File size: 15,585 Bytes
7042c3c 4a6af9d 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 4a6af9d 7042c3c 4a6af9d 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 4a6af9d 7042c3c 21cb336 7042c3c 21cb336 7042c3c 21cb336 4a6af9d 21cb336 7042c3c 21cb336 7042c3c 21cb336 7042c3c 4a6af9d 7042c3c 4a6af9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import ast
#core libraries
from langchain_core.runnables import RunnableConfig
from langchain_core.messages import (
AIMessage,
)
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts.chat import ChatPromptTemplate
from langchain import hub
from langgraph.graph import (
END,
StateGraph,
)
from ea4all.src.ea4all_gra.configuration import AgentConfiguration
from ea4all.src.ea4all_gra.data import (
CapabilityGap,
GradeAnswer,
GradeDocuments,
LandscapeAsIs,
)
from ea4all.src.shared.utils import (
get_llm_client,
extract_structured_output,
extract_topic_from_business_input,
set_max_new_tokens,
get_predicted_num_tokens_from_prompt,
)
from ea4all.src.shared.prompts import (
LLAMA31_CHAT_PROMPT_FORMAT,
LLAMA31_PROMPT_FORMAT,
)
from ea4all.src.shared import vectorstore
from ea4all.src.ea4all_gra.togaf_task2.state import Task2State
from ea4all.src.ea4all_apm.graph import get_retrieval_chain
# Retrieval Grader score whether retrieved IT Landscape address business query
def retrieval_grader(model):
# LLM with function call
structured_llm_grader = model.with_structured_output(GradeDocuments)
#Prompt
system = """You are an enterprise architect grader assessing relevance of applications to address a business query.
It does not need to be a stringent test. The objective is to filter out erroneous retrievals.
If the application contains any keyword or semantic meaning related to the business query, grade it as relevant.
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
grade_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
("ai", "Retrieved applications: \n\n {landscape_asis} \n\n Business Query: {business_query}"),
]
)
grader = grade_prompt | structured_llm_grader
return grader
# Business Capability needs vs landscap asis gap analysis
def gap_grader(model):
gap_prompt = hub.pull("learn-it-all-do-it-all/ea4all_togaf_capability_gap")
# Set up a parser:
parser = PydanticOutputParser(pydantic_object=CapabilityGap)
gap_prompt = gap_prompt.partial(
format_instructions=parser.get_format_instructions(),
)
capability_gap_grader = gap_prompt | model | parser
return capability_gap_grader
## Question Re-writer
def question_rewriter(model):
# Rerwriter Prompt
rewrite_prompt = hub.pull("learn-it-all-do-it-all/ea4all_question_rewriter")
rewrite_prompt = rewrite_prompt.partial(ai_output=LLAMA31_CHAT_PROMPT_FORMAT)
rewriter = rewrite_prompt | model
return rewriter
##Answer Grade: score whether RAG + LLM answer address business query
def answer_grader():
# Prompt
answer_prompt = hub.pull('learn-it-all-do-it-all/ea4all_togaf_answer_grade')
# Set up a parser:
parser = PydanticOutputParser(pydantic_object=GradeAnswer)
answer_prompt = answer_prompt.partial(
format_instructions=parser.get_format_instructions(),
ai_output = LLAMA31_PROMPT_FORMAT
)
return answer_prompt
## Hallucination Grader score whether there is any hallucination with between RAG and LLM answers
def hallucination_grader(asis, identified):
# Prompt": REVISED TO WORK WIHT LLAMA-3 - issue w/ multi-word app
#changes on prompting e.g. role, rules and restrictions, explicit instructions, change from word to application(s)
#changed to one-by-one assessment using single text search
grader_false = []
for d in identified:
if d.lower() not in asis.lower():
grader_false.append(d)
return grader_false
##Action-1 RAG retrieval - Assess-AsIs-Landscape
async def retrieve(state:Task2State, config: RunnableConfig):
"""
Retrieve applications
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, applications, that contains retrieved identified applications
"""
configuration = AgentConfiguration.from_runnable_config(config)
print("---RETRIEVE---")
business_query = state['business_query']
if not state.get( 'landscape_asis'):
intent=""
if state['messages']:
intent = ','.join(ast.literal_eval(str(state['messages'][-1].content))['intent']).lower().replace("'", "")
business_query=f"""What existent applications can be re-used {intent}?"""
