Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import os
|
|
7 |
TITLE = "✍️ AI Story Outliner"
|
8 |
DESCRIPTION = """
|
9 |
Enter a prompt and get 10 unique story outlines from a CPU-friendly AI model.
|
10 |
-
The app uses **
|
11 |
|
12 |
**How it works:**
|
13 |
1. Enter your story idea.
|
@@ -25,36 +25,21 @@ examples = [
|
|
25 |
]
|
26 |
|
27 |
# --- Model Initialization ---
|
28 |
-
# This section loads a smaller, CPU-friendly model.
|
29 |
-
# It will automatically use the HF_TOKEN secret when deployed on Hugging Face Spaces.
|
30 |
generator = None
|
31 |
model_error = None
|
32 |
|
33 |
try:
|
34 |
print("Initializing model... This may take a moment.")
|
35 |
|
36 |
-
#
|
37 |
-
# This makes the authentication more robust, overriding any bad default credentials.
|
38 |
-
hf_token = os.environ.get("HF_TOKEN")
|
39 |
-
|
40 |
-
# Add a check to see if the token was loaded correctly.
|
41 |
-
if hf_token:
|
42 |
-
print("✅ HF_TOKEN secret found.")
|
43 |
-
else:
|
44 |
-
print("⚠️ HF_TOKEN secret not found. Please ensure it is set in your Hugging Face Space settings.")
|
45 |
-
# Raise an error to stop the app from proceeding without a token.
|
46 |
-
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN secret.")
|
47 |
-
|
48 |
-
# Using a smaller model from the user's list.
|
49 |
-
# Passing the token explicitly to ensure correct authentication.
|
50 |
generator = pipeline(
|
51 |
"text-generation",
|
52 |
-
model="
|
53 |
-
torch_dtype=torch.
|
54 |
-
device_map="auto"
|
55 |
-
token=hf_token
|
56 |
)
|
57 |
-
print("✅
|
58 |
|
59 |
except Exception as e:
|
60 |
model_error = e
|
@@ -76,31 +61,42 @@ def generate_stories(prompt: str) -> list[str]:
|
|
76 |
# Return a list of 10 empty strings to clear the outputs
|
77 |
return [""] * 10
|
78 |
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Parameters for the pipeline to generate 10 diverse results.
|
85 |
params = {
|
86 |
"max_new_tokens": 250,
|
87 |
"num_return_sequences": 10,
|
88 |
"do_sample": True,
|
89 |
-
"temperature": 0.
|
|
|
90 |
"top_p": 0.95,
|
91 |
-
"pad_token_id": generator.tokenizer.eos_token_id
|
92 |
}
|
93 |
|
94 |
# Generate 10 different story variations
|
95 |
outputs = generator(story_prompt, **params)
|
96 |
|
97 |
-
# Extract the generated text
|
98 |
stories = []
|
99 |
for out in outputs:
|
100 |
-
# Remove the prompt part from the full generated text
|
101 |
full_text = out['generated_text']
|
102 |
-
|
103 |
-
stories.append(assistant_response)
|
104 |
|
105 |
# Ensure we return exactly 10 stories, padding if necessary.
|
106 |
while len(stories) < 10:
|
|
|
7 |
TITLE = "✍️ AI Story Outliner"
|
8 |
DESCRIPTION = """
|
9 |
Enter a prompt and get 10 unique story outlines from a CPU-friendly AI model.
|
10 |
+
The app uses **GPT-2**, a reliable and well-established model, to generate creative outlines.
|
11 |
|
12 |
**How it works:**
|
13 |
1. Enter your story idea.
|
|
|
25 |
]
|
26 |
|
27 |
# --- Model Initialization ---
|
28 |
+
# This section loads a smaller, stable, and CPU-friendly model that requires no authentication.
|
|
|
29 |
generator = None
|
30 |
model_error = None
|
31 |
|
32 |
try:
|
33 |
print("Initializing model... This may take a moment.")
|
34 |
|
35 |
+
# Using 'gpt2', a stable and widely supported model that does not require a token.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
generator = pipeline(
|
37 |
"text-generation",
|
38 |
+
model="gpt2",
|
39 |
+
torch_dtype=torch.float32, # Use float32 for wider CPU compatibility
|
40 |
+
device_map="auto" # Will use GPU if available, otherwise CPU
|
|
|
41 |
)
|
42 |
+
print("✅ GPT-2 model loaded successfully!")
|
43 |
|
44 |
except Exception as e:
|
45 |
model_error = e
|
|
|
61 |
# Return a list of 10 empty strings to clear the outputs
|
62 |
return [""] * 10
|
63 |
|
64 |
+
# A generic story prompt that works well with models like GPT-2.
|
65 |
+
story_prompt = f"""
|
66 |
+
Story Idea: "{prompt}"
|
67 |
+
|
68 |
+
Create a short story outline based on this idea.
|
69 |
+
|
70 |
+
### 🎬 The Hook
|
71 |
+
A dramatic opening.
|
72 |
+
|
73 |
+
### 🎼 The Ballad
|
74 |
+
The main story, told concisely.
|
75 |
+
|
76 |
+
### 🔚 The Finale
|
77 |
+
A clear and satisfying ending.
|
78 |
+
---
|
79 |
+
"""
|
80 |
|
81 |
# Parameters for the pipeline to generate 10 diverse results.
|
82 |
params = {
|
83 |
"max_new_tokens": 250,
|
84 |
"num_return_sequences": 10,
|
85 |
"do_sample": True,
|
86 |
+
"temperature": 0.9,
|
87 |
+
"top_k": 50,
|
88 |
"top_p": 0.95,
|
89 |
+
"pad_token_id": generator.tokenizer.eos_token_id
|
90 |
}
|
91 |
|
92 |
# Generate 10 different story variations
|
93 |
outputs = generator(story_prompt, **params)
|
94 |
|
95 |
+
# Extract the generated text. GPT-2 will continue from the prompt.
|
96 |
stories = []
|
97 |
for out in outputs:
|
|
|
98 |
full_text = out['generated_text']
|
99 |
+
stories.append(full_text)
|
|
|
100 |
|
101 |
# Ensure we return exactly 10 stories, padding if necessary.
|
102 |
while len(stories) < 10:
|