robo-Download 🤖"): | |
urls = url_input.strip().split("\n") | |
progress_bar = st.progress(0) | |
for idx, url in enumerate(urls): | |
if url: | |
output_path = pdf_url_to_filename(url) | |
if download_pdf(url, output_path): | |
st.session_state['downloaded_pdfs'][url] = output_path | |
st.session_state['history'].append(f"Downloaded PDF: {output_path}") | |
st.session_state['asset_checkboxes'][output_path] = True | |
progress_bar.progress((idx + 1) / len(urls)) | |
with tab_ocr: | |
st.header("Test OCR 🔍") | |
all_files = get_gallery_files() | |
if all_files: | |
if st.button("OCR All Assets 🚀"): | |
full_text = "# OCR Results\n\n" | |
for file in all_files: | |
if file.endswith('.png'): | |
image = Image.open(file) | |
else: | |
doc = fitz.open(file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
doc.close() | |
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt") | |
result = asyncio.run(process_ocr(image, output_file)) | |
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n" | |
st.session_state['history'].append(f"OCR Test: {file} -> {output_file}") | |
md_output_file = generate_filename("full_ocr", "md") | |
with open(md_output_file, "w") as f: | |
f.write(full_text) | |
st.success(f"Full OCR saved to {md_output_file}") | |
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True) | |
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select") | |
if selected_file: | |
if selected_file.endswith('.png'): | |
image = Image.open(selected_file) | |
else: | |
doc = fitz.open(selected_file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
doc.close() | |
st.image(image, caption="Input Image", use_container_width=True) | |
if st.button("Run OCR 🚀", key="ocr_run"): | |
output_file = generate_filename("ocr_output", "txt") | |
result = asyncio.run(process_ocr(image, output_file)) | |
st.text_area("OCR Result", result, height=200) | |
st.session_state['history'].append(f"OCR Test: {selected_file} -> {output_file}") | |
with tab_build: | |
st.header("Build Titan 🌱") | |
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type") | |
base_model = st.selectbox("Select Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"]) | |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") | |
if st.button("Download Model ⬇️"): | |
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small") | |
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder() | |
builder.load_model(base_model, config) | |
builder.save_model(config.model_path) | |
st.session_state['builder'] = builder | |
st.session_state['model_loaded'] = True | |
with tab_imggen: | |
st.header("Test Image Gen 🎨") | |
prompt = st.text_area("Prompt", "Generate a futuristic cityscape") | |
if st.button("Run Image Gen 🚀"): | |
output_file = generate_filename("gen_output", "png", prompt=prompt) | |
result = asyncio.run(process_image_gen(prompt, output_file)) | |
st.image(result, caption="Generated Image", use_container_width=True) | |
st.session_state['history'].append(f"Image Gen Test: {prompt} -> {output_file}") | |
with tab_pdf: | |
st.header("PDF Process 📄") | |
uploaded_pdfs = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True) | |
view_mode = st.selectbox("View Mode", ["Single Page", "Two Pages"], key="pdf_view_mode") | |
if st.button("Process PDFs"): | |
for pdf_file in uploaded_pdfs: | |
pdf_path = generate_filename(pdf_file.name, "pdf") | |
with open(pdf_path, "wb") as f: | |
f.write(pdf_file.read()) | |
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, "twopage" if view_mode == "Two Pages" else "single")) | |
for snapshot in snapshots: | |
st.image(Image.open(snapshot), caption=snapshot) | |
text = process_image_with_prompt(Image.open(snapshot), "Extract the electronic text from image") | |
st.text_area(f"Extracted Text from {snapshot}", text) | |
code_prompt = f"Generate Python code based on this text:\n\n{text}" | |
code = process_text_with_prompt(text, code_prompt) | |
st.code(code, language="python") | |
if st.button(f"Execute Code from {snapshot}"): | |
output, error = execute_code(code) | |
if error: | |
st.error(f"Error: {error}") | |
else: | |
st.success(f"Output: {output or 'No output'}") | |
with tab_image: | |
st.header("Image Process 🖼️") | |
uploaded_images = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True) | |
prompt = st.text_input("Prompt", "Extract the electronic text from image") | |