# Retrieval
rag_input = 5
with vectorstore.make_retriever(config) as _retriever:
retriever = _retriever
retrieval = await get_retrieval_chain(rag_input,"ea4all_agent",business_query,retriever, config)
landscape_asis = await retrieval.ainvoke(
{"standalone_question": business_query},
config={"recursion_limit":configuration.ea4all_recursion_limit})
## return Document page_content
content = ';'.join(asis.page_content.strip() for asis in landscape_asis)
name = state['next']
return {
"messages": [AIMessage(content=content, name=name)],
"landscape_asis": landscape_asis,
"business_query": business_query
}
##Action-2 Grade retrieval against business query, filter out not relevant applications
def grade_landscape_asis(state:Task2State, config: RunnableConfig):
"""
Determines whether an application is relevant to address a business query.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates landscape_asis key with only filtered relevant applications
"""
print("---CHECK DOCUMENT RELEVANCE TO BUSINESS QUERY---")
business_query = state.get('business_query')
landscape_asis = state.get('landscape_asis')
# Score each doc
filtered_docs = []
if landscape_asis is not None:
for d in landscape_asis:
##Pick relevant Metadata
application = d.metadata['source']
capability = d.metadata['capability']
description = d.metadata['description']
business_fit = d.metadata['business fit']
roadmap = d.metadata['roadmap']
asis = f"Application:{application}; Capability:{capability}; Description:{description};Business fit: {business_fit}; Roadmap: {roadmap};"
filtered_docs.append(asis)
return {
#"messages": [AIMessage(content=str(filtered_docs), name=name)],
"business_query": business_query,
"landscape_asis": landscape_asis,
"identified_asis": filtered_docs
}
##Action-3 Is there relevant applications? Yes, generate, otherwise transform_query
def decide_to_generate(state:Task2State, config: RunnableConfig):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESS GRADED APPLICATIONS---")
filtered_applications = state['identified_asis']
if not filtered_applications:
# All documents have been filtered check_relevance
# We will re-generate a new query
print(
"---DECISION: ALL APPLICATIONS ARE NOT RELEVANT TO BUSINESS QUERY, TRANSFORM QUERY---"
)
return "transform_query"
else:
# We have relevant documents, so generate answer
print("---DECISION: GENERATE---")
return "generate"
##Action-4a Generate if relevant applications found
def generate(state:Task2State, config: RunnableConfig):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key
added to state, identified_asis, that contains LLM generation
"""
configuration = AgentConfiguration.from_runnable_config(config)
model = get_llm_client(configuration.togaf_model, configuration.api_base_url)
print("---GENERATE---")
landscape_asis = state['landscape_asis']
values = {
"business_query": state['business_query'],
"applications": state['identified_asis']
}
parser = PydanticOutputParser(pydantic_object=LandscapeAsIs)
hub_prompt = hub.pull('learn-it-all-do-it-all/ea4all_togaf_landscape_business_query')
hub_prompt = hub_prompt.partial(
format_instructions=parser.get_format_instructions(),
)
model.max_tokens = set_max_new_tokens(get_predicted_num_tokens_from_prompt(model,hub_prompt,values))
task_2_generate = hub_prompt | model | parser
generated_asis = task_2_generate.invoke(input=values, config={"recursion_limit":configuration.recursion_limit})
name = state['next']
return {
"messages": [AIMessage(content=str(generated_asis.identified_asis), name=name)],
"landscape_asis": landscape_asis,
"business_query": state['business_query'],
"identified_asis": generated_asis.identified_asis
}
##Action-4b Re-write query otherwise
def transform_query(state:Task2State, config: RunnableConfig):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
# Get any user-provided configs - LLM model in use
configuration = AgentConfiguration.from_runnable_config(config)
model = get_llm_client(configuration.togaf_model, configuration.api_base_url)
print("---TRANSFORM QUERY---")
business_query = state['business_query']
# Re-write question
response = question_rewriter(model).invoke(
{"user_question": business_query, "target": "vectorstore"},
)
generated_question = extract_topic_from_business_input(response.content)
better_question = generated_question['rephrased']
if better_question == None: better_question = business_query
name = state['next']
return {
"messages": [AIMessage(content=better_question, name=name)],
"business_query": better_question
}
##Action-5 Grade final response
def grade_generation_v_documents_and_question(state:Task2State, config: RunnableConfig):
"""
Determines whether the generation is grounded in the landscape_asis and answers business query.
Args:
state (dict): The current graph state
Returns:
str: Decision for next node to call
"""
# Get any user-provided configs - LLM model in use
configuration = AgentConfiguration.from_runnable_config(config)
model = get_llm_client(configuration.togaf_model, configuration.api_base_url)
if state.get('remaining_steps') <= 2:
return "no match"
print("---CHECK HALLUCINATIONS---")
business_query = state['business_query']
landscape_asis = state['landscape_asis']
identified_asis = state['identified_asis']
generated_asis = [item.application for item in identified_asis] if identified_asis else []
score = hallucination_grader(str(landscape_asis),generated_asis)
if len(score)==0:
print("---DECISION: IDENTIFIED APPLICATION(s) IS GROUNDED IN LANDSCAPE ASIS---")
# Check question-answering
print("---GRADE GENERATION vs QUESTION---")
values = {"business_query": business_query, "application": identified_asis}
prompt = answer_grader()
model.max_tokens = set_max_new_tokens(get_predicted_num_tokens_from_prompt(model,prompt,values))
grader_chain = prompt | model
score = grader_chain.invoke(values)
extracted_answer = extract_structured_output(score.content)
if extracted_answer is not None: ##REVIEW PROMPT W/ LLAMA3.1-70B
grade = extracted_answer['binary_score']
else:
grade = "no"
if grade == "yes":
print("---DECISION: APPLICATION ADDRESSES BUSINESS QUERY---")
return "useful"
else:
print("---DECISION: APPLICATION DOES NOT ADDRESS BUSINESS QUERY---")
return "not useful"
else:
print("---DECISION: IDENTIFIED ASIS IS NOT GROUNDED IN LANDSCAPE ASIS, RE-TRY---")
print(f"---HALLUCINATIONS: {score}---")
return "not supported"
##Action-6 Analyse gap between current state and the desired future state - identified capabilities
def grade_landscape_asis_v_capability_gap(state:Task2State, config: RunnableConfig):
"""
Analyse any gap between existent applications and identified business capability to address the business query.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates landscape_gap key with capability gap status
"""
# Get any user-provided configs - LLM model in use
configuration = AgentConfiguration.from_runnable_config(config)
model = get_llm_client(configuration.togaf_model, configuration.api_base_url)
print("---CHECK SUPPORT IDENTIFIED APP TO BUSINESS CAPABILITY---")
parser = PydanticOutputParser(pydantic_object=CapabilityGap)
hub_prompt = hub.pull('learn-it-all-do-it-all/ea4all_togaf_capability_gap')
hub_prompt = hub_prompt.partial(
format_instructions=parser.get_format_instructions(),
)
task_2_landscape_gap = hub_prompt | model | parser
#capability_gap_grader
if state['identified_asis']:
content = ';'.join(str(app) for app in state['identified_asis'])
else:
content = "No applications identified"
if state['biz_capability']:
capability = ', '.join(ast.literal_eval(str(state['biz_capability']))).replace("'", ", ")
else:
capability = "No business capabilities identified"
values = {
"application": content,
"capability": capability
}
model.max_tokens = set_max_new_tokens(get_predicted_num_tokens_from_prompt(model,hub_prompt,values))
extracted_gap = task_2_landscape_gap.invoke(input=values, config={"recursion_limit":configuration.recursion_limit})
for item in extracted_gap.capability_status:
print(f"---CAPABILITY: {item.capability} SUPPORT: {item.support}---")
return {
"messages": [AIMessage(content=str(state['messages']), name=state['next'])],
"landscape_gap": extracted_gap #landscape_gap.content
}
##TASK-2 Graph
task2_builder = StateGraph(Task2State)
# Define the nodes
task2_builder.add_node("assess_landscape", retrieve) # retrieve
task2_builder.add_node("grade_landscape_asis", grade_landscape_asis) # grade documents
task2_builder.add_node("generate", generate) # generate
task2_builder.add_node("transform_query", transform_query) # transform_query
task2_builder.add_node("grade_landscape_gap", grade_landscape_asis_v_capability_gap) #analyse asis gap
# Build graph
task2_builder.set_entry_point("assess_landscape")
task2_builder.add_edge("assess_landscape", "grade_landscape_asis")
task2_builder.add_conditional_edges(
"grade_landscape_asis",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
task2_builder.add_edge("transform_query", "assess_landscape")
task2_builder.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"not supported": "generate",
"useful": "grade_landscape_gap",
"not useful": "transform_query",
"no match": "grade_landscape_gap"
},
)
task2_builder.add_edge("grade_landscape_gap", END)
# Compile
task2_graph = task2_builder.compile()
task2_graph.name = "togaf_assess_current_landscape"
|