if st.button("Process Images"): | |
for img_file in uploaded_images: | |
img = Image.open(img_file) | |
st.image(img, caption=img_file.name) | |
result = process_image_with_prompt(img, prompt) | |
st.text_area(f"Result for {img_file.name}", result) | |
with tab_audio: | |
st.header("Audio Process 🎵") | |
audio_bytes = audio_recorder() | |
if audio_bytes: | |
filename = generate_filename("recording", "wav") | |
with open(filename, "wb") as f: | |
f.write(audio_bytes) | |
st.audio(filename) | |
process_audio(filename) | |
with tab_video: | |
st.header("Video Process 🎥") | |
video_input = st.file_uploader("Upload Video", type=["mp4"]) | |
if video_input: | |
video_path = generate_filename(video_input.name, "mp4") | |
with open(video_path, "wb") as f: | |
f.write(video_input.read()) | |
st.video(video_path) | |
result = process_video(video_path, "Summarize this video in markdown") | |
st.markdown(result) | |
with tab_code: | |
st.header("Code Executor 🧑💻") | |
uploaded_file = st.file_uploader("📤 Upload a Python (.py) or Markdown (.md) file", type=['py', 'md']) | |
if 'code' not in st.session_state: | |
st.session_state.code = '''import streamlit as st\nst.write("Hello, World!")''' | |
if uploaded_file: | |
content = uploaded_file.getvalue().decode() | |
if uploaded_file.type == "text/markdown": | |
code_blocks = extract_python_code(content) | |
code_input = code_blocks[0] if code_blocks else "" | |
else: | |
code_input = content | |
else: | |
code_input = st.text_area("Python Code", value=st.session_state.code, height=400) | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
if st.button("▶️ Run Code"): | |
output, error = execute_code(code_input) | |
if error: | |
st.error(f"Error: {error}") | |
else: | |
st.success(f"Output: {output or 'No output'}") | |
with col2: | |
if st.button("🗑️ Clear Code"): | |
st.session_state.code = "" | |
st.rerun() | |
with tab_gallery: | |
st.header("Gallery 📚") | |
all_files = get_gallery_files() | |
for file in all_files: | |
if file.endswith('.png'): | |
st.image(Image.open(file), caption=file) | |
elif file.endswith('.pdf'): | |
doc = fitz.open(file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) | |
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=file) | |
doc.close() | |
elif file.endswith('.md'): | |
with open(file, "r") as f: | |
st.markdown(f.read()) | |
elif file.endswith('.wav'): | |
st.audio(file) | |
elif file.endswith('.mp4'): | |
st.video(file) | |
with tab_search: | |
st.header("ArXiv Search 🔎") | |
query = st.text_input("Search ArXiv", "") | |
if query: | |
result = search_arxiv(query) | |
st.markdown(result) | |
# Sidebar | |
st.sidebar.subheader("Gallery Settings") | |
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider") | |
st.sidebar.subheader("Action Logs 📜") | |
for record in log_records: | |
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}") | |
st.sidebar.subheader("History 📜") | |
for entry in st.session_state.get("history", []): | |
if entry: | |
st.sidebar.write(entry) | |
def update_gallery(): | |
container = st.session_state['asset_gallery_container'] | |
container.empty() | |
all_files = get_gallery_files() | |
if all_files: | |
container.markdown("### Asset Gallery 📸📖") | |
cols = container.columns(2) | |
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]): | |
with cols[idx % 2]: | |
if file.endswith('.png'): | |
st.image(Image.open(file), caption=os.path.basename(file)) | |
elif file.endswith('.pdf'): | |
doc = fitz.open(file) | |
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) | |
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=os.path.basename(file)) | |
doc.close() | |
st.checkbox("Select", key=f"asset_{file}", value=st.session_state['asset_checkboxes'].get(file, False)) | |
st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True) | |
if st.button("Delete", key=f"delete_{file}"): | |
os.remove(file) | |
st.session_state['asset_checkboxes'].pop(file, None) | |
st.experimental_rerun() | |
update_gallery() | |
# Chatbot | |
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
completion = client.chat.completions.create(model=st.session_state["openai_model"], messages=st.session_state.messages, stream=True) | |
response = "" | |
for chunk in completion: | |
if chunk.choices[0].delta.content: | |
response += chunk.choices[0].delta.content | |
st.write(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |