diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json new file mode 100644 index 0000000000000000000000000000000000000000..6a627a0642621179495dde30540880fb028bf526 --- /dev/null +++ b/.devcontainer/devcontainer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a525cdb835f1b6c36c5d09b1663e2dc0b2e5a40b97214fc9ee2fc0366b9df622 +size 986 diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000000000000000000000000000000000000..44902c452a75049b2fd1587d95f33c81bb27292e --- /dev/null +++ b/.gitattributes @@ -0,0 +1,12 @@ +*.json filter=lfs diff=lfs merge=lfs -text +*.parquet filter=lfs diff=lfs merge=lfs -text +*.db filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/SevenNet.pkl filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/input.pkl filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/M3GNet.pkl filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/MACE-MPA.pkl filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/MACE-MP(M).pkl filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/MatterSim.pkl filter=lfs diff=lfs merge=lfs -text +examples/mof/classification/ORBv2.pkl filter=lfs diff=lfs merge=lfs -text +*.pdf filter=lfs diff=lfs merge=lfs -text +*.png filter=lfs diff=lfs merge=lfs -text diff --git a/.github/README.md b/.github/README.md new file mode 100644 index 0000000000000000000000000000000000000000..74af83db14e724235413d73f7d83a546568acb98 --- /dev/null +++ b/.github/README.md @@ -0,0 +1,198 @@ +
+

โš”๏ธ MLIP Arena โš”๏ธ

+ Static Badge + Hugging Face + GitHub Actions Workflow Status + PyPI - Version + PyPI - Downloads + DOI + + +
+ +Foundation machine learning interatomic potentials (MLIPs), trained on extensive databases containing millions of density functional theory (DFT) calculations, have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references. + +We introduce MLIP Arena, a unified benchmark platform for evaluating foundation MLIP performance beyond conventional error metrics. It focuses on revealing the physical soundness learned by MLIPs and assessing their utilitarian performance agnostic to underlying model architecture and training dataset. + +***By moving beyond static DFT references and revealing the important failure modes*** of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency. + +MLIP Arena leverages modern pythonic workflow orchestrator ๐Ÿ’™ + [Prefect](https://www.prefect.io/) ๐Ÿ’™ + to enable advanced task/flow chaining and caching. + +![Thumnail](../serve/assets/workflow.png) + +> [!NOTE] +> Contributions of new tasks through PRs are very welcome! If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks, or propose new feature requests in [Discussion](https://github.com/atomind-ai/mlip-arena/discussions/new?category=ideas). + +## Announcement + +- **[April 8, 2025]** [๐ŸŽ‰ **MLIP Arena is accepted as an ICLR AI4Mat Spotlight!** ๐ŸŽ‰](https://openreview.net/forum?id=ysKfIavYQE#discussion) Huge thanks to all co-authors for their contributions! + + +## Installation + +### From PyPI (prefect workflow only, without pretrained models) + +```bash +pip install mlip-arena +``` + +### From source (with integrated pretrained models, advanced) + +> [!CAUTION] +> We strongly recommend clean build in a new virtual environment due to the compatibility issues between multiple popular MLIPs. We provide a single installation script using `uv` for minimal package conflicts and fast installation! + +> [!CAUTION] +> To automatically download farichem OMat24 checkpoint, please make sure you have gained downloading access to their HuggingFace [***model repo***](https://huggingface.co/facebook/OMAT24) (not dataset repo), and login locally on your machine through `huggginface-cli login` (see [HF hub authentication](https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication)) + +**Linux** + +```bash +# (Optional) Install uv, way faster than pip, why not? :) +curl -LsSf https://astral.sh/uv/install.sh | sh +source $HOME/.local/bin/env + +git clone https://github.com/atomind-ai/mlip-arena.git +cd mlip-arena + +# One script uv pip installation +bash scripts/install.sh +``` + +> [!TIP] +> Sometimes installing all compiled models takes all the available local storage. Optional pip flag `--no-cache` could be uesed. `uv cache clean` will be helpful too. + +**Mac** + +```bash +# (Optional) Install uv +curl -LsSf https://astral.sh/uv/install.sh | sh +source $HOME/.local/bin/env +# One script uv pip installation +bash scripts/install-macosx.sh +``` + +## Quickstart + +### The first example: Molecular Dynamics + +Arena provides a unified interface to run all the compiled MLIPs. This can be achieved simply by looping through `MLIPEnum`: + +```python +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks import MD +from mlip_arena.tasks.utils import get_calculator + +from ase import units +from ase.build import bulk + +atoms = bulk("Cu", "fcc", a=3.6) * (5, 5, 5) + +results = [] + +for model in MLIPEnum: + result = MD( + atoms=atoms, + calculator=get_calculator( + model, + calculator_kwargs=dict(), # passing into calculator + dispersion=True, + dispersion_kwargs=dict( + damping='bj', xc='pbe', cutoff=40.0 * units.Bohr + ), # passing into TorchDFTD3Calculator + ), # compatible with custom ASE Calculator + ensemble="nve", # nvt, nvt available + dynamics="velocityverlet", # compatible with any ASE Dynamics objects and their class names + total_time=1e3, # 1 ps = 1e3 fs + time_step=2, # fs + ) + results.append(result) +``` + +### ๐Ÿš€ Parallelize Benchmarks at Scale + +To run multiple benchmarks in parallel, add `.submit` before the task function and wrap all the tasks into a flow to dispatch the tasks to worker for concurrent execution. See Prefect Doc on [tasks](https://docs.prefect.io/v3/develop/write-tasks) and [flow](https://docs.prefect.io/v3/develop/write-flows) for more details. + +```python +... +from prefect import flow + +@flow +def run_all_tasks: + + futures = [] + for model in MLIPEnum: + future = MD.submit( + atoms=atoms, + ... + ) + future.append(future) + + return [f.result(raise_on_failure=False) for f in futures] +``` + +For a more practical example using HPC resources, please now refer to [MD stability benchmark](../benchmarks/stability/temperature.ipynb). + +### List of implemented tasks + +The implemented tasks are available under `mlip_arena.tasks..run` or `from mlip_arena.tasks import *` for convenient imports (currently doesn't work if [phonopy](https://phonopy.github.io/phonopy/install.html) is not installed). + +- [OPT](../mlip_arena/tasks/optimize.py#L56): Structure optimization +- [EOS](../mlip_arena/tasks/eos.py#L42): Equation of state (energy-volume scan) +- [MD](../mlip_arena/tasks/md.py#L200): Molecular dynamics with flexible dynamics (NVE, NVT, NPT) and temperature/pressure scheduling (annealing, shearing, *etc*) +- [PHONON](../mlip_arena/tasks/phonon.py#L110): Phonon calculation driven by [phonopy](https://phonopy.github.io/phonopy/install.html) +- [NEB](../mlip_arena/tasks/neb.py#L96): Nudged elastic band +- [NEB_FROM_ENDPOINTS](../mlip_arena/tasks/neb.py#L164): Nudge elastic band with convenient image interpolation (linear or IDPP) +- [ELASTICITY](../mlip_arena/tasks/elasticity.py#L78): Elastic tensor calculation + +### Contribute and Development + +PRs are welcome. Please clone the repo and submit PRs with changes. + +To make change to huggingface space, fetch large files from git lfs first and run streamlit: + +``` +git lfs fetch --all +git lfs pull +streamlit run serve/app.py +``` + +### Add new benchmark tasks (WIP) + +> [!NOTE] +> Please reuse, extend, or chain the general tasks defined [above](#list-of-implemented-tasks) + +### Add new MLIP models + +If you have pretrained MLIP models that you would like to contribute to the MLIP Arena and show benchmark in real-time, there are two ways: + +#### External ASE Calculator (easy) + +1. Implement new ASE Calculator class in [mlip_arena/models/externals](../mlip_arena/models/externals). +2. Name your class with awesome model name and add the same name to [registry](../mlip_arena/models/registry.yaml) with metadata. + +> [!CAUTION] +> Remove unneccessary outputs under `results` class attributes to avoid error for MD simulations. Please refer to [CHGNet](../mlip_arena/models/externals/chgnet.py) as an example. + +#### Hugging Face Model (recommended, difficult) + +0. Inherit Hugging Face [ModelHubMixin](https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins) class to your awesome model class definition. We recommend [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin). +1. Create a new [Hugging Face Model](https://huggingface.co/new) repository and upload the model file using [push_to_hub function](https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins#huggingface_hub.ModelHubMixin.push_to_hub). +2. Follow the template to code the I/O interface for your model [here](../mlip_arena/models/README.md). +3. Update model [registry](../mlip_arena/models/registry.yaml) with metadata + +## Citation + +If you find the work useful, please consider citing the following: + +```bibtex +@inproceedings{ + chiang2025mlip, + title={{MLIP} Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials through an Open and Accessible Benchmark Platform}, + author={Yuan Chiang and Tobias Kreiman and Elizabeth Weaver and Ishan Amin and Matthew Kuner and Christine Zhang and Aaron Kaplan and Daryl Chrzan and Samuel M Blau and Aditi S. Krishnapriyan and Mark Asta}, + booktitle={AI for Accelerated Materials Design - ICLR 2025}, + year={2025}, + url={https://openreview.net/forum?id=ysKfIavYQE} +} +``` \ No newline at end of file diff --git a/.github/workflows/release.yaml b/.github/workflows/release.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5e00811148edf490168655ae3c1f1e743095b1d0 --- /dev/null +++ b/.github/workflows/release.yaml @@ -0,0 +1,96 @@ +name: Publish Release + +on: + workflow_dispatch: + +permissions: + contents: write # Ensure write access to push tags + +jobs: + pypi: + name: Publish to PyPI + runs-on: ubuntu-latest + + steps: + # Step 1: Checkout the code + - name: Checkout code + uses: actions/checkout@v3 + + # Step 2: Set up Python + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: '3.x' + + # Step 3: Install dependencies + - name: Install dependencies + run: pip install toml requests + + # Step 4: Extract current version from pyproject.toml + - name: Extract current version + id: get_version + run: | + VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['project']['version'])") + echo "VERSION=$VERSION" >> $GITHUB_ENV + + # Step 5: Get latest version from PyPI + - name: Get latest version from PyPI + id: get_pypi_version + run: | + LATEST_PYPI_VERSION=$(python -c "import toml; import requests; PACKAGE_NAME = toml.load('pyproject.toml')['project']['name']; response = requests.get(f'https://pypi.org/pypi/{PACKAGE_NAME}/json'); print(response.json()['info']['version'])") + echo "LATEST_PYPI_VERSION=$LATEST_PYPI_VERSION" >> $GITHUB_ENV + + # Step 6: Compare current version with the latest tag + - name: Check if version is bumped + id: check_version + run: | + if [ "${{ env.VERSION }}" = "${{ env.LATEST_PYPI_VERSION }}" ]; then + echo "Version not bumped. Exiting." + echo "version_bumped=false" >> $GITHUB_ENV + else + echo "Version bumped. Proceeding." + echo "version_bumped=true" >> $GITHUB_ENV + fi + + # Step 5: Remove problematic optional dependencies + - name: Strip problematic optional dependencies + run: | + python - < ~/.pypirc + echo "username = __token__" >> ~/.pypirc + echo "password = ${{ secrets.PYPI_API_TOKEN }}" >> ~/.pypirc + + # Step 9: Build and publish package (only if version bumped) + - name: Build and Publish Package + if: env.version_bumped == 'true' + run: | + flit build + flit publish diff --git a/.github/workflows/sync-hf.yaml b/.github/workflows/sync-hf.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8bb8ea7602899d586ba2cd426f3a41e002dbc12c --- /dev/null +++ b/.github/workflows/sync-hf.yaml @@ -0,0 +1,39 @@ +name: Sync to Hugging Face hub + +on: + workflow_run: + workflows: [Python Test] + branches: [main] + types: [completed] + workflow_dispatch: + +jobs: + sync-to-hub: + if: ${{ github.event.workflow_run.conclusion == 'success' }} + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + with: + fetch-depth: 0 + lfs: true + + - name: Push to hub + env: + HF_TOKEN: ${{ secrets.HF_TOKEN }} + run: | + # Configure Git user identity + git config user.name "github-actions[ci]" + git config user.email "github-actions[ci]@users.noreply.github.com" + + # Configure LFS tracking + git lfs track "*.pdf" + git lfs track "*.png" + + # Create a new orphan branch (no history) + git checkout --orphan hf-clean + + git add . + git commit -m "Clean sync from main branch - $(date '+%Y-%m-%d %H:%M:%S')" + + # Force push to Hugging Face main branch + git push -f https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/atomind/mlip-arena hf-clean:main \ No newline at end of file diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml new file mode 100644 index 0000000000000000000000000000000000000000..753bed9074968eaa70f79288d3b2ca8232c960c3 --- /dev/null +++ b/.github/workflows/test.yaml @@ -0,0 +1,103 @@ +name: Python Test + +on: + push: + branches: [main] + pull_request: + branches: [main] + +env: + UV_SYSTEM_PYTHON: 1 + +jobs: + test: + runs-on: ubuntu-latest + + strategy: + matrix: + python-version: ["3.10", "3.11", "3.12"] + + steps: + - name: Checkout PR with full history + uses: actions/checkout@v4 + with: + fetch-depth: 0 + + - name: Install uv + uses: astral-sh/setup-uv@v6 + with: + enable-cache: true + cache-dependency-glob: "pyproject.toml" + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python-version }} + + - name: Install dependencies + run: bash scripts/install-linux.sh + + - name: List dependencies + run: pip list + + - name: Login to Hugging Face + env: + HF_TOKEN: ${{ secrets.HF_TOKEN_READ_ONLY }} + run: huggingface-cli login --token $HF_TOKEN + + - name: Run tests + env: + PREFECT_API_KEY: ${{ secrets.PREFECT_API_KEY }} + PREFECT_API_URL: ${{ secrets.PREFECT_API_URL }} + run: pytest -vra -n 5 --dist=loadscope tests + + - name: Squash commits and trial push to Hugging Face + if: github.event_name == 'pull_request' + id: trial_push + env: + HF_TOKEN: ${{ secrets.HF_TOKEN }} + TRIAL_BRANCH: trial-sync-${{ github.sha }}-${{ matrix.python-version }} + run: | + # Configure Git user identity + git config user.name "github-actions[ci]" + git config user.email "github-actions[ci]@users.noreply.github.com" + + # Install Git LFS + sudo apt-get update + sudo apt-get install -y git-lfs + git lfs install + + # Configure LFS tracking for binary files (only for HF push) + git lfs track "*.pdf" + git lfs track "*.png" + + git add .gitattributes + + # Setup LFS for the remote + git lfs fetch + git lfs checkout + + # Rebase and squash all PR commits into one + BASE=$(git merge-base origin/main HEAD) + git reset --soft $BASE + + # Re-add all files (binary files will now be tracked by LFS) + git add . + git commit -m "Squashed commit from PR #${{ github.event.pull_request.number }}" + + # Create a new orphan branch (no history) + git checkout --orphan hf-clean + + git add . + git commit -m "Clean sync from main branch - $(date '+%Y-%m-%d %H:%M:%S')" + + # Push to temporary branch on Hugging Face + git push -f https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/atomind/mlip-arena HEAD:refs/heads/$TRIAL_BRANCH + + - name: Delete trial branch from Hugging Face + if: steps.trial_push.outcome == 'success' + env: + HF_TOKEN: ${{ secrets.HF_TOKEN }} + TRIAL_BRANCH: trial-sync-${{ github.sha }}-${{ matrix.python-version }} + run: | + git push https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/atomind/mlip-arena --delete $TRIAL_BRANCH || true diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..125b29977c7d1fcd4b66fb3556b90829ff0e99b8 --- /dev/null +++ b/.gitignore @@ -0,0 +1,169 @@ +*.out +*.extxyz +*.traj +mlip_arena/tasks/*/ +benchmarks/ +lab/ +manuscripts/ +datasets/ + +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/#use-with-ide +.pdm.toml + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +#.idea/ diff --git a/.streamlit/config.toml b/.streamlit/config.toml new file mode 100644 index 0000000000000000000000000000000000000000..f5549d1fcd6363da43c2b96fa5e9394fea789521 --- /dev/null +++ b/.streamlit/config.toml @@ -0,0 +1,2 @@ +[server] +fileWatcherType = "poll" diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 0000000000000000000000000000000000000000..c09003015af2ccbf8600665792c0df85d241bff1 --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,23 @@ +# This CITATION.cff file was generated with cffinit. +# Visit https://bit.ly/cffinit to generate yours today! + +cff-version: 1.2.0 +title: MLIP Arena +message: >- + If you use this software, please cite it using the + metadata from this file. +type: software +authors: + - given-names: Yuan + family-names: Chiang + email: cyrusyc@lbl.gov + affiliation: Lawrence Berkeley National Laboratory + orcid: 'https://orcid.org/0000-0002-4017-7084' +repository-code: 'https://github.com/atomind-ai/mlip-arena' +keywords: + - Quantum Chemistry + - Foundation Model + - Interatomic Potentials + - Machine Learning + - Force Fields +license: Apache-2.0 diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64 --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/README.md b/README.md new file mode 100644 index 0000000000000000000000000000000000000000..63bc1facf120b8b3ae45509f6aa866e9b136b287 --- /dev/null +++ b/README.md @@ -0,0 +1,14 @@ +--- +title: MLIP Arena +emoji: โš› +sdk: streamlit +sdk_version: 1.43.2 # The latest supported version +python_version: 3.11 +app_file: serve/app.py +colorFrom: indigo +colorTo: yellow +pinned: true +short_description: Benchmark machine learning interatomic potential at scale +--- + + diff --git a/benchmarks/bzo/dft.ipynb b/benchmarks/bzo/dft.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..628cae23a8b19aa4d1f2f6308e3762884df9cb5a --- /dev/null +++ b/benchmarks/bzo/dft.ipynb @@ -0,0 +1,340 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/torchani/aev.py:16: UserWarning: cuaev not installed\n", + " warnings.warn(\"cuaev not installed\")\n", + "\u001b[32m2025-03-18 22:33:32.183\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36mmlip_arena.models\u001b[0m:\u001b[36m\u001b[0m:\u001b[36m34\u001b[0m - \u001b[33m\u001b[1mNo module named 'deepmd'\u001b[0m\n" + ] + } + ], + "source": [ + "from mlip_arena.tasks import MD, PHONON, OPT\n", + "from mlip_arena.tasks.utils import get_calculator\n", + "from ase.build import bulk\n", + "from ase.io import read\n", + "import numpy as np\n", + "\n", + "atoms = read('BZO_cubic_prim.xyz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
22:33:35.208 | INFO    | prefect - Starting temporary server on http://127.0.0.1:8224\n",
+       "See https://docs.prefect.io/3.0/manage/self-host#self-host-a-prefect-server for more information on running a dedicated Prefect server.\n",
+       "
\n" + ], + "text/plain": [ + "22:33:35.208 | \u001b[36mINFO\u001b[0m | prefect - Starting temporary server on \u001b[94mhttp://127.0.0.1:8224\u001b[0m\n", + "See \u001b[94mhttps://docs.prefect.io/3.0/manage/self-host#self-host-a-prefect-server\u001b[0m for more information on running a dedicated Prefect server.\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
22:33:41.734 | INFO    | Task run 'OPT: BaO3Zr - <ase.calculators.vasp.vasp.Vasp object at 0x7f582ccbee10>' - Finished in state Cached(type=COMPLETED)\n",
+       "
\n" + ], + "text/plain": [ + "22:33:41.734 | \u001b[36mINFO\u001b[0m | Task run 'OPT: BaO3Zr - ' - Finished in state \u001b[94mCached\u001b[0m(type=COMPLETED)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
22:33:41.851 | INFO    | Task run 'get_phonopy' - Finished in state Completed()\n",
+       "
\n" + ], + "text/plain": [ + "22:33:41.851 | \u001b[36mINFO\u001b[0m | Task run 'get_phonopy' - Finished in state \u001b[32mCompleted\u001b[0m()\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['std_lattice']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['std_positions']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['std_types']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['number']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['transformation_matrix']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['international']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/spglib/spglib.py:115: DeprecationWarning: dict interface (SpglibDataset['std_rotation_matrix']) is deprecated.Use attribute interface ({self.__class__.__name__}.{key}) instead\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
22:38:40.064 | INFO    | Task run 'PHONON: BaO3Zr - <ase.calculators.vasp.vasp.Vasp object at 0x7f582ccbee10>' - Finished in state Completed()\n",
+       "
\n" + ], + "text/plain": [ + "22:38:40.064 | \u001b[36mINFO\u001b[0m | Task run 'PHONON: BaO3Zr - ' - Finished in state \u001b[32mCompleted\u001b[0m()\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from ase.visualize.plot import plot_atoms\n", + "import matplotlib.pyplot as plt\n", + "from ase.io import write\n", + "\n", + "from ase.calculators.vasp import Vasp\n", + "\n", + "replicas = (2, 2, 2)\n", + "\n", + "atoms = read('BZO_cubic_prim.xyz')\n", + "atoms.set_cell(cell=[4.0, 4.0, 4.0], scale_atoms=True)\n", + "atoms.set_constraint()\n", + "\n", + "calc = Vasp(\n", + " kpts=(3, 3, 3),\n", + " xc='PBE',\n", + " encut=500,\n", + " ediff=1e-7,\n", + " ibrion=-1,\n", + " ismear=0,\n", + " sigma=0.01,\n", + " isif=2,\n", + " isym=0,\n", + " nsw=0,\n", + " lreal=False,\n", + " lwave=False,\n", + " lcharg=False,\n", + " lmaxmix=4,\n", + " command='vasp_std',\n", + " directory='pbe',\n", + ")\n", + "\n", + "atoms = OPT(\n", + " atoms=atoms,\n", + " calculator=calc,\n", + " optimizer=\"FIRE2\",\n", + " # filter=\"FrechetCell\",\n", + " criterion=dict(fmax=1e-3),\n", + " symmetry=True,\n", + ")[\"atoms\"]\n", + "\n", + "atoms.set_constraint()\n", + "\n", + "result = PHONON(\n", + " atoms=atoms.copy(),\n", + " calculator=calc,\n", + " supercell_matrix=np.eye(3) * 2,\n", + " distance=0.01,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGMCAYAAADEEZj8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAApxhJREFUeJztnXd0VFUXxfekJ6RQEggl9N6bFAWkSRUFUVFBpNgQUCmiKIoFBCygnyKg0hEpKoKIKAKC9N57Dy30TOokmbnfH9vHJCFlZjI1Ob+1ZiWZvHlzXrt333PPOVenlFIQBEEQBEHwILxcbYAgCIIgCIK1iIARBEEQBMHjEAEjCIIgCILHIQJGEARBEASPQwSMIAiCIAgehwgYQRAEQRA8DhEwgiAIgiB4HD6uNsBRmEwmXL58GSEhIdDpdK42RxAEwW4opRAXF4dSpUrByyvncaint4UF6VgFYuk1z7cC5ty5c6hUqZKrzRAEQXAYp0+fRsWKFXPcJr+0hQXpWAUSHR2NMmXKZPv/fCtgfH19AQBHjhxB6dKlXWyNdej1ekRFRSE6OhqhoaGuNsdqPN1+eyLnwn7IuTRz6dIl1KxZ8247lxOe3BYCBetY8zuWPsPadiEhITnuL98KGM19GBIS4rGNXWhoqMfaDni+/fZEzoX9kHPJBh6ARdMknt4WFqRjLShY+gznds0liFcQBEEQBI9DBIwgCIIgCB5HvhUw/v7+GX56Ev7+/hg7dqxH2g54vv32RM6F/ZBzacaa9s2T20KgYB1rfsfez7BOKaXssic3Q6/XIywsDLGxsTIXKghCvsKa9s3T28KCdKwCsfQ65lsPjCAIgiAI+RcRMIIgCIIgeBwiYARBEARB8DhEwAiCIAiC4HGIgBEEQRAEweMQASMIgiAIgschAkYQBEEQBI9DBIwgCIIgCB6HCBhBEARBEDwOETCCIAiCIHgcImAEQRAEQfA4RMAIgiAIguBxiIARBEEQBMHjEAEjCIIgCILHIQJGEARBEASPQwSMIAiCIAgehwgYQRAEQRA8DhEwgiAIgiB4HCJgBEEQBEHwOETACIIgCILgcYiAEQRBEATB4xABIwiCIAiCxyECRhAEQRAEj0MEjCAIgiAIHocIGEEQBEEQPA4RMIIgCIIgeBwiYARBEARB8DhEwAiCIAiC4HG4hYCZNm0a6tati9DQUISGhqJ58+b4448/7v4/OTkZgwcPRrFixRAcHIyePXsiJibGhRYLgiAIguBK3ELAlClTBhMnTsTu3buxa9cutG3bFo8++igOHz4MABg2bBh+++03LF26FBs2bMDly5fx2GOPudhqQRAEQRBchY+rDQCAbt26Zfh7/PjxmDZtGrZt24YyZcpg5syZWLhwIdq2bQsAmD17NmrUqIFt27ahWbNmrjBZEARBEAQX4hYCJj1GoxFLly5FQkICmjdvjt27dyM1NRXt27e/u0316tVRtmxZbN26NVcBo9frM/zt7+8Pf39/h9guCILgCAwGAwwGw92/M7drluApbWFBOlaB2HrN3WIKCQAOHjyI4OBg+Pv74+WXX8ayZctQs2ZNXL16FX5+fihcuHCG7UuUKIGrV6/mut+oqCiEhYXdfU2YMMFBRyAIguAYJkyYkKEdi4qKsnofntIWFqRjFYit11ynlFIOts0iUlJScOHCBcTGxuKnn37C999/jw0bNmDfvn3o379/BnUGAE2aNEGbNm0wadKkLPen1+sRFhaG6OhohIaG3n1flLggCJ5GViPUqKgoxMbGZmjfssLT2sKCdKwCsfWau80Ukp+fHypXrgwAaNSoEXbu3Ikvv/wSvXr1QkpKCu7cuZPBCxMTE4PIyMhc96tlNgmCIHgq9uiAPaUtLEjHKhBbr7nbCJjMmEwmGAwGNGrUCL6+vli7di169uwJADh+/DguXLiA5s2bu9hKQRAcSlIScO0aEBsLHDkC+PsDlSsDRYoAxYsDfn6uttBzOHAAKFkSiIgAQkIAnc7VFglCnnALATN69Gh07twZZcuWRVxcHBYuXIh//vkHf/75J8LCwjBw4EAMHz4cRYsWRWhoKIYOHYrmzZtLBpIg5CfOnwc2bgS2bwf27wdOnKB4yYlSpYDq1YF69YAmTYBWrfiecC8tW5p/DwmhEKxZE2jQAGjaFGjcGAgIcJ199iQ5GRAPTL7HLQTMtWvX0LdvX1y5cgVhYWGoW7cu/vzzTzz00EMAgClTpsDLyws9e/aEwWBAx44d8c0337jYakEQ8oRSwO7dwJIlwPLlFCwABUn9+kD79kCFCkBkJBAWBly/Dvj68vdbt4ArV4Bz54CjR4FffwWmTOHna9YEunUDHnsMuO8+8TRorF8PmEwUhRcuACdPAocPA8uWAYmJ9G41bw489BDQqROFjaeeu7//Bp55xtVWCA7GbYJ47Y0WzGVJ4JcgCE4kNhaYMwf49ltOC0VEAI8+CnTuDLRuDRQtatt+Y2KAf/4B/vwTWLmSgqdSJaBfP6B/f6B0afsdg4uxpn3Lddu0NODgQXq/1q6l0ImPpyfr4YeBRx4B2rVzmXfGpmN9/HGELl3qJAsFe2PpNRcBIwiCc4iJAT7/HJg+nbEtPXoAAweyc/SxszPYaKSYmT8fWLoUMBj4fcOH08vg4dhVwGQmJQXYvJkicPly4PRpoFAhoGNHs9CMiLDTkeSOTccaFITQ69eBoCAnWSnYE0uvudvUgREEIZ+i1wPvvANUrEjx8sorjHdZsoSdor3FCwB4e1MYzZnDqaYvvmAQ6/33Mxbkzz85hSXci58f0KYNxebJk8ChQ7x+ly4Bzz0HlCgBNGsGjB0LbNpEweNuJCYCv/ziaisEByMCRhAEx6AUPSBVqwKTJwOvvsqYlYkTnRtoGxoKDBlijpVJSWGMx/33c8pEyB6dDqhVCxg9Gti2jWLw+++BqCjgq68oBgsXpuAZPRr4+Wd6bEwm19rdpg3w2WcUz0K+RaaQBPuTnMwGTNy3BZczZ4AXXgDWrQN69QI+/ZSdnjugFPDXX8B77wE7dtBTM2kS0KiRqy2zGIdOIVmK0Qjs3Qts2MApJ03gAIyXqVKFXreyZSlYixcHihWj4AkJ4bRUQACDh3196Ynz9ga8vPj6L4BYHxeHsIgI6451zRqEPvYYEB4O/PBDvpg2LEhYes+6RRaS4KEkJQH//ssGbO9e4PhxNmBJSfy/vz8zSKpWZUZDq1YcGYmwyb8oxeDc4cPZYf35J9Chg6utyohOx6mrDh2AFSvoOWjcmFkrH38MlCvnags9A29vnrfGjYERI/jelSucqjtyhNNPZ87Qy3XlCnD7tvNsa9IE2LcP6NMHaNECWLMG+G8xYCH/IB4YwTpSU4FVq4AFC/gzMZEdVePGTF8tXZrBmikpQPnynDc/dgzYuRO4fBkIDGRWw8CBTJP11DRN4V5u3wYGDOA0zYsvMoYiONjVVuVOWhowezY9MrdvU3yNHk0vgZviFh4Ya0lNZfp7bCwQFwckJNBbazDwf2lp9OqYTBTC/3VN+sREhL38sm3HmpbGzLbYWA6yHBFvJdgdyUJyl4c2v3DzJgMwv/mGQqR+fU4NdOtG4ZKbEFGKdT5+/ZVxEYcPA7VrA2PGAE88QZex4Lns28e6K3fuALNmAd27u9ggG4iP51TSZ5+x1sy4cUy/9vZ2tWX34JECxkbyfKxr13KwtGcPPcGC2yNZSIJ9uHoVGDmSbvVx44CuXTmS2bsXeOstBvhZ4kXR6YBq1YA332TNiX/+AcqUAZ56isXGtmxx+KEIDmLJEgbEFinCTsITxQtAb9FHH1Fot2/PGJ6GDVkUTfBcihfnT3fMlhLyhAgYIWtu3ADeeINBeN99B7z2GlNfv/2W3pe8oNMBDz4I/PEHY2i8vIAHHmB6bXy8XcwXnIBSFLW9erHGyqZNnDb0dKKiOEW6bRunkR56COjShcJb8Dy0mLuEBNfaIdgdETBCRvR64P33zTU7Roxg6uv48eaRjD1p0YIdxVdfAfPmURzt3Gn/7xHsS1oa41zefRf48EN2+IGBrrbKvjRtSoG9dCkDUuvVA559lmnCgudQpAh/OjOIWHAKImAEkpAAfPIJ156ZOJHu87Nn6VLXGgBH4e3NOh379zPN8oEHKJ4E9yQ5mXFLc+YAc+dSxOTXYGydDnj8cWbVTJ3KeIrq1RmEfuqUq60TLCEsjD9FwOQ7RMAUdGJjgQkT6PofMwZ48kmOMD//nDUUnEmlShzxvvgiMGgQp5TS0pxrg5AzCQkM3F69mmXm+/Z1tUXOwdeX9+SpUxT6q1YxpuvJJ4GtW6Wqrzvj7c3qwdHRrrZEsDMiYAoqJ08Cw4Zxvv/99znKPHkSmDbNtYve+fkBX3/NuJvvvmPKtcxduwcJCQzi3rqVAqZLF1db5HyCgvjcnD1Lj8y+fQxgbtSIz86tW662UMiKOnWYeCDkK0TAFCRu3mQZ8NatWVxu/nxg6FDGuEyb5l4FvJ5/Hvj9d3pkHnqI6bmC60hM5MrEu3ezON2DD7raItcSEAC8/DJrHP3+OzPqhg5l4cZu3ZhKrlWlFVxPu3ac/pPBUL5CBEx+5s4dpoC+/z6DZYsXB156icWc5s8HLl5kcG7Jkq62NGs6dGAp+uPH2QDJ6NY1aCs579xJz8sDD7jaIvfBy4ueqBUr+Dx9+iljLZ5/nuXz69QBBg9mrNCBA5LK6yp69WLs1vDhMt2Xj5CyhO6GUiwUd/YshYW3t7kypcnEmJC0NHYqyclMO9br2bnHxLDy7dmz7PS1Od8iReh1mT6dUzIlSrj0EK3ivvuA9etZBrxDBwqywoVdbVXBIS2NJfY3bGDch4iX7ImMZLmB114Drl/nekvr11OEf/MNt/H2ZqB8hQr02pQsCURE8BkNC+P6QIGB9PD4+XGw4eNjXh9IK/go5Qaso0IFep8HDOBA7qOPXG2RYAdEwLgD8fHA4sVcyXXLFgbWWou3N4NuS5dmQG7v3iwy16gRgw09udJt3boULm3bMgbjr7/Y0AuORSkGUi9fDixbJmvJWENEBJ/B3r35d2wsPTCHDzPW7Nw5/r52LcWOtn6Y4DiaNmW7ceaMqy0R7IQIGFdiMABffMHy5Xfu0EsyciRFyLVrFCABAUzl1OkoQrQRmb8//xccDISGsuCWJ4uU3Khfn9MXbdsyhXf5cmaGCI7jww8ZSD17NuM6BNsJCwNatuQrK1JSKHISEihmkpP5nrY+UOY1ghISOK0nWMaJE0Dnzub6VkK+QASMq9i1i0WxTp1i2vCoUe4VROuONGlCT0CXLgyg/P77/Ft/xNXMns3YqfHjgX79XG1N/sfPj16biAjLttfrHWtPfmL3bqBTJ57bVavcepFOwTry8ZDdjZkxg6mXhQoxtW/qVBEvlvLQQ+xcZ81i5yrYn3XrKKpfeIGrMguCpxIfz0VGK1RgRmOZMq62SLAj4oFxJkpxMcNPP2VmwuTJHHkJ1tGnD4vtvfsu43ueeMLVFuUfTpwAevYE2rShsBYPl+DJjB/P6fj161nlW8hXiIBxFiYTRcv06Yx7ee01V1vk2bz3HmtwPPccUKVK3heYFBiH1a0bs2mWLJEYI8GzUYrlIl58kbEvQr5DppCcgVKs3jljBjBzpogXe6DTcRqpZk2ge3euni3YjtEIPPUUM2J++01S1QXP5/BhlpXo2tXVlggOQgSMM5g4Efjf/1gLYsAAV1uTfwgMBH75hRkZTz/NTliwjbffBtasYTp/5cqutkYQ8s7atczWzC7zS/B4RMA4miVL2DmMHcvMGcG+lC3LTnfdOmbNCNazdCkXKPzkEwZJC0J+YO1aJksEBrraEsFBiIBxJPv2MQX1mWcoYATH0LYtK2uOG8daMYLlHD4M9O/P6aPhw11tjSDYB5OJ1aPbtHG1JYIDEQHjKG7fZvpejRpSr8QZvPUWC1U9+yznvYXc0euZcVS+vNyjQv7iwgXe3/fd52pLBAciAsYRKMVYl9u3gZ9+EhemM/DyAubN45x3794SD5MbSnHBwcuXGUckSzMI+YmTJ/mzenXX2iE4FBEwjuCbb4BffwXmzGEBJcE5hIcDCxeyYJUUucuZqVMZ+zJ7NlC1qqutEQT7cvIkl1opW9bVlggORASMvTl8GBgxgjVfHn3U1dYUPFq1YoG7Dz4ANm1ytTXuyc6djHd59VVOIQlCfuPsWdZ+yc/rwwnuIWAmTJiA++67DyEhIShevDi6d++O48ePZ9imdevW0Ol0GV4vu1tWT0oKYzAqVmS1XcE1jBkDNG/Oir22rOydn7lzB3jySaBBA7lHhfzLhQuyPEsBwC0EzIYNGzB48GBs27YNa9asQWpqKjp06ICEhIQM273wwgu4cuXK3dcnn3ziIouzYfx44OBBVn+UuBfX4eMDLFjAGKTBg11tjfugFDBwIEXM4sWyjIWQf4mOFgFTAHCLpQRWZ0p9nTNnDooXL47du3ejVatWd98PCgpCZGSks82zjL17KWDGjAEaNXK1NUL58oxF6tOHlTifftrVFrmeb75hwO4vv/D8CEJ+5fJliX8pALiFgMlM7H9u/6JFi2Z4/4cffsCCBQsQGRmJbt264d1330VQUFCO+9JnWnbe398f/v7+9jU4NZVZR7VqsWid4B707g38/jswaBDQogUQFeVqi1zH3r2Mexk6FOjRw9XWCFZiMBhgMBju/p25XbMEp7SFdsAex4rbt5EUFobU/z7rrscqEJuvuXIzjEaj6tq1q3rggQcyvD9jxgy1evVqdeDAAbVgwQJVunRp1aNHj2z3ExsbqwDc8xo7dqz9jR4/Xilvb6V27bL/voW8ceuWUqVLK9WunVJGo6utcQ1xcUpVqaJUgwZKJSe72hrBBsaOHZtlexYbG5vrZ53aFtoBexxrLKC6eMCxCsTWa65TSqk8CCe7M2jQIPzxxx/YtGkTypQpk+1269atQ7t27XDq1ClUqlTpnv/r9XqEhYUhOjoaoaGhd9+3uxI/cQKoW5cLNE6aZL/9CvZj7VqgfXtgyhTg9dddbY3zee454OefgT17JGXaQ8lqhBoVFYXY2NgM7VtWOK0ttBP2ONZYAF7r18PUsCEA9z1Wgdh6zd1qCmnIkCFYuXIlNm7cmKN4AYCmTZsCQLYCRiM0NDTXm95mlAJeegkoXVqWCnBn2rWjwHzrLaBDB65gXVCYN8/8EvHisdijA3ZoW2hH7CU2gitVAjzgeAXbr7lbZCEppTBkyBAsW7YM69atQwULir/t27cPAFCyZEkHW5cDc+cC//wDTJ8O5BKLI7iYCROY3v7ss0x3LwicOAG88grQty+PWxAKEuHhrrZAcDBuIWAGDx6MBQsWYOHChQgJCcHVq1dx9epVJCUlAQBOnz6Njz76CLt378a5c+ewYsUK9O3bF61atULdunVdY/SNG8DIkQwUlRV83Z/AQKa3HzjAhR/zOwYDF2gsXZpVdwWhIOHjw0q8Qr7GLQTMtGnTEBsbi9atW6NkyZJ3X4sXLwYA+Pn54e+//0aHDh1QvXp1jBgxAj179sRvv/3mOqNHjuSKp5Mnu84GwToaNQLeew/4+GNg2zZXW+NYRo1iVehFi4DgYFdbIwjOJSREFictALhFDExuccRRUVHYsGGDk6yxgA0bOH307bdA8eKutkawhtGjgZUrOaWyb1/+XMRwxQrgf//jq0EDV1sjCM5HYl8KBG7hgfEoDAbg5ZeB++9nVVPBs/Dx4VTS5cv0ouU3LlwA+vXjOlxDhrjaGkFwDSEhrrZAcAIiYKzl00+BU6cYuCsLhXkmVasCn3/Oa/j77662xn6kprLicEgIMGuWuNCFgosImAKB9MDWcOoUMG4cV5uuU8fV1gh54aWXgC5dWEH52jVXW2MfxowBduxg3EumKtaCUKCQuK8CgQgYS1GKJelLlgTefdfV1gh5Raejl0Jb4NC96jlaz8qVwCefMF28eXNXWyMIrkViYAoEImAs5YcfgL//Zkpqfgz8LIiUKAHMnMnO/5tvXG2N7Zw7x1ovjzxC76AgFHRkCqlAIALGEm7cAIYNA3r14rSDkH/o1g0YPJgd/8GDrrbGepKTgccfBwoXBubMkbgXQQBEwBQQRMBYwogRgNEIfPmlqy0RHMGnnzKw96mngMREV1tjHUOGAIcOAT/9BBQp4mprBME9EAFTIBABkxurV3Mdmc8/55SDkP8IDAQWL+ZUzNChrrbGcmbM4BTYtGnAf4vWCYIAiYEpIIiAyQm9HnjxRS4V0K+fq60RHEmNGoxvmjWLRQrdnU2bKLZeeQXo39/V1giCe3H8OPDvv8D580BamqutERyEW1TidVuGDwdu3wa++05iC9KjFAv6JSQwBiMlhS+jkcsrXL3KmiRRUayV4+3NAnK+voCfH+DvT6+Hv797ndd+/YCNG5ltVr8+UK+eqy3KmvPngZ49WUzxiy9cbY0g5A2tPUlKytiepKWxPYmLs36fs2fzBbANKl0aKFs2+1dYmHu1RYJFiIDJjpUr6Z7/9lugXDlXW+NclAIuXgT27uV6OqdOsdO8cgW4fp2izh6jGi8v1msIDWUDUrQoEBHBqbqSJYEyZXjuK1akGPL2zvt35sbUqTzuxx4Ddu50v3oqej0Dj4OCGPfi6+tqiwSBJCSwfbh+nYkP2uvmTbYZt27x5507vI/1eoqT+HgKFXty8SIQG8vK1Jlf27bx/6mp5u1DQihkKlUCKlfO+IqK4gBMcDvkqmTFtWusDdKlC/D88662xjno9cCqVXytX88HHGB2S5UqFBK1anHtpyJFKDoKFeKKr35+7Ei9vSlKLl6kwClfnmIoLY3emdRUjqySkznaSkxkA6bXs1G7dYuN35kzLPWfvsCcvz8DbWvVonekYUOgcWP7B64GBgK//MJ9P/00K/W6S+OVmspMuPPngS1bgPBwV1sk5Ec0r8edOxQcmvi4eTOjMNHEivZKSrp3X0FBQLFiHAgULcrntXRpDlhCQvgKDuZ2QUF8zgMC2J74+LBNSUwE2re37hhCQvg9NWtm/X+jEYiJAaKjzcLm3Dng9Gngt9+As2fNgzRfX6BCBbOg0UROs2buN8ApYLhJy+xGmEyMKVCKHpj87FY0mYC1azlFtmIF3bj16rGTbNGCnXjp0q47BwYDG5bTp4ETJ4CjR5nq/PvvZrdyzZpAy5ZA69ZAu3b04OSVChWAJUuAjh2ZgeYO2WdKsXrw338zsLxWLVdblDNpaewcoqPpubt6lR3gnTtm0ZqUZJ420MRtaio7F+2llHl0fu0aO7RixXhP6nQUzNpPb2/zS+v8tKnL9PewJrR9fc0dZqFC7EiLFOH+ixc3TzuUKeMc75+jqVHDfL60F8BzrA0wkpLoEcmqsKNOxw47PJzPWXg4BxIREeZX8eJ8X3sFBubdbr0+7/vIjLc3UKoUX02b3vv/tDS2PadOmV///MMBnkaPHhzsCC5DBExmPv/c7ImIjHS1NY4hNRVYsIDpw0ePArVrc4mEJ59kg+0u+PvT+1OlCtCpk/l9kwk4eRLYvh3YvJmrg8+Ywf81akTP2SOP8HdbxVe7dsBXXzFItnJl12YnKQW89Rbn9OfPp22uIjER2LWL02xHj3LUevkyR+hxcWYxYkll4/QiJLtX+o5WEzRJSbwHlDJ3vtoru+/296dI0YRKoUIc8SvFY4qONnsCb97kcWj4+fEerF2bHXbTpsB99/HznkRSEs+lds7S0ni+0k+lAPSOlC0LVKvG433wQaB6db6fH4ScJfj4cOq6RAmWKfj3X97zPj5AmzZA9+7AE0+42soCjwiY9GzcCIweDYwaBXTu7Gpr7I/JBPz4I/Dee5ymefRRdvwtWniWp8nLi41rtWqsQAuwE9W8E199BXz0EUfOPXuyoWne3PrFNwcN4sjrtdcYk/P44/Y/FksYN47LBEyZAvTp4/jvM5mAAweAv/7i2krHj/P86vX3xj7pdOzgCxUyTxMUK2aOZYqMzPhTG6H7+TnO/sRE83TktWu0/eJFipSzZ+nRO37c7NkpWZLTkm3bUpg0bUrPwaVLnK47dQo4dszs/YuPp/emeXN66bp1o7hx92fo3Lms04sNBnrItPNz/Dg77e3bGWcF0HvTqRM77gceyP9CJjmZbeOECRS03buzmGmXLpxWF9wDlU+JjY1VAFRsbKxlHzh/XqmICKVat1YqNdWxxrmCLVuUatyYY9ZHH1Vq/35XW+Q4UlKUWrdOqSFDlCpZksdctqxSb76p1MGD1u3LaFTq6aeV8vNTavVqx9ibE+PH0/6PPnLM/lNTlfr9d6VeflmpRo2UKlxYKZ1O823w5e+vVKlSSt13n1LPPKPUxx8rtWqVUtevO8YmZ5CczHth0SKl3n5bqS5dlCpRwnzMlSsr1a+fUnPmKHXhgvlzaWlK7dun1P/+p9QjjyhVqBC3r1JFqXffVer4caeYb037ZnVbmJ5Ll3iOBg40P0slSyo1cqRSR47YYLn1OO1YNW7e5PX39laqf3+lzpyxfV+CTVh6HUXAcGOl6tRRqnx5z26Us+L6dT6EgFINGyq1caOrLXIuRqNSGzYo9dJLShUpwvPQoIFSX3yh1LVrlu3DYFDq4YeVCghQas0ax9qrYTIp9c47tPeDD+y333PnKIZatlSqaNGMQsXHh0KlTRulRo2iYEtKst93uzsmE8/PokUUv3XrmsVc1apKDR1KsZeYaP5McjLf69dPqdBQbtuihVLz5jn03Dm9U1eKz9LmzTwPxYrxWFu3VurXX/k/B+H0Y+3Vi0L+8GHb9yHkCREwlt7ISUlKtW2rVFiYUocOOcU2p2AyKTV7NhuawoWVmjaNo8eCjMGg1LJlSnXvrpSvL189eii1YgW9NjmRlKRU5870Rvz2m2PtTEnhiBdQ6tNP87avQ4eUGj6cnXFAgFms6HT0OLRvr9SECTLKzI4bN5RaupQCuFw5nrvAQAraGTOUunzZvG1iolI//sj2BFAqPJzenYsX7W6WSwRMepKTeaz3328WeLNm5f4c2YBTj/XaNR7P1Km2fV6wCyJgLDkBSUlKde3Khj0/eSZOnjQ3or17KxUT42qL3I/r15X68kul6tXjeSpRgh39gQPZfyY5mYLH25udl6PsatOG4mrePOs/f+qUUm+8QY+iv39G70qVKvTGrV7t0BFzvsVk4rTJJ58o1aqVUl5eFILNmys1aRKfO43jx5V67TWlQkJ47vv04dSTnXC5gEnP1q0cFABKVajAgZMdp+Gdeqzx8TyOuXNt+7xgF0TA5HYC9HqOPgMClPrzT+ca5yiSk5UaN44dV/nyronZ8ET27mVnEx7Oxqt+faU++yzrkXNamlKDB3O7wYN5zu3Fxo1KlSnDWKx//rHsM+fPM/aiUSN6BtILlqpVlRo0SKmdO+1no2Dmxg12dN27m899nTpKjR3LGDOTidPTkyczBgtQ6qGHlPrrL/4vD7iVgNHYv1+pxx7jcVarptRPP+X5OJVy8rGaTHz+77/fLrYLtiECJqcTcOKEUrVrc9rI0o7C3fnrL6WqV6d3YNQopRISXG2R52EwKLV8uVKPP04RqNNxpP3VV/eKmenTGdjboEHOXhtLiItTasQIfl+LFhmDRjNz7JhSo0dTsAQFmQWLt7dSFSsq9fzzDNgWnEt8vFI//0yPZ1gYr0mlSryumzZR6P7wA+8XgJ6/uXNtFsBuKWA0du1SqkMHHud99zGgPg84/Vj//pu2P/lkzs+i4DBEwGR1AtLSGAsSHEx3en4I0jp8WKlu3fjAtWyZ985UILdv0xXeqRO9GQBFw3vvMZAxJUWpPXuUqlmT/x8xgtkL1mAwKPXddwycDQjgNET6OKW4OKUWLGAWVJUqFEzpBUv58kr17avU2rUyJeROGAxK/fGHUi++aM5siohgoO/SpRTJXbqYpy7ffVep6GirvsKtBYzGunUUMAAFza5dNu3GJcc6fz6vTVCQUmPGcIB44YI8Z07C0uuoU8qSilOeh16vR1hYGGJjYxHq78+KiZMmAfv3c5mAKVNYbtpTOXQImDiRdV3KluXvTz7p/rUoPJE7d1j/Y8UKYM0allYvVIh1QBo3Zv2MZctYZ6Z/f+C551gALKtroRTXl1qyhJWeL19mPZ7OnVmbZ/9+Vh2+ciVjMbXAQBbWatUK6N2btTgE98dk4to7K1awRP2RIyyG1rw5q15fvMj6RYmJvAeeew54+OFcK9hmaN+yqu1i47Z2Rym2vWPGsJZOjx7A2LFWLZTqsmPV61lP6uuvzc9ioUKsP1W9esZXlSqs6CzYBUuvY/4XMCEhCE1IYEMSFsb1eYoVYyPi52deHTkggI2GVqlTW2RQW2iwWDFzga6gIOuLotnnoNgQzp4NrFvHQm1vvcX1mvz9nW9PfiQ1lYXK4uO5OF1iIn9qZe8TE1mB9tAhVgM+d47bAhlLs3t78z4xmfiZsDAWgUtKYhVUgPdQVovYFSrEa1u3LteAeewxWfcov3DuHIst/vkn1xyLjeWzGxXF++jqVd43XbqwQF67dlzSIBMeI2A00tKAH34APvyQQv3hh4E33uAyILkMulx+rEYjCxoeO3bv6/p1bqPTsW+ZPh3o0ME+31uAEQGjnQAAoVpJcsBcZlxzxueF9Ouv+Pqa11bRBJEmirRXUFDGvwMCuK2vL4WUtp+bNzlSq1OHyv/8ef598CAbgkaNgGeeYbn84GDuIzCQPwuyB8ZkosjTFqDTVr5N/3tsrPmnXm/+GRfHl8Fg+fdp106rSqqt25OayuuUfh0fwHy/BASwmmfRoqxQW7Eir3XLllzbyRXiWHA+RiOwbx8rgG/dSk9NdDT/p5X8B8wrJVeowJ8lSkDv54ew0aM9R8BopKbSazxpEtu0+vWBF17g+mvFimX5EZcLmKxISWHbcfYsvd/LlnHB2xUrOPAQ8oQIGGtv5JQUc4d2+7b5d62zy9zRxcVxZJ5+dJ6czP1kXpTOZLL/cvHZoQmloCDz2i/pvUraCrDpV4INCaGnKf022u+FCjm27LuGUhQP8fEZz3Pm65BekGQWKnfuZH+eQ0MpGrSX5lkLC+Pvmc9L+nOXXnxqwjTzAoGCYA+uX+c04uHD/Llnj3mdpnTLOOgBhAHu1albg8nE6dhvvuH0rE7HNYY6d+Y0ae3ad73KdhUwSpnbmPTtela/5/S/9AMdLy8uN/Lhh2wzhTxj6TWXtZA0/PzMK6g6krS0jFMUmvjRFlVLS+M6LqdO0dNSqhSnu0wm/k9bsE4TSgYDX5qA0qY5NHGlveLj6dnRpjw0cRAfb57SyA4fn4yduOZhyuw90lb5PXuWtlWrZhZv2sJx6W3ObG9OIs/bm2KjSBEKEO1nhQr8vUgRejS0/xUtat6mIC1CJ3g2ERGcNmzf/t7/paZS4Fy6xFePHs63z154eXEdqY4dgZgYYOlSei/efpvtgrc3p2RKlrQttmTgQLYrmQWIXp9zO5M+bEB7RURwQVdtsJN+4KOFJVSoYOuZEPKACBhn4+Nj9gK4A0qxwdA8Hpq40QSW9kpMNIuN5GQKkOy8TZrgCggwryrs45P1NJsmjDRvR2avkNZYBAWJx0Mo2Pj6ckBTqhQHB/mFEiWAIUP4Sk7mqs/793PRzZgYelit5epVTklVqJBRjGQlQNJ7YWX61qMQAVPQ0enMMTnFi7vaGkEQCjIBAczQat7c/J5eT5FhDb//nvXK20K+QuSmIAiCIAgeh1sImAkTJuC+++5DSEgIihcvju7du+P48eMZtklOTsbgwYNRrFgxBAcHo2fPnoiJiXGRxYIgCIIguBK3EDAbNmzA4MGDsW3bNqxZswapqano0KEDEhIS7m4zbNgw/Pbbb1i6dCk2bNiAy5cv47HHHnOh1YIgCIIguAq3iIFZvXp1hr/nzJmD4sWLY/fu3WjVqhViY2Mxc+ZMLFy4EG3btgUAzJ49GzVq1MC2bdvQrFkzV5gtCIIgCIKLcAsBk5nY2FgAQNGiRQEAu3fvRmpqKtqnSy2sXr06ypYti61bt+YoYPR6fYa//f394S9VawVB8CAMBgMM6WqPZG7XLMFT2sKCdKwCsfWau8UUUnpMJhNef/11PPDAA6hduzYA4OrVq/Dz80PhTKnHJUqUwNWrV3PcX1RUFMLCwu6+JkyY4CjTBUEQHMKECRMytGNRUVFW78NT2sKCdKwCsfWau50HZvDgwTh06BA2bdpkl/1FR0dnqOQnKlwQBE9j9OjRGD58+N2/9Xq91R27p7SFBelYBWLrNXcrATNkyBCsXLkSGzduRJkyZe6+HxkZiZSUFNy5cyeDFyYmJgaRkZE57jM0NNR9ymcLgiDYgD2mQDylLSxIxyoQW6+5W0whKaUwZMgQLFu2DOvWrUOFTGWZGzVqBF9fX6xdu/bue8ePH8eFCxfQPH3BI0EQBEEQCgRu4YEZPHgwFi5ciOXLlyMkJORuXEtYWBgCAwMRFhaGgQMHYvjw4ShatChCQ0MxdOhQNG/eXDKQBEEQBKEA4hYCZtq0aQCA1q1bZ3h/9uzZ6NevHwBgypQp8PLyQs+ePWEwGNCxY0d88803TrZUEARBEAR3wC0EjFIq120CAgIwdepUTJ061QkWCYIgCILgzrhFDIwgCIIgCII1iIARBEEQBMHjEAEjCIIgCILHIQJGEARBEASPQwSMIAiCIAgehwgYQRAEQRA8DhEwgiAIgiB4HCJgBEEQBEHwOETACIIgCILgcYiAEQRBEATB4xABIwiCIAiCxyECRhAEQRAEj0MEjCAIgiAIHocIGEEQBEEQPA4RMIIgCIIgeBwiYARBEARB8DhEwAiCIAiC4HGIgBEEQRAEweMQASMIgiAIgsdhk4A5c+aMve0QBEEQBEGwGJsETOXKldGmTRssWLAAycnJ9rZJEARBEAQhR2wSMHv27EHdunUxfPhwREZG4qWXXsKOHTvsbZsgCIIgCEKW2CRg6tevjy+//BKXL1/GrFmzcOXKFbRo0QK1a9fG5MmTcf36dXvbKQiCIAiCcJc8BfH6+Pjgsccew9KlSzFp0iScOnUKI0eORFRUFPr27YsrV67Yy05BEARBEIS75EnA7Nq1C6+88gpKliyJyZMnY+TIkTh9+jTWrFmDy5cv49FHH7WXnYIgCIIgCHfxseVDkydPxuzZs3H8+HF06dIF8+bNQ5cuXeDlRT1UoUIFzJkzB+XLl7enrYIgCIIgCABsFDDTpk3DgAED0K9fP5QsWTLLbYoXL46ZM2fmyThBEARBEISssEnAnDx5Mtdt/Pz88Nxzz9mye0EQBEEQhByxKQZm9uzZWLp06T3vL126FHPnzs2zUYIgCIIgCDlhk4CZMGECwsPD73m/ePHi+Pjjj/NslCAIgiAIQk7YJGAuXLiAChUq3PN+uXLlcOHCBZsM2bhxI7p164ZSpUpBp9Ph119/zfD/fv36QafTZXh16tTJpu8SBEEQBMGzsUnAFC9eHAcOHLjn/f3796NYsWI2GZKQkIB69eph6tSp2W7TqVMnXLly5e7rxx9/tOm7BEEQBEHwbGwK4n366afx6quvIiQkBK1atQIAbNiwAa+99hqeeuopmwzp3LkzOnfunOM2/v7+iIyMtGq/er3+nn34+/tbbZ8gCIKrMBgMMBgMd//O3K5Zgqe0hQXpWAVi6zW3yQPz0UcfoWnTpmjXrh0CAwMRGBiIDh06oG3btg6Ngfnnn39QvHhxVKtWDYMGDcLNmzdz/UxUVBTCwsLuviZMmOAw+wRBEBzBhAkTMrRjUVFRVu/DU9rCgnSsArH1muuUUsrWLz1x4gT279+PwMBA1KlTB+XKlbN1VxmN0umwbNkydO/e/e57ixYtQlBQECpUqIDTp0/j7bffRnBwMLZu3Qpvb+979qHX6xEWFobo6GiEhobefV+UuCAInkZWI9SoqCjExsZmaN+ywtPawoJ0rAKx9ZrbNIWkUbVqVVStWjUvu7CY9FNTderUQd26dVGpUiX8888/aNeuXbafCw0NzfWmFwRBcGfs0QF7SltYkI5VILZec5sEjNFoxJw5c7B27Vpcu3YNJpMpw//XrVtny26tomLFiggPD8epU6dyFDCCIAiCIOQ/bBIwr732GubMmYOuXbuidu3a0Ol09rYrVy5evIibN29mu5SBIAiCIAj5F5sEzKJFi7BkyRJ06dLFbobEx8fj1KlTd/8+e/Ys9u3bh6JFi6Jo0aL44IMP0LNnT0RGRuL06dMYNWoUKleujI4dO9rNBkEQBEEQPAObBIyfnx8qV65sV0N27dqFNm3a3P17+PDhAIDnnnsO06ZNw4EDBzB37lzcuXMHpUqVQocOHfDRRx9JYJYgCIIgFEBsEjAjRozAl19+ia+//tpu00etW7dGTglRf/75p12+RxAEQRAEz8cmAbNp0yasX78ef/zxB2rVqgVfX98M///ll1/sYpwgCIIgCEJW2CRgChcujB49etjbFkEQBEEQBIuwScDMnj3b3nYIgiAIgiBYjE1LCQBAWloa/v77b8yYMQNxcXEAgMuXLyM+Pt5uxgmCIAiCIGSFTR6Y8+fPo1OnTrhw4QIMBgMeeughhISEYNKkSTAYDJg+fbq97RQEQRAEQbiLTR6Y1157DY0bN8bt27cRGBh49/0ePXpg7dq1djNOEARBEAQhK2zywPz777/YsmUL/Pz8Mrxfvnx5XLp0yS6GCYIgCIIgZIdNHhiTyQSj0XjP+xcvXkRISEiejRIEQRAEQcgJmwRMhw4d8MUXX9z9W6fTIT4+HmPHjrXr8gKCIAiCIAhZYdMU0ueff46OHTuiZs2aSE5OxjPPPIOTJ08iPDwcP/74o71tLBhcvw789huwZQuwdy9w7BhQvToQEgIEBwNFigAREUCpUkBUFFCxIlClClC4sKstB9LSgBs3gNu3gYQE4NQpIDWV9hcqRNvDw4FMBQ8FQcgCpfg8HT8OnDkDREcDV67wvTt3+IwlJbnaSsehFHDrFnDzJqDXs12xlr/+Arp1A2SpmXyNTQKmTJky2L9/PxYtWoQDBw4gPj4eAwcORO/evTME9QoWcPw48NFHwOLFgNEI1K1LkZKUBNSowYc5Ph44dw7YuRO4dIl/a5QoAdSsCdSpw8/WrQvUrg3Y+zoYjRQmhw4Bhw8DJ07w7/PngZgY2pkTOh0QGQlUqkR7GzQAmjWj3d7e9rVVEDwFpYALF4Bt2/h879kDHDxIsaJRrBjbhIgIDliKF+fztHu3y8y2GzdvAlu38tgPHODA7dw5IDk5b/t94gkO/Nq3B7p0ATp3BsqUsYvJgvugUzktQOTB6PV6hIWFITY2FqGhoa42514MBuCDD4BPPwVKlgSGDQP69GEjlRu3b3NkdvIkcPQoBcXBgxQUJhPg5QVUq0ZxULs2hVDVqvTaBAfnvO/UVDaoJ08CR45QsBw8yJ9ao1KsGL0rVaoA5csDpUuzUS1alB6XO3coeMLDOVq8fRu4epUjyZMnua+jR+m5KVoU6NAB6NEDePhhICgor2dWENwXpYDTp4F164D164F//+WgBADKlQMaNgTq1QNq1eIzXLEin6lMWNO+uVVbmJYGbNoE/P47vSQHDvD98HCgfn22VZUqUWxERAAhIdCnpCCsWTPrjnXzZoRu2ACsWkWvtsnEtrBdO6BNG+DBB93Dey1kiaX3rE0CZt68eTn+v2/fvtbu0u641UObmXPngJ49KQzefRd44w0gICDv+01MpDjYv58vTXjcumXeJiyMXpuwMHppvLwoWvR6TmNdu8aHHeD/M3t36tShWLGHrTt2sCFfuZLTZsHBwDPPAEOG8HsEIT8QGwusXQusXs1O+/x5eh0bNQJatQJatqQ30ornyqMEjMkEbNwILFwI/PILvS6RkUDHjhQULVpwIJTNwsB5PtZbt4A1a4A//6RoPHeO7V6DBhQzDz3El50WJhbyjkMFTJEiRTL8nZqaisTERPj5+SEoKAi30neYLsLlD2127NoFdO3KUdXPP/MhcjQ3bnDK59w54OJFipQ7dzhNpRTg50fxEB5Ob0r58kDlyhwRetlcrNk6Tp8G5s0DZs7kiLRzZ3qo7rvPOd8vCPZCKXoYf/+dr82b6XmoVo3exoceogcgD+2SRwiY8+eBWbOAOXPo1a1QAXjySQ7eGjWyuG2x+7GePUshs349Rc3162yXGzWy8gAFR2HxNVd24sSJE6pdu3Zq9erV9tplnoiNjVUAVGxsrKtNMbNpk1IhIUo1a6bUtWuutsY9SUlRav58pWrUUApQqlcvpS5ccLVVgpAzyclKrV6t1JAhSpUvz3s3MFCphx9W6ptvlDp71q5fZ0375tS20GhUatUqpbp2VUqnUyo4WKnnn2fbZzLZtEuHHavRqFTTpko1aKBUWppNtgmOwdLraFMQb1ZUqVIFEydORJ8+fXDs2DF77Tb/sHs3vQoNG3LKJLdYlIKKry9jgZ5+mh6Zt9/mvPjHH3NqyVkeIUHIjStXGGOxciWnKBISgLJlGcv18MNA69b2D6Z3V+Li6Gn53/8Yi9egATBjBp9jd23rfvwR2L4d+OcfSSTwUOwmYADAx8cHly9ftucu8wfnzjESvkYNES+W4u0N9O9Pd/PbbwOvvQYsWwYsWMBpLkFwNkYjpxpWreLU0O7dFNTNmgHvvEPRUrt2wYqlOH+eouX77xnX9vjjwNy5QPPm7n0ejEa2K489xuk8wSOxScCsWLEiw99KKVy5cgVff/01HnjgAbsYlm+Ij2c9guBgES+2EBoKfP01hcyzzzJT4ccfmR4pCI7m+nUG3v7xB+MlbtxgXaMOHSiqO3dm7FhBQimmPk+ZwqDcsDBg0CB6SD0lVXntWsbl/PSTqy0R8oBNAqZ79+4Z/tbpdIiIiEDbtm3x+eef28Ou/IFSwPPP0wOzfbtlKdJC1rRpA+zbB/TuzeyFL74Ahg51tVVCfiMlhZ3zX3/xtXs3n+P69YEXX6RgadYM8LGr89ozSE4Gli4FvvqKdVuqVOHvzz2XZaq326IUy1fUqgU0buxqa4Q8YNNTaNLSbIWcmTGDBeqWLGE6spA3wsPpvh81Cnj1VWYTfPaZxMUItmMysRbJunUclW/YwFiWYsXoZRkyhD9LlnS1pa7j1Cngu++YUXTjBrOoVq6kmPPEZ+/334G//2blc3ee5hJypQAOI5zEkSMsTjdoEKtCCvbB2xv4/HMW+Bo6lDUlZs4smCNiwXrS0ujJ27SJYmXjRtYJCQgAHngAGDOGHXSDBp7ZOduL27dZ5mH+fJ6jwoXpaRk0iOngnkpqKjByJOvPdO3qamuEPGJTqz98+HCLt508ebItX+HZpKYCffuynspnn7namvzJ4MEcJffpw/M9f75kEggZUYpeuj17OOWxYwd/JiRwjZxmzehhadOGv9ujmKQnc/48i+0tX04PRVoaO/oFCxjs6ukZVdeuAS+8wJpYixeL9yUfYJOA2bt3L/bu3YvU1FRU+0+NnzhxAt7e3mjYsOHd7XQF9Qb59FNWlt22TUrjO5KnnmLada9eLMY3a1bBHjW7Er2ey0ScP29eeFCvZ7HElBSKCW9vXq/AQMZMhIRwZF+4MANj079CQy27lkYjO6ZLl/jdp0+zgzpyhEts6PXcrkwZoEkTYOxYeloaNSq4C/2ZTFy/7MQJVuveuZMeqTNneI1atODA6/HHuQZTfuDvv5nSfeMGg699fem9LVJE2gwPxiYB061bN4SEhGDu3Ll3q/Levn0b/fv3R8uWLTFixAi7GulRnDgBfPgh3ZSeXkU2JYWVe69e5cMeG8vRa3IyvR5paWwMTSau7XT5Mrfbv5+fbdSIgctVqrDzqFOHcSz2FLY9e7JeTJ8+bIwmT5aRlaNRih3f2rXs+HbtYkaHhq8vr3NoKAW8nx+vidHI+yIpifdRXJxZYGRF5uuoFQ1P/37mQuI+Plxfq0QJluivXp33Yc2a7Iztff95EmFhPPb050yn4/mqUoVT3c8+y+BWe5GSQtFw7Rozum7dYhXw2FhmaMbHM/06KYltiMHAtsVo5MtkYjuTV9asMS+C++WXfAG8XyIieL+UKMHlHLTfM78XESFT1W6GTUsJlC5dGn/99RdqZbrRDx06hA4dOrhFLRiXlM9WivPnZ8+ygfck74vJxNiAtWuZhXHgAI8jc8C2TkdXu58fH+aUFLOgsYTAQDaQHTuy0NcDD9jHNf3NN5xW+vxzwIopTsEK9u2jWPzpJy7MGRBAYdqkCRcgrFaN06aZRYLJxGJhv/7KaZwzZxhjkVXH5O3N+8rHh797eXFfOh07Pi8vCiOlzJ1bairvQw3t80bjvfelvz+XyKhUiQuc1qhhXuvLg0oc2FRev0gRhALZn7f0+Pry+gYG8qe/P8+pTsfPawIjJYUvbV9GI/dtNOa+Qn1OpLt/9ADClMr7UgJKUTTHxFBQxcSYX5n/jonhtpltKlaMJRx+/NH2YxNyxdL72yY5qdfrcf369Xvev379OuIyX/SCxOLFFACrVnmOeDl2jEWoFi2iGz4oiB3So49y9Fq+PDMwwsM5ggsIYEP19dfApEkc1bRrxznyli3Zifn6mvd/5w5TUTdu5GvXLr727AHGj2cD+dBDHP117257J/LKK+xUR45kgG+mVH/BRtLSmDo7ZQqnGooX57V69FFe7+ziRtasYebK5s2cUtI6M29vjvi1lYfr1ePvDRrwfVtJTaUwOnSI99eWLZzCBbgGz4MPMmU2LY1lDU6fZrzH11+zs9XpaE+zZlxgsU0bVtXNT5w7l/X6S/HxFKf79gHHj3PgcvUqRWZCAr1kmrdVKbOg1MSmry+fW03wBAXx75AQfl9YGF9Fi9JLqk0ZFi5s/l9wcPbeDb2e2+QVnY72hIbS45QbSUkUNgcPAiNG0LuelsYifYJbYJMHpm/fvvj333/x+eefo0mTJgCA7du344033kDLli0xd+5cuxtqLU73wCQksPO+7z5WjHV3Nm8Gxo1jIx4ezniSxx6jR8TPL/vPbdjA2jZnzwIDBgBvvsnRrKWYTOxc5swBfviBHU94OEc8hQoxnmXIENsWuTSZuFjc6tX0IsmK1rZjMlGQv/ce02jbt+d16do1647GZGIg9ddfcwpR83yEhvI6dOjAa2tJBsuJExzh7tjBqalbt+jlu3OHnVDhwuwow8JYlblyZd47vr68d/39+dPLi/fpgQPm4N0GDVjhuXt3jqa9vCjitUDfzZspgpSigO/aFejRg52WG8VK2OSBKVwYof7+ZoGhnatChXguIyP5LDduzEFMTu2AE3H5wpUvvQR8+y2nqb/+2j5iSsgRhy7mmJCQoAYNGqT8/f2Vl5eX8vLyUn5+fmrQoEEqPj7ell3aHacv5vjee0r5+yt1+rRzvs9Wjh9Xqls3LjZXu7ZS8+ZxIbrcSE1V6q23uEBbixZKHT6cd1tu3VJq/HilihVTys9PqQceUKpMGdrWurVSa9ZYvwBcfLxS9eopVbEi9y9Yz65dXOQO4L2ye3f22+7erVT79kr5+nJ7nU6patWUGjNGqStXcv+uO3eU+vxzperW5eKHlA73vnS6rH/XXl5eSgUEKFWkiFJFiypVqJBSPj7Z7097+fsrVbo0F/Tr1EmpAQOUGjVKqUGDlOrSRamICG5XurRSb7xhn/veDti0wGFW58zbO+vzCfAc1q/PaxkT44SjysV+Vy1ceekS74/gYC5KKTgcS69jnlajjo+PV/v371f79+93G+Gi4VQBc/EiG98333T8d9lKcjJFlp8fV8v98UeuxmoJt24p1a4dG7tJkyz/nKXo9bQtMFCpEiWUGjZMqcaN2Yi2bKnU1q3W7e/MGXZk3brZvAJugSQpSamRI9mx1a2r1D//ZL/t998rFRVl7uwqVlRqwgTuIydMJgqkJ5/kyuyZO9SICKVateL9sHt3zvfa+fNKTZ+uVI8eSpUsad6Pnx/Fx6FDFN56vVJXryp16pRS+/bR9mbNuG2JEko99ZRSL7+sVPfuSjVpolRkZEa7tPsyIIB/N2jA5yc11bbzbAds7tQNBj5Po0crVaoUj6dnT6VOnlQqOporSY8bp9SjjypVoUJGEVi6NMVMbtfYzrhcwCjFZwFQ6rvv7LtfIUucImBOnjypVq9erRITE5VSSpny0Fls2LBBPfzww6pkyZIKgFq2bFmG/5tMJvXuu++qyMhIFRAQoNq1a6dOnDiR7f6cKmAGDFAqPJyjSXdk/36l6tRhY/TOO0r9d70s4sIFpWrUoJdk/XqHmXj3u3r0YEPxyCNKLVhAbwqg1DPPcCRkKStX8nOffeYwc/MVhw/TI+fnp9TEidl3zlOmKFW4MM+try87v/Pnc963yUQxMnDgvV6W8HCl+ve3j+cyNpbCJ72wqlpVqd9+y1rI7tqlVJs23O7hh5U6e9b8v6QkpY4cUWr5cp6PPn2Uqlkzo7ciMJCiZ8cOpwtlu3TqKSlKzZxJr2dAgFKffpq1YPzrLwpC7dp5eyvVsSMHCk7A5QImNpaCvl49l4rWgoRDBcyNGzdU27ZtlU6nU15eXur0f41P//791fDhw23ZpVq1apV655131C+//JKlgJk4caIKCwtTv/76q9q/f7965JFHVIUKFVRSNqMBpwmYw4c5cvzf/xz7PbZgMtEuPz8KmH37rPv8qVNKlS1Lj83x446xMSt+/pkj8YgIpVasYCMbEcER+zffWO4BGjmSom3nTsfa6+ksXKhUUBA76AMHst+maFFzx/3GG7k35rdvK/Xll7x/0ouWYsXoAYiLs/uh3GX/fqUefND8neXLU9RmFhomk1I//cROPChIqa++yvn+SkhQasMGpYYMyeipKVKE007r1yuVlua44/oPu3bq8fFKDR9OcfbQQ0pdv579zhYupCjUjrt5c7YTDsSlAsZgoPc5LCz7Z0OwOw4VMM8++6zq2LGjio6OVsHBwXcFzOrVq1XNmjVt2WVGozIJGJPJpCIjI9Wnn3569707d+4of39/9eOPP2a5D6cJmB496Go1GBz7Pdai1yv1+ONsZF591bI4l/ScPcuRbJUqdC07m5gYpbp2pf1vvKHUtWtKPf88/27b1jKbDAalGjXiMbjZFKdbYDQq9fbbPKd9+rBzzsyxY4xp0aZmRo3KXUCePKnUK69w+/RxK23aKHXwoGOOJTvOnOH9otnRsCE9L5nR62kzwE788mXL9n/woNmLo023lCpF8XzokH2PJR0O6dTXrKFHrHx5ep9y4uBBTrdp57VDB6Vu3rTiCCzHpQLmjz94fH/9ZZ/9CRbhUAFTokQJte+/0Xx6AXP69GlVqFAhW3aZ0ahMAub06dMKgNq7d2+G7Vq1aqVeffXVLPehnYDo6GgVGxt795VsbUeeEzt38uaeO9d++7QHx44pVb06PRY//WT952NilKpcmXENFy/a3z5LMZk4BeTtzaDea9fYyJYuzRHvr7/mvo9jxziyHjTI8fZ6EgYDp+V0OqU++eRez4TRSMGo0/H1xBO5xz4cPKhUr17c3svL3Kn37083vCvZsoUDDa3DHTBAqRs37t3ur78YTxMRYV2ntXevWciUL8/7U/NQzJuX57iR5OTkDO1YdHS01Z26RW3huXNK1apFb9v27bkbdugQp1e0qaXhw/McI+e0Y7WEuXN5bPbsN4R7sPWa2yRggoOD78afpBcwO3fuVEWLFrVllxmNyiRgNm/erACoy5lGRU888YR68skns9yHdiNnfo0dOzbP9t2lc2cKBSe4jC1m1SqlQkNp17Fj1n8+IUGp++6je9xJc9y5smGDUsWLs2M4eJBBxVqsjCVTGVOnyigqPQkJvHf9/JRasuTe/+/da86+KV8+d0/C6dNmMaR5IXx8GBjrTp7JlBSlPvjAnH1TuDDjrDKLt2vX6FHQ6RiYbGl8S/rpqMBApZ57jhlaAO/f996zOZtn7NixWbZn1nTqFreFt25ReIWGKrVtm2UGrl7NY9SmCNeutfzgMuHUY82NDz6gV0pwKLZec5sETOfOndWYMWOUUhQwZ86cUUajUT3xxBOqZ8+etuwyo1F2FDAO88Bs3cqHNZspLKejeSu8vBiQaMuI12jktFNQUNZudldy/jyD6EJClPrzTx7v55+zI3roIcZbZIfJxHnsqCjXewJcTUICp1SCgujNysy775o9KO++m/O+7tzhVImvb8bpoqeeyno6yl3Ys0epSpXMYqtbt3tTvtPSmHEDKPX009Z5UPR6pYYO5Xm8/34K58GDec4DAjhVlT5g2AKc7pXQ61nWoHBhxhNZyrvv8pkEOAVsg4B1Kw/Mo48ylkpwKE71wBw8eFAVL15cderUSfn5+anHH39c1ahRQ5UoUUKdskNAlz2nkBwWA9OpE7Nz3MH7kpxMNz3AVG5bbfroI+4jUwC126DX03Pg46PU/Pl8b+1auuurV8/ZY3T2LOtavPKKU0x1S5KSKPYKFVJq48Z7/6fFNBQvnnMMhMlEz0WJEhQv2nRRkyauiZeyhbg4ChOAwiI8nBlHmVmyhKLj/vtzDm7Nio0bOQ1bqJBSs2dzyurDD/ldPj6cxrKxvXRKXEhsLGOGSpbMPdMsPTEx/Bz+qyXz++/Wfe89ZrgoBubWLQrzzz/P+74Eq3B4GvWdO3fUuHHj1BNPPKE6d+6s3nnnnXs8JLaSXRDvZ+lSYmNjY10XxKvFvixcaP99W8uVK2xc/f3Nnbot/PEHR4zvv28/2xxBairTcQGlvviC7x0/zhF1iRKc/siO//2PnyuIxahSUzmaDAi4Nx3+xAlzzMbDD+ccw3D2LKdXtGwkLQNn1SoHGu8gTCalJk/mfV+iBI9l6NB74x22b+eUWtWqjBGxBr3ePLh45hn+HR/PTrFECXorBg602iPjtE796lVOI9apQ9utYcYMc4HDxx6zOQXZZQJmzRra7swMTEEp5UABk5KSotq2bZtjDRZbiIuLU3v37lV79+5VANTkyZPV3r171fn/lP/EiRNV4cKF1fLly9WBAwfUo48+6ro06u7dmdniau/L1q0MaC1Z0vpib+mJjua8dZcu9i9S5whMJmbDAPQaKcW4hcaNOW+fnUBJS2OF2Zo13Ss2w9GYTEq98AJH/ZlHw6tW8X2djjVectrHjBmsRhocbM4sGjTIM+6ZnPjjDx5TmTIccd93370eh5MnGQRcunTuGTpZsXAhv6NaNXM134QECpnixdnRv/KKxbWOnNqpHz7Mqdvu3a2/1tevm4N8ixXLeYCRDS4TMMuW0e5r1/K+L8EqHOqBCQ8Pt7uAWb9+fZZBPM8995xSylzIrkSJEsrf31+1a9dOHc9BGTtMwBw6xJt61iz77tcaTCZ2Nr6+9L5YU+AtM2lprHxapkzWWRnujDblNWYMz4lez2yloCCl1q3L+jP793PU+/HHzrXVlYwfz/M0e3bG96dOpQjx82OgdHZcu2ZefkLzupQrZ1uQuLuybx8HAqVLMw06PPxeT9Xlyyz2FxFhXVyIxvHjzPApVEippUvN78fHs1he0aL0kA0blmuwr9M79RUreN1tfW7GjeNUo06Xe2xVJlwmYH74gcfszvFc+RSHCpjXX39dvenOZfOVAwVMnz4MBnXVCP7cObML//XX826H1rBkjonwFD75xCxilGJj06EDO9rsKgePGMH/Wzsd4IksXcrzkzkL4913+X5YWM7n4Z9/2KFrwkWno/crP3L2LD2rJUrQU+fjo9S0aRm3uXGD8R1Fi9rkTVDx8Uw11+7Z9B6NO3d4nUJDKcJHjMi2Ho1LOvV33mFbkZPYzYkjR8yZSnXr5hx4nw6XCZhvv6Wtnu5h9EAcKmCGDBmiQkNDVaNGjdSLL76ohg0bluHlDjhEwJw7x9H7l1/ab5+Wcvs2G7fAQI4S//gj7/vcudO8vIAno4mYDz/k34mJ5mDVzZvv3V6v5zns3t25djqbvXt5v/TqlTEV+NVXeb5Klsy+EzGZeF69vNiZAkytd2BxNrfg6lXGe4SHM5sKoEck/XTxrVucrixWzLbqrCYT07N1OsaGZC6yePMmxU1oKL1jAwYwcyodLunUU1PN3lpbi9ZpmY4AvU1ZBU5nwmUCZsoU3vuC03GIgDl9+rQyGo2qdevW2b7atGmTJ8PthUMEzNChbLQcWdU1JYXu4wMH+Fq0iPUkChVioO6oUdYH02VFYiKzqBo14nd6OuPGsVGcPJl/JyQw/TEsLOuR8o8/cvvVq51opBO5eZPBlw0bZnSBv/wyj7tixexTg+PjWbgOMKfEPv10wRmJ3rjBBRvDw7nkgZcX6w6lX0Ps1i1uExFh+1Ta8uV8rhs2zHoa+M4dTi2VLm32Wrz3nlJ//qli9+1zTaceHc2g7ccfz9v6T0uXsj0DeK/lcG+5TMCMH8/2XnA6DhEwXl5eKibd3OyTTz6prl69apuFDsbuAubGDarx996zz/5MJhZl+/prCpTGjc1rzWR+Va/O7KDMtSrywhtvcHSXn0bUb76ZMT4pNpYCrUSJexcLNJk4mqxePX8IuPQYjUw3L1Ys4/TQkCE8P1WqZJ8REh3NjlmrkeLvb1nF4/zGzZtK1a/PKY9vvqEnq0WLjB6r69cZ01KmjO3TkXv3UqCUKZN9XE1qKmNQnn76brZYrIWFvpRyQFu4eDHvjR9+yNt+rl+nt0sL8N2yJcvNXCZgxoxhuIDgdBwiYHQ6XQYBExIScrcKr7th94f2ww/p8sxLRLrJxAJxr71mXjHX15fipX9/ehFmzuRrzBgWwLKxcmeO7NjBUWV+C2Q1mZR66SUem9bpxsSww65S5d46Hvv2cVstHTu/MH48pyfSe5feeov3W6VK2YuXPXs4raSJl8qVra99kp/QBErp0kr98gsHGHXrZhxIXLrE7KQqVWx/Vi9epGgMCcm9WrTRqNTJkyp2+XLXCRilOL1WpIjla0blxLhxZk/fww/fs8inywTMiBFMnRecjlMETPplBNwNu97ISUkcib38sm2fT01l4a9GjcyxBEOGsKJsere0M0hJ4ainYcP8uTR8Whrd2wEB5nTqU6fo6r///nunTV58kdVGPS0DKzv+/ZeiLH1c02ef8b7LKfj8zz/pZdCK0vXr5xx73Z3Llyn6Kldm8GqpUvw7vcfl1Cl6+Ro1sn2F7bg4c5HGmTNz3dxlnbrGjRtsE3v0sM/+zp83e2N8fJTq2/euIHTZsWqDVkuXUxDshsOmkK6l80Boywi4I3a9kb/7jiNaa1PHjUbWf6hcmQ9mx45K/faba4XD+PEc7WQKCrSYuDieh3//ZZ2EWbO4Xshzz7E68f33M3agSBGup9KxIxujjz5iYag8LmpnEUlJjH8pUkSpo0f53rZtbIx69844dx8Tw2DJoUMdb5ejuXWLIqVFC/M9tmCB2UWfXee6cKFZuHh5uUeBRnfizBl6pho2ZFxahQpKlS2bsYru3r30oHTsaPuUZGoqBTXALLEcYkxcLmCUYpVigN4pe/HLLxSJ2vR5sWIqtkYN1xxrYiKXUyhWzD6eJsFiHOaB6dKli+rRo4fq0aOH8vHxUR06dLj7t/ZyB+x2IxuNDHa1NmNl71524Jpb1FbBYE9OnmRMwxtvZL+N0cjR5erVrFz76qu0v3ZtBsRmFaOT/qW5grWRlE537zZBQXTFjxjhuCqXt2+zYF2FCmbX/qJF/P7x4zNuO3EibfXkipsmE4MhCxc2F2HTvDFBQdnHT339tfm6FClivUgvKOzfT6H70EMUNFWrcmop/flau5ZTws89Z3uAq5ahBFBs26FQp8MEjMnE+kClS9snsSA9GzZwQFS8uIr193fdsb71Fgc+eam1JViNpddRp5RSsJD+/ftbtN3s2bMt3aXD0Ov1CAsLQ2xsLEJDQ23f0apVQNeuwL//Ai1a5L59SgrwwQfApElA9erAV18BbdrY/v32QimgY0fg5Eng0CEgKAi4cgU4cAA4eJDvHT4MHD0KJCbyM35+QMWKQKVKQPnygK8vt9+2jdtUq8Z9PvggUL8+UK4c4O1973cnJgJ79gBbtgBbtwL79wPR0UBaGv8fEgK0bQu8/TbQpIn9jvn8eaBZM9q1fj0QGAi8/z6vz/LlwCOPcLvkZF6r+vWBX3+13/c7k/nzgb59gcWLgSef5LFXrQqYTMC+fUCtWvd+Zvx4YMwY/t6gAa9PQIBTzfYo1q/n/d6nDzBuHNCuHaDXA//8A1Spwm1++IH/f/99YOxY279ryRLgued4XX75BYiMzPBva9o3u7WFWXH+PFCzJvDii8CUKfbd93+47FjXrgW6dAHefBP48MO87UuwCouvo1PklAuwmxJv146lxS0ZUR0/zmA8X1/On7pLdktCArOYAK6H06YN3aLayLtQIS7EN2AA4yV+/51ZO1rtiy1bOBoCONp69928eytMJu63Tx/Gp2i2FC3KFY7v3MnzYSulWOsmMNCcqmk0ct4+JMQ8vaSUearFEwv6XbhA70CfPvw7IYHnUafLfo2iYcPM51ziXSxn/nzzEhZXrjCLrXTpjFluWuXjefPy9l3bt3PqqlQpetPS4RYeGI2JE+l5taU6sQW45FjXraPnpXPne9fGEhyOQwvZeQJ2uZH372dDlM2CkRn4+Wd2ilWrKrV7t+3fmRdu3WKjN2+eUm+/zWmvypUzTuNUrsziWe+/z/nm06ezr8Fw7Ji5hHytWkybdJQoO3mSi91pRdO8vLg2kx1WN1e//GKOK1CK7u4aNdj5aK5vo5FBmM2a5a2+hbMxmZRq355puFqKrxYMmd0qus89Z74fvvrKWZbmHz74gOdu0SLGRlSpwqUVtKk7k4mDAV9fVjLOC5cvK9WyJZ+H0aPvBv27lYAxGLjGU6tWDnl2nH6st28z0aJdO+fE7An3IALGHjdyv34Misyp0zaZzN6NJ57I+1yw0cg59jVrKEZ+/VWpSZPY6dx/P4MHg4M54tHp+NPX15z6qr1KleJ8/euvs4MLCLBcWMXHs6aKjw+LoS1c6LwiZmlpXLOnbFnzsbRsmfd1d7S4Ak2MHjtGwZm+INfatdzmp5/y9l3OZNo02vznn/y7d29z/ERWaILU2zv7pRaEnDGZeH4DAviMXrjA56RyZXOwZ0qKUm3bMq4or97K1FR6fPz8KFQ/+0zF/vuv+wgYpZj+belgz0qcLmBGjmQbGx1t+z6EPCECJq838pUrbDA+/TT7bQwGuu0B1jKwdvSRlMQRcJs2TEnMLEJyegUGcpRQrRqnrRo04EhQW7PGx4fZKEOHcvQ2caJlNq1dy8DXgABOg7lyBLJuHb0k2jF36WJ7MJ3JxGsVEMBpJaXMnhmteq9SnCqrWtV9pv9y4tw5NrQvvMC/p0/n8dSunfX2LVqYi9MVhHWgHElSEr11JUuyjsuZMxw01K5tLrN/6xbv3ypV8p6mbzAwqL5cOdcXssuORx+lwLLz4odOFzD332+ejhVcggiYvN7I777L2JDs1oqJj2fKpJ8fXcnWMH8+M2S0qR2djjEpjRrRI9CrF+Nuhg+nwPntN8aLHDrEDjynBRzT0ljhd+pUTiH5+nL/tWvTk5NdNkpCgrlSa+vWnNJxF9asudtwK29vepVsqZ+TlMRYn1KlzCPlkSMp9rQ1k/bu5ffMmGEv6x2DyUQPW1QUKw7v3UuhGhp6bwdiNHIKEGAmmb0zRgoqV66ww77vPt6PR46whEDTpuaU9VOn+Gw/+KBtC68mJHBNqshIXr8GDZR6/XUV+/rr7idgTp0yx//ZEacLmPLlmX0kuAwRMHm5kRMT2RBlVxskNpaj2eBgeiwswWjkVFNIiLkjbtqUdVQctbK1Fpg6dixFUUAAO+uePTl9oHmM9u9nTEhAAEd57rjmjcmk1Pff85xrKb/Lllm/n0uXKGCaNWNwXkoKR1xlyphHyb17c2Rt55GkXZk1i+fhjz9oZ2goBUzmQMqkJPNaOiVL5s/iha5k1y4+N88+a660HRJCcakFf27cyI59wADLvbQmE2PZSpXiMztwYIZlP9wqBiY9I0dy4GfHuilOP9YyZey3ZIxgEyJg8nIjz5hBr0VWAaSxsez8wsKU2rrV8v1pHW9ICNW9o0SLRmwsR22PP25+7/ZtenRq1DCP5oYO5ZRC3bpKHT7sWJvsQXy8Us8/b/ZetWlj/RpRO3bwmPv1Y0cRHc1Rcpcu5hgkX1/Lp92czZUrFHDPPsu/GzbkuZg+PeN216+zLgzAxRvdUZjmB374ged4yhT+vX49768nnjBn8s2dy20mTcp9fydO0GMD8PnNotq52wqY27f5LA0caLddOv1YS5XiYFNwGSJgbL2RjUbOW2dVkC8ujpUZw8LYCebGsWOc/9ZiVj7+2HmdyLBhzOi5cOHe/5lMXByuZEnaVrgwp5wcLarsyf79LOmuxXTMnGldDJKWDqt1On/8kbGDGTKE5+XWLbubnmeeeIKp5zducMQLMLMsPceOmeOhPCWmx5MZMYJe1XXr+Pevv9IjNmiQ+b4cMybnIHGjkfdjQAAFZw7rIrmtgFGKXlwvL1YttgMuETCjR9v+eSHPiICx9Ub+7Tc2MlpMhEZSEtPqQkIsWxtj1Ch6CXQ6pgc7UxwcOMDGdMKErP9/6hRTbYOC2GE//jjtLFuW3iJPETJpaZwe08rgt25t3WKbI0fys1pH8dZbPG+bNyt19Spd4W++6RDTbWbFCh7rwoVK/f23uTZPemG8YYM5ILxqVeevt1UQSU1l+xARYR40fP89r4E2mjcaOZUbGMjspfRcvsxsQYDVr3OZvnRrAWMwMCOrSxe77M7px9qrF5MjPKmcQj5DBIytN/KDD3KKKD1pafTIBATkXtdBW/0Y4BSOg4o7ZYvRyJiO6tWzFiJ//EHPQuXKDPbVOHSID65OxyC277/3nFH74cPMnAI4Vffbb5Z9Li2NhaoKF2aqa0oKPWxRUfRujBnDa37xomPttxS9nvPznTvTMxQYyKmu9Ome8+ebp9cqVMg+CF2wP9evcxDQuLE5e+/jj3ktvvmGfycmcomR4sU5VakUBXREBNuL3Faj/g+3FjBKmddJsjRGMAecfqwff8xnyJnnS8iACBhbbuTt2/nQ/fyz+T2TiQuseXtz9JsTy5czKwn/VTd1RcyBNurTXNka2horOp1SXbtm37EdPEiPjBY3MXOm6z0yJhODbzdsYGDy5MksJvbOOwy2mzRJqW+/ZdaVlnL9wguWVdC8fZujrWrV+PuFC5zD79qVIqFoUV5/d2DoUHqFzp1jVhmQMQNu3DhzVlvp0rIAnSvYtYtTmloMiMmk1Guv8ZpoU0fXrnH6s1o1ev10OqU6dDCv2WUBbi9gTCZm/DVunGdPhlOPVa/nM9+/v22fF+yCCBhbbuSePemZ0ALvlDIXqZs1K+fParEI/v4sxe8KYmIY3Nm3b8b34+OVevJJ2vfOO5YJq/37GVcBcFT5v/9xP87g6lU29iNGsLpn5kUkg4I4Wi1Xjh115v9rHojwcMtGgCdO8Ly1b08vzKpV5niYzz6jeHX1Qo/btvG4Jk9mGjmg1NNPm//fv7+5/k94uHulwRc0Zs/OmIpvNPJa+fmZ78c9e9hRAqyabeVgx+0FjFL0VgP0xuQBpx5rXBzFZdmyZg+Z4HREwFh7Ix87xg7i22/N72mpquPGZf+51FR2sgCnHqwYRdmdp56i9yB9HIgW71KokG0VZg8eZAyPtzc7+TfesE95//RcvUpPwksvZSxcV7YsvUHjxzMo8vBhc32NzBgM7LRXrKCYDA0176dcOQqRnOJj1q9n5//CCxwxavEwf/3F6/rEE/Y9ZmtISeE1bNSIFXe1e01b26llS7OwK1TIdUtZCGYGDaJg0eLlDAZ6WUJC2KHXqcMpQH9/Vke2Mr3dIwSMUpzurFIlT9PRTj/W6GgOZGvUkMw9FyECxtobuW9fRp9r0w5//cUO7cUXs3eB3rzJjgRg3QdX3uy//ko75s83v7dqFUVH5ngXWzh7lh4RLS23RQt6ZawdpRiNFIvz5lGwaCndWszGo4+ygN+nn3Itn7FjGRD92msMbnz9dQbWfvQRM6d+/pmVdTNPiRmNLEao7dvLix1Kv37Znwtt5Pzxx+xQWrdWqkQJej2AewMvncXHH1NMbdyYMe4lNpbxSgBjKvz88r72jmAfDAbGupQuTYGuFMV3/fpmAXroEJ9RHx+mxFvRfniMgNm3L+sUfytwybFu2UK7FyzI234EmxABY82NfOoUO4gvvuDf+/dzpNSlS/YjoyNHzLVd3njDfobbwrVr7MC6daPY0rJztHgXe6YCJyYqNWcO13nRMl0iIyloevVS6uWXKeYefFCpV15hSe7Onek9KF2ana8mKgIC6DHw9s56uYTgYIrKypVZubhOHf6sVCnrpRdKlVLq4YfpMfv3X476Nm82i67ISG6jpR1nJWTGjuX/Z85kx1OqFDuimjUpaJydmXDiBEfpI0ea414WLmTnpxVFrFqV52LlSufaJuTMpUsUwK1a8V784w/zYqWlSpmXc1i0iM/qSy9ZfH95jIBRih5cWwpDGo1K/f23ih01yvnHajLRY6YN1pYvF2+MExEBY82N/OyzfMASE5lxUro0i7xlV3J9/Xpzif7cYmNyIjGR3oP58+lReOUVTgM9+CCzEgYM4JRBTo2aycROOzycBc6uXGEsh07Hkt7WPnRawOzatZzDf/NNzt+3bEkhoXWa1r68vOg9KF6cZe27dOF0zZgxLK63eDHP6+HDFGSWuNRNJmZ+7NzJYmKjR7PR0aaPQkMpqmbOZDAhQMH01lsMUNbpuEhm+iwjk4kizMtLqaVLOQXg50dRBjg3vslo5L1QsSKnJADeH4sWUfR5eVFceXnlOc5AcBCbNrGtaNOGIvPhhznVWbEihbi2tpc2Xf3yyzk/s/HxSs2apWKfftpzBMzp0zz27Mo6ZMZoZB0mf3+l4MJ1n4xGVvu+/35em7p1ZXVqJyECxtIbed8+dmRTp1Kw1KtH9252iwYuWMDtfX2tX803NpYLCA4ezO9J73kID+cD0qYNFX9kpHl6oHFj2pkVn3zCbVauZOdavDhHfX//nbs9JhOnc+bOZYZLixYZA2K9vGhDq1Ysrz9yJKd2Zs/miGTDBgYjHj+u1PnzFE/XrjEGY8cO/p6c7HyvRVoap3vef9/ssg8JMf+u09FL8/XXFIpBQYyz0aYP09I4avTx4RSVVkW1YkV6YpxVjl9baVrLLipblh0cQDHYoQOv0cKFzrFHsI1nnuE1a9fOfO+cPcuU+OrVzZWkv/+e92a/fvfeYyYTRU5EhFJeXiq2QQPPETBKsc2zpDDk/v3m4ObixZV6+20Vu36964+1b1+20Z5SWsLDEQFjyQkwmSgYqlenN6RTJ47as6sgOWmSeRR/5Ihlhty5w4anUyfz9EnFivSuzJjBjjY7T4/JRJFUty69AJm9PStXsgMbNozeDIDTNdqce1b7O3hQqS+/ZKxJsWJmsVK1Kr0VH3/MeJrjx12fPm0vjh9n9pU2faQVvuvUiedqxAiKlapVzVkiqak8H97eFDBaFVWAwsLRnD3LKTQte8XPzxzgXL48FxL19RXPi7vz1Vfm+C4fn4zlDU6c4D1Zvbo55f2HH7hdt27mrL+4OHNpg969lTp71rOmkJQyF4bMabp96VI+m15eGRIn3OJY69fn4EUWQnUKImAsOQHpF8R7+WU2HNkVktJWag4Pzz3TyGSid+KZZxjnodNxKuDLL7Nc1yRXkpPNAuXDD7n/f/6h5+C++zj9FRzMjjWztyM+nm7Q5583L+rn50d73n1XqdWrC06xs5QUNpKNGpnFSNGivCaHDpmzefr350gxLY31PAB6cwYM4LUMCXHsOTMaKazLlDHH72j1hR55hGsfFSrEaye4L5p4GT6c995DD/F6pluUUZ04wetcqRJFq1Jsj4KD2Wlu3syfISEZsgjdolO3lvfe47RQVsubaN6nwECurJ4OtzjWzZs5uL3vPno8z5+37/6FDIiAye0EHDvGRqJvXwbvAkp999292xmNnLfWPCc5BaIlJfFBrFOH21epwgUB7VHJ1WQyTyU89hg7NK1ze+SRjA/U7dvM8nn0UQoogEWzhg1jTI07r7LsLNauNa8FpdPRw2I0Mo0+NJT/++03nvcPPzSfZ+1eePBBx02NffaZWVxpQsvHh/FIxYuzw9uzxzHfLdiHb781ixftPrlzh97UUqUyliI4c4YCpmRJc+e9fz+nDLX7IJNX2C06dWvR682xfelZvNg8zZu+qvR/uM2x7tpFL4z2TJYpw/paX3zBODyZXrIbImByOgFXrrDBqF7dvOjaiBH3bmcwsMEBGCyZXXCdXs9YlMhIdobduim1Zo39O7hDh8zBpwCF0p9/8n/x8XQ/d+tmHq03b067XF2EzZ358EPz+Sxdmufq4kUGGQNsbGNjeZ8UKcJORpvKefpp+0+zbd3Kaav0GVaRkQw0Bxig7cpaQ0Lu/Pgj76nBg+9tA65c4VRlqVIZPQ1Xr5o9a8uW0StYurT5We7end6a/3CbTt1atIUetQzAf//l30FBWYoXpdzwWK9dY3swahSXHvkv2FiFhtq/RlYBRQRMdifg6FFm05QsyQyBYsUYT5C++q5S9GhERJg7qqzQ6xn8WbQo4xGef56eHVuJi+MDsHkzPSjLl1OAdOtmtgUwe15mzWKw7rPPsuEDuI7TlCnZNgZCFly5YvbGAExnjYujNy04mPELW7bQ9d2xozmIFuCIzJLFPS3hu+/uTSmvWJH3aHAwpyAlldO9+fPP3Ou6XLlCsRIQwGkVbUolPp7VwAF26JUrU0wvXEgx4+XFGLevv1axv/3mXp26paRf6PHSJXb+Pj4Zp9Uy4XYCJj1paSye6evL6SVnVSvP5+Q7ATN27FiF/9LptFe1atWy3f6eE2AwsGMvVIjF006eZMxDmTJcuC89CxeaA26zqsKbkEBhUawYR0iDB1smGE6coLvx6afZgJUsyYZKCyrN6VW4MEdh+/ezAdTSgrWpqo8+si2+RiAmkznOSRtNrVjBc9qsGYXFxx+zwfrhB4pWLeAQYEbQpk3We92OHOE0piZAAWaRAbwHvbyYlSKC1P3ZvZvXsUuX3KcTEhM5gtdG70WL0itcvrzZIwhkWyPJZanF9uCnn8xTt0Cui6+6nYC5coW1sLTK5wAzNd3l/OYDLL2OPvAgatWqhb///vvu3z4+Fpj/66/AgQPAokXAlSvASy8BkyYBkycDmzcD//wDFCvGbTduBF5/Hdi7FwgMBH7/HXjoIfO+UlOBmTOBDz8Erl8HBg4ExowBypS593tv3QJ++AFYtQrYvx+4dg0wGs3/9/UFQkP52eLF+SpaFChcGEhIAI4d43c3bgy0aMHP/PUXv3v5csDHB4iIAJKS+HeNGlaeTSEDOh3w1VfAs88CHTsCd+4AjzwCNGrEa754MfD228CmTcD8+bym99/P8x8fz2vz119ASAg/07w5ULcu763bt3mtLl0CDh3i/XX0KHD1Ku8pjVKlgLAw/k+nA/r3B0aOBKpUcdlpESzkwgWga1egVi1gyRI+3zkRGMh26K23gHXrgBMngJgYYOFCICgIeOwxtk3R0UDt2kDnzryvAgJ4v505A7z3nlMOze489hifi5s3gQ8+AB5+2NUWWcaGDewf9u0zv9eqFTBgANCjB9tzwal4lIDx8fFBZGSkdR967rmMf0+bBkyfznGMtzc7K6WAlBTAZOI27dsDP/9sviFNJgqg995jw9G7Nx+8ihXN+9XrgdmzgV9+4Q2u15v/V7gw0LAh0KwZ992+PRspjYQE7vfSJeDGDTZaN26wc1u5Evj4Y2D7dnaW9eoBn3/OjtbLi51ot278vybEBNtp0oTCon9/4Mcfgd27gfr1gRIlKEjWrKHobNIEiIwE9uwBgoN5PfV6IC6OHc8//+T+XTodhU3HjsCDDwIjRgCXL1MEnTpFUWstaWns4Ly8aJeXl/X7EKwjLo6dcEAAsGIFUKiQ5Z8tUgTo2RNITOR9kJYGbNtG0WIyAUuXAhMmAJ9+ynakZUsOVsLCHHY4DufbbyleAKBcOdfaYg1GI5/NypX5nCYmctC7cSPQrx/7i1KlzK+SJe/9vUwZwN/f1UeSb9AppZSrjbCE999/H59++inCwsIQEBCA5s2bY8KECShbtmyW2+v1eoSFheF6jx4IDQujGEhMhHdiIrw3beLNWKUKf3p70/vRpAnwyisUD7GxbCTOngXGjaMX5+GHKSbq1OEIffFiYNkyYNcu8wOp0/FmbdYMePJJKnM/P7NhSnH0vm4dPUB79gDnzmV90KGhQOnSbLAeeICjsMyelrNnaXfNmuxc03+XkDdWrgT69qUwMRqBsmX52rsXSE6meExMpMjp04edTlAQvWNXrwIXL3JkfeIER89RUUDVqvSoVanCzkunA7ZsAdq14z5DQ4Hz59lZZUdKCj2Lv/9OsXzpEjvRlJR7t9Xp2LGGhwPVqwNdurCxzWn/guWYTED37hSsW7fSA5MVV68Cf/xBcXL2LNuBGjU4GGrYkF6JdeuAtWvZdqRHKaRs2wa1YgW8d+6E16lTiLtxA4UTEhAbG4vQXEb+WlsYHR2dYVt/f3/4O7szvXABqFSJHqiHHwZWr+bzER5+dxODwQCDwXD3b71ej6ioKPc6VqX4zF2+zNeVK/x55gyf54MHuU1mypfn9RcyYPM1d8qElh1YtWqVWrJkidq/f79avXq1at68uSpbtqzSZ1NYSJtDy/za1Lw5YwvSZwAYjYxpSR/Imfnl48NAypCQjOv54L/aMF27MnYmqyqtJhPjIwYPNhdTCwhgKu6IEZxP3bSJgcOJidbHUWzaZF6o0NlVb/MbBgOvw4EDrH68axeDqLWYlIgIZplowZbjxrHCaokS5mJk1rBrlzkgODAw+1iXDRtYzKx48Yz3np8f79uGDRl78eyzDEJ+4QXO0bdrx6yp9BWWtcymV17hUgyC7YwZw1iOrJaY0ErRP/QQt9HpmDnYsydfWpp02bK8t3Ko65NVDCCsjAvJ/Bo7dqztx20rFSvymP/9l9l0hQvfk1btEcealsbYnffe43pv999/b//h58eMs44duRTIJ5/wuIV7sPWae4yAyczt27dVaGio+v7777P8v3YjR0dHq9jYWBUbG6sSlizhjfXpp+YNf/3VXG8jIMC86CD+y/Pv1IkBmtWrM2ArNJSCpXZtltbPqaDZ7dtcUblqVfP+XnuNmUNa2Xp7sWABv+Ojj+y73/xKWhrXXZo7l/VxHnqIS0ikD6DUXgEBDPwODDSnNz/2GD+H/+rDREYy2NeatVL27jUH7wYE3JuC+ddfFCBaLR8tmLt9ewaDW5tOnZrKmhtdupgXIgW4rIW1y2IIXBYEYK2n9JhMXIJCW2m9WTNmmGUWi2lpHPgAHNjkUO4gOTn5bjsWGxuroqOjre7U07eFsbGxKtnebVBujBrFY33hBfN706fzvXT3n1sf6/XrvN7lytHukiWZSv3ssxQzc+ZwsBEdLRmDVmDrNfdYAaOUUo0bN1ZvvfVWlv+7J4r50CGOQrt144114oS5xouvL1VytWr8u0ULLhvQty9TaLNbLVl7FSnClYqnTmWG0pUr9KwEB3PfTz/NEuKOvqG1gmt5WWAyvxIbyxHumDFcSTv9opSVKjHDa/RodjSrVrEey/bt/P2zz9jRpPe8eXlRWPTpQxFSvjz/fuQRy2rDbNxozkAJCTGvTLx7N/ehrVqsjdCHDct+fS5bWbuWnasm2sqX5/EKuXPsGK9bz54ZvZ5HjtCzCrBN2bo168+bTEq9/Ta3GzOGYqdYMabrW4DbZebkxrFjvM8iIzO2g0Yj29tKlbJNQXaLYzWZuFK9vz9f/fqxeJ3gEPJdGnVm4uLiVJEiRdSXX36Z5f8znIAjRzjCqVOHLnutgdG8IoUKsUOKiqKiTi9YgoLonh82jCPi69fZGW7bRpHTqROnDzKP3H196crXFmpzBiYTv9PLiyPtgsytW6yjM2wYr5+W7hwRQYEwYQJF5Z07lu/z9m2OGNNX4wR4/5QsSe+Mlxe9Odnt12jkSE37bLlyFBK9epnr+2gju+HDlbp50x5nI2euX+f0lHaOqlSxX22b/EhcHFdUr17dvDaO0Uih6+fH86cVmMyK9OLls8/43q1b7MgDA5m+nwtu0albQ4UKbCP377/3fydOsJ198cUsP+ryY9VWxwZ43WTa1eHkOwEzYsQI9c8//6izZ8+qzZs3q/bt26vw8HB17dq1LLe/ewKmTKEnpFgxc30NpKtBkFl4aIJlzBjzqDg3jEalvvnGLITSj9SLFKEHxtLFH/NKWhoXfPP2pjuzoHDnDhv+4cN5/bTrWrYsvSTffcdRoL1ihPbvp+jIHA+lvUJDlZo82TyllJhI4ZLe81OsmNkLo/3dv7/l9529iY1VqkcP87lr1CjHAmMFEpOJa5wVKsQpSKUoMjt35jkbPpzXOjtSUjjISC9eNBITef69vOjNzQGXd+rW8MEHPN7nn89+mxkzuM2PP97zL5cf68aNGQe8rVrRA/Phh5y637qV07kSf2g3LL2OHpOF9NRTT2Hjxo24efMmIiIi0KJFC4wfPx6VKlXKcnstGj0WQLYxzD4+TIWtU4epzc88w7+t4dAh4IUXmF3Qty9THkuVYnbIp58yyv7WLW5brBjw+OPA++9b/z3WYDSy3s3MmcAbbzCLKr9lJ926xZosGzbwtXcvM0LKlAHatAFat+bPChWs37dSrN0SHc3sguvXmWUWG8uU98REwGBg1k9qKjMrjh7lZ6x5nHQ6ZgPVqcNU2lq1mDpdqhSz4nQ66223B5cvMztGSwWvU4f30COP5G2/Wv2Sc+eYOXXtGjP+bt9mRkdcHH+Pj2fJAIOBacVpaTyvCQlMCw8M5E9vb9Zb8fdn9ldICJ+xIkWYQVi0KNPUtTT3QoX4CgnhKzSU24WEWJ5u/r//Aa+9xrIKvXoBx48zm0ar+9SpU/afPXuWZR22bgVmzGD9kMwYjUyn//JL4OWXgS++yDLt9m77ZkVmTmxQEEK18+bjYz5vYWHMAoqKAqpVY9mAmjXZRuU1Df/yZWbuhYXxOcpuf0oxk2/ZMj7P992Xt2O1YFuLMZmYWXTyJO/fM2eA06f58/p183aFCrG0RsWKbHe0e7FwYb6037WfAQGue8bdHEuvo8cIGGvJIGD8/HgzVa3KlOM2bVhPITjY9i8wGoFPPgHGjmVa4HffmQvOZeboUeCjj5j2qtWHqVABGDQIGDaMjYk1GAx8oLZupYA6f54dbFIS/x8QwGOLj+dDV6wYO8iHH2YNgwoVPKsWgdHIjmL7doqWf//lcQFsCKKi2PFHRPDYvbx4fCEhbJhLl2ajklX9jJgYpkHv3w8cPsxrdfIkO9P0BAbyuwoVYqMfEMDO09ub36c1zAkJTJ++fZvXI/3jpXW+2udNJoqh2FhzDSKNoCDWyKhcmXbXqQM0aMBUaG9ve57d7Dl9msUaN27kcfj78xmqXdvcQHt58Thv36YY0UTJrVu81+PjzULEFnQ680srBOntndHflVd0OoqZIkUoerRXsWJ8hYfzdfUq8OabTEP/4gveM488whpBK1dmrAulkZbG+2vBAuD773mfLljA9icnvvsOGDKE133ePAqKdNjUqXt5IVSns+7cac9SWBgHB1Wr0paGDVmsMbd0/GrVmCa9YQOLvuVEUhLQti2fv7//ppCy9VjtKWByIi6OwlQTNNrr3Dk+A7dvZyxWmR4/v5wFTna/awLd2n7DgxAB48gbOTqa3potW4BRoyhiAgIs++ymTfTAbNzIG9vbmw3BmDEsZJUdycmsI7F4MRvLhAQ2unXrsjOJiGDnqG0bF8eO5MwZdsrpcuzv1qqpUYMNTNWqfFWpwjoFrnowlKKgOHqU52nHDuDIEZ7v7BoBf392MmFh7PR9fbkfg4Ed6I0bGYsKRkXRwwFQaFy6xN/DwugBqVGD56FiRY4cS5Zkp2Pp9bX1uOPiOJqLiaHX58IFNownT/J8nD/PbUNCWH+mdWuO9uvVc/woTq+nZ/Hnn2lHVvVm0qON7gsV4j0aHMz7PDWVYi0mhvcowHNbrx5FUfXqFGzly1N0Wiqy09IoLs6f57k6dIhi9MQJXmNNHBYqxA5Z855p+PuzUwgN5XX28eFnDAZel/SDg8z4+lJoauLWz4/XIymJnztzhsdavDgweDAwfLjlA6c9e9jOnD1Lr8+bb94tVmnXTj0pid+xZw/rlxw7xnN59Sqvl3atskKn43NXrBg9NlFRfAUHA7/9RpHXvz8wa5Zlx3z7NiuQnzhBL9VTT0EfF+e+AiY3lOL5vXOHr9u3M/7M7nftZ2xs9kIzOJjtQUAAX4GBWf+09n85be+kwZMIGEfdyH/+yUalUCG6jHMbSWWHycRR1hdfsMEA2BDcfz89RN7e7GjPn6enZeNGjmarVeN0V/Pm7GSV4sg0/SstjT9NJvPfR49yVHPwIB8KgI2Plxe3024DrUEKDTWr/WLFKJDCw9nRe3llHMFlvoU0wfTfCOrutiYTbUlJMXfYV66wQ9OERmZPhLc3G//KlVkMrmZNdnCaEAkJydiBK8Xju3SJncexY2yYd+7k3+lt9fHheXz9dRYcdGd3bmwsj2PbNnqgNm6kiI2KYhG0Vq14zs+f57nUOlw/PzZ0RYuap6dKl+ZoOn01aGtITmal4JgYXq+gILOn69o1Fn3cv5+eh127eI0BisEmTbg8RuPGHMXbUm3YGgwGiuA9e2jLrl20LTWV179cOd7bfn48Z1olbM1jpNPxGbh1i+ewc2ce808/8Xgee4zbxcfTm5aaavZWFSvGwUXjxixOZ8vAIDERGD+eU0pGI7+/ZUvoIyMR9swzzunUTSazONy3j/ffgQMUONrzqj07mduCunXpRdKWPilblh7ratV47rM6J/HxwPPPc7BWvz70rVoh7H//80wBk1dMJraL2Ymd+Hg+j8nJvH+z+pnd/5KS7m1vc8PHx35iSPu9YkVzX/EfImDsfSMrxSmj0aM58l2wgA2aPbh1i1NMS5eaPQKegNZopXfzA+bGX2ucMoudrG45nc48HePjw5Gtjw9f2px9+r+9vfkZTcAZDOzQb9/OOLouVIielfr12ZE0acK/L1xgAzlzJt2/rVuzynLz5o44U/YnOZlrN33/Pb002jkNCqJIKVSI50fzIty6xc4wPUWLskPRxGCpUpwOiYhgpx0czAZGu45padyHXs/9adWGz56loDlxwvwd4eEUKI0aMZ6hSRMKHHfAYGBHvHMnX7t3s3PWGvOwMB5/WhpFWmoqRXOJEmbPRHo0kRMebnbvh4byGgQGUhz5+pqnGTUhbzDwOiYm8t6Nj+e10pakiI/n+1mgBxAGuLZTT0vjNd+/n+dz3z4KxRs3LN+HTsdz4+dn7tQCAvi3wQDcugV9QgLCUlLyn4DR2q7UVMteWsydPV9JSbzftHsu/U9bp32tpVixe+4ZETD2vJFTU4EXXwTmzOGCfh995Lg1ZpKT6Zn56Se6UitVYkOodepa553VK33n7uNjFgPpA/e099LHbmQlRLS4htu32dmfPMnG+9Ilek5u3+ZNrgW0pqbyhjeZzNM9WqOdPmgwMNA8tVC4sDnGQGvoM4sTkymjJ0l7GY38vyZ8/P3Z4RYuzA64dGmOfkuVytmzYjJxMcwPPmBD/NxzXGvKndeV+ucfLvK4ezenXXr2pBhZu5ZB44ULc8rhtdcyxvwkJDCo8tIlehkuXOBPbSpNC1i2dFTm78/zXL68eVRdsyZH3bmdd3cjKYneuuPHzV4sLSi8Y0ce1/XrQNOmFIk//cSG/upVvq5fp6jTYn80AZKUxI5HezaU4jOhddrac+3ry467UCHex9r0gPbSxJC3N5CQAP2FCwj74AP37NSvXOG00Z9/0ssSGspzq7ULfn58z9+f5yK95zjz820yQW8yIcxodK9jfecdit68Cg17owW2Z35pItpdXuntKVKE93g6RMDY60ZOSGAHsW4d53H79LGfkek5eZLenbVr6R50NzKLnMzvpd9OyxrJvCJv5uyHkBDz1IbWEVatSg9JuXLO7QCNRi7GOWoUO5L587k+kTuRmMig72+/5ZTERx/RxvTn6dw5CrDvvmOn9+67jL3IbXVkDZPJ7KaOi6Og1hpaH5+M2T6hoZ4lUvJCaioHFEePcvpOE7je3myMNTGSeTrTaDS77BMSKBgXL2aM18mT93rFLMQtPDDZceECn+Vy5czr/qSl8fdjx+i1OXWKU7rnz1NAZ+Npgk4Hvbc3wtLS3OtYBw3iAOLmTYpWa9vsIkXo0YuMNP9M/7u/v23CIJ88jyJg7HEjx8Zy8bsDB7h4niM6tJ9/pnDRsmoiIjiqjo+n+z0oyOyF0EYnKSnmKRPNnX/lCjsegPEiHTownkaLVwGyn8rJnJWQuaqJ9l5Wn0v/U+PYMdpXr17Gz2gjLYMh41RETIx5KkILGAwLM6/g3bIlM7wyqXSHcPky0+HXr2ca/LBh7tEoXLrELLLjx4HJk+kRzMkLePkyvUrff0/PyPTpuWeBCNnTty+njUNDzTFkWZF5ajM3dDpzSrf20tK+AwLYkWniKJ13Um8wIGzGDPfq1DUeeIAJDrt38xnODS2IPSaGgkBLq09MBFJSGMQ7cqR7HqtGWhpFzM2bfJ0/T5F26hSnqLWYMUt45hnGVxZgRMDk9UbW6+k6PnaMrtAmTexr4IwZHB1fv85GqX17jpyzW83WEmJiuCL1ggW0uV49YO5cs5Bwd0wmCpnDh1nXZedOBjDHxPAcNWvGIMZu3RgY6ChhYTTSRTxpEjB0KAOtHTVlaAmnTzO9VClmdlhzPQ8c4GhxyxZ6Yj755N7g3cRE1t9Yu5YC6cYNNsjBwRQ/AwfmnCGX3xk6FPj6aw4uXnqJWWpa8Lg2oNCmDbSpD8DszjcaGYR75Ajw9NNc8b5cOYp0LVbJStw2tfjoUU63NWvGZ9cOuM2xXr/O5+j0afP0upYqnf73O3eyjx/R6hMVKWJ+pf+7aFEO2KpXt6/tHoYImLzcyImJDNQ9cICNeqNG9jPsm2+YMn37NkdX/fpxRG1rRkh27NjBUfrx46wj8cQT9t2/s1CK3ql164C//qJAi49nfMvjj7OYWMOGjhEzM2aw8x8wgNM2rhAx58+zQQsM5DmwJRDWZAKmTuX0WIUKnMK4fJmd8pYt5kKLADtdrZaO5ukDGFfz5Zf0RBQk5sxhPEdUFEfR1haEvH2b4vPCBYpEO3nB3KZTz0yzZqzXdOIEhZ4dcMmxKsW2c/Nm8+vECf6vUCGz6MgsPnISJmFhzqvh5OFYfB0dUAXYLbC5pHRqKhd8DArKfiE2W5g1K+Oq1yNH8rscSWIilzHw8mLJ6/xAcjIXZXzpJa4KDnARzo8/VuriRft/37x5LK0/dKjzS4XfusX1dipUsM9CjvPmmVe/1l7h4VyocsaMrNd4uX5dqddfN6+I3aFDwVllNzqaS0X4+tp2byUlKXX//Vwi4sABu5rm8vL6WXH+PO+RJk3sulunH+vnn/OaAWw769VT6pVXlFq4kMcoOJx8txaStdh8Iw8ezHWE7LUq7/LlXJgP4Lo3zhAu6TEaub6OtzcXo8xPpKZSzPTuzUXwvLyUevhhpX7/3b6d7PTpvH6ffGK/feZGaioXhSxaVKnjx23fT1ycUq++yjW50q/3pS1MZ6koS0riYoMAF0UtCCJGO96vvrL+syYT1+AKCHDIwphuKWC09aD27rXrbp16rLGxfD4ef5wLcrpyAcwCjAgYW27kadP4AE6fnncDdu+mZwDgKsUvvaSUwZD3/dpCaiobl7AwpU6edI0NjiY2ltetQQOe84oVlZoyxX4N0Dvv0BNjwUrBduGttyg616617fOHDinVurV5henQUKVeeMG86NzYsXz/1VetEyN9+/JzLVrYZpensGYNj7N6dds8b1On8vMLF9rfNuWGAiYpifdr5cp237VTj3XBAl636GjbPi/YBREw1t7ImzdTaAwZkrcvvnJFqZYtzStd9+jhHir+zh02LvXqmVdIzo+YTJz6e+YZXs+wMKVGjeJ1yQtGo1Ldu1MInDhhF1OzZdUq3j+TJln/2X//VapWLbO3pVYtpX79Nettp03jPfryy9Z10ulXXs6PmExKlS/PY9y3z/rPHzhAb2te25IccDsBM3w4z9eiRXbftVOP9dVXlapUybbPCnZDBIw1N/KNG1wm/YEHuNy9LaSmKjVwoHnE27Sp+82X7tunlJ+fUsOGudoS5xAdrdQbbygVEsIOpXdvpXbssN0TFhurVNWqStWvz1gcRxATo1Tx4hQJ1nhGNm2ibZpwbtdOqVOncv/crFlmMWKpiDEalYqK4uccMD3icpYt47F17Gj9Zw0GperWVap2bYcOFNxOwBQpwufMATjtWJcv56Dn1VdtsFKwJyJgLL2RTSalHn2UQVu2ug2/+84cHBkVxVGwu/L55+zgNmxwtSWOw2Ti8Q0erFTNmjzezNVtypdX6qmneO2s8c7s3UsR+PrrjrG7e3elIiKUunrVss8cO0ZBpQmXRx6hCLKGr7/m5z/7zPLPnDlDsR4Rkf/iYSpW5Lm8cMH6z44dy07QznEgmXErAbN2Le+fl15yyO4deqwpKYyZ69uXwdo9e9o+iBXshggYS2/k777jw7d8ufVfcvAg3Y0Ag0inTrXNWGeSlsb4hcqVmaWUnzCZlPrlFwaZAkqVLctGdcYMpf74g1Mzzz3HID1vb6VKlWIn7OXFgNmffrIswHryZO7/77/ta782//7LL7lvGxdHsaIJsvbtrRcu6XnrLXbav/1m+WdGj+Z3jxpl+/e6G1u28Jg6dbL+s0ePshMcM8b+dmXCrQRMq1Y8Z1llsdkBhxzrv/8yJkzLDK1eXalx40S8uAkiYCw5AefOKRUcrNTzz1u3c4OBUeraqPeZZ1wXoGsLx47Ri/D22662xH6cP08RonXma9dmPyVy+zaPPTCQru+nn1aqeXN+tkIFCp6cGjKjkQGyZcsqpdfbx/6YGDamTz2V+7ZTpvD6aTEuR47k/fuNRnoiQ0Mtm3rSCA9npx0Xl3cb3AHtPjh92rrPmUyctqtUySkxZm4jYIxGepyqVrX/vv/DrsealkbBrT3ro0dzat3ZJRKEHBEBk9sJMJlY0yIqyrog2/nzzWmo1as7PqDTUbz3HjueY8dcbUneWblSqcKFGce0cqXln7t0iSnmOh2nmqZNU+rJJ/l35coMfs2uYTtzhvfB4MH2OYbevTmNee1a9tucOkW7AMYbLF5sn+/WiI1lB9y4seUj0Z9+oj19+9rXFleg1/Pa16lj/Wd//ZXnwZr7Lw+4jYCZM8f66UcrsduxJiYq1aULPa6ffy6ixY0RAZPbCZg/nw/e779btsMrV8wpugEBnHryZJKSGAfSubOrLckbX35pjv24dcu2fezeba758cQTrJfTsSP/7tIl+2DsKVP43XkteKil7M6Zk/02775rDhB/9lnH1RLasYPTa2PHWv6Z0qU5Cvf07LaRIy2fwktPaipLJjz0kNM6RbcRME2a8Blw94Dl1FS2EYGBrO8iuDUiYHI6AbduMdPjySct29m4cWzUAXb4CQn2NdZVaKNnTy1wN3487R85Mu+BpCYTY1BKlOC04pQpSv38MzvnkBBm62TunNLSlGrUiFkntgqK5GSlqlRR6sEHs+78YmLo6QMYMLtzp23fYw1jxtA7d/iwZdtrg4G33nKsXY6meHEG41srQmbP5vHv2uUQs7LCbQSMry/vTweS52M1mZQaMIBtuJM8ZELeEAGT0wkYOpSdVG7lwc+dY+cCMFZi/XqH2OoyTCaWOm/QwPMySb74gtflww/tu987d1g2XKdjKvzWrZxmAih4M99PO3dy2y++sO37xo2j9+LQoXv/99NP5liX3r2dd42Sknjft2tneWceHMxnxFM5e5bnuUcP6z6XlsZz1b27Q8zKDrcQMFr20ejR9t1vJvJ8rG+/TTvnznWglYI9EQGT3Qk4dIhKPLey8B99ZHbZ9+3reR28pWzcyGP86SdXW2I5y5ZRNLzxhuO+Y/NmpWrUoIAYP16pH39kgGuVKvd6Jl5+mf+zNPVZ48IFurRHjLj3f88/b56utHSa056sWGHdFOvAgZ5dF+bFF2m/tR4uzYu5Y4dj7MoGtxAwvXo5pWptno71r79o48SJDrVRsC8iYLJzJXbowEDI7LKGrlxhxwUwqNJTG2RraN+e0yCeENR29ChH+z17Ol5UJiVxWsTLi3P9f/3FAM/g4IzpxjduMINo4EDr9t+rl1KRkRm9OgkJ5jTwKlWUunnTPsdiLSYT44IaN7bsvoiONk+xeiJRUZw+spYHH3TJsgpuIWBKlqRwdzA2H6sW59emjWe0bcJdRMBkdQJWr2Yju2xZ1h+aNYtzugDTWfOr1yUz69bxmP/4w9WW5IzBwKJt1arZL33ZErZupZgICmLQcPfuFDXpF/n7+mt6hXbvtmyf//7Lcz57tvm9U6eYTQUwNd/VaMHFlta7KV3aNhHgagwGXrsHHrDuc0eO8Pz8+KNj7MoBtxAwXl5KNWtm331mgc3H+u23vK5HjzrcRsG+iIDJfALS0uhlaNnyXjVuMNAzA7AB9tSgVlsxmRiMakvxLmfywQeMF7FUJNiT+HgWxQMoYAYNMs//m0wM4q1Zk/VhchvtGY08340bm0Xy339TPOt0Sv3vf44/HkswmVgS39L4jn79eE6sqSPjDvzwA+22No5pzBgKTkctK5EDLhcwO3Y4rYihTcd65w5rJFkb0yS4BSJgMp+AefP4wGVOed2/n8GHAANa80uGkbXMnMnO09oCXs7izBnGozg4YDBXli3j/RIVxWBwgPETRiM9WED2iydqzJ3L7TZt4t/ffcdz7+dn++rTjuKbbzjStqTKr9apOWKZBUfy1FO025rpOpOJNXMGDHCcXTngcgHzxhs8Z04YTNh0rFpFZWsqSwtugwiY9CfAYOBcaGY1/skn7Di8vBxaiMkjSEhguvAHH7jakqx55hnOucfHu9oS1oW5/356g3r14v2j1WZ56CFWJc2uEFx8PKdanniCf7//vrkwnTsWRbx2jUHv06dbtr2vLz2dnkTNmhSP1nDihFML12XG5QKmVSve907ApmP98ENO+XpShXThLpZecy8UBL7/Hjh/Hhg3jn+npQFt2wKjRgFFigAHDgAjRrjWRlcTFAR06wb8/LOrLbmXs2eBRYuAMWOAQoVcbQ1Qtizwzz/AsGHA4sVAo0bAwoXAc88BEyYAJ0/ynsuKyZOB69eBiROBwYOB998HIiOBc+eAKlWceBAWEhEBtG5t+X0RHg5cvOhQk+zOhQtAiRLWfWb9esDbG2jVyjE2uTs3bgD+/q62Int27ACaNAH8/FxtieBA8r+ASUqicOndG6hZEzh9GihVig1Q69bAlStArVquttI9ePxxirkzZ1xtSUa+/hooXBjo18/Vlpjx9QU++QT49Vfg+HGgeHGKmS++AJ59lsIkPj7jZ65eBSZNAoYMAd57D/jmG6BSJQq0okVdcBAW0rYtsH07oFTu21asCNy543CT7EZ8PF/Vqln3ufXrgcaNgZAQx9jl7sTFAQEBrrYie44cAerXd7UVgoPJ/wJm1izg2jVg7FhgyRKgenWOHsaNYyMkCt1Ms2b8eeiQa+1Ij1Ic/T/9NL1E7sajjwK7dwPFigE+PsAPPwDJyUBsLPD55xm3HTuW99uxY9yubl3+7s4dAQA0aADo9RRauVG3LmAy0avhCZw4wZ/Wdna7dgH33293czyG+HggONjVVmTP+fNA5cqutkJwMPlfwEyZwpH7//4H9OrFkfPGjcA777jaMvcjMhIIDHQvD8zRo2yMunZ1tSXZU7kysHUrxYxSFMo1awKffUbxDPA4vv+enppVq4CmTYG9eyl63J0GDfhz797ct23Zkj/XrHGcPfbkyBH+rF3bus9dvQqULm1/ezyF5GT39j4ZjWzPhHyNxwmYqVOnonz58ggICEDTpk2xY8eOnD9w6xZHS199BZQvz/n5Fi2cYqvHodNxCsCdBMyff9JD0bq1qy3JmeBgxulMnMi/9+4FUlPNcVdvvUXvy/HjjJvYsgXw8pDHLzKSMSL79uW+bbt2/Ll7t0NNshvnz/NnpUqWfyYxkR4Ia+Nm8hMpKYwfdGciIlxtgeBgPKQFJYsXL8bw4cMxduxY7NmzB/Xq1UPHjh1xTRvlZoW3N7B/P/DII4x/cedYA3fA3QTM0aP0ZgQGutqS3NHpgDffBP74g6LLYACmTmVszIoVHLW2aQNs2OA54kWjZk2Kr9woXpw/L192rD324soV/ixf3vLPaO1NQRYwRiMDtt0Zd7dPyDMe1YpOnjwZL7zwAvr374+aNWti+vTpCAoKwqxZs7L/UEoKM0OWL/e8TsMVuJuAOX8eKFfO1VZYR6dOFM1FijAe5Jln+H7btsC6da61zVZKlzZ39rnh7c1MK08gJoY/NeHlqM/kJ/R6/nR3D4e7x5YJecYDJuBJSkoKdu/ejdGjR999z8vLC+3bt8fWrVuz/VzCwoWMn/jvofP394e/O6f/uRpNwJhM7iH4zp1z7/iX7KhalecxIoJp+yVLAmvXutoq2ylZknE+luDvz6lbT+DGDXrOrAnm1wSMEz0wBoMBBoPh7t96TURYQebP2NwWagOckiWt/6wF2ONYASAuMRFK2n2PwNZr7gY9lGXcuHEDRqMRJTI1GiVKlMDVq1ez/VypZ95GWNg4hIVFICzsE0yYMAHjxtHDPXMmsHMnwyx++YXxfP/7H7WOFrowbhzb4qlTmWG8YgXw++/Anj3AjBkcaKbfNjGRySfHjzOWc+1ahjvMmQNER2fc1mikc+j8eWD+fGDTJpYXWbSIpUQ+/ZSzDuk/c/Uq8N13tHv1amDZMiYNffUVE1/Sb3vnDjOQDx5ktu+qVQxN+PZbtsHpt01Kot2XgqoABgO2LI7G5s3AvHlMKBk/nppm3Dj+HD+e78+bB2zeTMfC4sW0+/PPzdnr2v5jYvi9u3fTjl9/pV1ff007028bG8vjOXRQwXjuAo4mlsPOnTzuq1czbpuczPN08iTP2z//8DzOn8/zOmECz3P6z0RH83ps2cLrs2QJr9fnn/P6pd/2+nVe5z17eN1XrOB9MHUq74v02+r1vH+OHOH99Of2wjgwfz8MAWG4/O/pDNsaDMzCPn0a+PFH2v3vv8CCBdRsEydS96T/zMWLwOzZwLZtjJFdupRJTFOmMCQj/bY3bgDTpzNsZeVK4Lff+Pu0acDNmxm3jYtj9veRI0z4+usvZk3PmsXnZNw4AKVKIfXCZaSmKEyaxD7shx8YD79xI38/c4ZZ4iqoEOIuxt7d/+XL3Nf27dz3zz/zu774gt+d3pabN2njvn20eeVK/j59ujl5UNs2Pp7HfuwYz8WaNTw3s2fzXKXfNi2N5/TcOZ7jf//lOb995hZMPr745BNek/Sfya6NWPvjNSidDuNnhDutjXjzzW8QFjYYYWFdEBb2CKKiXsvc1OVKVFRLu7SFq6YyG23fzTIOaQufeur3u8cZFvYioqIetPpYz6A8ytSZJ+3+r5a1+ydPsv1etw4uafc7d96MsLAohIW9g7Cw+xEV9bJF11mnlCXFHVzP5cuXUbp0aWzZsgXNmze/+/6oUaOwYcMGbN++PcP2er0eYWFhiI6ORmho6N33RYnnwrlzQIUKjOPo1Mm1tly9ylHer78yw0dwHYsXA089xVYnLCznbStVYgtv48jZqVSowJ4qNtbyz4wfT/XlxGmyrEaoUVFRiI2NzdC+ZYXd28IvvwRef509UufO1n8+F+xxrLEAdMePQ/2XiSTtvntj6zX3mCmk8PBweHt7I0Zz3/5HTEwMInNIlwsNDc31phfSUbYs660cOeJ6AaNliHhaDEx+pFQp/rx8OXcBU6QIh52eQFyc9dWdY2KcHsBrjw7Ybm2hFqBdsWLe95UF9hIbIWFhgLT9HoGt19xjppD8/PzQqFEjrE0XR2AymbB27doMHhkhj3h5sdifVh/DlWgF9azJEBEcgxbvYEl2UXg452w8gaQk6+uZXL5csGuMnDrFn9aknrsCT7kHBZvxGAEDAMOHD8d3332HuXPn4ujRoxg0aBASEhLQv39/V5uWv6hZk+nLrmbhQtZ/KVzY1ZYImoCxJBMpMpIF/ZKTHWuTPUhJsf7+2rWrYJepP3WKgdruXoQxJcXVFggOxs3vwIz06tUL169fx3vvvYerV6+ifv36WL169T2BvUIeue8+RqLdvMkS+a7g9Gku9ZBTirzgPAoVomfl2LHct9Uq1J46ZX2FW2diMHCUbk068KVLnNosyMsIXL7s/kXsABEwBQCP8sAAwJAhQ3D+/HkYDAZs374dTZs2dbVJ+Y+nn+YI+ocfXGfD2LEcyT/5pOtsEDLy0EMM3MwNLTbCksq9rkSzr2pVyz+zZQt/FmQBExvrGcsopKa62gLBwXicgBGcQEQE0L07sw1cMYrZsIHi6f333XMBx4JKt25cIuHixZy369GDP5ctc7xNeeH33/mzfXvLP/PXX0CVKgU3BiYxkcLAGtHnKjKvBi/kO0TACFnz3ntcfXjaNOd+782bXHyzZUvg+eed+91CznTuzNiHhQtz3q5oUWZ/ZCpt4HZoCQGWro1mMAA//cRFYQsqmzfzpyfEAJ0752oLBAcjAkbImtq1gZdfBt5+m1WKnEFSEtCzJ1Nb5893j0rAgpnChYEnnmBlKpMp523r1GGshDtnghw6ZBZblvDbb6yD8/TTDjXLrVm6lD/dvS5T2bKsVijka6SHELLnk0841/3oo8Dt2479rvh4Tlvt2MHCdVL7xT155RUGWP/2W87bPfUU46hmznSOXdZy/DgL7TVpYvlnvvySnsGaNR1nl7uzfj3XGKpWzdWW5EzXrmxHchPagkcjAkbInuBg1tCOiWEAZ06rfueFU6foxt+yhXEJlrr0BefTvDnQqhVrgOdUxPvll+lBmzHDebZZgyasXnjBsu03beJr2DDH2eQJnDvHOlHuTrdu9ADu2OFqSwQHIgJGyJnq1RkrcPEi06s3brTfvlNTuZhN/fpAQgIFTJs29tu/4Bg++IC1ULTphKzw8QFq1eKq3O5YD2bRIq6a3aVL7tsqxanU+vXdf+rEkSxfzilBTzgHzZqxWnJu8VqCRyMCRsid+vU5kilbFnjwQaB377xV6tXrGRxcvTowciSDdvfsYdyE4P60bg08/DDwxhsUntnxzjt04X/4odNMs4ijR7nUQdOmnA7JjSVLGE8xcWLBjsuaMoU/hw93rR2W4O3NdmXePGZOCfmSAvw0ClZRtiyXTP32W6Y516oFPPAA42S2bcu5kUhJ4ZKu337LIN3ISGDIEKBRI9bi+Ppr68u5C67liy84pfjee9lv06sXC+C52zSStgTu6NG5b3vrFhcu7N4d6NjRkVa5NyYTsHUra/x4yvpCL7zAmjVLlrjaEsFBeFQlXsHFeHuzUXjuOa5Dv3AhpxM08VKyJFC8OBv9tDQKlRs3WL3UZOLotUkTdnq9ewNRUa49HsF2KlWiZ+XNNzml0KpV1tsNGAB89RXr+vTu7VwbsyIujlNfoaG5r6SsFDBoENOnp051jn3uyjffcCDy8suO/Z6rVzkgOnQIOHOG8XfWrBSenkqVgAYNGHDer59dzRTcAxEwgvX4+THL5KmnzN6VgwcZ4Hf9OoudGQx00RcrRu9NjRqcihJPS/5h+HBg5UrgmWfoSQsPv3ebTz7hdOEbb7iHgPn0U8ZevfkmBXlOTJvG0fuSJebVuAsqn30G+PraP4hZKQqWn39mlWdtDbaiRVkwsEQJ2899dDTbpoED7Wev4FaIgBHyhp8f0LgxX0LBwtubnpWGDTldtHo1O7n0BASwA5kxg5k/ruxMEhLYEfv5UVDlxPr1wGuvcarziSecY5+7smkT13/q0cN+Czhevsx1zmbPpqelRAlmDo0dy2UaypQBdDpuq9fnHDCeHX/9Rc9v3772sVlwOyQGRhAE2ylThp3Lxo3A4MFZp1b/738UMq+95trCdm+/zWKJr76acxzH/v3srFu3BiZPdpp5bsuLL1JMTJ+e933t3MlCgOXKARMmcOpx/XpOM3/3HYVwVJRZvOSFM2d4f4rXN98iAkYQhLzx4IPsfL77Dnj33Xv/7+fHDJ6EBMbEuIJz5xjHEhzMUX52HDrEmkeVK3NaI7NHqaDx55+c1unalfFttqAUvSFt2jAGbscOesIuX6YHpnXr3KfzbOH0afPCokK+RASMIAh5p18/xpeMH8/A7syemNdeY0zD/PnMZnEmSgGPPw4YjaymGxyc9XY7drAzLV2a02Gekm3jKEwmoE8fiov5863/vFIshNm0KTO4EhK4ltSJE7wfwsLsb3N6zpxhIK+QbxEBIwiCfRg5Evj4Y64i/sYb95ZxX7OGnWHnzs4tbvfFF8Du3Uzb798/622WLaN4qVYNWLcu64DkgsbrrzOLcNQoroNlKSYTz2fDhsxQCwykB2b7dpZRcIS3JSvOnBEPTD5HBIwgCPZj9GimTU+ezCy19PWBypVjMbTYWE47OYMDByis/P3pDcgcW2E0ctrrscdYnO/vv4EiRZxjmzuzcyfrM0VFUZRagsnEeKj69Xk+ixRh7agNGzgtZ4+4Fku5eZOvypWd952C0xEBIwiCfRkyhPEjv//OjJJTp8z/GzqUo/IdOxwfD3PjBoWSyQT8+OO96bjnzgFt27KDHj8eWLyY3oKCjl4PtGvHuk1r1+a+fWoqp5hq1waefJIZRf/+S0+Ws4RqZrR0bKnuna8RASMIgv3p0YOxLomJLCY2e7Y5LuaXX7iMxOzZllXDtYX4eAaM3rkDvPUW7dEwGhnQW6cORcz69cxQcqaHwF1JS+P1iotj1lGVKtlvm5BAL03VqkxVrliR65mtWeP6BVmPHGEAdk72Cx6PCBhBEBxD3bqMPenZk96WLl2YGeLlxWKHZcowO+m11+z7vXo94y/OnuU0VvopkI0bKWyGDGEBvgMHsq8iXNAwmRgndOYMz8/zz2e93YULFIVRUYyTad6chQxXruTv7sDRoyyeWdCzyPI5ImAEQXAcISHAnDks537kCFCzJoNCExOB48eB8uVZJ6Zjx3uDfm3h/HmOuk+e5HTGwoX0rOzYwVTgBx+kgNqyhcX1HJ0J4ynEx9OTcuAAKyZ/9VXG/6elcUrw0UeBChVYpbhfP04PLlwI1KvnErOz5fBhTmkJ+RoRMIIgOJ6HH6aAGT2a6+qUL89063XrgJYtmaUSGclVyW1l1iyKl2vXgBEjGJfxyy/MLmralN6fH39kNoy7eArcgY0buY7Z6dPAK68ACxbwfaUo/EaMoLfl4YcpEKdOZeG5yZN5Hd2RPXvoaRPyNSJgBEFwDoUKMcX6zBl2lNOnM0skLIx1Wm7c4BRGly4UIZaybx9H2wMHMkV33Diu0RUVxf2mpbH+yOHDnFLykmYPAM93p070SiUnA99/z+q4K1bw+pQrR+G3YAGXU9i1i1N/L7+cfS0ddyE1lR43IV+jUyqr2t+ej16vR1hYGGJjYxFa0AtSCYI7EhfHznHOHI70fX1ZtTchgf+vVQt46SWufp75Gb56lVNAs2YxJgNgpdjkZMbAlC7NsvTPPcdYnHyGNe1bhm39/OiFmj6dqdJKUei1akUP2f79nMqrWJECoHt3/s9eayDZgE3H2rIlQjdudJKFgr2x9JqLgBEEwfWcOcOR/5o1rBuiiRgNnS7rdZY0/P05LdS6NQvlNW6crz0tNnXqALLc0tubWWH33Qc88ADPYaVKbpOVZdOxLlmC0IK+CKcHY+k1l9WoBUFwPRUrMqPl9dfpATh9mtMVv/7KTKYbN4Dbt9mpFi1Kb0vz5vQS1KjB2BdnVXj1VMLCWFG3enUWlqtUia8qVbjYZn7ioYdcbYHgBETACILgXnh5sVOtUoWZRIJ9uHCh4KzvlI+9b4IZucqCIAiCIHgcImAEQRAEQfA4RMAIgiAIguBxiIARBEEQBMHj8BgBU758eeh0ugyviRMnutosQRAEQRBcgEdlIX344Yd44YUX7v4dEhLiQmsEQRAEQXAVHiVgQkJCEBkZadVn9Hp9hr/9/f3h7+9vT7MEQRAcisFggMFguPt35nbNEjylLSxIxyoQW6+5x0whAcDEiRNRrFgxNGjQAJ9++inS0tJy/UxUVBTCwsLuviZMmOAESwVBEOzHhAkTMrRjUVFRVu/DU9rCgnSsArH1mnvMUgKTJ09Gw4YNUbRoUWzZsgWjR49G//79MXny5Cy310oRR0dHZyhFLEpcEARPI6sRalRUlFXl9T2lLSxIxyoQW6+5S6eQ3nrrLUyaNCnHbY4ePYrq1atj+PDhd9+rW7cu/Pz88NJLL2HChAk53pihoaGyFpIgCB6NPTpgT2kLC9KxCsTWa+5SATNixAj069cvx20qVqyY5ftNmzZFWloazp07h2rVqjnAOkEQBEEQ3BWXCpiIiAhERETY9Nl9+/bBy8sLxYsXt7NVgiAIgiC4Ox6RhbR161Zs374dbdq0QUhICLZu3Yphw4ahT58+KFKkiKvNEwRBEATByXiEgPH398eiRYvw/vvvw2AwoEKFChg2bFiGuBhBEARBEAoOHiFgGjZsiG3btrnaDEEQBEEQ3ASPqgMjCIIgCIIAiIARBEEQBMEDEQEjCIIgCILHIQJGEARBEASPQwSMIAiCIAgehwgYQRAEQRA8DhEwgiAIgiB4HCJgBEEQBEHwOETACIIgCILgcYiAEQRBEATB4xABIwiCIAiCxyECRhAEQRAEj0MEjCAIgiAIHocIGEEQBEEQPA4RMIIgCIIgeBwiYARBEARB8DhEwAiCIAiC4HGIgBEEQRAEweMQASMIgiAIgschAkYQBEEQBI9DBIwgCIIgCB5HvhUwBoMhw09PwmAw4P333/dI2wHPt9+eyLmwH3IuzVjTvnlyWwgUrGPN79j7GRYB44YYDAZ88MEHHmk74Pn22xM5F/ZDzqWZgtSpF6Rjze/Y+xnOtwJGEARBEIT8iwgYQRAEQRA8Dh9XG+AolFIAgLi4OOj1ehdbYx2avZ5mt4an229P5FzYDzmXZuLi4gCY27mc8OS2EChYx5rfsfQZ1v6f2zXPtwImNTUVAFCzZk0XW2I7UVFRrjYhT3i6/fZEzoX9kHNpRmvnLNnGk9tCoGAda37H0mc4Li4OYWFh2f5fpyyRtR6IyWTC5cuXERISAp1O52pzBEEQ7IZSCnFxcShVqhS8vHKOBPD0trAgHatALL3m+VbACIIgCIKQf5EgXkEQBEEQPA4RMIIgCIIgeBwiYARBEARB8DhEwAiCIAiC4HHkOwHTr18/6HS6e17PP/+8q03LEaPRiPvvvx+PPfZYhvdjY2MRFRWFd955x0WWWYZ23l9++eV7/jd48GDodDr069fP+Ya5EE+9F92J9OfQ19cXFSpUwKhRo5CcnOxq05yOtW2EJ587W9qTqVOnonz58ggICEDTpk2xY8cOJ1kr5Mb7779/TztYvXr1PO833wkYAOjUqROuXLmS4TV58mRXm5Uj3t7emDNnDlavXo0ffvjh7vtDhw5F0aJFMXbsWBdaZxlRUVFYtGgRkpKS7r6XnJyMhQsXomzZsi60zHV44r3obmjn8MyZM5gyZQpmzJjhEc+DvbGljfDkc2dNe7J48WIMHz4cY8eOxZ49e1CvXj107NgR165dc7bZQjbUqlUrQzu4adOmPO8zXwoYf39/REZGZniFhoa62qxcqVq1KiZOnIihQ4fiypUrWL58ORYtWoR58+bBz8/P1eblSsOGDREVFYVffvnl7nu//PILypYtiwYNGrjQMtfhqfeiO6Gdw6ioKHTv3h3t27fHmjVrXG2WS7C2jfDkc2dNezJ58mS88MIL6N+/P2rWrInp06cjKCgIs2bNcrbZQjb4+PhkaAfDw8PzvM98KWA8maFDh6JevXp49tln8eKLL+K9995DvXr1XG2WxQwYMACzZ8+++/esWbPQv39/F1ok5CcOHTqELVu2eISgdxS2thGeeO4saU9SUlKwe/dutG/f/u57Xl5eaN++PbZu3eo0W4WcOXnyJEqVKoWKFSuid+/euHDhQp73KQLGzdDpdJg2bRrWrl2LEiVK4K233nK1SVbRp08fbNq0CefPn8f58+exefNm9OnTx9VmCR7MypUrERwcjICAANSpUwfXrl3DG2+84WqzXIY1bYSnnztL2pMbN27AaDSiRIkSGd4vUaIErl696kxzhWxo2rTp3enPadOm4ezZs2jZsuXdda5sJd+uheTJzJo1C0FBQTh79iwuXryI8uXLu9oki4mIiEDXrl0xZ84cKKXQtWtXu7gKhYJLmzZtMG3aNCQkJGDKlCnw8fFBz549XW2WS7G0jfD0cyftSf6gc+fOd3+vW7cumjZtinLlymHJkiUYOHCgzfsVD4ybsWXLFkyZMgUrV65EkyZNMHDgQItWYXUnBgwYgDlz5mDu3LkYMGCAq80RPJxChQqhcuXKqFevHmbNmoXt27dj5syZrjbLZVjTRuSHc5dbexIeHg5vb2/ExMRkeD8mJgaRkZHOMlOwgsKFC6Nq1ao4depUnvYjAsaNSExMRL9+/TBo0CC0adMGM2fOxI4dOzB9+nRXm2YVnTp1QkpKClJTU9GxY0dXmyPkI7y8vPD2229jzJgxGbJTCgp5aSM89dzl1p74+fmhUaNGWLt27d33TCYT1q5di+bNmzvTVMFC4uPjcfr0aZQsWTJP+xEB40aMHj0aSilMnDgRAFC+fHl89tlnGDVqFM6dO+da46zA29sbR48exZEjR+Dt7e1qc4R8xhNPPAFvb29MnTrV1aY4nby2EZ547ixpT4YPH47vvvsOc+fOxdGjRzFo0CAkJCRIAoGbMHLkSGzYsAHnzp3Dli1b0KNHD3h7e+Ppp5/O035FwLgJGzZswNSpUzF79mwEBQXdff+ll17C/fff73FTSaGhoZIuLDgEHx8fDBkyBJ988gkSEhJcbY7TsEcb4annLrf2pFevXvjss8/w3nvvoX79+ti3bx9Wr159T2Cv4BouXryIp59+GtWqVcOTTz6JYsWKYdu2bYiIiMjTfnXKk3pFQRAEQRAEiAdGEARBEAQPRASMIAiCIAgehwgYQRAEQRA8DhEwgiAIgiB4HCJgBEEQBEHwOETACIIgCILgcYiAEQRBEATB4xABIwiCIAiCxyECRhAEQRAEj0MEjCAIgiAIHocIGEEQBEEQPI7/AyELd5CDX45EAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "phonon = result['phonon']\n", + "phonon.save(settings={'force_constants': True}, filename='pbe/phonopy_params.yaml')\n", + "\n", + "with plt.style.context(\"default\"):\n", + "\n", + "\n", + " phonon.plot_band_structure_and_dos()\n", + " \n", + " plt.savefig('pbe/band_structure.png', dpi=300)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 -3.852752827221051\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjhBJREFUeJzs3Xd4FNXXwPHvzO6mQQgdQu9FWhCQ3gSpIk2kN1EQEOkgKsUfCNJREBBUihRB6UWkSUd66B2kBQgBkpC6uzPz/rGBF5CSsruzm72f58kDhMnes8lkztw7954raZqmIQiCIAhOJusdgCAIguCZRAISBEEQdCESkCAIgqALkYAEQRAEXYgEJAiCIOhCJCBBEARBFyIBCYIgCLoQCUgQBEHQhVHvAJ6nqiohISH4+/sjSZLe4QiCIAhJpGkajx49IkeOHMjyy/s5LpeAQkJCyJ07t95hCIIgCCl048YNcuXK9dL/d7kE5O/vD9gCT5cunc7RCIIgCEkVGRlJ7ty5n1zPX8blEtDjYbd06dKJBCQIguDGXvcYRUxCEARBEHQhEpAgCIKgC5GABEEQBF2IBCQIgiDowuUmIQj2FxwczOnTp5/5XIkSJQgKCkr2sS86zt2OTen3wBWOFd9bxx3rqt/bpBzr7O9tkmkuJiIiQgO0iIgIvUNJFY4dO6YFBARowDMfNWvWfOHxNWvWTNSxLzrO3Y5N6ffAFY4V31vHHeuq31tX+DkEBARox44de+Hxmpb467ikaa61JXdkZCQBAQFERESIadh2sHjxYjp06EDPnj2pWrXqk8+Lu0PXvfNOyrHie+u4Y131e5uUYx3x/dq7dy+zZs1i0aJFtG/f/j/HQ+Kv4yIBpXKPE9CrThZBEITESsw1JbHXcTEJQRAEQdCFSECCIAiCLkQCEgRBEHQhElAqV6JECWrWrEmJEiX0DkUQhFTAntcUMQlBEARBsKvEXsfFQlQhVQoJCeHkyZOcPXuWy5cv8++//xIREYHVasVqtaJpGkajEZPJRNq0acmTJw8FCxakaNGilClThty5c79yIy0hdVBVlYsXL3Ly5EnOnz/P1atXuXHjBjExMU/OFUmSMJlMGI1GMmXKRN68eSlcuDDFihWjdOnSZM6cWe+34bZEAhLcWmRkJKtXr+avv/7i6NGj3Lh5k9jYWFRFeeY4k48PPmnTYjCZkA0GADRFQVEU4qOiiI+JeeZ4SZbx8fEhMHt2goKCqFu3Li1btiRr1qxOe2+CfV27do0//viD7du3c/LkSULDwjDHxfH8IJCPvz9evr4YjEakhJsQVVFQLBZiIiJQLJZnjjcYjfilSUO+PHmoWLEijRo1omHDhvj4+DjtvbmrJA/B7dq1i4kTJ3LkyBFu377NqlWraNas2ZP/1zSNkSNHMnfuXMLDw6latSqzZs2icOHCiXp9MQQnvIrZbOann35i/vz5nDl7lpjoaDRNQ5JlshUsSL6gIAKLFCEga1YCsmUjXdasBGTNik/atK9+3dhYIu/dI+LuXSJCQ4m4e5e7ly9zLTiYW+fPo1qtAPj6+VGwQAHatGlDnz59xDnqwu7cucOUKVNYuXIlN2/dIj4uDgCTtze5SpQgb5kyZMmf33auJHz4Z8mCydv7pa+paRqxkZFEhIYSGRpKRGgo4bdvE3L+PFePHeP+9euA7QbG39+fN8uWpXv37rRu3dqjetQOW4j6559/snfvXsqVK0eLFi3+k4DGjx/PuHHjWLBgAfnz52f48OGcPHmSM2fOJOqOQCQg+woODqZfv35MmzbNPrWbdBASEsLUqVNZuXIl165fR7FaSZMhAyVq1yZvUBB5S5UiR/HieDnojlOxWLh94QLXT57k2okTnP77b8Jv30Y2GAgMDKRRw4YMHDiQokWLOqR9IfEOHTrElClT2LptG/fDwtA0jWwFClC8Zk3ylC5NnlKlyJo//5NesL3FPnrEzdOnuX7qFFePHuXMjh2YY2IweXlRtEgRWrduzWeffebW17bEXFOcUglBkqRnEpCmaeTIkYOBAwcyaNAgACIiIsiWLRvz58+nTZs2r31NkYDsy50rISxYsIAxY8Zw+coVNFUlW8GClGnQgNJ165KnTBnd7ig1TSPk/HlObt3Kic2buX7iBEgSOXLkoF/fvgwcONCj7nb1FhMTw8iRI/n5l194+OABkixT6K23KF2vHqXq1iVznjy6xWY1m7l86BAnt24leNOmJzcupUuVYuzYsTRs2FC32JLLnpUQ7PoM6OrVq9y5c4e6des++VxAQAAVK1Zk//79L0xA8fHxxMfHPxO44LnCwsIYMmQIy//4g+hHj0ifPTvvDhxIuffeI3Pu3HqHB9huvHIWK0bOYsVo8OmnRISGErxpE7sWLGDIkCEMHzmSRg0aMHXqVPLmzat3uKnW0aNHGThwIHv27sVqsZCvbFmafPUVJevUwS8gQO/wADB6eVG0alWKVq1KyxEjuH3hAodWrWLPkiU0atSIjJky8VG3bnz99dce+czIrrdpd+7cASBbtmzPfD5btmxP/u9548aNIyAg4MlHbhe5yAjOdf36dWrUqEH2wEDmzZ9PnrJl6fHzz/xv717q9+7tMsnnRQKyZqVmp058tXUr/ZYto8Tbb7N6zRryFyhA6dKlOXHihN4hpipbtmwhb758lCtfnr3791OxVSs+37iRQatW8VaLFi6TfJ4nSRI5ihal6eefM/bQITpPm4Z/rlxMmDAB/4AAWrRo4XE34LrPghs2bBgDBgx48u/IyEiRhDxIeHg4nTt3ZsPGjSBJ1OjcmRqdOpHFDXsOkiRRqGJFClWsSGRoKHuXLmXrnDkElS1LlcqVWbJkCXl0HA5yd0ePHqVDhw6cPXeOdJkz8/6IEVRs2RJfNxyqN3l7U6FZMyo0a8aNU6fYMW8eq1euJHOWLHTp3JkZM2bg5eWld5gOZ9ceUPbs2QG4e/fuM5+/e/fuk/97nre3N+nSpXvmQ0j9zGYzH374IVmzZWPd+vVUatWKr3fvpuXw4W6ZfJ6XLmtWGvbty+h9+6jbowcHDh2iQMGCNGnShPDwcL3DcyvXrl2jcuXKlK9Qgas3b9L8iy/4evduanXt6pbJ53m5S5ak4+TJfLllC8Vr1WLu3LkEZMjAiBEjUFVV7/Acyq4JKH/+/GTPnp1t27Y9+VxkZCQHDhygcuXK9mxKSCRXLMWzbNky0mfMyLx58yhRpw5fbdlC23HjSP+SmxR35hcQQNOhQxm1ezeVWrViw8aNZM2WjQkTJugdmstTVZVevXpRsFAhDh87Rr1evRi9dy91Pv4YUyp8XpK9UCG6z5nDoFWryFmyJKNHjyZL1qzs2bNH79CeoWspnqioKC5dugRA2bJlmTJlCrVr1yZjxozkyZOH8ePH8+233z4zDfvEiRNiGrZAVFQUjRs3Ztfu3QQWLkz7CRPI56ZTw5Pr7pUrLB02jEsHDlC8eHG2bt1Kjhw59A7L5QQHB9OwYUPu3LlDuSZNaDF8OAEetAhY0zTO7NjBkqFDeXT/Pq0/+IBFixa5zexKh03D3rFjB7Vr1/7P5zt37sz8+fOfLESdM2cO4eHhVKtWjZkzZ1KkSBG7Bi64l2XLltG1WzfiYmNp0KcP9Xv3xugBY9wvoqoqexcvZuWYMaBpjBk9miFDhugdlktQVZVPP/2UH+fOxdffn3bffkuZ+vX1Dks3sY8esXrsWPYuXUqGjBlZu2YN1apV0zus1xI7ogouwWq10rBhQ7Zu20Zg4cJ0njqVXC40HKinsBs3WDRoEJcOHKBEiRLs27fPo8/5a9euUblKFW6HhFDuvfdo9fXXpM2QQe+wXMLZ3btZNHAgj+7f58OuXZk7d67eIb2SSECC7u7cuUO58uUJuXWLBn360KBPH4/t9byMqqrsXrSIFf/7H2nTpGHf3r0u9bzOWf7880+at2iBZDTScdIkyjRooHdILif20SP+GDWKAytWULZsWfbt2+eya4fEltwCYBtLr1WrFsHBwU5td8+ePRQoWJB79+/Tfc4c3h04UCSfF5BlmZqdOtFv2TJUg4Gyb77J0qVL9Q7Lqf73v//xbpMmBAQGMnT9epF8XsLX358OkybR6uuvCT5+nFy5cnH16lWnx2HPa4pIQKnc6dOn2blzJ6dPn3Zam9OnT6dW7dr4pE/P4DVrKF2vntPadlcFypVj6IYNZCtUiPYdOjyzNi61UlWVJk2aMHLkSIpVr87gtWvJki+f3mG5NEmSqNm5M58uWkS02UyxN95g/fr1To3BntcUkYAEu+rVqxef9e1L/oQLag5RoDPRMgQGMmDlSt5s3JipU6dSPxU/fDebzRQvXpz169fzTs+efPLzz/j6++sdltsoWqUKQ9evJ0POnDRt1ozvvvtO75CSRSQgwW66dOnCrFmzqNiyJX0WLRIPkJPBy8eHLt9/T8O+fdm8eTM1atRIdYsR4+LiKFK0KBcvXqTDpEk0HTrUYdWpU7MsefMyeM0aClWsSP8BA/j222/1DinJRAIS7KJ9+/YsWLCAau3b037CBAwmk94huS1Jkmjcvz/Nhg1j9+7dVKlSJdUkobi4OAoXKcL169f58IcfqPT++3qH5NZ80qal5y+/ULx6db748kvGjBmjd0hJIhKQkGJdu3ZlyZIl1OrShdZjxrjNYjlXV7dHD1qOGMGBAwdeuPbO3ZjNZooVL86tW7f4ePZsyjZqpHdIqYLJx4fuc+dSonZtRowcycSJE/UOKdHElSKVc3Qpns8++4z58+dTrV07Wo4ciSRJDmnHU9X+8EOafv45u3btcsu9Yx5TVZVSpUpx/do1PpwxQ0xMsTOjlxfdZs6kaNWqDP38c2bNmuWwtnQtxeNoYh2Q+/j555/5uHt3yr33Hp2mTBE9HwdaP2UKm77/nsGDB7tlHblGjRrx559/0mnKFN5q0ULvcFItc1wcMzp04FpwMDt37KBq1aq6xCHWAQkOdfToUT7p2ZM8pUvTfvx4kXwcrHH//gQ1bMikyZP5448/9A4nSUaNGsWff/5Jvd69RfJxMC8fH7rPmYN/liy8U78+oaGheof0SqIHJCTZgwcPyJsvH7KPD59v2EA6DyoSqaf4mBgmN2/OvatXOR4cTPHixfUO6bXWr19P02bNeKNmTbr/9JO4UXGSW2fPMqlZM7JmycL1a9ec/n0XPSDBIVRVpVz58sTGxfHJL7+I5ONE3n5+fPLLL5j8/KhcpQpRUVF6h/RKV69epWWrVmTOm5fO330nko8T5SxenC7ffcetmzd555139A7npcQZkcrZuxRPmzZt+PfqVTpOnkyeUqXs8ppC4mXMmZMec+fy6NEjatasqXc4L6WqKpUrV0Y2Guk5b55YZKqDMg0a0HjAALZv384333xjt9cVpXiERLNn2Yzt27fzx4oVVO/QgfLvvWeH6ITkKFihAk2HDePo0aPMmDFD73BeqHv37ty9e5dOU6emih1u3VWDPn0oWq0ao/73P65fv26X1xSleASns1qttGjZkvTZs9Ns2DC9w/F4tbt2JV9QEAMHDyYsLEzvcJ5x+PBh5s2fT4VmzSjtwsM/nkCSJNskIYOBunXr6h3Of4gEJCRKmzZtiAgPp+PkyXinSaN3OB5PNhjoOGUKiqJQz4XW1KiqSqPGjfFLn55WX3+tdzgCtmHbliNGcPHiRZerlCASkPBa27dvZ+WqVVTv2JEilSvrHY6QIFuBArw3dCjHjh1zmaG47t27cy80lPYTJuAXEKB3OEKCKm3aULRaNb4ePdpuQ3H2IBKQ8FoftG5tG3r7/HO9QxGe83gobtDgwcTExOgay8WLF5k3fz5vNW9OqTp1dI1FeNbTQ3GNXKgEkkhAqVxKy2Z8++233A8Lo9WoUWLozQXJBgNtxo4lPj6ejz/+WNdY2rZti9HLi+ZffaVrHMKLZcyZk0b9+nH6zBm2bduW7NcRpXgEp7BaraTPkIEshQoxcNUqUefNhc3v25fgjRu5HRJC5syZnd7+/v37qVqtGo369qVh375Ob19IHHNcHKOqVye9nx/X/v3XYe2IhahCig0ePJjoqCiaffGFSD4u7t2BA1FVlQ4dOujSfqfOnfFNl463P/pIl/aFxPHy8eHdQYO4fu0aixcv1jsckYCEF4uJiWHm7Nm8UbMmhd56S+9whNfInCcP1Tp0YMvWrVy+fNmpba9du5ZLFy/SqF8/MUzrBiq2bEmWfPno26+f3qGIBCS82CeffII5Pp6mYuKB22jw6acYjEan94J69upF+sBAqrVr59R2heQxGI00/fxz7oeFMW3aNF1jEQkolUtO2QxVVfl9xQpKv/MOOd2g4KVgky5LFqp36sShw4d58OCBU9rcs2cPIbdu0aBPH4xeXk5pU0i5MvXrk61QISYkY/M6UYpHeKW4uDi2bNnCsmXLmDFjBjt37mT+/PlcvXo1UV//ww8/EBcTQ83OnR0cqWBv1Tt0QLFaGTJkSKKOv3PnDmvXrmXRokXMmTOHxYsXs3HjRsLDwxP19UOGDMHLz48KzZolP2jB6SRJolbnztwOCeHQoUNJ+lp7luIRs+BSgf379zNnzhwOHz7MjStXeBQTg/qSY30NBjIFBlKyZEkaNGhA7969MRqNzxyTJ29eYiWJkTt2iMkHbmhGx47cCA4mKjLymc+rqsqiRYtYtWoVx48f5+7Nm8RYLC98DQlI4+1Njrx5efPNN+nYseN/1o9ERkaSMXNmqrdvz/ujRjno3QiOEhcVxbDy5alUoQK7du1K9NctXryYDh06sGjRItq3b//CY8QsuFTOarUyZswYArNlo2qVKiyYP5+406dpYjYz2dubbb6+HPLz4zcfHwDm+fiwyMeHT2SZvCEh7Ny0iX79+uHv48O7777LxYsXAThx4gQ3btygZufOIvm4qZqdOxP96BELFiwAbL2cDh06kM7Pj86dO7Nx9WoyXbtGF+BnHx/2+Ppy1M+Pk35+HPHzY6evLz94e9NaVTFdusTvv/1G48aNyRgQQP/+/Z9sAzFs2DAUi4VqOs28E1LGJ21aKrVqxf5//tFtaw/j6w8RXInVaqVTp06sWr6cOEWhpCzzP29vWptMpHtBwnh8h1FalnnTYKC9yQSAqmnsVxRmWSws27CBYhs2UKBgQTJkzIjRZKJiy5ZOfFeCPZWoXZuAbNkYMWIE33//PcePHkUFGhsM9Pb1pY7BgOk1Nxc1nvp7rKax1mplelQU06ZNY+Z331GjTh0OHDxI4UqVyF6okEPfj+A4NTp2ZPevvzJ8+HCmTp3q9PZFD8iNbNu2jSwZM7J06VKaSRL7/Pw44efHx15eL0w+AIGSxEgvLwKf+39ZkqhqNLLI15eQNGkY6+VF+JUrHD10iLylS+Mrhj/dlmwwULRqVUKuX+f80aMM9fLiapo0rPPzo4HR+Nrk8zxfSaK1ycSeNGk46edHN6ORHVu3EhMZSfHq1R30LgRnCCxShPxvvsmiJKwJEpUQPIzVaqV169asXrmSXJLEAh8fahnt33l9qGn0iYtjsdVKyVq1aPPtt6TPnt3u7QiOExMRwcrRo/nnjz+oazDwi48PuR2wE+kJRaFDXByngbo9e9Lws88weXvbvR3B8f7++WdWjhlDSEgI2e30+y6eAaUS4eHh5Mudm5UrV9LLZOJ0mjQOST4AGSSJRb6+rPX15d6ePXxbrx7XTpxwSFuC/YXduMHERo04vWoVP3l7s9nX1yHJB6C0wcARPz9GGY38PXMm01u1IiYiwiFtCY5Vsm5dNE1jypQpTm9bJCAXFhYWRqH8+bl35w5rfX2Z7uNDWidMDGhiNHLax4cSsbFM/+ADLh044PA2hZS5c+kS3zVvjn9oKMd9fOjm5eXwSSQmSWK4tzd7fH0JP3OG71u2JPLePYe2Kdhflrx5yVqgACtXrnR62yIBuaioqCjeKFqUmPBwNvv60sRBvZ6XySRJbPX2prKiMLtzZ64dP+7U9oXEC7txgx/atCF7RAR7vbzI76Bez8u8ZTCw28sLy7//Mqt9e9ETckNBDRrw77VrmM1mp7YrEpCLCipThocPHrDO15eaTk4+j6WVJNZ5exOkKMzq0IEHt27pEofwcrGPHjGrbVvSR0Sw3cuL7E5OPo+9YTCw1cuLR5cvM7dbN1RF0SUOIXlK1qmDYrXy888/O7VdkYBc0NChQ7l85Qo/+fhQJ4XJ57aqMio+ntvqy5amvloaSWKDtzfpYmNZOngwLjZnxeOtHjeOR7dvs0XH5PNYSYOB1V5eXDp8mL/nzdM1FiFp8pUti5efH2vWrHntsaIUTyp28eJFpk6cSGODgU526Pnc1jS+Npu5nYLEkVGS+Mlk4uy+fez77bcUxyTYx7k9e9i7ZAkTjUYK6px8HqtpNNLXZGLD+PHcdXJVbiH5ZFkmd4kSnEpEeR17luJxjbNWeOKdunXx1TTm+vi4VCWChkYjXU0mVv/vf2IozgXEPnrE0oEDqWUy8UnC4mJX8Y23N7mAxQMGiKE4N5K3TBnuOXkSiUhALmTGjBlcu36dGT4+BLrIHe3Tpnp7k8FiYc3YsXqH4vG2zJ5NzL17/OLlhexCNyoAfpLEAqORK8ePc1CHmVVC8uQpVQpzfPyTslzO4HpXOQ82Yfx4CkoSHXSadPA6AZLEEIOB4E2biAgN1Tscj2WJj2f/okV8bDA4fcZbYlUzGmlgMrF7/ny9QxESKXepUgCsWLHCaW265tnrgYKDg7l58yZ97Lx+42WleJKrs8mEl6axf9kyu7yekHTBmzbxKCKCni429Pa83kYj106fFlP43USWfPnw8vNjx44drzzOnqV4RAJyEQMHDsQb2wXengJlmVHe3nYb0ksvSbQ3GNi3cCGK1WqX1xSSZs/8+bxtMlHMYNA7lFdqaDCQ22Ri16+/6h2KkAiyLJM5Tx6uX7/+yuOCgoLYsWMHQUFBKW8zxa8g2MXenTtpbzSS3sXG81+kl8nEg3v3OLd7t96heJy7ly9z+dgxerl48gEwSBI9JYmja9YQHx2tdzhCImQIDHTabrogEpBLOHr0KPGKQiMXffbzvCBZJovJxNWjR/UOxeNcOXIECajvJudKQ6MRi8XCzTNn9A5FSISA7NmJjo11WnsiAbmAVatWAVDODe5qwbadb3lN44YY23e6G6dOUdjLyyk1Ae2hhCzjLctcP3lS71CERAjIkoW4uDintScSkAvYvXs36YE8bnJRASgvy9w4flxURnCyG8eOUSGZVS30YJIkShmN3Dh1Su9QhEQIyJYNq8XitJpwIgG5gHNnzlDBYHDIwtOUluJ5mXKyTGREBOG3b9v1dYWXU6xWbp075zY95ccqaBo3jx3TOwwhEdJlzQqaxrlz5156jCjFk4pcu3aNiPv3KeKg9Rz2KMXzIoUT4n0QEmLX1xVeLurBA8wWC4VcdO3PyxSSZR6IGxW34J0mDcArJyKIUjxuLioqir59+5Ihcwby5c+Hoqr46h1UEvkm9Nas8fE6R+I5LAnfaz+d40gqX8BisegdhpAIhoTedbyTfq9FAnKiAwcOUL16ddJlSMf3339PeK5wGAxkso2Vu5PHq5WsTt4/xJMpCRdx95j/9v9MgKIo4nmhG5ATZlc6ayKCu53LbsdqtTJx4kS++/477t65Cz5Ac6AFUCDhoMUQH+lev5yPT0+Tt7eucXgSk5cXAO7W54wHjEajSxXXFV7s8U2CwUnPGUUCchBVVfn888+ZNn0aljgL5AeGAvWBNM8eq/nCIwfFYe9SPI89SjhRvXzdbfDQfZkSvteP3Kwn8UjT8BY3Km5BTahu8qqflz1L8YgE5ABTpkxh+KjhxDyKgQpANyAIeEkOsBaCY9ccU7b+cSkeezuZMKsuW8GCdn9t4cXSZsyIv78/J+Pjaal3MElwUlXJXqiQ3mEIiaAkIgE9LsVjD+IZkB0tXbqUTFkyMXDgQGJyxMAPwAygLC9NPgAUg5OKitWN7myPKArZcubEN106vUPxGJIkkatMGQ670XkCcEiWyWmHumGC48WEhwOQL18+p7QnEpAdHD58mDx589CuXTseeD+AccACoHwiX6AYxKtw1o0WGB4Ccr35pt5heJzcZcpwWO8gkuCRpnHJbCZPyZJ6hyIkQsTdu0iyTK5cuZzSnkhAKaCqKh9++CEVKlXgRuQNGAYsB97m1T2e5xWxHX/ITRKQVdM4rqpP9g8RnCdPqVLctVgIcZNz5aiioIE4V9xERGgoXt7eyE5aayYSUDIdPnyYbIHZmDdvHtQDfgeakbynamnAUAyWKO6xVmKD1UqMolC0ShW9Q/E4BStUwGgwsMxNtsL4zWolfcaM4hmQm4gIDXXqhBGRgJJIVVU++ugjKlSqQJglDCYBo4AUPgpRPoBtFoWLdr6zdUQpnh8UhfylSpFbDKs4nX+mTAQ1asQPqorq4s+CIjWNX1WVyh06YHCT6t2eLvzOHdKlTfvKY0QpHp2cOnWKbIHZ+Pnnn229nuVAdTu9eB0wpIXZdl7Yae9SPBdVlS0WC9W6dLHL6wlJV71TJy5bLGxTHDNz0l4WWSzEahpV27XTOxQhkR6GhJApU6ZXHiNK8ehg0aJFlHmzDGHx9uv1PMMblGYwV7UQ7cJ3trPMZtL6+/Nm48Z6h+KxCpQvT65ChZjuwsNwqqYxQ1Up8847pM+eXe9whEQwx8Vx/8YN3njjDae1afcEpCgKw4cPJ3/+/Pj6+lKwYEFGjx7t1mU4PvvsMzp27ohaQIVF2K/X87yWEC3BCBetr3ZaUfhBUajWtSsmHx+9w/FYkiRRq0cP1lksbHbRJDTLYuGsxUKtjz7SOxQhkULOnkVTVRo0aOC0Nu2egMaPH8+sWbOYMWMGZ8+eZfz48UyYMIHp06fbuymHs1qtVK1a1Rb7O8AcIKsDG8wB6icw1WJhr4tdWKyaRieLhUx58lC/Vy+9w/F4Fd9/n2KVKvGh1UqEi93cXVFVBlssVGvfnoIVKugdjpBI10+dQpIkmjVr5rQ27Z6A9u3bR9OmTWncuDH58uXj/fffp169ehw8eNDeTTnUzZs3yZE7B/v27YNPga+x1XFztHYgF4eO1jhi7HBhsVcpnolmM8FWK+2nThW9HxcgSRLtJk3ivsHAQBfqMauaRlezmTRZs9Js2DC9wxGS4MbJk/imSUO61ywut2cpHrsnoCpVqrBt2zYuXLgAwPHjx9mzZw8NGzZ84fHx8fFERkY+86G3o0ePUqBIAe5F3IMpQEeStq4nJQygjIJrmsaA+PgUD10+LsUTmIJ5/YcUhVFWK293706+smVTFI9gPxlz5aLZ8OH8bLGwykW2O5hkNrPLYqHtlCn4vGY2leBa/g0OJnfOnK897nEpniA7VLewewL6/PPPadOmDcWKFcNkMlG2bFn69etH+/btX3j8uHHjCAgIePKRO3due4eUJPv37+etKm9hSWOBeUBVHYLIB+pg+NFi4Wudtzs4oyjUj48nV8mSNO7fX9dYhP+q2q4dZRs0oI3ZzN86D9vOt1gYajbzTs+eYo2Ym4mPjubOpUuUK1fOqe3aPQEtX76cxYsXs2TJEo4ePcqCBQuYNGkSCxYseOHxw4YNIyIi4snHjRs37B1Sou3YsYNqtaqhpFdgLrYK1nppBvSCr81mvrZDTyg5TigKtc1m/PLn55NffxVDby5IkiQ6ffcdBStX5l2zma06JaF5Fgvd4uOp0qYN7w0ZoksMQvKd3b0bTVX5+OOPndqupNn5ypY7d24+//xzevfu/eRzY8aMYdGiRa/cZ/yxyMhIAgICiIiIeO1YpD3t2bOHmnVqomZWYTaQzWlNv9p8YBb0MpmY7O2Nj5P2VNlmtdLSbCagcGF6Ll6M/2vWBgj6MsfG8nOPHlzcs4efvbxo76T9dxRNY4LZzBdmM1XbtaP16NHITtpLRrCfhQMHcuLPP4mNjrbL6yX2Om73HlBMTMx/6ggZDAZUF65ddejQIWrVrYWaSbXNdHOV5APQBfgcZqsWSsdHc9DBiw8faRqfxMVRNzaWwLfeos/y5SL5uAEvX18+/uknyjZtSse4OFrGx3PXwb9zF1SV6vHxfGmx0KBPH9p8841IPm5IVRRObtlC2TJlnN623RNQkyZN+Oabb9iwYQP//vsvq1atYsqUKTRv3tzeTdnF6dOnqVKjCkqAYuv5ZNE7ohdoDuoiuJJfo1JMDJ/HxxOXyI5rUkrxbLdaKR4dzXxZ5oPRo+m1eLHYbsGNGL286Dh1Kt1mzmSbnx/FYqL5zWKx+/CtomlMNZspFR3NlWzZ6LtsGe8OHCh2PHVTV48dIzYykg8//DBRx7t0KZ7p06fz/vvv06tXL4oXL86gQYPo0aMHo0ePtndTKRYVFUWlqpWw+lhhFuDKC7YLgDIPtJ4wUTGTMy6Kr+Ljuf6axPK6UjxmTeM3i4WqcdHUiY3ltqZRv29fanTs6LSKuIJ9lW3UiA/GjydCg7ZxcZSKj2GO2UxUChNRmKoyIT6e/HHRDIiPxwx0X7iQQm+9ZZ/ABV2c3LIFg8lEl0SW13LpUjz+/v5MmzaNa9euERsby+XLlxkzZgxeCfvZuwpVVXmz3JtERUXZSus4Z/uLlDECXUD9DR40h29lM/mio3kvLoblFgtXVTVRd7uRmsZOq5Uv4+MJjIuibVwc/5RQYSyoZSVO7/rb4W9FcKxT27cjZTPA93Cmkson5niyx0bxWVwcm61W7icyGYWoKmutVjrGxZIjNpphqpkb72gwEyQviRN//eXgdyI4kqooHFq9mkIFCmDUoWCsx5ao/eCDD7h44SKMANxtq5I8wCBQegGbYONyhXVXbc+G/A1QXjZQFpkASeJ+Qg/pB7OZWOAfSeGqxXbxMfiC0hRoAWqBhNe2alwecYg7ly6JEvpuKiYigsNrV6N2VqAiaBWBOxC9GmattDA9wrZmKIdJoqImU0w24Ad4AfFAFHBSUzioKdxPmFRnzAbWVkATIL3tc1pdjZ1LFlKne3fx7MdNnf77byLu3uX7CRN0ad8jE9DEiRNZsXIFtAPcuaamH9AClBbAfeAcPDoLf59V2HNJgThQ4gArLExjRcsJSgmgOFAMlLz89wyoDXIGA7sXLaLVqFFOfTuCfRz44w+sVgs0feqT2YFPwNoduAmchZBzGmvOKKy/qaCZQbOCZALJG6z5QCsBFLN9WLPx38XYLSF8423O7tpFidq1nfLeBPvauWABafz96dSpky7te1wC2r59O0OGDYEKQO/XHu4+MmFbNJuwcPbJuvgwYBVYmwOZE/E6XqC+p7D/j+W8N3gw3mnSOCBYwVFUVWXHr/OhlmY7J54nY+tB5wHqg4rtI1lKgFzMwM5fF4gE5IbuXbvGud276datW5K+zqVL8biy8PBwGrzbwDbN+hs8I/1mBj4mccnnseZgjo7h0Jo1DgpKcJQL+/Zx/98b8L4TGpNAbalw5u+dhOm4gFxInj2LF2MwGpmQxOE3ly7F48rq1auHxWyxTToQs4tfLhCoJvH3/J9dev2W8F9/z/sZuYABgpzUYD2Q0kjsWrjQSQ0K9hAXFcXepUsJKlOGjBkz6haHxySgn376iUOHDkEPoKDe0biBjhp3L1zm6Lp1ekciJNLVo0c5ve1v1I6K84rn+oD2gcrOhfMJv3PHSY0KKbX9p5+Ij47mhx9+0DUOj0hA4eHh9OrTC4oCL66JKjyvDEjVJdZMHo9V54Kowutpmsaq8WORCxmgvpMbbw+aj8rG775zcsNCcjy6f58ts2fzZtmyVKxYUddYPCIB1atXD4vFYttG2xOe+zwtDFth1bCkf6nWU+PhjRD2LVtm76gEOzu7cydXDhxG7amAs2dEpwW1q8L+5cu4e/mykxsXkuqvGTNQLBaWLl2arK936UoIruaZobcCrz089QkDfiJZCYiCQEPY8N0U4mNi7BuXYDeqqrJqwlikMrI+24cAtAAps8S6yZN0CkBIjPs3brDr1195u3ZtChcunKzXcOlKCK4kJiZGDL2l1McQExHO9p9+0jsS4SWOrF3L7TMX0Hqrznv28zxvULsrBG/8k3+PHdMpCOF11k2ejCxJLF68WO9QgFSegD788EMscRb4Cs8berOXHKC10dg043vuXLqkdzTCcx7dv8/v/xsJtSVwfjHjZzUEuaiBX4cOwuJC24QLNmd27ODw6tW0a9uWrFmz6h0OkIoTUGhoKMtXLIcGQBG9o3FzH4EWqLFgYD8UnXfdFJ61fMRw4pQoGOz8DQv/wwDqcIW7V66wafp0vaMRnhIbGcmiwYPJlCkT8+bN0zucJ1JtAmrfvr2tMGcPvSNJBXxsF5YbJ0+JoTgXcmzjRo5t2Ig6SHlx1QM9FAa6amyeNZNrJ07oHY2QYMWYMUQ9eMC6detcqsq960RiRxcvXmTr31uhJZBD72h0lhn4iKRVQniRUkBbWD9lkhiKcwGP7t9n6VfDoJYE7+gdzXO6gFRIYsHAfmIozgWc2bGDf5Yvp327dlSuXDnFr2fPUjx235I7peyxJXf58uU5cuoIrAb0W+Sb+sSB3MlAzoBiDPh9JSZvb70j8kiapjG3Zw9O7d+GutSFej9Puwh0kajbrTvNhg3TOxqPFfXwIWPr1cOkqoSGhjqt96Pbltx6279/P0eOHoFOiORjbz6gjlS4efYMy4YPt/tOm0LibJ45kxObNqMOc9HkA7ahuE80tv74I0fXr9c7Go+kWCz89MknRD986HJDb4+5XkQp1Lt3b0gDtNU7klSqBGjDNP5ZvpydCxboHY3HObFlC+smTYJugKsXoO4AvAMLBw3gxqlTekfjcVaMHs2lgweZPGmSXYbeHCFVJaDQ0FCOnTgGLbAlIcExGgPtYMXo/3Fuzx69o/EYty9cYF6/PlAT23M9VycBX4GaT2HWxx8See+e3hF5jD1LlrBr4ULatW1L37599Q7npVJVAhoyZAgoQHO9I3EhKSjF80q9gQoaP/X+hHv//mvnFxeeF/XwITM/6oISaIGRmvv85vqAOkEhynyfOZ90F3UFneDSwYMs++orSpQo4ZAFp6IUzwuoqsqyP5ZBFcTMt6elpBTPqxhBG6NhDohlRpeORIaG2rkB4bH46Ghmf/QhEZF3UScqtp1w3Uk2UMcrXDsRzMKB/VEVRe+IUq2Q8+f58aOPCAgI4ODBgw5pQ5TieYEFCxYQFx3nnI24BBt/UKcpPIwJYVr71jy6f1/viFIdc1wcsz7qyrVzx1EnK+57c1UKtNEaRzduZPHQIWKfKQe4e/ky37Vpg6QoHD50CD8/179TSTUJaMw3Y2w7nVbSOxIPkxPUGQphD67zXfs2IgnZkTk2lh8/7sblY4fRpqhQUu+IUqg2MFLjwIoVLB32uUhCdnT3yhWmtW6NEhfH4UOHKFjQPTY9SxUJ6OLFi1y5cgVa4fxS9ALktSWh0HtXmNrmfSLEcFyKxUdH80PXTlw4vN+WfIL0jshO6gMjYP/vy/l14ABR2skOQs6fZ0rLlliioznwzz8UL15c75ASLVUkoHHjxtn+0kjfODxaAVBnK4RFXGdyqxZiX5gUiLx3j+86tOXKySNo36lQTu+I7KwR8D84tHYNP/fuKbb6SIHLhw8ztVUrVLOZo0eOULp0ab1DSpJUkYA2btoIb+C6i/L0ZK9SPImRx5aEwqXbTGjWhDM7dzqh0dTlxqlTfNukETevn0b7QdW/wrWjvAOM1zi5axuTWjbjwc2bekfkdvYtW8Z3rVvjJcucPH7caT0fUYrnKQ8ePCBTlkzQE1v1A0F/USCNkGA/NPviS97u1g1J0mujGvdxZN06fh08EKWAFW28Cq5RMd+xLoE82IBPXFq6z55Lobfe0jsil6dYrawcPZqdCxZQvHhxDh48SNq0afUO6xkeU4rn+++/BxWornckwhNpQZuooXXQWDVmDAsHDsASF6d3VC5LVVXWTpzIvD59sNYyo83ykOQDUAjUeQqx+R7xXbs27FmyRO+IXFrUw4fM6NiRnQsX0qZNG86cOeNyyScp3D4BLVu2DAKBfHpHIjzDgG2x6tdweP1qJjR/j5t2WDeQ2ty/cYPv27dl88wf4FNgFOCjc1DOlh606SpaU5XfvviCeX0/I+rhQ72jcjnn9uxhXIMGXDl0iMmTJrF06VK9Q0oxt05AVquV85fPQy3024pYeLUGoP2kcddymfFNm7Bx2jQUi0XvqHSnqiq7f/2VMfXrcuXKYfge6IjnnsdGYAgwCo5uX8/od97mxObNOgflGuKiolg6bBgzOnRAtljY8fffDBgwQO+w7MKtE9DixYvRLJoYfnsVR5XiSYqioM5X0DqqbJz+Hd82fZebZ87oGJC+Hvd6lg0fjqVePOoSBcSjD5uGoC1ViSkWzpzu3ZnX9zOiw8P1jko35/bsYXSdOuxftow2bdoQevcu1apV0zUmUYonwapVq8BE6p0pZA+OKsWTVCbgE+AXjbvmS4x/713WfPstMREROgfmPOa4OLb++CNjGrzz/72eYYD7DuE7RhbQJmkw0tYb+t87b7N/+XKPKuHz8PZtFg0a9KTX8/fff7N06VKMRqPeoYlSPI8FBwdDIWzdd8E9FEvoDXVV2Tp/DiNqVGXL7NmYU/EkBcVqZd+yZYyqVZ3VE7/F0jDO1uupqHdkLkwCGtl6Q9FlHrJ4yBDGNKjL8b/+StX7UEWHh7N63DhG1ajBodWradu2LaF371KjRg29Q3MIt05At0JvQcqnogvOZgI+Am2FSlzdKNZMGs/ImtXY99tvqWplvKZpBG/axJj6dVgydCiRpcLgNw0GI3o9iZUF+EaD+XAv/TXm9ujBxBZNufjPP3pHZlfm2Fj++uEHRlStyva5c6lauTL/Xr3KkiVLXKLX4yhu+85CQkKwxlqhmN6RCMmWGduD57Yaj34MY8nnn/PnzO+p2aELlVq1Im2GDHpHmCzx0dEcWrOGHQvncefcRaSKEowAiqXeO3eHKw7aDBUOws0fTvNdmzYUeKscNTt2oUz9+hi9vPSOMFke3LrF3qVL2bNoETEREZQqVYrFixdTsqS7F/5LHLdNQCtWrLD9RSQg95cbGAN0hIdLQlgzcRzrJk2gXJP3qNGxE3nLlHGLhax3Ll1i96JF7P9jGeaYWKgqQR/QyovEYzdvgVpegZ1wdfkxrvQ5QprMGajetgNV27YlQw7XLxeuqirn9+xh18KFnNq2DUmWKfHGG3y/ahW1atXSOzyncttKCM2aNWPNxjWwAzdOo04QBqzCtkmfM8rx2MNDYB3IqwyoIQo5SxSjwnvNKVW3LtlcrMrvg1u3OLltG0c3rOPygUPIGQ2o7ynQDNv6NMGxrgArQPpThliNN2rXpmzDRpSoXRv/TK5Tm0vTNG6cOsXJLVs4uHIl92/exDdNGpo3bcrkyZPJnj273iEmWnBwMP369WPatGkEBQW98JjEXsfdNgHlz5+ff33/hflOC01wNgXYDdIoCSleQlVVsufOTYmGDSlVty7533wTg5PHx5++kJzatIkbFy6AJCGVkdBaqLYtB9xzNMi9RQO/grzQgKYoSJJEgaAgSjZooNuNiyUujgv793Ny61ZO//UXD8PCkA0G8ubJw+DBg+nRowey7NaP4V8q1ScgX39f4urEwRdODE5wvt/AMA0O+fhyC1hrtbJG0wi1WvHz8yN3qVLkKlOG3CVLkqdUKTLnzWu3X2pN03gYEsKNkye5fuoUN4KDuXHiBI8iIwkwGGgsSbxtMDDYGs/DdxHnos6kz6DQUYmtJl+2qiprFIXNikKcqpIxc2ZyBQWRu3Rp8pQqRe6SJUmXJYvd2lasVu5evsz1Eye4fuoUt4KDuXH2LGazmXwmE82A3JLEQLOZQYMGMXHiRLu17YpSfQKSvWS0zhp87MTgBOfSwNASWoYaWebj++TTqqZxWFXZarVyRFU5JEncSKiu4OfnR/aCBfHPmZOAbNkIyJqVgKxZSZc1K34BARiMRmSDASQJ1WpFVRRiHz0iMjSUiNBQIu7eJTI0lMiQEO5evsyjyEgAsppMlAcqSBI1DQaqGQyYEp5LjY6PZxRm1I2Av7O/SQIAN4GW8IuPD11NpiefjtU0tikKexSFw5rGEU0jPGGmZcbMmcmcPz/+gYH/OVe8/fyQDQZkoxE0DVVRUCwWoh4+/O+5cusWIZcuYTabASjs5UUFVaWcwUB9g4E3ZPnJM8xK0dFc8vcnLJUvrk3VCchsNuPt7Q1DgRbOjU9wokPAp7DT15carxlqC1NVjqoqRxSF86pKCBAiy4SoKg8TObU7wGgkuyyTU9PIoWkUlGXKGQyUk2VyvKJXdVtVyR0TjdIfaJ34tyfY0XRItxRu+6bF7xUTVjRN419N47CicFRV+VdVCZEkbkkSdxSF6EQsdpWAzCYTgZJETlUlhyTxhixTTpYpazCQ7hXtL7ZY6BAXx4YNG2jUKPVuYJbYBOSWj+/PPC7jYr8edOrljpMQEki/QxGTRHXD67e5zSzL1JNl6r0gUcVrGnc0jQhNwwpYsRVQNyV8pJUkAiUJ32TOtAuUZVoajaxcbsX6AZ5bz00vcWBYBR/LplcmHwBJksgvSeSXZVq94P8faRq3NY3YhHPFgm2xpAnbxTKjJJFNkjAm81x532jkM+DLL7902wSUmEkIieWWCehJCQg3u6Dq4nEpnuq41/crCtgNvU1eKZ6C7S1J5HXwNO6eRhPLb1rhDGJxtLPtByUaeqRJ+ewPf0nC34Hnirck8bGXF5OPH0dVVbechPB0KZ6UJiD3e/fAxYsXbX9xpwuqkDTnQFPh7UT0flxBFYMBo4QtAQnOdQaymSQKu8nF/G2DAaum8ffff+sdiu7c4yf2nCtXrtiGOdxzobyQGOfAR4ZibnJR8ZIk3jDKcFbvSDyPfBoqau5xngCUS7ipWrt2rc6R6M99fmpPuX37tq2WllsOIAqJcg7KGGQMblAB4bFKGDCe0jsKD6OBdA7Ky+7RUwbIJEnklCT27dundyi6c8sEZDabxWK/xMoMfITbDVeaTkNF3OeiAlBOlrFeB1JvYW/Xc9v2/KecmwzVPvaWLHPl8aMEN1OiRAlq1qxJiRIpf9jpln0Iq9WKm12b9JMZt1wrpT6APG4y/PZYHlkGDYjA87bV1st92x953KinDJBXlomPidE7jGQJCgpix44ddnkt9/oNT2CxWEQCSuVUC/i+/jCX8iTeeD2j8DAJ3+vkTqHXi69kKy3l6dwyAWmaJtZapHKa6n4n55N7Is/ZuFN/Cd9rd7sflSFVb6yXWO72Ow5g26BJ3DykarLJ/ToSTx79eOsZhYdJeBYc52YX83hNc8s1QPbmlt8Bo9FoW84upFqyLzx0s4vKk3j99I3Do6Sx/fFQ3yiS7CGk6p1OE0skoNQuDJib8KcbUQvDMdW9xrKCVRVjAJBe70g8SF6QZAhORA03V3JYUciaK5feYSRLcHAwtWrVIjg4OMWv5ZYJKEOGDLb9P9zrBlkfj0vxuFsCegMOSO41znpIU1BEGR7n8gZDXjjiRg/0zZrGaVVNcRkbvTxdiiel3DIB5cuXz1YlMErvSASHKQZ3LRp33eTComkahzQF7Q29I/E81lLwjxvN/DilqliB+vXr6x2K7twyARUqVMj2l3v6xiE4UDHbHwfdJAH9q2mEW3kSt+BExeCcVSXaTZ4ZHlQUJKBFC7GXjFsmoGLFEn7L7+sbh+BAOcCYGxZYLXpHkii/WizI3kBZvSPxQJVts7GXJXLfJ73Ns1jIlCEDGTNm1DsU3bnlNIzSpUvb/iJ6QK/npqV4kMD6AayeYiVEVV+5IdzT7qkqF1SVkIR9XUI0jduqyi0gXJaxShJWTUPDdvKbAP+EDehySBKBsmz7U5IoKMvklKTXbgdh0TR+UC2oTbDVKBScKwdIleC7w2a6Go2J2r5D0zSuaBr/qqrtPEn487amESJJREvSk72jJP5/P6BMqkoOIIcsEyhJ5JAkcsgyxWSZgES0e0xROKiqfN6jR8res47sWYrHLXdEBZCMEvQEOjovNsHJosDQCEZoXozw/u/imlBV5UjCLqiHVZXDksQty//3mLxMJgIyZSIge3b8c+TAN10625bcCdNfVUVBtVqJffSIR7dv8+juXcLv3SMu/v9XIGU2GikPlE/Y8bK8wfCfpLTCYuH9uDhYBBR22HdDeJW9wAD4x8+Pis/VhdM0jcuaxhFFsZ0rwFFVJeKpmXN+fn4EZM5MusBA/LNnt23J/Xj7dkC1WrFaLEQ/fEhUSAgRd+8S8eAB1qdeo0DCVtzlE3bRfdNg+E9S+ig2ll9VlYjoaHx8Um+9Jl13RL116xZDhw7lzz//JCYmhkKFCjFv3jzKly9vtzaMXkasYe7R5RaSKS0ojeCHdRaGaF54AYdUlXVWK6s1jdMJySZNmjTkLlWK4mXKUL9UKQKLFCEgWzZ806VL1mZ2cVFRRNy9y93Ll7l+6hQ3jh9n//HjRISHA5DPZKIZ8J7RSFVZZqpixlASFJF89FMJjNnguwdmlhh8idE0tikK66xW1mgaoQnDc5mzZiVnUBDVS5cmT8mSZMmfn4CsWfHyTXrhJ1VViQkPJ/z2bULOn+f6iRMcPn6c1WfOEB8biwS8ZTLRVJJ4z2gkK7DIaqV6nTqpOvkkhd0T0MOHD6latSq1a9fmzz//JEuWLFy8eNE2ddqOAtIGcP+GeAiU6n0A99ZoVIyJ4bYsc89qJa2/P2/UrUuXWrXIGxRE5jx5Urxr6tN80qbFJ21ashUsSOl69QDbXXT4nTtcP3GCs7t2sWDTJqbdv4+fwUCMokIQtlII4rqiDwNY28DS76z8q8VyTFWJU1Wy5cpFyYYNKVa1KrlLlcI/Uya7NSnLMmkzZiRtxozkKlGCtxImFaiKwt0rV/j32DFOb93K/3bu5IuYGNIajZiB8uXLu+1uqPZm9yG4zz//nL1797J79+5kfX1iu25Vq1Zl35l98FdyIxVcWhiwBuTVBtRQhUy5chHUqBGl6tYl/5tvYtB5Fbmmadw4dYqTW7YQ/Ncmbp+/gBxgQH1XgRaAe64xdE/ngRUgbZLBrJGvbBBl6jegVN26ZCtYUO/osMTFcWH/fk5u3crxTZt4dP8+3r6+vNuoEVOmTCFPnjx6h2h3iX6UYu8E9MYbb1C/fn1u3rzJzp07yZkzJ7169eLjj1+8J0B8fDzxT425R0ZGkjt37tcGPmTIECZOnAjrgSz2fAeCbjTgGLAC2CFhNJqo0LQ5NTp2JHfJkjoH92qhV6+yZ8kS9i1fSlxEFFJlCa2lBlVwv0qZ7iAe2A7SHwa0Uwr+2TJTo30nqrRpQ0DWrHpH91KapnFx/352LVrE8U2bAChapAijRo2idevWOkdnP7oloMdjmwMGDKBVq1YcOnSIvn37Mnv2bDp37vyf40eNGsXXX3/9n8+/LvC9e/dSrVo1mARUt1v4qU8YsApojmvPhDsM0g8y2hmVzAXyUKtjV95q0QK/gAC9I0sSc1wcR9etY8ev87l54jRyHgPqJwq8jajgbg9WYC3IPxlQ7ysUrlqZWh07U7JuXd17xUkVfvcu+3/7jV2//sqjsDAyZ8nCjOnTXT4RBQcH069fP6ZNm/bSag66JSAvLy/Kly//zHazn332GYcOHWL//v3/OT65PSBVVTF4G6ALbrnhmtOcAzoDC3DNRZLnQPpBQjuokSeoFE0GDKZY9ep2faajl3+Dg1k/bQrnduxCKi6j9Vahgt5RuSkV2AbyjwbUmyoVmjWlwad9XGKILaUUi4XgTZtYN3EiYdevkydvXub98gtvv/223qG90OLFi+nQoQOLFi2iffv2LzwmsQnI7k/BAgMDeeONZ+uRFC9enOvXr7/weG9vb9KlS/fMR2LIskzGgIxwNsUhC3q4AXwpQWfIfD8PH8+ezeBVayleo0aqSD4A+YKC+HT+Qvr+9hu5vUvApyD1kW03BULiHQC5qwG+gmKFqzFs40Y6T52WKpIPgMFkolyTJgzfvp2248bxMDqaOnXrUrp0aU6dOqV3eA5l9wRUtWpVzp8//8znLly4QN68ee3dFMWKFoOU18MTnEkBFoPUXibdqcy0nzCBr/7aRpkGDVJN4nle4UqVGLxqLR//+COZH+SBrsD3PLWBkPBCEcBI4DPInaYU/ZYvp9cvC8hZvLjekTmEwWikatu2fL17N02HDOHClSuUCQqiV69eqXb3VLsnoP79+/PPP/8wduxYLl26xJIlS5gzZw69e/e2d1PUrFkTwoFbdn9pwRGugdRDhukStTt+yKi/d1H5gw/cbuw+OSRJokz9+ny1aStNh3yO4XcjcicDnNQ7Mhe1C+S2Brz3paHj5MkM+mMVhd56S++onMLL15d3evbk6927KduoEbNmzSJnrlycOHFC79Dszu4JqEKFCqxatYqlS5dSsmRJRo8ezbRp0146VpgSn376qe3BbvJmfHsGVyjF87jX01Em46Oc9P/9d1p89VWyFv+5O4PRyDuffMLnG/4kZ/ri0B3RG3ra417PYChWpgbDt2ynYsuWqbZ3/CppM2ak6/TpfDR7No9iYylbrpxL9IZEKZ6nZM6amfu578MsJwQnJN0DkL6Q0YI13u7WjXcHDvTIxPMiitXK9rlzWTdlMuTSUCcqkFvvqHR0EuTPDZjMPrQeNZoKzZt7ZOJ5kagHD1g+YgRH168nT968HDl8mMyZXXdaq26TEJyt7tt1IRh4pHckwn9csD089r2ejn6//eaxvZ6XMRiNvNOzJ8M2bCQDOZE/NMBBvaPSyQaQekrkyVua4Vu281aLFiL5PCVtxox8OGMGXadPJ+TOHfLlz8+BAwf0DivF3D4B9e/f3zZF878zvAU9bQPpY5nAzEUYtm4jhSpW1DsilxVYpAhDV6+jcFBl6CfBMjxnt18r8B3wP6jYvBV9l/xG+mzZ9I7KZZVr0oRBK1diTJOGqtWr8+OPP+odUoq4fQKqWLEi3mm8YZfekQiA7WZgDvAFBNVtyMDfV5IhRw69o3J5fgEB9J63gLc//AimAGMBs95ROVgkSAMkpGUy748aRfvx4zG9oOq58KxcJUrw+YYN5C1dmp49e9K1a1e9Q0o2t09AAJXKV4I92O6mBP0owBjgF4kmgwfz4fQZYsgtCWSDgRZffknHyZOR/zQiDZRT7+SE+yB/YsD7XBo+Xfgrtbp0EUNuSeCfOTOfLV1KlTZtmD9/PnXq1NE7pGRJFQmoZ8+eEAvse+2hnicMmJvwpyNZgZES0iaZLtOmUb93b3FBSaaKLVvS59dFGE+ZkPrJEK13RHYWCnJPA2mi0jNoxWqKVq2qd0RuyejlRZuxY3l30CC2b99OtWrVnDJDLjg4mFq1ahEcHJzi10oVCah169b4+vvCH3pH4oLCgJ9wbAKyAiMk5B0y3X6YSfmmTR3YmGcoXKkSfX5dgumiD1J/GWL0jshO7oHcy4C/JTMDlq8ke6FCekfk1iRJosGnn9L8yy/Zu3cvVapUcXgSOn36NDt37uT06ZRXAUgVCQig3Qft4ABwU+9IPIwCjAZpp0S3GTMJatBA74hSjQLlyvHZoiWYLnkjDUoFw3EPQP7UQFprJvov+4MsDqiO4qnqfPwxLYcP58CBA241HJdqEtCECRNsZe9X6h2Jh5kC0maJrtO+p0z9+npHk+rkCwqi9/yFGM6YkL6QbQnfHUWD/JkBv5gA+i1ZRubcnrzgyTFqd+vGe0OGsGPHDlokbI7n6lJNAsqYMSPlgsrBatz/TtFdrAD+gDbfjOXNd9/VO5pUq2CFCvT4cS7s12Cm3tEkgwp8LWEM8eKzX5eSNX9+vSNKter16kWd7t1ZtWoV48aN0zuc10o1CQhg/Pjxtge22/SOxIU4qhTPEWCKRI3Onanatq2dX1x4XvEaNWjx5VewCNiodzRJNBfYBV2/n0GOokX1jibVazp0KG/UrMlXw4fz11/23zJalOJ5hUxZMvEg0wPb/jdiEpZjhIDcxUDBkhX4dMEijygm6go0TWPRkMEcXLMCbZYGrr1JrM1W4Et4b8gQ6vXqpXc0HiM2MpLxTZrw6O5dLpw/7/Rtvz2mFM/z+vftb9sjXkzJdoxokAcZSB+QnW4zZonk40SSJNFmzDfkKVkaeagBQvWO6DXOgzRa5s333uWdnj31jsaj+KZLR89588BgoHyFCpjNrrmqOdUloC+++AL/9P4wA9vYs2BfU8Fwx0TPn+aRNkMGvaPxOCZvb3rMnktaY0akkbLrnuNxIH9pIEehonQYP1GsCdNBtgIF+GjWLMLu3aOpiy6NSHUJSJZlJn47Ea4Am/WOJpXZB6yDVsNHEVikiN7ReKx0WbPSefI0tKOq6876nAlSqMyH3/8gqmHoqHiNGtTp3p2//vqLtWvX6h3Of6S6BATQo0cPsmbPapsxZNE7mlQiCuRxBopWr0rl1q31jsbjFa1alart2yHNkCFE72iecwxYDu8NHkq2AgX0jsbjNe7fn8x589K+Qwfi4lxrinCqTEAAc2bPgbvYpmV7MnuV4pkGxmgv2n87QQynuIjmw74gXcasSKNdaCguDuRvDOR7syy13bhIZmpi8vGh05QpREdF0bx58xS/nijFkwhNmzalYKGCtotvailjkhz2KMWTMPT2/vCRZMyZ0z5xCSnmkzYtnSZMdq2huISht44TJyMbDHpHIyTI/+abdhuKE6V4EmnB/AUQie0CLCSPBeRJBopUqyKG3lxQ0apVqdquLdJMGcJ1DuYStqG3QUPE0JsLaty/P5ny5KGLC/VMU3UCqlq1KvXr1YclwEm9o3FTq0ENUWk1YpQYenNR7w4chAlv29o3HUmzJDLmzkmtLl30DUR4IZOPDy2++oqHDx7w7bff6h0OkMoTEMDq1avxTeMLoxAlepIqBuRfDLzVormY9ebC/DNl4p3unyD9LsEdnYIIBm2PxnuDhmIwmXQKQnidUnXrki8oiDHffIPVqv8Gaqk+Afn4+PDb4t/gFrbnQZ4mJaV4lgKPJN7tP8C+MQl29/ZHH+GbLsC2G62zaSD9IJOjRDFRE9DFSZJEsy++IDoqioEDBybrNexZiifVJyCA9957zzYUtxjPG4rLDHxM0hNQOEiLZWp26kzGXLnsH5dgV95p0tD4s/7wJ7Y1cM60B7QTKs2HfoEse8Qlxa0Veust3qhVi9lz5hATk/QZWkFBQezYsYOgoKAUx+IxZ8vq1avxS+snhuISazGY8Bb1u9xI1bZtSZ8zEH524rM6DeQ5BgpVfoti1as7r10hRZoOHYo5Pp5PP/1U1zg8JgH5+PiwdNFS21DcNL2jcXHxIK81ULV1W/wzZdI7GiGRjF5e1O3WA3YA95zU6ElQLyjU+0Rswe5OchYvzhs1arD899+dso33y3hMAgLbUFznTp1hFba9bFKjSOAQsBzbrKi5wC/YyvhvBq7z+kWL20ENV6jWvr0jIxUcoGKLFhhNXrDmNQdq2CYs7MA2S3QetudH87E9+9sL3E9EgysgY56covfjhmp07kx0VBQLFug3fdLjShnPnz+f4OBgjk86DvmAcnpHlEKxwBbgHzCdAstd26dNEvgZbJvExiggSRCbkHgMvqAVBbU08C7w3M7I0gqZQlUrkq1gQae9DcE+fNOlo2KzFuxfvRy1i/Lsb/hdYANIx8BwFqyPEr7GAD4SmCQJs6YRq0J8wrlizAjWN4DyQCMg4KnXewjSNomaQ7qIZz9u6I2aNUkfGMg333xD1ySsDQoODqZfv35MmzYtxc+BPC4BAfzzzz8E5gwkfEg4/Ark0DuiZLgGrADDWlBjoaJJphIGyvsYKCfLFJFlZEniqKJQLiaGI75+5JEkjqoqRxSFw6cUtp1UiFgIcjlQWwHVgcugnVSpNbuzzm9QSK7qHTqwd+lS2A3UAg6B9Aew25ZoassGKkgGyvnazpUczyUPTdP4V9Ns50mUyoEDCnv2Kqg/gFofeB8oDqwDWTZS8f33nf0WBTuQDQZqdurE2okTuXjxIoULF07U1z1dCUEkoGTw8fHh4D8HKV6qOMoAxTZE5ad3VIkUCvJ4UPdAeiN8InvRI42JfIm4A80sy9STZeol7OETr2n8YbXy/QkzB4+oGDKBUgD8s2WmZN26jn4ngoPkKlGCvOWCuDbvOMaZGtbrUMQk0dfkRQeTCf/XPKuRJIn8kkR+WeZxaglVVX62WJixyULIeg1DCVBDZco3eU9sy+HGKn3wAesmT6Zfv35s2LDB6e17bL+5cOHCrFi2wvZMZCSg6B3Ra2jAOjB8AJn/kVjg48Mdn7SM8/ZOVPJ5EW9Jor3JxAGfNBzz86NRpAEOQRr/9MRGRto3fsFp4mNi8PFJA+c1yt+W2eXry1nvNPT08npt8nmZrLLMMG9vrvukYY2vL/nPS0j3VIxe3igusKBRSB7/TJkoU78+O3ft0qV9j01AYCtYOvyL4bAL+BbXqSj8vDCQ+wFjoL3VyDmfNHQymfC246yjIIOBNd6+LPbxIe7qVca+/TbHHbCfvOBYlw8fZny9elzbv5+p3t7s8fajutFotxlqBkniPaORkz5pGGgysX/pUqY2a8adS5fs8vqC85WuV4/oqCgOHTrk9LY9OgEB/O9//6NHjx6wFpiMrafhSm6AsStkPAzrfH1Z4ONLBgdNd5UkiXYmE2d9fKgVHc3cHj3YMW+eQ9oS7C940yamt2lDgbt3OeHrSz8vLwwOOld8JIkJPj7s9fXFdP48U5s1499jxxzSluBYJWrVQpJlpk6d6vS2PT4BAcyePZuOHTvCH8B3uE4SugaGjyDvA4mj3ml415j0R3aBksRILy8Ck3Ahyi7LrPb2ZrDJxB9ff81fP/yQ5HYF5zq8Zg2/9OxJC0lip7c3hZ00K62SwcBBb2/KxMczo00bLh086JR2BfvxCwigYIUKbN22LVHHi1I8DrBw4UJat25tWwMxCf2H4+6AsRcUjJbY5+1H7mReUAJlmVHe3gQm8eslSWK8tzcjvbxYN3EiOxcuTFb7guOd3LqVhf3708FoZIm3N15OXhCaXpLY4u1NJVXlxy5duHHqlFPbF1Ku9DvvEBYWxp07r69mK0rxOMhvv/1Gp06dbD2hseg3McEChgEQGC6x3cuPrDqtsZASek/9TSZ+HzGCC/v26RKH8HJ3L19mXs+eNDUY+Nnb22FDbq/jJ0ms9famhMXCj507Ex0erkscQvKUeucdNFXl+++/d2q7IgE9Z8GCBbZnQuuAwUCUDkHMB+0KrPHyJafOC/wkSWKStzfVTSaWDBxIfHS0rvEI/09VFBYPGEAuYJG3N0adS+H4SxKrvbxQw8NZMWqUrrEISZMlb178M2Xi77//dmq7IgG9wOzZs/n666/hH6ArcMOJjV8A6Rf40uRFWRfZ0liWJOZ5eRF99y6rx43TOxwhwd+//MLV48dZYDTi5yJ12HLKMt+bTBxcvZqTW7fqHY6QBHmDgrh48aJT2xQJ6CVGjBjBhrUbMIYaoTO2+mqOZgHDSChukPnKy8suL3lbVRkVH8/tFBYcLCjLjDeZ2L1oEefFUJzu7l6+zIYJE+hrMlEtGZNTHKmT0Ugjk4llQ4aIoTg3krd0acIjIl5bnDQ4OJhatWoRHByc4jZFAnqFRo0aceHMBTL6ZoTPgGU4dobcFlCuwEKTj90eJN/WNL42m7mtpTzw3iYTlUwmNowfb4fIhJTY9P33ZNM0vvH21juU/5AkiTleXpgjItg5f77e4QiJlLtUKRSrlX2vucF8uhRPSokE9Br58+fn1o1blCtbDqYAY7AVAHUAw3KobTJQzkWG3p4nSxJDDAauHD8uZjrp6FFYGMc2bKCvweAyQ2/PyynLdJRl9v/6K4rFonc4QiLkKVkSgDVrXldK3X5EAkoEHx8fDh8+zEcffQQbgTbAUTs3cg6Us9DHYLLzC9tXE6ORHAlDcYI+9i9fjkFV6Wpy7XOlp8nEw/v3OSGeBbmFdFmzkjZjRvbv3++0NkUCSoK5c+eyedNm0samhZ7Y1gvZqze0ArIbJZq42Hj+84ySRE9J4siqVcREROgdjsdRFYV9CxfS1mAgo4v2fh4rYzBQ2cuLPWIYzm1kyp07UWuB7EUkoCR65513eBj2kObNm9s2tbNHb0gFw2boLpt0n0qbGB+ZTMTHx3MqkSunBfu5euwYYXfu0N3Fez+PfSLLnD9wgMh7ztqiVUiJ9IGBhDvxxlIkoGQwGo2sXLny2d7QRCC5P7froMRBDQc8+0lOKZ7XyS7LFPTy4vqJE3Z7TSFxrp84gbcsU95NNoCrnnBOi2eG7iEgWzZiYl89rCNK8biIZ3pDK4Fm2LbBjkviC52z/fGmIxJQMkvxvE4FVeWGHaZhCklz/eRJShmNmNygpwyQT5JIbzRy/eRJvUMREiEga1bM8fGvPEaU4nEhj3tDJ4+fpFTBUjALaA6sAhK7Tco5yG2SHFbl2hHKGQzcPHsWVXH1jZRSl1vHjlHBDlPqnUWSJMpJEjdEb9ktBGTNimK1Eumk/cBEArKTkiVLcuLECf7e/jd50uWx7S/0AbCN164dks9CRc01p16/TDlZJj4+nrtXrugdiscwx8Zy+9o1yrnJ8Ntj5SWJW8eP6x2GkAj+mTMDcPbsWae0515nshuoVasW165e47fffiOTORN8AbTCtoj1+bpyMcDfYLgIOdyo9wM8eaYU/fChzpF4jpiICDRNs/twqqMFShJRYoddt2BKWNgc7aSaj+51JruR1q1bExYaxg8//EAucsFUoCEwDtgE/A9oAHwOxIOvgxKQvUrxPO9xvJa4pD7wEpLr8ffaV+c4ksoXMJvNaG40dOip5IRlIPGveA4kSvG4kV69enHj+g22b9tO9ozZbVW2R2KrLfchtskLmRzXvj1L8TztcbrU7JzYhJd7fAF3r76yLV6RfNyDnDARymw2v/QYe5bice1Vj6nA9u3bGTJkCEeCj9j2F6qEbUiuMvD4sY8XxLvZL+jjfo/Jx0fXODzJ4+ERd+tzxgFeJhOSmw0ze6LHN5QmJ60zEwnIQQ4fPkyHDh04f+E8pAHaYZsdl/O/x6rp4N5t90pAYQkJ09ffX+dIPIdPwvf6npvdrIRpGr5p0ugdhpAIitU2ddfHSTeWYgjOzq5evUrFihWpULEC52+dh77ABuBTXph8AJRicFB2r+nMRxUFo8FAtkKF9A7FY/j6+5MlMJBjbjb1/YimkbNUKb3DEBLBmjD05uvrnCeNIgHZSVhYGA0aNKBA4QIcPH4QugBrgLbA624misFls0aUG93ZHlEUchYp8mRYSHCOXGXLcljvIJLoMJCrdGm9wxAS4VFYGABFixZ1SnsiAdnB4MGDyZojK39t+ev/F6H2ANIm8gWKgQoEO+DO1hGleAAOyTK57LASWkiaPKVKcUxVUd3kZiVEVblrsZBH9IDcQmRoKLLRSMaMGV96jD1L8YhnQClw9uxZ6tWvx80bN6E60A/IlYwXKgCyEfarKtXsG+KTUjz2FKFpnLNYaCUuKk6Xu1QpohSF06pKKRfdN+pp+xNuqh7vNSO4tojQULxfsxvz41I89iB6QMk0ePBgSpQuwc2HN21reiaSvOQDYAS1OsxV3WOtxEKLBSSJknXq6B2KxylYvjz+6dLxi5ts8vaLopCneHEy5HzJA1DBpUSEhjrt+Q+IBJRk58+fJ3fe3EyaNAmtigbLgfqkfHHG+3DRorHDxR8wa5rGDFWldP36pM+WTe9wPI7Jx4dK7drxi6oS7eI3K1dVlT8tFqp16SKmYLuJ8Nu3SR8Q4LT2RAJKgnHjxlG8ZHFuPkjo9UzAfotIy4EhF8ywvnwBmCvYoShcsFio3qmT3qF4rKrt2/NIVfnNxXtBP1os+KZJQ/n33tM7FCGRHty8SdasWZ3WnsMT0LfffoskSfTr18/RTTmMqqo0a9aML774Aq2cHXs9T5NAaQ2rrQpX7VhdwN6leKZYrQTmz0/hSpXs8npC0mXOnZs3atRgmqqiuGgvKFLT+ElVqdi6NV5OHNIRki/q4UMiQkMpX778K49zm1I8hw4d4scff6S0G0/BjIyMpEjRIqxZswY6Yqvp5qjSOY1BygQfmuPs9izInqV4VlgsrLdYqN+vnxhS0Vn9zz7jtNXKFBftBQ2MjyfaaKR2t256hyIk0uNNA999991XHmfPUjwOS0BRUVG0b9+euXPnkiFDBkc141AnTpwgR+4cXP73MozCtpjUkROP0oAyHHZYFH50sQvLPVXlE6uVMu+8QzkxpKK7AuXKUbtbN76yWDjrYs8NN1ut/GSx0Gz4cDKKyQdu48bJk8gGA3WcOLnIYQmod+/eNG7cmLp16zqqCYdatGgRZcuXJdoQDXOwVbJ2hkpAUxhgiedfFyr0+anZTJyvL62/+Ub0flzEu4MGkTFXLjpbLC4zFBehaXxotVKscmWqtmundzhCElw7cYJ06dJhNDpvdY5DEtBvv/3G0aNHGTdu3GuPjY+PJzIy8pkPvY0bN46OnTuiFlThVyDl662S5jMwZ4SW5liXqI4w02xmucXC+2PGkM6JDyiFV/Py8aHd1KkctloZEh+v+xR+q6bROT6e+wYD7SZOFDcqbuZacDAFCxRwapt2T0A3btygb9++LF68OFEF7caNG0dAQMCTj9y5c9s7pCQZMWIEX3z5ha0n8iOQRYcg0oIyCY4bVN6NjyVWxwvLIouF3vHx1P7wQzH05oIKlCvH+6NGMcViYcwrSug7mqppdIuPZ72i0PmHH8iYK7mL4gQ9hN+5Q/idO1StWtWp7do9AR05coTQ0FDefPNNjEYjRqORnTt38v3332M0GlGeG68eNmwYERERTz5u3Lhh75ASbciQIYweMxpqYJtiredOA8VBmQa7UagfH8ujZCahlJTimWs20ykujsqtWtFi+HBxR+uianbuzLuDBjHCbOYrHXpCFk2jQ3w8i6xWOk6dSimxQNntnNy6FRI5W9mepXgkzc5n66NHj7h27dozn+vatSvFihVj6NChlHxNSY7IyEgCAgKIiIggXbp09gztlYYPH86Yb8ZAHeBrXKdIUTAY+kExq8xvJh9KOqH8SpymMSI+nokWCzU6duT9r79GdrNtoD3R1jlzWD12LO1NJqZ7e5PBCTcMN1SVLmYzu1SVztOnU7ZRI4e3KdjfzM6duX3yJA/u37fL6yX2Om73y6y/v/9/kkyaNGnIlCnTa5OPXr755htb8qmJayUfgCBQ5sK5L1TK3ohhlMmLoV5eGB10cTmgKHSyWLiiaTT74gvqfPyx6Pm4ibrduxOQLRu/DxvG9rg45ppMNHbQA2VN0/jZYqG/1YpXxoz0+u47ilSp4pC2BMeKj47m/L59NGnc2Olte/xt7Zw5c/hqxFe2HUrH4FrJ57HCoCwGaycYbjFTPj6GfxTFrkMt9zWNIXFxVI6JITpvXob++Sd1u3cXycfNVGjalGHbthHw1lu8GxtL57hYbtp5NuVZReGduFg+jo+nZIsWDNu2TSQfN3Zu924Ui4U+ffo4vW2nJKAdO3Ywbdo0ZzSVJAcOHOCT3p9ASeBbwDm70CaPF9ALtF/gVA6VyjExlI2P4ReLhZgUJKJDikLnuFgCY6KYrFnQjBJl3nuPwMKF7Re74FQZAgOp+MEHACw2WMkbE02zuBi2Wq3JvmmxaBorLBZqxsXwRkwMO/1sz3JrdOqErxOHygX7O7FlCz5+frz99ttOb9tje0BhYWHUqlMLLaNmm3DgLvuqvQHKUmAynCyn0i0+juyxUXSLi2OW2cxBRSHuqYvM06V4NE3jqqryh8XCsPh4guKieSsmhiUZrFh6gboeqKNxYOVyVBdagyQk3T8rfkcqaUDZCOoQ2JBT4Z3YWArHRzMwLo4lFgvnX7GvkEXTOK4o/GKx0Dsujlxx0bwfF8feYgr8D6xrQM5k4J8//nDyOxPsKfbRI45u2EDFChUS/TX2LMXjigNODqeqKmXLlSXOEgeTAXcr1GAAqoFaDbgFj1bBwr0W5v0LWjwYJChgkkiPhFWFY1aVxaqFUE0jMmESojEjWEsDTcBamf+v8NAC7ve4yfm9eylevboe705IodCrVzm/ey+MBNIALcDaHDgOl1drTD9qwXLXVmnDV4aCRpk0GngjEYfGIwkuWVQsGiCBKSdYKgLNQXmqY6y+p/DP8uU0HTIE7zRpnP9GhRQ7uGoVlvh4Jk2alOiveboUT1AKN6X0yATUoEEDbl6/CeOAInpHk0I5gU/B+ikQD1wC5RxcvKJBnAb3gANwqapme6/FgOJgfVk9uzIgFzKw69cFIgG5qT2LFyMHGFDrPLXkQQKCbB8WgAjgPMSeg1O3VDBj+w8vbMsPcgPFgSJg8XtJQ83BvCCWQ6tXU619e0e9HcFBNE1j5/z55MyR47UFSB3F4xLQl19+yZYtW+AjwPlDno7lja1qw9PT888BB4APsSWf15FAbalwauI2HoaEkCFHDgcEKjiKOTaWfb//htpEefWwcgDwVsJHcmUDqkns+HU+Vdu1ExNW3MylAwcIvXIlSb0fe/OoZ0D79+9n7PixtoWmokjvy9UHfCX2Ll2qdyRCEh1Zt464yCho7qQGW2rcOXeRK0eOOKlBwV52LVyIt68v/fv31y0Gj0lAqqrSuElj253fCDznnWfG1tvLnISvSQNaQ5WdixYQFxXloMAEe1MVha0//YhUSU7+9vBJ9RbIeQxsnTPbSQ0K9hB2/TrBmzbRuGHDJC8yt2clBE+5DNO1a1ce3n8IwwF/vaNxoszAxyQtAQF0grjoR2z/6ScHBCU4wuE1a7h74TJaNyfOYJRB7apwcvNWrh496rx2hRRZN2kSBoOBH3/8MclfGxQUxI4dO1I8AQE8JAHt37+fhYsXwruAWC+XONlAe19jy9zZPAoL0zsa4TUs8fGsmTwBaklQysmN17dNXFk1fqzuFbmF17t5+jRH1q6l9QcfkDlzUu9M7SvVJ6Bnht766R2Nm+kCVsnMXz/8oHckwmvsXbKEiNt34BMdEoAB1J4KVw4c5uzOnc5vX0iSNePH4+3jw08uMLqR6hNQly5dPHPozR4CQOugsmvRr9zXsUq58GpxUVFsnD4NGgP5dQqiKkhlZFaNHysWMbuwi//8w9ldu+jVs2eitstxtFSdgM6ePcuvS361/WKKobfkaQOk01j97es3FxT0sXnmTGKjIm3P+vQigfapyu2zFzggqiO4JMVqZcXo0aTx99d16vXTUnUCateunW1hXV+9I9FRGDA34c/k8AX1M4VjGzZyfNMmOwYm2MO1EyfY8uNstM6abV2OnkoDDeCPMV8TfveuzsEIz9s+dy43T59myqRJKdpexZ6leFJtAtqzZw/Bx4OhE7bnP54qDPiJ5CcgsK0LqiGx+MvPiXr40D5xCSlmiY9n4aD+SIUk6KJ3NAkGgMUUx5JhQ8WEBBdy++JF1k2eTPny5enevXuKXuvpUjwplWoTUOfOnSEd0FbvSFIBCRiqEWd5xPKRw/WORkiwafp0Qq9cQR2uuE5NkwBQP1c4s30HB1as0DsaAdvQ28IBAzAZjfz11196h/OMVJmAVqxYwZUrV6A74Kt3NKlEZlAHKhxdu14MxbmAaydOsHnWTLQPNXC1nTNqAA3g969HEH7njt7ReLztc+dy4+RJZkyfTsaMGfUO5xmpMgH17N0TsgNN9Y4klXk8FPfFUB6GhOgdjceKffSI+f0/sw29ddY7mpcYABaveBYM7Iditeodjce6duLEk6G3jz76SO9w/iPVJaBZs2Zx7+496IVrbzDnLMkpxfMyEvCFRpxXFLO7f4g5NtYOLyokhaoozOv7GWF3r6P+z4WG3p4XAOr/FC7+c4DVY8fqHY1HiggNZXa3bvj5+toKMNuJPUvxSJqLPSmMjIwkICCAiIgI0iVjp8UcuXJwW74Ny0mF6dVFXADpY5mgug35cPoMUQXZidZOmMDmWTNhCu6xtOB3YBK0nzCBygm7tAqOZ4mLY+oHHxBy9iwH/vmHN99806ntJ/Y6nqou0YcPH+Z2yG1oTSp7Zy6mCGgjVY6t38DmmTP1jsZjHF6zxvb9/hT3SD4A7wNNYemXX4iK2U6iaRpLv/ySG6dO8dPcuU5PPkmRqi7TgwYNsq37aah3JB7gbeAjWDdxIic2b9Y7mlTv2okT/DpkkO3cdqe93yRgMGhvqPzY4yPx7NAJtv/8MwdXrOCTHj1ss4FdWKpJQDExMezat8tW9SCt3tF4iG5AbYmf+/Tmwv79ekeTat2+eJEZnTugFlZhGLaLujsxgfatSqwpku86tCXy3j29I0q1/vnjD1Z98w0VK1ZkphuMTqSaBDR8+HA0iwYt9I7Eg8jA1xpqGSuzunXh8uHDekeU6oRevcq0dq2JzxSNNuU1u5y6soygTld4EHmT79q3IerBA70jSnWOrFvH4sGDKVqkCPv27dM7nERJNQno53k/28rQu9qaCL2ltBTP63iDNlHDWszCjM4duHTwoIMa8jx3Ll1iapv3iU0bgTpdcf+KHrlB/UHhXti/TGvXWmzzYUeH16xhft++5Mufn1OnTqWo1M7riFI8z/nrr7+IeBgBrfSOxAXZoxTP6/iANkXFWtzMjM4dOb93rwMb8wy3zp1jSuv3iU4bjvqDAq61fjD58tmSUOi9K0xp876oGWcH//z+O/P79aNggQKcO3sWo9Gxc/NFKZ7nTJs2zTb5oKbekXgwX9AmqyhBZn7o0lmUYUmBs7t3M+WDlsRlfoQ6U4FMekdkZwVAna1w/9ENJrZoyq2zZ/WOyC1pmsam6dNZNHgwxYoW5ezZs3h5eekdVpKkigS0e/9uqATov72FZ/MBbYKG2sDKrwMHsvKbb1AVRe+o3Iamafz988/M7NwJc4kYW88nvd5ROUgeUOcqPEp7j0ktmxEsyjslSXxMDD/37s36yZOpVasWp0+fdnjPxxHcPgGdPn2a6IhoW/0pQX9ewJfAANj+81xmftiFmIgIvaNyeZb4eBYNGcyK0aPR2mlok7XUv4FiNlDnKFiqmPnpk0/YOG2a2MwuER7cusXk5s05sWkTgwcP5u+//3boMx9Hcs+onzJ58mTbtNSqekfiouxZiiexJGyLgafBhWP7GN+sCXcuXXJiAO4lIjSUaW0/4OCaFTAS6AMY9I7KSXyAMRp8AhunTePnXj2Ji4rSOyqXdengQb5t3Jh7//7LsmXLmDBhgtNjEKV4npI9R3buZrgL85wQnJB0N0AebEAKkWk6eCi1unZFNnjK1fXVNE3j8Jo1LBv5FWZTLOp4BUrqHZWOdoI0SiZdhqx0mjiFolXcpdyD45nj4tgwZQrb584lIH169u3dS/HixfUO66U8ohTPgwcPuHv3LtTSOxLhpXKDOl9BaWZh5TdjmPLB+9y9ckXvqHQXGRrKj90/YkG/fsS9FY262MOTD0BN0BapRGYLZXq7diz98gvRGwKuHj3K2Pr12T53LvXr1+d2SIhLJ5+kcOsENHPmTFCB6npHIrySDzAAmAXX755gbMP6bP/pJ4+coKBpGodWr+Z/77zNmSM74FtsQ1DpdQ7MVeQE7QcVBsG+lb8xun5dzrvJokp7M8fFsWrsWKa0bEncgwesXr2aP//8Ex+f1DPbyq2H4GrVqsXOIzthK+5XnsRTxQEzgeWQ442iNB/6JcWqV/eIitrXjh9n1bdjubT/ALwjwSCReF7pFkhjZLSjKmUbN6LJoMFkzZ9f76gcTlVVjqxbx9oJEwgPCaF+/fqsWrXKrRJPYq/jbp2AsmbPyr0892CGk4IT7OckSN/LaCdUClV+i2ZDvyBfUJDeUTnE3cuXWTtpIsf/3IRcwIDaW4FqekflJlRgA8hzDWhhGlVat6Zh336kz5ZN78jsTtM0zuzYwepx47h94QLZAwP5+aefaNSokd6hJZlHPAMKexAGb+gdhYtzdCme5CoF2hwVJsGVu0eY1KwZcz7pzu2LF/WOzG4ehoSw5PPPGVPvHU4e2wIjQF0kkk+SyEATUJcraL1U9q9fzqia1VkzfjxRDx/qHZ1daJrG5cOHmdqqFbO6diUmNJTZs2dzOyTEJZOPPUvxuN/KpQTBwcG24qOp41mc4zwuxVMd507FTgwJqA5qFQU2wak52zjxzmYKV6lEzU5dKFW3LgY3W1ynqioX9u1j168LOLl1G1JaCa2PitYC9y0k6gp8gA6gNlVQFylsnfcj23/5ifJN3qNGx07kLVNG7wiTzBwby5F169gxfz63zpzBN00aRo0axfDhw116Xc/TpXiCUjhq4V6/3U9ZuXKl7S/F9I1DsAMD0BjUdxTYDpdWHOTiJ//gny0zNdp1pHKbNi4/5BITEcGBP/5gx6IF3L96HbmAAW2gitYASKN3dKmIP9ATtNYqyjqVQ6tWc+CPFeQq9QY1O3ah3Hvv4eXiz0ruXrnCnsWL2ffbb8RHR5Mla1ZGjhzJF1984XaldFLKbRPQrl27bPv+ZNc7EsFuvIAGoDVQ4QI8WhHGxlnfsfG77yhYoQJl6tenVN26ZM6TR+9IAdsC0lPbtnF882bO79uDolihtgZDQQ1SxMQYR8oIdAa1gwL74NaKsyweMoTfR42k5Nt1KP3OO7xRqxZ+AfqXENc0jZDz5zm5dSvHN23ixqlTGIxGyr35JuPHj6dWrVp6h6gbt01AZ8+dtQ2/iV/y1KkIMMx2pyt1hLjDh1h36BAr/vc/chYsSIn69SlRuza5S5bEy9fXKSFZzWZunTvH2V27OL1pE1dPnbKdfrKM1ly1bdCX2gqHujoDUB206hosA/OUWB5u2sT89esxGAwUKl+ekvXqUax6dbIVLOi0RdCxkZH8e/w4p7dt49SmTYTduYNRllFUlQ4dOjB9+nTSp0/vlFhcmdsmoIePHkI+vaNwA3qU4rGndeCvwSlfP2Rgs9XK2mvXWD9nDptnzkSWJHLkz0/OsmXJXaoUeUqVIrBwYXz8/VM0tTs+Joa7ly9z/eRJbpw8yc3gYG5duIBVUUhjMNBAkvjax4f6BgPvmGM5dRNUkXz0o4FhBdQzGdjo48tNVWW91cqao0dZd/AgKzQNb29vchUvTq6gIHKXLEmeUqXIkjcvphQM2WmaRnR4OCFnz3L91CmunzjBrWPHuHvrFgA5TCY+AN7z9aWAJPFGTAxRUVFunXxEKR5AMknwMdDFaaEJzhYHhkYwwGxiwnMXCUXTOK6qHFEUjqgqhySJUxYL5oTT2dvbm/SZM5MuWzb8c+QgIGtW/AICkI1GZIMBSZJQrFZURSH20SMiQ0N5dOcOkSEhRNy/T0xMDAAGSaKYyUQFVaWcwUB5g4Gysoz3U8ltgcVCl7g4WAHkctp3R3jaMeAT2OrrS53nJq5EaRqHE86TI4rCIVnmktn85P/Tpk1LQJYs+AcGki57dgKyZsXLzw/ZYMBgNKJpGqqioFgsRD18aDtXbt0iMjSU8Pv3sVgsAPjKMkEGA28B5QwGyskyxWX5mRuhNrGxrAUiY2Pdsnp1YqXqdUCPj2EE0Ni58QlOtA6kMXAxTRoKJmJWkFnTOK2qnFdVbmsat1WVEE0jRJK4JUlEaBpWbMlL1TSMkoRJkkgrSeTQNHJqGoGSRA5ZJlCSKCjLlJZl/F7Tk4rVNLLHRhHZGuhrn7cuJI30BRTYJXHRO02ier4RmkawovDvU+fJbU3jliwTgu1nak34kCUJoyRhBDJKEjlUlZxAoCyTQ5IIlCTekGWKyjKG17S922qlRmws48ePZ8iQIXZ5764oVSegPXv2UL16dfgO2z5AQqpk6Ah1rhr4y8dP71Bea0hcHFO8LCgbEftSOdt9kN6FaSZvPnPxWWSaplEyJobwrFm5dfu23uE4TKpeiHrmzBnbX9z1uYbwendBuQAfGUx6R5IoXU0mlGggWO9IPNBeQIVOJtc/VyRJ4iOTidt37hAlCq26ZwK69HhvmSz6xuEWXLUSwuucs/1R2U22bigmy6Q18CRuwYnOQWGTRHo3qSdY2WBAA9asWaN3KMliz0oIbpmArl69apt++frtgoTHlRDcMAFlNEJON7moSJJEOdkAZ/SOxPMYTkElzT1uVADKyDIy8Oeff+odSrI8XQkhpdwyAd2/f9+2CNU9rk1CMkhnoYJkcKsq2W8hY0r576SQFFbQLttmnbkLX0miqCxz5MgRvUPRnVsmIKvVCq4/3CukgPE8lJPc56ICUNZgwBIGROodiQe5BqoVgly4dtqLvCXLhFy/rncYunOvn1oCi8ViG4ITUi0lGrK4Ue8HIPPjeMWzZed5ZPvDHc8V61NrkTyVW66EslqtIgEl1b/P/TszL55FGMZ/nxe96NgXHWfHY1Uz3DWqHE3YNTVQkgh87i73dsJ6n+cl9tgXHZeSY6+rqu2Td4Ac/zk08d/bpBzr4J9Dso9N6ftK7LEJ1/BITXtyrjyW0p9vSs+vVx37UNOwKAqLFy9+8vkSJUr8p7p0cHDwC5+1JPbYFx2X0mP37t37n2OSyy0TkDs9F9BdZqAsMPK5z3+ErZLE81Zhm7TwumNfdJydj/3WYuHbhFXmI728GOX97H4GP1osfP2Cu8jEHvui4+xxLNuAN/9zaOK/t0k51gk/h2Qdm9L3ldhjEy4FS6xWvk84Vx5L6c83pefXq479xWoFoEOHDk8+X7NmTXbs2PHMsf369WPnzp3/ed3EHvui4+xxbEBAgOeW4qlSpQr7L++HdU4Ozl254Z23/DH01Ux0SFjb4Q49oH2KQp/4eJjHizdKdMOfQ7KPdVYP6ATwMfzt60u6525MXbkHNCg+npWaxk8LFjz5vLv0gF517GOpuhJCjRo12H1mN2x0cnCC05iawGcPTUxy8b1dnjbfYqFrXBxsR+wB5CzXgVaw2deXd9yotlqb2Fj+8vHh4aNHeofiEKm6EoKXlxdYXn+c4L4sb8AhVL3DSJIjioIpByL5OFMuMHjzn+c/ru6AopC3YEG9w9CdWyagbNmy2WYaudc5JyRFcTiiKqiu1UF/pQMoWErpHYWHkYGicFh1n5uVCE3jX02jUiVRyNItE1C+fPlABcJ1DkRwnGIQrcBlN0lAVk3jhKKKLeJ1oJSAA5L73I0+7q01atRI50j055YJqEiRIra/uFt5GSHxEi7kuxJmC7m6o6pKvIptl17BuYrDDYvGTTfpBe1WFAxAgwYN9A5Fd26ZgJ5M/xMJKPVKD3IFmKW6x8O+Hy1mjJmB0npH4oGq2p4D/WRx/XNF0TRmWywULFzY9izbw7llAipZsqTtLyIBpWpqKzhise1i6coeahqLFSvWVogF0npIC8q7MFO1YHHxIdv1Viu3NY0RI59fmOeZ3DIB+fj42LbkFgkodasKxsww0+LaJUvmWyyYJaCJ3pF4sBZwz6qx2sWHbGdYLKTz86N9+/Z6h+IS7J6Axo0bR4UKFfD39ydr1qw0a9aM8+fP27sZvLy9RAJK7YxgfR8WK1ZuuOj4foymMVUxo70NZNI7Gg9WCAyl4FvFjOKivaBjisJWReGDdu30DsVl2D0B7dy5k969e/PPP/+wZcsWLBYL9erVIzo62q7tZEmfBS7b9SUFV9QKlPTwoTkOF1szDcDw+HhuodlKxAi6UnrDUYv6n5I8rsCsaXSKiyONtzdTp07VOxyXYfcEtGnTJrp06UKJEiUoU6YM8+fP5/r163bf+6JkyZK23Sdd88ZYsJe0YB0OWy0KP7vYhWWv1cpUiwW1J5BP72gEygKt4XNLPBdcrMc81mzmtKoyd9480qZNq3c4LsPhz4AiIiIAyJgx4wv/Pz4+nsjIyGc+EqN27doQj60Uh5C6VQEaQ19r/P9XnNZZjKbR0RqHXBxoq3c0whM9QckGncyxLjMUF6wojDGbqVa9Om3bipPlaQ5NQKqq0q9fP6pWrfr/M9eeM27cOAICAp585M6dO1Gv3bJlS9tfztkrWsGl9Yf49NDEHEuEzhcWq6bRIT6Wa2gooxAz31yJLygj4YBVpW98vO7DtiGqStPYWHy8vdm4URSvfJ5DE1Dv3r05deoUv/3220uPGTZsGBEREU8+bty4kajXLliwIAZvg0hAnsIflO/gtEmlUXwMUTpdWBRN46P4OFYrCupYxNCbKyoLDIUfLBa+Mpt1S0L3VJU6sbHckST+2rZNDL29gMMS0Keffsr69ev5+++/yZUr10uP8/b2Jl26dM98JFZglkD4b6VyIbUqDMr3cMCg8nZ8DA+cfGExaxpt4+NYaLWijQRqOLV5ISmaA31sz176x8c7vabgDVWlSkwMlzWNVevWUbVqVae27y7snoA0TePTTz9l1apVbN++nfz589u7iSdKliwJ5xFFST1JKVBmw1FvlXJx0exx0rqPC6pKjfgYVqhWtHGAqKLi+joAQ+A7i4XG8bHcctLzw/VWK+ViYrghy/y5ZYuo+fYKdk9AvXv3ZtGiRSxZsgR/f3/u3LnDnTt3iI2NtXdTNG7c2DYR4azdX1pwZcVBmQc3imjUiI2lf1wcMQ66w1U0jalmM6ViozmcWUWdBdR2SFOCI7QEJsOWNArF46JZYLE4bEjuoabRKTaWJrGxyJky8c/hw9SpU8chbaUWdt+Q7mXbZc+bN48uXbq89usTu5ERQFxcHL7+vrY7nZ7JCFZwbwrwG8izII8mMcnoTVOjEaMdtmzXNI2disIwazz/WFRoDfQC3Gd/POFpEcBk4C9oYDIw2uRNeYN9Zo/EaRrLrFaGxMfzQNPo3K0bc+bMQX7BbqyeIlXviPq0AgULcFW9CsucEJzgmq6BYSwowZDNKNFbNvGRyfTC7ZhfJ1LT+NVi4XvVzAWLhjEPWL/A9mBbcH+7wDABlHtQ1iTzmcGL1kYjvsm4abmqqsy2WJhjNhMOBGbLxtr16ylfvrzdw3Y3HpOABg4cyJQpU2AVkMPx8Qku7DywAuQ/QbJAFaOBisiUMxgoZzBQUJKQn7rQaJrGLU3jiKJwRFU5pCnsUBTiAa0G0AooB6S8QyW4EgXYB/LvoB4AfwPUlgyUl23nSTlZJttzNy+KpnFeVTmiqhxWFA4oCgdVFQNQ+s03GTt2LPXr19fl7bgij0lAISEh5MyVE/pjGyYRhEfAJuAwmE6D5Z7t0yYJfDTwMoIViFchLuG5tDEdKG+AFgQ0BrLqEbjgdDeADSCfBOksKAkVw3xk24cBMGsQq9jOGQBfo5EsOXLw9ttvM3HiRDJnzqxT8K7LYxIQQKYsmXiQ9wHMdHBwgnsKx7Ze7DLwA1AeW8/GC1uvuRi2hCN6Op5NA25jm9QUim2CkxXYC9J5iYnjJ9KqVSvy5MmjZ5RuIbHXcaMTY3KYd+q8w7Lfl9nufP31jkZwOemBSgkfx4BIoLOeAQkuScJ2Q/L0UL4K/A5vBr3JwIED9YkrFUsV0zSGDBliu3v5S+9IBJf3NnAc29CLILzOASAcPvnkE70jSZVSRQJ68803CcwRCMuxJSJBeJk6gC+wUu9ABLfwO3in8ebDDz/UO5JUKVUkIICB/QfCNSBY70gEl+YFmIA1QJzOsQiuLQTYB61btvboNT2OlGq+q/3798foY4Tf9Y5EcGnB2J4BRQNb9Q1FcHGrARkmTpyodySpVqpJQLIs06RhE/gbuK93NILL+h2MPkYyZsloG7IVhBcxA6ugTMkyZM0q5uQ7SqpJQMD/b3W7Rt84BBd1H/gbmjRsQq8evWwLV8/oHZTgkv4GImHs2LF6R5KqpYp1QE8rWrQoF8Iu2JKQl/3jE9zYXOAX+PfKvwQGBuLr74v6tgpf6x2Y4FI0oCsE3A0g/H643tG4pcRex1NVDwgSekEPgBV6RyK4lIfAIihbpix58+bFy8uLFu+1sE3dv6J3cIJL2Q2chcEDBusdSaqX6npAAEWKFuHi7Yu2h4hiE0IBYBqwHM6dPkfRokUBiIqKIn3m9ChvKTBJ1+gEV6EAbSEgMoAHYQ/E7Ldk8tgeEMDiRYtts5yW6B2J4BJuA8vh7ZpvP0k+AGnTpqX7h91td7wndItOcCWbgGswdfJUkXycIFX2gADeeustDp04ZKuSncl+8Qlu6GuQNkuE3Aghe/bsz/yX1WolTUAazIXMMAdRD86TxQMtIdArkJCbIXpH49Y8ugcEsHTpUlshwXl6RyLo6jKwEVo2a/mf5ANgNBr5YsgXth7QXqdHJ7iSlcA9+GnOT3pH4jFSbQ8IoH79+mzettm2ODWnfeIT3MwAMBw2EB4WTtq0L34gqKoq6TOl51GGR7AYWw1+wbNEAU2hSI4inD9/Xu9o3J7H94AAFi9ebBvHHYeoEeeJdgJ7oVf3Xi9NPmBbxDx10lS4ithZ11PNAGJg0aJFekfiUVJ1AsqcOTMjvxoJhxCLUz1NBPANZM2WlWnTpr328G7duhEUFGTbU+qag2MTXMtBYBW0btWaChUq6B2NR0nVQ3CPFSlShIs3Ltrubv/7GEBIjYYD2+DY4WO2xJIIYWFhZM+VHaWQYlu0KobiUr9ooA0EWAIICw3DaEwVW6TpTgzBPWXLli3IigxjEENxnmAnsBl6fNQj0ckHbD3maZOmwWnEUJynmA6EwdrVa0Xy0YFHJKC8efOKoThP8dTQ28yZSd+j/dNPPxVDcZ7iqaG3GjVq6B2NR/KIIbjHxFCcB0jG0NvzwsLCCMwViLWQVQzFpVZi6M2hxBDcC2zdutU2FDcEsRlZarQC2Aw9u/dMdvIB21Dcd1O+sw3FJb0TJbg6FRiFGHpzAR6VgPLkycPCeQvhIvAN4nlQanIUmASlSpdK1tDb83r16kWzZs1gEbAxxS8nuJK5wC746ouvxNCbzjwqAQG0b9+ezz79DDZju7gI7i8EGAzp06fn4IGDdnvZFStWUKhQIdvNymm7vaygp23AL7ZF6qNHj9Y7Go/ncQkI4LvvvqNKlSq2xWei/Ip7i8FW7cBi4OA/B/Hx8bHbS8uyzJEjR0jjlwYGAvfs9tKCHs4DIyFP3jxs3Ci6ta7AIxMQwM6dO8mSPQt8iW0FvOB+VGAkcA1WLFtB4cKF7d5EunTp2Ld7H3KUDIOwFawU3M8DYAD4ePtw5PARUenaRXjsT8FoNHL00FFMmGAAtg3LBPfyI0/G8ps2beqwZkqXLs2CXxbABWA0tsQnuI84YDBI4RK7tu8ic+bMekckJPDYBASQK1cuNm/cjHRPgl7Y1pAI7mEBMB8aN27slLH8Dh06MKDfANgCjEdMYHEX8dh6rmdgzqw5otSOi/HoBARQq1YtVv2+Cq4DfbBVxRVc21Jgpu1nt379eqc1O3nyZD766CPbTrtTEEnI1VmAYcARmDwx4WcnuBSPT0AATZs2ZdniZXAJ+BR4pHdEwkstA6ZBpUqV2LZtm9Obnzt3Lu3bt4fltjhEEnJRZuALYB+M+d8YBgwYoHdEwguIBJTggw8+4Nf5v9rG+XsihuNc0a/AFKhQoQJ79+7V7UHyokWLaNOmDfwGTEA8E3I1Cc982A2jRo7iyy+/1Dsi4SVEAnpKhw4d+P2335GuStADCNM7IgGw9TLmAjOgRo0a/PPPP7rPYlq6dCldunSx7aI5Btvuu4L+orFNKjoI478dz8iRI/WOSHgFkYCe8/7777N21VrkmzJ0BM7qHZGHiwNGAD/ZFg/u3LlT9+Tz2Lx58+jZs6etUkIfRK9Zb7eArsAx+H7a9wwZMkTviITXcI3fZBfz7rvvcuTgEfwsfvAx8JfeEXmou0B3YCv069ePTZs26R3Rf8ycOZPvv/se6YQEnYDLekfkoQ4DncB4x8i6Nevo06eP3hEJiSAS0EsEBQVx6/ot8uXOZ7sD/wFQdA7Kk5wEOoF8VWbJoiVMnTpV74heqk+fPuz6exdekV62O/BdekfkQTTgd6APZPDOwIWzF3j33Xf1jkpIJJGAXiF9+vRcvnjZdkIvxLaeQEzTdrwNQA9Iq6Xl+JHjtG3bVu+IXqtatWpcu3yNwEyBtgfg8xAz5BzNAowDJkHZMmUJuRlC/vz59Y5KSAKRgF5DlmXWrVtnW+x4AOiCeC7kKDHYFnn+DwoXLMyt67coWbKk3lElWvbs2bl+7To1a9aE2di2/Xigd1Sp1A3gE2AtdO3alaNHj9q1DqDgHCIBJdJXX33FxnUb8X7gDR8Cs7CtNRDs4wjQBlgNbdq04dzZc3bfkNAZjEYjO3bssD0A3wd8gK0Cs2AfKra1YG3BcMHAj7N/5JdfftE7KiGZPGpHVHuIiYmhSZMmbP97O+QBvgaK6x2VG4vB9nztD/AP8GfVilXUqVNH76js4tSpU9SrX4/bIbehNrYeUUa9o3JjN4D/ASegVKlSbN68mezZxdbGrkjsiOogfn5+bNu2jd+X/453mOgNpcjjXs9KaNGiBQ/CHqSa5ANQsmRJbt64yWeffQa7Eb2h5Hq613POwNSpUzlx4oRIPqmA6AGlwDO9odxAf6AyIOkcmKu7B8wB1qa+Xs/LPNMbqoGt5FNevaNyA6eAqbY/Ra/HfYgekBM83RtKG5HWloA+wTaFWPivSGzDbc2BDbZFv6mt1/MyT/eG5H9kW89vLBCqd2Qu6iq22YTdwOuyl+j1pFKiB2QnqqoyatQoxk8ajznWbLvL7QWIWaG2aga/Y5uaHAtVK1dlyZIl5MmTR+fA9BEeHk7nzp1Zu2Gt7RawLbaqG+5zujvOXWxll9aDbJLp1rkbM2bMwMvLS+/IhCRI7HVcJCA7M5vNfPbZZ8ydNxfVosK72BYn5tQ7Mh3EYytTMwd4CCXeKMGiRYsICgrSNy4Xcf36ddq3b8+efXvAB9t50gJIq3NgergPLAaWgYREsybNmD9/vlteAwSRgHQXGRlJ165dWbV2FZpVg0pAK2zPiAw6B+dot7AV6VwNREHuPLmZ98s8jxhqS44TJ07QoUMHTp46CV5AI6AlYP8dxl2LBgQDfwB/2/5do1oNFi9eTK5cuXQNTUgZ8QxIZ+nSpWPFihWE3g6lS5cu+JzygYFAM2xVFVLbFuAKsAfoi+0ufimUK1qOzZs3c/3adZF8XqF06dKcOHGCQwcPUatyLaT1EnQAumGrQ5jaZlhGAyuwPQf7BIx7jDRr0owrl66wc+dOkXw8iOgBOdGCBQsYPWb0/7V39zFNXX0cwL/Q0tviS1U6WotYO7JnCCLqCr7gExNBjTHGZcbogqbRRBODCtb4tg3JsjgUgzEqEefi/GO+bH/oXtgwElR4WARRwZeh2CmPNmpB5mo7kBbb8/xxKY6Vx2lCORf7+yQ3pLfVfj1ezu/e29NzcOfOHbH0Z3RtqRBvwQw0DOLkmxUQr3ZaAOVgJT5c9CEKCgqg0Wi4xhuo2tvbkZeXh0OHD+Hpk6fiZ0MLAMwAkIiBedr4HEAdgLMQp1pyAzq9DpYcCzZs2CCZGc5J36BbcBJmtVphsVhwuvw0nj97DkRALEIzAEwHEMU330t1QuxI/gPgPMRRXOFAnDEOubm5MJvNPNO9cUpKSvDJJ5/g6q9XxU5cDfE4+Tekf+LiBHAB4rFSBeCZOLAgbUoaCgsLkZKSwjcfCRoqQANEaWkpioqKUPlLJVyOrrXA4yF2MkkA3gXf0VHPAfwX4vx31QB+gdiRKMKR8K8ELFmyBGvXrg2J/yuePB4PvvzySxw5cgR11+vwvOMvJy7TIF4ZxUH8DImXdogrCv8KsehcBeATr4qnmKZg1apVWLx4MV3thAAqQANQY2MjCgsL8dPPP+Hho4cvlnrWQexgxnZt7wIYEoQA/mJzC2LBaQBghXjVA7EjmZoyFStXrqSOhLNeT1xkEIf9J0I8iRmL4BWlZwAaIR4rtyAWHRvE27JhQJQmCrPSZ8FisdCVTgiiAjTAeTwenDlzBiUlJaipqcFvTb/hT9efL4rSIIjzimkBvNW1RQHQQBzGK4fYIckh/pnnEAcKeCAOeX38l58tXT8d6P775So5YqJjkJycjJkzZ2LhwoX04bBEPXnyBCdPnsSZM2dQX1+Pew/vwdPWNXIhDOIV9FsAort+arq2KAAqiMeJf/PixbHSDnFZev/mP1ZaAXTVPIQBqsEqGGONSElJwdy5czF//nxERkb2w7+cSBUVoDeQvyiVlpbizp07sNvtaG1theNPBzrcHfB6vC8K1D8IiwiDQlBgiGoIRgwfAa1Wi5iYGEyZMoWKzRvAX5QqKyths9nQ3NyM35/8Dme7E263G8zzir/2YeLtVqWghHqQGlFRUdDpdDAYDJg1axYVG9IrKkAhyOfzwWaz4eHDh3C73XC73ejo6EBERAQEQYAgCBg8eDDi4+Np7ZQQ5/F4YLVa4XA4uo+Tzs5OKBQKCIIAlUoFjUaDuLg4utVKXtur9uPyfsxEgiw8PBwGgwEGA81ySV5OoVAgMTGRdwwS4ujUhhBCCBdUgAghhHARtAJUVFSEMWPGQKlUYvLkybh48WKw3ooQQsgAFJQC9M0338BisSAvLw9XrlxBcnIy5syZg5YWWvyEEEKIKCgFaPfu3Vi5ciWWL1+OhIQEFBcXIzIyEocPHw7G2xFCCBmA+nwUnMfjweXLl7F169bufeHh4cjIyMCFCxcCXu8fLuz39OlTAOIwPkIIIQOPv//+p2/59HkBam1thdfrhVar7bFfq9Xi1q1bAa/Pz8/Hp59+GrA/Nja2r6MRQgjpRy6XC2q1+v8+z/17QFu3boXFYul+7HA4YDAYcP/+/ZcGDzVOpxOxsbGw2Wz0Bd0u1CaBqE16R+0SKJhtwhiDy+WCXq9/6ev6vABpNBrIZDI0Nzf32N/c3AydThfwev839P9OrVbTgdKLoUOHUrv8DbVJIGqT3lG7BApWm7zKBUSfD0JQKBR47733UF5e3r3P5/OhvLwcU6dO7eu3I4QQMkAF5RacxWKB2WyGyWRCamoq9uzZg7a2NixfvjwYb0cIIWQACkoBWrx4MR4/foxt27bBbrdjwoQJOH36dMDAhN4IgoC8vLxeb8uFMmqXQNQmgahNekftEkgKbSK52bAJIYSEBpoLjhBCCBdUgAghhHBBBYgQQggXVIAIIYRwIbkCRMs4vJCfn4+UlBQMGTIE0dHReP/999HY2Mg7lqTs2LEDYWFhyMnJ4R2FuwcPHmDp0qWIioqCSqVCUlISLl26xDsWN16vF7m5uTAajVCpVIiLi8Nnn332j/OTvWkqKysxf/586PV6hIWF4bvvvuvxPGMM27Ztw8iRI6FSqZCRkQGr1dov2SRVgGgZh54qKiqQlZWF6upqlJWVobOzE7Nnz0ZbWxvvaJJQW1uLgwcPYvz48byjcPfHH38gLS0NERERKC0tRUNDAwoLCzF8+HDe0bjZuXMnDhw4gP379+PmzZvYuXMnCgoKsG/fPt7R+lVbWxuSk5NRVFTU6/MFBQXYu3cviouLUVNTg0GDBmHOnDno6OgIfjgmIampqSwrK6v7sdfrZXq9nuXn53NMJR0tLS0MAKuoqOAdhTuXy8XeeecdVlZWxmbMmMGys7N5R+Jq8+bNbPr06bxjSMq8efPYihUreuz74IMPWGZmJqdE/AFgp06d6n7s8/mYTqdju3bt6t7ncDiYIAjs+PHjQc8jmSsg/zIOGRkZ3ftetoxDKPIvVTFixAjOSfjLysrCvHnzehwvoeyHH36AyWTCokWLEB0djYkTJ+LQoUO8Y3E1bdo0lJeX4/bt2wCAq1evoqqqCnPnzuWcTDqamppgt9t7/B6p1WpMnjy5X/pd7rNh+73uMg6hxufzIScnB2lpaRg3bhzvOFydOHECV65cQW1tLe8oknH37l0cOHAAFosFH330EWpra7Fu3TooFAqYzWbe8bjYsmULnE4n4uPjIZPJ4PV6sX37dmRmZvKOJhl2ux0Aeu13/c8Fk2QKEHm5rKws3LhxA1VVVbyjcGWz2ZCdnY2ysjIolUrecSTD5/PBZDLh888/BwBMnDgRN27cQHFxccgWoG+//RZHjx7FsWPHkJiYiPr6euTk5ECv14dsm0iNZG7Bve4yDqFkzZo1KCkpwblz5zBq1Cjecbi6fPkyWlpaMGnSJMjlcsjlclRUVGDv3r2Qy+Xwer28I3IxcuRIJCQk9Ng3duxY3L9/n1Mi/jZu3IgtW7ZgyZIlSEpKwrJly7B+/Xrk5+fzjiYZ/r6VV78rmQJEyzgEYoxhzZo1OHXqFM6ePQuj0cg7Enfp6em4fv066uvruzeTyYTMzEzU19dDJpPxjshFWlpawBD927dvw2AwcErEX3t7O8LDe3ZxMpkMPp+PUyLpMRqN0Ol0Pfpdp9OJmpqa/ul3gz7M4TWcOHGCCYLAjhw5whoaGtiqVavYsGHDmN1u5x2Ni9WrVzO1Ws3Onz/PHj161L21t7fzjiYpNAqOsYsXLzK5XM62b9/OrFYrO3r0KIuMjGRff/0172jcmM1mFhMTw0pKSlhTUxM7efIk02g0bNOmTbyj9SuXy8Xq6upYXV0dA8B2797N6urq2L179xhjjO3YsYMNGzaMff/99+zatWtswYIFzGg0smfPngU9m6QKEGOM7du3j40ePZopFAqWmprKqqureUfiBkCv21dffcU7mqRQARL9+OOPbNy4cUwQBBYfH8+++OIL3pG4cjqdLDs7m40ePZoplUr29ttvs48//pi53W7e0frVuXPneu1HzGYzY0wcip2bm8u0Wi0TBIGlp6ezxsbGfslGyzEQQgjhQjKfARFCCAktVIAIIYRwQQWIEEIIF1SACCGEcEEFiBBCCBdUgAghhHBBBYgQQggXVIAIIYRwQQWIEEIIF1SACCGEcEEFiBBCCBdUgAghhHDxP3bAfC3Ex4FFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1 -3.852752827221041\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjANJREFUeJzs3XmcTeUfwPHPOefe2SxjHca+78MIlZ3sJKJQFFoUpUQoJYoS2doo6hdliayhZMu+L2PfQmYYjMHMmOWu5/z+OEOSZcbce8+9d5736zWvqXHmPF8zx/me5znP830kTdM0BEEQBMHDZKMDEARBELInkYAEQRAEQ4gEJAiCIBhCJCBBEATBECIBCYIgCIYQCUgQBEEwhEhAgiAIgiFEAhIEQRAMYTI6gNupqkpsbCy5cuVCkiSjwxEEQRAySdM0rl+/TpEiRZDlu/dzvC4BxcbGUrx4caPDEARBELIoJiaGYsWK3fXPvS4B5cqVC9ADz507t8HRCIIgCJmVlJRE8eLFb97P78brEtCNYbfcuXOLBCQIguDD7vcaRUxCEARBEAwhEpAgCIJgCJGABEEQBEOIBCQIgiAYwusmIQiuFxUVxeHDh//1tapVqxIZGfnAx97pOF87Nqs/A284Vvxs3Xest/5sM3Osp3+2maZ5mcTERA3QEhMTjQ7FL+zbt08LDQ3VgH99NG7c+I7HN27cOEPH3uk4Xzs2qz8DbzhW/Gzdd6y3/my94fcQGhqq7du3747Ha1rG7+OSpnnXltxJSUmEhoaSmJgopmG7wOzZs+nRowd9+/alfv36N78ung6998k7M8eKn637jvXWn21mjnXHz2vLli1MnTqVWbNm0b179/8cDxm/j4sE5OduJKB7XSyCIAgZlZF7Skbv42ISgiAIgmAIkYAEQRAEQ4gEJAiCIBhCJCA/V7VqVRo3bkzVqlWNDkUQBD/gynuKmIQgCIIguFRG7+NiIargl2JjYzl48CBHjx7l1KlT/P333yQmJuJwOHA4HGiahslkwmw2kzNnTkqUKEHZsmWpWLEiNWrUoHjx4vfcSEvwD6qqcvLkSQ4ePMjx48c5c+YMMTExpKam3rxWJEnCbDZjMpnInz8/JUuWpHz58lSqVInq1atToEABo/8aPkskIMGnJSUlsWTJEv744w/27t1LzLlzpKWloTqd/zrOHBREUM6cKGYzsqIAoDmdOJ1OrMnJWFNT/3W8JMsEBQURXrgwkZGRNG/enM6dOxMWFuaxv5vgWmfPnmXBggWsW7eOgwcPEhcfj81i4fZBoKBcuQgIDkYxmZDSH0JUpxOn3U5qYiJOu/1fxysmEyE5clCqRAkeeeQR2rZtS5s2bQgKCvLY381XZXoIbuPGjXz22Wfs2bOHCxcusHjxYjp27HjzzzVNY8SIEUyfPp2EhATq16/P1KlTKV++fIbOL4bghHux2Wx89913zJgxgyNHj5KakoKmaUiyTKGyZSkVGUl4hQqEhoURWqgQucPCCA0LIyhnznufNy2NpMuXSbx0icS4OBIvXeLSqVOcjYri/PHjqA4HAMEhIZQtU4Zu3brRv39/cY16sYsXLzJx4kQWLVrEufPnsVosAJgDAylWtSola9SgYOnS+rWS/pGrYEHMgYF3PaemaaQlJZEYF0dSXByJcXEkXLhA7PHjnNm3jyvR0YD+AJMrVy4eqlmTPn360LVr12zVo3bbQtTff/+dLVu2UKtWLTp16vSfBDR27FjGjBnDzJkzKV26NMOHD+fgwYMcOXIkQ08EIgG5VlRUFAMGDGDy5Mmuqd1kgNjYWCZNmsSiRYs4Gx2N0+EgR968VG3alJKRkZSMiKBI5coEuOmJ02m3c+HECaIPHuTsgQMc/vNPEi5cQFYUwsPDadumDYMGDaJixYpuaV/IuF27djFx4kTWrF3Llfh4NE2jUJkyVG7cmBLVq1MiIoKw0qVv9oJdLe36dc4dPkz0oUOc2buXI+vXY0tNxRwQQMUKFejatStvvPGGT9/bMnJP8UglBEmS/pWANE2jSJEiDBo0iLfffhuAxMREChUqxIwZM+jWrdt9zykSkGv5ciWEmTNnMnr0aE6dPo2mqhQqW5YarVtTvXlzStSoYdgTpaZpxB4/zsE1aziwahXRBw6AJFGkSBEGvPkmgwYNylZPu0ZLTU1lxIgRfP+//3Ht6lUkWabcww9TvWVLIpo3p0CJEobF5rDZOLVrFwfXrCFq5cqbDy7VIyL45JNPaNOmjWGxPShXVkJw6TugM2fOcPHiRZo3b37za6GhoTzyyCNs27btjgnIarVitVr/FbiQfcXHxzNkyBDmL1hAyvXr5ClcmMcHDaLWE09QoHhxo8MD9AevopUqUbRSJVq//jqJcXFErVzJxpkzGTJkCMNHjKBt69ZMmjSJkiVLGh2u39q7dy+DBg1i85YtOOx2StWsSfv336das2aEhIYaHR4ApoAAKtavT8X69en8wQdcOHGCXYsXs3nOHNq2bUu+/Pl56cUX+fDDD7PlOyOXPqZdvHgRgEKFCv3r64UKFbr5Z7cbM2YMoaGhNz+Ke8lNRvCs6OhoGjVqROHwcH6YMYMSNWvyyvff89GWLbR67TWvST53EhoWRuPnn+f9NWsYMG8eVR97jCVLl1K6TBmqV6/OgQMHjA7Rr6xevZqSpUpRq3ZttmzbxiNPP807v/3G24sX83CnTl6TfG4nSRJFKlakwzvv8MmuXfScPJlcxYoxbtw4coWG0qlTp2z3AG74LLh3332XgQMH3vz/pKQkkYSykYSEBHr27MmK334DSaJRz540ev55Cvpgz0GSJMo98gjlHnmEpLg4tsydy5pp04isWZN6desyZ84cShg4HOTr9u7dS48ePTh67Bi5CxTgqQ8+4JHOnQn2waF6c2AgdTp2pE7HjsQcOsT6H35gyaJFFChYkF49e/LVV18REBBgdJhu59IeUOHChQG4dOnSv75+6dKlm392u8DAQHLnzv2vD8H/2Ww2XnjhBcIKFWLZ8uU8+vTTfLhpE52HD/fJ5HO73GFhtHnzTUZt3UrzV15hx65dlClblvbt25OQkGB0eD7l7Nmz1K1bl9p16nDm3DmeHDaMDzdtoknv3j6ZfG5XvFo1npswgfdWr6ZykyZMnz6d0Lx5+eCDD1BV1ejw3MqlCah06dIULlyYtWvX3vxaUlISO3bsoG7duq5sSsggbyzFM2/ePPLky8cPP/xA1WbNeH/1ap4ZM4Y8d3lI8WUhoaF0GDqUkZs28ejTT7Pit98IK1SIcePGGR2a11NVlX79+lG2XDl279tHy379GLVlC81efhmzH74vKVyuHH2mTePtxYspWq0ao0aNomBYGJs3bzY6tH8xtBRPcnIyf/31FwA1a9Zk4sSJNG3alHz58lGiRAnGjh3Lp59++q9p2AcOHBDTsAWSk5Np164dGzdtIrx8ebqPG0cpH50a/qAunT7N3Hff5a8dO6hcuTJr1qyhSJEiRofldaKiomjTpg0XL16kVvv2dBo+nNBstAhY0zSOrF/PnKFDuX7lCl27dGHWrFk+M7vSbdOw169fT9OmTf/z9Z49ezJjxoybC1GnTZtGQkICDRo0YMqUKVSoUMGlgQu+Zd68efR+8UUsaWm07t+fVq+9hikbjHHfiaqqbJk9m0WjR4OmMXrUKIYMGWJ0WF5BVVVef/11vp0+neBcuXj200+p0aqV0WEZJu36dZZ88glb5s4lb758/Lp0KQ0aNDA6rPsSO6IKXsHhcNCmTRvWrF1LePny9Jw0iWJeNBxopPiYGGa9/TZ/7dhB1apV2bp1a7a+5s+ePUvdevW4EBtLrSee4OkPPyRn3rxGh+UVjm7axKxBg7h+5Qov9O7N9OnTjQ7pnkQCEgx38eJFatWuTez587Tu35/W/ftn217P3aiqyqZZs1j40UfkzJGDrVu2eNX7Ok/5/fffebJTJySTiefGj6dG69ZGh+R10q5fZ8HIkexYuJCaNWuydetWr107JLbkFgB9LL1JkyZERUV5tN3NmzdTpmxZLl+5Qp9p03h80CCRfO5AlmUaP/88A+bNQ1UUaj70EHPnzjU6LI/66KOPeLx9e0LDwxm6fLlIPncRnCsXPcaP5+kPPyRq/36KFSvGmTNnPB6HK+8pIgH5ucOHD7NhwwYOHz7ssTa//PJLmjRtSlCePAxeupTqLVt6rG1fVaZWLYauWEGhcuXo3qPHv9bG+StVVWnfvj0jRoygUsOGDP71VwqWKmV0WF5NkiQa9+zJ67NmkWKzUalKFZYvX+7RGFx5TxEJSHCpfv368cabb1I6/YZaRBTozLC84eEMXLSIh9q1Y9KkSbTy45fvNpuNypUrs3z5clr07cur339PcK5cRoflMyrWq8fQ5cvJW7QoHTp25PPPPzc6pAciEpDgMr169WLq1Kk80rkz/WfNEi+QH0BAUBC9vviCNm++yapVq2jUqJHfLUa0WCxUqFiRkydP0mP8eDoMHeq26tT+rGDJkgxeupRyjzzCWwMH8umnnxodUqaJBCS4RPfu3Zk5cyYNunen+7hxKGaz0SH5LEmSaPfWW3R89102bdpEvXr1/CYJWSwWyleoQHR0NC98/TWPPvWU0SH5tKCcOen7v/9RuWFDhr33HqNHjzY6pEwRCUjIst69ezNnzhya9OpF19GjfWaxnLdr/sordP7gA3bs2HHHtXe+xmazUalyZc6fP8/L33xDzbZtjQ7JL5iDgugzfTpVmzblgxEj+Oyzz4wOKcPEncLPubsUzxtvvMGMGTNo8OyzdB4xAkmS3NJOdtX0hRfo8M47bNy40Sf3jrlBVVUiIiKIPnuWF776SkxMcTFTQAAvTplCxfr1GfrOO0ydOtVtbRlaisfdxDog3/H999/zcp8+1HriCZ6fOFH0fNxo+cSJrPziCwYPHuyTdeTatm3L77//zvMTJ/Jwp05Gh+O3bBYLX/XowdmoKDasX0/9+vUNiUOsAxLcau/evbzaty8lqlen+9ixIvm4Wbu33iKyTRvGT5jAggULjA4nU0aOHMnvv/9Oy9deE8nHzQKCgugzbRq5ChakRatWxMXFGR3SPYkekJBpV69epWSpUshBQbyzYgW5s1GRSCNZU1OZ8OSTXD5zhv1RUVSuXNnokO5r+fLldOjYkSqNG9Pnu+/Eg4qHnD96lPEdOxJWsCDRZ896/OcuekCCW6iqSq3atUmzWHj1f/8TyceDAkNCePV//8McEkLdevVITk42OqR7OnPmDJ2ffpoCJUvS8/PPRfLxoKKVK9Pr8885f+4cLVq0MDqcuxJXhJ9zdSmebt268feZMzw3YQIlIiJcck4h4/IVLcor06dz/fp1GjdubHQ4d6WqKnXr1kU2mej7ww9ikakBarRuTbuBA1m3bh0ff/yxy84rSvEIGebKshnr1q1jwcKFNOzRg9pPPOGC6IQHUbZOHTq8+y579+7lq6++MjqcO+rTpw+XLl3i+UmT/GKHW1/Vun9/KjZowMiPPiI6Otol5xSleASPczgcdOrcmTyFC9Px3XeNDifba9q7N6UiIxk0eDDx8fFGh/Mvu3fv5ocZM6jTsSPVvXj4JzuQJEmfJKQoNG/e3Ohw/kMkICFDunXrRmJCAs9NmEBgjhxGh5PtyYrCcxMn4nQ6aelFa2pUVaVtu3aE5MnD0x9+aHQ4AvqwbecPPuDkyZNeVylBJCDhvtatW8eixYtp+NxzVKhb1+hwhHSFypThiaFD2bdvn9cMxfXp04fLcXF0HzeOkNBQo8MR0tXr1o2KDRrw4ahRLhuKcwWRgIT76tK1qz709s47Roci3ObGUNzbgweTmppqaCwnT57khxkzePjJJ4lo1szQWIR/u3Uorq0XlUASCcjPZbVsxqeffsqV+HieHjlSDL15IVlR6PbJJ1itVl5++WVDY3nmmWcwBQTw5PvvGxqHcGf5ihal7YABHD5yhLVr1z7weUQpHsEjHA4HefLmpWC5cgxavFjUefNiM958k6jffuNCbCwFChTwePvbtm2jfoMGtH3zTdq8+abH2xcyxmaxMLJhQ/KEhHD277/d1o5YiCpk2eDBg0lJTqbjsGEi+Xi5xwcNQlVVevToYUj7z/fsSXDu3Dz20kuGtC9kTEBQEI+//TbRZ88ye/Zso8MRCUi4s9TUVKZ88w1VGjem3MMPGx2OcB8FSpSgQY8erF6zhlOnTnm07V9//ZW/Tp6k7YABYpjWBzzSuTMFS5XizQEDjA5FJCDhzl599VVsVisdxMQDn9H69ddRTCaP94L69utHnvBwGjz7rEfbFR6MYjLR4Z13uBIfz+TJkw2NRSQgP/cgZTNUVeWXhQup3qIFRX2g4KWgy12wIA2ff55du3dz9epVj7S5efNmYs+fp3X//pgCAjzSppB1NVq1olC5cox7gM3rRCkeIcMepGzG119/jSU1lcY9e7oxMsEdGvbogdPhYMiQIR5pb8iQIQSEhFCnY0ePtCe4hiRJNOnZkwuxsezatStT3ytK8Qhu9dn48RQoWZIK9eoZHYqQSQVLlqRSw4b8PH++29tKSkpi5+7d1OvShcCQELe3J7hWnSefxBwUxKBBgwyLQSQg4V8OHDhATEwMjXv2FDPffFTjnj1JuX6dmTNnurWdd999F6fdTgODZt4JWROUMyePPv0027ZvN2xrD5GAhH8ZOHAgJrOZRzp3NjoU4QFVbdqU0EKF3F73a9bs2ZR/9FEKlyvn1nYE92n03HM47HaGDx9uSPsiAfm5zKxaVlWVTVu2UPuJJ0QdLx8mKwoNe/Tg1OnTbpuMsG7dOpISE2koej8+LbxCBUo/9BCzMrEmyJWVEEQC8nORkZGsX7+eyMjI+x67fPlybBYLNdu1c39ggltFtmmDpqpum2b7xRdfoJjNVH3sMbecX/Cch9q140p8PBcvXszQ8Zm5p9yPSEDCTVOmTMEUGCgqXvuBQmXLkq9YMX755Re3nH/Dxo1UrFdPTD7wA9WaN0fTNCZOnOjxtkUCEm7atn07VRo1whwUZHQoQhZJkkRk69b8deoUDofDpec+deoUCQkJVPeifYiEB1ewZEnCypRh0aJFHm9bJCAB0Of2JyUmEiF2sPQbEc2b47DbXV7za8KECaBpVBNbLviNyNat+fvsWWw2m0fbFQlIANJvKpJENTGm7zfK1K5NUM6cfPfddy497/LlyylWtSp5Chd26XkF41Rr1gynw8H333/v0XZFAvJzGS2bsXnzZopUrEguA0r5C+6hmExUatiQQy5YsX6rC5cuUaVxY5eeUzBWqZo1CQgJYenSpfc9VpTiETIso2UzzsfGUqpmTQ9FJXhKiYgIkpKSXPYeaO/evThsNkpUr+6S8wneQZZliletmqGHFVGKR3Cpq1evkpqaSolq1YwORXCx4hERqE4nq1evdsn5Fi9eDCCuFT9UskYNLl++7NE2RQIS9Nkvmiaeav1QiYgIQH9v4wqbNm0iOHdu8hYt6pLzCd6jREQENquVkydPeqxNkYAEVq1ahawohFeoYHQogovlyJOHPOHh7NixwyXnO3rsGCVr1BB1Av1Q8fSHlYULF3qsTZGA/FxGymZERUURXqEC5sBAD0YmeEqpyEhOnT7tknNdvXZN9JT9VMFSpQgICWH9+vX3PM6VpXhMWT6D4NVulM24l/grVyhTv75nAhI8LqxMGY78+WeWz5OUlITDZiOsdGkXRCV4G1mWKVCiBNHR0fc8LiP3lIwSCciPJCQksHjxYlatWsXhw4exWCzYbDYURSEgIIDw8HAaNWpEp06dqH7LU2xaWhq5w8IMjFxwp9CwMOxWK6qqIsv6oMepU6dYuHAhf/75J2fPnsVqteJwODCbzQQFBVG+fHmaNWvGU089ReH09T4HDhy4eT7BP+UNDyf+yBGPtScSkI9bv349Q4cO5cj+/aRYrWiAApSVZfICQZKEQ9NIBfYeO8aff/7Jhx9+SKAsU6BQIV546SVsNhuhhQoZ+xcR3Ca0UCE0TWPkyJHMnjWL2OhoLE4nACFAOVkmDxAgSVg1jSTgt8OHWbJkCf379yfEbKZ0hQrUS9+gUFwr/iu0cGHO7tnjsfZEAvIx0dHRLFiwgNmzZ3Pk4EEsdju5gadNJuoEBlJbUYiQZYLu8JJY0zTOahp7nE72qCorLl1i1KhRgHiq9We5CxYEYNSoUZSRJPqZTNQym6mlKJSXJOQ7XCt2TeOoqrJbVdntdLLwyBGmp6/7EL1l/xVasCAWi8Vj7YkE5MVuJJt169Zx8OBBzsedx2lxogBOoIYs82ZQEF1NJkIyMCtJkiRKSRKlZJnOwCeBgSyy2+lssYgE5MfypPdYPg0IYEhAQIZmsJklieqKQnVF4QWzmc81jb4WCzPQZ9YJ/im0UCEcdjs2m42AgAC3tydmwXmR1NRUJkyYQM2aNTGHmClZsiSDBg1ixeoVROeIxlnKiSRBNZPMtpAQonLkoLfZfM/kc0FVGWm1ckFV7/jnBdO/VzzV+q9c6T2gQrL8wNOnzZJEIVkmb/78Ygq2H8sdFgaaxrFjx+56jCtL8YgekMHOnj3LhAkTWPrrUqLPRetdm7xAK6A6UBmwg/I+SDHwoVl/ijVl8CZwQdP40GbjCZOJ8Dv8eUr658AcOVzx1xG8kDkwEJOikKppWTpPiqaJ/X/83I37wL120r21FE9WN6UTCcgAycnJvPfee/w4+0cSriaABpQDegMNgYrAjfwSBcoAqOSQ+Tk4iGqK4tJYblQIU1x8XsG7yIpCVqvBOQDZJG4Z/uzGfcBqtXqkPXE1edCOHTt4++232bJ9C5pDgxrAi0AD4E4Ti/aB3B/qIrMiMITcbhj6cKQ/FUsiAfk1RVGw32UYNqMccHMat+CfbjxgeGoigkhAbuZwOPjss8/4/IvPuXTxEgQBTwKdgDL3+Majes+nAQq/BwYT7KZxdzGanz1ompblF77iWvF/WvoDqadGREQCchNVVXnnnXeY/OVk7BY7lAaGor/bud/rlmRQ3oYaTpllWUw+4ZLEiIAAwu9yjhvvktT0dSGCf1KdTkxZ7L2YENeJv1PTt+0IvEdZLlGKx8tNnDiR4SOHk3o9FeqgD7NFkvFHyC8g4CosDA4mVxZ7PuGyzMh7XEzm9M9Ouz1L7QjeS9M0HC5IQGbEdeLvnBlIQKIUj5eaO3cur7/xOlfjr+oTCd4AamfyJNuBpTAxMJBSHhhvz5ue4FITEsgnSuz7JUtyMqqqki+LDzN5JYmUxEQXRSV4o9SEBABKlSrlkfZEAnKB3bt306lzJ2KiY6AoMAZoSuYHzVNAGQUNzAp9zOb7H+8CN4bmEuPiKOaCLrXgfRIvXQK46zBsRoVLEkmJiTgdDhQxG84vJV66hCTLFCtWzCPtiSktWaCqKi+88AJ1Hq1DTFIMvAvMBx7jwd7Y/gbaFfhfQNAdy6O4QyFJQkJPQIJ/Skr/3RbJYo+6iCyjaRrX4+NdEZbghRLj4ggIDPTYbEfxGPOAdu/eTZt2bYiPi4c2wEAgdxZOqIFpHjxhUijjwamuZkkiv9l88ylZ8D83Hi5c0QMC/Sk5T3qFbMG/JMbF3fP9j6uJHlAmqarKSy+9RJ1H6xBvj4fxwEiylnwA9oAjBl43ubb+0v1K8UD60IroAfmtxLg4cioKOVyVgMS14rcSLl4kd86c9zzGlaV4RALKhEOHDlEovBDff/89tEQfbmvoopMvgPJmiSYunn9/oxTPhXuUYSmqqiRcvOjSdgXvkXjxIoVdcF0VlCQUSSJRXCt+61psLPnz57/nMbeW4skqkYAyaNasWdR4qAbxVhf2em5wgLwJXpYzVqnY1apIEhddcDEJ3unCkSNUyWIVBABFkihvNhN7/LgLohK8jc1i4UpMDFWqVPFYmy5PQE6nk+HDh1O6dGmCg4MpW7Yso0aNurnC1he98cYbPNfzOdQyKszCdb2eG06D6oC6BpU5qaUoXL5wgZT0KZiC/9A0jXOHDlHHRddWHVXlnAuGXgTvE3v0KJqq0rp1a4+16fJJCGPHjmXq1KnMnDmTqlWrsnv3bnr37k1oaChvvPGGq5tzK4fDQePGjdm6datewWAYeikdVzumT5qLNKgeW630dmMOHaJSgwaGxCC4x5WYGJKTk6kVHOyS89VSFH4+fhyn3Y7ioaUCgmdEHzqEJEl07NjRY226/JF769atdOjQgXbt2lGqVCmeeuopWrZsyc6dO13dlFudO3eOIsWL6MnndeBD3JN8AI5BuQCJnG4YfrtfKR6A8pJETkUh5uBBl7cvGCs6/Xday0U9oFqyjN1u58LJky45n+A9Yg4eJDhHDnLnvve7BVeW4nF5AqpXrx5r167lxIkTAOzfv5/NmzfTpk2bOx5vtVpJSkr614fR9u7dS5kKZbiceBkmAs/h1kqMyjF4WHVP7+dGKZ7we9yAZEmipizfvFkJ/iPm4EGKmM2EuSgBRSoKEnpvWfAvf0dFUTwD1VBulOLJ6l5A4IYE9M4779CtWzcqVaqE2WymZs2aDBgwgO7du9/x+DFjxhAaGnrzo3jx4q4OKVO2bdvGw/Uexp7DDj8A9d3fppz0z86kRqkDRO/a5dPv6oT/Ort3L3Vc+DvNKUlUDAjgzL59LjunYDxrSgoX//qLWrVqebRdlyeg+fPnM3v2bObMmcPevXuZOXMm48ePZ+bMmXc8/t133yUxMfHmR0xMjKtDyrD169fToEkDnHmcMB29grUn2CDQ4ATUwmTiyuXLXEjvuQq+LzUxkVN79tDSxe8WW2saR1evFg8rfuTopk1oqsrLL7/s0XZdPglh8ODBN3tBABEREZw9e5YxY8bQs2fP/xwfGBjo0ZW3d7N582aatWqGWkCFb7jzBnF+rKmikENROLhmDUUqVjQ6HMEFjmzYgNPppH2Qa19ePmEyMTk+nnOHD1O8WjWXnlswxoHVqwkKCaFJkyYebdflPaDU1NT/1BFSFAXVBesQ3GXXrl00ad4ENb8K0/B88gmENIOfJgMliVayzKGVKw2NQ3CdQ6tXUyMggOIunt7fQFHIrSgcWL3apecVjKE6nRxcvZqaNWp4vG2XJ6D27dvz8ccfs2LFCv7++28WL17MxIkTefLJJ13dlEscPnyYeo3q4Qx16j2fgp6PwZkPYt2UgDJSiueGDorCmYMHRVkeP+C02zmydi0d3XBusyTRTpI4LB5W/MKZfftIS0rihRdeyNDxXl2K58svv+Spp56iX79+VK5cmbfffptXXnmFUaNGubqpLEtOTubR+o/iCHLAVMCg+opqZdghuWenyYyU4rmhraIgA4fWrXNLLILn/LVrF6mpqbR307YJT5hMRB8/zrXYWLecX/Ccg6tXo5jN9OrVK0PHe3Upnly5cjF58mTOnj1LWloap06dYvTo0QQEuLbIZlapqspDtR4iOTlZL63jme0v7qwSxNg1rhk8DFdAlmlgNrN70SJD4xCybveSJRQ1m3nITdU1WptMBMgyu5cudcv5Bc9QnU52LVlCuTJlMBmwx1O2rQXXpUsXTp44Ce8BEQYHU0n/tNfpnl5QZryiKJzYuZOLf/1ldCjCA0pNTGTPkiW8Kkluqy2YR5Lopihs/fFHVC+4boUHc/jPP0m8dIlhw4YZ0n62TECfffYZCxcthGeBdkZHA5QAJQg2esE/5M4mEwVMJjbNmmV0KMID2rFgAardzktuLpXTz2zm8oULHN240a3tCO6zYeZMcuTKxfPPP29I+9kuAa1bt44h7w7RV16+ZnQ06WRwtoRpqh2Hi4fhMlKK51aBksTLssyu+fOxpqS4NBbB/VRVZfOMGXQymSjs5uK2D8sykWYzm+6yxk/wbpfPnuXYpk1069IlU9/n1aV4vFlCQgKtH2+tT7P+GO/aD7YzXHRoLHM4XHrajJTiud0rZjNpqansEuP7PufE1q1cionhNQ+M50uSxOuyzOENG4g3cAG58GA2z56NYjIxbty4TH2fV5fi8WYtW7bEbrPrkw5ctZePq1QCpTJ86bQbHQklZZl2ZjObvv/eq9dvCf+14X//o7LZTEMPVVZ/xmwmlyyz8ccfPdKe4BqW5GS2zJ1LZI0a5MuXz7A4sk0C+u6779i1axe8ApQ1Opo7c3aBP+1O9njBu6B3TCbOnzrF3mXLjA5FyKAze/dycN063lUUj21sGCJJvKkobJ4xQ+yq60PWffcd1pQUvv76a0PjyBYJKCEhgX79+0FF4M41Ub1DC1DKwPN2CzaDp2TXN5l43GxmxdixOGw2Q2MR7k/TNJaNGUNVs5lnPTyd9u2AAHJqGr9//rlH2xUezPUrV1j9zTc8VLMmjzzyiKGxZIsE1LJlS+x2u76Ntje997mdGZwfwlGnymgX3fQzUwnhdmPMZuJjY9k6b55LYhHc5+iGDZzYtYuxJhOKhwvb5pYk3lcUts2bx6VTpzzatpB5f3z1FU67nblz5z7Q93t1JQRv86+htzJGR5MBFUDrDR/bbS5ZF5SZSgi3q6YoPGc288fEiVhTU7Mci+AeqqqybMwY6pvNtDVoV92+ZjNFZJnl48cb0r6QMVdiYtj400881rQp5cuXf6BzeHUlBG+SmprqG0Nvt+sNUmnoYEvjvMGTAEaazSQnJLDuu+8MjUO4uz2//krM8eN8bDJ57N3P7YIkifcUhX2//87fYq8gr7VswgRkSWL27NlGhwL4eQJ64YUXsFvs8D7ePfR2OzM4J8GFUI3HbKnEGZSENE3jR4cDp6ax8ssvRHUEL3T9yhV++XAESBI/OOw4DXp3mKppzHHakU0KPw19G7vVakgcwt0dWb+e3UuW8OwzzxAWFmZ0OIAfJ6C4uDjmL5wPrYEKRkfzAAqDcyqcyqFRz5pKjIeTkKZpvGOzMdJmg5dBK6Ixc9AAnC5epyRkzfwPhmNRk2Gw/rDwrNWC3cNJKFHTaG5NZYuior7j5NLp06z88kuPxiDcW1pSErMGDyZ//vz88MMPRodzk98moO7du+s7Nr5idCRZUBKc38HZfBq1rKms8NDN/6Kq0sGaxjibDQYCL4E63EnMwUNiKM6L7PvtN/at+A31bSd0Bm0MLFAdNLKmctJDDyzbnU5qWVLYGaCiTgHaA701Vk2dwtkDBzwSg3B/C0ePJvnqVZYtW/af/dqM5D2RuNDJkydZ8+ca6AwUMTqaLCoOjh/gSm2Nx9PSeN6Slqmq2ZkpxaNpGnPsdipZUvgtxAnjgK7pfxgBPAPLJ44XQ3Fe4PqVK8x9/11oIkGL9C82BfUb2F1ApVpaCpNsNrcNyVk0jSEWC/VSU/m7nIbzB+DG5qi9QConMXPQADEU5wWOrF/P9vnz6f7ss9StWzfL53NlKR5J87KN3ZOSkggNDSUxMZHcuR+sXEHt2rXZc2gPLAGMW+TrWhqwApTxkM8uMd4USBeTiSAXvXSOcjr5wG5lmd2J1By0wUCe2w6ygPy8QtHQSgz8ZRFmL9hKPTvSNI3pfV/h0La1qHOdkP+2AyzAFGAePGqWGWsKpKGLFqc6NY0VTieDHBZOqxrqq+hFfW9/x3oS6CXR/MU+dHz33Sy3KzyY5GvX+KRlS8yqSlxcnMd6Pxm9j/tdD2jbtm3s2bsHnsd/kg+ABDwOzvlw5VGNnhYL4ZZk3rFaOfOAwy0WTWOW3c7DlhRqpqbye24nfArax/w3+QAEgTrCybmjR5g3fDhe9uySbayaMoUDK1ehvnuH5AMQhD50+g3sDldpnJZGZWsKU2w2kh7wd3ZJVfnEaqWEJYUOaWmcqaihzkL/d3anCT7lgVc11nz7LXuXL3+gNoWscdrtfPfqq6Rcu+Z1Q283+F0P6KGHHmLfyX3wK5DD9fF5jbPAIlCWgpoGj5hlHkWhlqJQS5apIMv/WZAYr6rsUVX2OJ3sVp2sw0miA+TaoD4NNCBjswVXAB/BUyNH0iSDuygKrnFg9Wqm9ekDL2jQJwPfoAG7QVoAbIQgCZrICnWkf66VIrftG6RpGmc0jT1OJ3tUlR2ak80OJ6oJ1NboQ9uVM9j2cDBtCmDQgkUUr1btvt8iuM78Dz5g408/MXnSJN58802Ptp3R+7hfJaC4uDgKFSmkr/nxlq0W3C0NWA1sB/NhsKeX4zJLEKLo2yvYNQ2rBqnp61qVYNAqgVodfT+kkg/Q7ucgzZN5beaPVGrQwCV/FeHeLpw4wbgnn8BexwpjtMyPX8QBy0GKAuUIOK7rXw6SIVgGsyRh0zTSVLCmd6pN+cBRFagFtAVCM9mmBeRXFHIm5uedX1eQu2DBTJ5AeBCb58zh52HDePbZZw1Z85MtE1CvXr2YOXMmLMb3Jx88qOvAceA0+ruAa+n/HwmURt99tShZH3x1gDRIIvBoDoYuXU7BUqWyeELhXpKvXWNsh3YkBlxCne6EkCyeUENPSMeA84ANsANm9CG8EujXiiuGsS+B3FuhRKnqDJg7D1NAgAtOKtzNXzt38nm3blSpXJlDhw65/PxRUVEMGDCAyZMn33VLhmyXgFRVJUfuHFhqWGCSGwP0NceAnsBMbm797TLXQX5BIa9chEHzF5LbSxa3+RtrSgpfPt+D6FMHUH9w+ubD1UGQ+krUbN2WXpO/QDaoZJC/iz1+nElPP02gonD+3DlCQrL6pPJfs2fPpkePHsyaNYvu3e9cYibbTUKYOXMmlhQLPGV0JNlILlAnO7mWGsvk7l25fuWK0RH5HZvFwtSXenP22H7UCT6afAAiQBulsfe335g9dIjYZ8oNLp06xefduiE5nezetcstycfV/CYBjf54tL7T6aNGR5LNFAX1KyfxV6P5vHs3kYRcyJaWxrcvv8ipfbvRJqr/rLPxVU2BERo7Fi5k7rvviCTkQpdOn2Zy1644LRZ279pF2bJeuunZbfwiAZ08eZLTp0/D04Do2XteST0JxV0+zaRuT5EYF2d0RD7PmpLC172f58TubXryiTQ6IhdpBXwA236Zz0+DBorSTi4Qe/w4Ezt3xp6Swo7t26lcOSNTFL2DXySgMWPG6P/R1tg4srUyoH7jJD4xmglPdxL7wmRB0uXLfN7jGU4f3IP2uarPQPMnbYGPYNevS/n+tb5iq48sOLV7N5OefhrVZmPvnj1Ur17d6JAyxS8S0G8rf4Mq3HlRXnZXAHgp/bO7ldCTUIJ0gXEd23NkwwYPNOpfYg4d4tP2bTkXfRjtaxVqGB2Rm7QAxmoc3LiW8Z07cvXcOaMj8jlb583j865dCZBlDu7f77GejyjFc4urV6+Sv2B+6Iu+KlswXjJIH0iwDToOe4/HXnzRsH1qfMmeZcv4afAgnGUcaGNVyA6TCv8CebBCkCUnfb6ZTrmHHzY6Iq/ndDhYNGoUG2bOpHLlyuzcuZOcOXMaHda/ZJtZcF988QWoQEOjIxFuygnaZxpaD43Fo0fz46CB2C0Wo6PyWqqq8utnn/FD//44mtjQpmaT5ANQDtQfnKSVus7nz3Zj85w5Rkfk1ZKvXeOr555jw48/0q1bN44cOeJ1ySczfD4BzZs3D8KBUkZHIvyLgl6N4kPYvXwJ4558gnMu2MLX31yJieGL7s+wasrX8DowEn0haHaSB7QvVbQOKj8PG8YPb75B8rVrRkfldY5t3syY1q05vWsXE8aPZ+7cuUaHlGU+nYAcDgfHTx2HJujFOgXv0xq07zQu2U8xtkN7fps8GafdbnRUhlNVlU0//cToVs05fXo3fAE8R/a9jk3AEGAk7F23nFEtHuPAqlUGB+UdLMnJzH33Xb7q0QPZbmf9n38ycOBAo8NyCZ9OQLNnz0aza2L47V7igenpn41SEdQZTrTnVH778nM+7fA4544cMTAgY93o9cwbPhx7SyvqHCeIVx+6NqDNVUmtlMC0Pn344c03SElIMDoqwxzbvJlRzZqxbd48unXrRtylSzQwuPZiVFQUTZo0ISoqKsvn8ukEtHjxYr12lb/OFHKFeOA7jE1AoP+eXgX+p3HJ9hdjn3icpZ9+SmpiosGBeY7NYmHNt98yumWLf3o97wK+O4TvHgVBG6/BCL039FGLx9g2fz6q02l0ZB5z7cIFfnr77Zu9nj///JO5c+diMmWkXL17HT58mA0bNnDYBUPqPp2AoqKioBwZ20JA8A6V0ntDvVXWzJjGB43qs/qbb7D58SQFp8PB1nnzGN2wIcs+/RQ1zYJW0Am+tWTDsySgrd4bSqlxjdlDhjC6dXP2//GHX+9DlZKQwJIxYxjVqBEHFy8GoFLFijRq1MjgyNzDpxPQ+bjzkPWp6IKnmYGXQFuoYmmezNLxYxnRuAFbf/7Zr1bGa5pG1MqVfNq8OXOGDqVFQgLHQkLYGBJC0BGQB6NXoRburiDwsQYz4HKes0x/5RU+69SBk9u3Gx2ZS9nS0vjj66/5sH59tn73He9IEheCg/ksMJBt27bRunVro0N0C59NQLGxsTjSHK6v8Cx4TgH0F88/a1yvHs+cd95h5GONWDNtmk/PgrKmpLB5zhzGtmzJd6++SrXz59kTEsLPQUGUk2XqKQorAoNR9gCfGR2tj6gM2lcqfAnn0g7zebduTOzSmT3LluGw+W4Wv3r+PMvGj2dk3bqsHD+eF202TgcF8WFgILklibcDAhgREMAff/zBoEGDjA7X5Xx28GrhwoX6f4gE5PuKA6OB5+DanFiWfjaGZePHUav9EzR67nlK1qjhEwtZL/71F5tmzWLX/PlY0tJoZzLxY3AwTe8wbt/UZGKKGsjLv1rhMaCu5+P1SQ+DWtsJG+DM/H2c7r+HHAXy0vCZHtR/5hnyFvH+cuGqqnJ882Y2zZzJoXXrCJFleskyb4WEUOYO22aPCAjggNPJl5Mm8dJLL/lUrbf78dlKCB07dmTpb0thPT6cRj0gHn2DvifxTDkeV7gGLAN5sYIa66RotUrUaf8kEc2bU8jLqvxePX+eg2vXErVsGSd37aKgycTLskwfs5mSd7iZ3ErTNFpY09iQ24ljPmIywoM4DSwE6XcZ0jSqNG1KzTZtqdq0Kbnye09tLk3TiDl0iIOrV7N30SIunTtHNbOZ12WZ7mYzOe/zgBWnqlRMSSFX0aJEG1y2SGxIB5QuXZq/g/+GGR4LTfA0J7AdWCoh7ZDQLCr5SxcnskUbIpo3p/RDD6F4eFbQrTeSQytXEnPiBCZJorHJxIuKQieTicBM9NaiVZXKlhRS2wDD3Re330sB/gBphYJ22IkkSZR8KJLIFq0Ne3CxWyyc2LaNg2vWcPiPP7gWH0+oovCELPOKyUQ9RclUz36e3U43i4W33nqLiRMnujHyrPP7BBScKxhLMwsM82BwgnEswG5gI8ibFdQrTgJyBlMiIoKSEZEUr1aNEhERFChZEvk+PY+M0jSNa7GxxBw8SPShQ8RERRFz4ADXk5IIVRTaSRJPmEy0NpkIzcIQ4TSbjVesVpiNPqtTyJorwBZgk4S0U39wyVW4AKUiIikRUZ0SEREUr1aN3AULuqxJp8PBpVOniD5wgOhDhzgfFUXM0aPYbDZKmc10BJ4wmWigKJgf8FrRNI0n09JYqWkkpaUR4MVbm/t9ApIDZLSeGrzsweAE76ACR4Fd+mf5uAn1gj57LiBnMIXLlyNvoaKEFipEaFgYoWFh5A4LIyQ0FMVk0reDliRUhwPV6STt+nWS4uJIjIsj8dIlkuLiSIqN5dKpU1xPSgIgzGymNlBHkmisKFm6kdzOrmkUsSQT3wF9UobgOjceXPaDdExCOiajJunriXIVyk9Y6TLkCQv/z7USGBKCrCjIJhNoGqrTidNuJ/natf9eK+fPE/vXX9jSJ0OUDwigjqpSS1FopShUkWWXvcPc43RSOzWVYcOG8fHHH7vknO7g1wnIZrMRGBgIQ4FOno1P8FIJwLH0j2iQ4iXkKwpatIZqy9gCxlCTicKyTFFNo4imUVaWqaUo1JJlirioV3U3I6xWPpZsOH9DvAtyJw24gP4Ac0z/b+mKjBwno15Q0Zz336VVAgqYzYRLEkVVlSKSRBVZppYsU1NRyO3mCTO1U1KIzpOHOC/efTijCcgnX98fuVHGxXU9aP/li5MQHkQe9O3Y07dk19BwXnAgdYSvAgJ43GwmUdNwAA70TpQ5/SOnJBEuSQQbONPuZbOZ0ak2WAk8ZVgY/k8CiqR/NNO/pKHi/FVF+hgOhIQQKEmkpV8rdvS1Kmb0m2U+SaKQJGEy8Fp5IyCAnlevsnbtWpo1a+bx9jMyCSGjfDIB3SwB4c83VFe5UYqnIdnv5/UHBEnQMyDgvrOMjFZMlnncpLBimROnSEAepyyDZmaFCEUxOpT76mIy0R8YNWqUIQno1lI8WU1APrkQ9eTJk/p/ZLcbqpA5h+FhWfH65HNDc9mE+hf6Y7fgOU7Qjuk/f18QJEnUVxSOHjpkdChZ5pMJ6PTp03pXOq/RkQjezHwYHvGBJ9obaikKmgN9bYvgOWdBtUFtN7/nc6XaikLC1auo6v3fWXkz3/mJ3+LChQv6i1rfeGARjHAN7Feglg/dVCJlWf8HedToSLKZY/qnh3zpYUWWsWkau3btMjqULPGdf523sNls4L1T4L1LAeAlst9w5XH9Uy0fuqmESBLlzNLNG6LgIcehpFnK0louT7txXS9ZssTjbVetWpXGjRtTtWrWK0H7ZB/C4XDoWz4L91eA7LlWKn2GagkfuqkAlNFkTlzNPvveeIUrUMrHnsWLShIyEB0d7fG2IyMjWb9+vUvO5Vs/9XR2u10kIOHerCBLuGyxqKeEICH579ZI3skKObxqNeT9SZJEAJCammp0KFnikwlI0zR9EoIg3I3TNy9uBfQaeILnOEHxsQQE+vXt8PH9s3zx36i+La1vT/4Q3C0QHBqo3lXo474smoYWaHQU2UwgpPngA60NCA4ONjqMLPHdBOTbiV9wtxD9U4KhQWRevKxBDqOjyGZC0n/uPiQlvVJDnjx5jA4lS0QC8nfxwPT0z9lJevX9KKfvjGepmsZ+Vb0Zu+Ah5eCoQ8XhQ73lG9d106ZNPd92VBRNmjQhKioqy+fyyQSUN29eff8P37lejHOjFE92S0AlQA6EPT60UO8vTSPVidjl19MqgVWFoz50rexRVWSgffv2Hm/71lI8WeWTCahUqVJ6uZJkoyMRvJYCUgXY7UM9oD03YvWfHZd9QwVA8q2HlT1OJzmDg8mZ07dLp/tkAipXLn3XrsvGxiF4N2cV2KI58bIdR+5qp9OJuSAQanQk2UwOMBWBHT70sLLV6aRY6dJGh5FlPpmAKlVKH6Pw3u0wBG9QH847Nbb4wI3Fpmn8pNmxNzY6kuzJ0RjmqHbSfOBhZZfTyV+aRufOnY0OJct8shJC9erV9f8QPaD7y26leK4B0ejvvC6DFATPWSyUVRQSZBmHJOHQNDT0i98M5ErfgK6IJBEuy/pnSaKsLFNUkly2m+W9LHY4uOIAfP+e4hs04Dz65nTxgAxJTmiamkqAopAiSTf3jpL4Zz+g/Kqqbycky4RLEkUkiSKyTCVZ9lgpn69tNgIVhffff98j7d0u25fiKVCggL5iT/SA7s+fS/Fc5Z9dUI+BfMyEeumf6ZFKoJlc+fNDWGGuFilCcO7chJhM+jbLgOp0ojocJF2/zvkLF7h+6RIJly9jsfxTiqCAyURt9ErJtWSZ2orilqT0pdOGXAPUMi49rQB6sjnHzetEOiYjHZdQr//TMw7IFULukgW4Wjic0MKFCQ4JQb6xfTugOhw47HYuXLvGydhYEi9dIvHqVRy39K7LpG/FXTt9F92HFMXlSemKpjHX4aBpq1YEBBhTENOVpXjckoDOnz/P0KFD+f3330lNTaVcuXL88MMP1K5d22VtmAJMOOLFXOxsRQWOAJtB3qSg/qX/4w/MnYMSERGU7FiDEhERhFeoQGihQgTnzv1AicKSnEzipUtcOnWK6EOHiNm/n23795OYkABAKbOZjsATJhMNFCXL5X6inE622FXomqXTCLeyALuATSBvVlCv6NdK7iJhlIqIpMQr1SlRrRoFS5cmNCyMgAdY0KmqKqkJCSRcuEDs8eNEHzjA7v37WXLkCNa0NCTgYbOZDpLEEyYTVWQ5yw8u39lsOIBJkyZl6TzeQtJc/Ib22rVr1KxZk6ZNm9K3b18KFizIyZMnKVu2LGXL3n+BQ0b3Ei8QVoArFa7ARFdGL3gdB7Ad2PjPjSQoTy4imjanapMmlIyMpECJEm4fJtM0jYSLF4k+cICjGzdyeOVKrl25Qqii0FaS6GAy8YTJlOltvR2axiPWVPYXUnHOw0fHJLzEdeBPYKOEtEtCs6jkK1WMyBZtqFS/PsUjIvQesZupTieXTp/m7337OLxmDcc2bMBitVLKbKYD8KTJRCNFyfQ1+7eqUiUlhbJVq3LQyzejy+h93OUJ6J133mHLli1s2rTpgb4/o4HXr1+frUe2wh8PGqng1eKBpSAvUVDjnOQvVYzIlm2JaN6c0g89hGIy9k6taRoxhw5xcPVqDq1cScyJE+Q1mXhRkng1IICyGdyHaJzVyjt2G9p0IMK9Mfut48BCkP6QwaZR6qFIarRoTUTz5hTKwEOvu9ktFk5s28bBNWtuPrhUMJt5XZZ53mzO0DCdqmk0S0tjm6ZxOiaGIkWKeCDyB2dYAqpSpQqtWrXi3LlzbNiwgaJFi9KvXz9efvnOLyKsVitWq/VfgRcvXvy+gQ8ZMoTPPvsMlgMFXfk3EAyjAfuAhcB6CZPJTJ0OT9LouecoXq2awcHdW9yZM2yeM4cdc+eSkpxMK7OZ10wm2ioKyl1uMEedTmpYUrE/A7zh2Xh9nhVYB9ICBe2Qk1yFCtCo+/PU69aN0LAwo6O7K03TOLltG5t/+on9f/xBAPCcotDXbCbyHntXTbXZ6Ge1MnbsWIYMGeK5gB+QYQkoKCgIgIEDB/L000+za9cu3nzzTb755ht69uz5n+NHjhzJhx9++J+v3y/wLVu20KBBAxgPNHRZ+P4nHlgMPIl3z4TbDdLXMtoRlQJlStDkud483KkTIaG+tSjGZrGwd9kyNs+Ywd+HD1PObOYTReEpk+lfQy5JmkYDSypHC6s4ZgNBxsXsUxzAryB/pw/Hlq9flybP9aRa8+aG94ozK+HSJbb9/DNbf/yRa1eu0Mps5tM7JKJ9Tif1UlMpXakSR44av11uVFQUAwYMYPLkyURGRt7xGMMSUEBAALVr12br1q03v/bGG2+wa9cutm3b9p/jH7QHpKoqSqACvfDfWV6ucAzoCczEO0u8HAPpawltp0aJyAjaDxxMpYYNPTL12d3+jori94kTObxxIw+ZzYwzmWhmMpGmabSwprLdrOKcBpQ3OlIfoAJrQf5WQT2nUqdjB1q/3t8rhtiyymm3E7VyJb9/9hkXo6PpZjYzOn0Y95jTSf3UVBwhIRw/dYrChQsbHS6zZ8+mR48ezJo1i+7du9/xmIwmIJc/MoSHh1OlSpV/fa1y5cosXLjwjscHBgYSGJj5+vOyLJMvNB9Xj159oDgFg8UA30iwRqNA2RJ0/OZdqrdq5ReJ54ZSkZH0/fFHTm7fzq8ff0zzgwdpYjaToDk4IGuoXyCST0bsAHmKgnrMSaXHGtBh2jsUrew/9YoUs5la7dsT2aYN23/5hZXjx7Pg6lU6KwqrHA6sAQEcOHDAK5KPq7k8AdWvX5/jx4//62snTpygZMmSrm6KShUrsfXw1vsfKHgPJ/AzSN/K5Mqbn/bjBvNwp04+N3ySGeUffZSBv/7KgVWrWDpmDHFn/4bHEMnnfhLRZ7muhOK1Inhy/jDKPfyw0VG5jWIyUf+ZZ6jTsSMbZsxgyVdfYdc0unTqRGk/KLtzJy4vxfPWW2+xfft2PvnkE/766y/mzJnDtGnTeO2111zdFI0bN9Y3fDnv8lML7nAWpFdk+FKi6XMvMPLPjdTt0sWvk88NkiRRo1Ur3luzhg5D30FZb0J+XoGDRkfmpTaC/IxC4NYcPDdhAm8vWOzXyedWAcHBtOjblw83baJm27b8/PPPFC1WjAMHDhgdmsu5PAHVqVOHxYsXM3fuXKpVq8aoUaOYPHnyXccKs+L111/X62Q82Izv7MEbSvE4gdkgPSeT73pR3vrlFzq9//4DLf7zdYrJRItXX+WdFb9TNE9l6AN8gb5wUtB7PSOAwVCpRiOGr17HI507+9XQbEblzJeP3l9+yUvffMP1tDRq1qpFv379UA2u2u3KUjwun4SQVRl9eXVDgbACXCl+BaZ6IDgh866CNExGi9J47MUXeXzQoGyZeO7E6XCwbvp0lk2cAMU01M+cUNzoqAx0EOR3FMy2ILqOHEWdJ5/MlonnTpKvXmX+Bx+wd/lySpQsyZ7du/WSZF4qo/dxn6yGfavmjzWHKPRV0IJ3OQFyb4Xg6NwM+PnnbNvruRvFZKJF3768u+I38lIU+QUFdhodlUFWgNRXokTJ6gxfvY6HO3USyecWOfPl44WvvqL3l18Se/EipUqXZseOHUaHlWU+n4DeeustfYrmf2d4C0ZaC9LLMuEFKvDust8o98gjRkfktcIrVGDokmWUj6wLAySYR/bZ7dcBfA58BI88+TRvzvmZPIUKGR2V16rVvj1vL1qEKUcO6jdsyLfffmt0SFni8wnokUceITBHIGw0OhIB0B8GpgHDILJ5Gwb9soi8Xl42xBuEhIby2g8zeeyFl/SZX58ANqOjcrMkkAZKSPNknho5ku5jx2J+gCUZ2U2xqlV5Z8UKSlavTt++fendu7fRIT0wn09AAI/WfhQ2oz9NCcZxAqOB/0m0HzyYF778Sgy5ZYKsKHR67z2emzAB+XcT0iDZfycnXAH5VYXAYzl4/cefaNKrlxhyy4RcBQrwxty51OvWjRkzZtCsWTOjQ3ogfpGA+vbtC2mAWBL0X/HA9PTP7uQARkhIK2V6TZ5Mq9deEzeUB/RI5870/2kWpkNmpAEypBgdkYvFgdxXIUdyHt5euISK9esbHZFPMgUE0O2TT3j87bdZt24dDRo08MgMuaioKJo0aUJUVFSWz+UXCahr164E5wqGBUZH4oXige9wbwJyAB9IyOtlXvx6CrU7dHBjY9lD+Ucfpf9PczCfDEJ6S4ZUoyNykcsg91PIZS/AwPmLKFyunNER+TRJkmj9+us8+d57bNmyhXr16rk9CR0+fJgNGzZw+PDhLJ/LLxIQwLNdnoUd6DsfCp7jBEaBtEHixa+mENm6tdER+Y0ytWrxxqw5mP8KRHrbD4bjroL8ukJOR37emreAgm6ojpJdNXv5ZToPH86OHTt8ajjObxLQuHHj9G26FxkdSTYzEaRVEr0nf0GNVq2MjsbvlIqM5LUZP6IcMSMNk/WE74tSQH5DISQ1lAFz5lGgeHZe8OQeTV98kSeGDGH9+vV06tTJ6HAyxG8SUL58+agVWQuW4PtPir5iIbAAun38CQ89/rjR0fitsnXq8Mq302GbBlOMjuYBqMCHEqbYAN74aS5hflrXzBu07NePZn36sHjxYsaMGWN0OPflNwkIYOzYsfoL27VGR+JF3FWKZw8wUaJRz57Uf+YZF59cuF3lRo3o9N77MAv4zehoMmk6sBF6f/EVRSpWNDoav9dh6FCqNG7M+8OH88cfrt8yWpTiuYf8BfNzNf9Vff8bMQnLPWJB7qVQtlodXp85K1sUE/UGmqYxa8hgdi5diDZVA+/eJFa3BngPnhgyhJb9+hkdTbaRlpTE2PbtuX7pEieOH6dEiRIebT/blOK53VtvvqXvES+mZLtHCshvK+QJLcyLX00VyceDJEmi2+iPKVGtOvJQBeKMjug+joM0SuahJx6nRd++RkeTrQTnzk3fH34ARaF2nTrYbN65qtnvEtCwYcPIlScXfIU+9iy41iRQLprp+90P5Myb1+hosh1zYCCvfDOdnKZ8SCNk773GLSC/p1CkXEV6jP1MrAkzQKEyZXhp6lTiL1+mg5cujfC7BCTLMp99+hmcBlYZHY2f2Qosg6eHjyS8QgWjo8m2coeF0XPCZLS9qvfO+pwCUpzMC198LaphGKhyo0Y069OHP/74g19//dXocP7D7xIQwCuvvEJY4TB9xpDd6Gj8RDLIYxQqNqxP3a5djY4m26tYvz71uz+L9JUMsUZHc5t9wHx4YvBQCpUpY3Q02V67t96iQMmSdO/RA4vFu6YI+2UCApj2zTS4hD4tOztzVSmeyWBKCaD7p+PEcIqXePLdYeTOF4Y0youG4iwgf6xQ6qGaNPXhIpn+xBwUxPMTJ5KSnMyTTz6Z5fOJUjwZ0KFDB8qWK6vffP2ljMmDcEUpnvSht6eGjyBf0aKuiUvIsqCcOXl+3ATvGopLH3p77rMJyIpidDRCutIPPeSyoThRiieDZs6YCUnoN2DhwdhBHq9QoUE9MfTmhSrWr0/9Z59BmiJDgsHB/IU+9Pb2EDH05oXavfUW+UuUoJcX9Uz9OgHVr1+fVi1bwRzgoNHR+KgloMaqPP3BSDH05qUeH/Q2ZgL1tW8GkqZK5CtelCa9ehkbiHBH5qAgOr3/PteuXuXTTz81OhzAzxMQwJIlSwjOEQwjESV6MisV5P8pPNzpSTHrzYvlyp+fFn1eRfpFgosGBREF2maNJ94eimI2GxSEcD8RzZtTKjKS0R9/jMNh/AZqfp+AgoKC+Hn2z3Ae/X1QdpOVUjxzgesSj7810LUxCS732EsvEZw7VN+N1tM0kL6WKVK1kqgJ6OUkSaLjsGGkJCczaNCgBzqHK0vx+H0CAnjiiSf0objZZL+huALAy2Q+ASWANFum8fM9yVesmOvjElwqMEcO2r3xFvyOvgbOkzaDdkDlyaHDkOVscUvxaeUefpgqTZrwzbRppKZmfoZWZGQk69evJzIyMsuxZJurZcmSJYTkDBFDcRk1G8wEivpdPqT+M8+Qp2g4fO/Bd3UayNMUytV9mEoNG3quXSFLOgwdis1q5fXXXzc0jmyTgIKCgpg7a64+FDfZ6Gi8nBXkXxXqd32GXPnzGx2NkEGmgACav/gKrAcue6jRg6CecNLyVbEFuy8pWrkyVRo1Yv4vv3hkG++7yTYJCPShuJ7P94TF6HvZCHe2DtQEJw26dzc6EiGTHunUCZM5AJZ6qMGFkK9EUdH78UGNevYkJTmZmTONmz6ZrRIQwIwZM6hRowaMR9/Txt89QCUEaaFM+fp1KVS2rLuiEtwkOHduHunYCXmJAu6e5HQNpLUSjZ/rJd79+KAqjRuTJzycjz/+OFPfJyohZNH27dvJkycPDMH76mi5WmYrIRwH7aBKk+d6ujEowZ0a9uiBetkJm9zc0DKQZROPPPWUmxsS3EFWFBo//zynz5zh5MmTGf4+UQkhi4KCgti5fSeKXYGBZO9SPbdbCLkKFaBa8+ZGRyI8oGJVq1KyViTSAjf+81ZBXqxQu/0TYlsOH/Zoly5IssyAAQMMaT9bJiCA8uXLs3DeQogGRgBOoyPyAg6Q1ynUfaqr2GjOxzXo+izaHhWuuKmBw6DGOqnbRZRn8mW58uenRqtWbNi40ZD2s20CAr1g6fBhw2Ej8CneU1HYKPtBve6kRsuWRkciZFG1xx4DJNjipgY2QnDe3JSpVctNDQieUr1lS1KSk9m1a5fH287WCQjgo48+4pVXXoFfgQmAZnREBtoEOcPyUTwiwuhIhCzKVaAAJR+qAZvcMzVa3qRQvVlLUfHaD1Rt0gRJlpk0aZLH2872CQjgm2++4bnnnoMFwOf4VxLKaCkeTb+p1GjWSsxo8hORzVsh7ZRcv/A6BtQzTqqL94R+ISQ0lLJ16rBm7doMHS9K8bjBjz/+SNeuXfX6Z+Pxn+G4jJbi+RvUc04iWrRwf0yCR0S0aIFmUWG3i0+8GZQAk1j740eqt2hBfHw8Fy/ev5qtKMXjJj///DPPP/+83hP6hOw1MWEzmIIDqFCvntGRCC5SqGxZ8pUs6vL3QNJmmQr16hGYI4drTywYJqJFCzRV5YsvvvBouyIB3WbmzJn6O6FlwGAg2eiIPOQQlKxRg4CgIKMjEVxEkiQqPlIf+ZALZzSqwBGo8Ehd151TMFzBkiXJlT8/f/75p0fbFQnoDr755hs+/PBD2A70BmKMjsj95OMmSlWvaXQYgouViIhAPe0Eq4tOGA1aqkqJ6tVddELBW5SMjMzUglRXEAnoLj744ANW/LoCU5wJegKen6HoGhkpxZMI6gUHxatV81BQgqcUj4gAhwanXHTCY+nnFdeK3ylZvToJiYn3LU4qSvF4SNu2bTlx5AT5gvPBG8A8fG+GXEZK8RzVP5UQ06/9TtFKlZBNys3EkWXHIE/xcEJCQ110QsFbFI+IwOlwsHXr1nseJ0rxeFDp0qU5H3OeWjVrwURgNJBmdFQudgwCcgZToGRJoyMRXMwcFERY+TIuS0DSMZlSEWKo1h+VSO/VLl3qqVLqIgFlSFBQELt37+all16C34BuwF6jo3Khk3r9MLH+xz+VqhaJfNwFC0Y14KR080Yl+JfcYWHkzJePbdu2eaxNccfJhOnTp7Nq5SpypuWEvujrhfygNyRfUihYTPR+/FX+YsXgsgsqIqSAluwUW7T7sfzFi2doLZCriIqTmdSiRQuuxV+jS5cuLF64WC95PwJ4yODArqC/yzmmfzb/BVhAtejLmUxvgFYUnFWBSukfpQATSFckcoeFGRW54Ga5w8JQrzr0/YFk4Bw3rxX5CCjnQLOB5gDJDFIgOEqBVoV/rpXC3CxsGiquFb+VJzycc7tdvXL57kQCegAmk4lFixaxevVqOj3dieS+yfAU0Afw5LvZFOAPMM0Hxxn9S7kVqCMpREoyuSUJq6axXXYSkapw+YTG9hNOzjg0NEAJBmdbUC87CS1UyIOBC54UWqiQPnz2OSgrwZmkf72oSeIRZCrJCiGAGbA5IDkNDu51snOPSrxTn3VjKgSOurecT/BLoYUKcSLt3sM6rizFIxJQFvyrN7Rosf5+qBfQFXD1ek4NffO8Y8BOYK/+5Kqq0FZR6B5kpo6iUEqSkKR7D7dc1zT2OZ384XQydaGNa2jiqdaP3fjdBs2Hl81m2gebeEhRyH+f6wQgVlXZraosuGJnzhIHTkQPyJ+FhoVhs9570diNUjyuIBJQFt3oDR06dIhnn32Wg1MPws/ovaH2PPhPOJZ/htRufKQ/ucpAXgn6mgPoYzZTPJOTB3JJEo1MJhqZTDytKNRMSxNPtX7sRsKYGRREF7M5U99bRJZ5QpZ5wmSinNXKJ4oiSvD4sdCwMJwOB0lJSeTOndvt7YlJCC5SrVo1Dhw4wJ/r/qRE7hL6/kJdgLVkbO2QE4gCvkLvQT0JDANWovemWoJSFCRgSEAA53LkZFRgYKaTz+2upn/OVeB+1UoFX5Uzf34kSSJRy9oitmRNI0++fC6KSvBGN+4DR48e9Uh7ogfkYk2aNOHsmbPMmzeP1/q/xpVhV6A48DTQDsh5y8GpwA70iQxbgAQgL9AAfZZdBJAfWAzyZ1BGlpgVEszDLtyD5UZn2xwY6LJzCt5FVhQURcGWxfNYEdeJv7vx+01JSfFIe6IH5CZdu3YlPi6er7/+mmIUg0lAG2AMeq/mI6A18A76UFsH9IoFvwHvA03Qk88M4FN4VTZzIDBHppPPBVVlpNXKhbuU13CkfxYbi/k3RVFu/q4flAOQxVbtfu3G79d6j/dAohSPD+nXrx8x0TGsW7uOwvkK61W2R6DXlnsBWIS+B1E/9B7Prb+RmcBUGBEQwFeBgQRl4KXx7S5oGh/abFy4y/CLI/3rIgH5N1mWXZKAJLFY2a/duA/YbHfvL7uyFI94nHGzdevWMWTIEPZE7dHf8zyKPhxXF7jXPX8JMAU+CAhgpBuHPZT0pKbdpwCh4Ns0Vb3n5ZYRCujTLgW/deM+YM7kZJUHJRKQm+zevZsePXpw/MRxyAE8iz6xoGgGvvlv/Z3Py2YzIwMC3BrnjcvM6cxOu+9lP05VxZzF3osZcZ34O6dD7ycHeWhfMJGAXOzMmTN069aNnbt3QgjwJnriyejv0wnKSCiBxMTAwPuu6cmqGwnIcZ+5/4LvUlUVh8OBOYsPM2bEdeLvHOlDb8HBwR5pTwzoukh8fDytW7emTPky7Ny/U1+QuhR4hswtSp0L6lH4yRxEiJuTD0BYehvX4++1X4Pgy1KuXkXTtJu/6wcVJkkkXb16/wMFn3XjPlCxYkWPtCcSkAsMHjyYsCJh/LH6D723sxh4hX9Puc6IWJCnwgCzmfoumm0ULkmMCAgg/C43nxtfT4qLc0l7gvdJTP/dhmdxCC5clklNTcVmsbgiLMELJcXFIZtM5LvHei9RisdLHD16lJatWnIu5hw0BAYAWSkUvBByaDAqyHWTDsJl+Z6TGPJLEmZJIvHyZZe1KXiXGw8XRbLYAypyy8NKgRIlshyX4H0S4+IIvM9QrStL8Yge0AMaPHgwVatX5dy1c/qans/IWvKxgLIEXpbN5PDA0NsNsiQRZjKReOmSx9oUPOtGD6hQFq+rG71lca34r8S4OI+9/wHRA8q048eP07xlc85Fn4NG6AtJ87vgxOvAmQyv5nDvrLc7KSJJYgjOjyXGxZHfZCIgqz2g9CG8RHGt+K2ECxfI48Ht1kUPKBPGjBlD5WqVOXc1vdczDtckH0CZD83MCuUNWOhXXFW5GhPj8XYFz7h2/jxFXXBdhQLBsszV8+ezHpTgla6eO0eYB6udu/1u9+mnnyJJEgMGDHB3U26jqiodO3Zk2LBhaLU0mA+0Qq8M6gop4DwGzyquX/x1v1I8ANVlmdhDh9CyWKxS8E7nDxwg0gULSCVJIkJROH/kiAuiErxN8rVrJMbFUbt27Xse5zOleHbt2sW3335L9erV3dmMWyUlJVGhYgWWLl0Kz6HXdHNRr+emE4AGddzQ+7lfKR6AWorC9evXuSaebP2O027n/IkT1HJRqaU6wLl9+1xyLsG7xBw6BMDjjz9+z+NcWYrHbQkoOTmZ7t27M336dPLmzeuuZtzqwIEDFClehFN/n4KRwOvcu3zOgzoGgTJUNqjOVq30dqPTL0DBf1w4cQK73X7zd5xVtRSFi9HRWJKTXXI+wXvEHDyIrCg0a9bMY2267Y732muv0a5dO5o3b+6uJtxq1qxZ1KxdkxQlBaahV7J2l2MQociYPDj77Vbhskwhs5noAwcMaV9wn+iDB5GBSBf1gGrJMpqmcc4FT7+Cdzl74AC5c+fG5MGK525p6eeff2bv3r3s2rXrvsdardZ/lf5OSkpyR0iZMmbMGIa9PwwqAOOBgu5tz/QX1HRL1yrj6mgap/bvNzQGwfWiDx6kYkCAy6b2V5FlAmWZ6IMHKffIIy45p+AdzkZFUbZMGY+26fIeUExMDG+++SazZ8/OUEG7MWPGEBoaevOjePHirg4pUz744AOGvTdMr1r9LW5PPgBSGuRyfzP39Igsc3bfPpx2u8GRCK50Zvt2HnFhBWuTJPGQonB6506XnVMwXsLFiyRcvEj9+vU92q7LE9CePXuIi4vjoYcewmQyYTKZ2LBhA1988QUmk+k/1XTfffddEhMTb37EGDgdeMiQIYwaPUpf3zOOzNVwywo7BLpp+O1+pXhuaGsykZqayl8Z6LUKviE+Jobzp07RzsVDKo9LEsc2bMAuSvL4jYNr1kAGZyt7dSmeZs2acfDgwX99rXfv3lSqVImhQ4ei3DYWHRgYSKAXbPM7fPhwPhv/GTQDPsSzS3RNYHfTFOj7leK5oaYsE242c3D1airWq+eWWATPOrRmDQGyTCsXJ6AnTCbeS03l5PbtVGnSxKXnFoxxcPVq8ubNS+nSpe97rFeX4smVKxfVqlX710eOHDnInz8/1apVc3VzLvHxxx8z+uPR0BjPJx+AAEjzcJO3kySJjsDhlSvFeiA/ceiPP2iiKORyce+6qixT0mzWn5oFn2dNSeH41q00btTI421n+0oI06ZN4/0P3td3KB2NIcWJHEXhBMbvNNneZOLyhQtcOHHC6FCELEpNTOTkrl084Yap/TceVg6JhxW/cGzTJpx2O/379/d42x5JQOvXr2fy5MmeaCpTduzYwauvvQrVgE/5Z3c2D9Mqwy7Nafg/5qaKQoiicGD1akPjELLuyPr1OJ1O2rtpSu0TJhPX4uNvLl4UfNeB1asJCgnhscce83jb2bYHFB8fT5NmTdDyafqEAyNfQ1WCBAdEuyEBZaQUzw1BkkQHWWbXvHmoLpw5JXjezvnzqWM2U8JNi5sbKgphJhPbFyxwy/kFz0i7fp29K1bwSJ06Gf4enynF461UVaVmrZpY7BaYABhdqKGS/mnPbTMEXSEjpXhu1c9k4lJMDMe3bHF5LIJnxJ05w5EtW3jdRYtP78QsSfSRZXbNn481JcVt7QjutXPxYuxWK+PHj8/w9/hEKR5v1rp1a307hQ/RF5sarSCYCsLvbkhAmVVfUahqNrN55kyjQxEe0ObZs8mrKHRx84r2PmYzVouFXUuWuLUdwT00TWPDjBkULVLkvgVI3SXbJaD33nuP1atXw0uA54c878rxJMxy2kkw+D2QJEm8LsscXLuWa7GxhsYiZJ4tLY0dP//MS7JMkJtLOxWXZR43mdg8Y4bh7y+FzPtrxw7iTp/mrbfeMiyGbJWAtm3bxidjP9EXmr5odDS36QBWYKYXVCLobjYTIstsmTvX6FCETNqzbBmpycm8cp9tlV3lNZOJcydPcnrPHo+0J7jOxh9/JDA4WCQgT1BVlXbt2+m7an2A9/3NC4DWFL5QbS59msxoJYRb5ZIkesoyW2bOFFWPfYjqdLL+229pZTZT1kOV1ZsrCmXNZtZ9841H2hNcIz46mqiVK2nXpg1yJq8VV1ZC8LbbsNv07t2ba1euwXCML7x2N0/DabvGLIfDZae8UQkhPJMX2dCAAKzJyaz77juXxSK41+6lSzl/6hQjzJ5bTyBLEiMUhf1r1nBm716PtStkzbLx41EUhW+//TbT33ujEkJkZGSW48gWCWjbtm38OPtHeBzw5iozNYEW8LrdkqFp0+5UXJbpryis++YbrsfHGxqLcH92q5Xfxo2jo9nMo26c/XYnz5pMVDWbWTZmjHgX5APOHT7Mnl9/pWuXLhQoUMDQWPw+Af1r6G2A0dFkwGBIyQkv2yyG/2N+NzAQs93OH19/bWgcwv1tmTOHq5cu8YkHez83KJLEWJOJE7t2cXTDBo+3L2TO0rFjCQwK4jsvGN3w+wTUq1cv7x96u1UoOIfBCruTH104FPcg8ksSQxWFzT/9xBUDq5QL92ZJTuaPyZPpaTJR2cO9nxvaKgr1zWZ+/eQTsYjZi53cvp2jGzfSr2/fDG2X425+nYCOHj3KT3N+gnZ499Db7ZoAbeElq4W1Biehl81mZE1jyZgxhsYh3N2qKVNIvp7Eax7cyfJ2kiTxqixz7sQJdojqCF7J6XCwcNQocuTKlamFp+7k1wno2WefhQDgTaMjeQDDwPkwPG5NY0MWklBmSvHcLlnT6GqzYJec7PvtN/avXPnAcQjucfbAAVZ/+w1SoEYPh4WLBvU+jjidvOW0IuWCBaM/JOHSJUPiEO5u3fTpnDt8mInjx2d65tutRCmeDNi8eTNR+6PgefT3P77GDNo4sNWEltY0lj1gEspsKZ4brmgaj1lT2aQ40b4EGknMfu8dkq9de6A4BNezW638+PZbSOUk1O/gZC6NutZUzng4Ce1yOqlvTeVaMdC+A7vZwpx3hxr+DlP4x4WTJ1k2YQK1a9emT58+WTqXKMWTAT179oTcwDNGR5IFQaBOBnsDeCItjf4WC8ke+Ee9zOGgsiWFvYEqzm+Ah4ChGhb7deaPGO729oWMWfnll8SdPo063AnlwPk9nCugEWFJ4Xuba9eT3Yld0xhltVIvLZXrFcE5HSgF6jtOjqxbz46FC93avpAxToeDHwcOxGwy8ccffxgdzr/4ZQJauHAhp0+fhj5AsNHRZFEAaGOBQTBFslPFksJ6N70XuqZp9LCk8URaGlfqaDjnApXT/7AAqIOc7P11uRiK8wJnDxxg1dQpaC9oUD79i0XAMQtS2sBLVistrWnEuKk3dMDppLY1lREOG45e4PwW/YEP9EojreGXDz8g4eJFt7QvZNy66dOJOXiQr778knz58hkdzr/4ZQLq+1pfKAx0MDoSF5GBLqDOhfNVNJqmpfGMJY2tTtfsIRSnqnxqtVLBkszPJgd8AOokIOy2A1uhD8UNGyrqxBko7fp1Zrz1BlI5CXre9oe50Gd8ToL1uZxUtqQwzGrlrIsS0UGnk34WC7XSUjlcVEX7H/Aq+rvWWw0Ee4CVmYMG4DR4Ik12dvbAgZtDby+99JLR4fyH3yWgqVOncvnSZeiHYRvMuU0xUL8FhsKC/A7qp6YSYU1lms1G0l0S0d1K8aiaxhaHg+6WNIqmpvCeZiO+FTjno88avFPlHgkYpmEJSOabPi9gSzN6I/HsR3U6+eHNN4i/FI36kfPuO/jWA8d8SOkC4xQbpVNSeNySykqHA3smH1rSNI2f7XbqW1KonprK9Bx2HK+A8yf+6SHfLhTUj5yc3L6DJZ98kqn2BNdIjIvjmxdfJCQ4WC/A7CKuLMUjaV72pjApKYnQ0FASExPJnTv3/b/hNkWKFeGCfAHm44fp9RYqsBOkX4AtgAZlzBKPagq1FIXqskyoJBEE2IE04LSqssfpZAdOopwqaSqYCoOjC3qViIxO1jgB0ssykc3b8MKXXyG5ueqy8I9fx41j1dQpMJGMLy1IA/4AZT44T4FZggiTzCMo1JJlKsoyIZJEAHpB3GRN47CqskdV2Y6TYw4VVQM5EtQuQGMyvnX9L8B46D5uHHW7dMnsX1d4QHaLhUlduhB79Cg7tm/noYce8mj7Gb2PG7dwwA12797NhdgLMAj/Tj6g//0eBe1R4CKwC04d0/j7kIO5pxyo1jt/m7kQ2KuhP7lWA0cNMv+zqgDaCJV9765gVeUqtHrttSz8RYSM2r10KaumTIH+ZG5dWzDQEZwdgGNg3w97j6ocOKwy9Rxwh0dQSQalNDiqoW+Y+BCopR4g6KeAkzD3vWEUKluWMrVqPcBJhMzQNI25771HzKFD/PC//3k8+WSGX/WAmjRpwobtG+A3IKd74vMJDiAWsKA/0prQx+gL4Nop6dOB76DPtGlUb9nShScWbnf2wAEmPt0Z52N2GMGdh0gfRCr6A4wV/boxA0FAOK7bpt4O0msyIedDeefXFeQtUsRFJxbuZO1337F49Gj69u3LlClTDIkho/dxv0lAqamp5MyTE629BkPdGKDwDxUYJqFsNfHajB+pULeu0RH5pQsnTzKxS2csRVPQpjhdlxg86SrILyjkCy7GwHkLyF2woNER+aXtCxYwa/BgHnn4YbZv325YHBm9j/vNQNXw4cPR7Bp0MjqSbEQGPtRQaziY+mIvTu3ebXREfifuzBkmP9sVa/4UtIk+mnwA8oH6pZOrSef4vHs3kq9eNToiv7Nn2TJmDx5MxQoV2Lp1q9HhZIjfJKDvf/geIvhnTYSgi0cfKnPXjgqBoH2m4ahk56uePfhr5043NZT9XPzrLyZ1e4q0nImoXzp9s6LHrYqD+rWTy/F/M/nZrmKbDxfavXQpM958k1KlS3Po0KEsldq5H1GK5zZ//PEHidcS4WmjI/FC8cB3uC8BAQSBNlHFUdnGVz2f4/iWLW5sLHs4f+wYE7s+RUrOBNSvneBd6wcfXCk9CcVdPs3Ebk+JmnEusP2XX5gxYABly5Th2NGjmNxclFaU4rnN5MmT9ZfsjY2OJBsLBm2CijPSxte9eooyLFlwdNMm/Z1PgeuoU5yQ3+iIXKwMqN84uXI9hs86deD80aNGR+STNE1j5ZdfMmvwYCpVrMjRo0cJCLh9RbB384sEtGnbJngUffaOYJwg0MZpqK0d/DRoEIs+/hjV6TQ6Kp+haRp/fv89U3o+j61qqt7zyWN0VG5SAtTpTq7nvMz4zh2JEuWdMsWamsr3r73G8gkTaNKkCYcPH3Z7z8cdfD4BHT58mJTEFL3+lGC8AOA9YCCs+346U17oRWpiotFReT271cqsIYNZOGoU2rMa2gTNNzZQzIpCoE5zYq9n47tXX+W3yZPFZnYZcPX8eSY8+SQHVq5k8ODB/Pnnn2595+NOvhn1LSZMmKCviahvdCReqgDwUvpnT5GArsBkOLFvK2M7tufiX395MADfkhgXx+RnurBz6UJ9jU9/wJiNTT0vCBitwavw2+TJfN+vL5bkZKOj8lp/7dzJp+3acfnvv5k3bx7jxo3zeAyiFM8tChcpzKW8l+AHDwQnZF4MyIMVpFiZDoOH0qR3b2SDto32NpqmsXvpUuaNeB+bOQ11rBOqGR2VgTaANFImd94wnv9sIhXr+dI2xu5ls1hYMXEi66ZPJzRPHrZu2ULlyncrxGe8bLEO6OrVq1y6dEnfwlrwTsVBneHE2dHOoo9HM7HLU1w6fdroqAyXFBfHt31eYuaAAVgeTkGdnc2TD0Bj0GapJBWK48tnn2Xue8NEbwg4s3cvn7Rqxbrp02nVqhUXYmO9Ovlkhk8noClTpuir8RsaHYlwT0HAQGAqRF86wCdtWrHuu++y5QQFTdPYtWQJH7V4jCN71sOn6ENQeQwOzFsUBe1rFd6GrYt+ZlSr5hz3kUWVrmazWFj8ySdM7NwZy9WrLFmyhN9//52gIP+ZbeXTQ3BNmjRhw54NsAbX1cYS3MsCTAHmQ5EqFXly6HtUatgwW1TUPrt/P0s++YSTO3ZAPQlGiMRzT+dBGi2j7VWp2a4t7d8eTFjp0kZH5XaqqrJn2TJ+HTuWhAsXaNq0KStWrPCpxJMtasGFFQ7jconL8JWHghNc5yBIX8hoB1TK1X2YjkOHUSoy0uio3OLSqVMs/+wz9q1cSXmzmVTVzsWQ9C2s/f9+mjUqsALk6QpavEa9rl1p8+YA8hQqZHRkLqdpGkfWr2f5mDHEnDhBPZOJPQ4HwblycfL0aQoU8ORMoqzJFu+A4q/GQxWjo/By7i7F86AiQJumwng4fWkP4zt2ZNqrfbhw8qTRkbnMtdhY5rzzDh+3aMHlNWuYERTE0cBA9gfnpLxFwtQPvWq5cHcy0B7U+U60firbls9nZOOGLB07luRr14yOziU0TePU7t188fTTTO3dm5JnzrAlJIQtwcH8GRKC9fp1qlaqRLKXvA8TpXjQfwiaXbv7joyCzhOleB6UBDQEdZYTPoBDUWv5uEULPn+2G1ErV/rkVs6qqnJs82amv/wyIxo04NiCBYw3mzkZFERPsxlFksgvSawLCKFIkoTyDvo2CMK9BQE9QF3kxNHNxpofvuW9Rx/mp7cHcXb/fqOjeyC2tDS2zZ/P+LZtmfTUUwTu38+K4GA2BgZSL32maF1F4dfgYK5cuUKrVq0MjljnylI8vrd0Nt2iRYv0/6hkbByCCyhAO1BbOGEd/LVwJydf3U6uQgVo9Oxz1O3WzeuHXFITE9mxYAFbZs7kYnQ0lc1mvjKb6WE2k+sO77fCZZn5AcHUPZ4Kc4DnPR+zT8oF9AWtq4pzmcquxUvYsWAhxSKq0Pi5XtR64gkCvPxdyaXTp9k8ezY7f/6Z1JQUWpvNfB0cTGtFQbnDtdLcZGJkQAAfbN3Kjz/+yPPP+8/F4rPvgMQEhAw6BvQEZuJbyfoEsBCklTLYoezDdajRohURzZtToEQJo6MD9AWkh9au5eCqVZzYvBnV4aCzycRrJhMNFCVDEyuGWq2Md9pQZwFl3B+z33ECW0FaKKFt0wjIGUy1ps2o3rwFVZo0ISTU+BLimqYRe/w4B9es4fDKlZw5dIh8JhMvyTKvmM2UyUAVA7umUSc1lZMmExcuX870Zp2uNHv2bHr06MGsWbPo3r37HY/x+y25jx47qg+/ieTjnyoA74LWX4VVcGrjTk6N2cnCjz6iUIWy1GjeiqpNm1K8WjUCgoM9EpLDZuP8sWMc3bjx5o1EBuqZzXwsy/QICaFwJkuifBgQwCKrnTMjNZwz8OFBcYMoQEPQGmoQA7aVaURt/p29y5YjmWTK1qlNjeatqNSwIYXKlvXYIui0pCT+3r+fw2vXcmjlSuIvXiSHotBKkhgVFERnk4mgTMz8NEsSPwUF8VBqKm3btmXz5s1ujN5zfLYHFJAjAHs7O7ztweB8UTywGHgSz5bjcYcUYAewCeQtCmqiE0mWKFiuNKUjalI8IoISERGEly9PUK5cWZrabU1N5dKpU0QfPEjMwYOci4ri/IkTOJxOcigKrSWJDiYTbU0m8mdxCvlGh4PGaWkwCRCL/13jErAFpI0S7AbNrmEKDqRolcqUioikeLVqlIiIoGDJkpizMGSnaRopCQnEHj1K9KFDRB84wPl9+7h0/jwARcxmOgJPmEw0URQCs3itDLNaGWez8XdMDMWKFcvSuR5UVFQUAwYMYPLkyUTeZeaq30/DlswSvAz08lhogjdxAifRhxiPgXxMQftL1SemAKbgQHKFFSBPwULkLVyE0LAwQkJDkU0m5PThMafDgep0knb9OklxcVy/eJGk2FgSr1whNTUVAEWSqGQ2U0dVqaUo1FYUaspylm8kt9I0jUhrKgfrqGiTXHZa4YZU4Cg3rxXlmAln9D8zPwJDc5I7rCB5C4aTp3BhQsPCCAgJQVYUFJMJTdNQnU6cdjvJ167p18r58yTFxZFw5Qp2ux2AYFkmUlF4GKilKNSSZSrLskvXuMWqKsVTUuj89NPMnz/fZed1Nb9OQDeO4QOgnWfjE7yYHTgNnAWuAJdBWgj5bTL5TCYSNQ0H4NQ0VE3DJEmYJYmckkQRTaOophEuSRSRZcIlibKyTHVZJsQDi2S/t9l4yWaFRUARtzcnJKO/Z7yAPkoQDSyHMiYTTlkmTdNwpH/IkoRJkjAB+SSJIqpKUfSJJEUkiXBJooosU1GW7ziJwNWeSk3lN1km2WLx2irYfv0O6MCBA/p/+NtGXULWmIGK6R8AB0GbDT8FB9Lay/dKecZsZoDDSvJi4DWjo8kGcgIP3fL/0yBYhn1BQeT28qocrwcEsDAtjS+++IIBAwYYHU6WeGf6vI8jR47o/+Hr7zQE91oPBWWJlj5QfTtEkugumzGtMTqS7Mm0FrrKJq9PPgCNFYXiksSMGTOMDiXLfDIB/XVjb5mCxsbhE7y1EoIHyEegviwj+8BNBfRFh45Y9OEhwXMs4IzWf/6+QJIk6isKZ0+dMqT9bF8J4cyZM/r0S+OmwvsOb66E4E4aSMegtuwbNxWAWjfG848bG0e2cxI0VZ844CtqKwrXk5Ox2Wweb9uVlRB8MgFduXJFH8P1jQdbwQjnwZnqWzeVSrJMoIw+W0vwnGNgkqCal77Qv5NasowT+P33340OJUt85yd+C4fDob9wFoS7Sa9pWtOHbiomSSJCkfXZWYLnnISKZtdOrXe3mukPVn/88YfBkWSN7/zrvIXdbteH4AThbq7rnwr40E0FoJAm6QtuBc9JhsKab10noZKEgr4rtC/z7rmpd+FwOEQCyqy/b/v/Atx5FmE8/31fdKdj73ScNx1rA0Xi5rqMC6rKhduWvIVLEuF36CEZeWwIElIaaL7+e8jq9eXJY68C6n+XQ97p9wV3/v0acWwgkJLyz9NKVFTUf97LVK1a9Y7VCrJy7JYtW/5zzIPyyQSUHXbPdJkCQE1gxG1ffwm9ksTtFqNPWrjfsXc6zpuOzffvL31rt/PhbS9sRwQEMDIw8D/fbuSxKujjEr7+e8jq9eXhY6Ol/97k7/T7gjv/fo04VgWUW95xDhgwgA0bNvzruMaNG7N+/fr/fH9Wjw0NDaVq1ar/OTazfLISQr169dh2ahss83BwvsodT5Le+uR949jtwCiw58yJSZJ8pgfUNi2V3+s5Yegd/m7e8rP1tx7Q11B3r8zW4Bz/Osybe0CFgeKpqXR95hnmzJkDeK4HdK9jb/DrSggmk0mvBSZkzN3+IWblWHec05XH5tE/xWoaJdL/YYdn8LRGHhsjaxCK//wefOHYEnA56g4JwYuvmThVRQUKFy5882uRkZH3TAq3ctexmeWTkxACAgL0ul+CcDcV9E97nb7zpGLVNI7Z1X9KCQmeURFO2zSSvWsw6J72qCoAjz/+uMGRZI1PJqBChQrpq8V9594ieFpBMIXC7vR/qL7goKri0BDbzHtaJf3dW5QPPazscToxoW/M6ct8MgGVKlVKv2ISDA5E8F4SOKvALtV3biq7nU4kGShndCTZTBmQTf/0KnzBbqeT0Dx5vLYadkb5ZPQVKqSPr2S38jJCpmhVYZvqxOojQysbVSdKKeDB90cTHoQJpHKwwem4/7FewKFpbFZVylX0/bFan0xAN6f/iQQk3EsLuK7CQof331jiVZUFTgeOtkZHkj0528CvTicXfaAX9KvDwRVNY+DAgUaHkmU+mYCqVaum/4dIQMK9lAK5LHxhQMHGzPrB4cApA+2NjiSbageaCb6ze//spi/tdvLkzEmXLl2MDiXLfDIBBQUF6VtyiwQk3IfaFnaoKvu9+AWzqml86bShNufm9HHBw3KB2ga+Vu04vHjI9qjTyXqnk2eff97oUFzC5QlozJgx1KlTh1y5chEWFkbHjh05ftz19eUDAgNEAhLur4VetelTL+4FLXA4iHFo8JTRkWRzneGiQ2OuFw/ZjrPZMEsSY8aMMToUl3B5AtqwYQOvvfYa27dvZ/Xq1djtdlq2bPmvmkWuUDBPQTBmPybBlxQEZwD87HCwwgtvLFc0jb4OC1JDoJrR0WRzlUBqBv3tFi554bugNQ4HMxwOnurW7Z7VBXyJ20vxXL58mbCwMDZs2ECjRo3ue3xGSzi0adOGlX+uhPX46ECi4DGvgvw35L8ucTwoB3m9qJZgN0saCwIcOH8B8hsdjcA1ULrA42kKiwODvabuZJKmUSUlBUvu3MRdver1068zeh93+98iMTERgHz58t3xz61WK0lJSf/6yIimTZuCFYh2VaSC36oCqgmumjUGWC1GR3PTYrudeXYHziGI5OMt8oLzHVhqdzLPi3rMb1ssXNQ0lixf7vXJJzPc+jdRVZUBAwZQv379f2au3WbMmDGEhobe/ChevHiGzt25c2f9P8TukcL9VAIug7Mf/Gh3eMWsuANOJz3t6UNvrYyORviXZvpQ3It2C7u9YPLKdJuN6Q4HXZ55hgYNGhgdjku5NQG99tprHDp0iJ9//vmux7z77rskJibe/IiJicnQucuWLYsSqIgEJNxfpfTPxYHu8KbVyg8GTrc9rqo8ZksltQxoIxFby3sh7X2wVoAW1lQOGZiE5tjtvGK1Uj0iglmzZhkWh7u4LQG9/vrrLF++nD///JNixYrd9bjAwEBy5879r4+MCi8YDofvf5yQzRUDcgDHgf5AR3jBYuFLA3pCe51O6lpSSCgKzi+BnB4PQciIEHB+DtdLQgNrKjsNSELTbTZ6WCyULVuWPXv3+tXQ2w0u/xtpmsbrr7/O4sWLWbduHaVLl3Z1EzdVq1ZNv6kY30sWvJmM3gs6it7beAd4Ft6wWnnJkkaSB9Z9aJrGNJuNBpZUksqBczqQ1+3NClkRCs5pcL0SNLKk8rXNhuqBayVZ0+hnsdDHaqVaRARHjx3Tt6DxQy5PQK+99hqzZs1izpw55MqVi4sXL3Lx4kXS0tJc3RTt2rXTJyIcdfmpBX9THdgHONCT0BvAOzBDdlDJksIqN75wPquqNLOm8YrVSlo7cE5F3/NH8H65QP0arK3hdauVJmlpnHHjFO0/HQ6qpKQwzW7nqaeeIioqym+TD7ghAU2dOpXExESaNGlCeHj4zY958+a5uileeuklfUu9TS4/teBvGgCJwMH0/5eAJ8H5M1yqodEqLY3eljROuPDmkqBpTLDZqGJJYWNuJ0wG3kcfDhR8RzD6tvbADk2jakoKY61WrrmwN3RKVemTlsZjaWkk58rFqrVr+eWXX/xy2O1WbhmCu9NHr169XN0UQUFBlC5RWl8LJAj3UgXIx38fVoroT7gMhZ8CHVRMSaGZJZUl9gcvybLf6eQVi4Xw1GQG262kPg7O+UDdrP0VBANtgJyhOTkTE0PZqlV512YjPDmZF9PSHnjTQ6emsczhoFVqKuVSUvjB4eCpp54i7soVHnvsMRf/BbyTz6fXJzs+CX8DsUZHIng1GWgIbL7Dn0lAJ3D+BoyADeWcPGmxUNSSQte0ND6z2VjncJBwh4Rk0zT2Op1Mt9l41WKhmiWFyNRU/pfTjuVF0H4FhiEmG/gyC7ADGtZrSJEiRTh46BBR+/fTsHlzZqsqtVJTqZKSQh+LhW9tNnY777wFSKKmsd7hYLzNRre0NIqlpPBEWhrbAgJ48cUXuXTlCr/88otfD7ndzu2VEDIroytob4iNjaVosaLwFtDV/fEJPmwT8DYwHyh5n2OPAStBOQjaSVCt+pdDFAiU9Jxl0yBVBVUDJDCVAEc19OG+RujDw4Lv2wwMghUrVtC27b/3y7BYLHz00UcsWLCAC2fPkmKzoaE/74QAgZKEqmlYgdT071GAnDlyULp8eQYMGEDPnj09+bfxiIzex30+AQHkL5ifqyWvwhQ3Byf4NgvQEugD9MjE9znRK24cA64BtvSvBaLfZcqnf4iN5PzTJ6D8oWBLsd33nczVq1dZtGgR69evJyEhgbS0NBRFITg4mPDwcNq0aUObNm0ICAjwUPDGyFYJqFu3bsz7ZR6sAnK5Nz7Bx70NJAHTjA5E8Akq0AZqla3F7t27jY7GZ3hNLThPGDJkCGjAH0ZHIni9x4D9QMYKbgjZ3Q4gAV599VWjI/FLfpGAHnroIcKLhOtj+17VnxO8TjP0abWLjA5E8Am/QGCOQF544QWjI/FLfpGAAAa9NQjOAlFGRyJ4tQDADCxFfyckCHcTC2yFrp27+v16HKP4zU/1rbfewhRkgl+MjkTwalHo74BSgDXGhiJ4uSWADJ999pnRkfgtv0lAsizTvk17+BO4YnQ0gtf6BUxBJvIVzKcP2QrCndiAxVCjWg3CwsKMjsZv+U0CApg0aZL+H0uNjUPwUleAP6F9m/b0e6WfXsj2iNFBCV7pTyAJPvnkE6Mj8Wt+MQ37VhUrVuRE/Ak9Cfn3VHshs6YD/4O/T/9NeHg4wbmCUR9T4UOjAxO8igb0htBLoSRcSTA6Gp+UraZh32rSpElwFVhodCSCV7kGzIKaNWpSsmRJAgIC6PREJ33q/mmjgxO8yibgKAweONjoSPye3/WAACpUrMDJCyf1l4iiBpcAeiXq+XDs8DEqVqwIQHJyMnkK5MH5sBPGGxqd4C2cwDMQmhTK1firYvbbA8q2PSCA2bNm67Oc5hgdieAVLgDz4bHGj91MPgA5c+akzwt99CfeA4ZFJ3iTlcBZmDRhkkg+HuCXPSCAhx9+mF0HdsFiIL/r4hN80IcgrZKIjYmlcOHC//ojh8NBjtAc2MrZ9PI8kjEhCl7ACnSG8IBwYs+J8vpZka17QABz587Vd7/8wehIBEOdAn6Dzh07/yf5AJhMJoYNGab3gLZ4PDrBmywCLsN3074zOpJsw297QACtWrVi1dpV+uLUoq6JT/AxA0HZrZAQn0DOnHd+IaiqKnny5+F63uswG71evpC9JAMdoEKRChw/ftzoaHxetu8BAcyePVsfxx2DqBGXHW0AtkC/Pv3umnxAX8Q8afwkOAO4fud4wRd8BaTCrFmzjI4kW/HrBFSgQAFGvD8CdiEWp2Y3icDHEFYojMmTJ9/38BdffJHIyEh9T6mzbo5N8C47gcXQ9emu1KlTx+hoshW/HoK7oUKFCpyMOak/3f73NYDgj4YDa2Hf7n16YsmA+Ph4ChcrjLOcU1+0Kobi/F8K0A1C7aHEx8Vnq+2w3UkMwd1i9erVyE4ZRiOG4rKDDcAqeOWlVzKcfEDvMU8ePxkOI4bisosvgXj4dcmvIvkYIFskoJIlS4qhuOzilqG3KVMyv0f766+/Lobisotbht4aNWpkdDTZUrYYgrtBDMVlAw8w9Ha7+Ph4wouF4yjnEENx/koMvbmVGIK7gzVr1uhDcUMQm5H5o4XAKujbp+8DJx/Qh+I+n/i5PhSX+U6U4O1UYCRi6M0LZKsEVKJECX784Uc4CXyMeB/kT/YC4yGiesQDDb3drl+/fnTs2BFmAb9l+XSCN5kObIT3h70vht4Mlq0SEED37t154/U3YBX6zUXwfbHAYMiTJw87d+x02WkXLlxIuXLl9IeVwy47rWCktcD/9EXqo0aNMjqabC/bJSCAzz//nHr16umLz0T5Fd+Wil7twK6wc/tOgoKCXHZqWZbZs2cPOUJywCDgsstOLRjhODACSpQswW+/iW6tN8iWCQhgw4YNFCxcEN5DXwEv+B4VGAGchYXzFlK+fHmXN5E7d262btqKnCzD2+gFKwXfcxUYCEGBQezZvUdUuvYS2fa3YDKZ2LtrL2bMMBB9wzLBt3zLzbH8Dh06uK2Z6tWrM/N/M+EEMAo98Qm+wwIMBilBYuO6jRQoUMDoiIR02TYBARQrVoxVv61CuixBP/Q1JIJvmAnMgHbt2nlkLL9Hjx4MHDAQVgNjERNYfIUVved6BKZNnSZK7XiZbJ2AAJo0acLiXxZDNNAfvSqu4N3mAlP0393y5cs91uyECRN46aWX9J12JyKSkLezA+8Ce2DCZ+m/O8GrZPsEBNChQwfmzZ4HfwGvA9eNjki4q3nAZHj00UdZu3atx5ufPn063bt3h/l6HCIJeSkbMAzYCqM/Gs3AgQONjki4A5GA0nXp0oWfZvykj/P3RQzHeaOfgIlQp04dtmzZYtiL5FmzZtGtWzf4GRiHeCfkbdLf+bAJRo4YyXvvvWd0RMJdiAR0ix49evDLz78gnZHgFSDe6IgEQO9lTAe+gkaNGrF9+3bDZzHNnTuXXr166btojkbffVcwXgr6pKKdMPbTsYwYMcLoiIR7EAnoNk899RS/Lv4V+ZwMzwFHjY4om7MAHwDf6YsHN2zYYHjyueGHH36gb9++eqWE/ohes9HOA72BffDF5C8YMmSI0REJ9+Ed/5K9zOOPP86enXsIsYfAy8AfRkeUTV0C+gBrYMCAAaxcudLoiP5jypQpfPH5F0gHJHgeOGV0RNnUbuB5MF00sWzpMvr37290REIGiAR0F5GRkZyPPk+p4qX0J/CvAafBQWUnB4HnQT4jM2fWHCZNmmR0RHfVv39/Nv65kYCkAP0JfKPREWUjGvAL0B/yBublxNETPP7440ZHJWSQSED3kCdPHk6dPKVf0D+irycQ07TdbwXwCuTUcrJ/z36eeeYZoyO6rwYNGnD21FnC84frL8B/QMyQczc7MAYYDzVr1CT2XCylS5c2OiohE0QCug9Zllm2bJm+2HEH0AvxXshdUtEXeX4E5cuW53z0eapVq2Z0VBlWuHBhos9G07hxY/gGfduPq0ZH5adigFeBX6F3797s3bvXpXUABc8QCSiD3n//fX5b9huBVwPhBWAq+loDwTX2AN2AJdCtWzeOHT3m8g0JPcFkMrF+/Xr9BfhWoAt6BWbBNVT0tWDPgHJC4dtvvuV///uf0VEJDyhb7YjqCqmpqbRv3551f66DEsCHQGWjo/Jhqejv1xZArtBcLF64mGbNmhkdlUscOnSIlq1aciH2AjRF7xHlMzoqHxYDfAQcgIiICFatWkXhwmJrY28kdkR1k5CQENauXcsv838hMF70hrLkRq9nEXTq1Imr8Vf9JvkAVKtWjXMx53jjjTdgE6I39KBu7fUcU5g0aRIHDhwQyccPiB5QFvyrN1QceAuoC0gGB+btLgPTgF/9r9dzN//qDTVCL/lU0uiofMAhYJL+WfR6fIfoAXnArb2hnIk59QT0KvoUYuG/ktCH254EVuiLfv2t13M3t/aG5O2y3vP7BIgzOjIvdQZ9NuGLEHAqQPR6/JToAbmIqqqMHDmSsePHYkuz6U+5/QAxK1SvZvAL+tTkNKhftz5z5syhRIkSBgdmjISEBHr27MmvK37VHwGfQa+64TuXu/tcQi+7tBxks8yLPV/kq6++IiAgwOjIhEzI6H1cJCAXs9lsvPHGG0z/YTqqXYXH0RcnFjU6MgNY0cvUTAOuQdUqVZk1axaRkZHGxuUloqOj6d69O5u3boYg9OukE5DT4MCMcAWYDcwDCYmO7TsyY8YMn7wHCCIBGS4pKYnevXuz+NfFaA4NHgWeRn9HpBgcnLudRy/SuQRIhuIlivPD/37IFkNtD+LAgQP06NGDg4cOQgDQFugMuH6Hce+iAVHAAuBP/f8bNWjE7NmzKVasmKGhCVkj3gEZLHfu3CxcuJC4C3H06tWLoENBMAjoiF5Vwd+2AHcCm4E30Z/i50KtirVYtWoV0WejRfK5h+rVq3PgwAF27dxFk7pNkJZL0AN4Eb0Oob/NsEwBFqK/B3sVTJtNdGzfkdN/nWbDhg0i+WQjogfkQTNnzmTU6FGcOnVKT/3N0z8eRh+C8TUaevHNDei9nTgIyhnEM08/w7hx4yhQoICh4fmq1NRURowYwfT/TSfxaqL+bqgD0Bioim8+NjqAfcA69FJLVihcpDADBwxk0KBBXlPhXHANMQTnxU6ePMnAgQNZuXYljjQHmNGTUGOgAZDf2PjuyY5+I9kErEefxSVD2dJlGT58OD179jQyOr+zfPly3n//ffYf3q/fxEPRr5OGeP+DSxKwDf1a2Qyk6RML6j9anwkTJlCnTh1j4xPcRiQgH/H777/z9ddfs3HLRq4npO8FXgn9JhMBVMTY2VEO4G/0+nfbgS3oN5IAmSoVqtCtWzf69++fLX5XRrLZbHz33XfMmDGDfQf34bDc8uBSD71nVBb9HZJRUtF3FD6MnnT2A6reK3609qP06dOHrl27it5ONiASkA86fvw4EyZMYMVvK4i9EPvPVs+F0W8wldM/KgK53BDAjWRzDD3hHAFOovd60G8kdevU5eWXXxY3EoPd8cFFQZ/2XxX9IaYy7ktKacBx9GvlGHrSiUEflpUgf4H8tGjWgoEDB4qeTjYkEpCPs9lsrFq1iuXLl7Njxw7+OvMXydeT/0lKOdDrihUCCqZ/5AcKoE/jNaHfkEzo3+NAnyhgQ5/yevmWz3HpnxO4eX5TsImiYUWpUaMGjz32GJ07dxYvh73U1atXWbRoEatWrSIqKoqzsWexpaTPXJDQe9AFgbD0zwXSP/IDwejXyY0PJ/9cK6no29Lf+LhxrcQD6TkPCYJzBlO6eGnq1KlDmzZtaN++PSEhIR74mwveSiQgP3QjKf3++++cOnWKixcvEh8fT0JyAharBafN+U+Cug/JLBEQGECu4Fzky5uPQoUKUbRoUR599FGRbPzAjaS0ceNGYmJiuHTpEleuXiEpNQmr1Ypmy+A/e0kfbg0KDCI0Ryj58+encOHClCxZkhYtWohkI9yRSEDZkKqqxMTEEBsbi9VqxWq1YrFYMJvN/L+9uw1psm3jAP7XrV3OXmYlvqx0LQnMl8xaShn0QUlCogiiwGIYFMQkbVBpoRJhUyMJTbSC6kOW9SF7EQrEzBDyJV8qsVRIUqJpQbahlbId94ceffCeT/cdOM+rZ8cP9mHndcH+HMzz0Mvzuk5JkiBJEhYsWIDw8HDeO8XDjY+Po6+vDyMjI1Pfk4mJCahUKkiSBLVaDX9/f4SFhfGlVvbb/u08rpzDTMzNvL29odPpoNPxUy7Zr6lUKkRGRoqOwTwc/2rDGGNMCG5AjDHGhHBbAyorK8OKFSvg4+OD+Ph4tLS0uOujGGOM/YHc0oBu374Ns9mMvLw8tLe3IyYmBsnJyRge5s1PGGOM/eSWBlRcXIyDBw8iLS0NERERqKiogK+vL65eveqOj2OMMfYHmvVVcOPj42hra0N2dvbUmLe3N5KSkvD8+XOX8yeXC0/6+vUrgJ/L+BhjjP15Jufvf7rLZ9Yb0OfPn+FwOBAYGDhtPDAwEG/fvnU532Kx4PTp0y7jISEhsx2NMcbYHLLb7dBoNP/zuPD7gLKzs2E2m6fej4yMQKfTYWBg4JfBPY3NZkNISAgGBwf5Bt3/4Jq44prMjOviyp01ISLY7XZotdpfnjfrDcjf3x8KhQJDQ0PTxoeGhhAUFORy/uQd+n+n0Wj4izKDRYsWcV3+hmviimsyM66LK3fV5N/8ATHrixBUKhXWr1+Purq6qTGn04m6ujps3Lhxtj+OMcbYH8otl+DMZjOMRiMMBgPi4uJw4cIFjI6OIi0tzR0fxxhj7A/klga0Z88efPr0Cbm5ubBarVi7di0eP37ssjBhJpIkIS8vb8bLcp6M6+KKa+KKazIzrosrOdREdk/DZowx5hn4WXCMMcaE4AbEGGNMCG5AjDHGhOAGxBhjTAjZNSDexuG/LBYLNmzYgIULFyIgIAA7d+5ET0+P6FiyUlBQAC8vL2RmZoqOItyHDx+wb98+LF26FGq1GtHR0Xjx4oXoWMI4HA7k5ORAr9dDrVYjLCwMZ86c+cfnk/2/efbsGbZv3w6tVgsvLy/cu3dv2nEiQm5uLoKDg6FWq5GUlIS+vr45ySarBsTbOEzX0NAAk8mEpqYm1NbWYmJiAlu3bsXo6KjoaLLQ2tqKS5cuYc2aNaKjCPflyxckJCRg3rx5ePToEbq7u3H+/HksXrxYdDRhCgsLUV5ejosXL+LNmzcoLCxEUVERSktLRUebU6Ojo4iJiUFZWdmMx4uKilBSUoKKigo0Nzdj/vz5SE5Oxvfv390fjmQkLi6OTCbT1HuHw0FarZYsFovAVPIxPDxMAKihoUF0FOHsdjutWrWKamtracuWLZSRkSE6klAnTpygzZs3i44hKykpKXTgwIFpY7t27aLU1FRBicQDQNXV1VPvnU4nBQUF0blz56bGRkZGSJIkunXrltvzyOYvoMltHJKSkqbGfrWNgyea3KpiyZIlgpOIZzKZkJKSMu374skePHgAg8GA3bt3IyAgALGxsbhy5YroWEJt2rQJdXV16O3tBQC8fPkSjY2N2LZtm+Bk8tHf3w+r1Trt50ij0SA+Pn5O5l3hT8Oe9LvbOHgap9OJzMxMJCQkICoqSnQcoaqqqtDe3o7W1lbRUWTj3bt3KC8vh9lsxsmTJ9Ha2oojR45ApVLBaDSKjidEVlYWbDYbwsPDoVAo4HA4kJ+fj9TUVNHRZMNqtQLAjPPu5DF3kk0DYr9mMpnQ1dWFxsZG0VGEGhwcREZGBmpra+Hj4yM6jmw4nU4YDAacPXsWABAbG4uuri5UVFR4bAO6c+cOKisrcfPmTURGRqKzsxOZmZnQarUeWxO5kc0luN/dxsGTpKeno6amBvX19Vi+fLnoOEK1tbVheHgY69atg1KphFKpRENDA0pKSqBUKuFwOERHFCI4OBgRERHTxlavXo2BgQFBicQ7duwYsrKysHfvXkRHR2P//v04evQoLBaL6GiyMTm3ipp3ZdOAeBsHV0SE9PR0VFdX48mTJ9Dr9aIjCZeYmIjXr1+js7Nz6mUwGJCamorOzk4oFArREYVISEhwWaLf29sLnU4nKJF4Y2Nj8PaePsUpFAo4nU5BieRHr9cjKCho2rxrs9nQ3Nw8N/Ou25c5/IaqqiqSJImuX79O3d3ddOjQIfLz8yOr1So6mhCHDx8mjUZDT58+pY8fP069xsbGREeTFV4FR9TS0kJKpZLy8/Opr6+PKisrydfXl27cuCE6mjBGo5GWLVtGNTU11N/fT3fv3iV/f386fvy46Ghzym63U0dHB3V0dBAAKi4upo6ODnr//j0RERUUFJCfnx/dv3+fXr16RTt27CC9Xk/fvn1zezZZNSAiotLSUgoNDSWVSkVxcXHU1NQkOpIwAGZ8Xbt2TXQ0WeEG9NPDhw8pKiqKJEmi8PBwunz5suhIQtlsNsrIyKDQ0FDy8fGhlStX0qlTp+jHjx+io82p+vr6GecRo9FIRD+XYufk5FBgYCBJkkSJiYnU09MzJ9l4OwbGGGNCyOZ/QIwxxjwLNyDGGGNCcANijDEmBDcgxhhjQnADYowxJgQ3IMYYY0JwA2KMMSYENyDGGGNCcANijDEmBDcgxhhjQnADYowxJgQ3IMYYY0L8BXogwPZzUTFNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2 -3.852752827221033\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAibNJREFUeJzs3Xd4FMUbwPHv7t2lQQglhN57D02kg3QQpaiAgIAFBEQRBEVFQBCkoyKgoIBSBKmCSJfeS+gdpAUSAiQh/W53f39s4EcnIXe3d5f5PE+eaNjcvLls9t2ZnXlH0jRNQxAEQRCcTDY6AEEQBCF9EglIEARBMIRIQIIgCIIhRAISBEEQDCESkCAIgmAIkYAEQRAEQ4gEJAiCIBhCJCBBEATBEGajA3iYqqqEhobi7++PJElGhyMIgiCkkqZp3Llzh9y5cyPLT+7nuFwCCg0NJV++fEaHIQiCIKTR5cuXyZs37xP/3eUSkL+/P6AHnilTJoOjEQRBEFIrOjqafPny3bueP4nLJaC7w26ZMmUSCUgQBMGNPesxipiEIAiCIBhCJCBBEATBECIBCYIgCIYQCUgQBEEwhMtNQhDsLyQkhGPHjj3wtTJlyhAcHPzcxz7uOHc7Nq3vgSscK95bxx3rqu9tao519nubapqLiYqK0gAtKirK6FA8wsGDB7WAgAANeOCjbt26jz2+bt26KTr2cce527FpfQ9c4Vjx3jruWFd9b13h9xAQEKAdPHjwscdrWsqv45KmudaW3NHR0QQEBBAVFSWmYdvB3Llz6dSpEz179qRmzZr3vi7uDl33zjs1x4r31nHHuup7m5pjHfF+bd++nalTpzJnzhw6duz4yPGQ8uu4SEAe7m4CetrJIgiCkFIpuaak9DouJiEIgiAIhhAJSBAEQTCESECCIAiCIUQC8nBlypShbt26lClTxuhQBEHwAPa8pohJCIIgCIJdpfQ6LhaiCh4pNDSUI0eOcOLECc6dO8d///1HVFQUNpsNm82GpmmYzWYsFgsZM2Ykf/78FClShBIlSlChQgXy5cv31I20BM+gqipnzpzhyJEjnDp1igsXLnD58mXi4uLunSuSJGGxWDCbzWTLlo0CBQpQrFgxSpYsSfny5QkMDDT6x3BbIgEJbi06Opply5axZs0aDhw4wOUrV4iPj0dVlAeOs/j44JMxIyaLBdlkAkBTFBRFITEmhsS4uAeOl2QZHx8fcuXMSXBwMA0bNqRt27YEBQU57WcT7OvixYssWrSIjRs3cuTIEcIjIkhKSODhQSAff3+8fH0xmc1IyTchqqKgWK3ERUWhWK0PHG8ym/HLkIGC+fNTrVo1mjdvTrNmzfDx8XHaz+auUj0Et2XLFsaOHcv+/fu5du0aS5cupVWrVvf+XdM0hgwZwvTp04mMjKRmzZpMnTqVYsWKpej1xRCc8DRJSUnMmDGDWbNmcfzECeJiY9E0DUmWyVGkCAWDg8lVvDgBQUEE5MhBpqAgAoKC8MmY8emvGx9P9I0bRIWFERUeTlRYGGHnznExJISrp06h2mwA+Pr5UaRwYdq3b0+fPn3EOerCrl+/zoQJE1iyZAlXrl4lMSEBAIu3N3nLlKFAhQpkL1RIP1eSP/yzZ8fi7f3E19Q0jfjoaKLCw4kODycqPJzIa9cIPXWKCwcPcvPSJUC/gfH396dSxYp0796ddu3apasetcMWov7zzz9s376dypUr06ZNm0cS0OjRoxk1ahSzZ8+mUKFCDB48mCNHjnD8+PEU3RGIBGRfISEh9O3bl0mTJtmndpMBQkNDmThxIkuWLOHipUsoNhsZsmShTP36FAgOpkC5cuQuVQovB91xKlYr106f5tKRI1w8fJhj//5L5LVryCYTuXLlonmzZvTv358SJUo4pH0h5fbu3cuECRNYv2EDNyMi0DSNHIULU6puXfKXL0/+cuUIKlToXi/Y3uLv3OHKsWNcOnqUCwcOcHzTJpLi4rB4eVGieHHatWvHhx9+6NbXtpRcU5xSCUGSpAcSkKZp5M6dm/79+/PJJ58AEBUVRY4cOZg1axbt27d/5muKBGRf7lwJYfbs2YwYMYJz58+jqSo5ihShQtOmlG/YkPwVKhh2R6lpGqGnTnFk/XoOr13LpcOHQZLInTs3fT/6iP79+6eru12jxcXFMWTIEH759Vdu37qFJMsUfeEFyjduTLmGDQnMn9+w2GxJSZzbu5cj69cTsnr1vRuX8uXKMXLkSJo1a2ZYbM/LnpUQ7PoM6MKFC1y/fp2GDRve+1pAQADVqlVj586dj01AiYmJJCYmPhC4kH5FREQwcOBAFi5aROydO2TOmZOX+/en8iuvEJgvn9HhAfqNV56SJclTsiRNP/iAqPBwQlavZsvs2QwcOJDBQ4bQvGlTJk6cSIECBYwO12MdOHCA/v37s237dmxWKwUrVqTll19StkED/AICjA4PALOXFyVq1qREzZq0/eorrp0+zd6lS9k2bx7Nmzcna7ZsvPvOOwwbNixdPjOy623a9evXAciRI8cDX8+RI8e9f3vYqFGjCAgIuPeRz0UuMoJzXbp0iTp16pAzVy5mzppF/ooV6fHLL3y9fTtNevd2meTzOAFBQdR96y2+XL+evgsWUOall1i2fDmFChemfPnyHD582OgQPcq6desoULAglatUYfvOnVR7/XU+W7WKT5Yu5YU2bVwm+TxMkiRylyjBq599xsi9e+kyaRL+efMyZswY/AMCaNOmTbq7ATd8FtygQYPo16/fvf+Pjo4WSSgdiYyMpEuXLvy9ahVIEnW6dKHOW2+R3Q17DpIkUbRaNYpWq0Z0eDjb589n/c8/E1yxIjWqV2fevHnkN3A4yN0dOHCATp06ceLkSTIFBvLaV19RrW1bfN1wqN7i7U3VVq2o2qoVl48eZdPMmSxbsoTA7Nnp2qULkydPxsvLy+gwHc6uPaCcOXMCEBYW9sDXw8LC7v3bw7y9vcmUKdMDH4LnS0pK4u233yYoRw5WrFzJi6+/zrCtW2k7eLBbJp+HZQoKotlHHzF8xw4a9ujB7r17KVykCC1btiQyMtLo8NzKxYsXqV69OlWqVuXClSu0/vxzhm3dSr1u3dwy+TwsX9mydB4/ni/WraNUvXpMnz6dgCxZ+Oqrr1BV1ejwHMquCahQoULkzJmTDRs23PtadHQ0u3fvpnr16vZsSkghVyzFs2DBAjJnzcrMmTMp06ABX65bR4dRo8j8hJsUd+YXEMCrn37K0K1befH11/l71SqCcuRgzJgxRofm8lRVpVevXhQpWpR9Bw/SuFcvhm/fToP33sPigc9LchYtSveff+aTpUvJU7Ysw4cPJ3tQENu2bTM6tAcYWoonJiaGs2fPAlCxYkUmTJhA/fr1yZo1K/nz52f06NF8++23D0zDPnz4sJiGLRATE0OLFi3YsnUruYoVo+OYMRR006nhzyvs/HnmDxrE2d27KVWqFOvXryd37txGh+VyQkJCaNasGdevX6dyy5a0GTyYgHS0CFjTNI5v2sS8Tz/lzs2btHvjDebMmeM2sysdNg1706ZN1K9f/5Gvd+nShVmzZt1biPrzzz8TGRlJrVq1mDJlCsWLF7dr4IJ7WbBgAd3eeYeE+Hia9ulDk969MaeDMe7HUVWV7XPnsmTECNA0RgwfzsCBA40OyyWoqsoHH3zAT9On4+vvz5vffkuFJk2MDssw8XfusGzkSLbPn0+WrFn5a/lyatWqZXRYzyR2RBVcgs1mo1mzZqzfsIFcxYrRZeJE8rrQcKCRIi5fZs4nn3B2927KlCnDjh070vU5f/HiRarXqMG10FAqv/IKrw8bRsYsWYwOyyWc2LqVOf37c+fmTd7u1o3p06cbHdJTiQQkGO769etUrlKF0KtXadqnD0379Em3vZ4nUVWVrXPmsPjrr8mYIQM7tm93qed1zvLPP//Quk0bJLOZzuPGUaFpU6NDcjnxd+6waOhQdi9eTMWKFdmxY4fLrh0SW3ILgD6WXq9ePUJCQpza7rZt2yhcpAg3bt6k+88/83L//iL5PIYsy9R96y36LliAajJRsVIl5s+fb3RYTvX111/zcsuWBOTKxacrV4rk8wS+/v50GjeO14cNI+TQIfLmzcuFCxecHoc9rykiAXm4Y8eOsXnzZo4dO+a0Nn/44Qfq1a+PT+bMDFi+nPKNGzutbXdVuHJlPv37b3IULUrHTp0eWBvnqVRVpWXLlgwZMoSStWsz4K+/yF6woNFhuTRJkqjbpQsfzJlDbFISJUuXZuXKlU6NwZ7XFJGABLvq1asXH370EYWSL6i5RYHOFMuSKxf9liyhUosWTJw4kSYe/PA9KSmJUqVKsXLlShr17Mn7v/yCr7+/0WG5jRI1avDpypVkyZOHV1u14rvvvjM6pOciEpBgN127dmXq1KlUa9uWPnPmiAfIz8HLx4eu339Ps48+Yu3atdSpU8fjFiMmJCRQvEQJzpw5Q6dx43j1008dVp3ak2UvUIABy5dTtFo1Pu7Xj2+//dbokFJNJCDBLjp27Mjs2bOp1bEjHceMwWSxGB2S25IkiRYff0yrQYPYunUrNWrU8JgklJCQQLHixbl06RJv//gjL772mtEhuTWfjBnp+euvlKpdm8+/+IIRI0YYHVKqiAQkpFm3bt2YN28e9bp2pd2IEW6zWM7VNezRg7ZffcXu3bsfu/bO3SQlJVGyVCmuXr3Ke9OmUbF5c6ND8ggWHx+6T59Omfr1+WrIEMaOHWt0SCkmrhQeztGleD788ENmzZpFrTffpO2QIUiS5JB20qv6b7/Nq599xpYtW9xy75i7VFWlXLlyXLp4kbcnTxYTU+zM7OXFO1OmUKJmTT797DOmTp3qsLYMLcXjaGIdkPv45ZdfeK97dyq/8gpvTZggej4OtHLCBFZ//z0DBgxwyzpyzZs3559//uGtCRN4oU0bo8PxWEkJCUzu1ImLISFs3rSJmjVrGhKHWAckONSBAwd4v2dP8pcvT8fRo0XycbAWH39McLNmjBs/nkWLFhkdTqoMHTqUf/75h8a9e4vk42BePj50//ln/LNnp1GTJoSHhxsd0lOJHpCQardu3aJAwYLIPj589vffZEpHRSKNlBgXx/jWrblx4QKHQkIoVaqU0SE908qVK3m1VStK161L9xkzxI2Kk1w9cYJxrVoRlD07ly5edPr7LnpAgkOoqkrlKlWIT0jg/V9/FcnHibz9/Hj/11+x+PlRvUYNYmJijA7pqS5cuEDb118nsEABunz3nUg+TpSnVCm6fvcdV69coVGjRkaH80TijPBw9i7F0759e/67cIHO48eTv1w5u7ymkHJZ8+Shx/Tp3Llzh7p16xodzhOpqkr16tWRzWZ6zpwpFpkaoELTprTo14+NGzfyzTff2O11RSkeIcXsWTZj48aNLFq8mNqdOlHllVfsEJ3wPIpUrcqrgwZx4MABJk+ebHQ4j9W9e3fCwsJ4a+JEj9jh1l017dOHErVqMfTrr7l06ZJdXlOU4hGczmaz0aZtWzLnzEmrQYOMDifdq9+tGwWDg+k/YAARERFGh/OAffv2MXPWLKq2akV5Fx7+SQ8kSdInCZlMNGzY0OhwHiESkJAi7du3Jyoyks7jx+OdIYPR4aR7sslE5wkTUBSFxi60pkZVVZq3aIFf5sy8PmyY0eEI6MO2bb/6ijNnzrhcpQSRgIRn2rhxI0uWLqV2584Ur17d6HCEZDkKF+aVTz/l4MGDLjMU1717d26Eh9NxzBj8AgKMDkdIVqN9e0rUqsWw4cPtNhRnDyIBCc/0Rrt2+tDbZ58ZHYrwkLtDcZ8MGEBcXJyhsZw5c4aZs2bxQuvWlGvQwNBYhAfdPxTX3IVKIJmNDkCwv4sXL7JmzRoiIyM5e/YsBQsW5ODBg+TMmZP69eunajrst99+y82ICLr//LMYenNBsslE+5Ej+bZFC9577z3mzp2b4u9VVZW9e/eyZ88eoqOjSUhIwM/Pj4CAgOcqtdKhQwfMXl60/vLL1P4YghNkzZOH5n37suzbb9mwYQMNnvMmQZTiER6waNEiZs6cyZEjR4gIDSVeUZ54rBkICAigcPHi1KtXjy+//PKJ77PNZiNzlixkL1qU/kuXijpvLmzWRx8RsmoV10JDCQwMfOwxSUlJjB07ltWrV3PqxAkib93C+pQ/f29ZJmtQEKXLlKFt27b06NHjiTcvO3fupGatWjT/6COaffSRXX4mwf6SEhIYWrs2mf38uPjffw5rJ6XXcZGA3FR0dDSfffYZ8377jajYWHyAirLMCyYTlU0myssyAZKEN2AD4oHzqsp+RWGforBHVQnVNCySROVq1Rg7diy1atV6oI2PP/6YSZMm0XfhQoq+8IIBP6WQUhGXLvF1/fo0atiQ1atXP/Bvx44do3///mxav55ERSGbJPGCLFPFZKKyLFNClvGTJLyARCBG0zimquxXVfYmny93gAxeXrRs04bx48eTO3fuB9ooVrw4oTduMHz7dtFTdnE7Fixg3qefMmfOHDp27OiQNkQC8lAxMTG0atWKLRs3YtU06ptM9LFYaGk2Y05lD+WUqjI1KYlfrFZigJxBQfw6axbNmjUjLi6OLNmyUbRaNXrNnu2YH0awq4VDhrBtzhxOnzpFkSJFCAkJ4bW2bblw/jxm4E2zmd5eXlSW5VT1ZjVNY6OiMDkpib8UBQkoX7EiK1euJHfu3Pz111+8+uqrvDZ0KPW6dnXUjyfYiWKzMaJhQ9SYGCJu3HBIGyIBeaD58+fzXrduJCQm0tNiobfFQkk77CQZq2nMt1oZmZTERU2j+csvkylTJubNn8+gVavI4wY1xwSIvnGDIbVqUSk4mIoVKzJj2jQySxKDvLzoarGQ1Q5DqFdUlZ+sVsYnJaHKMl+PGsV3339PnKoydPNmzF5edvhJBEcLWb2aGe+/z8SJE+nbt6/dX18kIA8SExNDixYt2LplC2Vkmd99fAhOYeK5lnzB6GGxkOsZkw/iNI0vExOZaLViMpko06AB3X/+2R4/guAkS775hk2//oqqKHQwm/nBx4dsDnh295+q0i0hgU3JzxvbjxxJrTfftHs7gmNomsaIRo2Q4+IIvXo1Vd8bEhJC3759mTRpEsHBwY89RhQj9RChoaEUyJuX7Vu2MMTLi/1+filOPgDXNI1hSUlcS8F9hp8kMcHHhx+8vFAUhbpduqQldMEAtTt1QlUU+pjNzPP1dUjyASgoy2zw9aWJyYSXnx9VW7VySDuCY0iSRL0uXbgWGsrevXtT9b2iFE86cfHiRUoWLUpiVBT/+voyxNsbLyfMRNuqaeQsUIDiNWo4vC3BvrIXKEDp2rXZ4YTzxArslyRqvPEG3n5+Dm9PsK+qrVtj8fGhf//+hsUgEpCLCg8Pp0KZMsjx8Wzx86O22TlLtq6rKktsNmp26SKmXbup2l26sN9qZe9TpuPbw2KbjQibjVqdOjm0HcExfDJm5MXXX2fnrl2Gbe0hEpALUlWViuXLkxQby1o/PyrZYaJBSs2wWpEtFqq1beu0NgX7KlO/Ptly5GBKUpJD25msKJSoVo2cRYs6tB3Bcep07ozNamXw4MGGtC8SkAvq1asXoWFhzPPx4YU0Jp9cksQQLy9ypaA3o2kav2oalV55RdTxcmOyyUT1Tp34Q1WJd9Aco3Oqyk6rlZqdOzvk9QXnyFW8OIUqVWJOKipo2LMSgkhALubAgQP88tNPvGk208piSfPr5ZJlhnp7P3MGHMAJVeWC1UrFFi3S3K5grOBmzUhQVTY4aBjuL5sNi8VCmZdecsjrC85TqUULbkZEcP369RQdHxwczKZNm544Ay41RAJyIaqq0rxpUzJLEt/7+Di9/b9sNry9vUXFaw+Qo0gRcuTNy182m0Nef7mqUqJGDTH5wAOUbdgQTdOYMGGC09sWCciFjB49mrAbN/jZ29th02efZrmmUbJOHSwGJD/BviRJokzTpizXNFQ7D8Pd0jS22WyUdaF9iITnl71AAYIKF2bJkiVOb1skIBfyw6RJlJFlWjlpxtv9wlWV3VYrZcUOlh6jXMOGhNts7FdVu77uPzYbiqZRVmy54DGCmzblv4sXSXLwxJWHiQTkIrZv38718HA+tFgMmf78t6KAJFFWjOl7jMJVqpAhY0a7D8P9ZbNRsHRpMufMadfXFYxTtkEDFJuNX375xantigTkIgYOHIgf8KYdJh7c75qqMjQxkWvPuAvearORr3hx/J9Qyl9wPyazmeK1a7PFzkNwmyWJ4vXq2fU1BWMVrFgRLz8/li9f/sxjQ0JCqFevHiEhIWluVyQgF6CqKvt27qSrxUJGO/d+UlqKZ68sk7dSJbu2LRgvX7lyHFBVuz0HClVVwqxW8pcvb5fXE1yDLMvkK1OGoykoryNK8XiY3bt3k6RpNDbg2Q9AvKZxwmolf9myhrQvOE6+cuWIURTO2CkB3X2eJM4Vz1OgQgVuOGh7hicRCcgFLFu2DIDKqdgq254OqSqKpom7Wg+Uv1w5APbbaT3QfkXBP1MmsuTJY5fXE1xH/nLlSEpM5MyZM05rUyQgF7B9+3YCJYncBtVe268omE0mchUvbkj7guNkyJyZ7Lly2S0B7dM08pUvL+oEeqB8yTcrixcvdlqbIgG5gNMnT/JCKnepTKmUlOI5oKrkKVYMi7e33dsXjJc3OJh9dnqt/UDeChXs9GqCK8lesCBefn5s2rTpqcfZsxSPMQ8dhAfE37lDYQcNv90txfM054HAYsUc0r5gvOyFC3PCDjc3iZrGdauVhoUK2SEqwdXIskxg/vxcunTpqcfdLcVjlzbt8ipCmqiqiq+B7V+VJDIFBRkYgeBIAUFBhFmtpHXz47szKQPEueKxsuTKxa1bt5zWnkhALkDTNEwGjqlfVxQCcuQwrH3BsQJy5CBJ00jrZeVeAhLniscKyJmT2Ph4p7UnEpALkGWZRAeVzX+WWE3jjqKIu1oPlil7dkBfw5MWd79f9JY9V0D27CQkJDitPZGAXIDJbCbKoLbFsIrny5zcY3nWYuRnuaZpmM1mMmTObIeoBFcUkCMHNqvVaTXhRAJyAdlz5+aAg/ZteVYpnmvirtbj+d/tAdkhAWXOlk1MwfZgmYKCQNM4efLkE48RpXg8yMWLFwE4qqokOWAY7lmleGKTP3tnyGD3tgXXYPH2xmwyEZfG8ytW08T+Px7u7nXgaRMRRCkeNxcTE8NHH31ElsAsFCxUkHPnzmEDjtm5bH5K3K2TbErj1t+Ca5NNJtJaE9sGyAaVixKc4+51IDEx0SntiQTkRLt376Z27dpkypKJ77//nsi8kTAA+BOQYK+DhuGexpZ8VyyJBOTRTCYT1jS+hg19wozgue7eYDhrIoK4nXEwm83G2LFj+e777wi7HgY+QGugDVD4/8fJ5eG341a64+XU+MRofvqgaVqa7zbFueL57q4Vc9aIiEhADqKqKp999hmTfpiENcEKhYBPgSbAYx63qK/D9i9VjloUytrxl/+sUjzm5K+rBvS+BOdRFQVzGnsvZsR54unU5M0LvZ9SPUWU4nFxEyZMYPDQwcTdiYOqwDtAME+/hawH5swwNdbKj/ZMQM8oxXN3+zvFmtYBGsFVaZqGzQ4JyII4TzydkoIEJErxuKj58+eTLXs2+vfvT1zuOPgRmAxU5NnjFxawtYGZipVIJy5KzZLcA4qLjHRam4JzJcTEoKoqWdM4fTqLJBEbZdSKNcEZ7l4HChYs6JT2RAKyg3379pG/QH7efPNNbnnfglHAbKBKKl+oDSRZYECi81Yi3x2aiwoPd1qbgnNFhYUBPLUiekrkkiSio6Lu3SULnicqLAxJlsmbN69T2hMJKA1UVeXtt9+m6otVuRx9GQYBC4GXeL4nttlB6QszrDbWOumPPIckISESkCeLTv7d5k7jEFxuWUbTNO5ERNgjLMEFRYWH4+Xt7bTZjiIBPad9+/aRI1cOZs6cCY3Rp1K3Iu1P1VqDXBm6WhOIcsJQnEWSyGax3LtLFjzP3ZsLe/SAAHGueLCo8PCnPv+xN5GAUklVVd59912qvliVCGsEjAOGApns1IAE6mAIN2n0SExATWv5lGeU4oHkoRXRA/JYUeHhZDSZyGCvBCTOFY8Vef06mTJmfOoxohSPQY4ePUqOXDn45Zdf9F7PQqC2AxrKBcoQWGC18WFiYpr2cXlWKR6APKpK5PXrz92G4Nqirl8npx1mVmaXJEySRJQ4VzzW7dBQsmXL9tRjRCkeA8yZM4cKlSoQkeiAXs/jNAA+gx+tVvokJqa5J/Q0pSWJ63Y4mQTXdO34cUrbocyTSZIoZrEQeuqUHaISXE1SQgI3L1+mdOnSTmvT7glIURQGDx5MoUKF8PX1pUiRIgwfPjzNuzEa6cMPP6Rzl86ohVWYg2N6PY/TGvhUT0JvJjrumVBlk4kb164RK6ZiexxN07hy9ChV7fRQuaqqcsUOQy+C6wk9cQJNVWnatKnT2rR7Aho9ejRTp05l8uTJnDhxgtGjRzNmzBh++OEHezflcDabjZo1a+qxNwJ+Bpy9a0EbYCQsMtkomRDLGgfMjqucPDxz+ehRu7+2YKybly8TExNz73ecVpVNJq6cOiUWpHqgS0ePIkkSrVq1clqbdk9AO3bs4NVXX6VFixYULFiQ1157jcaNG7Nnzx57N+VQV65cIXe+3OzYsQM+AIah13EzQgNQ/oDwYI2m8fG8mxCf4sWqzyrFA1BMkshoMnH5yBF7RSy4iEvJv9PKduoBVZZlrFYr186cscvrCa7j8pEj+GbIQKZMT3+2YM9SPHZPQDVq1GDDhg2cPn0agEOHDrFt2zaaNWv22OMTExOJjo5+4MNoBw4coHDxwtyIugETgM4YX4kxF6iTgc9gpmwjV1wMPRMSOPKM2lx3S/HkesIFKFrTmGq1oqJxUSQgj3P5yBEsZjO/WK2Ep/E50AVVZXFyD1z0lj3PfyEh5MuT55nH3S3FExwcnOY27Z6APvvsM9q3b0/JkiWxWCxUrFiRvn370rFjx8ceP2rUKAICAu595MuXz94hpcrOnTt5ocYLWDNYYSZQ09BwHiQBrUFdAglvw4yMVsrHxVEjIZapSUnsUxQSn9Ez0jSNi6rKEquV9xMSyBEXQx9rInG5VM4f2OvWz+qER50/uB9roI0vtSTyxMXSISGe+VYrp1X1mRNbbJrGEUVhptVK04Q4isTG8oPFipzFzIWDB530EwjOkBgby/WzZ6lcubJT27V7MdKFCxcyd+5c5s2bR5kyZQgJCaFv377kzp2bLl26PHL8oEGD6Nev373/j46ONiwJbdq0iQZNGqBmUWEakNuQMJ4tEHgPbN2AzbD7T5VdhxLREsEsQUmLTGVVJpMk4YO+j0s8cBaVvZpCVPJjJHMg2FoBrwLnILrvDa6dPk3uEiWM+bkEu4qLiuL8/v3wMaiNQF0FixbZ+OOKfgJkMEFFWaY0JvzQi40mATHAIRSOKCqJKiCBqRhor4PSGJhq48jGdWjaSLE9t4c4sXUrmqry3nvvObVduyegAQMG3OsFAZQrV46LFy8yatSoxyYgb29vp668fZJt27bpyScwOfnkMDqiFDADDUBtACQAZ8F2Eo6eVDl5RkWKBxKTj/MGay6gFFBS/7AF3vdamUHykzmyfr1IQB7i+ObNaDZVn7UZAHQAWwcgCjgJsSdh2wmVXZdUpCTACniB5gO2wtw7TygOyv1biNSGO39EcOXYMfKVLevsH0twgMPr1uHj50e9evWc2q7dE1BcXNwjdYRMJhOqAdtNp9TevXup17AeajZVn+mW3eiInoMPUDb5A1K//bIXaNVUQtatpknv3vaNTTDEkfXrkEuYUHM89JwwAKiW/MFznCvBIGc0cXjdOpGAPICqKBxZt46KFSo4vW27PwNq2bIl33zzDX///Tf//fcfS5cuZcKECbRu3dreTdnFsWPHqFGnBkqAovd83DH5PE0EMD3587PUgcshR0RZHg+gWK0c/XcDam0HbCBnBrWGwqH1q+3/2oLTXTh4kPjoaN5+++0UHe/SpXh++OEHXnvtNXr16kWpUqX45JNP6NGjB8OHD7d3U2kWExPDizVfxOZjg6lATqMjcoAIYAYpS0A1ABmObtzo2JgEhzu7dy+Jd+KgloMaqA2hx05xOzTUQQ0IznJk3TpMFgtdu3ZN0fEuXYrH39+fSZMmcfHiReLj4zl37hwjRozAy8vL3k2liaqqVKpciZiYGL20jnO2v3BtmUEKltm9bLHRkQhptHfZMuQcJv0ZjiNUB8lLYt/y5Q5qQHAGVVHYu2wZRQsXxmx2/gbZ6bYW3BtvvMGZ02fgC6Cc0dG4Dq2Vyrlde7l+9qzRoQjPKS4qin1/LUNtpThu/Zo/aA01Ns/7DfUZa9EE13Xs33+JCgvj888/N6T9dJmAxo4dy+Ili+FNoIXR0biY+iBnMbF1zhyjIxGe0+5Fi7DZrPr0ekdqC5GXr3FiyxYHNyQ4yubZs8ng789bb71lSPvpLgFt3LiRgYMGQlUgPUz2CgTeTf6cEl6gvqKwc9FCEmNjHRiY4AiqqrLp91lQT4OnV9VPuzIglzSx+ffZDm5IcIQbFy9ycutW2r/xRqq+z6VL8biyyMhImr7cVF/j8w0OmITugpIXraY4AQG0hqTYOPaK8X23c3rHDm7+dxlec0JjEqhtFY7/u5mIy5ed0KBgT9vmzsVkNjNmzJhUfZ9Ll+JxZY0bN8aaZNUnHThyLx93lwuoJfHvrF9cev2W8Kh/Z/6CXNgEwU5qsDFIGSS2/PabkxoU7CEhJobt8+cTXKECWbNmNSyOdJOAZsyYwd69e6EHUMToaNxAZ42w0+c4sGKF0ZEIKXThwAGObfgXtbMDJx88zAe0N1Q2/zZL7KrrRjbOmEFibCw//vijoXGkiwQUGRlJrz69oATw+JqowsMqgFRbYvn40diSkoyORngGTdNYOnokclETNHFy4x1B81FZ9d13Tm5YeB53bt5k3bRpVKpYkWrVqhkaS7pIQI0bN8ZqterbaKeH5z73S00lhIdoPTVuXw5lx4IF9o5KsLMTmzdzfvc+1J4K2GfvuZTLCGo3hZ0LFxB27pyTGxdSa83kyShWK/Pnz3+u73fpSgiu5oGht8JGR2OA1FRCeFgRoBn8/d0EEuPi7BuXYDeqqrJ0zEikCrJx24e0ASlQYsX4cQYFIKTEzcuX2fL777xUvz7FihV7rtdw6UoIriQuLk4MvaXVexAXFcnGGTOMjkR4gv1//cW146fReqvGbZzoDWp3hZBV//Cf2CvIZa0YPx5Zkpg7d67RoQAenoDefvttrAlW+JL0N/RmL7lBa6+xevL3ojqCC7pz8yZ/fj0E6kvg/GLGD2oGcgkTv3/6CdbERIODER52fNMm9i1bxpsdOhAUFGR0OIAHJ6Dw8HAWLl4ITYHiRkfj5t4FLZfG7P59UWypLt4vONDCrwaToMTAABfYydYE6mCFsPPnWf3DD0ZHI9wnPjqaOQMGkC1bNmbOnGl0OPd4bALq2LGjvr10D6Mj8QA++oXl8pGjYijOhRxctYqDf69C/URxfNWDlCoGdNNYO3UKFw8fNjoaIdniESOIuXWLFStWPLJfm5FcJxI7OnPmDOv/XQ9tcd1ttZ0ltaV4nqQc0AFWThgnhuJcwJ2bN5n/5SCoJ0Ejo6N5SFeQikrM7t9XDMW5gOObNrFr4UI6vvkm1atXT/Pr2bMUj6Rpmgv03f8vOjqagIAAoqKiyJTp+coVVKlShf1H98MywLhFvp4nAeS3TOQJKEm/P5dgcYGt1NMjTdOY3rMHR3duQJ3vQr2f+50Buko0fKc7rQYNMjqadCvm9m1GNm6MRVUJDw93Wu8npddxj+sB7dy5k/0H9sNbiORjbz6gDlG4cuI4CwYPxsXuXdKNtVOmcHj1WtRBLpp8QB+Ke19j/U8/cWDlSqOjSZcUq5UZ779P7O3bLjf0dpfrRZRGvXv3hgxAB6Mj8VBlQBuksWvhQjbPFlWQne3wunWsGDcO3gHqGx3NM3QCGsFvn/Tj8tGjRkeT7iwePpyze/Ywftw4uwy9OYJHJaDw8HAOHj4IbdCTkOAYLYA3YfHwrzm5bZvR0aQb106fZmbfPlAX/bmeq5OAL0EtqDD1vbeJvnHD6IjSjW3z5rHlt994s0MHPvroI6PDeSKPSkADBw4EBWhtdCQuJA2leJ6qN1BVY0bv97nx3392fnHhYTG3bzPl3a4ouawwRHOfv1wfUMcoxCTd5Of3u4u6gk5wds8eFnz5JWXKlHHIglNRiucxVFVlwaIFUAMx8+1+aSnF8zRm0EZoJAXEM7lrZ6LDw+3cgHBXYmws0959m6joMNSxCvgZHVEq5QB1tMLFwyH81v9jsYW3A4WeOsVP775LQEAAe/bscUgbohTPY8yePZuE2ATnbMQl6PxBnaRwOy6USR3bcefmTaMj8jhJCQlMfbcbF08eQh2vuO/NVTnQhmscWLWKuZ8OFPtMOUDYuXN81749kqKwb+9e/Pxc/07FYxLQiG9G6Dudvmh0JOlMHlAnK0TcusR3HduLJGRHSfHx/PTeO5w7uA9tggpljY4ojeoDQzR2L17M/EGfiSRkR2HnzzOpXTuUhAT27d1LkSLusemZRySgM2fOcP78eXgd55eiF6CAnoTCb5xnYvvXiBLDcWmWGBvLj93e4vS+nXryCTY6IjtpAnwFO/9cyO/9+4nSTnYQeuoUE9q2xRoby+5duyhVqpTRIaWYRySgUaNG6f/R3Ng40rXCoE5TiIi6xPjX24h9YdIg+sYNvuvUgfNH9qN9p0JloyOys+bA17D3r+X80run2OojDc7t28fE119HTUriwP79lC9f3uiQUsUjEtCq1augNK67KM9I9irFkxL59SQUKV1jTKuWHN+82QmNepbLR4/ybcvmXLl0DO1H1fgK147SCBitcWTLBsa1bcWtK1eMjsjt7FiwgO/atcNLljly6JDTej6iFM99bt26Rbbs2aAnevUDwXgxIH0lwU5o9fkXvPTOO0iSURvVuI/9K1bw+4D+KIVtaKNVcI2K+Y51FuQBJnwSMtJ92nSKvvCC0RG5PMVmY8nw4WyePZtSpUqxZ88eMmbMaHRYD0g3pXi+//57UIHaRkci3JMRtLEaWieNpSNG8Fv/flgTEoyOymWpqspfY8cys08fbPWS0Kamk+QDUBTUmQrxBe/w3Zvt2TZvntERubSY27eZ3Lkzm3/7jfbt23P8+HGXSz6p4fYJaMGCBZALKGh0JMIDTOiLVYfBvpXLGNP6Fa7YYd2Ap7l5+TLfd+zA2ik/wgfAUMDH4KCcLTNoP6hor6r88fnnzPzoQ2Ju3zY6Kpdzcts2RjVtyvm9exk/bhzz5883OqQ0c+sEZLPZOHXuFNTDuK2IhadrCtoMjTDrOUa/2pJVkyahWK1GR2U4VVXZ+vvvjGjSkPPn98H3QGfS73lsBgYCQ+HAxpUMb/QSh9euNTgo15AQE8P8QYOY3KkTstXKpn//pV+/fkaHZRdunYDmzp2LZtXE8NvTOKoUT2qUAHWWgtZZZdUP3/Htqy9z5fhxAwMy1t1ez4LBg7E2TkSdp4B49KFrBtp8lbiSkfzcvTszP/qQ2MhIo6MyzMlt2xjeoAE7Fyygffv2hIeFUatWLUNjEqV4ki1duhQseO5MIXtwVCme1LIA7wO/aoQlnWX0Ky+z/NtviYuKMjgw50lKSGD9Tz8xommj//d6BgHuO4TvGNlBG6fBEL039HWjl9i5cGG6KuFz+9o15nzyyb1ez7///sv8+fMxm81GhyZK8dwVEhICRdG774J7KJncG+qmsn7Wz3xVpybrpk0jyYMnKSg2GzsWLGBovdosG/st1mYJeq+nmtGRuTAJaK73hmIr3GbuwIGMaNqQQ2vWePQ+VLGRkSwbNYqhdeqwd9kyOnToQHhYGHXq1DE6NIdw6wR0NfwqpH0quuBsFuBd0BarJDSMYfm40QypW4sdf/zhUSvjNU0jZPVqRjRpwLxPPyW6XAT8ocEARK8npbID32gwC25kvsj0Hj0Y2+ZVzuzaZXRkdpUUH8+aH3/kq5o12Th9OjWrV+e/CxeYN2+eS/R6HMVtf7LQ0FBs8TYoaXQkwnMLRH/w3EHjzk8RzPvsM/758Xvqdu7Ki6+/TsYsWYyO8Lkkxsayd/lyNv02k+snzyBVk+AroKTn3rk7XCnQJquwB678eIzv2rencNXK1H2rKxWaNMHs5WV0hM/l1tWrbJ8/n21z5hAXFUW5cuWYO3cuZcu6e+G/lHHbBLR48WL9P0QCcn/5gBFAZ7g9KJTlo0bx99ixVGrZktpvvUWBChXcYiHr9bNn2TpnDjsXLSApLh5qStAHtCoi8djNC6BWUWA9/PfNQc732U9AlixU79SJmh06kCW365cLV1WVU9u2seW33zi6YQOSLFOmdGm+X7qUevXqGR2eU7ltAtqwYYM+lFPI6EhcnDNL8aTVTeAqTPCykAhMWbGCcUuWkL9UKSq1akW5hg3J4WJVfm9dvcqRDRs48PcKzu3ei5zVhPqaAq2AXCLxOIQMHAVzkspSX19WxcQwe8oU1k6eTJn69anQvDll6tfHP5vr1ObSNI3LR49yZN069ixZws0rV/DNkIEOHTowfvx4cubMaXSIKSZK8QCFChXiP9//YJbTQhMc6Q6Y34B6d0ys9fZFkiQUTWONovCzzcYaRSFBVcmZLx9lmjWjXMOGFKpUCZOTx8fvv5CErF/NteOnwSwhVZLQXlb1LQfcczTIfRwE3ocJ3t58nDz0dkfTmGu1MlNV2Wu1IkkShYODKdu0qWE3LtaEBE7v3MmR9es5tGYNdyIikM1mCubPzyeffEKPHj2QZbd+DP9EKb2Ou20C8vX3JaFBAnzuxOAEx/kJfGbBad8M5HvMH2W8prFBUfjLZmO5phFus+Hn50e+cuXIW6EC+cqWJX+5cgQWKGC3P2pN07gdGsrlI0e4dPQoF0NCuHj0MPGR0cj+JtQair4GrTpiUoETmd6CSudldnr7YXrM0GyYqvK3orBcUVibfOOSNTCQvMHB5CtfnvzlypGvbFkyZc9ut5gUm42wc+e4dPgwl44e5b+DBwk9eRJbUhJePj6UKVWKTp068f7777vFRnFp5fEJSPaS0bpo8J4TgxMcwwrml6F7rIUffZ5dh0bVNPapKuttNvarKnslicvJ1RX8/PzIWaQI/nnyEJAjBwFBQQQEBZEpKAi/gABMZjOyyQSShGqzoSoK8XfuEB0eTlR4OFFhYUSHhxMdGkrYuXPciY4GIMhiwU9RuGhW0cYCVXDjAWw3dhzoBn/5+tIyBb3fuzcu2xSFfZrGfk0jMnmmZdbAQAILFcI/V65HzhVvPz9kkwnZbAZNQ1UUFKuVmNu3Hz1Xrl4l9OxZkpKSACjm5cW1pCRsPj788ccftGzZ0mN7Ok+S0uu4W/4JJSUl6RUQXGeIV0iLzWCLhJ5+lhQdLksSL5hMvGD6/+6DEV5eHFBV9ttsnDpxgtATJwiVZY6oKrdTOLU7wGwmpyyTR9MorWkUkWUq+/pSWZbJLcucUlVKxsZCJG76l+MBFkNus0RzU8p2nvSVJF42m3k5OVlpmsZ/msY+ReFAdLTeUwkJ4aIkcV1RiE3BYlcJCLRYyCVJ5FFVqkoSpZPPlYomE5kkie8lib4JCRSwY4/cE7nln9Hxu2Vc7NeD9lwRwFKgNS47EUFeCNUtMmVTeFF5nEBZprEs0/gxd8WJmsZ1TSNK07ABNvQC6pbkj4ySRC5JwvcZM+1KyDL1LCa2LlRQmj53qMLzigJ5DXwgWx479JYSkiRRSJIoJMu8/ph/v6NpXNM04pPPFSv6nAcL+sUyqySRQ5IwP6P9tywWPk1MpH///vqEKQ8SEhJC3759mTRpEsHBwWl6LbdMQPdKQLjoBdWl3C3FUxvXfL+ug3oIevk47sm9tyRRwE7TuHubLGw6psAVIK9dXlJIqY2ADd5JYU/5efhLEv52OFcySxIdLRbmbdlih6hcy/2leNKagNyyb3jmzBn9P1zxgiqkTvK9xEtp6P04U/27PSyxs4TzHYeSZpkgNxnSeslkIt5m45zYnv6J3OM3+ZDz58/rA7HuuVBeuN9JCLJI5HSTi0o2SSKPRYKTRkeS/piPQnXc40YFoHLyTdW9RfPCI9zjr/4h165d06e9uuUAonA/6Ti8oLnXaVhNk5HT724SxkgE5T+o7CY3KgDFJAk/4N9//zU6FJflPr/N+yQlJYnFfinlypUQNJBPQFXZfe5qAarIJqRTgEstYPBw50BT/9+rcAeyJFFRljl69KjRodiVPSshuGUfwmaz4UY9cWMF4rprpRRQYiG/j3vdB+WXZZR4IJH0t322UW7qn/K7QU3A+xWSZY572J5XwcHBbNq0yS6v5V5/+cmsVqtIQJ4geQsgX2OjSLV78SYaGUU6k/xeP2uqvKvxlSSP2mLE3twyAWmapk9CENybqn9yt3uJe380qpFRpDPJ60Pd8VxxsWIzLsUtE5DZbBZ//J4g+Tmeu+2Feq/jI55DOo+3/inBzS7miZqGyY2eWzmb+yYg0at1f94gyXDbzS4qt+/2wL2NjiQdSa7fedvYKFLtlqZh8RYnypOIBOTpIoDpyZ9djQSmghCiuld3NkRVMefHTafwuKnk3RRCUlCrzZXsV1UKFC5sdBh2FRISQr169QgJCUnza7llAsqSJQvEIqbBpsTdUjyumIAAW1nYhXtdVHajYEsfOya7jmxgzqpf0N3FTU3jqqZRvXp1o0Oxq/tL8aSVWyagggUL6lUCY4yOREizUnDKphLvJsNwSZrGUZsqtoI3gK0M7NHc52Zlf3JvrWXLlgZH4rrcMgEVLVpU/48bxsYh2EFJUDQ46CZ3todVFZuGSEBGKAX7VAWbm9ys7FEUzED9+vWNDsVluWUCKlky+a//prFxCHZQHMxZ4PfkDeVc3W9WK+ZMQCmjI0mHasIdBf52g3U1qqbxq9VK7nz59GfWwmO55TtTvnx5/T9ED+jZXLkUD4AZbG1h1q9WRmveZErjQsMbqsppVSU0eV+XUE3jmqpyFYiUZWyShE3T0PSmsQD+mkZuTSO3JJFLlvXPkkQRWSaPJCElxxSjafyqWrG1Sf5GwblKgqkU/HDWyquWtP0CNE3jvKbxn6rq50ny52uaRqgkEStJ9/aOkvj/fkDZVJXcQG5ZJpckkVuSyC3LlJRlAu47dzcqChc0jR8GDkxTnK7InqV43HZLbsksQU+gs/NiExzkBkivwA8Wb3p7pXxxTbiqsl9V2a8o7FNV9kkSV+/rSXlZLARky0ZAzpz4586Nb6ZM+pbcyXekqqKg2mzE37nDnWvXuBMWRuSNGyQk/r/EQaDZTBWgiixzU1WZarPBMiCXnX52IXVWAcPgdIYMFEthYVJN0zinaexXFP1cAQ6oKlH3zajz8/MjIDCQTLly4Z8zp74l993t2wHVZsNmtRJ7+zYxoaFEhYURdesWtvteo7CXF1VVlSomE0utVg7KMjGJielyR1RDt+S+evUqn376Kf/88w9xcXEULVqUmTNnUqVKFbu1YfYyY4tw/a64kALZgbowaVsSPTTLE3ebVDWNvarKCpuNZZrGseRkkyFDBvKVK0epChVoUq4cuYoXJyBHDnwzZbrXe0mNhJgYosLCCDt3jktHj3L50CF2HjpEVGQkAHJvE2ptRd/kLxg3HUdwUw3ANB4mJybxnc+TC/HFaRobFIUVNhvLNY3w5GG7wKAg8gQHU7t8efKXLUv2QoUICArCyzf1BaFUVSUuMpLIa9cIPXWKS4cPs+/QIZYdP06iqoKqkjlLFqq/+CK9evWiZcuW6TIZPY3de0C3b9+mYsWK1K9fn549e5I9e3bOnDlDkSJFKFKkyDO/P6WZMzAokJvFb8IEe0YvGOYYSO/AaC9vBtzXC7JpGqsVheXJF5IbNhsZ/f0p3bAhpevVo0BwMIH58z9XokkNTdOIvH6dS4cPc2LLFkLWryYm7Cayvwm1ugJ10BOSKE7qeDNB/gn2+vpR6b4qA5GaxmKrleWqyjpFIUFVyZE3L2WaNaNkzZrkK1cO/2zZHB6eqiiEnT/PfwcPcnTDBo5v2oQ1MREvHx9KlyxJ165d6dOnj0cnoxSPZNk7AX322Wds376drVu3Ptf3pzTwmjVrsuP4DljzvJEKLud7sMyHQz5+ZJYkZlitTFNVQm02cuTLR9lmzSjXsCGFKlXCZPCDXU3TuHz0KEfWrSNk/WquHT+NHGBCfVmBNojtuh3JBqa3oPgliRDvDBxTVX60WpmrKCRpGoUrVqRskyaUa9iQHCm46XU0a0ICp3fu5Mj69RxavZo7N2/i7evLy82bM2HCBPLnz290iHZnWAIqXbo0TZo04cqVK2zevJk8efLQq1cv3nvv8XsCJCYmknjfmHt0dDT58uV7ZuADBw5k7NixsBJ9CEdwf/Fgeh0y3ZS4o4FssVCldWtqd+5MvrKuvfIz/MIFts2bx46F80mIikGqLqG11aAG7ldB0x0cBd6FPCYzV202sgQGUuOtt6jRvj0BQUFGR/dEmqZxZudOtsyZw6HVqwEoUbw4Q4cOpV27dgZHZz+GJSCf5HHZfv368frrr7N3714++ugjpk2bRpcuXR45fujQoQwbNuyRrz8r8O3bt1OrVi0Yhz70ITxeBLAUaI3rzoQD2AfSjzLacZXA/Pmp160bL7Rpg19AgNGRpUpSQgIHVqxg0++zuHL4GHJ+E+r7CryEqOBuDzbgL5BnmFBvKhSrXp16XbpQtmFDw3vFqRUZFsbOP/5gy++/cycigsDs2Zn8ww8un4hCQkLo27cvkyZNIjg4+LHHGJaAvLy8qFKlCjt27Lj3tQ8//JC9e/eyc+fOR45/3h6QqqqYvE3QFdfdcM0VnAS6ALNxzcWTJ0H6UULbo5E/uBwt+w2gZO3aDn+m4wz/hYSwctIETm7aglRKRuutQlWjo3JTKrAB5J9MqFdUqrZ6laYf9HGJIba0UqxWQlavZsXYsURcukT+AgWY+euvvPTSS0aH9lhz586lU6dOzJkzh44dOz72mJQmILs/BcuVKxelS5d+4GulSpXi0qVLjz3e29ubTJkyPfCRErIskzUgK5xIc8iCES4DX0jQBQJv5ue9adMYsPQvStWp4xHJB6BgcDAfzPqNj/74g3zeZeADkPrI+k2BkHK7Qe5mgi+hZLFaDFq1ii4TJ3lE8gEwWSxUbtmSwRs30mHUKG7HxtKgYUPKly/vcdt5P8zuCahmzZqcOnXqga+dPn2aAgUK2LspSpYoCWmvhyc4kwLMBamjTKajgXQcM4Yv12ygQtOmHpN4HlbsxRcZsPQv3vvpJwJv5YduwPe430ZIzhYFDAE+hHwZytF34UJ6/TqbPKU8swyFyWymZocODNu6lVcHDuT0+fNUCA6mV69eqG5Sqiq17J6APv74Y3bt2sXIkSM5e/Ys8+bN4+eff6Z37972boq6detCJHDV7i8tOMJFkHrI8INE/c5vM/TfLVR/4w23G7t/HpIkUaFJE75cvZ5XB36G6U8z8lsmOGJ0ZC5qC8gdTHjvyEDn8eP5ZNFSir7wgtFROYWXry+NevZk2NatVGzenKlTp5Inb14OHz5sdGh2Z/cEVLVqVZYuXcr8+fMpW7Ysw4cPZ9KkSU8cK0yLDz74QH+w+3wzvtMHVyjFc7fX01km6508fPznn7T58svnWvzn7kxmM43ef5/P/v6HPJlLQXdEb+h+d3s9A6BkhToMXreRam3bemzv+GkyZs1Ktx9+4N1p07gTH0/FypVdojckSvHcJzAokJv5bsJUJwQnpN4tkD6X0UI0XnrnHV7u3z9dJp7HUWw2Nk6fzooJ4yGvhjpWgXxGR2WgIyB/ZsKS5EO7ocOp2rp1ukw8jxNz6xYLv/qKAytXkr9AAfbv20dgoOtOazVsEoKzNXypIYQAd4yORHjEaf3hse+lTPT944902+t5EpPZTKOePRn09yqykAf5bRPsMToqg/wNUk+J/AXKM3jdRl5o00Ykn/tkzJqVtydPptsPPxB6/ToFCxVi9+7dRoeVZm6fgD7++GN9iuajM7wFI20A6T2ZXIHFGbRiFUWrVTM6IpeVq3hxPl22gmLB1aGvBAtIP7v92oDvgK+hWuvX+WjeH2TOkcPoqFxW5ZYt+WTJEswZMlCzdm1++ukno0NKE7dPQNWqVcM7gzdsMToSAdBvBn4GPofghs3o/+cSsuTObXRULs8vIIDeM2fz0tvv6vUNRwJJRkflYNEg9ZOQFsi8NnQoHUePxuLtbXRULi9vmTJ89vffFChfnp49e9KtWzejQ3pubp+AAF6s8iJsQ7+bEoyjACOAXyVaDhjA2z9MFkNuqSCbTLT54gs6jx+P/I8Zqb/suZMTboL8vgnvkxn44Lffqde1qxhySwX/wEA+nD+fGu3bM2vWLBo0aGB0SM/FIxJQz549IR7Y8cxD058IYHryZ0eyAUMkpNUyXSdNoknv3uKC8pyqtW1Ln9/nYD5qQeorQ6zREdlZOMg9TWSIycwni5dRomZNoyNyS2YvL9qPHMnLn3zCxo0bqVWrllNmyIWEhFCvXj1CQkLS/FoekYDatWuHr78vLDI6EhcUAczAsQnIBnwlIW+SeefHKVR59VUHNpY+FHvxRfr8Pg/LGR+kj2WIMzoiO7kBci8T/tZA+i1cQs6iRY2OyK1JkkTTDz6g9RdfsH37dmrUqOHwJHTs2DE2b97MsWNprwLgEQkI4M033oTdwBWjI0lnFGA4SJsl3pk8heCmTY2OyGMUrlyZD+fMw3LWG+kTDxiOuwXyByYy2rLx8YJFZHdAdZT0qsF779F28GB2797tVsNxHpOAxowZo5e9X2J0JOnMBJDWSnSb9D0VmjQxOhqPUzA4mN6zfsN03IL0uawnfHcUC/KHJvziAug7bwGB+dLzgifHqP/OO7wycCCbNm2iTZs2RoeTIh6TgLJmzUrl4MqwDPe/U3QXi4FF0P6bkVR6+WWjo/FYRapWpcdP02GnBlOMjuY5qMAwCXOoFx/+Pp+gQoWMjshjNe7Viwbdu7N06VJGjRpldDjP5DEJCGD06NH6A9sNRkfiQhxVimc/MEGiTpcu1OzQwc4vLjysVJ06tPniS5gDrDI6mlSaDmyBbt9PJneJEkZH4/Fe/fRTStety5eDB7Nmjf23jBaleJ4iW/Zs3Mp2S9//RkzCcoxQkLuaKFK2Kh/MnpMuiom6Ak3TmDNwAHuWL0abqoFrbxKrWw98Aa8MHEjjXr2MjibdiI+OZnTLltwJC+P0qVNO3/Y73ZTiedjHH30MpxBTsh0lFuRPTGQOyMk7k6eK5ONEkiTRfsQ35C9bHvlTE4QbHdEznAJpuEylV16mUc+eRkeTrvhmykTPmTPBZKJK1aokJbnmqmaPS0Cff/45/pn9YTL62LNgXxPBdN1CzxkzyZgli9HRpDsWb296TJtORnNWpCGy657jCSB/YSJ30RJ0Gj1WrAkzQI7ChXl36lQibtzgVRddGuFxCUiWZcZ+OxbOA2uNjsbD7ABWwOuDh5KreHGjo0m3MgUF0WX8JLQDquvO+pwCUrjM29//KKphGKhUnTo06N6dNWvW8NdffxkdziM8LgEB9OjRg6CcQfqMIavR0XiIGJBHmShRuybV27UzOpp0r0TNmtTs+CbSZBlCjY7mIQeBhfDKgE/JUbiw0dGkey0+/pjAAgXo2KkTCQmuNUXYIxMQwM/TfoYw9GnZ6Zm9SvFMAnOsFx2/HSOGU1xE60GfkylrENJwFxqKSwD5GxMFK1WkvhsXyfQkFh8f3powgdiYGFq3bp3m1xOleFLg1VdfpUjRIvrF11PKmDwPe5TiSR56e23wELLmyWOfuIQ088mYkbfGjHetobjkobfOY8cjm0xGRyMkK1Spkt2G4kQpnhSaPWs2RKNfgIXnYwV5nInitWqIoTcXVKJmTWq+2QFpigyRBgdzFn3o7ZOBYujNBbX4+GOy5c9PVxfqmXp0AqpZsyZNGjeBecARo6NxAg24DKxD35PnO+C35H9bCPyJ/j6kZhh4GaihKq9/NVQMvbmol/t/ggVvfe1bSlmBk+hD1FOAicAYYBIwDX2x63lSVfpHmiqRNV8e6nXtmopABGex+PjQ5ssvuX3rFt9++63R4QDg8Ys4li1bRtbsWYkfGg9zAR+jI7Kz28BKkHeAdBKU5OHGbGbIJEtoKvyHRvY1cHsV2DSQZDDlB1sFoCX6gsbH5ZY4kH81UaXNq2LWmwvzz5aNRt3fZ9XkSWjtNMj5hAPPA8vBfACU86DZ9DvQnBYJXwm8kEhEI1aDMKu+Pl32BqkYKFWBVjz5tUNA26bxyvefYrJY7PwTCvZSrmFDCgYHM+Kbb/jkk08wG7yOz6N7QAA+Pj78MfcPuIr+PMgTaOg9mSEgtwDLFGhx2MRQmxf/+PoSliEDEb7+nPfOyA5vP4Z4eXHIOwMxGTKyz8+PaRZv3r5qId8qCd4FU0f0O+H4h9qZD9yRePnjfk7+AYXUeundd/HNFKD3fO9nBdaD3B3oANkWQcfzZr4zebPdz4/ojBm56pORs94ZOe6dgXPeGbnuk5HbGTOy0deXb/GmzUkzGX4DqRVI/YFdPDjpQQPpR5ncZUqKmoAuTpIkWn3+ObExMfTv3/+5XkOU4nkOTZs2Zc3aNXoSKme3l3W+/8A0HJSjkN8i0Uf2opvFQrbnGB5TNY21isJkWxKrrAqyHygfot/pRoHURqZe+260HTzYzj+E4AibZ8/mz2FD9J5+YWAzmL8F2y2oZZHpY/KildmM13OcKzGaxjyrle9UK8etKub8YPsK/W9pK/AJ9P7tN0rVqWPfH0pwiCldu3J21y5u37yJn5+f3V8/pdfxdJOAEhISyBaUjbiAOPccilOA+SBPhQJI/GDxoZnJhGyn5zL/qSpfJyUy02pDrgJqAfBa7cuwLdvwz5bNLm0IjmVLSmJog7pEFr4O3hqsheYWE2Ms3pSx04w0TdPYoSh8aEvkoE1F6wDyXhOFAyvz0bwF4jmhm7h64gSjmjenW9eu/Prrr3Z//XRbC+5JfHx8mD9nvj4UN8noaFLpCpjeBekH6CtZOOaTgRZms92SD0BBWeZXH19W+/qS/SDIy03UbNdBJB83YvbyouE7PWALZFgPv/n4sNLb127JB/QhnJpmM7u9/fjW4oVpPqhnFBq/L7Zgdyd5SpWidJ06LPzzT6ds4/0k6SYBAbzyyit0easLLEXfy8YdnAbT25D3tMQ2Pz/G+/jg68A/9CZmM1+bvVFtCrU6dnRYO4JjVGvTBouXFz1NFjpbLA5LCmZJYqC3N81kE1nz5KFk7doOaUdwnDpduhAbE8Ps2amZPmlf6SoBAcyaNYsKFSrAOPQ9bVzZSTD1gLJxMvu8/ajxHHey11SVoYmJXEvFXc5MVaVk9erkKFIk1e0JxvLNlIkX2rRhrqZhdfDo+g1VZa2mUbdrV2Q53V1K3F7punXJnCsX33zzTaq+T1RCSKNdu3aROXNmGIjr1dG66z8wfQAVrDJbvP0IfM4/8GuaxrCkJK6l8GJ0UFHYZbVSu0uX52pPMF7tTp24ZrOxwmZzaDu/Wq1gMlHttdcc2o7gGLLJRN233uL8hQucOXMmxd8nKiGkkY+PD3t27cFkNUE/XK9UTwKYPoaiCRLrvP3I5MSx9alWK1kCAynbsKHT2hTsK2+ZMhQJDmaykopVpKmkahpTNI2Kr7wituVwYy++8QaSLNO3b19D2k+XCQigWLFiLF6wGC4BQ0jVim+H+wnk67DM4ktWJyYfq6axUFWp2q6d2GjOzb345ptssloJc9AD5t2qyiWrVZRncnP+2bJRoUkTNm/ZYkj76TYBgV6wdPDng2EL8C2uUVH4EDAfvrF4U9LJxRy3KwpRikKFxo2d2q5gf2Vfegkkib8d1Av6y2bDP1MmCleu7JDXF5ynfOPGxMbEsHfvXqe3na4TEMDXX39Njx494C9gPHqVAaMkgGkoVDXL9DOgnMlfNhuZs2YlXzl3XqkrAPgHBlK4QgWWOygBLdM0SjduLCpee4Ay9eohyTITJ050etvpPgEBTJs2jc6dO8Mi9AKeRiWh1aCGwmyLDyY7Db3lkiSGeHmR6xmvp2kay4AyTZqIGU0eomyTJqxTFOLtPBvurKpy0mqlvHhO6BH8AgIoUrUq6zdsSNHx9izFI640yX777TfatWun1z8bh/OH4zQwLYRmFhOl7HhXmUuWGertTa5nJJWTqsoFq5VyjRrZrW3BWOUaNSJeVdlo517QCpsNi8Ui1v54kPKNGhEREcH169efeWxwcDCbNm0iODg4ze2KBHSfP/74g7feekvvCY3EuRMTjoJyDj4wezmx0f9bqSh4e3tTvEYNQ9oX7C9HkSLkyJuXlXaejr1CVSlevTreGTLY9XUF45Rr1AhNVfn++++d2q5IQA+ZPXu2/kxoBTAAiHFSw4v04qJNDBpT36UoFKhQAS8fdyuSJzyJJEkUrlGDHXacSalqGntUlaLVq9vtNQXjZS9QAP9s2fj333+d2q5IQI8xbdo0hg0bpped74a+yZsj2UDeCN0li13ru6XGXkkinx261IJryV+uHMetVhLs9BzotKoSqyjkL1/eLq8nuI4CwcGpWpBqDyIBPcFXX33F33/9jTncDF0AR85QvAhqEtRyQO8nJaV4bmoal61W8pUta/f2BWPlK1cOm6ZxxE7rgfYnv444VzxPgfLliYyKemZxUlGKx0maN2/O6eOnyeqbFT4EFuCYGXIn9U8VHZGAUlCKZ3/yQ+r8Yvq1x8lTsiQmk+ne7zit9isKQblz4xcQYJfXE1xHvnLlUGw2duzY8dTjRCkeJypUqBBXL1+lcsXKMAEYwaM7h6bVSShkkZxacud++xUFPz8/AgsUMKR9wXEsPj7kLlz4Xs8lrfYBecRQrUfKn9yrXb58udPaFAkoBXx8fNi3bx/vvvsurALaAwfs9/qmE1BNM25BX4iqkrdMGbH+x0PlCQ5mvx1ubjRNI0RVxfCbh8oUFETGrFnZuXOn09oUV5xUmD59OmtXryVjfEboib5eyA69ITkSchi4mddFWSZL/vyGtS84Vra8eblih0kId4A7ikLWvHnTHpTgkrLly5eitUD2IhJQKjVq1IjbEbdp3bq1vqmdPXpDSeBjYAK6hn73I3imTEFBRFit2NKYhO4+RwwQ54rHypwrF5FRUU5rTySg52A2m1myZMmDvaGxgPN+byn2rFI8mqYRZrMRkCOHkyMTnCUgRw40IDytCSj5OZI4VzxXQI4cxMU/fVhHlOJxEQ/0hpYArYDZQEIqX8gLu63TeNizSvHcBhJVVdzVerC7v9vQNJ5joaIH5PECgoJISkx86jGiFI8LudsbOnLoCOWKlIOpQGtgKZDCCihqZghz8PbJTyLuaj3f3YSR0l1xn+SapuHr6ytK8HiwgKAgFJuN6Ohop7QnEpCdlC1blsOHD/Pvxn/Jnym/vr/QG8AGnrl2SCkFuyVjdsS7m/j8AwMNaV9wvIzZsiFJEtfTOBU7TFXJlDWrnaISXNHd68CJEyec0p5IQHZWr149Ll64yB9//EG2pGzwOfA6+iLWJ9WVKwkXrBrRBvSC7na2Ld7eTm9bcA7ZZMJkMpGUxtdJRJwnnu7u7zc2NtYp7YkE5CDt2rUjIjyCH3/8kbzkhYlAM2AUcPqhg0vqnw44YPOwZ5XiuTtKKDYW82wmkymlI8JPZANksVW7R7v7+018ynMgUYrHjfTq1YvLly6zccNGcmXLpVfZ7gy8DfwDxAIFQPbSt8S2t2eV4rk7NVckIM8my7JdEpAkFit7tLvXgaSkJ/eXRSkeN7Jx40aqVKnCS41e4tq1a1AF6Ar4AUOBJkB/UIvCz6oV1cnDcHd3XtXsVKpFcE2aqpLWWwwTgDhPPNrd64DFYnFKe6I/7SD79u2jU6dOnDp9CjIAb6LPjstz30GhwNbkj5NwSdVYoyg0c+Iwx93TTHFA70twHYqqYklj78WCOE88nZK8eaGPk/YFEwnIzi5cuED79u3Zs2+P3sv5CD3xPO73mRtol/wRDaZOMPlmkiEJyPaMuf+C+1JVFZvNhsUrbbvtWhDniaezJQ+9+fr6OqU9MQRnJxERETRt2pTCxQqz59AefZhtOdCBxyefh2UC5R34x6Zw3Il3mUHJQ3B3IiKc1qbgXLG3bqFp2r3f9fMKkiSib92yU1SCK7p7HShRooRT2hMJyA4GDBhAUO4g1qxb8/9FqD2AjKl8oSYg54Eu1gQUOz0LelYpnrtfjw4Pt0t7guuJSv7dPqkaRkrlkmXi4uJISkhtqQ/BXUSHhyObzWR9ynove5biEUNwaXDixAkaN2nMlctXoDbQF0hLoWAfUIbAvh4qE2QrA9I4ZAL/L8XzJNkkCYskEXXjRprbElzT3ZuL3GnsAeW+72YlUFRP90hR4eF4P+O6c7cUjz2IHtBzGjBgAGXKl+HK7SvwNXoxUntUqa8AdIAvrImccMJQnCxJBJnNRIWFObwtwRh3e0Bp3fLjbm9ZnCueKyo83GnPf0D0gFLt1KlTNGzckCuXrkAd4DMgm50b6QHqZmgVHs8OOQPZHLxVQ25JEkNwHiwqPJxsZjNeae0BJQ/hRYlzxWNFXrtGZiduty56QKkwatQoSpUtxZVbyb2eMdg/+YA+FDcBzvloNE6MI8rBa4PyqSq3Ll92aBuCcW5fvUoeOywgDQB8ZZlbV6+mPSjBJd26coUgJ1Y7d3gC+vbbb5Ekib59+zq6KYdRVZVWrVrx+eefo1XWYCH6AlJHdkwKgjIZDllU6iTGceM5FwA+qxQPQHlZJvToUTSDKnILjnX18GGC7bCAVJIkyplMXD1+3A5RCa4m5vZtosLDqVKlylOPc5tSPHv37uWnn36ifPnyjmzGoaKjoyleojjLly/XS+hMxDG9nscpCcpPcMxPpWpiHNttqS+m8qxSPACVTSbu3LnDbXFn63EUq5Wrp09T2U6llqoCVw4etMtrCa7l8tGjALz88stPPc4tSvHExMTQsWNHpk+fTpYsWRzVjEMdPnyY3Plyc+6/c3rZnA8gzfVMUqs4KL/CleIatePj6ZeQQJydeyqVk4dnLiWfgILnuHb6NFar9d7vOK0qm0xcv3SJhJgnlXYX3NXlI0eQTSYaNGjgtDYdloB69+5NixYtaNiwoaOacKg5c+ZQsUpFYk2x8DN6JWuj5AVlBmgfwndYKZsYy982m93qxuWSZbJbLFw6fNgurye4jktHjiADwXbqAVWSJDRN44od7n4F13Lx8GEyZcqE2YmVWBySgP744w8OHDjAqFGjnnlsYmIi0dHRD3wYbdSoUXTu0hm1iAq/A2lfb5V2JqAjqHPhUkmNl+PjKZQYy9ikJCKec3xf1TT+sdlokRDHDauVi4cO2TdmwXCXjhwBs5kmiXEssFpJes6blhhN46ekJDpYE5BkWX9dwaNcDAmhSOHCTm3T7qnu8uXLfPTRR6xbty5FBe1GjRrFsGHD7B3Gc/vqq68YPmI4VEffu8c5NflSrgAo04GjcGmRxmfrEvnCmkhT2cQLsonKJhOVZZmgxwy5JGoaR1SV/YrCflVlNTYuWzVMRYHccOHAARSrFZOTKuEKjndm7y7U8jZ2qrA9JIFsZmiB+d55EmwykeEx07MjNY0DyefJXkXhb81GvArUAq7KnN23h5fefdfpP4/gGJHXrxN5/To133jDqe1Kmp2nPi1btozWrVtjuq/LrygKkiQhyzKJiYkP/FtiYuIDmx9FR0eTL18+oqKiyJQpkz1De6aBAwcydtxYfX3PN/y/Uqcruw2sBHknSCdAidO/nNUM/rKEWdO4pYCXDDcVsGkgyWAqALYKwMtAWeAU0AX6zJtHiRo1DPtxBPuJuHyZobVrw0igAXAeWA6mg6CeA82mD4HksEj4SvrpngTEahBuTd4nyhuk4qBUAVoBOYFZYJntzZgDh7A4qWqy4Fhb58xhweDBnD93jkKFCj312JCQEPr27cukSZMIDg5+7DHR0dEEBAQ88zpu9x5QgwYNOPJQ97xbt26ULFmSTz/99IHkA+Dt7Y23C2zzO3jwYD35NACG4T5LdLMAnUHtDGjoWzychFvn4VaCpu+jbAa8gCCgJGhFwfbwdaMEyEEmjqxbJxKQhzi6fj2SRUJ7MfkeszDwMSig7y53HtSTcO2qpmceK3oW8gHyAyVBzc+jE29qg3VqImd27aJ0vXrO+WEEhzqybh1ZsmR5ZvIB+5bisftl1t/fn7Jlyz7wtQwZMpAtW7ZHvu4qvvnmG0Z8MwLq4l7J52ES+n5DedATaSq/V62tELJ+NW2/+grJwdUXBMc7tH4NVEbfj+phZqB48kdqFQY5j5kj69eLBOQBEmNjObVjBy1btHB62+m+EsLPP//Ml199qT/zGYH7Jh97qAWRl69x7fRpoyMR0iguKoqzu/eg1XLA4mIJ1Fo2QtatFouXPcDJrVtRrFb69Onj9Ladcrm1V3fN3nbv3s37vd/Xn4F8i3s883GkyiD5yhxet47cTtoPRHCM45s2odlUvUq7I9SBOwsiuHz0KPnLlXNQI4IzHF63Dh8/P1566SWnt51ue0ARERHUa1APLaum13Qz/jGUY0QA05M/P4s3aHVUdi76A9UOpVsE4+xctBCprEmfNOAIwSBnM7Fr0SIHNSA4Q/ydOxz4+2+qVa2a4u9xm1I8rkpVVSpWrkiCNQHGoz/I91QRwAxSloAA2sDN/65wavt2BwYlOFL4hQuc2rodra0Dt/Mwg/qKwq5FC0mMjXVcO4JD7Vm6FGtiIuPGjUvx97hFKR5X1rRpU307hWE830NYT1YB5KImtvw+2+hIhOe0be5c5ABT6ieipFZrSIqPZ++yZQ5uSHAETdPYPGsWeXLnfmYBUkdJdwnoiy++YN26dfAu4PwhT9cngdpW4ej6DdwODTU6GiGVkuLj2fHnH6gtFccPK+cAakls+n2WmIzghs7u3k34+fN8/PHHhsWQrhLQzp07GTl6pL7Q9B2jo3FhTQBfie3z5xsdiZBK+1esICE6Blo7qcG2GtdPnuH8/v1OalCwly2//Ya3r69IQM6gqiotWrbQd9X6ivTzkwei9/YCU/E9GUBrprJ5zmxR9diNqIrC+hk/Ib0o22d7+JR4AeT8Jtb/PM1JDQr2EHHpEiGrV9OiWTPkVFZKL1OmDHXr1qVMmbQXyUwvl2G6devG7Zu3YTDgb3Q0ThQIvEfqEhDAW5AQe4eNM2Y4ICjBEfYtX07Y6XNo7zhxBqMMajeFI2vXc+HAAee1K6TJinHjMJlM/PTTT6n+3ruVEJ5Uhic10kUC2rlzJ7/N/U2veyaqzKRMDtBe01g3fRp3IlI6hU4wijUxkeXjx0A9CZy9LKeJPnFl6eiR4lmQG7hy7Bj7//qLdm+8QWBgau9M7cvjE9ADQ299jY7GzXQFm5TEmh9/NDoS4Rm2z5tH1LXr8L4BCcAEak+F87v3cWLzZue3L6TK8tGj8fbxYYYLjG54fALq2rVr+hx6s4cA0DqpbJnzOzcvXzY6GuEJEmJiWPXDJGgBPLuWpGPUBKmCzNLRI8UiZhd2ZtcuTmzZQq+ePVO0XY6jeXQCOnHiBL/P+13/wxRDb8+nPZBJY9m3z95cUDDG2ilTiI+J1p/1GUUC7QOVaydOs1tUR3BJis3G4uHDyeDvn6qFp47k0QnozTff1Lch+MjoSAyUmlI8j+ML6ocKB/9exaHVq+0YmGAPFw8fZt1P09C6aPq6HCOVB5rCohHDiAwLMzgY4WEbp0/nyrFjTBg3LtUz3+4nSvGkwLZt2wg5FAJvoT//Sa9SW4rncZoAdSTmfvEZMbdv2ycuIc2siYn89snHSEUl6Gp0NMn6gdWSwLxBn4oJCS7k2pkzrBg/nipVqtC9e/c0vZYoxZMCXbp0gUxAB6Mj8QAS8KlGgvUOC4cMNjoaIdnqH34g/Px51MGK62wjEgDqZwrHN25i9+LFRkcjoA+9/davHxazmTVr1hgdzgM8MgEtXryY8+fPQ3fA1+hoPEQgqP0VDvy1UgzFuYCLhw+zduoUtLc1KGZ0NA+pAzSFP4d9ReT160ZHk+5tnD6dy0eOMPmHH8iaNavR4TzAIxNQz9499TL0rxodiYe5OxT3+aeiTpyB4u/cYdbHH+pDb12MjuYJ+oHVK5HZ/fui2GxGR5NuXTx8+N7Q27vvvmt0OI/wuAQ0depUboTdgF6IDebg+UrxPIkEfK6R4BXDtO5vkxQfb4cXFVJDVRRmfvQhEWGXUL92oaG3hwWA+rXCmV27WTZypNHRpEtR4eFMe+cd/Hx99QLMdmLPUjyS5mJPCqOjowkICCAqKopMmTKl+vtz583NNfkaLMQD06uLOA3SezLBDZvx9g+TkSTJ6IjSjb/GjGHt1CkwAfdYWvAnMA46jhlD9TfeMDqadMOakMDEN94g9MQJdu/aRaVKlZzafkqv4x51id63bx/XQq9BOzzsJ3MxxUEbonJw5d+snTLF6GjSjX3Ll+vv9we4R/IBeA14FeZ/8bmomO0kmqYx/4svuHz0KDOmT3d68kkNj7pMf/LJJ/q6n2ZGR5IOvAS8CyvGjuXw2rVGR+PxLh4+zO8DP9HP7Y5GR5MKEjAAtNIqP/V4Vzw7dIKNv/zCnsWLeb9HD302sAvzmAQUFxfHlh1b9KoHGY2OJp14B6gv8Uuf3pzeudPoaDzWtTNnmNylE2oxFQahX9TdiQW0b1XiLdF816kD0TduGB2Rx9q1aBFLv/mGatWqMcUNRic8JgENHjwYzapBG6MjSUdkYJiGWsHG1He6cm7fPqMj8jjhFy4w6c12JGaLRZvghF1OHSUrqD8o3Iq+wncd2xNz65bREXmc/StWMHfAAEoUL86OHTuMDidFPCYB/TLzF70MvautiTBaWkvxPIs3aGM1bCWtTO7SibN79jioofTn+tmzTGz/GvEZo1B/UNy/okc+UH9UuBHxH5PebCe2+bCjfcuXM+ujjyhYqBBHjx5NU6mdZxGleB6yZs0aom5HwetGR+KC7FGK51l8QJugYiuVxOQunTm1fbsDG0sfrp48yYR2rxGbMRL1RwVca/3g8yuoJ6HwG+eZ0P41UTPODnb9+Sez+valSOHCnDxxArPZsXPzRSmeh0yaNEmffFDX6EjSMV/QxqsowUn82LWLKMOSBie2bmXCG21JCLyDOkWBbEZHZGeFQZ2mcPPOZca2eZWrJ04YHZFb0jSN1T/8wJwBAyhZogQnTpzAy8vL6LBSxSMS0NadW+FFwPjtLdI3H9DGaKhNbfzevz9LvvkGVVGMjsptaJrGv7/8wpQub5FUJk7v+WQ2OioHyQ/qdIU7GW8wrm0rQkR5p1RJjIvjl969WTl+PPXq1ePYsWMO7/k4gtsnoGPHjhEbFavXnxKM5wV8AfSDjb9MZ8rbXYmLijI6KpdnTUxkzsABLB4+HO1NDW285vkbKOYA9WcFa40kZrz/PqsmTRKb2aXAratXGd+6NYdXr2bAgAH8+++/Dn3m40juGfV9xo8fr09LrWl0JC7KnqV4UkpCXww8CU4f3MHoVi25fvasEwNwL1Hh4Uzq8AZ7li+GIUAfwGR0VE7iA4zQ4H1YNWkSv/TqSUJMjNFRuayze/bwbYsW3PjvPxYsWMCYMWOcHoMoxXOfnLlzEpYlDGY6ITgh9S6DPMCEFCrz6oBPqdetG7IpvVxdn07TNPYtX86CIV+SZIlHHa1AWaOjMtBmkIbKZMoSxFtjJ1CihruUe3C8pIQE/p4wgY3TpxOQOTM7tm+nVKlSRof1ROmiFM+tW7cICwuDekZHIjxRPlBnKSitrCz5ZgQT3niNsPPnjY7KcNHh4fzU/V1m9+1LwguxqHPTefIBqAvaHJXoHOH88OabzP/ic9EbAi4cOMDIJk3YOH06TZo04VpoqEsnn9Rw6wQ0ZcoUUIHaRkciPJUP0A+YCpfCDjOyWRM2zpiRLicoaJrG3mXL+LrRSxzfvwm+RR+CymxwYK4iD2g/qvAJ7FjyB8ObNOSUmyyqtLekhASWjhzJhLZtSbh1i2XLlvHPP//g4+M5s63cegiuXr16bN6/GdbjfuVJ0qsEYAqwEHKXLkHrT7+gZO3a6aKi9sVDh1j67UjO7twNjST4RCSep7oK0ggZ7YBKxRbNafnJAIIKFTI6KodTVZX9K1bw15gxRIaG0qRJE5YuXepWiSel13G3TkBBOYO4kf8GTHZScIL9HAHpexntsErR6i/Q6tPPKRgcbHRUDhF27hx/jRvLoX9WIxc2ofZWoJbRUbkJFfgb5OkmtAiNGu3a0eyjvmTOkcPoyOxO0zSOb9rEslGjuHb6NDlz5eKXGTNo3ry50aGlWrp4BhRxKwJKGx2Fi3N0KZ7nVQ60n1UYB+fD9jOuVSt+fr87186cMToyu7kdGsq8zz5jRONGHDm4Dr4CdY5IPqkiAy1BXaig9VLZuXIhQ+vWZvno0cTcvm10dHahaRrn9u1j4uuvM7VbN+LCw5k2bRrXQkNdMvnYsxSP+61cShYSEqIXH/WMZ3GOc7cUT22cOxU7JSSgNqg1FFgNR3/ewOFGayn24ovU7dqVcg0bYnKzxXWqqnJ6xw62/D6bI+s3IGWU0PqoaG1w30KirsAH6ATqqwrqHIX1M39i4y8zqNLyFeq89RYFKlQwOsJUS4qPZ/+KFWyaNYurx4/jmyEDQ4cOZfDgwS69ruf+UjzBaRy1cK+/7vssWbJE/4+SxsYh2IEJaAFqfQXpTbiydy8zdu0iS2AgNTp3pnr79i4/5BIXFcXuRYvYNGc2Ny9cQi5sQuuvojUFMhgdnQfxB3qCVkdFfU/l+PLl7F68mAKlS1Ora1cqv/IKXi7+rCTs/Hm2zZ3Ljj/+IDE2luxBQQwZMoTPP//c7UrppJXbJqAtW7bo+/7kNDoSwW7+BK7Bv37eeANTo6L4/bvv+Oe77yhWtSplmzShXMOGBObPb3SkgL6A9OiGDRxat5ZT27ehKDaor8GnoAYrYmKMo6ggfw+5JYmj3t5ssVj48cwZ5g4cyNKhQyn10kuUa9SI0vXq4RdgfAlxTdMIPXWKI+vXc2j1ai4fPYrJbKZypUqMHj2aevXqGR2iYdw2AZ04eUIffhN/5J7hAsg/wSdeXlRLXqj6k8nEGE1jvtXKsgMHWLF3L4u//po8RYpQpkkTytSvT76yZfHy9XVKiLakJK6ePMmJLVs4tG41lw8dBRmk8jJad1XfrdTTCoe6oqWghsBsXx8CZJmWskxLs5mzXl7MsVpZvmYNs1auxGQyUbRKFco2bkzJ2rXJUaSI0xZBx0dH89+hQxzbsIGQNWuIvHYN2WQiZ86c9OzZk5EjR5I5c2anxOLK3HYWnFcGL6wtrPCJE4NzRxHAUqA1rvcM6H5fQ+41Eud8MuDzhCnZdzSNtTYbf9lsrARu2WzIkkTuQoXIU7Ei+cqVI3+5cuQqVgwff/80Te1OjIsj7Nw5Lh05wuUjR7gSEsLl06dRFQXJT0Z7UdWfq9XE/ffpcSc2MLeEN++Yme3z5BuPK6rKSpuN5arKRpuNJE3D29ubvKVKkTc4mHxly5K/XDmyFyiAJQ1DdpqmERsZSeiJE1w6epRLhw9z5eBBwq9eBcDi5UWJ4sVp3749ffr0SVF1F1cXEhJC3759mTRp0hOfAXn8NGzJIsF7QFenhSY4ShTILWCk5MWn3il7Uq9oGodUlf2Kwn5VZa8kcdRqJSn5dPb29iZzYCCZcuTAP3duAoKC8AsIQDabkU0mJElCsdlQFYX4O3eIDg/nzvXrRIeGEnXzJnFxcQCYJImSFgtVVZUoYJlqQ1uKGPo1yibgUzjo50dwCnszMZrGvuTzZL+isFeWOZuUdO/fM2bMSED27PjnykWmnDkJCArCy88P2WTCZDajaRqqoqBYrcTcvq2fK1evEh0eTuTNm1itVgB8ZZlgk4kXgLU2Gxe9vLgTF+fSEwocxaMT0N1j+Apo4dz4BAeYA+bJEOqXgexp+GNN0jSOqSqnVJVrmsY1VSVU0wiVJK5KElGahg09eamahlmSsEgSGSWJ3JpGHk0jlySRW5bJJUkUkWXKyzJ+yT2pW5pGrrgYknogbnwMIveCKodldvukbWZHlKYRoij8d995ck3TuCrLhALxmoYt+UOWJMyShBnIKknkVlXyALlkmdySRC5JorQsU0KWMSWfK8usVlonJDBv3jw6dOiQ5p/b3aQ0AbnlM6DDhw/r/yHG292fCuY/oZ3ZnKbkA+AlSVQ0majooHH+rJLEmyYzcxbZsHUm/VSsdhX/gbofPvRJ+0yxAEmirtnssD0sXzabySlJDBs6NF0moJRyy77h8ePH9f9w5WcaQsqcBdt1eNtsMTqSFHnbbMF2AzhtdCTp0BbwNcFrbrA2zCxJvG2xcP7MGbHH0VO4ZQI6e3dvmezGxuEWXLUSwl0n9YmML7jJFg1VTCZkCRC7SDvfSagky3i7Sd3A6iYTVk1j586dRodiV/ashOCWCejChQv68If7TyhxvLuVEFw4ARXx0p/DuANfSaKERYaTRkeS/liOwAtuNO5ZOXlIefny5QZHYl/3V0JIK7dMQDdv3tQXobrHNUt4CtMxeFF1n4sKwIuqjDntf3tCakSBNRwqu0lPGfRJCtklie3btxsdistyywRks9nAPR4ZCE+jgXYWh00acJRKJhPKBSD9bWdknORR94puNqW5qixz9rR4YPgk7vXbTGa1WsUMJE+QBKoNsrvJ8NtdgZKEpgCJRkeSjiRvjOpu50p2SSIpIcHoMFyW608neQybzSYSUGr999D/B/L4WYQRPPq86HHHPu641B7r88AnAK4lr+F5WC5JItdDd79pPfZxx6Xk2HvxJgJxpOz9gpS/t6k51h6/B0cca+/34IL+KVLTHjv3yJ6/36cdl9pjFUCx2R74WkhIyGOfn5QpU+aRygJpPfZxx6X1WHsOKbplAkoPu2faTSBQERjy0NffRa8k8bCl6JMWnnXs445L7bFv6Z/u/7P9yWpl2H2r1O8a4uXF0IeqJKT12Mcdl5Jj78UrA4tI2fsFKX9vU3OsPX4PjjjWQe/Br1Yrox4zZGvP3+/TjkvtsZVk+ZFH1X379mXz5s2PHFu3bl02bdpk12Mfd5w9jg0ICKBMmTKPHJtablkJoUaNGuw8txNWODk4d+Wqd94BQCuY5eNDF4v+UM8dekDzrFY6JiTAZvShIdEDcvx7cAD4Dg75+lL+MeuAXLUHNDIxkY1+ftyKjr73NXfvAT3t2Ls8uhRPnTp12Hp8K6xycnCCfWlgqgfDVS8GpbAGnCsYn5TEQC0RdTNu+hTVDR0G3oMDfn5uNWmlQVwcJ7JnJ/TaNaNDcSqP3pLby8sLrEZHIaSZBFoJ2K+613Sy/YqCVAw3/etxU0UBCQ4o7nOuaMlFUEuVLm10KC7LLf+EcuTIoQ99uM+5KDyBWgZ2Se5VqmSXpKCkffhbSA0/sOSFfW5U1uY/TSMafcRGeDy3TEAFCxYEFYg0OBAh7UrCVavGTdcaCX6iKE3jglUTW8EbwFoWdrvRXee+5N5a27ZtDY7EdbllAipevLj+H65aXkZIuVL6p60PTVV1VdvvDgGVMjaOdKk0HLGpRLnJzcpWRcFblilbtqzRobgst0xA96b/iQTk/vKBqRhMU9zjod40WxKmQkAhoyNJh+qDIsFvVtc/V+I0jVlWKxWqVDE6FJfmlgno3h2FSEDuTwLlDVhrVTjv4uP7l1SVlVYF5Q1EHUIjZAfqwfdqEi42efcRf9hs3AFGjx5tdCguzS0TkI+Pj74lt0hAnqExyH76Yj5X9rPViuwDNDU6kvRLew3OWjU2ufBsOE3T+D4piaDAQOrVq2d0OC7N7glo1KhRVK1aFX9/f4KCgmjVqhWnTp2ydzN4eXuJBOQpfEB5FaYpSS47GeG2pjFFTUJpCfgZHU06VgnM+WCUzXV7QRsVhUOqSs/evY0OxeXZPQFt3ryZ3r17s2vXLtatW4fVaqVx48bExsbatZ3smbPDObu+pGCkThDrAx8kumbhxg8TE4i2AJ2NjiSdk8D2IayzKsxxwYkrMZrG2wkJZPH358svvzQ6HJdn9wS0evVqunbtSpkyZahQoQKzZs3i0qVL7N+/367tlC1bVt8UzLUfGwgpFQjKQPjDamOZiw3FrbDZmGO1oXwC5DA6GoE6QBPobU0g1MWeG36amMgVTWPRsmWY3WDrcKM5/BlQVFQUAFmzZn3svycmJhIdHf3AR0rUr19fr0Z8yV6RCoZrAlIteNeW4DJDcbc1jXesCcgvAi2Mjka4pz/E+cN7SQkuMxS3yWZjitVKqzZteOmll4wOxy04NAGpqkrfvn2pWbPmE+fCjxo1ioCAgHsf+fLlS9Fr31vcJbZG9hwSaJ9DpA+0Town3uALS4Km0SYxnlteGuoXiJlvriQAlC9glVXh68dUoXa2s6rKG8lDbwsWLDA6HLfh0ATUu3dvjh49yh9//PHEYwYNGkRUVNS9j8uXL6fotYsUKYLJ2yQSkKfJBsoE2I7Ca4nxJBqUhJI0jXaJ8WxBQRkPBBkShvA0dYBeMDQpiQkGJqFLqkr9uDhiTCa27twpht5SwWEJ6IMPPmDlypX8+++/5M2b94nHeXt7kylTpgc+UipX9lzwaKVywd1VAHUcrNYUmifGE+PkJBSnabycGM9KVUH9Fqjk1OaF1Oiif/RPTOTrxESnD8edUlWqx8VxQ5b5d9s2u+yRk57YPQFpmsYHH3zA0qVL2bhxI4UKOW7JeNmyZeEUoiipJ3oR1O9hs6zwQmKs06ogH1IUqiXGsUFWUCcBtZzSrJAWPfWPIUlJtEtMIMIJExM0TWO+1Uq12FgizWa27dpFtWrVHN6up7F7Aurduzdz5sxh3rx5+Pv7c/36da5fv058fLy9m6JFixb6RIQTdn9pwRVUBuUXOJ1Po2p8HF8lJpLkoDtcq6YxLDGRyvFxnMijok4HXnBIU4K9SUBX4GtY4mWjRGIsSxw4k/K6qtIqPp43ExLIlDcvIceOUUWU3Hkudt+Q7knbZc+cOZOuXbs+8/tTupERQEJCAr7+vtAJ/S5I8ExWYBZIv0JJk8RYsw9NTSZMdtiaXdU01ioKA2yJHFNUtC7A24BXml9aMMJNkEaBthXaWswMsXhRzk4b2MVoGr9brQxKTCROkujz8ceMHz/eLq/taTx6R9T7FS5SmAvqBRATTzzfaTCNAOUU5DNLfCBbeNtiIfAx2y4/y01NY6bVymQ1iYtWDVMxfVaVqHLtATRgDZgmghIJNSwyfUxetDGb8XqOm5aTisJUq5VfrFZigYL587Nq9WpKlRIny5OkmwTUv39/JkyYAEuB3I6PTzCYBhwFFoG8Dkwa1DaZeEEyUVmWqWwyUVCSHuiJa5rGRU1jv6KwX1XZqylsURRsEqgNgdeAcohp1p7GCmwGeSGohyCLGepjoopsorJJ/8j2UEKyaRrHVZX9qso+RWEnCgetKibAP3NmVqxYQa1a4sHgs6SbBBQaGkqevHngY6Cd4+MTXMhtYBVwAMzHwXZL/7KXDD4yWNCvQQkqJCU/lzYDtkpADfSFpY9fHy14mvPAKpCPgHQKlORH0r4m8JbABCRqEK+CogESWPLom+CRFZgHf//9N82bNzfsR3An6SYBAWTLno1bBW7BFAcHJ7i2m+jrwi4DSckfXskfedH38OkAdEd/biikTypwBf1cuYk+kckGeKMXmi0MFAcyJB8/EkxrTCTFJiE/x3BvepTS67hHrJhq1KARC/5cAHcAf6OjEQyTDaj5jGNeALYgElB6JgP5kz+eRQU2Q3CZYJF8HMAj3tGBAwfee/AoCE/1EnAIvZckCM+yG4iE999/3+hIPJJHJKBKlSqRK3cuWIieiAThSRoAvsASowMR3MKf4J3Bm7ffftvoSDySRyQggP4f94eLQIjRkQguzQt9dsJywDW3HhJcRSiwA9q1bSeG3xzEY97Vjz/+GLOPGf40OhLBpYUA0UAssN7YUAQXtwyQYezYsUZH4rE8JgHJskzLZi3hX/SZLYLwOH+C2cdM1uxZ9SFbQXicJGApVChbgaAgUQrdUTwmAQFMnDhR/4/lxsYhuKibwL/QsllLevXopReyPW50UIJL+heIhpEjRxodiUfziHVA9ytRogSnI07rSUjU8xLuNx34Ff47/x+5cuXC198X9SUVhhkdmOBSNKAbBIQFEHkz0uho3FJKr+Me1QOC5F7QLWCx0ZEILuU2MAcqVqhIgQIF8PLyos0rbfSp++eNDk5wKVuBEzCg3wCjI/F4HtcDAiheojhnrp3RHyJmtGt4gruaBCyEk8dOUqJECQBiYmLIHJgZ5QUFxhkaneAqFKADBEQHcCvilpj99pzSbQ8IYO6cufosp3lGRyK4hGvAQnip7kv3kg9AxowZ6f52d/2O97Bh0QmuZDVwESaOnyiSjxN4ZA8I4IUXXmDv4b16lexs9otPcEPDQForEXo5lJw5cz7wTzabjQwBGUgqmgQ/Iypip2eJQFvI5ZWL0CuhRkfj1tJ1Dwhg/vz5eoHBmUZHIhjqHLAK2rZq+0jyATCbzXw+8HO9B7Td6dEJrmQJcANm/DzD6EjSDY/tAQE0adKEtRvW6otT89gnPsHN9APTPhOREZFkzPj4B4KqqpI5W2buZLkDc9Fr8wvpSwzwKhTPXZxTp04ZHY3bS/c9IIC5c+fq47ijEDXi0qPNwHbo1b3XE5MP6IuYJ46bCBcQO+umV5OBOJgzZ47RkaQrHp2AAgMDGfLlENiLWJya3kQB30BQjiAmTZr0zMPfeecdgoOD9T2lLjo4NsG17AGWQrvX21G1alWjo0lXPHoI7q7ixYtz5vIZ/e720ccAgicaDGyAg/sO6oklBSIiIsiZNydKUUVftCqG4jxfLNAeAqwBRIRHYDZ7xBZphhNDcPdZt24dsiLDCMRQXHqwGVgLPd7tkeLkA3qPedK4SXAMMRSXXvwARMBfy/4SyccA6SIBFShQQAzFpRf3Db1NmZL6Pdo/+OADMRSXXtw39FanTh2jo0mX0sUQ3F1iKC4deI6ht4dFRESQK28ubEVtYijOU4mhN4cSQ3CPsX79en0obiBiMzJPtBhYCz2793zu5AP6UNx3E77Th+JS34kSXJ0KDEUMvbmAdJWA8ufPz28zf4MzwDeI50Ge5AAwDsqVL/dcQ28P69WrF61atYI5wKo0v5zgSqYDW+DLz78UQ28GS1cJCKBjx458+MGHsBb94iK4v1BgAGTOnJk9u/fY7WUXL15M0aJF9ZuVY3Z7WcFIG4Bf9UXqw4cPNzqadC/dJSCA7777jho1auiLz0T5FfcWh17twGpiz649+Pj42O2lZVlm//79ZPDLAP2BG3Z7acEIp4AhkL9AflatEt1aV5AuExDA5s2byZ4zO3yBvgJecD8qMAS4CIsXLKZYsWJ2byJTpkzs2LoDOUaGT9ALVgru5xbQD3y8fdi/b7+odO0i0u1vwWw2c2DvASxYoB/6hmWCe/mJe2P5r776qsOaKV++PLN/nQ2ngeHoiU9wHwnAAJAiJbZs3EJgYKDREQnJ0m0CAsibNy9rV61FuiFBL/Q1JIJ7mA3MghYtWjhlLL9Tp07069sP1gGjERNY3EUies/1OPw89WdRasfFpOsEBFCvXj2W/rkULgF90KviCq5tPjBF/92tXLnSac2OHz+ed999V99pdwIiCbk6KzAI2A/jxyb/7gSXku4TEMCrr77KgrkL4CzwAXDH6IiEJ1oATIIXX3yRDRs2OL356dOn07FjR1ioxyGSkItKAj4HdsCIr0fQr18/oyMSHkMkoGRvvPEGv8/6XR/n74kYjnNFvwMToGrVqmzfvt2wB8lz5syhffv28AcwBvFMyNUkP/NhKwwdMpQvvvjC6IiEJxAJ6D6dOnXizz/+RLogQQ8gwuiIBEDvZUwHJkOdOnXYtWuX4bOY5s+fT9euXfVdNEeg774rGC8WfVLRHhj97WiGDBlidETCU4gE9JDXXnuNv5b+hXxFhs7ACaMjSucSgK+AGfriwc2bNxuefO6aOXMmPXv21Csl9EH0mo12FegGHITvJ33PwIEDjY5IeAbX+Et2MS+//DL79+zHz+oH7wFrjI4onQoDugProW/fvqxevdroiB4xZcoUvv/ue6TDErwFnDM6onRqH/AWmK+bWbF8BX369DE6IiEFRAJ6guDgYK5eukrBfAX1O/AfAcXgoNKTI8BbIF+QmTdnHhMnTjQ6oifq06cPW/7dgle0l34HvsXoiNIRDfgT6ANZvLNw+sRpXn75ZaOjElJIJKCnyJw5M+fOnNNP6N/Q1xOIadqO9zfQAzJqGTm0/xAdOnQwOqJnqlWrFhfPXSRXtlz6A/CZiBlyjmYFRgHjoGKFioReCaVQoUJGRyWkgkhAzyDLMitWrNAXO+4GuiKeCzlKHPoiz6+hWJFiXL10lbJlyxodVYrlzJmTSxcvUbduXZiGvu3HLaOj8lCXgfeBv6Bbt24cOHDArnUABecQCSiFvvzyS1atWIX3LW94G5iKvtZAsI/9QHtgGbRv356TJ07afUNCZzCbzWzatEl/AL4DeAO9ArNgHyr6WrAOYDpt4qdpP/Hrr78aHZXwnNLVjqj2EBcXR8uWLdn470bIDwwDShkdlRuLQ3++tgj8A/xZungpDRo0MDoquzh69CiNmzTmWug1qI/eI8pqdFRu7DLwNXAYypUrx9q1a8mZU2xt7IrEjqgO4ufnx4YNG/hz4Z94R4jeUJrc7fUsgTZt2nAr4pbHJB+AsmXLcuXyFT788EPYiugNPa/7ez0nTUycOJHDhw+L5OMBRA8oDR7oDeUDPgaqA5LBgbm6G8DPwF+e1+t5kgd6Q3XQSz4VMDoqN3AUmKh/Fr0e9yF6QE5wf28oY1RGPQG9jz6FWHhUNPpwW2vgb33Rr6f1ep7k/t6QvEvWe34jgXCjI3NRF9BnE74DXue8RK/HQ4kekJ2oqsrQoUMZPW40SfFJ+l1uL0DMCtWrGfyJPjU5HmpWr8m8efPInz+/wYEZIzIyki5duvDX33/pt4Ad0KtuuM/p7jhh6GWXVoJskXmnyztMnjwZLy8voyMTUiGl13GRgOwsKSmJDz/8kOkzp6NaVXgZfXFiHqMjM0Aiepman4HbUKZ0GebMmUNwcLCxcbmIS5cu0bFjR7bt2AY+6OdJGyCjwYEZ4SYwF1gAEhKtWrZi1qxZbnkNEEQCMlx0dDTdunVj6V9L0WwavAi8jv6MyGRwcI52Fb1I5zIgBvLlz8fMX2emi6G253H48GE6derEkaNHwAtoDrQF7L/DuGvRgBBgEfCv/v91atVh7ty55M2b19DQhLQRz4AMlilTJhYvXkz4tXC6du2Kz1Ef6A+0Qq+q4GlbgCvANuAj9Lv4+VC5RGXWrl3LpYuXRPJ5ivLly3P48GH27tlLver1kFZK0Al4B70OoafNsIwFFqM/B3sfzNvMtGrZivNnz7N582aRfNIR0QNyotmzZzN8xHDOnTunp/6GyR8voA/BuBsNvfjmZvTeTjj4ZPShw+sdGDNmDIGBgYaG567i4uIYMmQI03+dTtStKP3Z0KtAXaAM7nnbaAMOAhvRSy0lQs7cOenXtx/9+/d3mQrngn2IITgXdubMGfr168fqDauxxdvAgp6E6gK1gGzGxvdUVvQLyVZgE/osLhmKFCrC4MGD6dKli5HReZyVK1fy5ZdfcujYIf0iHoB+ntTG9W9cooGd6OfKNiBen1hQ88WajB8/nqpVqxobn+AwIgG5iX/++Ycff/yRLdu3cCcyeS/wkugXmXJACYydHWUD/kOvf7cL2I5+IfGSKV28NO3bt6dPnz7p4ndlpKSkJGbMmMGsWbM4eOQgtoT7blxqoPeMiqA/QzJKHPqOwsfQk84hQNV7xS9WeZHu3bvTrl070dtJB0QCckOnTp1i/Pjx/L3qb0Kvhf5/q+ec6BeYUskfJQB/BwRwN9mcRE84x4Ez6L0e9AtJ9arVee+998SFxGCPvXExoU/7L4N+E1MKxyWleOAU+rlyEj3pXEYflpUgW2A2GjVoRL9+/URPJx0SCcjNJSUlsXbtWlauXMnu3bs5e+EsMXdi/p+UMqDXFcsBZE/+yAYEok/jNaNfkMzo32NDnyiQhD7l9cZ9n8OTP0dy7/XNvmbyBOWhQoUKvPTSS7Rt21Y8HHZRt27dYsmSJaxdu5aQkBAuhl4kKTZ55oKE3oPODgQlfw5M/sgG+KKfJ3c/FP5/rsShb0t/9+PuuRIBJOc8JPDN6EuhfIWoWrUqzZo1o2XLlvj5+TnhJxdclUhAHuhuUvrnn384d+4c169fJyIigsiYSBISE1CSlP8nqGeQLBJe3l74+/qTNUtWcuTIQZ48eXjxxRdFsvEAd5PSli1buHz5MmFhYdy8dZPouGgSExPRklL4Zy/pw60+3j4EZAggW7Zs5MyZkwIFCtCoUSORbITHEgkoHVJVlcuXLxMaGkpiYiKJiYkkJCRgsVjw9vbG29ubjBkzUrJkSbF3SjqXlJTEmTNniIyMvHeeWK1WvLy88Pb2xtfXl8DAQIoUKSKGWoVUS+l13OzEmAQHk2WZAgUKUKCAqHIpPJ2XlxdlypQxOgwhnRO3NoIgCIIhRAISBEEQDOGwBPTjjz9SsGBBfHx8qFatGnv27HFUU4IgCIIbckgCWrBgAf369WPIkCEcOHCAChUq0KRJE8LDxeYngiAIgs4hCWjChAm89957dOvWjdKlSzNt2jT8/Pz49ddfHdGcIAiC4IbsPgsuKSmJ/fv3M2jQoHtfk2WZhg0bsnPnzkeOvztd+K6oqChAn8YnCIIguJ+71+9nrfKxewKKiIhAURRy5MjxwNdz5MjByZMnHzl+1KhRDBs27JGv58uXz96hCYIgCE50584dAgICnvjvhq8DGjRoEP369bv3/5GRkRQoUIBLly49NfD0Jjo6mnz58nH58mWxQDeZeE8eJd6TxxPvy6Mc+Z5omsadO3fInTv3U4+zewIKDAzEZDIRFhb2wNfDwsLImTPnI8ffXaH/sICAAHGiPEamTJnE+/IQ8Z48Srwnjyfel0c56j1JSQfC7pMQvLy8qFy5Mhs2bLj3NVVV2bBhA9WrV7d3c4IgCIKbcsgQXL9+/ejSpQtVqlThhRdeYNKkScTGxtKtWzdHNCcIgiC4IYckoHbt2nHjxg2++uorrl+/TnBwMKtXr35kYsLjeHt7M2TIkMcOy6Vn4n15lHhPHiXek8cT78ujXOE9cblq2IIgCEL6IGrBCYIgCIYQCUgQBEEwhEhAgiAIgiFEAhIEQRAM4XIJSGzj8H+jRo2iatWq+Pv7ExQURKtWrTh16pTRYbmUb7/9FkmS6Nu3r9GhGO7q1at06tSJbNmy4evrS7ly5di3b5/RYRlGURQGDx5MoUKF8PX1pUiRIgwfPvyZ9ck8zZYtW2jZsiW5c+dGkiSWLVv2wL9rmsb/2ruDkCbjMI7jP9rczA5qhLkVygJBbRrGUHCCh0kiHoIgCIYMOgQycRaYw6jbsil62AytDnXIFA9KJXQYtQYetGFbKUYbJOrB4aXYcBWxPR3CwUiCDu55Yc8H3sPe9/JlbP+HbS/737lzBzqdDkePHkVbWxui0WhO2hQ1gGQbh2yBQAB2ux1LS0vw+Xz49esXLly4gL29Pe40RQgGg3jw4AHq6+u5U9h9/foVZrMZBQUFePXqFdbX1zE6OorS0lLuNDZutxsTExMYHx/Hp0+f4Ha7MTw8DK/Xy52WU3t7ezh37hzu379/4PXh4WF4PB5MTk5ieXkZx44dQ3t7O378+HH4caQgjY2NZLfbM49TqRTp9XoaGhpirFKO3d1dAkCBQIA7hV0ikaCqqiry+XzU2tpKDoeDO4nVwMAAtbS0cGcoSmdnJ129ejXr3KVLl8hqtTIV8QNA8/PzmcfpdJrKy8tpZGQkc+7bt2+k1Wppenr60HsU8wlofxuHtra2zLl/beOQj/a3qjh+/DhzCT+73Y7Ozs6s10s+e/HiBUwmEy5fvoyysjI0NDTg0aNH3Fmsmpub8fr1a0QiEQDAhw8fsLi4iI6ODuYy5djY2EAsFst6HxUXF6OpqSkn6y77v2Hv+99tHPJNOp1GX18fzGYzjEYjdw6rmZkZvH//HsFgkDtFMb58+YKJiQncuHEDg4ODCAaD6O3thUajgc1m485j4XQ6EY/HUV1dDZVKhVQqBZfLBavVyp2mGLFYDAAOXHf3rx0mxQwg8W92ux1ra2tYXFzkTmG1vb0Nh8MBn8+HwsJC7hzFSKfTMJlMuHv3LgCgoaEBa2trmJyczNsBNDs7i6mpKTx79gxnz55FOBxGX18f9Hp93j4nSqOYr+D+dxuHfNLT04OFhQX4/X6cPn2aO4fVysoKdnd3cf78eajVaqjVagQCAXg8HqjVaqRSKe5EFjqdDrW1tVnnampqsLW1xVTEr7+/H06nE1euXEFdXR26urpw/fp1DA0Ncacpxv7ayrXuKmYAyTYOfyMi9PT0YH5+Hm/evIHBYOBOYmexWLC6uopwOJw5TCYTrFYrwuEwVCoVdyILs9n81y36kUgElZWVTEX8kskkjhzJXuJUKhXS6TRTkfIYDAaUl5dnrbvxeBzLy8u5WXcP/TaH/zAzM0NarZaePHlC6+vrdO3aNSopKaFYLMadxqK7u5uKi4vp7du3tLOzkzmSySR3mqLIXXBE7969I7VaTS6Xi6LRKE1NTVFRURE9ffqUO42NzWajU6dO0cLCAm1sbNDc3BydOHGCbt68yZ2WU4lEgkKhEIVCIQJAY2NjFAqFaHNzk4iI7t27RyUlJfT8+XP6+PEjXbx4kQwGA33//v3Q2xQ1gIiIvF4vVVRUkEajocbGRlpaWuJOYgPgwOPx48fcaYoiA+iPly9fktFoJK1WS9XV1fTw4UPuJFbxeJwcDgdVVFRQYWEhnTlzhm7dukU/f/7kTsspv99/4Dpis9mI6M+t2Ldv36aTJ0+SVqsli8VCnz9/zkmbbMcghBCChWJ+AxJCCJFfZAAJIYRgIQNICCEECxlAQgghWMgAEkIIwUIGkBBCCBYygIQQQrCQASSEEIKFDCAhhBAsZAAJIYRgIQNICCEECxlAQgghWPwGaJQ0hk4qMtoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3 4.239601372763498\n", + "4 4.2396013727635\n", + "5 4.239601372763502\n", + "6 10.741792762297127\n", + "7 10.741792762297136\n", + "8 10.74179276229714\n", + "9 11.135561953696916\n", + "10 11.135561953696929\n", + "11 11.135561953696929\n", + "12 22.53713229271336\n", + "13 22.537132292713366\n", + "14 29.48031578745088\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "\n", + "\n", + "freqs, eigvecs = phonon.get_frequencies_with_eigenvectors(q=[0.5, 0.5, 0.5])\n", + "\n", + "# write(\"undeformed.extxyz\", atoms * (2, 2, 2))\n", + "\n", + "for mode in range(len(eigvecs)):\n", + " # mode = 0\n", + " eigvec = eigvecs[:, mode].real.reshape(-1, 3)\n", + "\n", + " # atoms = read('BZO_cubic_prim.xyz')\n", + " cloned = atoms.copy() #* replicas\n", + " norm_eigvec = eigvec / np.linalg.norm(eigvec, axis=1).max() * 0.5\n", + " cloned.positions += norm_eigvec\n", + " cloned.set_constraint()\n", + "\n", + " print(mode, freq := freqs[mode])\n", + "\n", + " if freq >= 0:\n", + " continue\n", + " \n", + " # view(atoms * (5, 5, 5), viewer='x3d')\n", + "\n", + " plot_atoms(cloned * (2, 2, 2))\n", + " write(f\"pbe/mode-{mode}.extxyz\", cloned * (2, 2, 2))\n", + " plt.savefig(f\"pbe/mode-{mode}.png\", dpi=300)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-2.11439178e-18 -4.22304315e-17 -5.70003002e-16]\n", + " [-1.91068525e-17 6.38796468e-17 -3.43967329e-17]\n", + " [ 1.65178706e-02 1.86479850e-01 -6.38796468e-17]\n", + " [ 4.63923771e-01 -2.70260044e-17 -1.86479850e-01]\n", + " [ 9.68175896e-17 -4.63923771e-01 -1.65178706e-02]]\n" + ] + } + ], + "source": [ + "mode = 1\n", + "eigvec = eigvecs[:, mode].real.reshape(-1, 3)\n", + "\n", + "norm_eigvec = eigvec / np.linalg.norm(eigvec, axis=1).max() * 0.5\n", + "print(norm_eigvec)\n", + "\n", + "np.save(f'pbe/mode-{mode}.npy', norm_eigvec)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/benchmarks/bzo/pbe/mode-1.npy b/benchmarks/bzo/pbe/mode-1.npy new file mode 100644 index 0000000000000000000000000000000000000000..07f3da66ab9bc8bc87ad97094d5cbf038a653fd1 Binary files /dev/null and b/benchmarks/bzo/pbe/mode-1.npy differ diff --git a/benchmarks/bzo/pbe/phonopy_params.yaml b/benchmarks/bzo/pbe/phonopy_params.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d22b1b1870cff83c075d4b56671d1d3ada248a57 --- /dev/null +++ b/benchmarks/bzo/pbe/phonopy_params.yaml @@ -0,0 +1,6773 @@ +phonopy: + version: "2.30.1" + frequency_unit_conversion_factor: 15.633302 + symmetry_tolerance: 1.00000e-05 + +space_group: + type: "Pm-3m" + number: 221 + Hall_symbol: "-P 4 2 3" + +supercell_matrix: +- [ 2, 0, 0 ] +- [ 0, 2, 0 ] +- [ 0, 0, 2 ] + +primitive_cell: + lattice: + - [ 4.000000000000000, 0.000000000000000, 0.000000000000000 ] # a + - [ 0.000000000000000, 4.000000000000000, 0.000000000000000 ] # b + - [ 0.000000000000000, 0.000000000000000, 4.000000000000000 ] # c + points: + - symbol: Ba # 1 + coordinates: [ 0.000000000000000, 0.000000000000000, 0.000000000000000 ] + mass: 137.327000 + - symbol: Zr # 2 + coordinates: [ 0.500000000000000, 0.500000000000000, 0.500000000000000 ] + mass: 91.224000 + - symbol: O # 3 + coordinates: [ 0.500000000000000, 0.500000000000000, 0.000000000000000 ] + mass: 15.999000 + - symbol: O # 4 + coordinates: [ 0.500000000000000, 0.000000000000000, 0.500000000000000 ] + mass: 15.999000 + - symbol: O # 5 + coordinates: [ 0.000000000000000, 0.500000000000000, 0.500000000000000 ] + mass: 15.999000 + reciprocal_lattice: # without 2pi + - [ 0.250000000000000, 0.000000000000000, 0.000000000000000 ] # a* + - [ 0.000000000000000, 0.250000000000000, 0.000000000000000 ] # b* + - [ 0.000000000000000, 0.000000000000000, 0.250000000000000 ] # c* + +unit_cell: + lattice: + - [ 4.000000000000000, 0.000000000000000, 0.000000000000000 ] # a + - [ 0.000000000000000, 4.000000000000000, 0.000000000000000 ] # b + - [ 0.000000000000000, 0.000000000000000, 4.000000000000000 ] # c + points: + - symbol: Ba # 1 + coordinates: [ 0.000000000000000, 0.000000000000000, 0.000000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Zr # 2 + coordinates: [ 0.500000000000000, 0.500000000000000, 0.500000000000000 ] + mass: 91.224000 + reduced_to: 2 + - symbol: O # 3 + coordinates: [ 0.500000000000000, 0.500000000000000, 0.000000000000000 ] + mass: 15.999000 + reduced_to: 3 + - symbol: O # 4 + coordinates: [ 0.500000000000000, 0.000000000000000, 0.500000000000000 ] + mass: 15.999000 + reduced_to: 4 + - symbol: O # 5 + coordinates: [ 0.000000000000000, 0.500000000000000, 0.500000000000000 ] + mass: 15.999000 + reduced_to: 5 + +supercell: + lattice: + - [ 8.000000000000000, 0.000000000000000, 0.000000000000000 ] # a + - [ 0.000000000000000, 8.000000000000000, 0.000000000000000 ] # b + - [ 0.000000000000000, 0.000000000000000, 8.000000000000000 ] # c + points: + - symbol: Ba # 1 + coordinates: [ 0.000000000000000, 0.000000000000000, 0.000000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 2 + coordinates: [ 0.500000000000000, 0.000000000000000, 0.000000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 3 + coordinates: [ 0.000000000000000, 0.500000000000000, 0.000000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 4 + coordinates: [ 0.500000000000000, 0.500000000000000, 0.000000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 5 + coordinates: [ 0.000000000000000, 0.000000000000000, 0.500000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 6 + coordinates: [ 0.500000000000000, 0.000000000000000, 0.500000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 7 + coordinates: [ 0.000000000000000, 0.500000000000000, 0.500000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Ba # 8 + coordinates: [ 0.500000000000000, 0.500000000000000, 0.500000000000000 ] + mass: 137.327000 + reduced_to: 1 + - symbol: Zr # 9 + coordinates: [ 0.250000000000000, 0.250000000000000, 0.250000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 10 + coordinates: [ 0.750000000000000, 0.250000000000000, 0.250000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 11 + coordinates: [ 0.250000000000000, 0.750000000000000, 0.250000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 12 + coordinates: [ 0.750000000000000, 0.750000000000000, 0.250000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 13 + coordinates: [ 0.250000000000000, 0.250000000000000, 0.750000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 14 + coordinates: [ 0.750000000000000, 0.250000000000000, 0.750000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 15 + coordinates: [ 0.250000000000000, 0.750000000000000, 0.750000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: Zr # 16 + coordinates: [ 0.750000000000000, 0.750000000000000, 0.750000000000000 ] + mass: 91.224000 + reduced_to: 9 + - symbol: O # 17 + coordinates: [ 0.250000000000000, 0.250000000000000, 0.000000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 18 + coordinates: [ 0.750000000000000, 0.250000000000000, 0.000000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 19 + coordinates: [ 0.250000000000000, 0.750000000000000, 0.000000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 20 + coordinates: [ 0.750000000000000, 0.750000000000000, 0.000000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 21 + coordinates: [ 0.250000000000000, 0.250000000000000, 0.500000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 22 + coordinates: [ 0.750000000000000, 0.250000000000000, 0.500000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 23 + coordinates: [ 0.250000000000000, 0.750000000000000, 0.500000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 24 + coordinates: [ 0.750000000000000, 0.750000000000000, 0.500000000000000 ] + mass: 15.999000 + reduced_to: 17 + - symbol: O # 25 + coordinates: [ 0.250000000000000, 0.000000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 26 + coordinates: [ 0.750000000000000, 0.000000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 27 + coordinates: [ 0.250000000000000, 0.500000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 28 + coordinates: [ 0.750000000000000, 0.500000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 29 + coordinates: [ 0.250000000000000, 0.000000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 30 + coordinates: [ 0.750000000000000, 0.000000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 31 + coordinates: [ 0.250000000000000, 0.500000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 32 + coordinates: [ 0.750000000000000, 0.500000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 25 + - symbol: O # 33 + coordinates: [ 0.000000000000000, 0.250000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 34 + coordinates: [ 0.500000000000000, 0.250000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 35 + coordinates: [ 0.000000000000000, 0.750000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 36 + coordinates: [ 0.500000000000000, 0.750000000000000, 0.250000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 37 + coordinates: [ 0.000000000000000, 0.250000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 38 + coordinates: [ 0.500000000000000, 0.250000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 39 + coordinates: [ 0.000000000000000, 0.750000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 33 + - symbol: O # 40 + coordinates: [ 0.500000000000000, 0.750000000000000, 0.750000000000000 ] + mass: 15.999000 + reduced_to: 33 + +displacements: +- atom: 1 + displacement: + [ 0.0100000000000000, 0.0000000000000000, 0.0000000000000000 ] + forces: + - [ -0.0972005600000000, -0.0000010800000000, -0.0000002900000000 ] + - [ 0.0247509700000000, 0.0000003400000000, -0.0000002100000000 ] + - [ -0.0070425500000000, 0.0000005900000000, 0.0000012600000000 ] + - [ 0.0059725000000000, -0.0000007600000000, -0.0000000900000000 ] + - [ -0.0070445200000000, -0.0000002000000000, -0.0000002500000000 ] + - [ 0.0059748300000000, 0.0000001800000000, 0.0000004500000000 ] + - [ -0.0026573800000000, 0.0000002200000000, -0.0000004500000000 ] + - [ 0.0024506600000000, -0.0000002200000000, -0.0000001000000000 ] + - [ 0.0060658100000000, 0.0149362800000000, 0.0149396700000000 ] + - [ 0.0061185400000000, -0.0148240100000000, -0.0148247400000000 ] + - [ 0.0060668300000000, -0.0149363000000000, 0.0149394100000000 ] + - [ 0.0061170000000000, 0.0148227700000000, -0.0148249000000000 ] + - [ 0.0060647300000000, 0.0149412400000000, -0.0149389200000000 ] + - [ 0.0061189000000000, -0.0148268000000000, 0.0148261400000000 ] + - [ 0.0060671700000000, -0.0149393400000000, -0.0149386000000000 ] + - [ 0.0061177600000000, 0.0148261200000000, 0.0148242600000000 ] + - [ 0.0018495000000000, -0.0009791700000000, 0.0000001400000000 ] + - [ 0.0016089400000000, 0.0011737800000000, -0.0000003500000000 ] + - [ 0.0018488800000000, 0.0009792100000000, 0.0000003700000000 ] + - [ 0.0016094100000000, -0.0011737700000000, -0.0000004200000000 ] + - [ 0.0001295200000000, -0.0013306000000000, -0.0000001300000000 ] + - [ 0.0001132500000000, 0.0013263600000000, -0.0000007300000000 ] + - [ 0.0001283100000000, 0.0013307100000000, 0.0000002600000000 ] + - [ 0.0001143300000000, -0.0013261900000000, -0.0000004000000000 ] + - [ 0.0018488100000000, 0.0000003300000000, -0.0009803800000000 ] + - [ 0.0016094300000000, -0.0000001200000000, 0.0011735200000000 ] + - [ 0.0001282700000000, 0.0000000200000000, -0.0013317200000000 ] + - [ 0.0001145300000000, -0.0000000700000000, 0.0013259300000000 ] + - [ 0.0018497300000000, 0.0000000900000000, 0.0009801300000000 ] + - [ 0.0016086000000000, -0.0000000100000000, -0.0011737400000000 ] + - [ 0.0001295100000000, -0.0000000800000000, 0.0013319100000000 ] + - [ 0.0001130700000000, 0.0000004100000000, -0.0013262900000000 ] + - [ 0.0093273800000000, 0.0000090300000000, 0.0000081100000000 ] + - [ -0.0065131900000000, -0.0000071700000000, -0.0000084000000000 ] + - [ 0.0093276400000000, -0.0000089200000000, 0.0000079400000000 ] + - [ -0.0065126600000000, 0.0000071000000000, -0.0000082100000000 ] + - [ 0.0093270500000000, 0.0000086000000000, -0.0000081500000000 ] + - [ -0.0065137700000000, -0.0000081100000000, 0.0000080400000000 ] + - [ 0.0093266900000000, -0.0000085200000000, -0.0000079900000000 ] + - [ -0.0065139100000000, 0.0000080400000000, 0.0000079400000000 ] +- atom: 9 + displacement: + [ 0.0100000000000000, 0.0000000000000000, 0.0000000000000000 ] + forces: + - [ 0.0061093800000000, 0.0148253700000000, 0.0148264200000000 ] + - [ 0.0060546900000000, -0.0149341800000000, -0.0149343100000000 ] + - [ 0.0061116900000000, -0.0148256500000000, 0.0148279300000000 ] + - [ 0.0060531800000000, 0.0149338900000000, -0.0149344400000000 ] + - [ 0.0061096200000000, 0.0148262600000000, -0.0148271600000000 ] + - [ 0.0060553200000000, -0.0149340400000000, 0.0149350500000000 ] + - [ 0.0061114800000000, -0.0148263900000000, -0.0148272200000000 ] + - [ 0.0060540600000000, 0.0149341500000000, 0.0149346500000000 ] + - [ -0.3057539300000000, 0.0000016300000000, -0.0000014900000000 ] + - [ 0.1328682200000000, 0.0000013400000000, 0.0000010500000000 ] + - [ -0.0052426900000000, -0.0000009400000000, -0.0000005800000000 ] + - [ 0.0056243500000000, -0.0000023300000000, -0.0000011000000000 ] + - [ -0.0052408800000000, 0.0000040300000000, 0.0000009800000000 ] + - [ 0.0056214700000000, -0.0000018500000000, 0.0000013400000000 ] + - [ -0.0069399100000000, -0.0000026200000000, 0.0000001800000000 ] + - [ 0.0068537700000000, 0.0000007500000000, -0.0000000500000000 ] + - [ 0.0026088700000000, 0.0000007000000000, 0.0004867400000000 ] + - [ -0.0146093800000000, -0.0000004900000000, 0.0000221400000000 ] + - [ 0.0033810700000000, -0.0000006900000000, -0.0000239200000000 ] + - [ -0.0032928200000000, 0.0000004600000000, -0.0000037800000000 ] + - [ 0.0026095700000000, 0.0000010500000000, -0.0004867600000000 ] + - [ -0.0146101000000000, -0.0000004200000000, -0.0000230600000000 ] + - [ 0.0033810300000000, -0.0000009300000000, 0.0000245000000000 ] + - [ -0.0032927400000000, 0.0000006400000000, 0.0000033400000000 ] + - [ 0.0026081200000000, 0.0004870100000000, -0.0000004300000000 ] + - [ -0.0146087900000000, 0.0000224100000000, -0.0000006200000000 ] + - [ 0.0026080100000000, -0.0004868400000000, -0.0000003400000000 ] + - [ -0.0146086300000000, -0.0000225900000000, -0.0000007300000000 ] + - [ 0.0033818900000000, -0.0000242300000000, 0.0000004300000000 ] + - [ -0.0032935800000000, -0.0000035200000000, 0.0000005100000000 ] + - [ 0.0033823800000000, 0.0000238700000000, 0.0000004900000000 ] + - [ -0.0032942100000000, 0.0000040300000000, 0.0000004700000000 ] + - [ 0.0822262800000000, 0.0000005600000000, -0.0000001900000000 ] + - [ 0.0901504300000000, 0.0000005700000000, -0.0000003700000000 ] + - [ -0.0003065700000000, -0.0000003300000000, -0.0000007800000000 ] + - [ -0.0002027000000000, -0.0000006700000000, -0.0000006200000000 ] + - [ -0.0003074500000000, 0.0000001800000000, 0.0000000800000000 ] + - [ -0.0002040200000000, -0.0000003600000000, 0.0000002700000000 ] + - [ -0.0000878800000000, -0.0000001200000000, 0.0000007800000000 ] + - [ -0.0000686400000000, 0.0000003000000000, 0.0000006000000000 ] +- atom: 17 + displacement: + [ 0.0070710678118655, 0.0000000000000000, 0.0070710678118655 ] + forces: + - [ 0.0011516800000000, -0.0008303700000000, 0.0065851900000000 ] + - [ 0.0012971300000000, 0.0006949700000000, 0.0066007000000000 ] + - [ 0.0011537400000000, 0.0008299200000000, 0.0065866900000000 ] + - [ 0.0012954800000000, -0.0006955600000000, 0.0066008600000000 ] + - [ 0.0000901000000000, -0.0009236200000000, -0.0046025700000000 ] + - [ 0.0000864800000000, 0.0009562300000000, -0.0046123900000000 ] + - [ 0.0000919700000000, 0.0009234000000000, -0.0046025900000000 ] + - [ 0.0000849800000000, -0.0009556400000000, -0.0046128400000000 ] + - [ 0.0014293900000000, -0.0000012800000000, 0.0625994200000000 ] + - [ -0.0103844900000000, 0.0000014200000000, -0.0001611900000000 ] + - [ 0.0024011900000000, 0.0000014900000000, -0.0001620800000000 ] + - [ -0.0023183200000000, -0.0000026900000000, -0.0000291900000000 ] + - [ 0.0022514000000000, 0.0000029100000000, 0.0592338700000000 ] + - [ -0.0102561900000000, -0.0000022400000000, -0.0001887300000000 ] + - [ 0.0023992300000000, -0.0000012600000000, -0.0001891900000000 ] + - [ -0.0023195200000000, 0.0000021400000000, -0.0000699400000000 ] + - [ -0.0259695600000000, 0.0000006100000000, -0.2490102200000000 ] + - [ 0.0033813900000000, -0.0000004700000000, -0.0059652900000000 ] + - [ -0.0021604600000000, -0.0000006200000000, -0.0059644000000000 ] + - [ 0.0048454900000000, 0.0000004900000000, -0.0013470700000000 ] + - [ 0.0046222300000000, 0.0000008500000000, 0.0637673100000000 ] + - [ 0.0028994800000000, -0.0000004500000000, 0.0063603200000000 ] + - [ -0.0005400600000000, -0.0000008200000000, 0.0063609900000000 ] + - [ 0.0006547600000000, 0.0000006700000000, 0.0013644400000000 ] + - [ -0.0027570900000000, -0.0155746100000000, 0.0069283100000000 ] + - [ 0.0017561600000000, -0.0016086700000000, -0.0000370000000000 ] + - [ -0.0027571100000000, 0.0155746000000000, 0.0069286000000000 ] + - [ 0.0017564100000000, 0.0016084400000000, -0.0000370700000000 ] + - [ -0.0027247200000000, 0.0154791600000000, 0.0069910900000000 ] + - [ 0.0017488300000000, 0.0015829100000000, -0.0000184600000000 ] + - [ -0.0027244000000000, -0.0154796300000000, 0.0069911000000000 ] + - [ 0.0017480900000000, -0.0015823200000000, -0.0000185600000000 ] + - [ -0.0085657100000000, 0.0000003500000000, -0.0019536000000000 ] + - [ 0.0226785600000000, 0.0000004600000000, 0.0159412300000000 ] + - [ -0.0016192500000000, -0.0000002800000000, -0.0008640400000000 ] + - [ 0.0015752500000000, -0.0000005000000000, 0.0007926900000000 ] + - [ 0.0223063000000000, 0.0000001700000000, 0.0157011600000000 ] + - [ -0.0085594700000000, -0.0000003600000000, -0.0018481300000000 ] + - [ 0.0015692700000000, -0.0000001500000000, 0.0008072000000000 ] + - [ -0.0016186600000000, 0.0000003300000000, -0.0008466400000000 ] + +force_constants: + format: "full" + shape: [ 40, 40 ] + elements: + - # (1, 1) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (1, 2) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (1, 3) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (1, 4) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (1, 5) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (1, 6) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (1, 7) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (1, 8) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (1, 9) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (1, 10) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (1, 11) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (1, 12) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (1, 13) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (1, 14) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (1, 15) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (1, 16) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (1, 17) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (1, 18) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (1, 19) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (1, 20) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (1, 21) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (1, 22) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (1, 23) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (1, 24) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (1, 25) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (1, 26) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (1, 27) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (1, 28) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (1, 29) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (1, 30) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (1, 31) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (1, 32) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (1, 33) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (1, 34) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (1, 35) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (1, 36) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (1, 37) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (1, 38) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (1, 39) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (1, 40) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (2, 1) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (2, 2) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (2, 3) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (2, 4) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (2, 5) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (2, 6) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (2, 7) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (2, 8) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (2, 9) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (2, 10) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (2, 11) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (2, 12) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (2, 13) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (2, 14) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (2, 15) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (2, 16) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (2, 17) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (2, 18) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (2, 19) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (2, 20) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (2, 21) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (2, 22) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (2, 23) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (2, 24) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (2, 25) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (2, 26) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (2, 27) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (2, 28) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (2, 29) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (2, 30) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (2, 31) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (2, 32) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (2, 33) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (2, 34) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (2, 35) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (2, 36) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (2, 37) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (2, 38) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (2, 39) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (2, 40) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (3, 1) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (3, 2) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (3, 3) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (3, 4) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (3, 5) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (3, 6) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (3, 7) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (3, 8) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (3, 9) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (3, 10) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (3, 11) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (3, 12) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (3, 13) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (3, 14) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (3, 15) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (3, 16) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (3, 17) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (3, 18) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (3, 19) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (3, 20) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (3, 21) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (3, 22) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (3, 23) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (3, 24) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (3, 25) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (3, 26) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (3, 27) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (3, 28) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (3, 29) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (3, 30) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (3, 31) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (3, 32) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (3, 33) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (3, 34) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (3, 35) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (3, 36) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (3, 37) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (3, 38) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (3, 39) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (3, 40) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (4, 1) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (4, 2) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (4, 3) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (4, 4) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (4, 5) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (4, 6) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (4, 7) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (4, 8) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (4, 9) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (4, 10) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (4, 11) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (4, 12) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (4, 13) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (4, 14) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (4, 15) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (4, 16) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (4, 17) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (4, 18) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (4, 19) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (4, 20) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (4, 21) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (4, 22) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (4, 23) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (4, 24) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (4, 25) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (4, 26) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (4, 27) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (4, 28) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (4, 29) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (4, 30) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (4, 31) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (4, 32) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (4, 33) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (4, 34) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (4, 35) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (4, 36) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (4, 37) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (4, 38) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (4, 39) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (4, 40) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (5, 1) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (5, 2) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (5, 3) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (5, 4) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (5, 5) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (5, 6) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (5, 7) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (5, 8) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (5, 9) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (5, 10) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (5, 11) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (5, 12) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (5, 13) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (5, 14) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (5, 15) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (5, 16) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (5, 17) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (5, 18) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (5, 19) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (5, 20) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (5, 21) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (5, 22) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (5, 23) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (5, 24) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (5, 25) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (5, 26) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (5, 27) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (5, 28) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (5, 29) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (5, 30) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (5, 31) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (5, 32) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (5, 33) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (5, 34) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (5, 35) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (5, 36) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (5, 37) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (5, 38) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (5, 39) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (5, 40) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (6, 1) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (6, 2) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (6, 3) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (6, 4) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (6, 5) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (6, 6) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (6, 7) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (6, 8) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (6, 9) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (6, 10) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (6, 11) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (6, 12) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (6, 13) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (6, 14) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (6, 15) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (6, 16) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (6, 17) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (6, 18) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (6, 19) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (6, 20) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (6, 21) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (6, 22) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (6, 23) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (6, 24) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (6, 25) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (6, 26) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (6, 27) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (6, 28) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (6, 29) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (6, 30) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (6, 31) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (6, 32) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (6, 33) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (6, 34) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (6, 35) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (6, 36) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (6, 37) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (6, 38) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (6, 39) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (6, 40) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (7, 1) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (7, 2) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (7, 3) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (7, 4) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (7, 5) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (7, 6) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (7, 7) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (7, 8) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (7, 9) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (7, 10) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (7, 11) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (7, 12) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (7, 13) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (7, 14) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (7, 15) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (7, 16) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (7, 17) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (7, 18) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (7, 19) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (7, 20) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (7, 21) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (7, 22) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (7, 23) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (7, 24) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (7, 25) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (7, 26) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (7, 27) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (7, 28) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (7, 29) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (7, 30) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (7, 31) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (7, 32) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (7, 33) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (7, 34) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (7, 35) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (7, 36) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (7, 37) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (7, 38) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (7, 39) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (7, 40) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (8, 1) + - [ -0.245066000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.245066000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.245066000000000 ] + - # (8, 2) + - [ 0.265738000000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (8, 3) + - [ -0.597366500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.265738000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.597366500000000 ] + - # (8, 4) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -2.475097000000000 ] + - # (8, 5) + - [ -0.597366500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.597366500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.265738000000000 ] + - # (8, 6) + - [ 0.704353500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -2.475097000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.704353500000000 ] + - # (8, 7) + - [ -2.475097000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.704353500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.704353500000000 ] + - # (8, 8) + - [ 9.720056000000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 9.720056000000001, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 9.720056000000001 ] + - # (8, 9) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (8, 10) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (8, 11) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (8, 12) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (8, 13) + - [ -0.609209250000000, -1.488184375000000, 1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ 1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (8, 14) + - [ -0.609209250000000, 1.488184375000000, -1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, 1.488184375000000 ] + - [ -1.488184375000000, 1.488184375000000, -0.609209250000000 ] + - # (8, 15) + - [ -0.609209250000000, 1.488184375000000, 1.488184375000000 ] + - [ 1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ 1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (8, 16) + - [ -0.609209250000000, -1.488184375000000, -1.488184375000000 ] + - [ -1.488184375000000, -0.609209250000000, -1.488184375000000 ] + - [ -1.488184375000000, -1.488184375000000, -0.609209250000000 ] + - # (8, 17) + - [ -0.012134875000000, 0.132871375000000, -0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (8, 18) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651338250000000 ] + - # (8, 19) + - [ -0.012134875000000, -0.132871375000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.012134875000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (8, 20) + - [ -0.012134875000000, 0.132871375000000, 0.000000000000000 ] + - [ 0.132871375000000, -0.012134875000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.651338250000000 ] + - # (8, 21) + - [ -0.172916250000000, 0.107671250000000, -0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (8, 22) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932719000000000 ] + - # (8, 23) + - [ -0.172916250000000, -0.107671250000000, -0.000000000000000 ] + - [ -0.107671250000000, -0.172916250000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (8, 24) + - [ -0.172916250000000, 0.107671250000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.172916250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.932719000000000 ] + - # (8, 25) + - [ -0.012134875000000, 0.000000000000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (8, 26) + - [ -0.012134875000000, 0.000000000000000, -0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, 0.000000000000000 ] + - [ -0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (8, 27) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ 0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (8, 28) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (8, 29) + - [ -0.012134875000000, -0.000000000000000, -0.132871375000000 ] + - [ 0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ -0.132871375000000, -0.000000000000000, -0.012134875000000 ] + - # (8, 30) + - [ -0.012134875000000, -0.000000000000000, 0.132871375000000 ] + - [ -0.000000000000000, 0.651338250000000, -0.000000000000000 ] + - [ 0.132871375000000, 0.000000000000000, -0.012134875000000 ] + - # (8, 31) + - [ -0.172916250000000, 0.000000000000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.932719000000000, 0.000000000000000 ] + - [ -0.107671250000000, -0.000000000000000, -0.172916250000000 ] + - # (8, 32) + - [ -0.172916250000000, -0.000000000000000, 0.107671250000000 ] + - [ 0.000000000000000, -0.932719000000000, -0.000000000000000 ] + - [ 0.107671250000000, 0.000000000000000, -0.172916250000000 ] + - # (8, 33) + - [ 0.651338250000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (8, 34) + - [ -0.932719000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ -0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (8, 35) + - [ 0.651338250000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (8, 36) + - [ -0.932719000000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (8, 37) + - [ 0.651338250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, -0.132871375000000 ] + - [ -0.000000000000000, -0.132871375000000, -0.012134875000000 ] + - # (8, 38) + - [ -0.932719000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.172916250000000, -0.107671250000000 ] + - [ -0.000000000000000, -0.107671250000000, -0.172916250000000 ] + - # (8, 39) + - [ 0.651338250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012134875000000, 0.132871375000000 ] + - [ 0.000000000000000, 0.132871375000000, -0.012134875000000 ] + - # (8, 40) + - [ -0.932719000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.172916250000000, 0.107671250000000 ] + - [ 0.000000000000000, 0.107671250000000, -0.172916250000000 ] + - # (9, 1) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (9, 2) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (9, 3) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (9, 4) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (9, 5) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (9, 6) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (9, 7) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (9, 8) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (9, 9) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (9, 10) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (9, 11) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (9, 12) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (9, 13) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (9, 14) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (9, 15) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (9, 16) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (9, 17) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (9, 18) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (9, 19) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (9, 20) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (9, 21) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (9, 22) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (9, 23) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (9, 24) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (9, 25) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (9, 26) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (9, 27) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (9, 28) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (9, 29) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (9, 30) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (9, 31) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (9, 32) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (9, 33) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (9, 34) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (9, 35) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (9, 36) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (9, 37) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (9, 38) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (9, 39) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (9, 40) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (10, 1) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (10, 2) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (10, 3) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (10, 4) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (10, 5) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (10, 6) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (10, 7) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (10, 8) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (10, 9) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (10, 10) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (10, 11) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (10, 12) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (10, 13) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (10, 14) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (10, 15) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (10, 16) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (10, 17) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (10, 18) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (10, 19) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (10, 20) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (10, 21) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (10, 22) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (10, 23) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (10, 24) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (10, 25) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (10, 26) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (10, 27) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (10, 28) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (10, 29) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (10, 30) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (10, 31) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (10, 32) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (10, 33) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (10, 34) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (10, 35) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (10, 36) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (10, 37) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (10, 38) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (10, 39) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (10, 40) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (11, 1) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (11, 2) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (11, 3) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (11, 4) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (11, 5) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (11, 6) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (11, 7) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (11, 8) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (11, 9) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (11, 10) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (11, 11) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (11, 12) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (11, 13) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (11, 14) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (11, 15) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (11, 16) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (11, 17) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (11, 18) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (11, 19) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (11, 20) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (11, 21) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (11, 22) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (11, 23) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (11, 24) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (11, 25) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (11, 26) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (11, 27) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (11, 28) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (11, 29) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (11, 30) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (11, 31) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (11, 32) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (11, 33) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (11, 34) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (11, 35) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (11, 36) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (11, 37) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (11, 38) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (11, 39) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (11, 40) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (12, 1) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (12, 2) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (12, 3) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (12, 4) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (12, 5) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (12, 6) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (12, 7) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (12, 8) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (12, 9) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (12, 10) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (12, 11) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (12, 12) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (12, 13) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (12, 14) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (12, 15) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (12, 16) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (12, 17) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (12, 18) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (12, 19) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (12, 20) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (12, 21) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (12, 22) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (12, 23) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (12, 24) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (12, 25) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (12, 26) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (12, 27) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (12, 28) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (12, 29) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (12, 30) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (12, 31) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (12, 32) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (12, 33) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (12, 34) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (12, 35) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (12, 36) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (12, 37) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (12, 38) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (12, 39) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (12, 40) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (13, 1) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (13, 2) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (13, 3) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (13, 4) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (13, 5) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (13, 6) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (13, 7) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (13, 8) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (13, 9) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (13, 10) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (13, 11) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (13, 12) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (13, 13) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (13, 14) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (13, 15) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (13, 16) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (13, 17) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (13, 18) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (13, 19) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (13, 20) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (13, 21) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (13, 22) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (13, 23) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (13, 24) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (13, 25) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (13, 26) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (13, 27) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (13, 28) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (13, 29) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (13, 30) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (13, 31) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (13, 32) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (13, 33) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (13, 34) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (13, 35) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (13, 36) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (13, 37) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (13, 38) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (13, 39) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (13, 40) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (14, 1) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (14, 2) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (14, 3) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (14, 4) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (14, 5) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (14, 6) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (14, 7) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (14, 8) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (14, 9) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (14, 10) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (14, 11) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (14, 12) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (14, 13) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (14, 14) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (14, 15) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (14, 16) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (14, 17) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (14, 18) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (14, 19) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (14, 20) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (14, 21) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (14, 22) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (14, 23) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (14, 24) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (14, 25) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (14, 26) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (14, 27) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (14, 28) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (14, 29) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (14, 30) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (14, 31) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (14, 32) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (14, 33) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (14, 34) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (14, 35) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (14, 36) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (14, 37) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (14, 38) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (14, 39) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (14, 40) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (15, 1) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (15, 2) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (15, 3) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (15, 4) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (15, 5) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (15, 6) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (15, 7) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (15, 8) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (15, 9) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (15, 10) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (15, 11) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (15, 12) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (15, 13) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (15, 14) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (15, 15) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (15, 16) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (15, 17) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (15, 18) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (15, 19) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (15, 20) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (15, 21) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (15, 22) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (15, 23) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (15, 24) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (15, 25) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (15, 26) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (15, 27) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (15, 28) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (15, 29) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (15, 30) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (15, 31) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (15, 32) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (15, 33) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (15, 34) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (15, 35) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (15, 36) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (15, 37) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (15, 38) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (15, 39) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (15, 40) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (16, 1) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (16, 2) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500001 ] + - [ 1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (16, 3) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (16, 4) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (16, 5) + - [ -0.608242750000000, -1.488044437500000, 1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ 1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (16, 6) + - [ -0.608242750000000, 1.488044437500000, -1.488044437500000 ] + - [ 1.488044437500000, -0.608242750000000, 1.488044437500000 ] + - [ -1.488044437500000, 1.488044437500000, -0.608242750000000 ] + - # (16, 7) + - [ -0.608242750000000, 1.488044437500000, 1.488044437500000 ] + - [ 1.488044437500001, -0.608242750000000, -1.488044437500000 ] + - [ 1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (16, 8) + - [ -0.608242750000000, -1.488044437500000, -1.488044437500000 ] + - [ -1.488044437500000, -0.608242750000000, -1.488044437500000 ] + - [ -1.488044437500000, -1.488044437500000, -0.608242750000000 ] + - # (16, 9) + - [ -0.685377000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685377000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.685377000000000 ] + - # (16, 10) + - [ 0.693991000000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (16, 11) + - [ -0.562291000000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.693991000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.562291000000000 ] + - # (16, 12) + - [ 0.524178500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -13.286822000000001 ] + - # (16, 13) + - [ -0.562291000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.562291000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.693991000000000 ] + - # (16, 14) + - [ 0.524178500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -13.286822000000003, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (16, 15) + - [ -13.286822000000003, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.524178500000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.524178500000000 ] + - # (16, 16) + - [ 30.575393000000009, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 30.575393000000009, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 30.575393000000009 ] + - # (16, 17) + - [ 0.329333750000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.007826000000000 ] + - # (16, 18) + - [ -0.338159250000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (16, 19) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.025518500000000 ] + - # (16, 20) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -8.618835499999999 ] + - # (16, 21) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.007826000000000 ] + - # (16, 22) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (16, 23) + - [ 1.460922500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.025518500000000 ] + - # (16, 24) + - [ -0.260864250000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -8.618835499999999 ] + - # (16, 25) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007826000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (16, 26) + - [ -0.338159250000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 1.460922500000000 ] + - # (16, 27) + - [ 0.329333750000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.007826000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.329333750000000 ] + - # (16, 28) + - [ -0.338159250000000, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (16, 29) + - [ 1.460922500000000, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (16, 30) + - [ -0.260864250000000, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -8.618835500000003, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.260864250000000 ] + - # (16, 31) + - [ 1.460922500000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.025518500000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.338159250000000 ] + - # (16, 32) + - [ -0.260864250000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -8.618835499999999, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (16, 33) + - [ 0.007826000000000, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (16, 34) + - [ 0.007826000000000, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.329333750000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.329333750000000 ] + - # (16, 35) + - [ 0.025518500000000, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (16, 36) + - [ 0.025518500000000, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.338159250000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.460922500000000 ] + - # (16, 37) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (16, 38) + - [ 0.025518500000000, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.460922500000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.338159250000000 ] + - # (16, 39) + - [ -8.618835500000001, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260864250000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (16, 40) + - [ -8.618835500000001, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.260864250000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260864250000000 ] + - # (17, 1) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (17, 2) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (17, 3) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (17, 4) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (17, 5) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (17, 6) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (17, 7) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (17, 8) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (17, 9) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (17, 10) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (17, 11) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (17, 12) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (17, 13) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (17, 14) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (17, 15) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (17, 16) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (17, 17) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (17, 18) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (17, 19) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (17, 20) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (17, 21) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (17, 22) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (17, 23) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (17, 24) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (17, 25) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (17, 26) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (17, 27) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (17, 28) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (17, 29) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (17, 30) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (17, 31) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (17, 32) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (17, 33) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (17, 34) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (17, 35) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (17, 36) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (17, 37) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (17, 38) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (17, 39) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (17, 40) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (18, 1) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (18, 2) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (18, 3) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (18, 4) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (18, 5) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (18, 6) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (18, 7) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (18, 8) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (18, 9) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (18, 10) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (18, 11) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (18, 12) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (18, 13) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (18, 14) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (18, 15) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (18, 16) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (18, 17) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (18, 18) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (18, 19) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (18, 20) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (18, 21) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (18, 22) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (18, 23) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (18, 24) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (18, 25) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (18, 26) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (18, 27) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (18, 28) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (18, 29) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (18, 30) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (18, 31) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (18, 32) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (18, 33) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (18, 34) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (18, 35) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (18, 36) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (18, 37) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (18, 38) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (18, 39) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (18, 40) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (19, 1) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (19, 2) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (19, 3) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (19, 4) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (19, 5) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (19, 6) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (19, 7) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (19, 8) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (19, 9) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (19, 10) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (19, 11) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (19, 12) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (19, 13) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (19, 14) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (19, 15) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (19, 16) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (19, 17) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (19, 18) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (19, 19) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (19, 20) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (19, 21) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (19, 22) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (19, 23) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (19, 24) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (19, 25) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (19, 26) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (19, 27) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (19, 28) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (19, 29) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (19, 30) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (19, 31) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (19, 32) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (19, 33) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (19, 34) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (19, 35) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (19, 36) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (19, 37) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (19, 38) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (19, 39) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (19, 40) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (20, 1) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (20, 2) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (20, 3) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (20, 4) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (20, 5) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (20, 6) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (20, 7) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (20, 8) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (20, 9) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (20, 10) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (20, 11) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (20, 12) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (20, 13) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (20, 14) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (20, 15) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (20, 16) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (20, 17) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (20, 18) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (20, 19) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (20, 20) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (20, 21) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (20, 22) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (20, 23) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (20, 24) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (20, 25) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (20, 26) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (20, 27) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (20, 28) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (20, 29) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (20, 30) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (20, 31) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (20, 32) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (20, 33) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (20, 34) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (20, 35) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (20, 36) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (20, 37) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (20, 38) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (20, 39) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (20, 40) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (21, 1) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (21, 2) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (21, 3) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (21, 4) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (21, 5) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (21, 6) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (21, 7) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (21, 8) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (21, 9) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (21, 10) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (21, 11) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (21, 12) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (21, 13) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (21, 14) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (21, 15) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (21, 16) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (21, 17) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (21, 18) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (21, 19) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (21, 20) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (21, 21) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (21, 22) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (21, 23) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (21, 24) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (21, 25) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (21, 26) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (21, 27) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (21, 28) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (21, 29) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (21, 30) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (21, 31) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (21, 32) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (21, 33) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (21, 34) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (21, 35) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (21, 36) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (21, 37) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (21, 38) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (21, 39) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (21, 40) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (22, 1) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (22, 2) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (22, 3) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (22, 4) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (22, 5) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (22, 6) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (22, 7) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (22, 8) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (22, 9) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (22, 10) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (22, 11) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (22, 12) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (22, 13) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (22, 14) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (22, 15) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (22, 16) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (22, 17) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (22, 18) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (22, 19) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (22, 20) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (22, 21) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (22, 22) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (22, 23) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (22, 24) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (22, 25) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (22, 26) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (22, 27) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (22, 28) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (22, 29) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (22, 30) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (22, 31) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (22, 32) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (22, 33) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (22, 34) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (22, 35) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (22, 36) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (22, 37) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (22, 38) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (22, 39) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (22, 40) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (23, 1) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (23, 2) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (23, 3) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (23, 4) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (23, 5) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (23, 6) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (23, 7) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (23, 8) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (23, 9) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (23, 10) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (23, 11) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (23, 12) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (23, 13) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (23, 14) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (23, 15) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (23, 16) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (23, 17) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (23, 18) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (23, 19) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (23, 20) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (23, 21) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (23, 22) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (23, 23) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (23, 24) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (23, 25) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (23, 26) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (23, 27) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (23, 28) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (23, 29) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (23, 30) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (23, 31) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (23, 32) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (23, 33) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (23, 34) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (23, 35) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (23, 36) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (23, 37) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (23, 38) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (23, 39) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (23, 40) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (24, 1) + - [ -0.012499173017644, 0.132896830436715, -0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (24, 2) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (24, 3) + - [ -0.012499173017644, -0.132896830436715, 0.000000000000000 ] + - [ -0.132896830436715, -0.012499173017644, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.651612687445637 ] + - # (24, 4) + - [ -0.012499173017644, 0.132896830436715, 0.000000000000000 ] + - [ 0.132896830436715, -0.012499173017644, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.651612687445637 ] + - # (24, 5) + - [ -0.173171511372757, 0.107862775508977, -0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (24, 6) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (24, 7) + - [ -0.173171511372757, -0.107862775508977, -0.000000000000000 ] + - [ -0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.932441913360827 ] + - # (24, 8) + - [ -0.173171511372757, 0.107862775508977, 0.000000000000000 ] + - [ 0.107862775508977, -0.173171511372757, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.932441913360827 ] + - # (24, 9) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (24, 10) + - [ -0.339440953454353, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (24, 11) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (24, 12) + - [ -0.260271156912363, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326720 ] + - # (24, 13) + - [ 0.327944811405822, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.007009549521902 ] + - # (24, 14) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.024790810195010 ] + - # (24, 15) + - [ 1.459516479630155, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.024790810195010 ] + - # (24, 16) + - [ -0.260271156912363, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -8.614914553326718 ] + - # (24, 17) + - [ -0.092597047209941, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.192960955304435 ] + - # (24, 18) + - [ 0.076376017649521, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.899532456657624 ] + - # (24, 19) + - [ -0.410048393982954, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.899532456657624 ] + - # (24, 20) + - [ -0.653682035440779, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -9.018059463804947 ] + - # (24, 21) + - [ -0.685255767434321, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.190504466346593 ] + - # (24, 22) + - [ 0.305535183296458, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.843556469645334 ] + - # (24, 23) + - [ -0.478200759767276, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.843556469645334 ] + - # (24, 24) + - [ 3.672650396086183, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 35.215363029350826 ] + - # (24, 25) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (24, 26) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (24, 27) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (24, 28) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (24, 29) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, -0.117046324829637 ] + - [ 0.000000000000000, -0.225651385682165, 0.003922321315242 ] + - # (24, 30) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.984988432484362, -1.253138880259487 ] + - [ -0.000000000000000, -2.195885460742546, -0.984288396770987 ] + - # (24, 31) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003301835114751, 0.117046324829637 ] + - [ 0.000000000000000, 0.225651385682165, 0.003922321315242 ] + - # (24, 32) + - [ 0.387611895815905, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984988432484362, 1.253138880259487 ] + - [ -0.000000000000000, 2.195885460742546, -0.984288396770987 ] + - # (24, 33) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (24, 34) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (24, 35) + - [ -0.984988432484362, -0.000000000000000, 1.253138880259487 ] + - [ -0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (24, 36) + - [ -0.984988432484362, 0.000000000000000, -1.253138880259487 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (24, 37) + - [ 0.003301835114751, 0.000000000000000, -0.117046324829637 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (24, 38) + - [ 0.003301835114751, -0.000000000000000, 0.117046324829637 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.225651385682165, -0.000000000000000, 0.003922321315242 ] + - # (24, 39) + - [ -0.984988432484362, -0.000000000000000, -1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -2.195885460742545, 0.000000000000000, -0.984288396770987 ] + - # (24, 40) + - [ -0.984988432484362, 0.000000000000000, 1.253138880259486 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ 2.195885460742546, 0.000000000000000, -0.984288396770987 ] + - # (25, 1) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (25, 2) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (25, 3) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (25, 4) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (25, 5) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (25, 6) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (25, 7) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (25, 8) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (25, 9) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (25, 10) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (25, 11) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (25, 12) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (25, 13) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (25, 14) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (25, 15) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (25, 16) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (25, 17) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (25, 18) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (25, 19) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (25, 20) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (25, 21) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (25, 22) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (25, 23) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (25, 24) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (25, 25) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (25, 26) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (25, 27) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (25, 28) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (25, 29) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (25, 30) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (25, 31) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (25, 32) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (25, 33) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (25, 34) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (25, 35) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (25, 36) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (25, 37) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (25, 38) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (25, 39) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (25, 40) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (26, 1) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (26, 2) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (26, 3) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (26, 4) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (26, 5) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (26, 6) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (26, 7) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (26, 8) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (26, 9) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (26, 10) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (26, 11) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (26, 12) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (26, 13) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (26, 14) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (26, 15) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (26, 16) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (26, 17) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (26, 18) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (26, 19) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (26, 20) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (26, 21) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (26, 22) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (26, 23) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (26, 24) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (26, 25) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (26, 26) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (26, 27) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (26, 28) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (26, 29) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (26, 30) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (26, 31) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (26, 32) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (26, 33) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (26, 34) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (26, 35) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (26, 36) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (26, 37) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (26, 38) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (26, 39) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (26, 40) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (27, 1) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (27, 2) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (27, 3) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (27, 4) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (27, 5) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (27, 6) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (27, 7) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (27, 8) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (27, 9) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (27, 10) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (27, 11) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (27, 12) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (27, 13) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (27, 14) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (27, 15) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (27, 16) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (27, 17) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (27, 18) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (27, 19) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (27, 20) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (27, 21) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (27, 22) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (27, 23) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (27, 24) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (27, 25) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (27, 26) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (27, 27) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (27, 28) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (27, 29) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (27, 30) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (27, 31) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (27, 32) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (27, 33) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (27, 34) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (27, 35) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (27, 36) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (27, 37) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (27, 38) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (27, 39) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (27, 40) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (28, 1) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (28, 2) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (28, 3) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (28, 4) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (28, 5) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (28, 6) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (28, 7) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (28, 8) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (28, 9) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (28, 10) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (28, 11) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (28, 12) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (28, 13) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (28, 14) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (28, 15) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (28, 16) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (28, 17) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (28, 18) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (28, 19) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (28, 20) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (28, 21) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (28, 22) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (28, 23) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (28, 24) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (28, 25) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (28, 26) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (28, 27) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (28, 28) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (28, 29) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (28, 30) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (28, 31) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (28, 32) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (28, 33) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (28, 34) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (28, 35) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (28, 36) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (28, 37) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (28, 38) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (28, 39) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (28, 40) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (29, 1) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (29, 2) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (29, 3) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (29, 4) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (29, 5) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (29, 6) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (29, 7) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (29, 8) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (29, 9) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (29, 10) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (29, 11) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (29, 12) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (29, 13) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (29, 14) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (29, 15) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (29, 16) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (29, 17) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (29, 18) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (29, 19) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (29, 20) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (29, 21) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (29, 22) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (29, 23) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (29, 24) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (29, 25) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (29, 26) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (29, 27) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (29, 28) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (29, 29) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (29, 30) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (29, 31) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (29, 32) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (29, 33) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (29, 34) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (29, 35) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (29, 36) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (29, 37) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (29, 38) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (29, 39) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (29, 40) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (30, 1) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (30, 2) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (30, 3) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (30, 4) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (30, 5) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (30, 6) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (30, 7) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (30, 8) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (30, 9) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (30, 10) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (30, 11) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (30, 12) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (30, 13) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (30, 14) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (30, 15) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (30, 16) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (30, 17) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (30, 18) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (30, 19) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (30, 20) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (30, 21) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (30, 22) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (30, 23) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (30, 24) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (30, 25) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (30, 26) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (30, 27) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (30, 28) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (30, 29) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (30, 30) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (30, 31) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (30, 32) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (30, 33) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (30, 34) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (30, 35) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (30, 36) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (30, 37) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (30, 38) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (30, 39) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (30, 40) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (31, 1) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (31, 2) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (31, 3) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (31, 4) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (31, 5) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (31, 6) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (31, 7) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (31, 8) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (31, 9) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (31, 10) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (31, 11) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (31, 12) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (31, 13) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (31, 14) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (31, 15) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (31, 16) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (31, 17) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (31, 18) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (31, 19) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (31, 20) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (31, 21) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (31, 22) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (31, 23) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (31, 24) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (31, 25) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (31, 26) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (31, 27) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (31, 28) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (31, 29) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (31, 30) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (31, 31) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (31, 32) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (31, 33) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (31, 34) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (31, 35) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (31, 36) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (31, 37) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (31, 38) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (31, 39) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (31, 40) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (32, 1) + - [ -0.012499173017644, -0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, -0.000000000000000, -0.012499173017644 ] + - # (32, 2) + - [ -0.012499173017644, -0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (32, 3) + - [ -0.173171511372757, 0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (32, 4) + - [ -0.173171511372757, -0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (32, 5) + - [ -0.012499173017644, 0.000000000000000, -0.132896830436715 ] + - [ 0.000000000000000, 0.651612687445637, -0.000000000000000 ] + - [ -0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (32, 6) + - [ -0.012499173017644, 0.000000000000000, 0.132896830436715 ] + - [ -0.000000000000000, 0.651612687445637, 0.000000000000000 ] + - [ 0.132896830436715, 0.000000000000000, -0.012499173017644 ] + - # (32, 7) + - [ -0.173171511372757, 0.000000000000000, -0.107862775508977 ] + - [ 0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ -0.107862775508977, -0.000000000000000, -0.173171511372757 ] + - # (32, 8) + - [ -0.173171511372757, -0.000000000000000, 0.107862775508977 ] + - [ -0.000000000000000, -0.932441913360827, 0.000000000000000 ] + - [ 0.107862775508977, 0.000000000000000, -0.173171511372757 ] + - # (32, 9) + - [ 0.327944811405822, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (32, 10) + - [ -0.339440953454353, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (32, 11) + - [ 0.327944811405822, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.007009549521902, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (32, 12) + - [ -0.339440953454353, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.024790810195010, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 1.459516479630155 ] + - # (32, 13) + - [ 1.459516479630155, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (32, 14) + - [ -0.260271156912363, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326720, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (32, 15) + - [ 1.459516479630155, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.024790810195010, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (32, 16) + - [ -0.260271156912363, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -8.614914553326718, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (32, 17) + - [ -0.247822895582965, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (32, 18) + - [ 0.387611895815905, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ -0.000000000000000, 1.253138880259487, -0.984988432484362 ] + - # (32, 19) + - [ -0.247822895582965, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (32, 20) + - [ 0.387611895815905, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742545 ] + - [ -0.000000000000000, -1.253138880259486, -0.984988432484362 ] + - # (32, 21) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, -0.225651385682165 ] + - [ 0.000000000000000, -0.117046324829637, 0.003301835114751 ] + - # (32, 22) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, -2.195885460742546 ] + - [ 0.000000000000000, -1.253138880259487, -0.984988432484362 ] + - # (32, 23) + - [ -0.247822895582965, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.003922321315242, 0.225651385682165 ] + - [ -0.000000000000000, 0.117046324829637, 0.003301835114751 ] + - # (32, 24) + - [ 0.387611895815905, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.984288396770987, 2.195885460742546 ] + - [ 0.000000000000000, 1.253138880259486, -0.984988432484362 ] + - # (32, 25) + - [ -0.092597047209941, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.192960955304435, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (32, 26) + - [ 0.076376017649521, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.899532456657624, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.410048393982954 ] + - # (32, 27) + - [ -0.685255767434321, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.190504466346593, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (32, 28) + - [ 0.305535183296458, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.843556469645334, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (32, 29) + - [ -0.410048393982954, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.899532456657624, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (32, 30) + - [ -0.653682035440779, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -9.018059463804947, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (32, 31) + - [ -0.478200759767276, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.843556469645334, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (32, 32) + - [ 3.672650396086184, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 35.215363029350826, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 3.672650396086183 ] + - # (32, 33) + - [ 0.003301835114751, 0.117046324829637, 0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (32, 34) + - [ 0.003301835114751, -0.117046324829637, 0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (32, 35) + - [ 0.003301835114751, -0.117046324829637, -0.000000000000000 ] + - [ -0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (32, 36) + - [ 0.003301835114751, 0.117046324829637, -0.000000000000000 ] + - [ 0.225651385682165, 0.003922321315242, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (32, 37) + - [ -0.984988432484362, 1.253138880259487, -0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (32, 38) + - [ -0.984988432484362, -1.253138880259487, 0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (32, 39) + - [ -0.984988432484362, -1.253138880259487, -0.000000000000000 ] + - [ -2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (32, 40) + - [ -0.984988432484362, 1.253138880259487, 0.000000000000000 ] + - [ 2.195885460742546, -0.984288396770987, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (33, 1) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (33, 2) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (33, 3) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (33, 4) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (33, 5) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (33, 6) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (33, 7) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (33, 8) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (33, 9) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (33, 10) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (33, 11) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (33, 12) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (33, 13) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (33, 14) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (33, 15) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (33, 16) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (33, 17) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (33, 18) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (33, 19) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (33, 20) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (33, 21) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (33, 22) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (33, 23) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (33, 24) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (33, 25) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (33, 26) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (33, 27) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (33, 28) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (33, 29) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (33, 30) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (33, 31) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (33, 32) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (33, 33) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (33, 34) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (33, 35) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (33, 36) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (33, 37) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (33, 38) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (33, 39) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (33, 40) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (34, 1) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (34, 2) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (34, 3) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (34, 4) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (34, 5) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (34, 6) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (34, 7) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (34, 8) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (34, 9) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (34, 10) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (34, 11) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (34, 12) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (34, 13) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (34, 14) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (34, 15) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (34, 16) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (34, 17) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (34, 18) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (34, 19) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (34, 20) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (34, 21) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (34, 22) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (34, 23) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (34, 24) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (34, 25) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (34, 26) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (34, 27) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (34, 28) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (34, 29) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (34, 30) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (34, 31) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (34, 32) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (34, 33) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (34, 34) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (34, 35) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (34, 36) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (34, 37) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (34, 38) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (34, 39) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (34, 40) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (35, 1) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (35, 2) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (35, 3) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (35, 4) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (35, 5) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (35, 6) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (35, 7) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (35, 8) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (35, 9) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (35, 10) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (35, 11) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (35, 12) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (35, 13) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (35, 14) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (35, 15) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (35, 16) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (35, 17) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (35, 18) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (35, 19) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (35, 20) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (35, 21) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (35, 22) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (35, 23) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (35, 24) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (35, 25) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (35, 26) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (35, 27) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (35, 28) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (35, 29) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (35, 30) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (35, 31) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (35, 32) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (35, 33) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (35, 34) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (35, 35) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (35, 36) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (35, 37) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (35, 38) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (35, 39) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (35, 40) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (36, 1) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (36, 2) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (36, 3) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (36, 4) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (36, 5) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (36, 6) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (36, 7) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (36, 8) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (36, 9) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (36, 10) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (36, 11) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (36, 12) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (36, 13) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (36, 14) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (36, 15) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (36, 16) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (36, 17) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (36, 18) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (36, 19) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (36, 20) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (36, 21) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (36, 22) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (36, 23) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (36, 24) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (36, 25) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (36, 26) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (36, 27) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (36, 28) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (36, 29) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (36, 30) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (36, 31) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (36, 32) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (36, 33) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (36, 34) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (36, 35) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (36, 36) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (36, 37) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (36, 38) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (36, 39) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (36, 40) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (37, 1) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (37, 2) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (37, 3) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (37, 4) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (37, 5) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (37, 6) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (37, 7) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (37, 8) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (37, 9) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (37, 10) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (37, 11) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (37, 12) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (37, 13) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (37, 14) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (37, 15) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (37, 16) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (37, 17) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (37, 18) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (37, 19) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (37, 20) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (37, 21) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (37, 22) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (37, 23) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (37, 24) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (37, 25) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (37, 26) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (37, 27) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (37, 28) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (37, 29) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (37, 30) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (37, 31) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (37, 32) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (37, 33) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (37, 34) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (37, 35) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (37, 36) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (37, 37) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (37, 38) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (37, 39) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (37, 40) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (38, 1) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (38, 2) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (38, 3) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (38, 4) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (38, 5) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (38, 6) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (38, 7) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (38, 8) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (38, 9) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (38, 10) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (38, 11) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (38, 12) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (38, 13) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (38, 14) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (38, 15) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (38, 16) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (38, 17) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (38, 18) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (38, 19) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (38, 20) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (38, 21) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (38, 22) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (38, 23) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (38, 24) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (38, 25) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (38, 26) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (38, 27) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (38, 28) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (38, 29) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (38, 30) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (38, 31) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (38, 32) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (38, 33) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (38, 34) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (38, 35) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (38, 36) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (38, 37) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (38, 38) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (38, 39) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (38, 40) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (39, 1) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (39, 2) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (39, 3) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (39, 4) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (39, 5) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (39, 6) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (39, 7) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (39, 8) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (39, 9) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (39, 10) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (39, 11) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (39, 12) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (39, 13) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (39, 14) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (39, 15) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (39, 16) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (39, 17) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (39, 18) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (39, 19) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (39, 20) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (39, 21) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (39, 22) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (39, 23) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (39, 24) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (39, 25) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (39, 26) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (39, 27) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (39, 28) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (39, 29) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (39, 30) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (39, 31) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (39, 32) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (39, 33) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (39, 34) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (39, 35) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (39, 36) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (39, 37) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (39, 38) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (39, 39) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] + - # (39, 40) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (40, 1) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ 0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (40, 2) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ 0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (40, 3) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (40, 4) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (40, 5) + - [ 0.651612687445637, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, -0.132896830436715 ] + - [ -0.000000000000000, -0.132896830436715, -0.012499173017644 ] + - # (40, 6) + - [ -0.932441913360827, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.173171511372757, -0.107862775508977 ] + - [ 0.000000000000000, -0.107862775508977, -0.173171511372757 ] + - # (40, 7) + - [ 0.651612687445637, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.012499173017644, 0.132896830436715 ] + - [ -0.000000000000000, 0.132896830436715, -0.012499173017644 ] + - # (40, 8) + - [ -0.932441913360827, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.173171511372757, 0.107862775508977 ] + - [ -0.000000000000000, 0.107862775508977, -0.173171511372757 ] + - # (40, 9) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 0.327944811405822, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (40, 10) + - [ 0.007009549521902, -0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, 0.327944811405822, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.327944811405822 ] + - # (40, 11) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (40, 12) + - [ 0.024790810195010, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.339440953454353, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 1.459516479630155 ] + - # (40, 13) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.339440953454353 ] + - # (40, 14) + - [ 0.024790810195010, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 1.459516479630155, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.339440953454353 ] + - # (40, 15) + - [ -8.614914553326718, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.260271156912363 ] + - # (40, 16) + - [ -8.614914553326720, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.260271156912363, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.260271156912363 ] + - # (40, 17) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (40, 18) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ 0.000000000000000, -0.247822895582965, 0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (40, 19) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742545 ] + - [ -0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259486, -0.000000000000000, -0.984988432484362 ] + - # (40, 20) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, -0.000000000000000 ] + - [ -1.253138880259487, -0.000000000000000, -0.984988432484362 ] + - # (40, 21) + - [ 0.003922321315242, 0.000000000000000, -0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ -0.117046324829637, -0.000000000000000, 0.003301835114751 ] + - # (40, 22) + - [ 0.003922321315242, 0.000000000000000, 0.225651385682165 ] + - [ -0.000000000000000, -0.247822895582965, -0.000000000000000 ] + - [ 0.117046324829637, 0.000000000000000, 0.003301835114751 ] + - # (40, 23) + - [ -0.984288396770987, -0.000000000000000, -2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ -1.253138880259486, 0.000000000000000, -0.984988432484362 ] + - # (40, 24) + - [ -0.984288396770987, -0.000000000000000, 2.195885460742546 ] + - [ 0.000000000000000, 0.387611895815905, 0.000000000000000 ] + - [ 1.253138880259487, 0.000000000000000, -0.984988432484362 ] + - # (40, 25) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (40, 26) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, -0.247822895582965 ] + - # (40, 27) + - [ 0.003922321315242, -0.225651385682165, -0.000000000000000 ] + - [ -0.117046324829637, 0.003301835114751, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (40, 28) + - [ 0.003922321315242, 0.225651385682165, -0.000000000000000 ] + - [ 0.117046324829637, 0.003301835114751, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.247822895582965 ] + - # (40, 29) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (40, 30) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, -0.000000000000000 ] + - [ -0.000000000000000, -0.000000000000000, 0.387611895815905 ] + - # (40, 31) + - [ -0.984288396770987, -2.195885460742546, 0.000000000000000 ] + - [ -1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (40, 32) + - [ -0.984288396770987, 2.195885460742546, 0.000000000000000 ] + - [ 1.253138880259487, -0.984988432484362, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.387611895815905 ] + - # (40, 33) + - [ -0.192960955304435, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.092597047209941, 0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.092597047209941 ] + - # (40, 34) + - [ 0.190504466346593, 0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, -0.685255767434321, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.685255767434321 ] + - # (40, 35) + - [ -0.899532456657624, -0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, 0.076376017649521, 0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, -0.410048393982954 ] + - # (40, 36) + - [ 0.843556469645334, -0.000000000000000, -0.000000000000000 ] + - [ 0.000000000000000, 0.305535183296458, -0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, -0.478200759767276 ] + - # (40, 37) + - [ -0.899532456657624, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.410048393982954, 0.000000000000000 ] + - [ 0.000000000000000, -0.000000000000000, 0.076376017649521 ] + - # (40, 38) + - [ 0.843556469645334, 0.000000000000000, 0.000000000000000 ] + - [ -0.000000000000000, -0.478200759767276, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, 0.305535183296458 ] + - # (40, 39) + - [ -9.018059463804947, 0.000000000000000, -0.000000000000000 ] + - [ -0.000000000000000, -0.653682035440779, -0.000000000000000 ] + - [ -0.000000000000000, 0.000000000000000, -0.653682035440779 ] + - # (40, 40) + - [ 35.215363029350826, -0.000000000000000, 0.000000000000000 ] + - [ 0.000000000000000, 3.672650396086184, -0.000000000000000 ] + - [ 0.000000000000000, 0.000000000000000, 3.672650396086183 ] \ No newline at end of file diff --git a/benchmarks/c2db/ALIGNN.parquet b/benchmarks/c2db/ALIGNN.parquet new file mode 100644 index 0000000000000000000000000000000000000000..3a56da04e459b98d92a698c4d67d85d8370ccded --- /dev/null +++ b/benchmarks/c2db/ALIGNN.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce4d250afce0a7ef62dd27c5531b1e3a91f761035cc595e64ff6aae225e4ad73 +size 272171 diff --git a/benchmarks/c2db/CHGNet.parquet b/benchmarks/c2db/CHGNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..61920551216e5cdf15d4417bba758ac401fccda4 --- /dev/null +++ b/benchmarks/c2db/CHGNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6063fa72efb16a5255b79f5e1a03bd13409ed129016496ff1f494c6f83b98be +size 292909 diff --git a/benchmarks/c2db/M3GNet.parquet b/benchmarks/c2db/M3GNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..9d3a047601ab69d688810994036359cbac867440 --- /dev/null +++ b/benchmarks/c2db/M3GNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:32e1517a85a1b64f12fb262a0948a95be58c69edde133ce7ddf683154b8f2a95 +size 290358 diff --git a/benchmarks/c2db/MACE-MP(M).parquet b/benchmarks/c2db/MACE-MP(M).parquet new file mode 100644 index 0000000000000000000000000000000000000000..cae862bed078a07208864c46df4af230315c8914 --- /dev/null +++ b/benchmarks/c2db/MACE-MP(M).parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f722eac6799bfecaa02188d59475862895a639cc596fa8b7d1e9d2b96cfb415b +size 293633 diff --git a/benchmarks/c2db/MACE-MPA.parquet b/benchmarks/c2db/MACE-MPA.parquet new file mode 100644 index 0000000000000000000000000000000000000000..145460ce655d08993233535ede6d702183b7971c --- /dev/null +++ b/benchmarks/c2db/MACE-MPA.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3ea679b5f6c9940358a2121a496544be91ba01ed8383509c65773f9fc69b9ec +size 293820 diff --git a/benchmarks/c2db/MatterSim.parquet b/benchmarks/c2db/MatterSim.parquet new file mode 100644 index 0000000000000000000000000000000000000000..866dd8b70b0489546071d56a760d3a873d8b432c --- /dev/null +++ b/benchmarks/c2db/MatterSim.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d150c1b31b99ddcbbf21401189289aead13791c683aa379d75163b8bc4dbc6b4 +size 293177 diff --git a/benchmarks/c2db/ORBv2.parquet b/benchmarks/c2db/ORBv2.parquet new file mode 100644 index 0000000000000000000000000000000000000000..6ef58cd086b30aa22ce40bd99b79cab13fc04f32 --- /dev/null +++ b/benchmarks/c2db/ORBv2.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c2496f96d4aff1536936e58e65c1d608cc1953d41006221ba62ea2daab23f30b +size 293012 diff --git a/benchmarks/c2db/SevenNet.parquet b/benchmarks/c2db/SevenNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..5c003f34383983576b3bc56f150437a250bb9c4c --- /dev/null +++ b/benchmarks/c2db/SevenNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0c2ee18ce70f24f70e65d70c2e54151e86dd0ccb3e412b8fbbc572e44e8bf5e8 +size 293973 diff --git a/benchmarks/c2db/analysis.ipynb b/benchmarks/c2db/analysis.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..49c80f2c41fee1bdf954e6ea7db35ca82499e981 --- /dev/null +++ b/benchmarks/c2db/analysis.ipynb @@ -0,0 +1,408 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "0625f0a1", + "metadata": {}, + "outputs": [], + "source": [ + "import random\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "from ase.db import connect\n", + "\n", + "random.seed(0)\n", + "\n", + "DATA_DIR = Path(\".\")\n", + "\n", + "db = connect(DATA_DIR / \"c2db.db\")\n", + "random_indices = random.sample(range(1, len(db) + 1), 1000)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "005708b9", + "metadata": {}, + "outputs": [], + "source": [ + "import itertools\n", + "\n", + "import pandas as pd\n", + "import phonopy\n", + "from tqdm.auto import tqdm\n", + "\n", + "from mlip_arena.models import MLIPEnum\n", + "\n", + "for row, model in tqdm(\n", + " itertools.product(db.select(filter=lambda r: r[\"id\"] in random_indices), MLIPEnum)\n", + "):\n", + " uid = row[\"uid\"]\n", + "\n", + " if Path(f\"{model.name}.parquet\").exists():\n", + " df = pd.read_parquet(f\"{model.name}.parquet\")\n", + " if uid in df[\"uid\"].unique():\n", + " continue\n", + " else:\n", + " df = pd.DataFrame(columns=[\"model\", \"uid\", \"eigenvalues\", \"frequencies\"])\n", + "\n", + " try:\n", + " path = Path(model.name) / uid\n", + " phonon = phonopy.load(path / \"phonopy.yaml\")\n", + " frequencies = phonon.get_frequencies(q=(0, 0, 0))\n", + "\n", + " data = np.load(path / \"elastic.npz\")\n", + "\n", + " eigenvalues = data[\"eigenvalues\"]\n", + "\n", + " new_row = pd.DataFrame(\n", + " [\n", + " {\n", + " \"model\": model.name,\n", + " \"uid\": uid,\n", + " \"eigenvalues\": eigenvalues,\n", + " \"frequencies\": frequencies,\n", + " }\n", + " ]\n", + " )\n", + "\n", + " df = pd.concat([df, new_row], ignore_index=True)\n", + " df.drop_duplicates(subset=[\"model\", \"uid\"], keep=\"last\", inplace=True)\n", + "\n", + " df.to_parquet(f\"{model.name}.parquet\", index=False)\n", + " except Exception:\n", + " pass\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b8d87638", + "metadata": {}, + "outputs": [], + "source": [ + "uids = []\n", + "stabilities = []\n", + "for row in db.select(filter=lambda r: r[\"id\"] in random_indices):\n", + " stable = row.key_value_pairs[\"dyn_stab\"]\n", + " if stable.lower() == \"unknown\":\n", + " stable = None\n", + " else:\n", + " stable = True if stable.lower() == \"yes\" else False\n", + " uids.append(row.key_value_pairs[\"uid\"])\n", + " stabilities.append(stable)\n", + "\n", + "\n", + "stabilities = np.array(stabilities)\n", + "\n", + "(stabilities == True).sum(), (stabilities == False).sum(), (stabilities == None).sum()" + ] + }, + { + "cell_type": "markdown", + "id": "a3c516a7", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "0052d0ff", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "from matplotlib import pyplot as plt\n", + "from sklearn.metrics import (\n", + " ConfusionMatrixDisplay,\n", + " classification_report,\n", + " confusion_matrix,\n", + ")\n", + "\n", + "from mlip_arena.models import MLIPEnum\n", + "\n", + "thres = -1e-7\n", + "\n", + "select_models = [\n", + " \"ALIGNN\",\n", + " \"CHGNet\",\n", + " \"M3GNet\",\n", + " \"MACE-MP(M)\",\n", + " \"MACE-MPA\",\n", + " \"MatterSim\",\n", + " \"ORBv2\",\n", + " \"SevenNet\",\n", + "]\n", + "\n", + "with plt.style.context(\"default\"):\n", + " # plt.rcParams.update({\n", + " # # \"title.fontsize\": 10,\n", + " # \"axes.titlesize\": 10,\n", + " # \"axes.labelsize\": 8,\n", + " # })\n", + "\n", + " SMALL_SIZE = 8\n", + " MEDIUM_SIZE = 10\n", + " BIGGER_SIZE = 12\n", + " plt.rcParams.update(\n", + " {\n", + " \"font.size\": SMALL_SIZE,\n", + " \"axes.titlesize\": MEDIUM_SIZE,\n", + " \"axes.labelsize\": MEDIUM_SIZE,\n", + " \"xtick.labelsize\": MEDIUM_SIZE,\n", + " \"ytick.labelsize\": MEDIUM_SIZE,\n", + " \"legend.fontsize\": SMALL_SIZE,\n", + " \"figure.titlesize\": BIGGER_SIZE,\n", + " }\n", + " )\n", + "\n", + " fig, axs = plt.subplots(\n", + " nrows=int(np.ceil(len(MLIPEnum) / 4)),\n", + " ncols=4,\n", + " figsize=(6, 3 * int(np.ceil(len(select_models) / 4))),\n", + " sharey=True,\n", + " sharex=True,\n", + " layout=\"constrained\",\n", + " )\n", + " axs = axs.flatten()\n", + " plot_idx = 0\n", + "\n", + " for model in MLIPEnum:\n", + " fpath = DATA_DIR / f\"{model.name}.parquet\"\n", + " if not fpath.exists():\n", + " continue\n", + "\n", + " if model.name not in select_models:\n", + " continue\n", + "\n", + " df = pd.read_parquet(fpath)\n", + " df[\"eigval_min\"] = df[\"eigenvalues\"].apply(\n", + " lambda x: x.min() if np.isreal(x).all() else thres\n", + " )\n", + " df[\"freq_min\"] = df[\"frequencies\"].apply(\n", + " lambda x: x.min() if np.isreal(x).all() else thres\n", + " )\n", + " df[\"dyn_stab\"] = ~np.logical_or(\n", + " df[\"eigval_min\"] < thres, df[\"freq_min\"] < thres\n", + " )\n", + "\n", + " arg = np.argsort(uids)\n", + " uids_sorted = np.array(uids)[arg]\n", + " stabilities_sorted = stabilities[arg]\n", + "\n", + " sorted_df = (\n", + " df[df[\"uid\"].isin(uids_sorted)].set_index(\"uid\").reindex(uids_sorted)\n", + " )\n", + " mask = ~(stabilities_sorted == None)\n", + "\n", + " y_true = stabilities_sorted[mask].astype(\"int\")\n", + " y_pred = sorted_df[\"dyn_stab\"][mask].fillna(-1).astype(\"int\")\n", + " cm = confusion_matrix(y_true, y_pred, labels=[1, 0, -1])\n", + "\n", + " ax = axs[plot_idx]\n", + " ConfusionMatrixDisplay(\n", + " cm, display_labels=[\"stable\", \"unstable\", \"missing\"]\n", + " ).plot(ax=ax, cmap=\"Blues\", colorbar=False)\n", + "\n", + " ax.set_title(model.name)\n", + " ax.set_xlabel(\"Predicted\")\n", + " ax.set_ylabel(\"True\")\n", + " ax.set_xticks([0, 1, 2])\n", + " ax.set_xticklabels([\"stable\", \"unstable\", \"missing\"])\n", + " ax.set_yticks([0, 1, 2])\n", + " ax.set_yticklabels([\"stable\", \"unstable\", \"missing\"])\n", + "\n", + " plot_idx += 1\n", + "\n", + " # Hide unused subplots\n", + " for i in range(plot_idx, len(axs)):\n", + " fig.delaxes(axs[i])\n", + "\n", + " # plt.tight_layout()\n", + " plt.savefig(\"c2db-confusion_matrices.pdf\", bbox_inches=\"tight\")\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "573b3c38", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.metrics import confusion_matrix\n", + "\n", + "from mlip_arena.models import MLIPEnum\n", + "\n", + "thres = -1e-7\n", + "\n", + "summary_df = pd.DataFrame(columns=[\"Model\", \"Stable F1\", \"Unstable F1\", \"Weighted F1\"])\n", + "\n", + "for model in MLIPEnum:\n", + " fpath = DATA_DIR / f\"{model.name}.parquet\"\n", + "\n", + " if not fpath.exists() or model.name not in select_models:\n", + " # print(f\"File {fpath} does not exist\")\n", + " continue\n", + " df = pd.read_parquet(fpath)\n", + "\n", + " df[\"eigval_min\"] = df[\"eigenvalues\"].apply(\n", + " lambda x: x.min() if np.isreal(x).all() else thres\n", + " )\n", + " df[\"freq_min\"] = df[\"frequencies\"].apply(\n", + " lambda x: x.min() if np.isreal(x).all() else thres\n", + " )\n", + " df[\"dyn_stab\"] = ~np.logical_or(df[\"eigval_min\"] < thres, df[\"freq_min\"] < thres)\n", + "\n", + " arg = np.argsort(uids)\n", + " uids = np.array(uids)[arg]\n", + " stabilities = stabilities[arg]\n", + "\n", + " sorted_df = df[df[\"uid\"].isin(uids)].sort_values(by=\"uid\")\n", + "\n", + " # sorted_df = sorted_df.reindex(uids).reset_index()\n", + " sorted_df = sorted_df.set_index(\"uid\").reindex(uids) # .loc[uids].reset_index()\n", + "\n", + " sorted_df = sorted_df.loc[uids]\n", + " # mask = ~np.logical_or(sorted_df['dyn_stab'].isna().values, stabilities == None)\n", + " mask = ~(stabilities == None)\n", + "\n", + " y_true = stabilities[mask].astype(\"int\")\n", + " y_pred = sorted_df[\"dyn_stab\"][mask].fillna(-1).astype(\"int\")\n", + " cm = confusion_matrix(y_true, y_pred, labels=[1, 0, -1])\n", + " # print(model)\n", + " # print(cm)\n", + " # print(classification_report(y_true, y_pred, labels=[1, 0], target_names=['stable', 'unstable'], digits=3, output_dict=False))\n", + "\n", + " report = classification_report(\n", + " y_true,\n", + " y_pred,\n", + " labels=[1, 0],\n", + " target_names=[\"stable\", \"unstable\"],\n", + " digits=3,\n", + " output_dict=True,\n", + " )\n", + "\n", + " summary_df = pd.concat(\n", + " [\n", + " summary_df,\n", + " pd.DataFrame(\n", + " [\n", + " {\n", + " \"Model\": model.name,\n", + " \"Stable F1\": report[\"stable\"][\"f1-score\"],\n", + " \"Unstable F1\": report[\"unstable\"][\"f1-score\"],\n", + " \"Macro F1\": report[\"macro avg\"][\"f1-score\"],\n", + " # 'Micro F1': report['micro avg']['f1-score'],\n", + " \"Weighted F1\": report[\"weighted avg\"][\"f1-score\"],\n", + " }\n", + " ]\n", + " ),\n", + " ],\n", + " ignore_index=True,\n", + " )\n", + "\n", + " # break" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "df660870", + "metadata": {}, + "outputs": [], + "source": [ + "summary_df = summary_df.sort_values(by=[\"Macro F1\", \"Weighted F1\"], ascending=False)\n", + "summary_df.to_latex(\"c2db_summary_table.tex\", index=False, float_format=\"%.3f\")" + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "18f4a59b", + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import cm\n", + "\n", + "# Metrics and bar settings\n", + "metrics = [\"Stable F1\", \"Unstable F1\", \"Macro F1\", \"Weighted F1\"]\n", + "bar_width = 0.2\n", + "x = np.arange(len(summary_df))\n", + "\n", + "# Get Set2 colormap (as RGBA)\n", + "cmap = plt.get_cmap(\"tab20\")\n", + "colors = {metric: cmap(i) for i, metric in enumerate(metrics)}\n", + "\n", + "with plt.style.context(\"default\"):\n", + " plt.rcParams.update(\n", + " {\n", + " \"font.size\": SMALL_SIZE,\n", + " \"axes.titlesize\": MEDIUM_SIZE,\n", + " \"axes.labelsize\": MEDIUM_SIZE,\n", + " \"xtick.labelsize\": MEDIUM_SIZE,\n", + " \"ytick.labelsize\": MEDIUM_SIZE,\n", + " \"legend.fontsize\": SMALL_SIZE,\n", + " \"figure.titlesize\": BIGGER_SIZE,\n", + " }\n", + " )\n", + "\n", + " fig, ax = plt.subplots(figsize=(4, 3), layout=\"constrained\")\n", + "\n", + " # Bar positions\n", + " positions = {\n", + " \"Stable F1\": x - 1.5 * bar_width,\n", + " \"Unstable F1\": x - 0.5 * bar_width,\n", + " \"Macro F1\": x + 0.5 * bar_width,\n", + " \"Weighted F1\": x + 1.5 * bar_width,\n", + " }\n", + "\n", + " # Plot each metric with assigned color\n", + " for metric, pos in positions.items():\n", + " ax.bar(\n", + " pos, summary_df[metric], width=bar_width, label=metric, color=colors[metric]\n", + " )\n", + "\n", + " ax.set_xlabel(\"Model\")\n", + " ax.set_ylabel(\"F1 Score\")\n", + " # ax.set_title('F1 Scores by Model and Class')\n", + " ax.set_xticks(x)\n", + " ax.set_xticklabels(summary_df[\"Model\"], rotation=45, ha=\"right\")\n", + " ax.legend(ncols=2, bbox_to_anchor=(0.5, 1), loc=\"upper center\", fontsize=SMALL_SIZE)\n", + " # ax.legend(ncols=2, fontsize=SMALL_SIZE)\n", + " ax.spines[[\"top\", \"right\"]].set_visible(False)\n", + " plt.tight_layout()\n", + " plt.ylim(0, 0.9)\n", + " plt.grid(axis=\"y\", linestyle=\"--\", alpha=0.6)\n", + "\n", + " plt.savefig(\"c2db_f1_bar.pdf\", bbox_inches=\"tight\")\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1c50f705", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/benchmarks/c2db/c2db-confusion_matrices.pdf b/benchmarks/c2db/c2db-confusion_matrices.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1efd055a1c53cf5d31be58bd5c7f87e1f4096ed8 --- /dev/null +++ b/benchmarks/c2db/c2db-confusion_matrices.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:463968f63e87ca0a7acd2e719cc481d0e3c5f5dd69ccf8f8659bddf6aa3b1e93 +size 21238 diff --git a/benchmarks/c2db/c2db-f1_bar.pdf b/benchmarks/c2db/c2db-f1_bar.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d8212c2bfeffba6e4a60fe6b91130aecb7328a55 --- /dev/null +++ b/benchmarks/c2db/c2db-f1_bar.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3d0c862d4efa2d9c83ac4fbe26eeef66a8f8017b37d955b70e414fdbea94aabd +size 17883 diff --git a/benchmarks/c2db/c2db.db b/benchmarks/c2db/c2db.db new file mode 100644 index 0000000000000000000000000000000000000000..fe866ce9e8bbfea2ddf11eb36a102f77d72616de --- /dev/null +++ b/benchmarks/c2db/c2db.db @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:caf58205692de480e06149ac43a437385f18e14582e7d9a8dab8b3cb5d4bd678 +size 70762496 diff --git a/benchmarks/c2db/copy.parquet b/benchmarks/c2db/copy.parquet new file mode 100644 index 0000000000000000000000000000000000000000..e3b44acd0d2c2483e4d8e27515f7c3cea8255de1 --- /dev/null +++ b/benchmarks/c2db/copy.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7fdc16667361b10bfb032862d5d0610c242d75cb88f7f3883c43a406b245e991 +size 21349 diff --git a/benchmarks/c2db/run.py b/benchmarks/c2db/run.py new file mode 100644 index 0000000000000000000000000000000000000000..6efb62a779b286027a31ac9dc54a1db4ef0404aa --- /dev/null +++ b/benchmarks/c2db/run.py @@ -0,0 +1,213 @@ +from itertools import product +from pathlib import Path + +import numpy as np +import pandas as pd +from dask.distributed import Client +from dask_jobqueue import SLURMCluster +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks import ELASTICITY, OPT, PHONON +from mlip_arena.tasks.optimize import run as OPT +from mlip_arena.tasks.utils import get_calculator +from numpy import linalg as LA +from prefect import flow, task +from prefect_dask import DaskTaskRunner +from tqdm.auto import tqdm + +from ase.db import connect + +select_models = [ + "ALIGNN", + "CHGNet", + "M3GNet", + "MACE-MP(M)", + "MACE-MPA", + "MatterSim", + "ORBv2", + "SevenNet", +] + +def elastic_tensor_to_voigt(C): + """ + Convert a rank-4 (3x3x3x3) elastic tensor into a rank-2 (6x6) tensor using Voigt notation. + + Parameters: + C (numpy.ndarray): A 3x3x3x3 elastic tensor. + + Returns: + numpy.ndarray: A 6x6 elastic tensor in Voigt notation. + """ + # voigt_map = { + # (0, 0): 0, (1, 1): 1, (2, 2): 2, # Normal components + # (1, 2): 3, (2, 1): 3, # Shear components + # (0, 2): 4, (2, 0): 4, + # (0, 1): 5, (1, 0): 5 + # } + voigt_map = { + (0, 0): 0, + (1, 1): 1, + (2, 2): -1, # Normal components + (1, 2): -1, + (2, 1): -1, # Shear components + (0, 2): -1, + (2, 0): -1, + (0, 1): 2, + (1, 0): 2, + } + + C_voigt = np.zeros((3, 3)) + + for i in range(3): + for j in range(3): + for k in range(3): + for l in range(3): + alpha = voigt_map[(i, j)] + beta = voigt_map[(k, l)] + + if alpha == -1 or beta == -1: + continue + + factor = 1 + # if alpha in [3, 4, 5]: + if alpha == 2: + factor = factor * (2**0.5) + if beta == 2: + factor = factor * (2**0.5) + + C_voigt[alpha, beta] = C[i, j, k, l] * factor + + return C_voigt + + +# - + + +@task +def run_one(model, row): + if Path(f"{model.name}.pkl").exists(): + df = pd.read_pickle(f"{model.name}.pkl") + + # if row.key_value_pairs.get('uid', None) in df['uid'].unique(): + # pass + else: + df = pd.DataFrame(columns=["model", "uid", "eigenvalues", "frequencies"]) + + atoms = row.toatoms() + # print(data := row.key_value_pairs) + + calc = get_calculator(model) + + result_opt = OPT( + atoms, + calc, + optimizer="FIRE", + criterion=dict(fmax=0.05, steps=500), + symmetry=True, + ) + + atoms = result_opt["atoms"] + + result_elastic = ELASTICITY( + atoms, + calc, + optimizer="FIRE", + criterion=dict(fmax=0.05, steps=500), + pre_relax=False, + ) + + elastic_tensor = elastic_tensor_to_voigt(result_elastic["elastic_tensor"]) + eigenvalues, eigenvectors = LA.eig(elastic_tensor) + + outdir = Path(f"{model.name}") / row.key_value_pairs.get( + "uid", atoms.get_chemical_formula() + ) + outdir.mkdir(parents=True, exist_ok=True) + + np.savez(outdir / "elastic.npz", tensor=elastic_tensor, eigenvalues=eigenvalues) + + result_phonon = PHONON( + atoms, + calc, + supercell_matrix=(2, 2, 1), + outdir=outdir, + ) + + frequencies = result_phonon["phonon"].get_frequencies(q=(0, 0, 0)) + + new_row = pd.DataFrame( + [ + { + "model": model.name, + "uid": row.key_value_pairs.get("uid", None), + "eigenvalues": eigenvalues, + "frequencies": frequencies, + } + ] + ) + + df = pd.concat([df, new_row], ignore_index=True) + df.drop_duplicates(subset=["model", "uid"], keep="last", inplace=True) + + df.to_pickle(f"{model.name}.pkl") + + +@flow +def run_all(): + import random + + random.seed(0) + + futures = [] + with connect("c2db.db") as db: + random_indices = random.sample(range(1, len(db) + 1), 1000) + for row, model in tqdm( + product(db.select(filter=lambda r: r["id"] in random_indices), MLIPEnum) + ): + if model.name not in select_models: + continue + future = run_one.submit(model, row) + futures.append(future) + return [f.result(raise_on_failure=False) for f in futures] + + +# + + + +if __name__ == "__main__": + nodes_per_alloc = 1 + gpus_per_alloc = 1 + ntasks = 1 + + cluster_kwargs = dict( + cores=1, + memory="64 GB", + processes=1, + shebang="#!/bin/bash", + account="matgen", + walltime="00:30:00", + # job_cpu=128, + job_mem="0", + job_script_prologue=[ + "source ~/.bashrc", + "module load python", + "source activate /pscratch/sd/c/cyrusyc/.conda/dev", + ], + job_directives_skip=["-n", "--cpus-per-task", "-J"], + job_extra_directives=[ + "-J c2db", + "-q regular", + f"-N {nodes_per_alloc}", + "-C gpu", + f"-G {gpus_per_alloc}", + ], + ) + + cluster = SLURMCluster(**cluster_kwargs) + print(cluster.job_script()) + cluster.adapt(minimum_jobs=25, maximum_jobs=50) + client = Client(cluster) + # - + + run_all.with_options( + task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True + )() diff --git a/benchmarks/energy_conservation/run.py b/benchmarks/energy_conservation/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2147737bc28a5671cc856e1448b0344171e7e612 --- /dev/null +++ b/benchmarks/energy_conservation/run.py @@ -0,0 +1,214 @@ +""" +Task for running MD simulations and computing the differential entropy +of the simulated structures with respect to a reference dataset. + +See https://github.com/dskoda/quests for differential entropy details. +""" + +from __future__ import annotations + +import os +from datetime import datetime + +import numpy as np +from ase.io import read +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run + +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.md import run as MD +from mlip_arena.tasks.utils import logger + +try: + from quests.descriptor import get_descriptors + from quests.entropy import delta_entropy +except ImportError as e: + logger.warning(e) + logger.warning( + "quests is not installed. Please install it using `pip install quests` or following the instructions at https://github.com/dskoda/quests to use this module." + ) + + +def get_entropy_from_path( + subset_path, dataset_path, dataset_desc_out_path, k=32, cutoff=5.0, h=0.015 +): + """ + Computes the differential entropy of a subset of structures with respect + to a reference dataset. + + Arguments: + subset_path (str): Path to the file containing the subset of structures. + dataset_path (str): Path to the file containing the full dataset of structures without the subset. + dataset_desc_out_path (str): Path to save the descriptors of the full dataset. + k (int, optional): Number of nearest neighbors used for descriptor calculation. Default is 32. + cutoff (float, optional): Cutoff distance for descriptor calculation. Default is 5.0. + h (float, optional): Bandwidth for the Gaussian kernel. Default is 0.015. + + Returns: + np.ndarray: The differential entropy of the subset with respect to the dataset. + """ + + x_structures = read(dataset_path, index=":") + x_desc = get_descriptors(x_structures, k=k, cutoff=cutoff) + np.save(dataset_desc_out_path, x_desc) + + y_structures = read(subset_path, index=":") + y_desc = get_descriptors(y_structures, k=k, cutoff=cutoff) + + dH = delta_entropy(y_desc, x_desc, h=h) + return dH + + +def get_trajectory_entropy( + trajectory_dir, + start_idx, + end_idx, + step, + dataset_desc_path, + k=32, + cutoff=5.0, + h=0.015, +): + """ + Computes the differential entropy of a subset of structures in a trajectory with respect + to a reference dataset. + + Arguments: + trajectory_dir (str): Path to the directory containing the trajectory files. + start_idx (int): Starting index of the subset of structures to select from each trajectory. + end_idx (int): Ending index of the subset of structures to select from each trajectory. + step (int): Step size of the subset of structures to select from each trajectory. + dataset_desc_path (str): Path to the file containing the descriptors of the full dataset of structures without the subset. + k (int, optional): Number of nearest neighbors used for descriptor calculation. Default is 32. + cutoff (float, optional): Cutoff distance for descriptor calculation. Default is 5.0. + h (float, optional): Bandwidth for the Gaussian kernel. Default is 0.015. + + Choose start_idx, end_idx, step to select which structures to compute the differential entropy for, based on what sliding window is chosen. + e.g. window of size 5 with stride 2 means we select every other structure starting at index 2 (middle of the first window) to the -2 index (middle of the last window) + + Returns: + np.ndarray: The differential entropy of the subset of structures in the trajectory with respect to the dataset. + """ + structures = [] + for traj_file in sorted(os.listdir(trajectory_dir)): + traj = read(os.path.join(trajectory_dir, traj_file), index=":") + every_other = traj[start_idx:end_idx:step] + structures.extend(every_other) + + desc = get_descriptors(structures, k=k, cutoff=cutoff) + x_desc = np.load(dataset_desc_path) + dH = delta_entropy(desc, x_desc, h=h) + return dH + + +def run_simulations(model_names, structures, out_dir): + """ + Runs simulations on a list of structures. + + Parameters: + model_names (list[str]): List of models to use. + structures (list[ase.Atoms]): List of structures to simulate. + out_dir (str): Directory to save the simulation trajectories to. + + Notes: + Structures are replicated to have at least 100 atoms and at most 500 atoms. + Structures are simulated with NVE MD at 1000 K for 5 ps. + Simulation trajectories are saved to files in out_dir, with each file named according to the index of the structure in the list. + """ + min_atoms = 100 + max_atoms = 500 + + futures = [] + + for model_name in model_names: + os.makedirs(out_dir, exist_ok=True) + model = MLIPEnum[model_name] + calc = model.value() + + for i, atoms in enumerate(structures): + logger.info( + f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] Running {model_name} on structure number {i}" + ) + + # Replicate the structure + n_atoms = len(atoms) + rep_factor = int( + np.ceil((min_atoms / n_atoms) ** (1 / 3)) + ) # cube root since it's a 3D replication + supercell_atoms = atoms.repeat((rep_factor, rep_factor, rep_factor)) + if len(supercell_atoms) > max_atoms: + logger.info( + f"Skipping structure {i} because it has too many atoms ({len(supercell_atoms)} > {max_atoms})" + ) + continue # skip if it becomes too large + + # Run NVE MD @ 1000K for 5 ps + future = MD.submit( + supercell_atoms, + calculator=calc, + ensemble="nve", + dynamics="velocityverlet", + time_step=1.0, # fs + total_time=5000, # 5 ps = 5000 fs + temperature=1000.0, + traj_file=f"{out_dir}/{i}.traj", + traj_interval=100, + zero_linear_momentum=True, + zero_angular_momentum=True, + ) + futures.append(future) + + return [f.result(raise_on_failure=False) for f in futures] + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + trajectory_dir = parameters["trajectory_dir"] + dataset_desc_path = parameters["dataset_desc_path"] + + return f"{task_name}: {trajectory_dir} - {dataset_desc_path}" + + +@task( + name="Entropy along trajectory", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, +) +def run( + dataset_path, + model_names, + structures, + trajectory_dir, + start_idx, + end_idx, + step, + dataset_desc_path, + dH_out_path, + k=32, + cutoff=5.0, + h=0.015, +): + # Get descriptors for the dataset. This should exclude the subset of structures used for simulations. + # This may take a while if the dataset is large - in that case, would recommend splitting the structures into separate chunks. + x_structures = read(dataset_path, index=":") + x_desc = get_descriptors(x_structures, k=k, cutoff=cutoff) + np.save(dataset_desc_path, x_desc) + + # Run simulations + run_simulations(model_names, structures, trajectory_dir) + + # Get entropy for structures along trajectories + dH = get_trajectory_entropy( + trajectory_dir, + start_idx, + end_idx, + step, + dataset_desc_path, + k=k, + cutoff=cutoff, + h=h, + ) + np.save(dH_out_path, dH) diff --git a/benchmarks/eos_alloy/run_Fe-Ni-Cr.ipynb b/benchmarks/eos_alloy/run_Fe-Ni-Cr.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..e078235c9739e4855ba657e52d236701a151c75d --- /dev/null +++ b/benchmarks/eos_alloy/run_Fe-Ni-Cr.ipynb @@ -0,0 +1,37071 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Equation of state (EOS) benchmarks on Fe-Ni-Cr alloy systems\n", + "\n", + "This notebook provides an example workflow pipline from generating initial structures, executing high-throughput equation of state (EOS) workflow using multiples MLIPs, and analyzing the results from database.\n", + "\n", + "The underlying structure generation code has been kindly shared by [Jan Jassen](https://github.com/jan-janssen) to call [structuretoolkit]() and [sqsgenerator](). If you found this example useful, please cite the following:\n", + "\n", + "- Alvi, S. M. A. A., Janssen, J., Khatamsaz, D., Perez, D., Allaire, D., & Arroyave, R. (2024).\n", + " Hierarchical Gaussian Process-Based Bayesian Optimization for Materials Discovery in High\n", + " Entropy Alloy Spaces. *arXiv preprint arXiv:2410.04314*.\n", + "- Gehringer, D., Friรกk, M., & Holec, D. (2023). Models of configurationally-complex alloys made\n", + " simple. *Computer Physics Communications, 286*, 108664." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## 1. Generate input structures" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from ase.build import bulk\n", + "from mlip_arena.tasks.eos_alloy.input import generate_alloy_db" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "structure_template = bulk(\"Al\", a=3.6, cubic=True).repeat([2, 2, 2])\n", + "elements = [\"Fe\", \"Ni\", \"Cr\"]\n", + "generate_alloy_db(structure_template, elements, upload=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## 2. Run benchmark at scale in parallel" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "from dask.distributed import Client\n", + "from dask_jobqueue import SLURMCluster\n", + "from prefect_dask import DaskTaskRunner\n", + "\n", + "from mlip_arena.models import REGISTRY\n", + "from mlip_arena.tasks.eos_alloy.flow import run as EOS_ALLOY" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:187: UserWarning: Port 8787 is already in use.\n", + "Perhaps you already have a cluster running?\n", + "Hosting the HTTP server on port 36141 instead\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "\n", + "#SBATCH -A m3828\n", + "#SBATCH --mem=0\n", + "#SBATCH -t 00:30:00\n", + "#SBATCH -J eos\n", + "#SBATCH -q debug\n", + "#SBATCH -N 1\n", + "#SBATCH -C gpu\n", + "#SBATCH -G 4\n", + "#SBATCH --exclusive\n", + "source ~/.bashrc\n", + "module load python\n", + "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n", + "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.21:41671 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 60\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
16:10:48.738 | INFO    | prefect.engine - Created flow run 'azure-roadrunner' for flow 'EOS Alloy'\n",
+       "
\n" + ], + "text/plain": [ + "16:10:48.738 | \u001b[36mINFO\u001b[0m | prefect.engine - Created flow run\u001b[35m 'azure-roadrunner'\u001b[0m for flow\u001b[1;35m 'EOS Alloy'\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
16:10:48.742 | INFO    | prefect.engine - View at https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/3c90a68c-fc1b-473a-a0e2-42212e6b1925\n",
+       "
\n" + ], + "text/plain": [ + "16:10:48.742 | \u001b[36mINFO\u001b[0m | prefect.engine - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/3c90a68c-fc1b-473a-a0e2-42212e6b1925\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
16:10:49.296 | INFO    | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(edf7e3ce, 'tcp://128.55.64.21:41671', workers=0, threads=0, memory=0 B)\n",
+       "
\n" + ], + "text/plain": [ + "16:10:49.296 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(edf7e3ce, 'tcp://128.55.64.21:41671', workers=0, threads=0, memory=0 B)\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
16:10:49.329 | INFO    | Task run 'get_atoms_from_db-656' - Created task run 'get_atoms_from_db-656' for task 'get_atoms_from_db'\n",
+       "
\n" + ], + "text/plain": [ + "16:10:49.329 | \u001b[36mINFO\u001b[0m | Task run 'get_atoms_from_db-656' - Created task run 'get_atoms_from_db-656' for task 'get_atoms_from_db'\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
16:11:17.219 | INFO    | Task run 'get_atoms_from_db-656' - Finished in state Completed()\n",
+       "
\n" + ], + "text/plain": [ + "16:11:17.219 | \u001b[36mINFO\u001b[0m | Task run 'get_atoms_from_db-656' - Finished in state \u001b[32mCompleted\u001b[0m()\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Orchestrate workflow runner\n", + "# To deploy other types of cluster (e.g. PBS), refer to https://docs.dask.org/en/stable/deploying-hpc.html for details\n", + "\n", + "nodes_per_alloc = 1\n", + "gpus_per_alloc = 4\n", + "ntasks = 1\n", + "\n", + "cluster_kwargs = dict(\n", + " cores=1,\n", + " memory=\"64 GB\",\n", + " shebang=\"#!/bin/bash\",\n", + " account=\"m3828\",\n", + " walltime=\"00:30:00\",\n", + " job_mem=\"0\",\n", + " job_script_prologue=[\n", + " \"source ~/.bashrc\",\n", + " \"module load python\",\n", + " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n", + " ],\n", + " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n", + " job_extra_directives=[\n", + " \"-J eos\",\n", + " \"-q debug\",\n", + " f\"-N {nodes_per_alloc}\",\n", + " \"-C gpu\",\n", + " f\"-G {gpus_per_alloc}\",\n", + " \"--exclusive\"\n", + " ],\n", + ")\n", + "\n", + "cluster = SLURMCluster(**cluster_kwargs)\n", + "print(cluster.job_script())\n", + "cluster.adapt(minimum_jobs=2, maximum_jobs=2)\n", + "client = Client(cluster)\n", + "\n", + "# Run the workflow\n", + "\n", + "results = EOS_ALLOY.with_options(\n", + " task_runner=DaskTaskRunner(address=client.scheduler.address),\n", + " # log_prints=True,\n", + ")(\n", + " db_path=\"sqs_Fe-Ni-Cr.db\", \n", + " out_path=\"eos.h5\", \n", + " table_name=\"Fe-Ni-Cr\",\n", + " cache=False,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Analyze results" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import pandas as pd \n", + "import numpy as np\n", + "from matplotlib import colors, ticker, colormaps\n", + "from matplotlib import pyplot as plt\n", + "from ase.formula import Formula\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABycAAAOmCAYAAABBnJlWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3xUVfo/8M/01ElmUkivdBQQUOyIiooFy9pFsOO6tl2/v9VVV1xX13V117KWZVXA7oKIuPaGIsKigA0hkN77ZEqS6XN/f8xkkjszCcnUhHzer9c4c8/ce+6ZEDP33Oec50gEQRBARERERERERERERERERBRh0lg3gIiIiIiIiIiIiIiIiIjGBwYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgqGJwkIiIiIiIiIiIiIiIioqhgcJKIiIiIiIiIiIiIiIiIooLBSSIiIiIiIiIiIiIiIiKKCgYniYiIiIiIiIiIiIiIiCgq5LFuABERUbRIJBLR9sqVK3H//ffHpjFERBQSnU6Hn3/+GdXV1dDpdOjt7YVSqYRarUZhYSGmTp2K4uLiWDeTosDpdKK8vBx79+5FW1sb9Ho9pFIpNBoN0tLSMHv2bJSUlMS6mURERDQGPf/887jhhhu827///e/xyCOPxLBF4XXUUUfhu+++AwAoFAr8+OOPmDZtWoxbRUTjAYOTREQ0KhgMBuzevRv19fUwGAwwGo1QKBRITEyERqNBYWEhioqKkJubG+umEhFRjFRUVODll1/Gxo0b8csvv0AQhCH3z8nJwVlnnYWlS5fixBNPDOncRUVFqK2tHda+crkcarUaarUaubm5OOKIIzB37lyce+650Gg0IbXjyy+/xMKFC0d0jEwmQ3JyMtRqNQoKCjB79mwcc8wxWLJkCZKSkkJqTyy4XC5s27YNn332GTZv3owdO3bAarUOeUxGRgaWLFmC3/zmNzjiiCOi1FIiIoo0g8GAPXv2oKamBu3t7ejt7YVMJkNqaio0Gg3y8vIwe/ZsJCQkxLqpNAbpdDr84Q9/8G6npaWJtg8Ff/vb37zXlna7Hbfeeis+/fTTGLeKiMYFgYgOadXV1QKAQR9r1qwJy3m++uqrIc+zefPmsJyHDi319fXCAw88IEydOlWQSCRD/g71PbRarbBo0SLhnnvuEb766ivBbrcP+3y+da1cuTJyH46IiMKmtrZWuPTSSwWpVDqs74pAj/nz5wtbtmwJug2FhYVBn7vvoVKphEsvvVSorKwMuh2bN28OuR19j8TERGHFihVCe3t70O2JpqqqKuHmm28WsrOzQ/rc5557rtDc3Bzrj0NE48ih1i8/4YQTAta/ffv2sNR/MLt37xZ+//vfC9OnTx9WP1ImkwkzZ84Ubr/9dmHnzp0jOteCBQvC9r3r+9i4cWNkfkABDNWOcPWLa2pqhvz3GO7v+UiuueRyuZCWliaUlJQICxYsEH73u98J//nPf4Senp6wfKYVK1aIzvf4448P67g1a9YM2maJRCJUVVWFpX1/+tOfhvz5DNfixYtFx7311lthaR8R0VC45iTROLd69epRVU8sXHXVVZBIJN5HUVFRSPUVFRWJ6rvqqqvC0s5DSW9vL/7v//4PRUVFuO+++1BWVnbQ2S99dDodPv30Uzz00ENYsGAB0tLSsGXLlgi3mIiIYuX555/H9OnT8eabb8LlcgVdz44dO7BgwQLcdNNNsNlsYWzh8FmtVrz55puYOXMmnn/++Zi0YaCenh6sWrUKU6ZMwSeffBLr5hzUV199haeffhrNzc0h1bNp0ybMmDED27ZtC1PLiIhCM5b65eXl5fj6668Dvvfiiy9G9Nxbt27FggULMGfOHPztb3/D3r17h9WPdDqd+Omnn/DEE09g3rx5mD59OlavXg2n0xnR9o4Va9euHXZ/fChr1qwJSz0j4XA40NnZiaqqKnz11Vf4xz/+gUsuuQQ5OTm45ZZb0NnZGXTd+/btwwsvvODdnjBhAm688caQ2ywIAtasWROWetauXRtyPQBw3333ibbvuusuOByOsNRNRDQYpnUlGue+/vprlJeXY9KkSUHXYTKZ8NZbb4WxVXQoq6urw6mnnory8vKw1Gc0GqHT6cJSFxERjR6CIOCWW27BM888E/B9qVSKY489FieccAKys7ORmZkJo9GIpqYm7NmzBx9++CF6enr86nzuuefwww8/4IMPPkBqampIbZw1a1bAcrvdDr1ej+bm5oA36Xp6enDDDTdAJpPhmmuuCakNAKDRaFBQUDDo+xaLBQaDAS0tLQHf1+l0WLJkCTZt2oTTTz895PZEm0wmwxFHHIHjjz8e+fn5yMzMhEwmQ2trK3bs2IH3338fJpNJdIxOp8PixYvx+eefY968eTFqORGR21jqlw8VgPzPf/6DJ554AomJiWE9Z3d3N2655ZawBWL27duHa6+9Fv/4xz/w9NNP46STTgpLvWNVbW0tPv/8c5x66qlB1yEIAl566aUwtio0BoMBTz/9NNavX481a9Zg8eLFI67jj3/8oyiA/dvf/hZxcXFhad9LL72E+++/H1Jp8POGNm/ejOrq6rC05+ijj8ZJJ52EL7/8EoB7KYXVq1eL1tokIgo3BieJCGvXrsVDDz0U9PH/+c9//G7+EQXS1NSEk046KeAFtFQqxTHHHIMjjzwSkydPRkpKChQKBXQ6HTo6OvDTTz9h586dqKqqikHLiYgo2lasWBFwdqFSqcT//d//4eabb0Z2dvagx5vNZrz11lu48847/Wbabd++Haeeeio2b96M5OTkoNv4ww8/DPm+wWDAF198gSeeeCLgLP8VK1bguOOOw5QpU4JuAwAsWbJkWDdsjUYjtmzZgueeew4ffPCB6D2r1YprrrkG+/btg1qtDqk90SCRSLBw4UJcddVVOO+884b8d9Tr9XjggQfwxBNPiILFRqMRV1xxBX7++WcolcpoNJuIaFBjoV/ucDjw8ssvD/q+yWTCunXrcPXVV4ftnLW1tTjjjDNQVlYW8H2JRILZs2djwYIFyMrKQkZGBtRqNXp7e9HU1ISysjJs3boVlZWVfsf+8ssvWLt27YiDk9OmTQvL90ZKSkrIdYTLmjVrQgpOfv7556ipqQlfg3wMNiDMZrOhq6tr0AFYra2tOO+88/D++++P6PPt3r0bb7/9tndbrVbjpptuGlmjh1BXV4fPP/8cixYtCrqOcM+UvvPOO73BSQD485//jOXLl0OlUoX1PEREXjFKJ0tEURJobQuNRiPazs3NFRwOR9DnOOaYY0T1abXaiK1tEQnLly8XtbWwsDCk+nzXR1i+fHlY2nkoOPfccwOut3DjjTcKDQ0Nw6qjpqZG+Mc//iEcd9xxMVmrg4iIIu+xxx4LuG7O4YcfLuzdu3dEden1euHyyy8PWN+SJUsEl8s1rHoCrX80En/9618DtuFXv/rViOoJtOZkMNcaL774YsA1PB9++OER1xUta9asEeRyuXD11VcLFRUVIz5+7dq1AdfCeuyxxyLQWiKifodKv3zTpk0B+3MDt4877riQzjFQdXW1kJeXF/D7My0tTXjssceE1tbWYdX1yy+/CP/v//0/ISUlZUTfoYHWnKyurg79w0XZwX7/4uLihK6urqDrv+yyyw76+xfKmpMH09bWJqxZs0aYMWNGwN8XtVo97N8VQRCEiy++WHT8b37zm2EfKwiB15z0/ZlfeumlI6pzIL1eL8THxx/0Zz4SLpdLKCkpER2/evXqoNtIRHQwXHOSaBw688wzRWnMGhsbg15nqKysDNu3b/duy2QyXHLJJaE2kQ5BX375JTZt2iQqk0qleOONN/Dcc88hNzd3WPUUFhbit7/9LbZu3YqffvoJN9xwQ9jTBhERUez8+OOP+MMf/uBXfvjhh+OLL77AtGnTRlRfSkoKXnnlFSxfvtzvvXfffRf/+te/gm7rSNx5550BZ5Js2rQJRqMxKm0Y6Jprrgm4btKGDRui3pbhmjt3LsrKyrB69WqUlpaO+Pjly5fjN7/5jV/5ULOAiIgiZSz2y31TuqrVavz6178WlX3zzTfYv39/yOcyGo0488wz0dDQ4PfeihUrUFlZiTvuuAOZmZnDqm/69On429/+htraWtxxxx1QKBQht3EsmzNnDqZOnerdtlgseOONN4KqS6/XY+PGjaKyyy+/PKT2jVRGRgauuuoq7N69G9ddd53f+0ajEX/605+GVVdtba3f9VA40pv6/kzeeecddHV1BVXX66+/DrPZ7N2eNm0ajjjiiJDaJ5FIcO2114rKHn/88ZDqJCIaCoOTRONQXFwcLrvsMlFZsOkgfDsnp59+OnJycoJuGx26XnvtNb+ym2++OaRO8+GHH45Vq1aFlAqFiIhGlxUrVsBut4vKMjIy8NlnnyE9PT2oOqVSKVavXh3w++LOO+9Ee3t7UPWO1P333+9X5nA4sHnz5qic39fNN9/sV/bjjz8GXCdzNDj88MODCkoOdN9990Emk4nKfvrpJ9TX14dULxHRSI21fnlLS4tfSvCLLrrILzgJhCfd5K233op9+/b5lT/00EP417/+FXRK1JSUFDz22GP45ptvQv5OGet8B00F++/22muvwWKxeLenT5+O+fPnh9S2YCmVykHvEaxduxZWq/WgdTz99NOitSaPPPJIzJw5M+S2HX300Zg+fbp322Kx4PXXXw+qLt9/q3ClUr766qtF62D+/PPP+OKLL8JSNxGRLwYnicapa665RrT97rvvorOzc0R1OBwOvPLKK0PWS9Tnww8/9Cu75ZZbYtASIiIard59913s2LHDr/zJJ58c9syIwUilUqxatQoJCQmicpPJhEceeSSkuoeroKAAM2bM8Cvfu3dvVM7va9q0aX7ZB+x2+4ivCceSjIwMzJs3z6+ca1oTUSyMpX75Sy+9BIfDISpbtmwZDjvsML8ZW4H2HYkvvvgCL730kl/5nXfeibvvvjvoegc68sgj8e2332LBggVhqW8sWrZsGeRyuXd7586d2LNnz4jr8Q2Uxfq+kFQqDXht19vbi61btw55bKD/ny666KKwtc03iLhmzZoR17Fnzx7s3LnTuy2Xy7Fs2bKQ2wYA2dnZOO6440RlwbSRiGg45AffhYgORfPmzcPMmTPx008/AXAvIv7aa6/h1ltvHXYd77//PlpbW73b6enpWLJkScDRjcFqbGxEWVkZampqYDAYYDaboVarodVqUVBQgCOPPBJxcXFhO99YY7fbsXPnTtTX16O9vR0GgwGpqanIyMjA9OnTA94ADbfe3l58++23KC8vh06ng8PhQEpKChYuXOg9v8PhQFNTk+g4tVqNiRMnRrx90WK32/Htt99i79693hsKEyZMwJw5czBr1qxh12M0GvHdd99h//790Ov1SExMRFZWFo477jjk5eVFqvlERKPCk08+6Ve2YMECv5klwSouLsbvf/97vxmMzz//PB544AG/wGUklJaW4pdffhGVdXR0RPy8g1Gr1ejp6RGVuVyugPvu3LkTRx55pKjs9ttvDznl1+mnny5KZahSqdDU1AStVhtSvYMpKCjwC4K3tLRE5FxEREMZK/1ywD8AVVRUhBNOOAGAO232999/732vtbUV77//Ps4999ygznXXXXf5lc2aNQsPPPBAUPUNRqvVhm3G2ViUlZWFxYsX47///a+3bPXq1fjHP/4x7Dp+/PFH7N6927utUChw5ZVXBp2iOFyOOOIIFBUVoaamRlS+e/dunHLKKYMe9/HHH4v+fwKACy+8MGztWrZsGf7whz94g/e7du3CTz/9NKKZmb4zpc8880xMmDAhbG288MIL8fXXX3u3N27ciO7ubiQlJYXtHEREAEa4Mi4RjTnV1dV+C2Jfe+21giAIwuOPPy4qnzVr1ojqPuecc0TH33777YIgCMKf//xnv3Nu3rx5WHW2t7cL//73v4WLL75YmDBhQsCFzAc+lEqlcOKJJwrr1q0TnE7nsNseaIH1kT76PlOgn3Ewj5HYtGmTsGTJEiE5OXnIOrOzs4Vf//rXQm1t7YjqFwRBWLly5ZBt3LZtm3D++ecLKpUq4LlXrlzp3bepqSlg26JtqDYOZvPmzUP+Pjc2Ngo33XTTkP8WkydPFl5++eUhz/Pjjz8KF1100aA/TwDCMcccI2zdujXEnwIR0ehUU1MjSCQSv799b775ZljP09TUJMhkMr/zHOzvdKBrh2BcfvnlfvVcd911wz4+0PfS8uXLg2qL0+n0+96RyWSCzWYb9JjDDz9ctH9GRsaQ+x9MQ0ODIJVKRXVefPHFQdc3HGeddZbfz3DTpk0RPScRjW9jrV/ua8uWLX513Xfffd7329raBIVCIXp/yZIlQZ1r69atAftCW7ZsCaq+UC1YsMCvLdXV1TFpSyh8P8Mpp5wiCIIgbNy4MaTv9VtuuUV0/HnnnScIgiC88sorfudcs2bNsOoM1zVXoO/7//f//t+QxyxdulS0//Tp04M695o1a/zO/corrwiCIAjnnnuuqPy2224bdr1Wq1VIT08XHf/OO+8IgiAIp5xySlh+blVVVX71vPrqq0HVRUQ0FKZ1JRrHli5dCqVS6d32HfE2lNbWVr80naGm7rj88suRnZ2NG264AevWrfMbrRaIzWbDli1bcPHFF+Owww7zm4lwqPn2229xzDHH4Nxzz8W7774Lk8k05P7Nzc147rnnMGnSJNx9992DzoQYCbvdjptvvhnHHXccNm7cOKw1GwLNbm1vb0dvb2/I7Ymlt99+G9OnT8ezzz475L/FgQMHsGzZMlx88cV+Py9BEPDAAw9gzpw5WL9+/ZA/z+3bt+OEE07AX/7yl7B9BiKi0eK9997zW+swLS0N559/fljPk52djTPPPDPg+aNBr9f7lanV6qic29d3333n970zY8YMKBSKQY/xnWHS3t4e0s/upZde8rs+ifQsloqKCr+y7OzsiJ6TiGgwo61fHojvTC0AuPLKK72vMzIysHjxYtH7H3zwQVCz0gOlkDz88MO9szQpvM4++2zRrLv29nbRTMqh2Gw2vzUTY53SdaBA65IGug7r43K58NFHH4nKTjrppDC3yv9n9Nprr8Fmsw3r2HfffVeUcWPChAk466yzwtq+4uJiFBYWisref//9sJ6DiAjgmpNE41p6ejrOOeccUdlwc8n7riExb948HH744SG1Z9u2bSGtS7Fv3z4cffTR+Oyzz0Jqx2j1+uuv48QTT8T//ve/ER9rs9nw8MMPY8mSJeju7g66DU6nExdeeCGeeeYZvxvIQ0lNTYVKpRKVORwObNy4Mei2xNqrr76KCy+8EAaDYdjHrF+/XtQREQQB119/PVauXAmn0zmsOgRBwD333IOnn356xG0mIhrNvvzyS7+yk08+WXTDNlzOOOMMv7LNmzeH/TyB9KXuG6ikpCQq5/b18MMP+5UdLBi8dOlSv+Dl2rVrg26D75piubm5OO2004Ku72B++eUX7N+/X1QWHx8flVT4RESBjLZ+uS+TyYT169eLyo499li/JTqWL18u2nY4HAHXjRyKIAgBgyArVqwYUT00fHK5HEuXLhWVDff375133hGtkdqXJna0CNRXT01NHXT/7777zi/VfiSCk2eeeSaysrK82x0dHcMOCPumV77yyitF64aGy8KFC0Xbn3zySVgGuxMRDcQ1J4nGuWuuuQYbNmzwbr/++ut47LHH/AJJvnwvVsM9Ok4mk2HOnDmYMWMGpk6dirS0NKjVagiCAKPRiPLycvzvf//DN998I7pA6u7uxqWXXorvv/8e+fn5g9Y/ffp070VpXV0durq6vO8pFApMnz79oG3sy7evVCpFawru3bsXdrvdu63RaFBQUDDszx7Ic889h5tuusmvPDExEYsWLcKRRx6J7OxsJCcnw2AwoLy8HJ9++qnfiNv3338fV111Fd56662g2nHffffh3Xff9W5rtVosXrwYRx55JDIzM2E2m9HQ0IAPP/wQEonEu59EIsExxxzjd+P5//7v/3DUUUdh0qRJQbUnVnbu3Im7777bG6BNTU3FmWeeiaOPPtr7c9i3bx/WrVvnt8bF66+/jvPOOw8XXXQR/vKXv4hGIRcWFuLss8/GYYcdhrS0NOj1enz77bdYt24djEajqJ4777wTZ599NoqKiiL9cYmIomLXrl1+Zb7rG4bLvHnz/Mra29vR0NAQ0fV9v/32WzQ0NPiVH3vssRE7ZyA2mw133XUXNm3aJCrXarUBrzcGysjIwNlnny0aYPTBBx+gra0NmZmZI2rHN998gwMHDojKli9fDqk0cmNoV61a5Ve2aNGiqKw3SkQ0mNHaLweAN954wy/jjW8gEnDPwNNqtdDpdN6y1atX48477xz2ufbu3RtwtuXJJ588ghbTSF1zzTX4+9//7t3+8MMP0dzcfNCsAr6BsmXLlkUkUBasQJm1MjIyBt3/q6++8isLdM0YKrlcjiuvvBKPPvqot2z16tX41a9+NeRxTU1Nfmt5Rmqm6pFHHikafNbZ2Ymff/5ZdO+LiChkscsoS0TRMNTaFoIgCA6HQ8jNzR3R2k7ffPONaP+4uDihq6vL+36wa1tMmjRJuOCCC4S3335b0Ov1w/p8NTU1wmWXXeZ3vrPOOmtYxwuCICxfvlx0bGFh4bCPDcR3fYRg14Hqs2PHDkGpVIrqjI+PFx5++GHBYDAMeeyXX34plJaW+v18nnrqqYOeN9Cak31rdMlkMuGPf/yj0N3dPejxZrNZtP30008HXDskMTFRuO+++4TGxsbh/UBC4HvuYNecHLg+1y233CL6/R/IYrEIv/nNb/yOnzJlirBjxw7vGlsJCQnCc889JzgcjoD1NDc3C8cee6xfPTfccEMIPw0iotHDarUGXG/yiy++iMj5LBaL39pYAITPPvts0GNCXf/I4XAIJ510kl8dI13LKJg1J61Wq9DW1iZs3bpVeOihh4SJEyf61aFQKIT//ve/w2rDu+++63f83//+9xF9DkEQhOuuu86vngMHDoy4nuEqKyvzu6YCMOzPTUQUrLHUL/d11FFH+fWFBuv/3HTTTX7nHMlakS+//LLf8Wq1WnC5XCNud7gc6mtO9pk/f77o/b/+9a9D1ldfX++3ZnRZWZn3/VivObl79+6A9x8+/fTTQY+58MILRfsmJycH/bs31JqTgiAI+/bt87vXcrB7Ig899JDomKOPPlr0frjWnBSEwGu/Pv/880HXR0QUCNO6Eo1zMpkMy5YtE5X5jn7z5bvexAUXXDBkaozh+u6777Bhwwacf/75AdcGCKSwsBCvv/467r//flH5Bx98gLKyspDbFGtWqxWXXHKJaP2BzMxM7NixA3fddddB16hasGABdu3ahZkzZ4rK//SnP6Gnp2fE7XE6nZBKpXjjjTfwwAMPIDExcdB9fdeZvO666wLOZu3p6cEDDzyAvLw8zJ8/H3fddRfeeeedgDNLRou+9bmefPJJPPXUU4P+/qtUKjz99NM4/fTTReX79+/HOeecA5fLhaSkJHzxxRe48cYbIZPJAtaTlZWF9957z2+U55tvvgmz2Rz6ByIiirHGxsaA6cJzc3Mjcj6VSoW0tDS/8vr6+oicr7u7G0uXLg2YuvbBBx8Muf6XXnoJEolk0IdKpUJmZiaOP/543HPPPX5rLk6dOhVffPEFzj777GGdb/HixaJ0ZMDwU8D16e3txbp160RlJ5xwQsSyKdjtdlx55ZV+azodf/zxw/7cRESRMpr65QPt2bMH3377rajs3HPPHfQ8gWZUHuxzDOSbdhsA5syZI8rKQ5HhOwPvYN/ra9asEWWxOvbYYzFlypSItG2kBEHAXXfd5VceHx8/5NqlO3fuFG3PmDEjYr97U6dOxTHHHOPddjqdB02DHI2Z0n0CpYf+7rvvInY+IhqfGJwkIr8Lms8++2zQm3M9PT1+N5LCdUE03IBkIPfdd58o9ZsgCCPqBI1WL7/8sigtqFQqxcaNG0e0jkhKSgo2btwoWrOrs7MTL7zwQlBt+u1vf4uLLrpoxMepVCqsX78e8fHxAd8XBAHffvstHnnkEZx//vnIz89HVlYWzjrrLDz00EP4+uuvvUHB0eDyyy/HrbfeOqx9//znP/uVtbW1AXAHOOfPn3/QOjQaDe644w5RmdFoxLZt24bVBiKi0WxgCriBQrk2OJhAdQ9M8x4Kh8OBjo4OfP3111i5ciUmT56MN99802+/G2644aBrPEbSWWedhU8++QR79+7F8ccfP+zj+tKRDbRnzx6/m3pD2bBhg1/K8quvvnrYx4/UHXfc4XdTLS4uLmCaVyKiWBgt/fKBfAOgAPyCqAMdddRRmDp1qqhs/fr1MJlMwzpfoM/rOxhmNDjzzDMxe/bskB4DU3qOBpdeeqkoxfn+/fsH7WsKguC33nQkA2UjYbfb8etf/9ov/Sng/t0dLFWyzWZDbW2tqKywsDAibewzkoDwV199JRpclpCQgEsuuSRibVOr1X6DEHxT8RMRhYrBSSLCxIkTRaPHXC7XoCO21q1bh+7ubu92UVHRqFj/QSKR+N0k27p1a4xaEx6CIPh1WK644oqg1qUqKSnx+/kMXCtquJKTk/1mqY7E/Pnz8fHHHyMnJ2dY+7e2tuKDDz7AvffeixNPPBGZmZm49tprYx6Qk8lk+Mtf/jLs/Y888siA645OmTJlRDdiL7zwQr8y33VFiYjGosFmgYd7BsjB6h7pbPTBZioqFApkZGTgxBNPxAMPPIDm5ma/Y3/3u9/h2WefDbb5YfH+++9jxYoVePzxx0ecUSHQ95fvjcqh+O6blJQU1OCn4fjXv/6Ff/7zn37ljz766LDWGSciiobR1i+32Wx49dVXRWWZmZl+WWF8+c6e7OnpCThAJ5BAg4QieS0QrH379uHHH38M6dHY2BjrjyGiVqv91jwcbMD3l19+iaqqKu92YmJiRANlw9HR0YFXXnkFc+fODTjwKCkpach7GbW1tX5ZPCKVwaPPJZdcIspGVV5ePuh9LN9/iwsvvPCgmbRC5bsO+8CB80RE4cDgJBEB8B+xtXbt2oDp1XwviK666qpRk2LFNw3Y7t27YbfbY9Sa0P34448oLy8XlV133XVB13fWWWeJtnfs2DHimYiXXHIJkpKSgm4D4E7Z9uOPP+L222/3S/16MEajEatXr8Zxxx2Hs88+O2Dan2g49dRTRzyKcvbs2X5lV1999Yj+/yktLfXrgMTqZ0BENNYF+vsb6NonnGQyGRYvXoxt27bh73//+6DpvEdKo9Fg1qxZgz5mzpyJ4uLigDexqqurcccdd2DmzJn43//+N+xzTps2zW/m/+uvvz6sa4va2lps3rxZVHbRRReFfI0RyLvvvoubb77Zr/yKK64IWE5EFEujqV++adMmdHR0iMquuOIKyOXyIY9bunQppFLx7cZAMzADCTRIKJJZFEjM9/dv3bp1AQcv+f7+Reo7fKDBZqDOmDEDOTk5yMjIwLJly/Dzzz/7HatQKLB+/fohZ+EGWlYm0rN2k5OT/QYgBwoIm0wmvPXWW6KyaMxUzc7OFm2P5qV3iGhsYnCSiAC4LyaTk5O925WVldiyZYtonwMHDohGcUkkElx11VURa1N3dzc++OAD/PWvf8WyZctw1lln4YQTTsCcOXMCXpT63mCyWq1obW2NWPsi7auvvhJty2QyHHXUUUHXV1xcLNq2WCzYt2/fiOpYuHBh0OcfKD09HY8//jhqa2vx5JNP4uijj/brwB7M+++/j3nz5uHtt98OS5tG4sQTTxzxMYGCmUOtdzHcevR6/YjrICIabQZL+W0wGCJ2zkB/PwemM4uE4uJiXH/99aI1hsJhyZIl+OGHHwZ9/Pjjj6iqqoLBYEBNTQ1WrVrltx51VVUVTjnlFL+g4VB8b4x1dXXh3XffPehxL730kt/N9kikdP3iiy9wySWXwOl0ispPPfXUYd8oJyKKptHULx9pStc+eXl5frM4d+zYgV9++eWgxwYKxI6WwdDjwYIFC1BaWurdDhQUMxgM2LBhg6gsGoGywWag7t27N2CGij4ZGRl4++23ccYZZwxZv2+qeQCiWY2R4vuzW79+vWhWNAC88cYb6O3t9W6XlpYGdU9ipHyvix0Ox4izjBARDWXo4U5ENG4kJibi4osvFnVAVq9ejQULFoi2BzrllFMikoN/165dePTRR/Huu++GfOGj1+v9UlGMFd98841oWyKR4Oijjw66PpvN5lfmOxL2YObMmRP0+QPJzMzErbfeiltvvRUGgwHbtm3DN998g927d+P7779HS0vLkMd3d3fjoosuwqZNm3D22WeHtW1DmThx4oiPGXiTIZz1RPLGPRFRtGg0moDler0emZmZETlnoODkYO0YzKxZs/zKXC4XjEYjGhoa/IJiFRUVuOCCC3DrrbfiiSeeiMkN18LCQtxwww245pprcM899+Bvf/ub973e3l5cdNFF2LNnz7BmC1x66aW4/fbbRddra9asGTI9qyAIfmkKfVMZhsO2bdtw7rnnwmKxiMqPP/54vPPOO4OuOUVEFEujpV9eX1+PTz/9VFR2+OGHB8wGE8jy5cvx2WeficpWr16Nv//970MeF2iw0mgcjFldXY2ioqJYNyPs+gLdf/zjH71lq1evFqXqfeONN0Tf+5MmTQr7d3g4qNVqXHHFFXjggQeQnp5+0P0HBv/6DDZ4LpxOPPFETJw40bueZHd3N9avXy8atOX7//xIMzAFK9Dn7+npicrPhYjGBwYnicjrmmuuEXWC3nrrLTz99NNITk6G0+nEyy+/7Ld/ONntdvz2t7/Fc889B5fLFZY6x3LgxjdlhsPhwI8//hjWc3R2do5o/0jdIAbc6XoWL16MxYsXe8saGxvx9ddf46OPPsLGjRsDjmZ0uVy44oorsHfv3oivCdFnpDevAXcqmUjUM5ZTFxMR9cnNzYVEIvGbMdHU1ITJkyeH/Xw2my3gd+BIBzT98MMPg75nsVjw5Zdf4oknnsDHH38seu+pp56CSqUSBQajTS6X45FHHkFNTQ3WrVvnLe/s7MTdd9896DpTA6nValxwwQV47bXXvGWffPIJmpqaBl1fesuWLaJ1qoDwz5r87rvvsHjxYr+ZB0cddRTef//9qMyEICIKVqz75YB7oIlvn9x3LcmhXHDBBbjppptgMpm8Za+88gr++te/BuwX9dFqtX5lozE4GWn/+te/8K9//WtExyxZsgQPPPBAyOe+6qqrsHLlSu+//5YtW1BRUeEdWBsoUBZLcrkcarUaarUaBQUFmDt3LubPn49zzjlnRBkxfAeUAQhb+v2Dufrqq3HPPfd4t1evXu39ue7btw87duzwvieVSkf0/2IoAqVwdjgcUTk3EY0PTOtKRF7HHnsspk6d6t3u7e31Llz/4YcfilJlpKam4vzzzw/bue12Oy666CI888wzYQtM9tU7Vo00cBiMkc5MjfSC675yc3Nx6aWXYu3atWhqasLDDz8ccJSe0WjEww8/HLV2DdWhjkU9RERjnUqlCjjrY+fOnRE5308//RTwGmHKlClhO0dcXBzOOOMMfPTRR3jiiSf83n/00Udjkprc10MPPeRX9vrrrw/7OsT3prjT6cQrr7wy6P5r1qwRbUul0mGlCRyu77//HqeffrrfgKY5c+bg448/jvq1DBHRSMWyXw64Z7j7/q2WyWS44oorhl1HQkKC31p67e3tB039HWiQ0FheqiVYLS0tg6YxHexRV1cXlnPn5eVh0aJForK+34dffvkF3333nbdcJpNFLVAmCELAh91uR2dnJ6qrq/HVV1/hH//4By655JIRp+oPdJ/BN/tCpCxfvlwUCN26dSvKy8sB+KdXPu2006KWHSzQ/aJIL4FAROMLg5NEJOI76q3vItR3dNzll1+OuLi4sJ33kUcewaZNm/zKc3NzcdNNN+HVV1/F9u3bUV9fD71eD4vF4ndROpI1ksaCrq6uWDfBT6CRc9GSmJiIu+66C9u2bUNqaqrf+y+99NKYDkYTEY13gVKHD7wBFk6B6k1PT0d+fn5EznfbbbeJUqT1ufHGG6MyGGkoEydO9AvKWq1WfPnll8M6fuHChX6p7dauXRtw3+7ubr+1qxYtWhS2m2w//fQTTj31VL9rqFmzZuHTTz8NeP1ARDQaxapfDgCff/45ampqRGWLFi0aVrrvgQIFrQ623m+gQUK7d+8OuBYlRY7vwKOXX34ZLpfL79/v9NNPHzRTwlgTKKtCtNZXzM3NxWmnnSYqW7NmDex2u9+Ar2is79kn0Odn9gkiCicGJ4lIZNmyZaIA1Pbt27Flyxa89957ov3CeUHU1tbmN+tNLpfj8ccfR01NDZ555hlcccUVOProo5GXl4eUlJSA6wQdagtz+47cmz179qCjBYN9XHXVVbH5cCGYPXs2nn32Wb/y7u5ufPvttzFoERERhcNJJ53kV/bFF18EXDM5VL5pVgF3kC2SVq5ciaOOOkpU1t7ejnvvvTei5x2OSZMm+ZUNN5W8RCLxuwFdVlaG//3vf377rl+/Hj09PaKycF1T7tmzB6eccgp0Op2o/PDDD8dnn30WMFUgEdFoFYt+eZ9AAcSPPvoIEolkRI9A3+uffPIJGhsbBz333Llz/coMBgP2798f0meikTn33HNF35sNDQ14//338eqrr4r2i2agLNICLWHje00RSb4/y5deegmbNm1CW1ubt0yr1eLcc8+NWpt8P79Wq41aqlsiGh8YnCQikaysLJxxxhmisssuu0w0I23mzJkBOw3Bevfdd/0WH3/kkUdw++23j2imXjQvHKPBd9H26urqGLVk9Ln00ksDdh7YaSUiGrvOPvtsv7KOjo6AmRVC0dLSgvfff39Y5w8nmUyGf/3rX5BIJKLy559/HgcOHIjouQ8mUKrTjo6OYR9/9dVX+30u35SAgco0Gk1YbrLt3bsXp5xyil+bZ8yYgc8//9zvmoqIaLSLRb8ccGfv2bhxY1jrHMjpdA46ux4Apk+fjgkTJviVf/HFFxFr02h0//33j3jg8VA/15FSqVS4/PLLRWU33ngj2tvbvdvp6ek455xzwnbOWAu0vEBDQ0PUzr9kyRKkpaV5t5uamnDbbbeJ9rniiiugVCqj1ibfzx/oZ0REFAoGJ4nIj++IraamJtF2uBc8//TTT0XbGo0GN99884jrqaqqCleTRgXfTpnBYAjbOhJjnUQiwbx58/zKR3IjlYiIRpfi4mIsWLDAr/y5554L63leeOEFOBwOUZlarcavfvWrsJ4nkCOOOMJvzS6n04n77rsv4uceisFg8Csbycj4wsJCv5mn//nPf0RZLSorK7F161bRPpdffnnAbBgjUVZWhpNPPlk0swAApk6dis8//xwZGRkh1U9EFCvR7pcDwKuvvgqr1Rr2egdavXr1oGlaJRIJzjrrLL/yVatWRbRN5O/aa68Vbfv+/kU7UBZpaWlpfoO1ohmcVCqVfteIvj/zaM5UdblcaGlpEZUVFxdH7fxEND4wOElEfs4+++yAs9IA9wXT0qVLw3q++vp60fb8+fODusjdvn17uJo0KvimfgOADz/8MAYtGZ1SUlL8ymK5JiYREYXu1ltv9SvbvHkz1q1bF5b6a2tr8de//tWv/LrrrovaGjr333+/3/fVunXrsGfPnqicP5CysjK/spGuLeZ7k9xgMIhm36xdu9bvZnSoN9kOHDiAk08+Ga2traLyKVOmYPPmzQFn3xARjRXR7pcD/mtaAu51e0N5+H6fVFVVDbmucaDvhp9++gnffPNNyJ+Phm/27NmYPXv2oO8fSild+8ycOVO0He3MTL4B4YGOOOKIIf89wq2iosJvMN+sWbOidn4iGh8YnCQiPwqFYtCOzjnnnBP21Fi+s92CWROoo6MDmzdvDur8vjcInU5nUPWEu75Fixb5lfmu8TCe+d6IBPxnmxIR0dhy/vnnB5wZf+utt4Y8O14QBKxYscJvzcPk5GTcddddIdU9EqWlpVi2bJlf2+6///6otWGgsrIyVFZW+pVPmzZtRPX86le/8hs41JdiThAEvPzyy6L3Zs6ciTlz5oyssQNUVFRg4cKFaG5uFpVPmjQJX3zxxYiDq0REo020++W7du3CDz/8ICqbP38+fvjhh5AegQKegcr6HHfccQGvBW655RZRWluKvMECkHPnzvUL5B0KjjzySNF2bW0tjEZj1M4/1LVRtIPBgdYe9/35EBGFisFJIgposBFbkbgg8p2pEMzNx2eeeQYWiyWo8ycnJ4u2u7u7g6on3PXNnz/fL9i2detWfPbZZ0G37VDR29uLHTt2+JWXlpbGoDVERBQuEokEq1at8hvo09raikWLFgW9vrQgCLj++uvx8ccf+733yCOPRD3157333guFQiEqe/vttwPeCIq0e+65x69MpVLhtNNOG1E98fHxuOSSS0Rln3/+Oerr6/H555/7paYPJR1hdXU1Tj75ZL90Z6Wlpdi8eTNycnKCrpuIaDSJZr/8xRdf9CsLx+zM0047za9fu2HDhoApxfsEynLw/fffh30gj06nC7hGMrldccUVAdOvH4qzJgHg6KOP9iv76aefotqGQD9blUrll/I10nyvSSUSCYOTRBR2DE4SUUDTp09Ha2srmpubRY/FixeH/VzZ2dmi7W3btvnNahjKL7/8gocffjjo82s0GtG2Xq9HV1dX2OoLdi1MuVyOO++806/82muvFS1EP1asWrUq6ACyryeffNLvdyQzMzNgKlwiIhpb5syZgwcffNCv/IcffsDJJ5884hRbRqMRy5cvD3jTdcmSJbjxxhuDbmuwiouLcdVVV4nKBEHAypUro9YGh8OB//u//8Pbb7/t994VV1yBpKSkEdfpG3B0uVx46aWX/G78DjUb6GDq6+tx8skn+y0LUFJSgs2bNyM3NzeoeomIRqNo9cvNZjPeeOMNUZlCocCll14act0ymcyvHrPZjNdff33QY0455RS/LAMA8PDDD+PRRx8NuU0A8O233+Koo47CV199FZb6DkVarRaNjY1+v3833HBDrJsWEaeeeqrfmttff/11VNuwYsUKv593Y2Oj332mSPP93HPnzg37bG0iIgYniWhQmZmZyMrKEj0kEknYz3PCCSeItru7u/GnP/1pWMfW1NRgyZIlsFqtQZ//8MMP9yv74IMPwlbfnj17/G6gDdevf/1r5OXlicrq6uqwePHioBdnb29vx7333otPP/00qOODddttt6GkpARPPvlkSLNTN2zYEHDE7MUXXwyplF9rRESHgjvvvDPgyPEff/wRM2fOxB//+MeA6b0HslgseO211zBt2jS88sorfu/PnTsXr776akSubYbj3nvv9Vtje9OmTdi1a1dEz1tbW4tVq1bhiCOOwN///ne/9zUaTcAZK8Nx9NFH+6WDffHFF0VrTwLBpyNsamrCySefjJqaGlF5UVERNm/ejPz8/BHXSUQ02kWjX75hwwbo9XpR2emnnx62YESgASmBBg0N9NRTT/l9pwiCgN///vf4zW9+E3S6TYPBgDvuuAPHHXdcwLTmJJaWlub3++eb4eJQodVq/QY8B7t8ULDkcrnfzzstLS2qbTCbzX6Zqs4888yotoGIxodD89uEiMaUX/3qV7j33nvhcrm8ZY8++ihUKhVWrlw56IXvG2+8gd/97ndoaWkBAKjV6qA6KEcffTSkUqno/HfccQeSkpJw5pln+qVdO5hjjz0WTz31lHfb5XLhoosuwtNPPx1w7YyhxMXFYd26dVi4cKEoALtr1y7MmTMH9913H6699lrEx8cPWY/NZsMnn3yCdevW4a233oLZbI7qYup9mpubcfvtt+Puu+/Geeedh6VLl2LhwoWIi4s76LHV1dV46KGHsGbNGtG/FeDuMMVqrS4iIoqM559/HnK5HP/+979F5TabDQ8++CD+8pe/4Pjjj8fxxx+P7OxsZGZmwmg0orm5GT///DM+/PDDQQfDHHPMMfjggw/8UrFHU0FBAa699lo899xzovKVK1fivffeG1Fd77777pDf64IgoLu7G52dnUOm0UtKSsKmTZtCSnN79dVX4/e//7132zeQ2LdPMFauXImKigq/cofDgSVLlgRVZ58bb7wxJrNoiYhGg0ildO0zb948TJ06FWVlZd6yXbt24ccff8SsWbMCHpOSkoL3338fJ554ot/A3GeffRbr1q3D3XffjSuvvHJYQdR9+/Zh7dq1WLVq1ZDfhTS+nXfeedi+fbt3+5tvvoHZbD7oPZdDyddff+03AeDcc8+NUWuI6FDG4CQRxdzkyZOxdOlSvPzyy6LyBx98EGvXrsWFF16ImTNnIikpCTqdDvv378e7774rGuWYkJCARx55BL/+9a9HfP7s7GycccYZotmSra2tOO+886BUKpGfn4/ExES/0akvvPBCwGDjueeeC61WK1oXa8eOHTjyyCORnJyMnJycgMG4H374IWD7jjnmGPz73//GVVddBUEQvOXt7e245ZZb8Mc//hELFizA0UcfjczMTKjVanR3d0Ov16Ompga7du3C999/P6JUuZHW29uL119/Ha+//joUCgVmzZqF+fPno6CgAGlpaUhNTYXFYkFXVxfKysrw7bff4rvvvgtYl0KhwIsvvhj10YRERBRZUqkUq1atwuzZs3HHHXfAbDaL3ne5XNiyZQu2bNkyonpvvPFGPPHEEwHXUIq2u+++G6tXrxbdAHr//fe9qeaGq6urK6SU9AAwceJEvPLKKwHXWxqJK6+8EnfffTccDkfA97OysoJOR2i32wOWNzQ0BJ1Rok/fYDciovGmsrLSL7WpWq0OedCHr6VLl+Lee+8Vla1evRpPPvnkoMcUFxdj69atOP300/3Sund0dOB3v/sd7rjjDsyZMwcnnngisrOzkZ6eDrVajd7eXjQ1NaGsrAxbt24NOLglWGeeeaZf9oNgzJs3Dy+88EIYWkThcvnll+MPf/iDd0B0b28vPvroI5x//vkxbln0bNiwQbQ9Y8YMzJkzJ0atIaJDGYOTRDQqPPXUU/j2229FIykB982mJ554YshjFQoF1q9fj4SEhKDP/+ijj+Krr77yC+DZbLZBU70MNhsjLi4Ojz/+OJYvX+73nslkGvFaWQCwbNkypKWl4corr/S7+ajX67Fp0yZs2rRpxPWOBna7HTt37sTOnTtHfGxCQgLeeOONsHeciYho9Pj1r3+NxYsX4/e//z02bNjgN3t+uI466ig8+uijOPHEE8PcwuDl5eXh+uuvx9NPPy0qv++++/DRRx9FpQ35+flYsWIF7rjjjmFlMjiYvuDjf//734DvL1u2zG89JyIiip3Vq1eLBsEC7uxG4Z4pdsUVV+CPf/yj6Fyvvvoq/va3vw05YKiwsBA7d+7EzTffjJdeesnvfUEQsGvXrqDSos+bNw8rVqwY8XH79u0b8TGBpKamhqUeCp+8vDwsXLgQn3/+ubdsw4YN4yY46XK58M4774jKAq3/SkQUDlyci4hGhZSUFHz22WcjHq2fk5ODzz77LOT899OnT8enn36KiRMnhlRPn2XLluGFF14Ia7q4s846C7t27cL5558f0hojcrkcZ599NmbOnBm2tg3HI488ghNOOCFs60JecMEF2LdvHwOTRETjQFFREdatW4eysjLcc889mD59+rC+C7Ozs3Hdddfhq6++wo4dO0ZVYLLP3Xff7RcU/Pjjj/HNN9+E9TxxcXHIzMzE5MmTsWTJEqxcuRKff/45ampqcM8994QlMNlnqLStwaZ0JSKi8HM6nQEDfuFM6dqnqKgIxx13nKhMp9P5BUICSUpKwtq1a7FlyxaccMIJIbfliCOOwOuvv45vv/0WxxxzTMj10aHFNyPXu+++O+jg9EPNZ599hra2Nu+2SqXCVVddFbsGEdEhjTMniWjUyM3NxZYtW/Dvf/8b//jHP1BVVTXovoWFhbjuuutw2223hS0AeMwxx6CsrAyffPIJ3nvvPfz000+oqqqC0WhEb2/viGdqXHvttbj44ouxYcMGfPHFF9izZw8aGxthMpn8UtMNV3FxMd5++23s27cPTz31FD799NNBZ3YOpNVqsXDhQixatAjnnXceJkyYENT5Q3HbbbfhtttuQ3t7Oz799FN8/fXX2Lp1K/bu3Tusn61MJsPUqVNxwQUX4IorrsCUKVOi0GoiIhpNJk2ahAcffBAPPvggOjs78dNPP6G6uho6nQ5msxlKpRJqtRoFBQWYNm0aSkpKwnbuQGsnhkN2dvaIrgtOOukkvxkuo835558fkTauXbsWa9euDXu9RETj1UcffYTGxkZRWW5uLk466aSInO/KK6/E1q1bRWUvvvgiLrnkkmEdf8IJJ2DLli34/vvv8cYbb+C9995DWVnZQb9z5HI5DjvsMCxatAjLli3DYYcdFvRnoEPfeeedh+LiYlRXVwNwZ8B64403cP3118e4ZZHnu9b70qVLkZmZGaPWENGhTiKM9p4tEY1bBw4cwLfffov29nb09PQgMTEReXl5mDlzJgNTAzQ0NODHH39ER0cHOjs7YTabkZSU5L05O3XqVOTm5sa6mYOyWq2orKxERUUFWltbYTKZ0Nvbi7i4OKjVaqjVakycOBEzZswYV4vQExERERER0dD0ej1+/vln1NTUoKOjA729vZDJZNBoNNBoNCgoKMDs2bPDmiGADn1PPfUUbrvtNu/23Llzg1qKZixpbW1Ffn6+d41viUSCn3/+GTNmzIhxy4joUMXgJBERERERERERERERALPZjIkTJ6KpqclbFq60wqPVfffdhz//+c/e7QsvvBDr16+PYYuI6FDHNSeJiIiIiIiIiIiIiADEx8fj3nvvFZU9/PDDMWpN5HV3d+Ppp5/2bstkMlGgkogoEhicJCIiIiIiIiIiIiLyuO6661BaWurd/vDDD/H999/HsEWR869//QtdXV3e7WXLlmHq1KkxbBERjQdM60pERERERERERERENMB7772Hc845x7t9+umn46OPPophi8LPaDSitLQUHR0dAAC1Wo39+/cjKysrxi0jokMdZ04SEREREREREREREQ1w9tlni4KTH3/8MT7//PMYtij8HnnkEW9gEgD+9Kc/MTBJRFEhj3UDiIiIiIiIiIiIiIhGm3/+85+YM2eOd7uzszOGrQm/1NRUrFy5EgCgVCpx8803x7hFRDReMK0rEREREREREREREREREUUFZ04SERERERERERERERHRmLR7926Ul5ejsbERAJCbm4vJkyfjiCOOiHHLaDAMThIREREREREREREREZFIVVUVvvvuO+zcuRPfffcddu/eDZPJ5H2/sLAQNTU1MWmb3W7H3//+d7zwwguorKwMuM/EiRNx3XXX4Xe/+x0UCkWUW0hDYVpXIiIiIiIiIiIiIiIiwpdffomHH34YO3fuhE6nG3LfWAUny8vLcemll2L37t3D2n/u3Ll48803MXHixAi3jIaLMyeJiIiIiIiIiIiIiIgIP/zwAz755JNYN2NQLS0tWLRoEWpra0XlEydOxIwZMyAIAn755RfRbMpdu3bhtNNOw//+9z9kZmZGu8kUgDTWDSAiIiIiIiIiIiIiIqLRS6VSobS0NKZtcLlcOO+880SByezsbHz88ccoLy/HO++8g02bNqGiogIffvghsrKyvPtVV1fj/PPPB5OJjg4MThIREREREREREREREREAQKFQYPbs2bjuuuuwatUq7Nq1CyaTCS+88EJM2/Xaa69hx44d3m2tVott27bhtNNO89v3jDPOwLZt26DRaLxl27Ztw3/+85+otJWGxjUniYiIiIiIiIiIiIiICF1dXYiPj0dcXJzfe19++SUWLlzo3Y7mmpNOpxOTJk1CdXW1t2zt2rVYvnz5kMetXbsWV199tXe7tLQUBw4cgFTKuXuxxJ8+ERERERERERERERERQaPRBAxMxtrWrVtFgcnc3FwsXbr0oMddeeWVyM3N9W5XVlZi27ZtEWkjDR+Dk0RERERERERERERERDRqbdy4UbS9bNkyyGSygx4nk8n8gphvv/12WNtGI8fgJBEREREREREREREREY1aH330kWj7pJNOGvaxvvt++OGHYWgRhYLBSSIiIiIiIiIiIiIiIhqVrFYrKioqRGVHH330sI8/9thjRdvl5eWw2WxhaRsFh8FJIiIiIiIiIiIiIiIiGpX2798Pp9Pp3c7MzIRarR728Wq1Gunp6d5tp9OJAwcOhLWNNDIMThIREREREREREREREdGo5DtrsqCgYMR1+B5TXl4eUpsoNPJYN4CI+un1enz11Vfe7fz8fKhUqhi2iIjGC6vVivr6eu/2ggULkJqaGrsGEY0zvAYgoljhNQBRbPEagIhihdcAgMViQWVlZaybIdLZ2Ymurq6gvg8yMjKQmZkZoZbFll6vF20H8zl9jzEYDKE0iULE4CTRKPLVV1/hvPPOi3UziIjwzjvv4Nxzz411M4jGDV4DENFowWsAoujiNQARjRbj8RqgsrIShx12WKybETYrV67E/fffH+tmRER3d7doOz4+fsR1+B5jMplCahOFhmldiYiIiIiIiIiIiIiIaFTyDU7GxcWNuA7f4KRvnRRdDE4SERERERERERERERHRmCCRSKJyDEUO07oSjSL5+fmi7XfeeQcTJ06MUWuIaDypqKgQpZPy/XtERJHFawAiihVeAxDFFq8BiChWeA3g7xYcjkyMPF1oOLTBjH/iZ+92MN8HGRkZ4W7WqJGUlCTaNpvNI67D9xjfOim6GJwkGkV8FzmeOHEiZsyYEaPWENF4NtJF14koNLwGIKLRgtcARNHFawAiGi14DQBkSROQK4lNwEoqSABX/za/D8QYnDz0MK0rERERERERERERERERjUopKSmi7fb29hHX0dbWJtpOTU0NpUkUIs6cJCIiIiIiIiIiIiKicU0iBaQxms4lcUE0c5LEJk2aJNqura0dcR2+x/jWSdHFmZNEREREREREREREREQ0Kk2ZMgUymcy73dbWBpPJNOzjjUYjOjo6vNsymYzByRhjcJKIiIiIiIiIiIiIiIhGJZVKhdLSUlHZ9u3bh338tm3bRNuTJk3iOqsxxuAkERERERERERERERGNa1KpJKYPGtoZZ5wh2v7yyy+HfazvvosXLw5DiygUDE4SERERERERERERERHRqHX++eeLtl955RU4nc6DHud0OvHqq68OWRdFH4OTRERERERERERERERENGqdcMIJKC4u9m43NDT4BR0DefXVV9HY2OjdLi0txXHHHReRNtLwMThJRERERERERERERETjmlQGyGL0kMpi/emjTyKRiB4HS9Mqk8nwpz/9SVT2u9/9DjU1NYMeU1NTg9/+9reisgcffBBSKUNjsSaPdQOIiIiIiIiIiIiIiIhodGhoaIDD4fArb2lpEW07HI5Bg4NJSUlIT08Pa7uuuOIKPPPMM9ixYwcAQKfT4dhjj8XatWtx2mmnifb9+OOPcdVVV6Grq8tbduyxx+KSSy4Ja5soOAxOEhERERERERERERHRuCaVSCCVSmJzbiE25x3M8ccfj9ra2oPu19jYKEq1OtDy5cuxdu3asLZLKpVi48aNOProo1FXVwcAaG5uxumnn45JkyZhxowZEAQBv/zyCyoqKkTHFhUV4e2334ZEMrp+1uMVg5NEREREREREREREREQ06mVnZ+PTTz/FpZdeiu+//95bXl5ejvLy8oDHzJkzB//5z38wYcKEaDWTDoKJdYmIiIiIiIiIiIiIiGhMmDx5Mnbs2IGHH34YJSUlg+5XWlqKhx9+GP/73/8wceLEKLaQDoYzJ4mIiIiIiIiIiIiIaFyTSt2PmJxbiM15BzPYOpLhJAihfWiFQoG77roLd911F3bt2oUDBw6gqakJAJCTk4PJkydj7ty54WgqRQCDk0RERERERERERERERDQmzZ07l4HIMYZpXYmIiIiIiIiIiIiIiIgoKjhzkoiIiIiIiIiIiIiIxjWJVAKpTBKbcwuxOS9RrHDmJBERERERERERERERERFFBWdOUlQJgoCKigrs3r0bbW1tMBqNiIuLg0ajwbRp03DEEUcgLi4ubOfbt28ffvnlFzQ2NsJmsyEnJwclJSWYP38+pLFa3ZiIiIiIiIiIiIiIRhWp1P2I1bmJxhMGJ8cxQRCwf/9+fPfdd/juu++wc+dOfP/997BYLN59FixYgC+//DLkc3V2duKJJ57A6tWr0dTUNOh+SqUS559/Pn77299i/vz5QZ1LEAQ8//zzeOaZZ/DTTz8F3CcnJwfLli3Dvffei8TExKDOQ0RERERERERERERERCPD4OQ49NZbb+GZZ57Brl27YDKZIn6+//73v7j22mvR3t5+0H1tNhv+85//YP369bj11lvx2GOPQSaTDftcra2tWLp0KT777LMh92tqasJf//pXrF+/Hm+++SbmzZs37HMQERERERERERERERFRcBicHIe2bt0altmQw7Fx40ZcfPHFcDgcovK0tDTMmzcPaWlpMJvN+OWXX3DgwAHv+y6XC0888QQ6Ozvx8ssvD+tcPT09OPPMM7F7925ReV5eHmbOnIm4uDjs378fv/zyi/e9yspKnHbaadi+fTumTJkSwiclIiKioTC1OxEREREREY1mUpkEUpkkNucWYnNeolhhcJK8EhMTkZGRgZqamrDU19bWhmuvvVYUmNRqtXjyySdx2WWX+c2I/OGHH3DTTTdh+/bt3rJXXnkFixcvxmWXXXbQ81111VWiwGRycjJWrVqFSy65RHQTcseOHVi+fDn2798PAOjq6sJZZ52Fn3/+GfHx8UF/XiIiorGCqd2Z2p2IiIiIiIiIKFY4bHyciouLw/z58/Gb3/wGa9aswc8//wyj0YiVK1eG7RzPPvssurq6vNvx8fH44osvsHTp0oCpWmfPno3Nmzfj2GOPFZU/8MADBz3X1q1b8dZbb3m3lUolvvjiC1x22WV+syPmz5+Pb775BqWlpd6yyspKPPnkk8P+bERERGPRW2+9hYULFyIlJQXTpk3DsmXL8M9//hPbt28XBSbD5b///S+mTZuGBx98cMjAJNCf2v3YY4/Fb3/7WzidzhGdq7W1FaeddhpWrFgxaGAS6E/tPmvWLOzcuXNE5yAiIiIiIiIiotBx5uQ4dM899+Cxxx6DXB7Zf/7//ve/ou0VK1Zg1qxZQx6jUqnw1FNPidaALCsrQ0VFBSZOnDjocffcc49o++677x5yHcm0tDS88MILWLhwobfskUcewU033QS1Wj1kG4mIiMYqpnZnanciIqJoY2p3IiIaK6QSQBajrwops7rSOMPg5DiUkZERlfNUVVWJts8555xhHTd37lzk5uaisbHRW1ZeXj5ocLK2thZbtmzxbsfHx+PWW2896HlOOukkHHXUUfj2228BAHq9Hu+++y6WLl06rHYSEY12ne09AIC0DKaupKExtTtTuxPRoaXbaIVLEKBOCV/Ahw4NTO3O1O5EdOgSBAEdbT1ISFQiMUkZ6+YQEQ2JwUmKmJ6eHtF2Xl7esI/Nz88XBScHpof1tXHjRtH2eeedB41GM6zzXH311d7gJAC8/fbbDE4S0ZjkcrpQX6vHgX1tKC9rR/m+Nug6enHaOVNxxbVHxrp5NIrExcVh1qxZmDdvnvcxffp0vPzyy7j66qvDco7BUrsPlkGhL7X7ySefjG3btnnLH3jggYMGJwdL7R4og0Jfavf58+ejsrISQH9q97vuumtEn5GIaDRwOFxoaTKivroL9bVdqK/pQl1NF/Q6M869+HBccPnsWDeRRom33noLzzzzDHbt2gWTyRTx8/33v//Ftddei/b29oPu25faff369bj11lvx2GOPBVwKZjCtra1YunQpPvvssyH360vtvn79erz55ptDZlsiIhoLunS9qK7oRHV5J6orO1FT0QmT0YrrbzsWxy8sPXgF5EcqBaQxmsLIyf003jA4SRGTlZWF+vp67/ZI1rLy3Ver1Q6670cffSTaPumkk4Z9Ht99P/nkE7hcLqZ6IaJRz2y2o+pAhzsYua8dlQc6YDHb/fYrLzv4DSEaP5janandiWjsMhosqK/p8j7qarrQVG+Aw+EKuH99zeADPGn8YWp3pnYnorHNaLCgusIdgKzyPOu7zAH3ranoZHCSiEY9BicpYk444QS8/vrr3u3du3dj5syZBz2ut7cX+/bt825LJBLMnTt30P337Nkj2j7mmGOG3capU6dCq9VCp9MBcHdsampqUFJSMuw6iIiiobO9B+Vl7kBkeVk76mq6ILiEgx5XV6WD1eqASsWvfGJq9z5M7U5Eo5nD4UJzg8E9E7K6C/W1etTVdMEwyA3IwdTX6iPTQDqkMLU7U7sT0ejT021FTaXOPSvS8+hbtmU4qit0EWwdEVF48E4lRcxNN90kCk4+++yzWLZs2UFnJa5atQpWq9W7feaZZw56M9VoNIpuYAJAaenIRgaVlJR4g5MAsHfvXgYniSimBkvRGgxVnAKtzSYUFA0v3TVRODC1OxHR8Bj0Zs9MSHcAsqGmC40NBjgHmQ05EvouMwcokQhTuzO1OxGNPmazHbVVOlFq1tbm0NJv6zp64HIJMUtPOpZJpIB0+JnFw3tuZ2zOSxQr7KVQxBx33HG45ZZb8M9//hMA8N133+Hmm2/GU089NWg6uQ8++AB/+MMfvNvx8fF47LHHBj1HRUWFaDs9PR0JCQkjamdBQQF27tzp3S4vLx/R8UREoTKb7ajc3+6ZFdmGyv0dsFgcBz8wgIwJSZg0LROTp2Vg0tQM5OSnskNCUcfU7kREYg6HC031etTX6FFf24W66i401HbBoB/+38ehaNMSkF+k8TxSkV+kQVaOGjIZ/6aRG1O7M7U7EcWezepAXXUXqgekZm1uNEA4eFKkQcUnKFBUqkVxaRqKJ6WjeKIW6ZlJkEh4H4CIRjcGJyminnjiCcjlcjzxxBMQBAHPPfcctmzZghtuuAHz58/3rjWxd+9erFu3Dhs3boTg+UZOSkrChg0bMHXq1EHr1+v1ou3MzMwRt9H3GIPBMOI6Amlra0N7+8jWevMNthLRoSnYFK2+ZDIJCku0mDQtE5OmZmDStEykapiWimKPqd2JaDxzOFxorNO7Zz9U6lBT2YmGmi7Y7aHPhlQoZcgrSEV+YSryizXIL3QHJJOSVWFoOR3KmNrdjandiSharBY76mv0qK3SoaZKh5qKTjTU6eEKou/fR6mSoagkDUUTtSiemIaSienIzE7mgGQiGpMYnKSIkkql+Mc//oFLL70Ujz32GD744AP88ssvuO2224Y85vzzz8cjjzxy0BSt3d3dou1g1orwPcZkCi11Qp9nn30Wf/rTn8JSFxGNXRazHTWVOlSVd6CqvBOVB9qDTtGakKh0ByE9gcjiSWlM1UajElO7E9F44bA70VhvEAUi66u74AhDWta0jES/IGRWdjKknA1JoxhTuxPReGQ0WFBbpUNddRdqq3Woq9KhpckY0oxIhUKK/CKNezZkaRqKJ2qRk5fC64AIk0olMQv2MshM4w3vaFJU2Gw2yOVyKBSKIfeTy+W45ZZbcMstt6C4uPig9foGJ+Pi4kbcNt/gpG+dRETD5bA7UV+rd6doKe9AVXkHmhqMQc2KBIDMrGRMmtYfjMzJS+HFKo0JTO1ORIeiSAUilUoZ8gpTB6Rl1SC/MBWJSZwNSWMPU7sT0aFMEAR0tHWjtqoLtVU6dyCyugtdncENQO4jk0mQV6hBUakWJZPSUTwxDbn5KZArYrT4IRFRFDA4GUU333wznnnmmYifZ+XKlbj//vsjfp7h0Ov1WLFiBdatWzes/R0OBx5//HE89dRTWLp0KR5//PFhj34EEFQ+deZgJ6JguFwC2ppNqCzvQHV5B6oqOlFXpQs6ZZtMJkFRaZo3EDlxagZTtNKYxtTuTO1ONJb5BSIrOlFfE3ogMj0z0RN81KDAMyMyMyuJsyDokMHU7kR0qHA4XGhqMKCuLwhZ1YW6ah16e+0h1SuRSpCbl4KiiWko9jzyizRQKhmIJKLxhcFJihij0YhTTjkFu3fv9pbJ5XIsXboUl112GWbNmgWtVove3l5UVVXh448/xj//+U80NTXB6XTipZdewtdff43NmzejoKAg4DmSkpJE22azecTt9D3Gt85g3XTTTbjoootGdExFRQXOO++8sJyfiMKrS9eL6vL+GZHV5Z0hdUpEKVqnZ6JkYhqUTNFKhxCmdmdqd6KxIlKByIwJSSgqdd90LCrVoqhUy9mQdMhjanciGossZjvqa7u8MyLrqnVorNOHvF60VCpBdp4ahcVa7zVBYYkGqrihM8tR7Eil7keszk00nvAuKEXMLbfcIgpMZmRk4P3338eRRx4p2i8lJQVHHHEEjjjiCPz617/G5Zdfjg8++AAAUFVVhSVLlmDHjh1Qqfw78qM5OJmZmRnULA4iir3eHps3Nav7uTOkNC19KVpKJqWhZFI6SianM0UrjRtM7U5Eo4nLJaC12YiqA/0DjurCkJqVgUgiN6Z2J6LRzJ2WtQeNdXrU13ahvsYdkGxtDm19SMCdpj2/SIOCEi0KizUoLNEiryCVg5CJiAbBv45RdO65545oMfhgHX/88RE/x8GUlZXhlVdeEZWtW7fOLzDpKyUlBW+99RZmz56NAwcOAAB+/PFH/Pvf/8Ytt9wScP+BRppCDXCnXhsoNTV1xHUQ0djVN0KyplKHqvJOVFd0oLnBGFKdE3KS3UHIie5gZEGxhh2ScY6p3Q+Oqd2JKBL0ul5UhTHzAeAORLqDkAxEEgXC1O5M7U40GhgNFm8QsqFWj4Y6PRrrDLCYQ7sOAICkZBUKSzQoLNaioFiLwhItsnKSmab9ECCRSiCVxaafKOEAdhpneKc0ihYtWoRFixbFuhlR8dZbb3k7FwCwYMGCYS9QHx8fjzvvvBPXXnutt2zNmjUBg5OTJk0Sbbe3t6O3t3dEoyZra2uHrJOIDg2CIKBLZ0adZ8H6umod6mq60NZsCmmEZIom3jsjsm+9iKRk3qCk8Y2p3ZnanSgWzL02z2CjDu/MSF0ImQ8ABiKJgsHU7kztThRNFrMdjfUGNNR2oaFOj4ZaPRrr9DDoLWGpPz0j0T0b0jMjsqBYC216Agc6EhGFiMFJiogff/xRtH3KKaeM6PhTTz3Vrz6r1eqX2lWtViMnJwdNTU3essrKShx++OHDPld1dbVoe9q0aSNqKxGNPg6HCy2NBtRWd/UHIqu70G2yHvzgIcTFK1A8UeueFTkpHSWT0qBJY6eEyBdTuzO1O1GkOexO1NfqPTMi3YHI5gZDSAOOGIgkCi+mdieicHI4XGhpMoqCkA21erS3huf/X6lUgpy8FBR4UrIWlmhRUKzhtQARUYQwOEkR4ZtmJSsra0TH++7vcrmg0+mQnZ3tt+9hhx0mCk5u37592MHJsrIydHZ2ercTEhKG1RkiotGjt8eGupou1HuCkLXVXWis04e8dpRMLkVBsUaUnjUrV811IikoTO3O1O5EFDxBENDabBIFIuuqdLDbg/+uT9XEo2Ryujf7AQORFClM7X5wTO1ORAO5XAI623vEQcg6PZobjXCG2M/vk5CoRF5hKvIKUr3BSK4PSQAgk7ofsTo30XjCv7gUEb4393p6ekZ0fKBRi4PNZjjjjDPwySefeLe//PJL3HDDDcM6z5dffinaPv300yGV8puAaDQSBHcHpa66C7XVOtTXuGdFhmOUpFQqQVauGsWeIGTJpDTkF2mgUMjC0HIipnZnanciGokuXS+qKzpR7V0rshO9Pbag64uLV6BkYhqKJ6d5sx9o04b/t4KIho+p3ZnanWi4rFYHWhqNaGkyoqnBgJZGI5o921aLIyznUChlyMlLcQciPcHIvEINNNp4DlIgIooxBicpInJyckTb33///YiO37Vrl2g7ISEBycnJAfc9//zz8bvf/c67/c4770Cv1w9r9sPatWv96iKi2OvptqKpwYCmegMaavWo8wQiQ7kx2ScuXoGCIg0KivseWuTmp3CEJFGYMLU7EY2EQW9GTYUO1ZWdqK7oRE1FJ/RdIw809JHJpSgo0nhnRDLzAVF0MbU7U7sTDSQIArp0ZjR7g48GNHuCkJ3tI5vIMBSJVIKs7GTkFvQHIfMLNcjMSoKU09GIiEYl3omliDjppJPw1FNPebc3btyIv//970hPTx/W8atWrRJtn3DCCYPuW1RUhBNOOAFff/01AHcn48knn8TKlSuHPMdXX32FHTt2eLdTU1OxZMmSYbWPiEInCAIMXWY0NRjQWG9Ac4PBG5AM18L1aRmJyC/SeBetLyjWID0ziTcoiSKIqd2JaDAmowU1lTp3ENITjNR19IZUZ1aOuj8QOTkN+UVaKJXMfECjB1O7M7U70XhgszrQ0mzyC0K2NBphCdMsyD7atATkFqYivyDV/VyoQXaumgOOKSykUgmkstjcM+K9Khpv+FebImLRokXQarXQ6XQAAJPJhGXLlmHTpk1QKBRDHvviiy9iw4YNorILL7xwyGP+8pe/iAKYf/nLX3DWWWdh3rx5AffX6XSilHEAcOedd/p1cogodO71IrrRWO8OPjbXG9DUYERTvR69vfawnEMmkyA3371WRH6xBoXFWuQXaZCUzLWjiKKNqd2JCAB6um2oqewPQlZXdKKjLbQZEimaeJR6A5HpKCpNQ2KSMkwtJooMpnY/aVjHMrU70ejXN8C4b+Zjc4MBzU3u5872Hgz43z8sBq4LmecJQuYWpHCNaCKiQwSDk+NUTU1NwPKOjg7RtsViGXTf1NTUQUcXJiUl4Z577sEdd9zhLfvwww9x3HHH4bHHHsOJJ57od0xDQwMefvhhPPvss6LyKVOm4Kqrrhr0swDuUaIXXngh3nrrLQCAzWbDKaecglWrVuHiiy8W3WzcsWMHli9fjsrKSm9ZaWkpbr311iHPQURDc9idaG0xoakvCOmZEdnSaITN5gzbeRISld6UrH1ByJz8FK4PSTRKMLU70fhjNttR65kRWV3pTs3a2mwKqc74BAUKS7QonZzuXQ9ak5bA9aGIRjGmdica+2w2JzrautHe0o22VhM6WrvR1tqN9tZutLeYwj4LEnBnPMrOVXseKcjKVSM7L4XrQlJMSKRArMasSjhWlsYZBifHqeGmLduxY8eg+65cuRL333//oMfefvvt2L59uzdgCADfffcdFixYgJycHMyePRsajQZmsxkVFRXYs2cPXC6XqA6NRoP169dDLj/4r+ratWtRWVnpvQlqNBpx2WWX4fe//z1mzZoFpVKJAwcOYM+ePX7neP/990c0ypJoPOs2WdHe2o3mxv40rE0NBrQ1m+B0hm+opEwmwYRsNXLyUpA/IBipTeeNSaLRjKndiQ5tVosdtdVdqPHMhqyu7ERLozGk2RKqODkKS7QonpiG4tI0FE9MQ2Z2MlNbEY0xTO1ONPq5XAIMerM3+NjuDTy6t/W64Nd9HopSJUN2bgqyc9XIynX387Ny1MjKSYYqbugMa0REdGhicJIiRiqV4rXXXkNeXh6efPJJUXqXpqYmUUcikMMPPxyvvvrqsDsYiYmJ+OCDD7B06VJ8/vnn3vL6+nrU19cHPKa0tBRvvPEGpkyZMqxzEI0HTqcLuo4etLV0o63F3VlpazGhrcXdaentsYX1fEqlDNl5KcjJT0FOnueRn4LMrGTI5Rw2FiyL1YGKah2SEpUoyk+NdXNoHGFqd6JDh8loQW2VDnXVXait0qG2WoeWJhMEV/CRSIVShsJiLYonalE00R2IzM5RQyrjd34oBEFAZ5cZFdVdKK/WoaJah5OPL8KCYwpj3TQaR5janWh0MJvt3pmO7Z5ZkO2tnpmQbT2whzGzkS9teoJoBmRfEFKTlsBBRxEmCAJa23tQWdOFSSVaZKYnxrpJRERDYnCSIkqpVOLxxx/H0qVL8c9//hNvvfXWQTsoRx11FK6//nosX778oDcxfWVlZeHTTz/Fv//9bzzzzDP4+eefA+6XnZ2NZcuW4Y9//CMSE/llTeOPudfmDTa2tZjQ1tqNtmZ3ILKzvTusMyD7JCQq/QKQOXkpSMtIZCclRIIgoL2zF2UVndhf2Ymyig7U1Bvgcgk4bUEJfr18bqybSKMIU7sztTuRL0EQ0Nne4wlAugORdVU66Dp7Q6pXLpeioFiD4olpKCpNQ9HENOTmp0DGQGTITN02VNboUD4gGNllsIj2mZCRyOAkRRVTuxNFnsvpgtFgQZfODF1HD7p0ZnR19nqCkO5gpMlgjWgblEoZsnLUyM5TI8szG9IdhOQsyGjpuwdQWdOFytouVNR0obJGh+4eOwBgxZVzcMbC0hi3cmySSiUxu0fFe2M03jA4OU4J4V6l+iDmzp2LtWvX4oUXXsCePXuwZ88e6HQ6mEwmqFQqpKSkoLi4GHPnzoVGownpXBKJBCtWrMCKFSuwd+9e7NmzB01NTbDZbMjJyUFJSQmOPvpojoykQ5rLJbg7KN7go8mdpsUzE9JkjFxnJVUTj5y8FGTnpyDXE4TMzktBSmoc07GGic3uRFVtF/ZXdKKsshP7Kzr9bkj2KavoCFhO4xdTu4vPwdTuNN44nS40Nxq9AcjaavfMyJ7u0DIjyGQS5BW6A5F9j9z8FMi5JnTIrDYnquu6UF6lQ0WN+7m5zX+Gma/yal0UWkfUj6ndiUJjtTrQ1dnrfuh6+193mr3b+i4zXCFkMBiu5BQVMjKTkJGVjMwJScjwPDKzkqFN5wDjaOrLjlBZ04XKmv5ApHGIa7eKah3A4CQRjXIMTlJUyeVyzJ49G7Nnz47K+aZPn47p06dH5VxE0SIIArpNVnR19kLn7biYvR2Xjjb3jEiHw3XwyoIklUqQlpEomgGZk+cOQiYmKSN23vFK12X2BiHLKjtQVasf9r9vfZMRPb12JCZwBCtFD1O7E40OVqsDDbVdqK3yzIas1qG+Vh9yOjepVILcglQUl/anZs0r1ECpZCAyVE6nC3WNRlTU6LzByNoGQ1A3ousajbBaHVCp2O2n6GBqd6LAXC4B3UZLf7/dE2jUiQKR5rAvoTIUhVLmDj72BR6zkpA5IRnpnu34ePYfY0Wn9w9E6kc4wLyytitCrSMiCh/2UoiIRhGHwwVDlxm6zh736Mi+DsuAUZN6XS/s9sgFHvvExSuQmeUeGZk5wTNiMisJGROSkZaRyPUgI8ThcKGmXu9Jz+pO09oeZFo9qVSCovwUdBnMDE5S1DG1O1F0dRutqKvRuQOR1TrUVunQ3GgMaX1IwH3zMr8wFYUlWhSWaFFQrEVeYSoDXmEgCAJa2ntQUaVDuScYWVWnhy2E4HFCvAKTijWYWKzFpGItJJzZQgMwtTtTu1N4uJwu9PTY0G2ywmS0otto7X9tsqLbaIHJs63v7EVXlxnOCA4eHowmLcEz+9Ez63FCsjcQmZIaz9mPo4DeaPELROr0gbMiDZc6SYl0bQIEQWD2qiBIpYA0RuPtmOSPxhv2KImIosTcaxOlYxk4SlLX4Q46Gg0WRCvrskTi7qxkTvAEHQcEHzOzkpCUrOKFbBQYjFbsr+xfK7Kipivom5LJSUpMKU3D1IlpmFKahonFWsTx5jH5YGp3pnansctitqO12YSWJqPnYUJrs/t1jyn02RaJSUoUFmtRUKJFQbEGhSVaZOequUZkmOgNFpRX67xrRJZXd6E7hFkyCrkUxYWpmFSs9QYjszOTeLOZBsXU7uJzMLU7Ae5AY3e3bUCA0R1Y7BkQbOwPOlphMlnQ222LWr99MDKZBCmaeGjSEqBNS4A2PRGZWcneYGR6ZhIzGowyxm4rqjxByL5AZIfOHFKdSYkKlBZpUVqowcQiDUqLNMhIS+C9HCIaE3jHkogoCDab0zsi0m+0ZN9ISVEHxgqrxRH1dipVMvfoSM8MyL41IjI9nRUF14GKKqfThfomo2hWZHPrwdeMCkQiAfJz1Jg6MR1TPMHInAlJ7ITQqMXU7kTDY7c70dZiQkuj0RuIbG1yP+u7QruBNZA2LQEFntmQhZ5AZFpGIr9HwsRscaCy1r0+ZF8wMthMCAAglQB5OWpMKtZiUok7GFmQmwIFM1nQKMPU7tGx4bUfIJVKoFTJoVTKoFTJBrzuf1ap5FAoZVANeF86hgecCIIAm80Jq8XhfljdzzareNtqccBisYu2B+5jsTi8ffVQ11yOhPgEBTTaBGjS4t3P6Qme7f5ndUocB6OMUn1rRFbX6d2Pej2qarvQ1hH8dQAAJMTL/QKRE3jtFnYSqSRm/28x4wWNNwxOEtG4N5xAY7fJBpPREtNAoy+JBFCnxkOblgCNNt7bUdGmJyIz2z0DMiU1jheqMeJyCWhqNblHRFZ3oaJGh+o6PaxBzopMiJdjckn/rMhJJWlM1UpENEY5nS50tPW4A4/NnhmQntmQnR29IadiHUgiAbJy1Sgs1g5IzapBsjoubOcY7xwOF+oaDe5ZkZ5gZEOTEaH8M05IT8TEYo13VmRJoQbxcey+09jA1O6R996GPUGtRQsAcrm0P4g5MLiplPsHOT3lcrkUAgAIAgTBHXwJ9AxBgEsQgIHvARBcQv/zgH1933O5hP6Aok9g0eJ5jvWMxVBIpBKkpMaJgowabTy0aYnuQKSnPI7rPY4ZTqcLjS0mbxCyutb9bAox6B2nkqO0SNMfiCzWICuD2RGI6NDC3g3RGHdgbxvMvXYolFLIFTIoFDIoFFIolDLI5TIolO5tuUIGuVw6pgNVLpfg7ZS4Oyn2Aa8HjI70vvZ0aMzi/cT72GGzBr+uT6QolDLRSEltmqfjMqATk6KJ57qPo4QgCGhp60FFjc67VkRVbRfMIQSxc7OSMaU0zTsrMj9HzY4IEdEo5nS6+mdmeGdyOGE229HR1o2WRiNamt1ByLbW7oisPaVQSJFXqHGnZPUEI/OLUqGK403OcBGtE+lJ0VpV2wVbCOuBq5NV7hmRnrUiJxZpkaJWhbHVRG5M7X5opHZ3OFxBByb7jnc4XOjttYexVeNXXJwcSWoVkpJVSFbHISlZiSR1HJKT3WV9qVc1aQlISY1jqvQxzGxxoLZB3z8jsk6PukZDSNcAAKBSylDiCUKWFLmfcyYks/9PRIc8BieJxrh1r+xG+b72Ye+vUEihUMjcgUylDHLPdt9j4La8L8jZF/D0BDhdggDB5Q4WujwjH72vXULA8qHeC1juFPxSsozGIGIwEpOV4oCjdkDgMS0BWm0CEpOVYzqQfCgTBAHtnb3udSKq3cHIytou9ITQuVcpZZhUovWsF5mOyaVaqJN4U5KIKBIcDhe6jRYYjVZYPdcX3hkaVgdsA173BRhFaeMGKXdEINgYiEQCpKUnYkKOGlk5ycjKUWNCthpZuclIz0ziTc8w0xstqKjuEs2KDGWdyL6ZEO4Zke5nrg1Fhzqmdg8vmzX2WXwG6jHr0GWohdNlh9PpgFKRgLys2bFuVlDi4hVI9gQak9Qqb4BxYPAxWa1CYrLKux+XSjk06fTutKw19f2ByOa27pBn7ioVUhQXuFOylnoCkbnZasgYiBw1pFJAGqP/rQ+B8TNEI8LgJNEY5xjhCC273QW73QWAoyTDQSIBEpM8HZO+Dkuyyj1ScmCnRq2COiUOGm0ClCr+6R0r+taKqKh2ByAra3SoqOkKOUVLZnqCe61Iz8zIorwU3kwmohH7yz0fw2SwQiqTQCaTup+lnmeZBFKp1P0skwbclskGbEsH7OfdFtcrV0gRF6dAfKIC8fEKxCcoEJ+g9DwrYvZ3TBAE9PbYYDRYYNRb3M+eh8kg3jYaLOgxjb61pQJJ0cQjKyfZHXjMUWOCJxCZmZUMpZI3QiPBYnWgasA6keXVupDWh5LJJCjMS/HMinSnZ83L4Q1IIgqNRAIce1IJbFb34Bibzel57ex/7XmOxsCZ5rY92PbDC97ttNSSqAYn3WtqyqGKG/BQHeQ5Tu7uqyf3BR3dz3IGGscdp0tAS2s3quq6RMFIvdEact0J8XIU5aeiuCAVxfmpKC3SID9Hzb4/EZEH75ATjXH2INevI38DA419IyH7Ao3eDou6v/OSnByHhEQFpLywPGTo9GZvWta+QKQhxE5JmibeOyKyb/F6pmojonBoaTLB0GWOdTO8lCoZ4hOUSEhQIC5BgYQEBeLjlf2vfYKZ8QPLPMHOuHgFpFIJrFaHN9BoOkiw0WSwwOkcmwtQJSYpPTMf3YHHrFz36wk5asRzvamIstudqGs0osLzfV9RpUNdoyGkdSKzM5MwqcQdhJxUrEVxQSpUDCQTUZjFJyix4vbjhrWvy+nyBiqtVifsNves/75nUXDT5nQHOEUBT/drh8MF9wRviXtmj0QCqcT9LN9dgW0/9J8zLkGCBYsmAnCn25VIJZAA/c8SdzkkgNS94a1LKpVAqZL5BRTj4hVQqeRQ+gQYVUoZ++M0LIIgoMtgQV2jEXWNBtQ1GLyvrWG4r5aujUdxQSqK8lNRUqBBcUEqMtOZGYGIaCgMThKNcSmaePT22uCwu2C3O+GwOz0zIw99EgmgilMgLk48SjIuTjHgtRwqz3ZcoH1UciQmKxloHGccDheaWk2orTegttGAmnoDquu6oNNbQqo3Ra3CxCKtJxDpfmhT48PUaiIiMZdzdH3fu29omkMOmCoU0kPiWkYilbhvoKpkSEmNd6dhzfUEIT2zIZM4WCUq7A4X6hoM3lTsFTU61DUY4AghqJ2iVnlnRE4qca8TmZykDGOriYhCJ5VJERcvRVwEB7xkbGjF6lf7txOTZLjmN8dE7HxEB2PqtqG+yR18rG0wuIORjcaQ0rL3kUolyMtO9s6GLC7UoCg/hcuyHEKkUsQsywXTutJ4w+Ak0Rj3+z+d6lcmCAIcDhfstv5gpd3uHiXpcAx43VfueTjsnmMc7nQwvgHPvn2kUvcFmcQzslEqdY+G9L4OU7lSJQsQaJR7A5IKpYyj0Oig9AYLahoMqK3Xu58bDKhvMoac4ig5SemdDdkXjEzTxPN3koiixhXKFK8YcDht6DLUIS21GNIhFnKJVmBSIoF39oVSJR/wWiaaraEc9LUsYHnfzA6FQsrvhBiwO1yoa+wPRFZWd6G20RDS936cSobSooGBSA3XiSQi8oiLixNtW62hp8MkGg6L1YH6JqNoFmRdoyHkQcd94lRyFOWnuAORnmBkQV4KlEz/S0QUFgxOEh2CJBIJFApZVBZm37JlCz788EPodDp0dnZizpw5uPvuuyN+XiJfNrsT9U3ukZG19QbUNriDkaGmZQWAhHiFNwA5sZg3JYlodLjhtuNgtzvhdLrgdApwOQXPa5f7tcvlLXNvC3B593UdZNv/eJvdCUuvHWazHeYeG8xmO4SDxEddLge2/7gGnfoaGEyNEAQXzln4F2jUeRH5mcTFK6BOifM8VEhOiYM6NW5AWf8jKVnFjAljnN3hQn2jwTMbsgtVNV2oaQgtECmVSlCUl4KJJVrvzEiuE0lENDiVSjxjjMFJCje73YnGFhPqG42obewPRLa294TtHNrUOG9a1uICd2rWCRmJkPL7f9xxT8iI3bmJxhMGJ4koJNu3b8df//pX73ZPT/guDokCEQQBHTozaur17kBkgwE19Xo0tXaHZRZRnEo+YI1IDSYWadkpIaJRafaRkQnwDZcgCLBaHOjttcPSa0dvrw3mXjssZjt6PcFLc48dH37zB+iNrd7j5HEdyMmb4Q1yWiyOQc8hl0uhTokbNMiYPPC1WgWlit2bQ5XD4UJ9k3uNyL5ZkTX1oQUiASBnQhJKizTeWZHF+alQ8feIiGjYfIOTFkt4Zq3R+GOzO9Hc2u0ORHpnRBrC1tcH3NkQ8nNSUJCrRkFeCgpy1CgqSEWqOu7gBxMRUVix10VEIdFqtaJtnU4Xo5bQoajXbHfPhqw3oKZB7wlEGtBrtoel/jRNPIryU1CQm4LCvBSUFmmQMyGZgUgiomGQSCSIi1e417FKG3y/V9Yfi40bN3q38yba8fBTS7zbLqcLZrMDFrMd5l4brFYHEpNUUKfEIT5BwVnq45Dd4UJDk7E/NWtNF2rq9bCHGIjMnpCE0sL+AUjFBRokJkRuHTYiovGAMydpJARBQGeXGU0tJjR6Hn2v2zt7D5qVY7jkMgnysj0ByFw1CnLd/f6MtAT294mIRgkGJ4koJGlp4ruRnZ2dMWoJjVVOl4COzl53x6TZ6O2gNDab0GUIz6hblVLmDkDmp6AoLwWF+akozE1BcpIyLPUTEdHg5s6di+3bt2Pu3LmYN28eFi1aJHpfKpMiMUmJxCQlgMTYNJJipqfXjpp6Parq9Kip06O6Xo/6RgMcztDuTmZnumdElhZpUFqoQUkhA5FERJHANScpELPFgaZWE5qaxUHIplYTLFZn2M4jlQBZmUmeIGR/IDI7MwlyOXNk0shJpRJIZbEJYDNwTuMNg5NEFBLOnKThMpvtaGwxoaHF3UFp6OuctJhCngkxUFZmIgrzUlGY1xeITMGEjCSuFUVEFCN33nkn7rnnnlg3g2Ksb6ZEdZ3e/ajXo7pWj9aO0JcEyMpMRGmhBqVFWk8wMhWJCRyAREQUDb4zJ10uFxwOB+Ry3nI81IkGGg+YAdnUYkJnlzns58tISxDNgizIVSM3Ww2VUhb2cxERUeTxSoGIQuI7c1Kv18PpdEIm48XheORyCejQuTsnDc3uTklDsxFNLSbo9OFdeyQhXoGi/BRPEDIVhfnu9SLi4zkrgohoNOHNyfHH6XShscUkCkJW1+th6raFXPeEjERvWta+GZFJiQxEEhHFilarxfLly6FSqbwPlyt8g08ptlwuATq9Ga3tPWjt6PEOMG5sMaG5tTusA437pGnikZOVLApE5ueomQGBiOgQwzsFRBQS3+CkIAjQ6/V+5XRo6TXb0dzajQZPGtYmTxrWplYTbPbwdk6kEiAnKxlF+e7ZkIV5KSjKT0W6Np7rkBEREcWYxepATb3BnZq1tgvV9XrUNRjCcj0wIT3RLzUrU7ITEY0uGRkZWLt2baybQUESBAHdPXa0tnejtaMHbR097kCkJxjZ3tkLRwQCkCqlDLlZycjJSkau55GTnYycCcmIj+PtaoodiRSQxigjsISZiGmc4V97IgqJb1pXwL3uJIOTY5vV6kBbZ6+3Y9LW10nxPHf32MN+zsQEhbtTkt3XOVEjNysZWZmJUCg4E3ekBEFAY0cPpFIJctK4hhsREYWmLy1rXaMRNfV6b3rWplYThNCWh4RcJkF+bgqK81NRXOB+FOWncoZECAw97lmqKZxVSkQ07lmtDrR19PoEH/uDkb1mR0TOK5EA6dqE/uBjXyAyOxlpGg42jgSn04Wa1m6kp8TxGoCIRj0GJ4koJHFxcUhISEBvb6+3jOtOjn52hwsdfcHHDp/gY3sP9EZrRM4rlQCZGYmi4GNfMDJFrWLnJATdZjv21+uxt7YL+2r12FvXBVOvHUuOLcRtFxwe6+YREdEYIQgCugwW1DcaUddkRF2jAfWNRtQ3GcJy8zIhXo6i/FSUFGi8gci8HDUUcg4VD5ap14byRiP21+uxv16PAw0GtHaZce3iqbj8lImxbh4REUWY0yWgU9frne3Y5nnuG2jcZQjvEiu+EuLl4hmQnufsCclcDzKCHE4Xalu7caDB/d1f3mBAZZMRNocLd1w0E2fOL4h1E8ckiVSARBriyLsQzk00njA4SUQh02q1ouBkZ2dnDFtDgLtzousy9wce28VBSF2XGa4IXvMkxPvMgvQ8Z2cmcRZkGLhcAuraurG3tssbjKxtCzxzZV+tPurtIyIaiiAIaGpqQlZWFteojjGjyYq6RgPqGo2o9wQi6xqN6O4JfW1IwL1mVEmhexZkcYE7IJmZnsDBSCHosdhR4QlEHmgw4ECDHo0dvQH3PdCgj27jiIgo7MxmOzr1Zui6zOjsMkOnN0Ont7hfe7a7DBa4ItnBB6BUSJGZnogJGUmiNKy5WclI5UDjiHM4XahpMXmDkAcaDKhsNg665md5gwGYH+VGEhGNEIOTRBSytLQ0NDQ0eLc5czKyrFYHdAYLuvRmdOkt3s6J+9mMDl0vOjp74XBGtnMilQAZ6YnIyx6YnkXNzkkEGHpsKKvrwt5a98zI/fV69FiGN3ulstkIi82JOI5YJaIYcjqdeOCBB7Br1y7s3LkTra2t+Pnnn3HYYYfFumnjQk+vDXWN/bMgaxsNqG8ywhCmTAlSCZCbrfbOhOxLz6pOVoWl/vHKbHWgssmI/Q16HKh334isb+8edhrd/fX6iLaPiIiC53S60GWwuIOOnr59X8BxYDDSYo1MylVfUgmQpk3AhIxETEhPxISMRE8w0v2sSYljHz9K7A4XaloHBiL1qGo2DRqIDORAgyGCLSQiCg8GJ4koZL7rTnLmZHBsdueAYGN/4FFUZrCgpzf86z0ORp2s8nZMMtL6OyqZGYnI0CZwFmQEOJ0uVLWYsK+2PxjZ2NETdH0piUq06HpRlJUcxlYSEY2MTCbD2rVrUVdX5y3btWsXg5NhZjbb3TMgB6RjrWs0QKcPXzq3+Dg5CnJT+oOQhakoyE1h2rYQ2exOVDUbUVZvwAHPrMjaVlNImS4MPTZ0m+1IiufanURE0SAIAixWJ0zdVph6bDCZrP2zHPXuYGOX59lgtEQ0m1Eg6mQVsnyCjn3b6doEyJliPersDheqW0woH5CatarZBLtz+IHIQHqtDgiCwIByECQSQBKj/xX4z0XjDYOTRBSytLQ00TZnTvYTBAFmiwOmbhu6+mY7GvqDjboBAchwpVAbiYR4Rf+IyPREZKYniDoqcSp+TUSazmjB3jo99tV2YV9tF/bXG2CxO4OqSy6TYFJuCqYVajCtIBUzCjXI1MSzQ0JEo8LcuXNFwcmdO3di+fLlMWzR2NOXtn3gOtFtnf1rSnXozGE7l0opQ36OGvm5ahTkpiA/R43CvBSk8XslZH03Ig94ZkTub9CjutkEZwh3qRUyKUpz1Jicn4IpeamYnJ+CwswkyGS80UxEkXf55Zejra0NVqsVFosFzz33HObNmxfrZoXE5RLQ3WuDqbvv4Qk49r0OUGbstsExgtlt4Rankov69xMy+vv2memJiI9j/z6W3N//Rk9adncgsjoMgchsbQIm5aVgcl4KJuWlYFJuClISlWFqNRFR5PBbiYhC5jtz8lANTlqtjv6OR48N3T39nZLuAeWmbqt727OPM8LpVYeiUsq8HZEJGYnITEtA5oA0LYkJvGCNJpvdicomI/bWudeJ3Fvbhdau4G8kZ6bGY3phKqYVajC9UIOJOWooOZuViEapuXPnYuPGjd7tXbt2xbA1o5MgCOgyWNDW0esOQHqCj31ByEikbVfIpcjLUSM/xx2ELMh1v85MT4RUyiBkqJwuAbWtJvcakZ5AZFVTaDciZVIJSrL7ApEpmJyfiqIJyVBwxgvRuNHQbIRSIYNSKYNKKYdSKYMshn+zv/rqKzQ1NXm3Y31PQBAEOBwuWKxOWG0OWK1OWGwOWK0OWG1OWDwDiE097v680Rts7A849vTYoj6zcShJiQpoU+ORpomHNtXz0Hi2NfFI1yRAnazkAKJRosdiR1WzCZWN7rUhyxuMqG4xhnwdx0AkER1KGJwkopD5zpwcjWldBUGAze7q75hY3R0Ti82JnkECi/1BR3eZzR67EZCBxKlk0PR1SlLjoElxP2s18d7UqynJXPsxViw2d3q2vhGR5Y0G1LQEPytCpZBicl4qphW6Z0ROLdAgPSUuzK0mIoqcuXPnirZ/+OEHOBwOyOXjp0siCAJMPTa0tXtmPvoEIds7eiJ2vSGTSZCTlYxCzyzIgtwU5OeqkZWRyNl1YSIIAho7enCgwYCyej321xtQ0RB8RgTAvQZYYVYypuSlYkp+CibnpaIkO5mDkYjGud+t/NRv/Tm5XAqVUuZ5yKFSyqBUDXitkEE1cHvAfv7l/UFPlVIGhUIGQRAgCO6/dYB7ZiEACAIgl4uDIw1NOtQ3GQEBcAl9+/UfLwAQXJ5nz39cgrvOQMFEq9UhDjQOLPeU+b7nGk2RxSHI5VJ3P97Tt+8LNqZ5go9aTTy0KXFQMavRqCQIAlq7zKhsMooezbrekOvOTkvA5NwUUTBSzQHmESeRABJJbP5+8PYdjTf8ZiMa4557aRfqGg1QKGRQKqSeZxkU8gGvFVLPs88+CikU8v6yQO/3HSeXSQYNcuXl5aG0tBRpaWnQarWYNWsWnE4XXH0dD5fQ/1oQ4HK5Ox2CIMA1oIPiLnN3XlxOATb7gCCip3NiG9BJsVid/SMfrQ5YbQHKPPvZbI5RNepxKEqlTNQ50QwMPA4oi4+TM/A4SpitDlQ2eQKRje5gZG1bd0gd4tz0BEwr0HhnRZZkJ0POm8dENIDd4RpTM6V8g5NmsxllZWWHxLqTgiCgp9cOg8kKg9EKo8kKg8nifjZa0dbZH4S0WB0RbYtUKkF2ZpJ7BmRuCgo8gcjsCUlcSyqMBEFAh8GC/fV6lNUb3DMjGwzoNge/NrhEAuRnJHmDkFPyU1Cak4I4rudJRAM4XYJfYBIAHA4XHA4XenqD/zsULJ1BfM5/vfQt/rtlfP/tkkolSE5SQqOO8wYZvQHHATMgOdtx7LDZnahpNfkFInssoV/b5aQleAOQk/NSMSlXjWQGIonoEMfgJNEYV9Ogx4HKyKdMkUjgCVJKAbgDjN5gozABsxf+1RuE3HEAuPD6DRFv01ijkEu9gcWBQUbvzEdPWUI8g46jWa/FgYpGAw54gpAHGgyob++GEELwO0Elx9SCVEwrSMX0QndAkqlZiOhg/vDQF6hvMiApUYnkJBWSk5RI9rx2lwXY9pTFYqZcRkYG8vPzUV9f7y3btWvXqAxOCoKAXrNPsNFodW97go4Dy4zd1qimcR8sbXtWRhJyOasuIgw9NpTV6bG/Xu8NROpM1pDqzE1P7A9E5qVgYm4KErgeGBEdhM0W/GzsSJHKxH+7nM7oB0gjSaWUea6jVJ5rqwHXXgOuwdTJKu+1F/v1Y1uXydofgGw2orLRiLr20AYg98lNT8CkvFRMznXPiJzIQOSoIpG6H7E6N9F4wp4P0Rhnj1KqUUFwd4JsGH0doWiTSICkRKX4xm+i+Mav90bxgH3iONNxzOk2270zIcsb3YHIxo6ekAKRfbMiphdpMN0TjCyYkBzTNWKIaGwy9Vhhs7ug01ug01tGdGxCvGLAzbUBAcxEn+0BAc5w3GSbN2+eKDi5c+dOLF++PKQ6+wiCAIdTgN3udF+z2D0P72sXbDYn7HYnrHYnbFYnjN19sxw9D2N/4DHcazuOhFwuRUZagjtNe4AgJNO2R1aPxY4DDQb3GpGeYGRLCGtEA8AETTwm56VgSn4qpuSnYnJeCpLiFWFqMRGNJ1ZbZGfgB0MuFy834XSM7LokGmQyCVRKOeJUMqhU8gF9dZXoeihQEFLFGeyHLKdLQEN7t99syFAHIAHuNaILJiShNFuN0hw1JnlStPL7n4jIjcFJojHOFsIaNuOdXC5FnEqGxPiBAUVxYDHJG3zsv1GbmKCAlIGkQ46x14aKRiMONOi9wcjGjtDWiZBKgPzMJHd6Fk9HZGIOZ0UQUXiYum1BH9trtqPXbEdrR8+wj5FIAJlMCrlMAplMCpnU/SyXSyGVSiCXSSHre0/m3u4vd5f12DNEdb7/4Vc47JXd3rpkMgmkUgnsdpcouGj3vLbanP3vDQhA9gUkx0oKd6lUgnRtfH/g0ScIqUmJ47VGlFjtTlQ2Gb1ByP31oWdESE1SYkp+Kqbm968TqUlWha/RRDSuparj8NYLF7oH2/SttWhzfw+KX/evw9j3uq984L7e9zz7ub9v3ccFSh8biEKVKNq2WbtF2xIJIPG8cK/nJoHEUw6JBO6vPPc1QN8amHFKOVQqdzBROSCoqFLKEKeS9wcalXL3/qq+9TPl7tee9/r2YWrz8U0QBLTpLahpMaKmpRs1rSbUtJhQ22qCNQyD/pPjFSjJcQch+x6FE5KglDOwTUQ0GN4dJRrjrrjgMJhMNveNOYd7VoDde6PO1X/Dzqfcb58Bx4ZyMyacpFKJtyPh17no63AofTojAzsrAzo0ojLPdixS2lHs2RxO1Lf1oKrZiOpmd4ekusWIthHOOvIllUpQOCFJtGB9SbYa8Sp+1RJR+NkdLpjDsL7NSAhC33pWAILMpGCypou262r244PPD0AqPXRu3MSp5EhJViFFrYI62f1IS41HZkZ/EDJdG8/rkBjotThQ0dS3PrQRFY2hrxGdGCf3zIbsnxWZkRLHma1EFFEyqQQyT58YiNzgB6dLgM3mhMPh8gQVAcATTOwLNAK4/vr38Moru73HnXZiFv7x9wu9gUiiaBEEAZ1GK2paTN4ApDsI2Y3eMK37nZuegJLsviBkCkpz1MhM5Xf/oUIiESCVxubGqEQySm7IEkUJ75gSjXHHzM0La319KdEcfQFNh2+g0wWp1DPS0TPCUSKVQCpxj3Ls63xIJRJ3nnaJ+D13+YDXEgmk0oHlnjolEshkEl7cUdBcLgHNul5Ut5hQ7QlEVreY0NDRE/I6ETKpBMVZyZiYl+JdJ6IkRw0V1/gioiiRSSV49uHFMHVbYeqxwdRt8zxbYeq2obvvdd973TZYwnRDJhSp6SWibafThh5TK5JTcmLUooOLU8mgTlYhJTnO/axWIcUTdOx7TlXHeQORTP02Ohh6bKho9AQiG92ByIb24c8UDkSlkGJSrjsIOdkTjMxNS+QsVyI6ZMmkEsQPI+tLenqaaFvf1cW/jRRxXSb/IGRNaze6zeFZ81SlkKIkW+2eEZmtxsRcNYqz1MyEREQUJvxrSkQiEokECrkECrkU8fGxbg3RwQmCgC6TFVWezog7CGlEbUs3LGFIeyyXSVCcpXanZvWkZy3JToaSgUgiiiGpVILsCUnInpA07GPsdie6e+3eAKY7oGn1BDL7Hp6AZo8N3Z7tcK69qFAk+BdGOGWDTCaBUiGDQiGDSinzvJZCqZQhOVHpDToODDwODD6qOAN+1Os0Wrwp2SsajShvNKA1xDUiZVIJSrLVohmRRROSOOOViCgArVYr2tbpdDFqCR2KDD021AYIQhp6gl/iwFeaWoWJOSne1KwTc9TISU+EjEF2IqKIYU+biEK2e/duvPjii5DJZJDL5cjOzsb/+3//L9bNokNQr8WB6hYTalqMqG4xocqTljVcnRKFXIqS7GRMzkvFpFw1JuWlojgrGQquT0JEhwCFQgZNigyalLhhHyMIAixWJ0zdVvSa7XA6BTidLjg8z06nC06XAIfT5X3P6XRvu5x95e59nE4XdLpOvPuy+BynLZyOpGSt+3iXCy6XAIVcBqXSE0RUuAOKSk9gceBrhUI6IODoLlcpZd7jlQopg0mHEEEQ0Npl7g9CegKSOpM1pHolEqAgM8kbhJya707NzoFIRETDw+AkhaovHWtDezcaOnpQ29rtDUSG+j0/UGKcHEVZySiakOx+zkpGSXYyUpO4NjS5SaTuR6zOTTSeMDhJRCErLy/Hs88+692ePn06g5MUkm6zHfVt/Z2S6mZ3MDLUWRADZWniUZSVjOJsNYqzklGcnYyCzCTIeRObiMhLInGncxtOSrfhKC8v9yu75boTEM90DeTD5RLQ2NkjnhHZYIApxFRtMqkERVnJmJSb4hmIxDWiiYhCxeAkDVePxY6G9h40tPegvr3b+7qhoxtma+iZj/rEKWXeAGThhCQUZ7sDkulcF5qIaNRgD4yIQuZwiNewksv5p4UOzmZ3oqmzFw3t3ajv65B4Oif6MKZnSUlUeoOPxVnJKMpSoygrCYlxirCdg4iIhsdgMIi2lUol4uKGP5OTDj19MyVqWkzedaJrWkyobQ09PbtCLvWuEdWXmr04i6nZiYjCLS1NvOYkg5Pjm93hQrPO09dvcwce3cHIHnSFcRYkACjlUhRMSEJxVjIKPcHI4qxkZKbGc91TCopEKkAijeyyE0Odm2g8YQSBiELmdIpvHDE4SX2cLgHtenN/4LGjx905ae9Gq94c1mXG4hQyFGYloThL7Q1EFmclQ5Os4shIIqJRoqSkBG+//Tb0ej30ej1sNhv/Ro8jfWtGVfetE+15DnU2JOCeITGxbzZkrnudaGZEICKKjkAzJwVB4Hf8IczlEtBptHgGGneLZkO26HrhCnOMRS6TID8zCUUT3P38Qk9/P0ubwHUhiYjGKEYQiChknDk5vgmCAGOvJw1r+4BRkW09aOzsgd3hCuv5pFIJ8tITUZKd7E3LWuLplHBkJBHR6KbVanH++efHuhkUYWarA7WtnpmQngBkTYsJncbwzJZIjldgUl6Ke0ZkrntGZG56Iq8DiIhixDc4abfb0d3djeTk5Bi1iMLB4XShrcuMli4zmnW9aNH1orG9Bw0dPWhs7wk5w0EgKoUUuemJyMtIQtGEJO+6kLnpiRxwRER0iGEEgYhCxuDkoc/pdKHdYEFrlxktul60dpnR1NnjHR0ZjhkPvqRSCbK1CcjLSPSkY01GSbYa+ZmJUMqZjo2IiCjWbA4n6tt6RLMga1pMaNb1hu0cmmSVaDbkpNwUTNDEczYOEdEokp6ejpNOOglarRZpaWnQarUQwpkmhyLC6RLQYbCgxRN4bNH1osXT52/R9aLDYAn7DEgAkEqACdoE5KUnIj8zCXnpicjLcAckM1LiONiIYkoiASQxioPz8pbGG0YQiChkDE6OfXaHC+0GM1p1ZrR09XqCkGa0el63GyxwRaJXAiBNrUJeRpK7M9LXOclIRLY2gSMjQyAIApoMFkgA5KTGx7o5REQ0hnWb7Wjs6F8fura1G9UtJjR09ITt+iBOKfMORup7FGclI03NNUmJiEa75ORkbN68OdbNIB8ul4Cubqsn2OgOOjZ7Bhs363rR1mWGM0L9fABITVIiv6+v7wk+5mckIjstgQOOI8QlCGjoMiMlXoGUeEWsm0NENCRGEIgoZAxOjn42h9ObjqXV0xlp6TKj1bPdYbSEdf1HX4lxcm9nZOCoyLz0RCTE8fclHLotDuxtNuDnRgN+aTLilyYDunrtuHBOHn5/xtRYN4+IiEY5m92Jps5eNLR3u9eP8gQjGzt60GUKTzpWAFDIpCjwpGkrHhCEzEyN50yJEAmCgGaDBfuajdjXYsRRRVocVZwW62YREVGEOJ0u6Lqt6DRY3MHHrv4gZF/GI1uYl1nxFaeUifr3+ZmJyEt3BySTGByLKKdLQJ2uF/tbjNjXYsL+FiP2t5rQY3Xij2dNxzmzcmLdRCKiIfGOMBGFjMHJ2HK6BBi6reg0WaEzWtCmt6DV0ylp7XLPfgzXGk9DkcskyElzBx59R0dqkpRMvxZGDpcLlW3d2OMJQv7SaERNZw8CxZf3NBmi3j4iIhqdnC4BrV293rTsDe3d3nWjWvXmsA5UkkqA3PREcRAyW43ctATImBkhZIIgoM1kdQcim903Jfc1G2EYkGrfancxOElENAa5XAIMPTZ0Gi3oNFrQYXQHIDuNFnQYLOg0WtFptKCr2xrRQcZ9EuPkyNImYIImHtlpCaL+fro6jn39KHC4XKjt6MW+FiP2t5hQ1mLEgdZumAdZ97OsxcjgZJCkUvcjVucmGk8YQSCikDmd4oshBifDw+5woavbHXDs63x0Gq3QmTzPntdd3baIpVz1FaeUIUvj7pRM0MaLApETUuN5szEC+m4+7vHMiNzTZEBZixEW+/BGwJa3dcNidyJOwbQ5RBR7vb29UKlUkMn4NylSBEGAzmTtDz4OmAXZ3NkLuzP8MygmaOL9ZkIWZCZBye+esOnoHhCIbDZiX7MJul7bkMfsazFGqXVERDQcgiCgx+LwBBjd/fr+1xZ0GC3oNLj7+Q5n9NbsjFPIMEEbjyxtArI0nmfPI1sbj6R4BQOQUeRwulDV0YOyFiPKmk0oazWhvNUE6whmwZa1mCLYQiKi8GAEgYhC5jtzkjcch2axOd0BR1N/4HFgwLHTZIHOaIWhZ+gbTpGQoJK7OyWaBGRp45GZ2tcxiccETQLUCeyURFqvzYF9zUb3rMhGA/Y0GdDRHfzvQrJKjia9GSUZSWFsJRFRcC655BK89957UKvVSE1Nxb333ovrr78+1s0aUwTBPZuiTW9Gm96Cti4z2vVmtOnNaOzoRUNHN8zWwKPoQyGVAFnaBG9WhL4gZOGEJCTGMW1bOOl6bNjXbERZS38gsr175FkwDrSa4HC5IOcwfCKiiBAEARabEyazHcYeG4y9dph6bTD22GE022Dosbn7+J7gY6fBCssgM90iSSGTIlMTj2xtAiZo3c8DA5GpzHQUMzaHC5Xt3e5AZIsJZS0mVLSZYA8xOK3rsUEQBP67BkMiQCKJ3uAA33MTjScMThJRyMZrWteBHRFTb19nxNa/3WuDqdfuedigM1mhM1nRY3EcvPIISYpXIMsz63GCJsHz2j0TMkvDEZHR5nQJqOnowZ4mdxDyl0Yjqjq6EexEWIVMgikTkjEjJwUzclNweI4aOanx/DclolHDYHCnmjYajTAajbDb7Qc5YvwxWx1oN7iDjm2eoGNblxntBgtaPYHISK4flaZW+awR7Q5GZmsToJAzyBVu+l4byjwpWfvWimwNMR1/SrwC07LVmJaVDJvDBbmS/25ERAdjd7jcgcW+vr15QB9/QP++Lwhp9Oxrj/CajsMhl0mQro5zBxzTfGc/xiMtOY7rOo8CFrsTFW3dniCkOz1rZXs3HCFmwspMVmFKVjKmZqkx1fOckawKU6uJiCJnfEQQiCiixnpwsi+1iqnXDpO5b7SjO6Do7oR4XpsHvPbsE4nUaMGSSoDUJBXS1HHemY4TNPGi11yQPnYGrg3Vl551X7MRvbbgR87maeIxIycFh+WocVhuCiZlJkPJG8dENIrp9XrRdmpqakzaEStOpwsdRqt3pmOrd9ajBe16M1r1Zph6Ix+wTYpX+AUf8zISkZuWiIS4sXUdN5aYLHbsazZhX4sRZZ51Ipv05pDqTFLJ3YHI7GRMy1JjWrYa2Slc/4voUPfgq7shlQBxSjlUShnilDLEKWTe1yqFDPHKvm05VArPPgPeU8ilYf1b8fbbb2PDhg3Q6XTQ6XQ4+eST8fDDD4et/oGcThfMNiesdiesNicsfc8DXw8os9oHPNudsFgd/QHGHvd9gEhkHQiVRAJok919fPfD8zolDulqFdJT4pGmVkGdoGTwcZTp6rGhvM2E8rZulLd140CLCdUdPXCGuEholjoOU7OSMSUrGdOy1ZgyIRlpSQxEEtHYxJ4n0Rj3xfeN0JmsUMqlUMrdHQylQurdViqk7jK5DEq5FApF/2ulXBqWNQKjEZx0Ol3uToTN3cEwizoZDncnxKfj4X44fLbFx5ltTvRYHFFbszEYcpkE2mQVtMlx0Ho6I+4OigpaTwdFmxwHTZKSaz6OEi5BQEOXGftbTNjf6h4Rub/FBL05+BvOyXFyTM9W4zDPrMgZ2WpoEpVhbDURUeQdisFJl0uAyWyHvtsKQ7cN+h4b9N1W6Lvd6dz03VbvTMhOoyXo2fEjpZRLkZuR6AlCJnnWiXa/Zpr2yDNZ7N6ZEWWegGRDV2iByESlzD0rYkAgMk/DDAlE440gCPjqx6aQv0+kEkDlCVbGKTxBTKUUcUq5Z9sT3Pz/7L13nCRXdff9q9zd1XnCzsbZvCshIQQKIBBBBMnGWAILy2AMFkHiASFjvzYGI5JtMGCb9AC2BSY8BhsQILBlkASSwAYFbJEUN+cwOzOdQ+X7/lGhq3pmJ3ZP98yc74fihgr3rra3u8793XOOJECSeMAbzx+WhUQWxoA7b7sX3/vavwZ9DaZi5FuPTLk+uIsBzGv5j3IcNkVInE5gXMp8jN0inZA8kTHWKtMhITKjIJ9UyMbvcyzHwZHJhitCjlWx/0wN+85UF5WaxWd9Nu6KkCNpzzMyhWyC1gC6Dce7R6/GJojVBImTBLHM+e5PD+PRw8UF38/zXCBUusKmEBE2g36vLQo8GHMNC4cxOAz48S+PR575yOES/uLzP/POMzDmGhn+9cG9jneu7RrG3HCXekiM7CcPxU4RkwTkfYExpbQJjy0hMhWXaBdkH2M5Dg5PNPDk6Qr2jrk5IvaNVVFfhEekwHPYMZx0w7OucwXJTQMJ8LT4SBBEiPd88X9wYqKOXFJBLuUdSQW5lBzpyyZlyGJ/5INuFyczmUxvJjIDtsNQbRgRcTFcL9cNFGuGJ0TqqDTMnmxy4jlgMBPDUNbNET2UjWEk18oJOZShEG5LhS9EunkiXUFysUJkTOKxa43rEXnuWleI3JindwGCIADTdjqy0cVhQFO3O+YxePxM9DnHTo7h3x840pFnLwd4DkglZKQTUqTMpxQMZlzh0S1dm1+W+uPdjJg75aaJfWO+N6QrRB4cr8PowHrVxnwC53gekbtHXI/INEW+IghihUPiJEEscxabc8hxWOBNuFDG6iIS+Y0Ac+A4NsqGgoeePLOoeS03eM4NkdYyQkJ1rz+blCPCY0IRaaf7MkO3bBzwckTsGXO9IfefqS3aGBlJx1wRcn0GT1mXwe6RFGJkrBIEMQtHz9RwfLyOI2O1Wa9NxiXkknIgYGb9eiBotsqY3J3vH9u2Ua1WI32d8pxkjMG0nUgYN910pnhahM83DQvluicy1nSUvHqlYSyZd+NMpBIS1mTjnvgYw3DOFSGHvb7BNHlT9IJKM+QR2SEhUhF57FiTwjleiLZz1qaxeUCFQOIyQRDTsBjbvZuIsWSkbTarZ7my/1FjItKqjHRccss2wTGtSkh77XRCRlqVkVBE2hS0QrAdhmOFRiQs676xKs5UF5cTGgA4AJsHVFeEXJvC7jVp7BxJIanQEj1BEKsP+uYjiGWOYfbeo3DTRS/Hpote3utpdARR4JBKyEjFpcDwSHliY9rrD+qhfjJEVh413cLesSr2nq7iSa/sRI4IVRGwe40vRLrlIOWIIAhiARTnsUBSa5qoNU0cG6/Pem1cEaYIlrmku/DGcRzAWChEm1eGYr1NOedVatXylLF+9GgRvx7bP+X6cCi3cHj2KbmlzFZfPwiKc0UWeQxl41iTa3k9+sLjcC6OoUwMcVqk6jndECIlgcOOYVeE3O2JkVsHVYgkNBMEMUckgccfXrlzSvqS9t9LP/2Ju1nH6nooVDmejrTNZqWr44XhOAThaYNQtaEcm5HSC1WbDIRHT2RUW5uLafPP6qGqmYH4uO9MDfvP1HBgvAZ9kY4AgLv5aNtQEtuHk9gxnMTukTR2rEkiIdM7Xj/DcQwc3xvDguOWkUFDEB2Avg0JYpnzlC05DGQUGKYDw7JhWA5Mywnafn2lhUXlOAQGRlwWpxgb8Snt6DVhQyXs8RiTBfJmXGUwxjBZN7D/TC3whtxzuoJji1x8BIBcQsIuLyTLrpEUdq1JYX0uTiHZCIJYNIbp5kzuBm6ItwZOTjY6+9zy6Sl9t91/GoJU6ug4vUSNicioMjJJGVnV9VB1IyeEPR9jyPhCL9E3hIVIPzzridLihchtQ0nXG9LLFbltKAmJFr0JglgEcUXEH7x457zvs2wnstGneRZBM3zOz/do2A78Xy2OAzi/FSqOr6njl98KjadX8VvP3Aie50P3cmj/+fN/Dzmv7tvpiswHYqOfB1MJ1gCiIqQs8vS7SsxIXbdwaKKOgxM1txx362OVxXtDAsBwSsGONSns8ITIHcMpbMwnKAoCQRDEDJA4SRDLnD+59qlzus5xGCzbgWE5MExXxGwJmX7b9kRNrz9o24HAaVoOOA7gOQ4cx0HguaDNh+rtfYJ3Pc9x4HjvnH8dz025h+cAOSIkiiExUoBExgexAEoNIzBCDozXcXC8hgMTdVSa5qKfPZKOBQLkLi9XxFBSoc8pQRBdgec5fPSGS1Gs6ShWDRSruldvlaWaAbuP3AltY/GbPpYaNSYim5SRCQmNfj2jurk9XSHSFST7JbcnMTMTNR17/Q1JXtkJIXL7cMr1hiQhkiCIPkQUeCTjPJJdymN3/HgeH3tHq80cB699wQYMDAx0ZTyCmA5fhPSFyIPjbv10RevI82WBx9YhFTuGk9g+nPLKJLIJuSPPJwiCWE2QOEkQqwSe5yDzgpt0nZJqEyucmmZ5AqRrjBwYr+HgRB2FurHoZ3MANuUTgQC5a00KO9ekyBghCGJJEQUez9g5NOM1jsNQbZpTBMtAxAz63T6zA+GrZkJJDgIcD7DWOOP7HsDIuS/oyng8h6i3RZsXhiIJSCfkQFzMtgmNGZXExuWOwxhOFJvYM1Z1Q7V7QuTkIt8H/NCsu0dS2L02jXNGUthKQiRBEKucoaGp7yXj4+MkThJdoa5bODzZ8oD0vSE7JUICwGBSxo7hFHascT0htw8nMTqQgMjT7/1KhuPdo1djE8RqgsRJgiAIYtnSNGwc8r0gQ96QnUhUDwACz2HroIrdI64ASTkiCIJYTvA854YYVWVsRmrGaxljqGtWm3BpoBTyxqw1W2FkI6Hd2jzEuSDEGxdpA0M4fu4lOPTYg8G1jcM/waW/c92UcG+ynzdK4iPRE/w8Ucp0OaQkPnJeEijKwmrCsh0cnKhHPCL3namirtuLeq4s8Ng+nCQhkiAIYhYURUEqlUK1Wg36xsfHsXv37h7OiljuNAwrEB7D3pCdFCFFnsOWQTUUltUtcyptQCYIgugmtLpKEARB9D26ZePIZGOKJ+TJRYZgCxOTeGwfTkXyQ24bSkIWafGRIIiVD8dxSMYlJOMSNg4luzbO01J/hFe9qiVOHnnyf/B/XrIWGzdu7NqYxMqjYVhurmhPhNw7VsWB8RpMe3FhjGWBx441SeweSbvhWdemsXVQhUhCJEEQxJwYGhqaIk4SxGwwxjBe03F0soGjhQaOFRtBaNZT5c6JkALHYUMujq1DKrYOJrFlUMXWIdcbkjYdET48z8DzvUmN0atxCaJXkDhJEMSiGR8fxze+8Q1UKhVUKhXouo6PfexjvZ4WscxwGMN4VXeNEc8gOVZo4PBkA8eLDXQqbZos8BgdSGDbUBJbh1S3HFSxNhsHTx42BEEQXeXqq69GJpNBuVwG4C5GfeUrX8G73vWuHs+M6FeKdcPNCzlWxT7PK/JooYHFvhYkZAE7hpPY6W1K2j1CQiRBEMRiGRwcxMGDB4P2xMRED2dD9BulhoGjhUZg8wf1YgOa2bn0Ar4I6YuPW71yUz5Bm48JgiD6CBInCYJYNKdPn8ZNN90UtDmOw9/93d+Bpzj8RBuMMUzWjYgAeXTSLY8Xm9A7mO9M4DlsyicC8dEXI9fn4pQjgiAIokfE43H87u/+Lj73uc8FfV/60pfwzne+k0KwEig3TTx+qoLHT5bxxKkKnjxd7Uio9lxCCkRIP1f0xnyCNiURBEF0mPa8k+Q5ufpoGFZEeAwLkRXNmv0B84DngA25BLYOqi0hckjFaF4lEZIgCGIZQOIkQRCLJp1OR9qMMdTrdaRSM+e3IlYmjDGUGqYrPIaMEV+AbBiLy/3UDs8B63MJbPOMkW1eiJZNFJqFIAiiL3nd614XiJNr1qzBb/3Wb0HTNMTj8R7PjFhKmoaNJ09X8PipCp445ZbHi4sP1742EwtCtPuC5FBSIfGbIAhiCSBxcnVgWA5OlJo4Wqh79n6rPlEzOj6eb/NvHVQDL8gtgypGBxJQRKHj4xGrHA7gerWURK+rxCqDxEmCIBZNuzgJAOVymcTJFU6l2RIgjwXhWJo4Vmigpnd2R6TP2kxsSjjW0QEVMYkMEoIgiOXCZZddhre+9a34jd/4DVx55ZUQRTJJVjqm7WD/mZrrFXmqgidOVnBworaokO0Cx2HzYAI7PU9I3yMyHZc6N3GCIAhiXpA4uTJwGMNkzcCpchOnyppbljScLDdxrNjE6XKzY2lXwsQkHhtzCWzMJ7ApnwhCspIISRAEsTKhlQCCIBbNdCJkpVLpwUyITuEwhkLdwKmyhtNlDacrTa/UgrLa4ZAsPu0GycZcAluH3DAtCZl+tgiCIJY7HMfh05/+dK+nQXQJhzEcnWzgsVNlPH7S9YrcO1aDYS88dLsi8pH8kLvWpLB1KEmbkwiCIPqMdnGSck72J2Hx8WRZw6lSS4Q8WdZwutyEaXdBfYSbfmVDNo5NA66tv8mz+zcNJCjSAUEQxCqDVnkJglg0oihCVVXU6/Wgj8TJ/ka3bIxVdJwuNyOC46myhrGKe3TLGAEAWeCxIRdvCZD5BDZ5guRgUiaDhCAIgiCWAYwxjFV0PH6qjMdOul6RT56uoK4vPIS7IvLYuSaFc9emce66NHatSWHTQILyRRMEQSwDduzYgec+97kYHBzE0NAQLrjggl5PaVXSS/ERcCNTjmRigfC4MeeKj5vyCYxkYvSb3kUYY5hs6IiJApIKRZNYCBwHcFz3/n3MNjZBrCZInCQIoiOk02kSJ/sExhjKTRNjIbHxVJvXY6He+TwQ7Yg8h/WhHZEb862dkcNpBTy9dXWFumFhz3gZT55xj6ety+MV54/2eloEQRDEMkczbZwoNXGi2MTesSoe88KzFhoLf6cQOA5bh1Scuy7tipFr09g2lIRIOaMJgiCWJddccw2uueaaXk9jReMwhlLDxERND47xqu5uNi65AuTpLm829hlQ5WDDcbDpOJ/AhlycwrAuAYwxnKw0sW+ign0TFeydqGD/RAXFpoE/f/55+I3dG3o9RYIgiBkhcZIgiI6QTqdx6tSpoE3iZOexHYZSw8Bk3TtqequsGZisu+WZqo6muXCPhfkgcBzWZmPBbsiNgRdkHGtoR2TXMW0HByarePJMGU+cKeHJ8TKOFusIm6GG7ZA4SRAEQcwKYwyTdQMnik0cLzVwotjEiVITJ0tNHC82MdmBjU0b84lAhDx3bRq7RlIUmrWDOIzhZLmBPRMV7Bkv46INA7hk49DsNxIEQRA9x2EMRc/WH6/qIfHRwHhNx6QnQk7WDdjdSPg4DZLAYSQTx7pMDGszcazNxLAuGw+EyKRCy8pLheU4OFqqY/9EBXvHXTFy/2QVdWP6dDv7Jir4jSWe40qB492jV2MTxGqCfkUIgugI6XQ60i6Xyz2ayfKCMYa6bgfCYqs0pvQVG0ZXks7PhMhzWJOOYSQTw0g6hrWZGNaEyvXZOHk3LBEOYzherntCpOsVuX+iAnOWD8WTZ8pgjFGoXIIg+p5Tp07hxIkTuOiii3o9lRWLZto4VdY8D8iGW3rekCdKTejWwvNCtjOcUnCOL0SuS+OckTTScQov1ikcxnCi3MDe8TL2hBYqw4uUpu2QOEkQBNFjbIeh2HA3FY/XDFdwbBMfJ2pLKzr6yAKPkYxr36/LxLE2GxUh86pMEY96gG7ZOFSoBR6R+yYqODBZnVf+7r0T5DBAEET/Q+IkQRAdoV2cXK2ekw5jqGkWKpqJimahqpmoNN16sd3j0at3ciFwvqRiIkZC4qNbxgMDhYyR3jFR14LQrE+cKePJ8fJZd0XOREkzcLraxNp0oguzJAiCWByapuG73/0uvvzlL+Ouu+7Ceeedh1/96le9ntayhTGGQt2IeDz6AuTJUhNnqnpXxk3HxIgQee7aDIZSSlfGWo34QuSe8TL2jrtekTN5S/jsHV+d7+MEQRDdgDGGpmmj0nTt/XLTPVx730SlaaHs2/9eX7lpolg3YbPe5K8j8bH/qRsWDky2Nhntm6jgcLEOZ5GfmVOVJm1SJgii7yFxkiCIjpDJZCLt5SxOMsbQMGxUNBNVzWoZG4HYaE05V/UEyZpmoTdmx1R4DhhKKZ7oGI+KkOkY1mRiFIalT6jpJvZOVAKPyCfOlDBRX/gCsshz2D6Qxu7hDM4ZziCpkKcKQRD9yf3334/f+73fC9q//vWv8ctf/hJPe9rTejepPsWynSDU27jndTEeyjU1XtVxqqx1PbS7n1/qnFB41g25OC1+dQg/UsLe8UogRO6bqKCxgL/X/ZMVWI5DYfYJYgXywMFJSDyHuCwgJgmI+4csQBF5+k4+C4wxWA5D07BR1UyUfZs+JCZWwmsAzajoaC11KKMZ4ADkVBlDSQWDSRnDKVdwXJuJYa1XkvjYX5SaRsQbct9EBcfLjUU/NxOTsHMwje2DaewYTGPnYBrrMgn6HlggHMfA8b35t85x/fMdQxBLAa1KE8Qy5xdHi6gbNmSBhyLykL0jqAs8FFGALPIQ+O69mPTKc9K0HWimDc30SitU9/p1y57xmqonOpY1C9WmiapuLXk4lfnAc0AuIWMgKWNAVVql6vUlFazNxDCUVCjkah9i2A4OTlbdHJGeV+SxUn1RovbGrIpzhjOuGDmUwbbBNGT6uyeIFc9KEB2e//znY+PGjTh27FjQ9+Uvf3lViZN+uDc/v1RQhgXIqoFCY/E5H+eCLPBYl41hfS6B9dl468jFsS4TR1ymHJGdwmEMx0qeEDlRDrwmFiJEhsnFZewcTGPnUAaGvfy/JwiCmMqf3fars4Z45IBAsIzJAhJe6QqYvHvOa4eFzdY1bn9CbvUr4uzfI3NZbZhNLHEYg2450E0bmuXa7Hp76Z2bsfTWAXTTgRYqNdNe8lQp88W394dSCgaSSiA+DiYV90i57bwq0/d7n2I5Dk6UGzgwWcXBySoOFKrYP1HFeF1b9LOHkzHs8ERI/xhSFRIiCYJYlpA4SRDLnM/+6AB+dbw0p2sFnnNFS6ElYEpCWMx0RUxFmF7klL3rAYAx13DwQ00crUbf8B/ccxyfvm8fGJt6rcPcHYt+P2OAA+Zdy+CwNqMkZEi0C4z9LCLOl6QitgTGsOiYlL1+BXlVRi4hd1VoJjqHG6Kliv0TFeyfrGD/RBWHCtVZ80TOxEBCwTmeR+Tu4Sx2DqWRIs9IgliVvPkrD+PgeB15VQ6OgaB0fz/C5xSx/0QlnufxB3/wB/jQhz4U9H31q1/FRz/6UUjS8v1usx2Gum6hqluoaWbg8RgVHw1MVHVM1vUlXyjNJ2Ssy8WxISQ8+uVgUiEviy4wnRC5d6KyaE/XXFzGrqEMdg6lA0GSFikJYmVjO2zG3HMMQNO03e+XxTtlzZvTP/km6if3w6qXYDUqWPu8VyF/3uVLP5E+g+eAvNoSGYeS7rvaUEppCY9JBTlVItFxGVFs6jg4WQtEyIOTVRwq1mDOIz/kdHAANmQS2O55Qu7wPCOzcbkzEycIgugDSJwkiGXOfBJi244brrSBzof7Oj4ZzXnzxNEx/L8HjnR8nOWEyHNIxyWkYyJSMQnZhITBYLG4JToOeqJjTOq/RWNibjDGMNnQsW/CFSD3T1awb6KKk5XFrQaosohdQxnsHk7jnOEsdg9lMJSMdWjWBEEsdwp1AzXdQk23cLQw+/dNUhEjAmYgaCaViKiZV2XIc/CQ6BSvfe1rI+Lk+Pg47rzzTrzsZS9bsjmEYd4Gqarm/retaqYrNHrt4NA88dETIGveNXXdQt3obmjV2RB5Dus84XFDLh6qJ7AuG0NCJjOwm5i2g8PFGvZPuAKk/36gWZ0VIncNZTBIQiRBrDq6Hb57sZT3/Q8q+38etPXi6R7OpjvwHJCOSa69H5eQiYme7S8FawCZuIRUTMKA5/VIm4yXN4bt4EgxKkIemKyi2Fx8ZAuB57A5lwxCsm4fTGP7QIre13oEz7tHr8YmiNUEfcsRxDLHWOQiR6cQYolI29bqPZpJZ+E5IBlzjY1UTEIqZGS06qJrhMQkpOKtekyiXB8rEdtxc0G53pCuV+S+iSpK2uKMkvY8kbuHM9iYVcl7hSCIs1Koz+97Z75CZruImU3IEHkOPMeB4wCe41zjHa02x3HgOYDnvTJ8rXeOC5UCx4Hj83jK0y7CY7/832D8j332c8id8yw4DoPtMNjMLR2v9I+g7Z933FBaDkNw3nJY8JygzRgsm6FhtImOnuDYz5EZZIHHYErBkLfY6XtcDKUUDKcUbMglMJhUaAF0idBMGwcKVewbb+WPWmyUBADIJxRPgHS9IXcOpkmIJAgCAGBaDkbSMTS9NCW6tTgPrU4jJXORtlmZ6NFMZkcSuJCgKCETbxcZp/ZlYhISikB22gqFMYbxuj5FhDxWrnfk/VAReWwbSGHHQBo7hlyPyC35FKVlIZYVhw4dwi9/+UucPHkStVoNa9euxejoKC677LKeRr8pFAr43//9Xxw6dAilUgmMMWQyGWzYsAEXX3wxRkZGejY3YnpInCSIZc5gUkHDcA0Swz8WGT5iIQhyHLykgJfjEJT4FINkqfDza8S8XBoxUYDi1yUBMTFUl9x8nElFRDruio+uweHWyeggNNPGoUIV+yZbHpEHJ2uL9nwAgE2hPJG7KU8kQRDzRDNtNLroneeLdUfmIGR2ZLxNlwEhcfLHP7gTN3/pvyAm0jPctbIQOC4S3m3Iyyvll8NemY6JJFD1iKpuepuSXI/I/RNVHC3VFh2WdyChRLwhdw6lMahSpASCIKYnp8r495ueE7Rth0Hzwrj6ZdOI1puRfidoa6FzWuja1vPmv7YgZ4YjbaN8ZkF/TlngA5t92lJyc2HGpi1bawJnu4Y2FBNN08LhQi0iQh4s1FDVzY48f1BVsC2fwtaBFLbmU9gxmMbGrEobyPodnoHje7RRsVfjzpFvfvOb+NjHPoYHHnhg2vP5fB7XXXcd/vIv/xKDg4NLMifGGL7+9a/jM5/5DH7yk5/MeO2FF16IN7/5zXj9618PUSRZrB+gvwWCWOb831c9fUqfwxhM2xUq20VLt21Hz9nR63TLhmkz6N51RuhZpu2AQ9TrgQPA7Xw9+Ne9IfCQaD/f8pTwrg95U3DtnhSeB4bSJiTGRCEqPIYMC79fFsi4IBZGqWkEeSH3T1Swb7KCY6X6ohcc/RAt2wdSQXiW7YOUJ5IgiMUhCTy+fsOzUKjrKNQNFOoGJr2jUDcwWWv1W33sBeiTf+rzcfR7/wBmuYtBzDZRfOwnGLr4N3s8s8XDc0AucXbR0feAzKkybYjqIyYbuhuWddx9J9g3XsGpanPRz/WFSF+E3DWYxgAJkQRBLAKB56AqIlSl80t8DnOFT2Me3plfTO3Bn/z434L2qNzA3W9/LtgcX0dikgBZ5EnAITpGVTdxpFjDkWIdR4o1HC7WcKRYw1hN68jzFZHHlpwrQm4bSGKrJ0hmYpQfklgZ1Go1vOlNb8LXvva1Ga8rFAr4h3/4B3z729/Gl7/8ZVx55ZVdndfp06fx6le/Gvfdd9+crv/FL36BG2+8Ebfeeiu+9rWvYfv27V2dHzE7JE4SxAqE5zgoortbMNXryRBEn1FqGoEx4peHCrWO5IqISwK2D6SxfdDdFbl9IIXRXBKKSPlECYLoLALPYcugii2D6ozXMcZQ1SxPtNQ94dJAodFfQqYYTyGz/SKUnmztwm2OH+3JXNqJS26UhWRMRFIRkfJKvy+lSFCDujjl2rgk0MapPoYxhtPVJvZPVl0h0vOMnGzoi3722lTcDdk2kMbOITeH1EBC6cCsCYIglgae45CQRSTmobGcs2NbpH382FFk5/MAglgAjDGUNAOHCzUcLdUDW/9Isd6R33Sftam4J0K63pDbBlJYl06QmE6sWGzbxnXXXYfvfe97kf6hoSFceOGFyGQyOHDgAH7xi1+AebtQxsbGcPXVV+OHP/whnvOc50z32EUzPj6OF7zgBXjyyScj/ZIk4cILL8To6Ch4nsfx48fx8MMPQ9NamxEefvhhvOAFL8BPfvITjI6OdmV+xNwgcZIgCIJYcTDGUGwarvBYrOFIwRci64vODekzkFACAXL7oCtIrksnyOuFIIi+guM4N09SXFq0kFltmnAAOA4DYwwOcz0qmFc6Xh9rK892zm5rn0wmUQrNJ5WIYUMuDp7jIPBufkqB58Dzfhutc94x07UCz4PnELk+IUeFxinioyJCpJDbK4a6YeFQwQ3bdqhQ88K3VVE3rEU9l+eATdkktg+msHPQzR9FURIIglittC/0TkxMoF6vQ1Vnfg8hiLng54Q8EoiPNRwu1nGkVENF60w4VgBISIIrQuZTgRi5JZ+CKtNS+kqH4wCuR6///bic9M53vjMiTEqShI997GO44YYbIMutjSePP/443vjGNwYhX3VdxzXXXINHHnkEa9eu7fi83v72t08RJt/85jfjAx/4AIaHo+HFS6USPvKRj+CjH/0oHMeNBHD8+HHceOONuPPOOzs+N2Lu0DcqQRAEsWxhjGGyobc8IQueYVKsodKhPBEcgA1ZFTsGU9g+4C44bhtIIU+eDwRBrDDmI2R2g2vvS+NbrbST+P3LtuP9/+fZSz4PYvljOQ5OlBtu/qhCS4g83YGwrBLPYYuXN2rHYBo7htLYlk8hJlGUBIIgCADYtGnTlL6jR4/inHPO6cFsiOWK40U2OFys4Wgx7AlZQ8PsXN51ngPWZ9SICLk1n8RIKk6RL4hVz8GDB/HJT34y0nfbbbfh6quvnnLtueeei3vuuQcvfOELA4FycnISH/jAB/CP//iPHZ3X4cOH8a//+q+Rvne961340Ic+NO312WwWf/M3f4P169fjbW97W9B/11134aGHHsKll17a0fkRc4fEyVWOYRjYu3cvnnjiCZw+fRqVSgWJRAK5XA67d+/GhRdeCEXp7AJ8o9HAT3/6Uxw/fhxjY2PIZrNYv349Lr74YoyMjHR0rCeeeAKPPfYYTpw4AcMwsG7dOmzduhWXXnopeJ52wRPEcsHdHam5BkmhHgnLWlukt0MYWeC9RPW+N2QaW/NJxCX6uSQIgug2uh4NuRWLUR4+YnYKDT0QIQ9OVnHQi5Zg2nPPj3Y2YqKA7QMp7BhKY6f3XrA5l4RE3rTEMofWAYhuoqoqBgYGMDk5GfSROElMB2MMhaaBE+U6jpcbOO6VJ7y6Po9cp7Mh8Bw2ZBIYzSWxOZfEaFbFaC6JjVmV0rAQxFn4wAc+ANNsbfz/wz/8w2mFSZ94PI4vfelLOP/882EYbtSyf/7nf8Y73vEObN26tWPz+o//+I9Ie82aNXjf+943631vfetb8bnPfQ6//vWvI88icbJ30GrrKuTJJ5/E7bffjnvuuQf3338/ms2z7yCWZRlXX301br755kXHiD506BDe+9734vbbb0e9Xp9yXhAEXHHFFXjXu96FF7zgBQsehzGGz33uc/jMZz4T+bIJs27dOrz2ta/FLbfcQqFFCKKPqGgGTpQbOFlp4ETFNUqOluod3x0p8Rw25ZIYzanY7BsnuSTWZxIQacGCIAiiJ4TzgADo+MI4sbzRLRuHCrUgLOvBQg0HJ6sdC9eeUiTPGzIVCJEbMirlkCJWDLQOQOsAS8no6GhEnDxy5EgPZ0P0Ej/liis61j3h0RUfT1QaaHbQzgfcDccbs2pg4/s2//p0gkL1E3OC4xg4jvVs7H6h2Wzim9/8ZqTvz//8z2e9b+fOnbjmmmvwjW98AwBgWRb+9V//FbfcckvH5nbw4MFI+yUvecmcbEeO4/Cyl70s8p6wb9++js2LmD8kTq4ynv3sZ+P++++f8/WGYeC2227Dbbfdhuuvvx6f/OQnkUql5j3ul770JbztbW9DrVY76zW2beMHP/gBfvjDH+Ltb387/vZv/xaCML/dS2NjY3jNa16DH/7whzNed/LkSXz4wx/Gbbfdhq997Wu46KKL5jUOMRX/x6ZaraJWq6FareJP/uRPkM/nez01oo/wk9Sf8HZD+gKkX692KBSrjyzwEYNkNJfEllwSI+k4iZDEqoe8Joh+o12cJM/J1YlpOzhZaQQREnwh8kS5DqcD6zU8x2FTVsXWgSS25VPYMpDC1nwKa5IxCt9GrFhoHcCF1gGWjtHRUfz85z8P2iROrmwYYyhrZuD5eNwTIX0PyE5uNPaJiYJn46stb8icG46VNhYRxOK566670Gg0gvaznvUs7N69e073Xn/99YE4CQDf/va3OypOtm922rBhw5zv3bhxY6RdLBY7MidiYZA4ucrYs2fPtP1bt27Fli1bMDQ0BE3TsHfvXjz++OORa774xS9iz549uOuuu5BMJuc85r/+67/i9a9/PRhrrSaIooiLL74YGzduxPj4OB5++GFUKhUA7kvNxz/+cei6js985jNzHqder+M3f/M3Iy/AgPsF9dSnPhWxWAx79uzBY489Fpw7cOAAXvKSl+CBBx7Arl275jwWMT2ve93rIu1Xv/rVJE6uQhzGMFnXW8JjpR4RIDu9MxJwDZOwAEmGCUFMD3lNkNdEP0NhXVcXdcPC0WLNjZBQcvNJHSnVcbLSgN0JFRLAQEJx80flU9g6kMTWfAqbcknI5DlBrDJoHYDWAZaa9ryTJE4uf3wB0rXzp4ZhrXcw3UqYlCK5AmTWs/Pzrt0/pNKmIqI78Lx79GrsfuHOO++MtJ///OfP+d7LL78coijCstzvhV/84hcYGxvDmjVrOjK39o3N7ZtcZ6L9Wlq37i0kTq5iLr/8clx//fV4yUtegvXr1085v3fvXrzzne/E7bffHvTdf//9ePOb34yvfOUrcxrj5z//Oa6//vqIQXL11Vfj//7f/xvZqVCtVvGRj3wEH/zgB4O+z372s7jgggtwww03zGmsP/zDP4wYJKlUCv/0T/+E6667LuIh8dBDD+F1r3tdYKAVi0W89KUvxSOPPIJ4PD6nsYipiKKIWCwW+ZKvVqs9nBHRTWyH4UytGQiQJyst8fFkpdHR3BBh4pIQESD9nZJrUnHwZJgQxIyQ14QLeU30L9/97ndRq9Wg6zo0TcPo6Givp0QsEsYYJht6EKLdLes4WqxhoqHP/oA5EhMFbMknsSWfwjZPhNySTyEblzs2BkGsFGgdgNYBloL233ASJ/sf23F/s8eqTYzVmhirNnG6poXaGjSr8xuNAUASeKxPJ7A+k8CGjFtuzKjYlEsiH5dJhCSIHvDoo49G2s961rPmfK+qqjj//PPxi1/8Iuh77LHHOiZOXn755ZF2+walmXj44Ycj7YsvvrgjcyIWBomTqwxBEPD7v//7eM973jPrDsGdO3fi29/+Nv78z/8cH/3oR4P+r371q3jrW986py+ld7zjHUECXAC49tpr8fWvf31KOLVUKoW//uu/xtDQEN7+9rcH/bfccgte9apXzboY+pOf/CQSB1uWZdx7773TLjheeuml+OlPf4pLL70UBw4cAODunPzkJz+Jd77znbP+mYizk0qlIuLkTAvRRP/ih149U9NwpqZh3CvHak23XtcwUdfhsO7Ewuc5DiOpONZnEq6Bkk7Q7kiC6ADkNUFeE/3O2rVrez0FYoFYjoNTlWZIgHTLo6V6Rz0pOADr0glsG0hhSz6JbV5I1rXpBEVKIIgZoHUAWgdYatrFyaNHj/ZoJoSPaTuBXT9WbeJ0tYkxT3w8XW1ivK7B6lDkgumQeA5r0674uCGjekKkWw6pMfodJ4g+44knnoi0t2/fPq/7t23bFhEnH3/8cVxxxRUdmdsLX/hC7Nq1K1jj+O///m/8+te/xlOf+tQZ7ztx4gS+9a1vBW1JkvCqV72qI3MiFgaJk6uMhx56CJs3b57XPR/+8Idx77334n//93+Dvq985SuzGiX33Xcf7rnnnqA9ODiIf/zHf5wxz9PNN9+M73znO/jRj34EABgfH8fHP/5xvPe9751xrHe/+92R9l/8xV/M6AkxMDCAz3/+85HQcR/5yEfwlre8Bel0esaxiLOTSqUwPj4etMlzsj+p6SbO1F3RcazWjAiQZ2oaxusaDLs7no8+vmHiC5DrfCEyk8BIMk6J6juAbtk4VCojLgoYzWZ6PR2izyCvCfKaIIiFUNVNnCg3cMwPxVqq42ixjuPlescXNPMJBaNZFVvzKWwdSGFrPonN+STiEpmwBDFfaB3AhdYBlo72sK4nTpyAZVkQRfoO7xZN08JY1bXxT3vejqerrsfjWLWJyYaO7kmPLmJIgFyfdsVH3xNyOEkpV7qFads4Wq7iYKmEg8UyDpXK+J1zduLidSOz30xMgeMYOL7b/1rOPnY/UCgUUCgUIn3t3+uz0X79vn37Fj0vH57n8YUvfAFXXHEFdF2H4zi49tprcffdd5/1fWdsbAzXXHNNJI/mLbfcgnXr1nVsXsT8obeCVcZ8DRIA4DgOb3nLW/D6178+6Lvvvvtmve///b//F2m/8Y1vxMDAwKxjveMd7wiMEv85MxklR44cwX/9138F7Xg8jptvvnnW+T3/+c/HJZdcgp/97GcAgFKphH//93/Ha17zmlnvJaan3ZuGxMmlRzNtTNRd78Yxb/fjmVr4aHYlGf10KKIfmkXFurTvCUk7I7uB7TAcr1axb7KI/cUi9hWKOFKqwGYML9oyirdefGGvp0j0AeQ1QV4TBDEbjDFUPAHSD9cezh9d1syOjsdzrifkpqyK0VwSm7JuCLdNWRUpReroWASxmqF1gBa0DrA0bN68Gc94xjOwadMmjI6OYnR0lMTJBcAYQ92wUGjqmKzrKDR0FBoGJhs6Jhtu2y8remd/o8+GwHNYm4qHvB8TgRfkcDIGsZ+S5q1A6oaJQ6UyDpVKblks41ilCrststW+yQKJkyuA/fv3z/ueoaEhDA8PL2rcUqkUaScSCaiqOq9ntM+hXC4vak7tXHbZZbjjjjvw6le/GuPj49i3bx+e+tSn4g1veAOuuuoqjI6OguM4HD9+HPfccw9uvfVWTE5OBvffeOONeM973tPRORHzh94KiDlx4YXRhe2TJ0/OeL1t2/iP//iPSN/1118/p7GuvPJKrF27FqdOnQLgLhrO5Jod9uoAgGuuuQa5XG5OY11//fWBUQIA3/72t8koWQTtC8gU1rUzNEwLxYaBYlNHsWmg0IiWxYaOQtM931wi4dEnIQnYkFGxzveCDHlADiQUCsHaBRhjmGg0sa9QDI4DxdJZ83/sKxSXeIZEv0JeEy7kNUGsdhhjKDaNacXHE+UGah0Mw+qjiDw2ZZMYzarYlFOxKZvEppyKDRkVMkVL6CgVXccTE5N4fHwSz9ywDucMziwKEcRM0DoAsVAGBwcj749EFNtxU6kUGp7o2AyVDR2FUF23uhvVqB1J4LEmGcOaZBxrUnGMpOIYSbXag6pCAuQSUWhqOBTyhjxYLGGs3pj9RgAHS50VgojecM0118z7nve97314//vfv6hx29dzFxJlqP2ebjiwvOhFL8ITTzyBT3ziE/jqV7+KQ4cO4ROf+AQ+8YlPnPWe3bt34y//8i/xyle+suPzIeYPiZPEnGjf3Rb2hJiO//mf/4nsRli7di127tw5p7F4nsdzn/tcfP3rXw/6vv/975/VKLnzzjsj7ec///lzGme6a++++244jjPj4ilxdtrFSfKcnB7GGJqmjUJTR7FhBGWx6YmMvujYdHdFdivp/GzwHDCoxjCsxjCUjGHYM1DC9UxMIgGyy1R1w/WGnCxif7GEfYUiSpo+5/uPVSpomhaFwSPIayIEeU0QKx3GGCYbelSALDdwvFzHiUqja5uZsjEZozk14gE5mktiOBkDT+8LXWGi0cTj4xN43BMkj1Va798Cz5M4SSwKWgcgiLlh2Q6qhomqbqKqW6hqft1EoamHREjX67HU1NHF9I4zosqiKz6m4liTdMXHoJ2KIxeX6Td7iXEYw+laPRAgXc/I8rzs/nYOkTi5cHiA69XPQZ/8DLWLk7FYbN7PaBcnu+XAYlnuxkpFUWa99rLLLsP73/9+vOhFL+rKXIj5QyuVxJxodyNfu3btjNc/+uijkfZcwr+FueyyyyJGyWOPPdaVsXbv3o18Ph/E0a7X6zh8+DC2bt06r/kSLqstrCtjDE3LRk03UdMtVHUTNcMKjBC/v+YZKa7g6IqOS737cTpycdkVGlVXbBxOxr3SPfIJ2hG51Ph5IvcVitjveUWeqtUX/DwOwIZ0GgVNw3opOev1BDEd5DVBLAWMMTz00EOIxWKIxWJQFAUbNmyAJFFoz3YYY6gZVhDKLexxcaraxIlyHScrza5tbuI5YE0y7oZh9YTIUc8TMhOTuzIm4cIYw8la3RUjxyfx+MQkzszgQfH4+ORZzxHEXKB1gP5lz3gZssAjLomISwLikgiJ52jj6CKwHCew68M2fbWtLzhnWKh4ImSvNhRPRzYmY03KFRtHfPExJEBS2PTeYtoOjlcqOOiFZD1YKuNwqYymtfjIFWuTKrZkM9iay2JzNgPGGH0nEB1hIZ+jpfjsfe5zn8Mf//Efo16f27rZ/fffj5e85CU477zz8I//+I949rOf3eUZErNB4iQxJ8K5nADgkksumfH6xx9/PNLevn37vMbbtm3bjM/zqVQqOHHixIz3zsbWrVsjSX4ff/zxZWWU9BPLMayr5Tioe4JiTbdcQTEsMBquMVILGSa+2FgzLNi92u44C6osuiKjJzwOJV1jxK3HMKTGoIhCr6e5qpkpT+RCGUrEsT2fww7v2JbLIE4L+8QiIa8JYikwTXPKwvLevXuxY8eOHs1o6TlbiLf2nFKTDR2G3d1NTn4+qfWRsO1ubqmRVBwShWJdEmyH4Wi5jMcnJvHY+CSemJiclxfFgWIRumVBoRxvxAKhdYD+5Y+++7MpgpjAc4iLQkiwFJAIiZd+X1wS53CdW8oC3xfihsMYTNuBbtnQLQeG7UC3bRiWA8Mrde+8ESoNy4ZuO955Oyh1y2kTIE00ljhFynxRZREDCQX5hIIB78iH2oOqgjXJOGIS2fn9QlnTcaRcwZFyBYc9b8hjlQqsRa4jiTyHjek0tmQznhiZweZsBgmy/TuDwLlHr8YO8Z3vfGfev6VDQ0OLnka780mz2Zz3M9rvaX/mYvngBz+IW265JdJ30UUX4S1veQsuv/xyrFu3DjzP4/Tp03jwwQdx6623BlGgHn30UTzvec/DP//zP+N1r3tdR+dFzA+yUohZOXbsGL71rW9F+l7+8pfPeE/7DstNmzbNa8z26/ft2zencQYHB5FIJOY9VjgXwtnG6lf+/r8ew6HJKmSRhyy4xkN7XYn081BEr91Wl6epK6Iw5x2Yc/WcZIyBwTUwwADH72OAA7fPZiwwJrTAAGnV9UhpB4aIbtnQrNB9of7g+lDfYl8KlxJZ4JFPKMjF5aDMxRXkEjLy8VZ/PqFAlenrvZ+wHYaTtRoOe2FaZssTOReSsoQd+VxIjMwiu4BQGwQxG+Q10b985v4nMFHXkYvLyPpHTEbW+03IxmUkZbEvFhVnQ9O0KX1zCc2zHNAtGwUvP7QvPE6GxEZfcCw2DffdaImQeA7rQrmiffFxfSaB4WSMoif0ANN2cKBYDLwin5iYRMOcvyeFIgjYNZDHuUMDsBwHK+NfErHU0DpA/2I7bFo7wnZcz/pO5g7mOSAuiYFIyQHgOIAD55Uu4XPuWbTOe+f8UKF+v/9+woXuZ8C0YqPZ5U05vYLngGzcExrjMgbUqODoH7m4QqJjH6NbNo5XqzhSKgdi5NFyBcVFhGX1iYkiNmfT2JrNYEs2i625DDamU5AE+jysBrZv346nPOUpSz5uv4uT9957L97znvdE+t7//vfjve997xTbd/Pmzdi8eTN+7/d+D7feeive/OY3gzEG27bxhje8Adu3bycPyh5Cq9fErLzlLW+JLBht3boVr3jFK2a8p1QqRdrDw8PzGrP9+mq1Oq03w2LHme6ecrkzcdnPnDmD8fHxed3TbmTNhYOTVTw2Vpr3ffPFFy39nfKursi80hUa9xyYiNxzx6/248W33uWJjy1RkmgREwVXZEy4QmPeM0p80TEX99oJBQlJWBYLzKudpmlFdkYe8gwUw164ECkLPLZks9iRzwZekSNJlT4PxJJAXhP9y8+OTeBIceYQNiLPIRuTkYnLrmAZc0XLXNzvUwJRMxeXEe/Rb8104uRCcpt0Est2UDctNLyF3oZhoW5aqOsWGmaozzsaphtpoWHaqBum22dYMHu4EUoReaxLtwTIDRlPgEwnMKjGIPD0O9JLNMvCnsmCK0aOT2Jvobig9wVVknDu0ADOGRzAU4YGsDWXJXGZWDS0DrAwlmIdQF/CEKIOg/s714FnrZYQk4rIIyVLSCoSUooUbCIeSCiu+BhXAhEyG5Ppt3gZ4TCGsXoDR8tlHC61RMhTtVpHcohmFAVbc5lIaNa1SZVygBJLTiaTibQbjQbq9TpUVZ3zM86cORNpZ7PZTkwNAPDud78bLLSp83Wvex3e9773zXrfDTfcgGPHjuGv//qvAbgpaf7oj/4oslmJWFpInCRm5BOf+ATuuOOOSN+nPvWpKSHe2mkP59meBHc22q9njKFer88aNnS+40x3T6fyJH72s5/FBz7wgY48aya6HdYrPM5sYzlydBHRbNZ7uiC31KiyiJQiIemXioSUIiLpGSaZmDTF4zEh0dfwcoUxhqKmuQJksSVEnq7VFyXCcwA2ZtIRIXJTJk2LjERPIK+J/qbYnDnELgBYDsNEQ8dEY247t2WBj3hh5kL1tLeAxnMcBM71gOCDNue1EW1717httPrarj01OXVRuGwymOUGLMeB7TBYjgPLYUHdLb06Y945p9XnsLNf7zCYjoOmaQfiYt0wW0KkafVFfujZSCkS8gk5CO02pMYiAuSAqtCCVh9R1Q08OemFaB2fxIFiaUHh3HOxGJ4SEiM3ZtL090x0FFoHWDhLsQ6gWTZiotBXeQ6nQyuM48h/fgVaYRx64QzMWhmX/e3XwS0Du0YWeKQ8cTGpiEgHdcnrD9n8soR0rHVOptDnK4KK7oVk9UTII+UKjlUqHft3t0ZNBCKkH5o1F4utCgG/3+E4DlyPNg30y9//wMAAcrkcisVi0Hf06FGcc845c37GkSNHIu1Opes4ceIEHnzwwUjfXIRJn3e+8534+7//+8Cz8+GHH8avf/3rs6aSIboLrYoTZ+Xuu+/Gn/3Zn0X63vSmN+GlL33prPe2Gwvz3fk+nXFRq9VmNUoWssO+fazlkCcxzFLumpwNSU1H2o2x4z2aycKQeA7JNlExMEhk0TvnC5DeNd75hCTSjscVjO04OFGt4ZCXrN4XIiv67MLAbAwl4pHwrJQnkugnyGtiYSyF14TlOKhq5rzumQuG7eBMTcOZ2lRPxm7SOHNiSt8bvv0QeEle0nn0A+EQb+HcUr4IGc4xRfmj+xeHMRyvVLFnsoC9k0XsmSzgWGVh4sdIUsW5gwM4d2gA5w4NYkRN9M3iFbHyoHWA/iefUHDnG18Mh7nhXZumjaZptZVn6bPcesOw0DzLvZ3aXszxHE7ff3ekz6gUoGQHOzQCpqSrUUShlc5GEII0N4rYSl+jeGlw/E3F0cO18en3dfVg2DaOVaquF2QgRJY7EpIVcD+jG9IpjGb8HJFZbMmmocqr7x2XWF6cc845uP/++4P2/v375yVOHjx4cMrzOsEvf/nLSHvr1q3YsmXLnO9XVRXPfOYzg/yTAPDQQw+RONkjSJxcQm666SZ85jOf6fo473vf+/D+979/Uc/4xS9+gVe+8pWwrFaugmc84xn41Kc+taDnzdd4XqixvZD7lrth/4ZLdqCsGV4i+FDid/8It0PJ4A271R++x16Ep2NqNLoLRps4DaNagpzKLvJPCUgCD0XgERMFyKKAmOgaHoooQBF4KJIQGB2KZ3DERAGyICAmhvu9euha3+PRz6NBrG6aponD5UrgDXm4VMbRSqUjXsoD8Rg2ZzPYms1gx0Ce8kQSfQ15TSycpfCacBjwlmftRlHTUWqaKDXdnIVlzUCxaaBp9s/mpbnAzM4Lrf2GJPDTCI6hnFIU4m1ZUzMM7JksYu9kAXsmC9hXKC4oXyQAjGbSgVfkuUMDyC/g+43oH2gdoHvXL+a+lWD38RyHhCR60Xg6k12WMQbdcgIR0xcyDdsJpXVxS/d6rw0AXsoXP52Lbdu46gMx6KGNbtdtUnH+JRcAjMHxrkcoXQwHtEREr3RFR1dQ9G14P+UMeY0Tc6VpmjhereF4pdo6qjWc7lBIVg7AmqSK0UwamzJpjGbS2JxJYySZpPc6Ylly3nnnRcTJBx54AC972cvmdG+9Xsevf/3rKc/rBO2blEdGRub9jPZ7JiYmznIl0W1InCSmsHfvXlx11VWoVCpB3+7du/H9739/zjsSF5s4d7rrp0uc288Jet/ylrfgla985bzu2b9/P6655pp53fO8rfP/Ep4Jy/GFTF/gtKN12wEHLkhiz3N+nYNtPwOXffwdaDYb2LpjJy54xkW4+UXnYf3GTa0k96H74N8/zTmOQ2B8yIJAL3NExzFsGyeqNZzwDJOjlSoOl8o4VVt8RhWe47A+lfR2RmawJZfB5kwGmVhnFg0IotuQ10T/Iws8XnnB5rOe1y0bpaYRESxL3lFs6m5dM4JrlipM/NkQ1anvX8d+8C2M/uarejCbqfAckJBEqLJ7JGQ3wkJCFqDKElTJ73NLNXQkJBHZuIykLK6IxXACsB2G45UK9ngekXsmCzhRXdj3h8Bx2JbL4pwhV4zcPTCAlELeFMTSQ+sAy2sdoFtwHIeYJCAmCch1YF/E9m3b8NhjjwXttFbEC7evXfyDCeIslDUdx6tVHCtXcbzqC5E1TC7ge+JspGQZo1lXgPSPjek04pS2Z2Ug8O7Rq7H7hKuuugq33npr0P7Rj34053v/+7//O7LR6cILL8SaNWs6Mq/23JX1+vzX8Nrt/k69AxDzh741iQiHDh3CC1/4wkjS2m3btuGee+7B0NDQnJ/TDaNkuqS7/WyUDA8PLyjEXK8ReR4izyOxwKiS9913L3bs2IF8Pt/ZiRHEAqkbBo5VvB2S1dYuyTP1RkdCFsVFEZuzGWzJumFaNmcz2JhOUyggIgJ5TXTv+sXct5KFIkUUsCYVx5rU7CuLjDE0PTGzJWD64mXLM7OqW3AYg80YHP9wGGyGtrbrATHTtVPmmx1Eeuu5qBx8POg78v1/w/DFz0N8aB0AQOQ5iDwPgecgeHW3j4PA8xA4LrhG9K4RQtdMd29CioqJCWmqwJiQRcRFYUV/XoiZqegG9k4WPK/IIvYVimhaC/OKlAUeOwfyOHdwAE8ZGsTOgRxis3ikE0S3oXUAWgfoFtu3b4+IkwcOHOjhbIiVgsMYJhrNkAekK0Aer1RRNRafesVH4nlsTKdCQmQGmzJp5GIKvRcSK54rr7wS8Xg8+L184IEH8OSTT2L37t2z3vulL30p0n75y1/esXmtW7cu0t6zZw8ajQYSicScn/Hzn/880l6I9yXRGcgKWkKuvvpqbNiwoevjPOc5z1nQfceOHcMVV1yB48dbeQJHR0dx7733TvmHPxuZTCbSnm/epbBRBADpdHpKrqlOjDPdWO07MIj5cemll/Z6CsQqhDGGoqYFBskxz0A5Ual2LFcEAAzE44EIuSWXweZsFmvUBIUTIlYM5DWxOr0muFBYuHXpuRt1iyEsZDpeaLdfXPhFPO+yZ8FxXC9OZpnI/vQbuOM//xMiT6HXiaXBdhiOVirYM+F6RO4tFHFygV6RgJtbetdAHjsHctg1kMeWbBZSH+2KJ7oPrQPMHVoHWHls27Yt0iZxkpgPluPgdK0eiJAtO78G3e5sCoM1aqLlCZnNYDSTxtqkCmGa7yBiheOGdOvd2H1CIpHAtddei3/5l38J+j7ykY/gi1/84oz37d27F7fffnvQFkURr371qzs2r6c+9anI5XIoFosAAE3T8C//8i+48cYb53T/HXfcgRMnTkT6FvoORSweEieXkBe/+MV48Ytf3OtpTMupU6dwxRVX4PDhw0Hf+vXrcc8992DTpk3zft6OHdHcg0eOHJnX/e3Xtz/vbP3j4+Pz3i0x17EIgug9tsNwpl6P7Iz0d0ouNK/TdPAch43pVOAJ6ZdpCrNGrGDIa4K8JpYSnuPAC1zEGHnOpZfgbW97Gz75yU8GfXffdRe+8+1vz1vsJYi5wBhDoanhYKkchGfdXyhCsxa24CkLPLbmstg1kPeOHOWLJGgdYB7QOsDKo12c3L9/f49mQvQrDmOYbDRxqlbH6Vodp2o1nKrVcaJaw6lqDfY0ETcWCs8Ba1QVG9IpbEilsCGdxIZ0ChvTKcSlBYYPI4gVzPvf/3587Wtfg2maAFyPyJe//OX47d/+7Wmv1zQN119/PYyQB/Mb3vCGKb8F7bRvQr3vvvvw/Oc/f9prBUHAtddei8997nNB3zvf+U48+9nPnjWv5dGjR/HmN7850vfsZz8ba9dSuPFeQeIkgbGxMVxxxRWRl8SRkRHce++9s355nI1zzjkn0p7vC+jBgwdnfJ5POp3GunXrcPLkyaDvwIEDOP/88+c81qFDh+Y0FkEQSwNjDGXdwOlaHWP1Ok5Va0Hi+pPVGkyns3nRBhPxwDAZzbgekRvTKcgChWUlOgd5Tcwd8ppY3fzlX/4lbrvttsi73dvf/nZceeWVSKfTPZwZsZxxIyzoOFap4Gi5imOVCo6VXQ+MurfYshCG1YTrFZnPYddgHpszGfKKJJYNtA5A6wBLwfbt2yNt8pxcndiOg/FGMyI+uvU6xmr1jtv4Es9jXSrpiZBemU5hXSpJdj5BzIOtW7fij/7oj/B3f/d3Qd+1116Lj33sY7jhhhsgy60N/E888QTe+MY34v777w/6BgYG8L73va/j83rve9+Lr3zlK8Fm41KphMsuuwwf+tCH8PrXv37KZiXDMPBv//Zv+NM//VNMTExEzv3N3/xNx+dHzB0SJ1c5ExMTeOELX4gnn3wy6BsaGsI999yDnTt3Lvi57TsVHnjggXnd/9Of/nTG57WfCxslDzzwwJyNkieffBKTk5NBO5FIYMuWLfOaK0EQ88e0bZypN3C63sBYrY7TddcoGas3MFavL9hj4WwIHIeRpBoYJRvSKWxMucYJJa0nlgLympg75DWxukmn0/j4xz+O6667Lug7efIk3ve+9+HjH/94D2dGLAfcDU56IEAe9QTIY5UKasbCRUgAkAUB2/NZ7MrnsWswh535PHLxuYW7Joh+g9YBaB1gqWgXukulEgqFAvL5fI9mRHQL03ZwptHA6VoNp6ot8fFUrYYz9UZHPSB94qKIjSEbf0M6iQ2pFIZVFUKvwnISyx5O4MAJvfn89Grcmfjwhz+Mxx57DN///vcBAKZp4m1vexv+6q/+Ck9/+tORSqVw8OBB/PznPwcL/TuXZRm33357V7wSN2zYgK9+9at45StfCdsL8VytVvG2t70N73jHO/CMZzwD69atA8/zOH36NP73f/8XtdrUNA0f/OAHcfnll3d8fsTcoRXZVUyhUMCLXvSiSHLygYEB3HPPPTj33HMX9eyLL74Y+XwehUIBgLvwuXfv3jkZOo7j4L//+78jfb/xG79x1uuvuuoq3H333UH7Rz/6EW644YY5zfNHP/pRpH3llVdO651BLA7GGOWJWmX43o9jIdHxdCBCNlBoNtF50wRQBAHrPYMkLESOqCp5MhDENJDXBHlN9COvfOUr8YUvfAF33XVX0PepT30KN954I3bv3t3DmRH9RDniCVnFUc8bshoKI7UY1nhekf4xmk1DJDuBWAHQOgCtAywlo6OjEEURltVKwbF//35ccsklPZwVsVB0y8aZui86tsKwnq7VMd5owOmGkQ8gG1NCNn4yCMuaj8dorYkguowgCPjGN76BN77xjfj6178e9J85cwZ33nnntPcMDw/jy1/+cleFv5e//OX47ne/ize84Q0YGxsL+pvNJn7yk5/MeK+qqvjwhz+Mm266qWvzI+YGiZOrlFKphBe/+MX41a9+FfTlcjn84Ac/mNei3tkQRREve9nL8OUvfzno++IXvzgnV+m77747stC4bds2PPWpTz3r9S9/+cvxJ3/yJ0H7O9/5Dkql0pxCs33pS1+a8ixi8ZRKJdx999148MEH8eCDD0LTNPz85z/v9bSIDtPu/ThW9zwfa3WcrjegWZ3LAdlOSpYjOyN9EXIwEQdPxglBzAnymiCviX6F4zh8+tOfxnnnnQdd1zE0NISPfexj2LVrV6+nRvSAyhRPyAqOVaqo6J0RIQEgJorYlssEQuTOgRyyMfKKJFYetA7gQusAS4coihgdHY2Ecz1w4ACJk30IYwxVw8R4o4GJRgNn6k1MNBoYbzQx3mhgvN5EWde7Nn5MFLE2qWIkqWKtd/h2fjIUOpIgiKUnmUzia1/7Gq699lr8/d//PR588MFpr8vn87juuuvwgQ98AENDQ12f10tf+lI8/vjj+Kd/+if88z//86yhw9esWYM/+IM/wE033YTR0dGuz4+YHRInVyHVahVXXXVVRCxKp9O46667cOGFF3ZsnNe+9rURo+Tzn/88/vRP/xQDAwMz3vfRj350ynNmYvPmzbj88suDXZbNZhOf/OQnZ41p/eMf/xgPPfRQ0M5ms2dN6EvMj71790bCsQGYs6FI9Ae6ZWGyqaHQbGKiqaHQaGKy2cRkU8Nks4lCU0OxqXXF+9FH5DkMqyrWqIkpuyTTitLFkQli5UNeE+Q10e9s374dt9xyC06cOIEPfehDyOVyvZ4S0UVqhptr+nQoB9Xpeh0nKrWOLoQqgoCN6RQ2ZlLYmE5jk1fS5iZiNUDrAC60DrD0bNu2bYo4SSw9tuNgsqm5QmOjifF6AxO+8NhwhchOp1dpJyGJWJdMBgLkSCoZCJEZRSEvSKI/4Dn36NXYfcy1116La6+9FocOHcLPf/5znDx5EvV6HSMjIxgdHcWzn/3sSB7KucIWEfY5n8/jXe96F971rnfh+PHjePjhh3Hq1CmUSiUwxpDJZDA0NIQLL7xwSh5koveQOLnKaDQaeOlLXxp5GU8mk7jzzjtx8cUXd3SsK664AldccQXuvfdeAK6Hxpvf/GZ8/etfP+vi36c+9Sncd999QXtwcBB//Md/POtYH/rQhyKu4h/60Ifw0pe+FBdddNG01xcKBbzhDW+I9P35n/85MpnMrGMRs/O0pz0NiqJADy0m/exnP8NLXvKSHs6KANwf/LppYrIRFRonGm7pCpDNRedlmitpRcaIqmJN0hUh16gqRpIJjCRV5GJxyhNBEF2AvCZcyGui/3n3u99Ni1QrBMYYipqO017ot7AAebpW7/h7hywI2JBOYlM67YmRaWxKpzCkJkiEJFYltA7gQusAvWH79u2RzWTzDflPzI2maZ1VeBxvuKlVuhV2NUxakUPejyEhMplESpbo3a6L6LaF47UyjlaL2JUbxjo13espESuULVu29GXUoQ0bNmDDhg29ngYxD0icXEUYhoGrr7464pEgCAI++9nPYu3atTh8+PC8nrdhwwaI4swfob/927/Fs571LBhe7pdvfvOb+J3f+R186lOfwsaNG4PrqtUqPvrRj+KDH/xg5P4PfvCDSKVSs87lOc95Dq699lp885vfBOD+WV/4whfin/7pn/C7v/u7ESPooYcewute97rIbr1t27bh5ptvnv0PTcwJWZbx9Kc/PRLK78EHHyRxssuYtoOKrqOguR6Pk42W2DjZ1AJB0rC7uxsyjMhzGEq4YqMvPK4JiZEJSVqyuaxGSnoTNmMYiCV6PRWiTyCvCRfymlge0OLV8sJ2HIw3mhEPyNNeXqqxWh16F94/JJ7HhnQKG9MpbMq0hMjhRII2OBGEB60DuNA6QO9oz2NOnpNzx3YYKrqOkqahqOko6TpKTQ0lTUdRc8uSrqPY1FA3l2aDMQDkYgpGksm2MKxJjCQTUCkEa9dhjKGkN3G0VsKxaikoxxrVILrV7+14GomTC4XnAIE8JwliKSBxchVx8uRJ/PCHP4z02bY968Lf2Th06BA2b9484zVPf/rT8YUvfAGvec1rgr7vfOc7uOOOO3DJJZdg48aNmJiYwP/8z/+gUqlE7v0//+f/zDk0G+B6QBw4cAC/+MUvAACVSgWvetWr8I53vAMXXHABZFnG3r178eijj0buy+Vy+M///E8kErR430me+cxnThEnifnhi41lXUdFN1DWdZS1UN3r969pmN3L8TgTaUV2BUc1gTVJFSNqS4zMx8n7camomToOV4o4VCngUKWAw5UCinoTL1i/Da89Z/rd48TqgrwmXMhrgiAWRjj6wli94Xo+ejmnT9XqGK83YC8iJNNMiDyPDakkNnoCpB+OdY2q0nsGQcwCrQPQOkCvaQ+jt9rFScYYaobZEhx9kTEsOGoaSrqOiq4vibdjGJ4DcrE4htQ4hhIJDCW8MtSO0ybjJcNyHJxqVFwRslrCsZpb1syZw94frRaXaIYEQRALh8RJouv8/u//PgzDwM0334xarQYAsCwL999//7TXcxyHm2++GX//938/r3FUVcX3vvc9vOY1r8E999wT9B87dgzHjh2b9p5t27bh3/7t37Br1655jUXMzjOf+cxI+8EHH4TjOKs6n9dyERvDJCQR+XgcA/EYBvwyEUc+HsdgPIZhVYUqk2Gy1DQtE0eqRRz2hMhDlQLGm/Vprz1UKSzx7Ih+hLwmXMhrYuVw3333LTinCTEVxhgqutGKuNDQMNFselEXWhEYuuH96MNzwGAigRHV9cLwPTE2plMYSaoQVvE7JEEsR2gdgPA599xz8dKXvhTbtm3Dtm3bVlTOL9thaJgm6qaJuuGVphHUXRGyJUAWNR1lXYO11IpjCFkQMJSIY1hNYDAREiBVt8zH4xDpN7cnNEwDRz3x0fWILOJkrQKLOfN+1rFaqfMTJAiC6DAkThJLwvXXX4/nPe95eO9734vvfOc7qNenLqLzPI8rrrgCf/EXf4EXvOAFCxpnZGQEP/jBD3DrrbfiM5/5DB555JFpr1u7di1e+9rX4j3veQ9UVV3QWMTMtIuTxWIR+/btW7YGoO04aJgWGqbpGR+tesO0UA/VfeOkGfS7fU2r92JjmIyiBGLjQDyOfFBvCZG0I7L3mLaNo7VSxCPyVL2CuZqzx2plmI4NiRe6Ok+ivyGvCfKaWCmcPHkSf/zHf4xvfOMb+OAHP4i/+Iu/6PWU+h6HMZQ1fVrh0S8LTQ2mM/+Fr/ki8XwQZcHPQ7XGEyGHEglIAi2GLhaHMZxp1nCoUsB6NY1NqVyvp0SsYmgdoHt86CduZKK4KCImikhIIuKiiHhQStF2qG+pv2u3b9+OO+64Y0nHnCsOY57dboTERVdorLW1p9SN/rPxATey0XDCEx7VsOejW0/JMoXO7zEOY5ho1lthWatFHKuVMKk1Fv1sDhxGEklsTGbBGKO/6wXA8Ry4HkXm6NW4BNErSJxcRWzevBmsS6GW5sLWrVvxla98BfV6HT/5yU9w/PhxnDlzBtlsFuvWrcMll1yCtWvXLnocjuNw44034sYbb8Tjjz+ORx99FCdPnoRhGFi3bh22bt2KZz7zmSvGg+8/9u7HmXoDsiBAFgQofikKZ+0L2gIPWRC6shN948aNWLduHU6ePBn0Pfjgg10TJxljsBmDadswbAem45W2DcNxYNg2TNsrQ23dttGcTmC0zIgYqVlLl6dxsQgch3w81vJ4DAmO+Xgcg4kYcrEYJIHEqn7DchycrJcDIfJQpYATtfKiwuRJPI/xZp3yTRA9gbwmusv/njwN03GQjSnIKgqyMQUxUVyxixC33XYb3vCGN6BarQIA/uqv/gqvetWrsGXLlh7PbOlhjEGzLFQNEzXDQNUwUNUNFDUtyDkdFh67FW51OhKS6Ho+qq38U74nZD4eB79CP5+9gDGGSa0RbF46VCngcLWIpuXmHfvNzeeQOEnQOsAKXAdgjOHhU2NwFvj3KvI84iFBMxYSMBOegOn3+dcoogCe48CBA8dx4DkEbZ5z//v7dZ7zrgEHzjvHwyuDcwie03qm+/tghWx513Z3YDktW963+af0OQ4s24HhuLa+b/dbIfvf7zNsO7D3e/evY+7wHJD23vVysRgyiltmYwpy8Viw8XgwkYAikp3fTzQtEyfrFRyvtcKyHquWoNmLF7ZjgoiNySw2prLYlMpiYzKL9ckMFIGW+wmCWB7QtxWx5KiqiiuvvHJJxjr33HNx7rnnLslYveL+4yfx5MTiwjaKPBcRLWcSNCWBh7+kFH6Jn84uWrPrnIg4+c//cQcaT7kgcg0LPaX9GRGBMWRktBslbtte8lwMSwXPASlZQVqRkYkpyCheXQnVYwrSioKMIiMpy7TwtwxwGMPpRjUSmvVotQTTWbgQLvECNqWy2JLOY3Mqhy2ZAYwkUvR5IHoKeU10j3977AkcLJYjfbIgBGJlJqaEhMtYW1tBQpKWlZC5ZcuWQOQGAE3TcNNNN+GOO+5YVn+OMIwx6LbtCoy6gaphomoYqBkGaobp9RleX0uIrBlGT0PC5WKK5wHpej2OhA7yyOgeJb0ZEiLd8O7VGXJOHabQ7kQfQesAncOwnQULk4C7IdL/bSF6S1KWkPVFxlCZiSnIxdz3t1xMQUpWKMdyn2PaNk41KjheK+NErYwT9QpO1MqY0KZPvzJfBmIJbEy2RMhNqRwG4yrZ+gRBLGtInCSIZY7RAY8+y2GwHKvjOQ6Ndesj7V8//DAGDh7u6BjLERIbVx+WY+NUo4rj1RKO1crBwuJidksKHIf1yQy2pPPBsU7NUH4QYlrIa2LleU0AQFmbKkoYto0z9QbO1GcPCyXxvCtYRoTMkIgZnIshJfdeyLzooovwlre8BZ/5zGeCvu9973u4/fbb8YpXvGJJ52I7DjTLhm5b0C0bmm1D99qa5XpkaJbl9dkhUdEMvBx9sXEpwqnOFZ4DcjEvvHs41LsXAt6NvhCn8KtLQNXQcbhawKGy6w15qFJASW/O6xmHKwUK6UYQK5B+DCVKuPaZKktQJQlJWYYqSUhIoic0xrx3K1+AdG1/ima0/LAcB2eaNZyolUNCZBljjVpk8/1CETjeC8vueUQmc9iQyiApKR2YPTEneA7o1bsubUIgVhkkThLEMke3+zfcaG5HNFRe5egROJYFXlzeXz08B8RF19BwDQ63nvDqaqityq16UpZJbFzhMMZQNjQcq5VwvFp2y1oJJ+tV2AtIYu/DAVirprE5ECJz2JjMQqZwLcQyg7wmOofDGErTiJPzwXQcTDSamGjMLngIHIe0Ik+JsOAefKjun4v2yWK0X+LPcp0gQPSMcpsx2A6Dw5yg/qe3vAe3ffObODM2FsztprfdjB0XX4KYqk653mZeO6gz2E7rfFRctKAHImNUXNQsyxMcXQGyl16LC8UP+94uPA4mWuJjLqZ0Jdw/MTMNy8CRStHbvOSWi/W0SMsxbEnn0bRNJES5QzMlCKIfUAQeb7zwfDRNCw3LQtO0oFkWmpYbprTZ1tc0rWURurTX8BwCe75dZAz3tZdJr5QFgTaDrCD8vJAn6uWWEFkv49QibfswSUnGplQOG5MZr8xirZqCyJNoTRDE6oBWNQlimfOcjesx2dRg2O7iWVBarXb43FIupqU3bIi0meOgOTEOdWTx3jHzwV84lXivFATIvLsYKgpuvg11BoHRbbfqMZGMDgIwbAsn6hUcq7oC5DHPYKnNEF5trgzF1cAbcnM6j9FUDnFR6sCsCYJYKRi2jW35LMqajpKmd32zks0YiosUQ+cKB8y4iLrput/HmU99LGifOnkCr3jLTTjvD/6w21PrS3iOQ1KWkJLdKAyDntA4kIh6PWYUCgnXD+i2haOeJ6QfmvV0o7qoZ6qSjM0pd/OS/+6QU+L0vkoQK5S4JOGlO7bN+XqHMeiW7QqVloVmSMCMlmZwTcMXN71zum2DeZt8GODV3TQtjt8ftBG6ttX2f9tt00Tt5AmkN43O+D3Fc/A2Lfkbm1xb3i15yLybdibcL4fO+/3+WkB7XyBEekJjfAXn7SbODmMMRb0ZeECeqJVxvF7GyVoFxiJSroThwGFNItkKy5rKYlMyiyz9VhMEscohcZIgljm/d94587re9hLA67YTFTStqIh5tj7Dju4QC79HcYi+VDHG8KNUCo1qa8HlXAF4yvYt0WunrwYiojSduBjyvAgLjtFrXe8LetkjFgNjDJNaI0hcf7zmekR2KmxLTokHC4l+rsikTCFbCIKYmZgo4iMvfF7QbpoWSrqOsqah5AmWZV336pp3zm33ezi42b5Z11/2HBy594cYf/TXQd/R/7oPT3nN65b1bz7PuSJTUpaQUmSkZPfwhcekLAf94b6ERIup/UrF0HCsWgreIY7WSjhRqyzq/SEmiNiczmOzL0Sm8hiKq/QZIAjirPAch7gkIi71bgmwVqvhjW98Ix555BHs3bsXlmXhwOEjWLd+XSB0+sKn7ImI5MlPdBLLcTDRrONUo4JT9QpO1as41ajgZL2CpmV2bJzBmIr1yQzWJzPYoKaxPpnB2kSaQvguIzieA9ejDX29GpcgegWJkwSxyhB4HnGeR3yJnLA+v3MnHn744aC9iwfe9PQLlmZwgpgnTctseUF6i4nHa+VF5YYMMxBLYEMyi9FUNhAks0q8I88mCGJ14y86rk2qs16rWzbKekvEbAmZXl9IyKybnVus6RQcx2H3K38vIk4alQoc04DQo80dHABFFKAIImKiu0EqJopQBAGKKECVpJao6IV4jwqObnQGCvu+PLEcG6fqVVeErJVwzAvtXjG0RT1X5gVsSmVDYd3zWJNI0eeEIIhlh6qq+M///E/UarWgb+8Tj2Pr6KYezopYiTRMA6caVVeAbFRxuu6KkWeaNdisc5HEskoc6z3xcb2awYZkBuvUNGIU8YggCGLOkDhJEERX2bZtW0ScPHDgQA9nQxCtvJCnvZ2SbukaL4vN7+QTE0SsT2awMZnFxmQGG5JZbEhmkJAo5xNBEL1HEQUMiyqG1dmFTNO2Aw/MqmEEURR0y4bptKIqRKMsuH3toeXDfcYiw81bWlT0kVMpxOMJCBwHgefAcxwEjofAcxA4r83z7nmOA+9do3g5MmOi6ImLAhRPVIx5YqMiCp7g6AqPMUGELAqIecKjIoiQBZ4811YJZV0LiZCdyS0NAALHY2Mqgy2pVjSFdWqaPIcIglgRcByH8847Dw8++GDQ9+ijj+Kqq67q4ayI5YrDGApawxMgPS9IT4xc7MagdlRJxgY1E/KGzGBdMo2kRNGOViw8Bwg9eq8nz0lilUHiJEEQXeXyyy+HruvYtm0btm3bhmc961m9nhKxSjBsC2ONGk6Hd016YmSnPCE5AMNe7ogNISFyMK6SVwNBECsCSRAwmEhgMJHoyvNthwVCpem4YedN2/YExJaY6AqOfFD/UuE0Hgg957wdO/D133lZV+ZIrE4sx8ZJL7f0MS+k+/FaCRVj8blXeY7DejXthWd1hcgNyQwknkK+EQSxcjn//PMj4uQjjzzSw9kQywHdtoJNxaeCzcUVnG7UYHYoH6SPv8F4vZrB+mQ68IZMyzHagEYQBNElSJwkCKKr3HTTTbjpppt6PQ1iheInrz/th2tpVAMxsqA1OpARsoUqytiYcj0gN3qekOuTGSgC/ZQSBEEsFIHnEOfnnwfr1IkTkfamTRQWjlgYjDFUDA1HayUcr5bdslbCqXqlI+HfZF7ABm/z0sZkBqPpPDalsvT+QBDEquP888+PtEmcJAA3tcp4s4YzjRrONN1jvFnHWKOKSa3R8fFSkoK1ahpr1RTWJtIYUVNYr2YwEEuQCEkQBLHEkEVEEARB9D3+jsnTjVYo1tONKsYanfOC9BE4DiOJNDam/IVEdzExq8TJWCEIgugTjhw5EmmTOEnMhi9CnqhXcLJWxsl6xa3Xy6iZRkfGGIgl3PeGlP/+kMVwQgXPUWhWgiCIdnHy8ccfh23bEATyGl/J+L+/ZwIBsu4JkG67ai4+IkE7PMdhOJ7ESCI1RYikcKzErAg9DOvaq3EJokeQOEkQBEH0HIc5KOoaJpt1jDdrmNAamGjWMaHVcaZRQ0Hv/I5JmRewJpHCiJrC2kQKI4kU1iczWKumKawaQRBEn3P06NFIe3R0tEczIfoNxhhKhhYSIN3yZK2CutUZEdL3hgyLkJRbmiAIYmbOO++8SFvXdezfvx+7du3q0YyITmE5DiY1T3QMPCBdW368WYPR4RCsPnFRwjo13RIhvXIorkIkm54gCKLvIXGSIAiC6DoOYyjrTUxodUw06xj3hMdJT4Sc1BqwmdOVsfNKAiOqKz6uTaQw4u2czCkJygtJEASxTGkXJ8lzcvXBGENJbwbejyfrFZzwBMmGZXZsnMGYig3JDDalvPzSqSyG4+QNSRAEMV8GBwcxMjKC06dPB32PPPIIiZPLAMYYaqaBgtbAuFYPCZCu+DipNeB0IBT6dHAABuMqRhJpz573hcg00rJC0Y0IgiCWMSROEgRBEIvGD9Xii44TbeVkswGrS+IjACiCiBHP+3HED9ni1SmnE0EQxMrjsssuw/DwMI4ePYpTp06ROLmCYYyhoDddAbIW8oSsV9DsoAipCKKXGzKDTcksNnh5phMieUMSBEF0ivPPP3+KOHnttdf2cEYE4OZ9LGgN99AbmPTrXruoNbvm/Qi4AmROSWA4kcRQXMVwPInhRBJrE2msSSQhk01PLCEcz4HjeyN692pcgugV9O1OEMSSYlkW6vU6MplMr6dCzBHGGOqWgZLeREnXvLKJgtbAhOZ6QU5qDZhdNFYA12DJxxLujkm15QU5kkghR/kgCYIgVhVf+cpXgrqu65SvapnjbnLS3fxTzRrGvXxUpz0RspP5pWVewFo1jfVqGuuSGaxT01inpjEUT1JEBYIgiC5z3nnn4Qc/+EHQfvTRR3s4m9WBYVsoaE0U9KjgGNS1Jpp25zb7nA2R5zEUUz0BMhkIkMPxJAZjKiR6lyMIglh1kDhJEETXue222/D5z38eBw4cwJEjR3DddddFFhWJ3sAYQ9MyUTJagmPRK/2jbGgo6k1YTve8HsPIvIDBuIrBmOqWXn0kkaIdkwRBEMS0KIrS6ykQc8BybExoDYwH+ajqETFS76AACbjvFOuSaaxTXQFyvVcOxlUSIQmCIHrE+eefH2k/8sgjPZrJ8ocxhoZlomJort2uNVDwNhGHRcia2Zl8y3MhIUoYjicx5ImO/jGUSCKnxOn3dwkwHRtjzTIyUhwpOd7r6SxPeA4QevRZJc9JYpVBq7wEQXSdU6dO4e677w7aBw4c6OFsVgdNy4yIjGEBMuz92M3QLNMh8nwgPA7FVAx44uOQJ0SmJMoZ0Ulsx4HhWIhTSDqCIAhiCWiYRsTzcbxZw5lGLYiywND5fFSKIHrioydEJl0hMh+j3NIEQRD9Rrs4uX//fjQaDSQSiR7NqL9wmIOqYaBiaKFDRzlUD/fbXUydMh0cgKwSdwXHkOfjUNz1iExKtGFsqWCMoWpqONko4lS95JaNEsabFThgePnmi3HZyI5eT5MgCGJGSJwkCKLrbNu2LdImcXJ+OMxB3TRRM3VUTR01wytNA7Wg7darnrHSyfBn80HgeAzEEoHYGHhAemVajtFCYZewmYMzzQqO1yZxrF7A8VoBpxpFXLpmO67ZfFGvp0cQBEGsAAzbQtnQMNls4Ezg9djyfqx30Tsj5omQ69QM1oc8IkmEJAiCWD6ce+654DgOjLmbVRhjeOKJJ/CMZzyjxzPrHqZju96NuoaqqaOsu+JidRrRsWbqXdjGM3dSkoJ8LOEeSrxVjyWQVxLIKnGIPN/DGa5OLMfGmWYFpxotEfJkvYi6pZ/1nlON4hLOkCAIYmGQOEkQRNdpFyfHx8dRrVaRSqV6NKPe4YdSdcVFHVXDmF50DOo66qbRUwMlTEpSkFViyCpxZJV4JPzqUExFhkK1LAkOY5jQKjhWK+B43T1O1AvT5v08Xiv0YIYEQRDEcsEPC+eHcy97ERfKXrukt/qaVndzUgkcj6G46h2uN4YfmjVP+aUJgiACPvvI/QCAuCAhLkpIiBJiXhlvOxKihLgg9UVOv0QigW3btmH//v1B3yOPPNK34qTDGDTbRNMy0bDcMlxvmMaUvvb6UuRznAsJUQpExmkFSCXRF5+R1U7N1HCyUcKpejEQIs80K/P2kj1J4uTC4TmgVyI8hXUlVhkkThIE0XW2bNkS2R0JuN6TT3va03o3qQVgOjY0y0LTMgMDpWlZaNomNMt0z3n9mnfOv06zrcDT0WH9IjW2UCUZWTnuiY4t8TGrxJHz2hk5BpEnY2WpYYxhUq9FPCJPNApzzs11ol6EzRwIHO1wJQiCWE04zEHF0APRsaQ3Uda1Vt3z4igZS5dbGgBUUcZQoiU+DsVVNydVkI+Kfq8IgiBm4xdnTsCap1ghcvwU4TIiYHoi5nTnFEGEwHHgOQ48x3ule/j9HLg5bSI5//zzI+LkE088Ma8/B2MMDmOwmAPL8Q7mwHJsWI4De0q/dy7Ubzp2SzycQVjUbLNvNgrPRFyQkFViEaEx7PWYU+KIi1Kvp0mEsJmDcd8bsu6KkKcaJVTMZkeebzo2GGO0sYsgiL6GxEmCWOZ84fGf4Wi1BFkQIPMiFEEI6rIgQBZEKLzQVnfPKcE14XtFyLwAoYO7hBRFwYYNG3Ds2LGgr1PiJGMMNmOBIWJ6RonpREvXAPH6mAPTtgMDRrMsaLYVMUB8EdIVGy1oljlv468fiIsScr7QKMeQCQTHkAgpx2mHZJ/AGEPJaOBYbTLwiDxem1zUbluL2ZhoVrEmkengTAmC6AfuP3UYmm0hLSlIyzGkZLdMiNKKXoh405veBNM0sWnTJoyOjuKqq67C+vXrez2trsIYg2ZbqHsbneqmgbpleG0Dda+vbOiBl2PV0LuS43E2OHDIx6L5qHwBciiehCpRHmSCIIjF4Nuy88ViDqpe1J5uEYiW4CC0iZiukMnDecZuPG/4dRjevhkj27ZAWbsGf/mzH3gCpztP27PffaHRdNw+34ZfDoLhYuAAqJKCjPdu5x7hutvOKDGkpRjZ831O3dRxOhyStVHEWKPckTUmmRexNpH1jhzWqVmMJLKICSRGEwTR/5A4SRDLnFP1Co5UOx+uQeB4T8D0RE1PuJR4Ae3LnTMtgPpn5OEBICROfuG/foBDWwYRvjX8FAa0djj6wiJr1U2vfzUYJmFigoikpCApy0hJCpKS4paygqTk9qVkJfB6VAT6mu9nykYDx2sFHKtP4rgXonWmvBFzISer2JDMY4Oax4bkADaoeSREWggmiJXInUf24FitNKVf4HikZSUQK9OSgrS3eBX0yQpSXiktM6/4b37zmyiVSkH7hz/84bIRJxljaNpmSFT0Dzese90K90dFSLuPIi/IvOCJjkkMh4THoUQSg7EERVroEVWjiVPNMk41ijhVL2F3dh2eNjja62kRBNFhGl0Osb0YHM+r0WVqygkAyF16AXKXXgAAqAKo1spLM7keE34/y7SJjGk5hoy30Swjx5CUlI5uGCeWhqZl4HSzjLFGGaebJa8so2ZqHXl+TlaxVs1iXSKHtYks1qk55JUkpdbpNDwHTujRf1MK60qsMmjVmiCWOYY9/Qv/YrGZg6bloInOGD78UC7S3n9gP4YLpzvy7OWKzAtThUbZFxxlT3CMio/LbQGZcGGMoajXg12Sx73wrIsN2ZKW4tiQzGOjOhAIkkkp1qFZEwTR71SN6Rc6bOagqDdR1Of2HRMXJXdhTGotiqVCi2V+n+r9DokcD4HnehJ+s1KpRIRJABgd7Y74whiD4djQbSt0uG3DdqMu+H3GNNeEj4ZlomYaaFhGX4Z391FFGRnFXSDN+FEW5DjSSgxZ2QvzrsQQF1a2d26/Yzo2zjTLQQg4/2hf/BQ4nsRJgliBSAKP391+gRd+1EAzFAWoPTTpfPPUETMTDnubmC4sbqQuIyFKSMoK0rICVZTpt3OFoFkmxppljDXLON0oBYJkp0KySryAkXgGa9Uc1nkekWsTWcRp0zFBECsMEicJYpljON0RJztNcmQ40m6MF3o0k87AcxzigoSYKCImSIiLIuKihFiQp0MM6jHvXEKUI0IjeTWuTDTbxOm2xcLTjRK0RYRmBQBVVLDR84TcmMxjvZpHRk50aNYEQSw3HMY6FpbNX8gcQ21e93HgIPCcJ1byEDg+EC79vvZS4HgIHAfRvz5SchB5AQLHgcGNouDnq2ZgYIzh6N79U+bx4/oZ3P9kCWDePWBgrFXCC27KGAueC7ieHYZtw3BsaJbpioxOVHDsXxlx7nDgkJGVQGzMyK7AmA0JkBnZzS1NYeH6Cz/ce/h94lSjhPFmBc4cPp2nGp2PrkIQRO9JiDJ+Y/PuOV1r2rYrVNrmtAKmFs6xOM01btqTueW67xcEL3ys5KWrEb33DDFSFxATPDtdagmJM4mNMUEiD7VVhmFbngBZ9sTIEk43yigZjY6NkZETngDZCss6GEtRDu5ewnO982Akz0lilUEr4wSxzPm9nU9DzdChO+4immHbkbrheH2humFbgSeAvyjXbZS0Gmkb9c69zJ0NDhwk3jVKfGOkvS7xAhRBRFxwxURXUBQDQyTWJjT6dZkXaNfjKsdhDAW9NiWBfUGf3+L+dMQF2fOIbIVmzcoJ+swRBBFgOTYuGFyHiqGhYuioGvqi8tMuBAYGy2Gw4JwtclvHOf6rX0TasVwGPxk/dparVyYCx0GVZKii7JaSAlWSkRRl18vVExt90TEly7TAtQzQbROnG743ZOu9YjGbm043y3CYQ3//BLGKkQQBGUFABguPruIwB7ptg3khW23G4IDBYU7QZozB9tpO6Lop/WCwnej9resdMIZphcRgs9NZzomhjVAkIBLzxXQsnGlWAhHydKOEsWYZBb3esTEEjp/WG1KVlI6NQRAEsdwgcZIgljkXDK5b9DMcxmA6dpuY6QqYvpgZFjzDsJlaoeZ9247hwdC5hOXguh0XnOVOt0Pg+TZxUYDkGR1+X3sZ1D3DhCA6QdMypiwWnmqUYHZA2FcE0c0PqQ5gY9It84pKQiRBEDMiCyLedsFzIn2mbaNiumJlxdBQ9UpfwHRFTA0V0y37KYfhXGmWonmp5KR6liv7H4HjXVFRkgOxMaj7gmNIhEx6fTFBpN+IZYzDHExqtSkRFiY7sLkJCIWC8xY9bcZoEz5BEIuC53jERbKtieVP3dRwRqtivFnBmWYF41oFZ5plTGp1L87G4hE4HoOxFEYSGayJZzCSyGJNPIOBWBICbRYiCIKIQOIkQRDgOQ6KIHphRruza8vath8fCbXthoarRucWioYglgqbOZjUqjhZL0XEyE6FbYkLcpC43hci3ZAttGpIEMTikQQBA4KKgdjsgp3DGBqWERIwXcGy7AuYho6K6QqcZUND01par8yzkVwzI1q/ogABAABJREFUFGlXjp1E/cwE1OHBJRlf9iIuuIdbl712TBAhC+HzrWsSgcDYEiIVEhlXPKZj4VSjhBP1Ik7UizhZL+J0szObmwAgryS9MHCtYyCWJE9JgiCWBbZt48SJEzh8+DBUVcUznvGMXk+JWAFYjo2CXnPFx2bVEyBdIbJhGR0bhweHwVgKa0Ii5Eg8g8FYijbKL3d4DhAorCtBLAUkThIEsSSk0+lIu1wun+VKgug+pmNjQqt6BkslMFhON8qw2OIXDHlwGIqn2xYMc8jIcVqIJgiiL+A5DklJQVJSsFZNz3q96dhomAYsxmA7DmzmwGJOq+64h82YV0bP247fZkG/xVr3tkr3+QDAcRw4wD28ujW4Ef+d/iQalUowN+XxI3jB0y8FBy64FnC/i73/AeCCjSDh5/nh3WOiJzLyLUGxXWSUBZE2kxBnpWkZONlwBcjj9QJO1os4M8fckLMREySsTWQxEnqvGElkEROkDsycIAhi6fnIRz6CW265BZbl5rP8nd/5HXzzm9/s8ayI5QJjDHVLD0TH8WYVZ5pljGtVFLRaR357fTgAA7Ek1sSzgTfkmngGw/E0RJ5ydRMEQSwGEicJglgSMplMpF2tVuE4DnjaUUZ0CcYYKmazTYB0d06W9HrHzBVVVLBOzUWEyOF4BhIZKgRBrCAkXkBGifd6GgCAn159Nf7lX/4laJ984GG89q8/2sMZEauNqtHECU+IPFEv4ES92JGwrBw4DMVTwaYm/72C8k4TBLHSyGazgTAJAIcPH+7dZIi+xXJsTGo1nNEqkVCs480qmnbnvCB98ooaCcU6knBFSImn5XOCIIhuQN+uBEEsCe3iJGMMtVptikclQcwXw7YwrlUx3iwH+SPGtQommlXojjX7A+aIwPEYDrwhWwuGKSlGC4YEQRBLyDXXXBMRJ3/84x+jUCggn8/3cFbESoQxhpLRCDwhfSGyYjYX/Wx/c1OQH1LNYg0tgBIEsUoYHR2NtEmcXL0YtoWCXsOkVsOkXkPBKye0CgpavaNekEArJ+RQLIWheBpDsXTgESkL9BtMABzPgetReNVejUsQvYK+dQmCWBIGBwfxR3/0R8hkMsEhSRSKipgbDmMoGw13t6Tme0K6QmSn8kGGSUvxliek6oqRQ7EUhW0hCILoA6688krEYjFomgbAzVl1xx134LWvfW2PZ0YsZxzmYEKrBvkhfSFysZ4ZHIDBWBrr1RzWqzms8zY4peT+8EQmCILoBZs3b460JycnUavVkEwmezMhoms4jKFqNgPRcVKrRcTImql1ZdykFMNwLI2huCtCuvU0cooKgXIzEwRB9AUkThIEsSSoqopPfOITvZ4G0cdotomSXkdBr6Oo17yyjgmtigmtCtNZfC7IdjJyItgxORxLe7mcMlClWMfHIgiCIDqDqqq48sor8d3vfjfou/3220mcJOaE6diY9N4tJrQqxrUqxhplnGwUF/2uIXA81sQzgRC5Xs1jbSILhXJDEgRBRGj3nASAI0eO4ClPeUoPZkMsFtOxUNDqnvhYDcTHgl7HpFaDxTpvywMhL8hAfEwFImRclLsyJrEKEDhA6JGALZDnJLG6IHGSIAiCWBLOJj4Wvb6GpXdlXIkXAgMlECLjaQzGUrRYSBAEsUy55pprIuLkXXfdhUajgUQi0cNZEf2C7Tgo6LVAfPSFyIlmFSWjM3mnJV7AukRLhPRDtFKUBYIgiNmJx+NYs2YNxsbGgr7Dhw+TONmn2I6DitkM7Hk//KovQnYi3PlMpKQYhmKuHR+26/OKCp68IAmCIJYtJE4SBEEQHaFX4qNPVk6EjJW0t3syhbScAE85IQmCIFYUL3vZyyAIAmzb3YnfbDZx991345prruntxIglw2EOinoDE1ql5QXZdMui3tkcVXFBDkTI9WoO61Q33DstiBIEQSyczZs3TxEniaXHcmxUjCbKRgMlo4Gyd5R0v95E1Wx2OPPjVNJSHPlYEnlFxUAshQEl6YZkjZEXJEEQxEqFxEmCIAhiVgzbQsVsouIZJhWjiZLRWFLxEQAUXnTFR2+35LAnRA7GUpS8niAIYhUxMDCA5z73ubjvvvuCvp/97GckTq4wHMZQMRrTekBO6jXYzOn4mGkpHvGGXJ/IIaeo4GijE0EQREcZHR3FQw89FLRJnOw8vvDoi46lKcJjAzVT67rwCAAixyMfS2JASQblQCyJvOIeZM8TfQPP9S68Kk/vm8Tqgr75CYIgVjGGbaFsNFA1NVSMBiqmhorRbAmRXl2zzSWbU0qKIaeoyCtJ5BQVOUX1PCFTSEtxWhwkCIIgAACveMUrYBgGXv7yl+Oaa67Btm3bej0lYp44jKFmaijoNZT0Oop6w60brXo3ck4DrRBxg7EUBmMprFWzWJ/IISXHuzIeQRAEEWXz5s2RNomTc8d2HNQtHTVTQ83UPHs+6v1Y8oTHpSQpxaYVHwdiSaSkOEU0WgJsx8akXoEqxqBK9E5DEER/Q+IkQRDECkSzzUBYnE5srBgaKmYDum0t+dymEx/zioqckkROSUDi6aeJIAiCmJ23vvWtuOmmm3o9DWIGbOagYjRDkRZqKOkNFA03BHxRb3TF+9FHFZVAfByMpTAUd8uBWAoxyjtNEATRU9rFySNHjvRmIn2AwxialoGapXmCY0t4DIuQfn/TNnoyT5ETkFMSLY/HWBIDSsprq1Dot3VJqZtNnNFKGG8WcUYrYrxZwqRWhgOGF6+/GBcO7uz1FAmCIGaEVoAJglgy3v/+9+Pb3/42yuUyyuUy3va2t+Gv/uqvej2tvsdybDQsA3VLR8PUUbfco2EZqJta65ylo+4ZK7qz9KKjD4mPBEEQxFJAnvS9x3LsSJj39qNsNDqa+3E6YoLUEh9jKQzGfTEyjQTlqCIIYoWyp3QKEi8gJkiIizJiggRFkJaVZ9pK9py0HBuabUKzzUBUrJsaahGhsdVumHrXfy9nQ+IFZOUEMt6RVbwy1JcQZXr/6gE2c1DQyi0hslnCuFZE3Tq7Z+wZrbiEM1xZcDwHrkfhVXs1LkH0ClohJghiyTh16hQeeeSRoF0srr6XJdOxUDejYmIjEBt11C1jSl8vvBvPhsyLSMtxpKU40nI8JDq6AmRWUSHxQq+nSXgwxmAxmwRhgiAIYl4wxtCwjCDPdMVsompoXtnKO101m0uylCrxgic+tsKwDsZdMVIVFVooJQhi1fEv+/57ip3Iwd2wERNkxEQJ8VAZF9v6PVGzdY17XuD5JfsztIuT4+PjqNfrUFV1yeYQxrWdHGiWAc02odtWIDDqXjlt3XLLZuhcN6MCLARXeFQDwTEjx5GVVWTkuCdEqogLEv2e9gENS8N4s4QzWhFnmp43pF6e92dqvFnqzgQJgiA6CK1WEsQyhzG2bF4g0+l0pF0ul3s0k/nBGIPhWIGBogdGR7jeOqfZJnRn6rmGpXctb9JiUQQxEBxTXpluK1NynEKg9TEOc1DQqxhrFnCmWQzKc7KjePGGS3o9PYIgusCh6jjAGFJyHCkpRqG0iFlxmIOaqQciYxD23ctVVQ21l3JhVeB4ZOVEEHEhfAzGKOc0QRBEGIc5025gZQCankiGBUb9lHjBEzN9AdMVLRVBgsBx4DkeAseD5zjwHOfV+dC5Wa4BD57nIYCDk5uaD+/nex7Djt07YTMHtuO4ZXCws/Q7kX7Hv+5s13p9UbHRtd/7TVScDQ4cVElBUlSQkuOBl2Pg7ai49RgJj32Ha79XXC9ILyzrmWYJdavZkeebjrWs1gv7Cp4DhB79dyPPSWKVQeIkQSxzbn3iXhyujkPiRciCCJkXIPEiJF7w2uG6e07mRUiCAJkPnffun64u8kJHwsNkMplIu1KpLOg5rrFhw3IcWI4Ni7mlzRy3zz/nlXZb22I27NC9hm0FRonuWO7OR8dre0ZKbwOsLJyYICEtucJiVHCMIS0nkJJiSMtxWtBeZliOjXGtFIiQY80CxpslWGyq+D3WXH0eygSxWviPwz/Hsfpk0Ha922NISa5YmfK+/916zP0tkOJQJQUCt3SeEUR3YYxBs000LcMVGUPCY9jbsWI2UTN1sB681Ui84IqN8lTxMaeoSEnxZRWKkCAIopdoXYysYzo2TMf9zVgK4rk0msXWusAnfvxNbDWetiRj9ysxQUJSirmHqLTqkltXxVY9Icrg6Z2u72lYGsa1EsYDIbKECa3UETFc5AQMxbMYiuUwHM9iOJbDUDwLRaDQ9gRB9D8kThLEMsdwLFecs42uJkWXQqKnv3TEgYPfaC0nca3zXOsMB+B/qsciz3z0xEH87a/uCN3hXc1xgLfb0fJ2NYaFRYctV6lw8cQFGaqkICHKUEUFCVGBKilQRfdIeHVfiJQF+ppf7ui2iTPNAsZC3pB+kvu5MK4V4TCHjFaCWIFU2xYODcfChFbDhFab8T4OgOoLlp6QmW4TMf3+5bLTnjGGX/7yl7j99tvx2GOP4Vvf+lavpzRvbC+UXCM43PzSTb9uG1473O+Wvc5TFROkqODYJkJS6FWCIIjOYToWcooKzTKh2cay3UgLAJmRwZY4yXFoFBa2gbmfETkhEBPnIjqKlCZlWcIYQ81qYlIrY1IrY0IvY1KrYFIro2nrHRkjLSUwFM9hOJZ1y3gOWTlJtj5BEMsWWrUmiGWOsURhQt0dlIsby1SiL0yVUhlnmivP+JgLHLiWwOgJilPbClTRFyMVxEWZPF1WOHWz6XlCFgOvyJIxs8gwG6Zjo6hXMRDLzH4xQRDLBsYYqqa2sHsB1EwNNVPDKZRmvFbihUDETEoxKF5UBj86w9nbEmRegCJIXlvo2sLJ0aNH8dznPhdHjhwJ+vbu3YudO3d2Zbwwfm5f/z2pdViRdrvo2LQMT2xsCY2abXZ9vgtB9ULFpb3PQdqLxhAWIOMi7c7vB+qmFkRUGGsWsCuzCefkNvd6WgRBdJiMnMBfXHg1ADeqkGFbaNpG4EWv2QaannDZtMzgnGYZaIZK/7enl6FML33d1WCMIb9pLbLrhyEq/fN7wnOcm6dTEKEIbq5ORRAREyQoguTm9xRbdfeaaDsmSO4Gb9qgs2JgjKFs1DGplwMhclKvYEIrw3A68y4ncgIGY5moEBnLIiYqHXk+MQs8ehdelZb8iFUGiZMEscwxuxjSpdOoA1FxZOLgcZRPjSOzdqhHM1oYIsdD8YyNduNE8QyXcDsmSFB413BRPU/HmCBT+LJVjGvQ1DwR0veKLHYkv0RSimNNPI/heA5r4nmsieeQltQOzJogiH5CdyzklASqhgbd6W54t4JeR0GvL/pZIidML2a29cm8CI5rxWLggGBRjwMXRGbwf0UZx1BpRDdyfOz/3Yrff+sbg3v8YA+c///ezVabqGiFxEUj0mdNI0Da04bTXg7w4JAMecyGc067ZQxpT5AmD47+w92c0Ag2NPliZK3NmzomKCROEsQKh+c4xETX1lwI/iabQMQMSl/IdNuGbbn5HMFgO27pOA5sMDjMgePlhHRCOR+nlq1r/PIpL3hmcE047Lifs1IM8lXyEHivDA4OAi+4JRc9x/N8cK/oPav9GVNERdETHL0+keNJVFzFOMxBUa9FRMgJvYyCVuno+19SimM45npBDsWyGI7nkFNS5A1JEMSqgMRJgljmvGH386HbFgzHPUzHhmFH6/4Cm+FYMO1Q3bG9ttfnXWt1aefk+gt2QUkmoNcabgdjeOTff4Tn3PjKjo0hcDxEnofICRB5HoJXiqFS8AwVkRcgcjzkGQRFRZSg8C0BUhFEWqQj5kXD0jChtQyaca2MM1oRegfCMOfkVESEHI7noUqxDsyaIIh+JyZI+POn/TYAN/xz1dRQNZpuaTZRMdzSb1cN11Oyl+E/LWbDsmzU0ZnQVmE2XnYBit+9N2j/x3f/HanfenrHx+l3RI4PcoumghzTnuAY6lMlhRa9lgmMMZSMWssjsuGKkXMJETfWLCzBDAmCWM5wHAeJEyHJItKI93QuDmNgjIHnOBIFiSXDcmwUPc/HSb3ieUKWUdCrcDq4NiZwPAZimZYQ6eWHjJM3JEEQqxgSJwlimTMUT3f8mQ5zXG8B2xM4feHTdus+rK3mp4JkU/6/xenrrsXX//n/Be0Ddz6AT3/47yCKond/6z4hJCD6pcC3i41en7f7kYwYohcwxlwR0ttVGYiRehkNa/GL8Dw4DMaygQC5Jp7DUDwHRVjYDmmCIFYW/gabwVhqxusc5qBhGagYUdHSFzHD/f0aYvRs7HjeRfh1SJw8+dh+GE0Ncnx5btiQeAEJL+R7QpQRFxUkBBlxrz3lnFd3vU7pXWi54jAHBb3qiZCFwDNyoWHiJrQSbMeGQBvrCIJYBvAcB9BvGNEFGGOoWxoKeqV1aBUU9CrKRi3itbtYJF7EgJLGQCyDASWDgVgGg7EMMrJKG8OWCRzPgRN6813E9SqcLEH0CBInCYKYAs/xiAk8Yl0QPt71tj+JiJPjp8dw4qHH8Nu//dsdH4sgOs2UJPeeADmhlaF1wBMScBek3d2ULW/IwViGPHYJglg0PMcjKcWQnIOHtelYqBoaKr73paGhbmlBdAbdi7YQRG8I9fvtpfTSXHve9mgHY9Aq9Z6JkxIvRI7YNMJiXJSREEJ171xclCHRd/6Kx3ZsTGjlUI5IN9/0YkPF+e8Rboj3PBww0KeJIAiCWA2YjoWiXm0TId12p/JB+iiCjEFfhPSEyMFYBikpQRvFCIIg5giJkwRBLCkXXHABLrnkEvzsZz8L+j73uc+ROEn0FX4uJz+vRCvHRKUj4Vh94oLihWVtiZGUX4IgiH5A4kXkY0nkY8kF3c+8/FLh0POG7R56SMyMtk0YXpQGBgbvfwAYHPehgdzJgqgNbmmnpgo6I1wC69JrvOu9uxim5LRyBURxiqAonqW//XqxrY9yVBFh3OgKOgreZiZfiBzXSosOF6fwEtYk8kF49zXxPL1HEARBECsa31aPekC6R8VsdHy8hBjzhMeoN6Qqxuh9b6XC8+7Rq7EJYhVB4iRBEEvODTfcEBEnv/e97+H48ePYsGFDD2dFrEZMx0LZqKGoV1HUqxExMhzCeLEIHO8ZMa5BMxTLYk08T7sqCYJYsXAc54VgF6BiaXLp/H+pFKrVatC+cvAcXHbuZUsyNkE4zEHJqKGgVTCpV1DwclcV9EpHoiskRMUTIVtiZEZO0nsEQRDLHsYYxsbGsHfvXuzZswfbt2/HC17wgl5Pi+gxum1OCcNa1KsoGhWYzuKiDExHSkoEwuNALI1Br045IQmCILoHiZMEQSw51113Hd7+9rejVqsBABzHwRe+8AW8973v7fHMiJVI09JRMmoo6VWUPCGyZFRR0muoWc2OjiVywhRjZjCWpfwSBEEQS0A6nY6Ik+VyuYezIVYqkcXSkABZ1KuwF+kJ6ZOSEhFvyDWJPJJinIRIgiBWJDfffDM+/elPB+3rr7+exMlVgMMc1MwmSkYNZaPmlnotaNctreNjipyAnJJCXkkj75exNPJKBkoX0hoRBEEQM0PiJEEQS04ymcSrX/1q3HrrrUHf5z//ebz73e+GIFBWHGJ++HkgS3oVRb3mCo8hMbJTuSDD+EnuB2PZwBtyUMmQBwNBEEQPSafTOHHiRNCuVCo9nA2xnPHfLVwvyHLLG1KvoNrhkHFZOdnyhky4gmRC7E2uVIIgiF6wefPmSHvPnj29mQjRcTTbQEkPiY++EKnXUDbriw5vfjZSUiIqQHoiZFpSyV4nZofn3KNXYxPEKoLESYIgesINN9wQiJOXX3453vSmN8FxHBIniWmxmRMYMb7XY9Ery0YNFut8WBcAkHkxEB4HYtkgzwQZNQRBEP1HJpOJtMlzkpgNy7FRMqoR8XFSq6Cgdza8O+CGeM8raQzFs5HQrIogd3QcgiCI5cauXbsi7b179/ZoJsR8sR0bFbMRbA4uG/WIENmNjcI+Ei+2hEdfiIylkZPTkAVa7iYIglgO0Lc1QRA94RnPeAY++tGP4rd+67dwzjnn9Ho6RA9hjKFp66iaDVSNhlt6R8VooGLWUTHqYGBdm4MqxpFTksgr6SAU66CSQVKiEGoEQRDLhXQ6HWmT5yQBuGHjKkYDRb2Cgl5tlUYFZaPe8fHigoIBL0ScW6YxoGSQlhMU4p0gCGIadu7cGWlPTEygUCggn8/3aEaEj26bqLXb50YNJaOOslFF1Wx21U7nwCEjq8graeRCAmReSVO4c4IgiBUAiZMEQfSMP/uzP+v1FIguwxiDZhuuIWPWpxUfa2aja56PPr5Rk5VTyCpJZOUUckoSWTmJjJyinZUEQRArAPKcXL0wxlC3NBTD4qNXlozO5YL0CS+WDsQyGAhyVqUpJCtBEMQ82bJlC0RRhGW1PNb37NmDZz3rWT2c1combKeHj1qbvd7pKALTIfECMnISGdm1z7N+3bPbRZ6iaxFLDMcBfI82lJHgTqwyaDWWIAiCWBDTGjRGHZWg7pbdFh59RE4IDJiskkROTiGrpJCVk0jLKgTyViAIgljRkOfkyke3jaj3Y6jsxgKqxAvIKxlPhGx5QeYUWiwlCILoFJIkYdu2bZFckyROLhzGGBqWNlV4NJs9sdM5cEhJcWQ8O93dNOza7RlZRUKMkQdkB3D/3psoGiWU9BLWJkYwECPvY4Ig+hsSJwmCIIgAxhh020Dd0tCwtCllw2y161YTprM0Bo1PTJDbxMeWGElhXQiCIFY35Dm5/PE3PpWNGspG3c0H6YmPRb2KuqV1ZVxVjAVhWF0vSNcbMiUl6N2CIAhiCdi1a1dEnKS8k1Ec5qBpGWjaGhqWjoaloWnpaFg6mpaGhq2Hwq824XQ4YsBsxAQ58Hz0vR79dlpKQKANPR3FdEwU9dKUw3BaOT6fPvg0EicXCs/3znOyV+MSRI8gcZIgCGKFYzMHTUtH3Wq6hozZRN3S0fDa9bZyqQ2ZMEkxjpScQFpSkZQSSMsJpKSEu7NSSSEmyD2bG0EQBNHf+J6TyWQS6XQaqVSqxzMipkOzdJSNOspmPRAhy0YNFa/sVgg5mZeQ9/JV5UJlTklBEaSujEkQBNEtJrQyJF5ATJAh89Ky30jRnncyLFSuRGzHRsMOi4wtsbFht/pc8VFH09Z7Ot+4oCAlJZCU4kjLajQEq5IkO71LOMxB2aigqLvekEW9hKJRQs2cPWd2SS91f4IEQRCLhMRJgiD6BsdxcN999+GRRx7B29/+9l5Pp+9gjMFwLOi2AS18WG6p2zo02wyMGF987LUh4+MLjynJP1SkPOMmJSWgSnEKvUoQBEEsmHe961245ZZbIAi0O7+X6LYRCI7h0hcfdcfs2tgCxyOnpJBX0sjJUREyISrLfvGeIAjC51/33w3Ndr2kOHBQBAkxQQ4ORZARE+VQnxI9551X+kTY3LVrV6Td7+Kk7dgwHAuGY8KwTbful6E+3TbRbBMhG5YOo4u/hfNFFWMhGz2BlJxAMtROSnFIPC0fd5MgJKtebHlCGiWUjcqCN48XSZwkCGIZQL8uBEH0nHK5jH/4h3/A5z73ORw8eBCSJOHVr341hoeHez21juOHTfWFRd02Q0KjHu23wte5JQPr9R9hWlQxjlTI0zFs2LgGTYKExyXEdEwUtCImtALSchIbkxt6PSWCIIiuI8u0a7/b+O8xVbMRFSDNlvejv1jeLThwyMhqS4QMlSkpAZ7eNwiCWOH4IbCDNlhgN86XsLCpCHJE4AwETMEVMQVegMDxEDgefFt5tj6/PZsA2i5O7t+/H7Ztz3nDEWMMDAwOY3CY4x4ztG3meCJim8A4pS/UDgRIE3YPow3NFQ4cklI8JDL6dnpr03BSjFPI1SXGsI1AfAy8IfVyJCTrYhA5ETklSyFdFwPPuUevxiaIVQSJkwSxzPn+0QdwulmAzEuQBREyL0HiRci8CFnw623nIte550RO6NmOScdx8IEPfACa5uYRMk0TX/7yl/Fnf/ZnPZkP4IbPMB0bpmNNexjT9rvXG7YZafuH7pjQu7xg10lkXkJCjEEVY1ClGBJiLGj7ZUomg6bX6LaOglbEpF7ApOYeFbManB9NbiRxkiBWKJNaBQLHQ5VitKOdWDCWY3vh37VQyHcv13R77uklCv/OgUNKiiMjJ5ELhWHNK2lk5CREeu8gCGIV00kP9MUIm/OBBweB58GDd0uOh8AJ4DkOAsejJlQi1+u6jo/96MsY2DAMmzlggajIwOCEREcWCI+rBYWXEBdjSIgKEmIMcVFBQlSginGkQ56PqhijDTs9xHIslI2KK0Aa5UCIrFuNjjzf3ayVRlbJIucfchZJSe0Lb2iCIIi5QKsYBLHMKehVjGulRT+HAxcRLmVehBSImq26xIvgwYPjXAOD4zhwoZJva7f6cPZrBQ5XXfNSfOdr3wrm8w//9I945Y2v8XY3OsHuRr9t+7sfGQvVncBgmdIXMmDa77WmERgtZi/6v2m/wYGLGC6uMRNviY1SS3SMiwotdPchmqWFREhXkKyZtRnvmdSLSzQ7giCWmu8fewAnGxMA3IUqVYpDFeNQpRiSkbLVHxcotOVKx/eomU5YjAiOplt2M8zqTKSkBDJe3qq0rCLrlRkpiZRMERcIgiDOhm4b4MD1bVSd6XDA4Dg2ABuYZo8LSzDEkglotZZw8+SeJ7FrUFm6SfaIuODa6FMER6FdgIwhLsi0MbjPaImQZZSMkleWUZ3FTp8PCTERESBzShYZOU2fBYIglj208kwQyxzTsTryHAbmhSoxATQ78sz5MPKSc4CvtdqHDhzE33zj09h28blLPpflwpScIV49LshISJ7HY0iEjIsy7ZxcRjSsJia1yUCELGiFBe2yrJk16LYORVj5hj1BrDZqZuv3WndM6LqJgl6Z4Q6A5/jg9yEqXsaQDImYqhgn77Qe4TAHum1C90LH6V64d90LMRdu617b8OoNS0fT0vrCgyQpxZGRkp4A6YqQvhCZlhK0oEYQBLFAMnISf/rUV8FwvBQhoXQg7WlB2s/3a7oQjuMwtGUtjj1yIOg7+eQR7Hr2BT2c1dxpj1gVrsdFJRAgw0JjQnTzgJKNvjwIREijHAiQJb3UURFS4kXk5GzUG1LJki2/1HA8wPfo3yV9HxCrDBInCWKZ00+J1BfD5gt3YWjLOowfOhn07fnpr1e0OMmDc3N48G4uj+mExplyfpDny8qAMYa61XC9IT0RclIroGlri3ouBw5ZJYvBWB6WY0OhNWCCWFG43x3z30zkMAdVs4Gq2Zh1L1JMkCMiZkKMQfIiKoicG01B4gWIXjh5kRe8vtY5iRdX9KIbYwwWs2E5NizmRV9w3LbJWnUjEBJN6I4rLhptbV+M7NTGs26jivEpwmNGVj3xUSVxu0c4zEHZqKCoF5GW0hiMD/R6SgRBdAGO41y7UJCRmWfKZcYYDMeCZust0XIagTMsZhq2CbstEpFfdirq0ManbI2Ik0d+ta8jz23Hj+IUFRPdtDhT6v55wesP10PXk22+crAcG2WjjLInQha9smbWOibq+yFZc20ipCpSSFaCIFYXJE4SxDLnResvRtPWgwTuZpCk3QoWuCLtUDL3foLjOOx45nkRcbJRrs5wx9Lj5/KUZjnkKYuzXr8gRYRGiYyYVQdjDFWzhkIoP+SkXoRu64t6Ls/xbtJ7JY+BmHtk5SwtDBPECsZwLLhB07uHvzA5qZcX9Rye493fQk6ICJdim4jpHyIvBH82//9bP5fclD6/xzQM/PQHP0atWkO9WkO9Wserb3wt1GTSvY7jItcDgM1smI4vLrpiohmqt7fbz62kMPAcuLbQ79Gw761DIc/aPoAxhqbdRNHLYVXQiyjqJZT1ChwvZuI5uV0kThIEMQVX2JSgCBIyHXpmOG2KzWyvbk8RMm3HS7niON61ofMvOIP7v/YDAMDm7Vtx8VMuxMs2PRs8x3sH1yoxXdvv8/rbr+H4IDUNQZiOhYpRCfJC+h6R1Q6KkACQkpLIyhlklYzrESlnkVHSEDh6j+pbeK53npM8fT8RqwsSJwlimbM1vW5B9/k7/c8mXBq2BdNpP+eKnw4YGGNgbeXUfsBpvw6srQ9gzA0+pibU6BwNG0kpDiEwLHi3HhgY0bYQ6XP7hcBI4SGE7gvfe3ahsbVYKnICGTHEnPG9IX0jp+jlnyjr5UUvZAucgLySC0TIvJJDVsmQcUMQqwxFkPDH518HwzFRM5uoW5pXNlGf0tbQXOQmiMXghik10O0ZGE0d77n+5khf6jmjGNgw3OWR+xeZl7x80i2x0Q/9HoiPXhkTZHrX6VMsx/K8N1oiZFEvzbq5qaiXlmaCBEGselwbGxAhAJAW9IyRV/wBnrJ2O571rGdhcHCwsxMkViUOc1Azaygb1UCIrJhuvbGACCQzkQyJkDnZFSIzchoiT0vvBEEQZ4O+IQlilcJxHCQvJJs6++VLwvimR/AD3B60N0iDeMu5r+jhjAhiZhhjaFjNIN+EK0SWUDbKHQnLJ3IiBmI55GN5DCp55GN5ZOT0ig6RSBDE3AmHdBuYxffBdmzULW0WEdNt28xZoj9BZ5FiMnhRgGO1NoHUi5VlLU5y4CALEhRe9P6u3RByrseLHKpLQTh4X3CMiwokWhBbVjDGUDNrIW/IEop6ERVzYdFEinoJjDESnQmCWBYMDg7iZS97Wa+nQSwz/EgCvgBZMaquCGlUOu4FCQBJSfVEyGwgRmbkDL1zEQRBLAD65iQIom9IJBKRdrPZ2Z1sBLFQXINH8xLfl9xSL6FolGF2KO+rzMuuEBkKzZqWUrSgSBBERxB4wc0FKM+8JYkxBs02XCHTbKIWEi2blg7Ti6JgOl5+RRZt9zJfIsdxyK8bwsTR00Hf8ccOYtP525d8Ln7UBZF3j7CgqHh1V3SUAtFR8fJYhUVIymP1/7N35gFSFHf7f6q759yZvRA55VgUEbxQAeWIB8E7IolKDHigxgOvmETw9YiaGEM0osRA8IoQUTGo+DOJ8QLUKIoQFbnkEhFBQWXvObu7fn9Ud0/37Ozu7O6cu9/P+066qqaPWtmdqaqnvs+38xLVYqiJOiMhq6M1UHlm/oZKFD8qPOXQuAaF0bSfIAiCKG5iWkwIj3EhQNqFyEx9d9opUUpQYQiPIhpS2LG6pPZFBhNFhMTyZ69Ktq5EF4NmKQRBFAw+n89RJ3GSyAcRNWIkva9JRERGaxHVYxl7hkf2OPJDdvNUIOAK0AI0QRB5hzEGn+KBT/HgAG/bM1FxI99UQsS0CZlmnSeETNUmaprnqlwD52KXu7nb3aw72+w1URp63BF4xyZO7lv/JfqWdE95LiCsss38l6aY6GJGXTLeY4olMtpFx2QB0qzLTKLPc8IirquojdUaOa1qDRGyGo1qKCP3V5iCCk+59TLt3j2yJyP3JwiCIIhcEdViaIg3oCHeIATIuGnHWo+IFsnKM0sUv8gH6S43jkKMJBGSIAgi+5A4SRBEwZAcORkKZWbRhiCSiesq6mP1qI83oD5eb+y8rEdNrAaRDOZlc0mKbZJTjgqPmOj4ZB8tXBME0SlhjFmCnQ+5F0fqTvsc77z4hlXfs24HfnbwqTnvB9H1iKgR1JgiZKwWtdE61MZqMyZCAkCpK2iIkBWGEFlOm5sIgiCIoiGuq4b42GiJkPVWuRGxDG4ItuORPSh1BVHmLkWpO4hSdynK3EEEXUHKCUkQBJFH6BOYIIiCgSIniUwS1aKojzWgLl5vCJBCiKyP1SOc4V2XClNsuyzLDduXMvgVPy0YEgRB5JDRo0c76jt37sTu3bvRp0+fPPWI6EyInJCNiUhI41gbq0M0g5ubPJIbFd4KVLgT0ZBlHspnRRAEQRQ2GtfQGA8ZomNT8TFb0Y+AcMModQdR6hLCY6m71HgF4SU3AaItMAmQpPw9myC6EDS7IQiiYKDISaItmHkg6w27FzMSUpQbsrLrUmayZfNiFyIDSgmJkARBEAXA0KFDUVpairq6Oqvt/fffx3nnnZfHXhHFhqZrqIvXCxEy6hQhNa5l7DkSJJR5Si0RssJbgUpPOTksEATRpdm3bx/effddrFy5EitXrsRpp52GO++8M9/dIgDoXEdIDdvER2cEZCiDbgGpYGAIuEos0bHMVWpFQdLGYIIgiOKDxEmCIAoGipwkktG5jkY1lBAeTSvWmIiGVDO4QGhHYpIQH00h0lOOCncZWacRBEEUOJIk4YQTTsBrr71mtb333nskThJN4JwjqkUNEVIIj7VRIULWxxtsGUozQ8AVQLm7VIwpDEvWUncpZCZn9DkEkQ6xWAxbtmzBpk2b8M0336Curg5+vx8VFRUYMmQIhg8fDo8nM5FGe/fuxcaNG7F9+3ZUV1dDVVVUVFSgR48eGDFiBPr27ZuR59jZtGkTNmzYgN27dyMWi6F3796oqqrCqFGjIOUrGoZIm4ceegh/+MMfrLrb7SZxMstwzhHXVYTUkPEKpzyG1UjGvx9T4Vf8CLoCQoB0l6LUJSIhg+4AfW8SBEF0IkicJAiiYKDIya6FznWE1TAa1RAa4yE0GhOhxnijVc725Mev+BB0BVHqDiLoCqDMXYYKjxAhJbLTIAiCKErGjBnjECdXrlyZx94Q+cQuQNbF6h15puvi9Yjr8Yw+T2ISylylKPOUosxdhjJ3KcrdZSh1U04rIv989tlnWLp0KZYtW4aVK1e2uBHU7XZj4sSJuOGGGzB27Ng2PSccDuM///kPXnnlFaxYsQKff/55i+cffPDBuOqqq/Dzn/8cZWVlbXqWHc45HnvsMcydOxeffvppynN69+6Niy++GLfffjtKSkra/SwiuyRbtH/44YeIx+NwuVx56lFxY0Y7Nis6xsVR5WrO+uSVvQi4ShBwBRC0jgEEXAGUKH7IEgmQRB6RWP5sXSXaDE90LWiGRBBEwXD00Ufjk08+gc/ng8/nayJWEsWDfQKUL+ERSNi+CAEygKAriKAhRAZdAVooJAiC6IQkL2p+9NFHCIfDTRwaiM5BQoBsQH2szhIizWOmBUgAcEtulLlLhfjoKTPKZQi4SmhzE1GQjBkzpk0bNWKxGJYsWYIlS5Zg2rRpmDNnDoLBYKvXLV26FBdddBEaGxvTfta2bdtw880346GHHsITTzyB0047Le1rTfbu3YupU6fizTffbPG8PXv2YNasWViyZAkWL16M4447rs3PIrLPCSec4KiHw2F88sknGDFiRJ56VHiYkY5RLYKoFkNEixjz76biYzbzPDaHW3I3ER/FS5Qph3L2iOsx1Mdq4FMC8Cm0pkYQRGFD3wYEQRQMJSUlOOqoo/LdDaIVVF1FWI0grIXzKjyayEwWYqMhOpa6gggaQiQtEhIEQXQ9Ro4cCUmSoOs6AEBVVaxZswbjxo3Lc8+IjhDRoiL60RIe6yzL92zkmQaEw0KZYfNe5k5ERPpkL9m8E0XF5s2bU7ZXVVVh4MCB6N69OyKRCLZs2YKNGzc6znnyySexefNmvPbaawgEAi0+Z/fu3SmFSZ/PhyOPPBI9evRASUkJ9u3bh9WrVzvyA+/evRtnnXUWnn32WZx//vlp/2yNjY0488wz8dFHHzna+/btiyOPPBJerxebN2/Ghg0brPe2b9+OU089Fe+//z4OPfTQtJ9VSHz07SdgjMEteeCV3fDIHuMlym7JXbSfU926dcOQIUPw2WefWW0rV67stOKkXWiMaFFEjVck6WiKkGZZh563Pptz8IBNeLSLkB7Znbe+dRXEhvB61MWqURerRn28BnWxaoQ18Rk8rGIEBpYOyXMvixSJ5S+CkSIniS4GiZMEQRBdHJ3rxqQngrAqjhEtgogaQdh+1KKIqJGc2r2YuCSXlXMi6Ao6yn7FV7QTb4IgCCLzBINBHHnkkfjkk0+stpUrV5I4WeDEtDga1UZrs1NjvBEN8UYrAjJbAqQECUF3wIqEtMRITylcElkIEp2PcePGYdq0aTj11FPRp0+fJu9v2bIFt9xyC5YuXWq1rVy5EldffTUWLVqU9nO6deuGKVOm4IILLsCIESPgdjvFing8jqeeego333wz9u/fDwDQNA1TpkzBsGHDMHTo0LSec+mllzqEyWAwiEceeQSTJ0925JdctWoVLrnkEkuora6uxllnnYV169YVZWT9xurNLc7LGBjcshseye0QLa2ylNwm6gpTCmJuNXr0aIc4+d577+HGG2/MY49aRuc6VF1FXFehchVxPW7VYymExmQRMlcbe9PBLbnhV3zwK35xdPkd9RLFDy9t0skpUS2C+lg16uLVqIvVoD5ejfp4LXSuNXtNfbw6hz0kCIJoHyROdnFisRi2bNmCTZs24ZtvvkFdXR38fj8qKiowZMgQDB8+HB6PJyPP2rt3LzZu3Ijt27ejuroaqqqioqICPXr0wIgRI9C3b9+MPMfOpk2bsGHDBuzevRuxWAy9e/dGVVUVRo0a5ZioEERngnMOlasOcTGiRZOERrNdvJdPZCbDr/hR4vKjRPGLslE3yx7ZQ5MfgiAIIm1Gjx7dRJwk8ofGNYQMtwVTfGyINyJkHBvVUFbsV00kSAi4hbtCqTtoHYOuIEpcfnJZIDo9sixjypQpuOOOO1qNFBw8eDBefPFFzJw5E/fdd5/V/vTTT+Paa69tYrmZzIABA3DHHXdg6tSpTQRJOy6XC5dddhlOPPFEjB07Ft988w0AIVr+8pe/xKuvvtrqz/Xuu+/i+eeft+putxvLly9Padc6atQovPfeexg1ahS2b98OQERQzpkzB7fcckurzyokNK61umGUg1viF+L1ad9bYlIK4dINt+SGLMmQmQSZyZCMo7Nse0+SrTbJ8Z4otza3GzNmDP72t79Z9ffeew+c87TnhJxzcPDEERw65+K/DOfQwQ3xUIiIQlBUm21TdRVxrkLV47bzEkKkzvMXxZguEpMSgqMlNibXfZT6JI9oXENDvNYQIkUkZH2sGlG97da8dbGazHeQIAgiw9A3Thfks88+w9KlS7Fs2TKsXLkS4XC42XPdbjcmTpyIG264AWPHjm3Tc8LhMP7zn//glVdewYoVK/D555+3eP7BBx+Mq666Cj//+c9RVlbWpmfZ4Zzjsccew9y5c/Hpp5+mPKd37964+OKLcfvtt6OkpKTdzyKIbCEERg0xLYaYHrOOUUc97qwb5YgWhdbCDrpckiw8WuIjCY8EQRBEFhkzZgzmzZtn1VeuXNmmRU0ifTjnCGsRR8Rj8jGcg3xXDMxyVih1lxrlUpSSAEkQWLVqFQYMGNCma2bNmoXly5djzZo1VtuiRYtaFCcnTZqEq666Ci5X+lHHgwYNwmOPPYYf/ehHVtsbb7yBvXv3okePHi1ee9tttznqt956a4t5JLt164bHH38cJ598stX2xz/+EdOnT0dpaWnafc43US07keSAiAAMa2GEtebXiTKBBAmy5BQuZSaDMQngHKF+zg20e/bswV/ffQzdeh1giY2pBEiz3JUwBWWf4nVGPCYdad5dOHDOEdFChh2riIasi1ejMV6Xkd9fBmY9h/7N2wGTgHwFtNB4lehikDjZxRgzZkybdo7HYjEsWbIES5YswbRp0zBnzhwEg8FWr1u6dCkuuuiilPkmmmPbtm24+eab8dBDD+GJJ57Aaaedlva1Jnv37sXUqVPx5ptvtnjenj17MGvWLCxZsgSLFy9ucQJT6NTG6qBzHS5JgSK54JIUyEzOd7e6NJxzsZvV2Emp6qIc04Wg6BAaU4qOMcS0eF5zSKQDCY+Fj6rHoXENHtmb764QBQi5JxQ/W2u3I6bF4FN88Cle+GQffIoPbsnV5T97R48eDUmScOSRR2L06NEYPXo0NE2DotD0J110rluW7hHN7sYQQUgNW5GPjWooZxEjdgEyaIuAFAIk5ZkmiOZoqzAJAIwxTJ8+HZdddpnVtmLFihavSWUTmw5nn302+vXrhy+//BIAoOs63n77bVxwwQXNXrNz50688847Vt3n8+GGG25o9VknnXQSRo4ciQ8//BAAUFNTg5dffhlTp05tV9/zAQPD4LKDrdyDUS2KqC7KhbJJtTV06EZu6NQRoP4+AZSUBdBY22C1ffrhWhx/9ugc9TA/SEyC12a126QseeBREmWv4ikYK14iNTEtKqIh4zWoi9eg3sgPGc+QXb1H9qHUVYGguxylrgqUuisQcJVConVBgujUfPXVV3jvvfewZ88efP/995ZFfrdu3VBZWYk+ffpgzJgx7R6b5QqanXcxzPwKyVRVVWHgwIHo3r07IpEItmzZgo0bNzrOefLJJ7F582a89tprCAQCLT5n9+7dKYVJn8+HI488Ej169EBJSQn27duH1atXo66uznHtWWedhWeffRbnn39+2j9bY2MjzjzzTEe+CQDo27cvjjzySHi9XmzevBkbNmyw3tu+fTtOPfVUvP/++63a2xQqH+xdja9D3zjaJEiGWKnAJbmsoyu5ztI4R1JyOtjdtm0bGhsbEQ6HEQqFcOyxx3YokjYZneuGjYsOnevQDQtU06rFXo4n1VVTcLQsXZpeY4qRxbpb05z0+GQfvIoHXtkLn+yFV/GKsnH0yl64JJoEFRIxLYq62H7UGq+62H40qPXoFzgYR3Y7Pt/dIwoEck/oXO4Jm6o3Y3+0aT4ZiUmGUCl20JtlIWL64JO9lqDZWTc09e/fHzU1NWltqutKxHUVETWMsJFruml+6UQ5mifbd6/sNezdS1Di8qPUlRAiAyRAEkROGT58uKO+Z8+erD7LFCfTeZY9JyYAnHvuuaioqEjrWdOmTbPESQB48cUXi0qc9ClejO45KuV7qq4mBEstiqhuK9vFTMd7sYKbv0qShIOPPhhr3/7Eavvysy+LRpyUIEEx1mQ8srtlwdFWJqGxeIlqEUuEbIjXGuVaRDMUhSwxGUFXOUpd5Qi6hQhZ6iqHmzYiE0SXYevWrXjooYfw6quvYseOHWldU1VVhdNOOw033XQTDj744Cz3sO2QONmFGTduHKZNm4ZTTz01pYq+ZcsW3HLLLY5B/8qVK3H11Vdj0aJFaT+nW7dumDJlCi644AKMGDGiSd6JeDyOp556CjfffLOl8muahilTpmDYsGEYOnRoWs+59NJLHcJkMBjEI488gsmTJzsiJFatWoVLLrnEEmqrq6tx1llnYd26dfD5fGn/XIVCqvw8OnQx0cjQTiwAUJhiCZ6MSWAQOzYZY85jc2WGFG3O8wCGM46ZgMb6hLA996W/YtiIw6EbgiLnhqgIboiLhtjIdZvgqBs5JYT4aH+vqyEz2SYqeuBTfPDKQnT0KobwaImPHlrwKwISFjD7URurtoTIsJY6Ur02tj/HPSQKFXJPEHQm94SwmnqxQ+c6GtVGNKqt/xt4JHeTyMsmZcUHj+QuqsUyxlinFiZNl4aYHkfccGWI63ER6diC6KjmOaJGYQoCrhL4FT8CrpKECGkc/YofitQ5BXOCKEaSo81jsezZibb1Wck5KU866aS0n5V87uuvvw5d1zuFs4IpiJW4/Glfwzk3HH6EUBnRo4myFrXcfTSuQ+caNK6Jsi6OVt32nsa1Ds+/+ww+yCFOfr19d4fulwoGZmzMVow1D5f139DZJltOVQqzvW9rM9dLFHKz6rRwzhHVwpbwaBcjY3rmNnX5lYAQIt0VCLoqUOouR4kSFLbHRPaR8mjr2gm+h4jMs337dkuj0XVdrKenOTffsWMH/vrXv+KRRx7BpEmTcN9992HgwIFZ7nH6kDjZxZBlGVOmTMEdd9zRaqTg4MGD8eKLL2LmzJm47777rPann34a1157bYu5JgBhHXPHHXdg6tSpTQRJOy6XC5dddhlOPPFEjB07Ft98I6IA4/E4fvnLXzaZdKTi3XffxfPPP2/V3W43li9fnnLBcdSoUXjvvfcwatQobN++HYD4I58zZw5uueWWVp9VaKh6ahuUjD+Hq1A1FcjympbsUYD6RH3H91/AX995FxfTxSUpcEtuuGUP3JILHtlt1N3wGEerLrstQZJ2XhY3nHM0qvVNIiLbMvGpj1VD5zoJzwS5J3Qy9wTTcrOjRPUYorEYamK1LZ4nQYJX8YjvGskFl+yCyyibdbfkNlwXXHDb6ub7tFAn0LluCIqGsKjHjGMccc04mm1WPXGMG3mnCy3KhYEZVu9NRUfzSJbDBFFcbNu2zVHv1atXwTxr/fr1jnpr6xN2hgwZgsrKSmtzdGNjI7744gtUVVWlfY/OBGMMHmMemcmZt7mJOCFcmkKmZrQnC50adM6tjc3fH7sPrzz2T+t+tV/WYELfU6zNzZKRV48xCVKTjdFSM5umE0eFKZCZRN9LRBPMDcGm8GgKkQ3x2ozZsQKAwlyGAFluHYPucrik5tdQCYLoWixduhTTpk1DXV2dJUpy3nQeaH6XNfce5xwvvPACli1bhgULFuCcc87Jet/TgcTJLsaqVavanG9i1qxZWL58OdasWWO1LVq0qMXB/6RJk3DVVVfB5XKl/ZxBgwbhsccew49+9COr7Y033sDevXvRo0ePFq+97bbbHPVbb721xUiIbt264fHHH8fJJ59stf3xj3/E9OnTUVpamnafC4FCW5jqKL4SH+q+SyyQ7v+mc0R9SUyCS3I1ERKbCI2O9xLnkLDU+dG5hvp4bZIQWQ2Nd2wDgg6OkFqPgCtz9shE8UPuCcXvnqBxHQOC/RDWIgirYYTVCGIZXCxJRoeOkBpGCO23ppKY5BA33VJC4DQFTZfkhktSIDFJvMDEoqOjzCAZi47WkUlgYMZ1DAzGeUxKKjfdZWotkDoiQFRouiir5uKprtkWUkVdTarbF1pFXdjCx3UVcU2IjvmOXmwPHtlj2bybx4BSkhAjXX54ZS+NVwiik2HfAAwAI0eOzMpztm3bhrVr16b9rLq6Ouze7YyiGzRoUJueWVVVZY09AGDjxo1dVpzMFowxyEyGDBlA+mtDJuOGj3HUd+7YiQOUyozlRCcIznWE1EabAFljCZEdnYfbERu4Si0R0rRm9cklJI4XIIwhb/8u9OtA2Pn973+PO+64o4koaf5+MsbQs2dPlJeXW+lxampqUFNTg71791rn26+rra3FpEmT8Pvf/74ggrRInOxitFWYBMQv7vTp03HZZZdZbStWrGjxmvYmWz377LPRr18/K9eErut4++23ccEFFzR7zc6dO/HOO+9YdZ/PhxtuuKHVZ5100kkYOXKklWuipqYGL7/8clHlmgCASQN/BG7kTYzrKuJ63MiXGE9ZV812btZTX5Mv0fOgQw/C3p2JHJo71n+OcT85MSfPlpksbFjMY7I9C0vYtLhsZcVRlm0WL4n3aLGOsKPqcdTZLFlr49VoiNVAR8esjyRICLorUOauRJm70pj4VECW6OueIPcEoHO5J7gkBSf2duYCVXUNES2MkGoIlpoQLUXZFDFFW0c/b9qDiPYUFqNo6kqfM+wRF5phBd/VaMn23Z5f2qd44SHbd4LokuzatQsvvPCCo23SpElZedaDDz7oqA8ZMqTFsUpylOUBBxwAvz99G1MA6Nevn2MD9tatW9t0PZF9kn8HdF3Htm3bMGzYsDz1iChGRBRkGI1qHRrjdWhU661jKF6f0TGxBAklrjIEXWUImEfDkpXGUgRBtIVHH30Uv/nNbxwRkaYYOW3aNJx88skYMWJEs0FWtbW1WLNmDZYvX44nn3zSIVYyxnDrrbfigAMOwBVXXJGznykVtFpJpMXw4cMd9daS03f0WaY4mc6z7FEdAHDuueeioqIirWdNmzbNEicB4MUXXyw6cRIQHyouJqIOgI5Hfpj2K3E9jji3CZqGmMnBwTmH9X+cp2wDAJ1zoJXzuLEsyDnH8aOOx5rXV1t9+XrjHhxROcyKhJAgoieYrWy9lxQdkTjXea3EjMgLo65IMmQm02CRyDiarjptYNQ61Mdq0KjWtX5xKwgLmEqUGWJkqbsSAVcZ/R4TzULuCYLO5J6QjCLJCEgBBFwtW++K3FIxhNUIQskiZpKQmcn81fmEc45P3/4E3371LX449VQx1sl3pzKIzGTh0GCzdvfKiShHRxvZvhMEkQbTp09HJBKx6lVVVfjxj3+c8eesWrUKjzzyiKNtxowZLV5TU1PjqB944IFtfm7yNbW1Ldubp8u+ffvw7bfftumaZLGVEJSVlaF3796ONaFNmzaROEk0QYxtI2iM1xsipDg2xOsRUuugZdi1QmYyAq4yBFzllhAZcJXBrwRoPk4QRIfZuHEjfvGLX1iCJABUVlZi9uzZmDJlCmS59XQpZWVlGD9+PMaPH4/f/va3ePrpp3HTTTehuroagNASbrjhBowePTptx6psQOIkkRZtTU6fy2clR1UkJ7dvieRzX3/9dei67rCA64pY9iuSDG+On914Sh3+8ruHrfq2DVsxNHBo0dntEV2LmBa1clDYxciw1jTvXnvwyD6UuhIiZJm7En4lQAvLRJsg94QEncU9ob2I3FIeeGQPyj0tWz5ruoaIFhHipRZJ5EjUEnkQRc5EFTEtZrgwGO1aLO9RiZxzrF3xMf7fvKX4Yv0OuDwujDhtJMq6l+e1XyYMzJGn08rRKRk5O2V73QWX7E46h/J5EgSReR566CH861//crT9+c9/bjJX7yjV1dW48MILoWkJ4WDUqFG45JJLWryuoaHBUW/PXDH5mvr6+jbfIxXz5s3D3XffnZF7EcCJJ56Iffv24bDDDsOQIUNwzDHH5LtLRB6JaVGb+GhGQIq6yjNvy6EwVyIC0oiCDLrKyI61s8MkIF/rwiRuEwBuuOEGRKNRy8r1hBNOwAsvvICePXu2636yLOPiiy/GhAkT8OMf/9haB4lEIrjxxhvxxhtvZLL7bYLESSIt2pqcPpfPWr9+vaPemtWcnSFDhqCystLKNdHY2IgvvviCck3kkWOPPdbho62qKj755JM2/bsSRDYw7WDsIqT5iuqR1m+QJn4lYAmQphjplUmcJ/IHuSd0bWRJRolUghJXSZuv5ZxD4xpipmBpiJeJusjBmFyP6yp06NA5B+c6dBhHw4JV58Z7xjl6C9as+7/Zj7/cMAeaKha+49E4Xnn8X7jw/1r/t5aZbL1MlwVz85YoS0l1GUpS3XzfJSlGPk0hKJpCJEUwEpkipkUSTg3GRqme/oMwINiyjTdBJPP666/j5ptvdrT9/Oc/x1lnnZXR58TjcZx33nnYsWOH1VZSUoK///3vrW4WThYnvd62b6lNFieT70kUBs8880y+u0DkEM454noMIbUBIUN8bLDZsMb1aFae65LcCLrKrQjIoBEV6ZV9NE4jCCKnrFq1CitWrLDWxYcNG4Z///vfKC8v7/C9e/XqhVdeeQXjxo3Dxo0bwRjDsmXL8OGHH2Ytr3hrkDhJpIU9lxPQcnL6jrBt2zasXbs27WfV1dVh9+7djrZBgwa16ZlVVVWWOAmI0GkSJ/NHMBjE0KFDsWHDBqvtww8/JHGSyBmc6wipDcbCXp1DhMzkbkwGhoCrLEmIrIBLaj4/H0HkA3JPINoLY8zKvZwJ2/mWMG3i7aIl5zr0QRzrLvoIC59caJ3733+8jQfvno3uB3aHlCQwKixh9U6LUUShITZKhZyW8cYrlmLB1i15SJwsAK677jrMnTs368+58847cdddd3XoHh9//DHOP/98qKpqtR177LH485//3MHeOeGc44orrsDy5cutNsYYnnjiCQwePLjN92vP5zV9xhNE7hHiYxQhtREhtQFhtQEhrRFhs6w2QuNq6zdqBzKT4VdKEXAFUaKUosR2dEte+kwgCKIgeOKJJwCIcQpjDIsXL86IMGlSUVGB5557DkcffbTlXPHYY4+ROEkULrt27cILL7zgaJs0aVJWnvXggw866kOGDGmSBN1OcpTlAQccAL/f36Zn9uvXz5FLa+vWrW26nsg8I0eObCJOEkQm0bmOiBZCKF5v7MoUOzPr43VojNdCz3AmMr8SsHZhBlxlKHWVI+gqhyzR1zBR+JB7AlEMMMbAwCAxAHBanP7m9t9g0d8XWZOvcDiMvz38BP70pz/lvqMEkQbOjVJ2EbKuTRulGjKQ45roOmzZsgWnn3466uoSvzdDhgzBf/7zn3ZFJrbETTfdhL///e+Otjlz5mDy5MlpXR8IOHMrh8PhNvch+Zrke7aX6dOn4/zzz2/TNdu2bcO5556bkecTRD7Jp/gIABIk+F1BlChBlLhKbcdSioIk0kfKo60rbZTt8rz88stW1OTFF1+clTzLw4YNw9SpU62x2D//+c+MPyNdaFWUaJXp06cjEklYFlZVVeHHP/5xxp+zatUqPPLII462GTNmtHhNTU2No56c1D4dkq+pra1t8z1SsW/fPnz77bdtuiZ5UbarMmrUKDz55JNWncRJoq1wzhHTIzbhsSExOVIbEFYbM54HjUFCiSuYyEdhvpRSEiGJoobcE4hip6qqCpdccgn+9re/WW3z5s3DjBkz2jV2JIhMoXFNWNZZTg01Gd0o1RCvBeecFmOJVtmxYwfGjx+Pffv2WW2DBg3CsmXL0L1794w+67bbbsOcOXMcbbNmzcL111+f9j0KWZw88MAD6buF6LTkW3wEhAORXwkkiY/i6JP9YJSzjyCIImX79u0OLeGyyy7L2rOmTZuGv//97+CcY9++ffj888/zshZCq6VEizz00EP417/+5Wj785//3MR2raNUV1fjwgsvtHa0A0KguuSSS1q8LjkvRHLeiHRIvqa+vr7N90jFvHnzcPfdd2fkXl2N5MXobdu24fvvv0e3bt3y1COiEFH1eErh0Xxlzw5GQcBVioCrHEFXqSVC+pUgJJoIEZ0Mck8gOgu33XYbFi5c6Iie/NOf/oT77rsvzz0jOjvmQm6jWo/GeL0RDVmDhngdQmp9RjdLSZBQYoxNzM1SHBwMJE7mk4kTJ6Jv375Zf87YsWPbdd2uXbtwyimn4KuvvrLa+vfvj+XLl6N3796Z6h4A4J577sG9997raLvrrrswc+bMNt2nrKzMUW/rpmAADiEWQEYt0wiiGFH1OCJaCBEtjKgWRkQ1y+JoljWutX6zDsLA4JX9TgHSKPuVAM27iewiMRh2LPl5NtFlsbsIBoPBrKY4GzNmDILBoOWYsWHDBhInicLi9ddfx8033+xo+/nPf46zzjoro8+Jx+M477zzsGPHDqutpKQEf//731vN+5QsTrbHbiZZnEy+J5F7Dj/8cHi9XkfE7urVq3H66afnsVdErhGTozAixq5M56s+ZW6lTOKSPE2iIIOuMnhlP0UgEF0Gck9oH+SeUHhUVVXhoosuwoIFC6y2uXPn4te//jVFuBAdRuSCDCOk1qNRrUcobhwNQTKTOasBc6NUWZNxCi3YFiYTJkzAhAkT8t2NlHz99dc45ZRT8MUXX1htffr0wbJly9CvX7+MPuv+++/HHXfc4Wi75ZZbcOedd7b5Xocccoij/u233yIUCrVpk9LOnTtbvCdRmMTjcYRCoSYCNdE85rw6qoUR0ULG0S4+ivZsRzzaMcVHvxKATwnAr5QYxwB8Sgm8sp++zwiC6HLYN4oNHTo048FhdmRZxmGHHYYPP/wQnHPs2rUra89qCRInc8h1112HuXPnZv05d955J+66664O3ePjjz/G+eefD1VNDE6OPfZY/PnPf+5g75xwznHFFVdg+fLlVhtjDE888QQGDx7c5vu1RzAgkaHwcLlcOOaYY7By5Uqr7cMPPyRxspOgcz0xIdJCiKgha0Jk7tSMqKGML+SlQmEuaxIk8kImIiE9cmZz6xBEsUHuCe2H3BMKk9tuuw1PPfWU9bsWCoXwwAMP4I9//GOee0YUAzrXEVYbUwuQagP0LESSJG+UMsu0UYrIBHv37sUpp5zi2BzTs2dPLF++vM026a0xZ86cJpuObrrpJvzhD39o1/1KS0vRu3dv7Nmzx2rbvn07jjjiiLTvYd8cDQCHHXZYu/qSLxritVCYCy7ZA5nJrV9QxLzwwgt45plnsGnTJmzbtg2XXXYZ5s+fn+9u5Q3OOTSuIqZHEdeiiOkxxPWoNb8259pRQ3zMxbw6GRIfCYIg2o59PSLTtvqpsD8jU2shbYXESaIJW7Zswemnn26F9QLCWu0///lPuyITW+Kmm26ykq+azJkzB5MnT07r+kLONTF9+nScf/75bbpm27ZtOPfcczPy/GJn5MiRTcRJorARtmWxhMCohawJkV14jGpt/zttLwzMIT46X0G4JDct7hFECsg9geiMHHzwwZg6dSoWLlxotc2dOxc333wzDjjggDz2jCgUNK4Jh4akyMdGtR5htSHj+apNvLLfZhlfRhuliKzz3XffYfz48fjss8+stu7du2PZsmXt2iTcEvPmzcMvfvELR9u1116L2bNnd+i+hx9+uEOcfP/999MWJz/77DN8//33Vt3v92PgwIEd6k+uWfnNa5aTjMJccMseuCQP3JIHbtk8euGWjPaktmIShrZu3YoXX3zRqm/atCmPvcksOteEuKhFhdioRxGzCY4JAdJ4zzg3E3mJOwKJj4UJ5xwxvREhtRo+pRxeOZjvLhUnjAGtzEWz+myiy6Lric/20tLSrD/P7kJgf3YuIXGScLBjxw6MHz/ekX9h0KBBWLZsWcYV+9tuuw1z5sxxtM2aNQvXX3992vcoZHHywAMPJJuwDjBq1CgAgKIoOOqoo3DUUUfluUddE845VB43JkgRx9ER/WgIj9mIGmgNj+xrIjz6lABKlCC8sg+MJkVEAUDuCU0h9wQiH5jRk+bkq7GxEQ888EC7o3eI4kLTVYS1EMJqI8JaI8Jqo2Uf36jWI6KFsvZsc8NUwMoJWW6VXZI7a88liGT279+PH/7wh468Rt26dcOyZcswdOjQjD7r8ccfx3XXXedou/LKK/Hwww93+N6nn346Xn/9dav+1ltv4corr0zr2rfeestRP+2001rdFFVImJtCTVQeh6rGAaS/ycoUNE3Bsjlh02xzSW4wSHkZOw0ZMsRRt4vq+ULnOjSuQtNVceQqNK5BtdXNsik4xvWYQ4CM67G8RDW2hktywyP74JV98Mh+4+iD1yh7FT+JjwWApscRUqsRUqvRaBxD6n5oxu/UgOBI9PJn9jOdIIjsYs9/bd9ElS2+++67lM/OJSRO5pCJEyeib9++WX/O2LFj23Xdrl27cMoppzj8jfv374/ly5ejd+/emeoeAOCee+7Bvffe62i76667MHPmzDbdJznPQFvzOwFwCLFA/v4YCSennnoqVq5ciaOPPrpdVn1EanSuI6ZHEdMiTY5RPYq4cbSLkDzPuzKTrVeTX7JEX2UEkSnIPYHcEzo7hxxyCKZMmYKnnnrKavvLX/6CX/3qVxQ9WeRwzhHVwpboaImQaiMiRlu281VLTEaJEoRfCaDEVSqOSlBsmFJKaCGXyDs1NTWYMGEC1q5da7VVVFTgjTfeaJMlajosXLgQV155JThPRBxPmzYN8+fPz4jANWnSJPzyl7+06i+99BJqamrSms/b8w+b9yom4nqsw5HcpqAZaoOgCTDITIbE5JTHpm0KJCYZx9TXOI6SAgmS7WcTpb6Dejp6sW/fPmzfsxnlleWJs7h5le3I7S1GOzdrOjSuOcVFXYVqExrN99RkEVJX8x652B4U5rJER6/idwiO9jLNrwsLznVEtAaE1P0OITKqtWzB2BivzlEPCYLIFJWVlVb5m2++yfrz7M8gcbILMGHCBEyYMCHf3UjJ119/jVNOOQVffPGF1danTx8sW7YM/fr1y+iz7r//ftxxxx2OtltuuQV33nlnm++VnLT+22+/RSgUgt/vT/seO3fubPGeRH6orKzECSeckO9uFCw61xDX42K3pR6HqscQ56Ju2r5YwqMeRVSLIK5HHTts8w2DZNt5ae7KdO7G9Mo+KJIr310liC4BuSeQe0JX4fbbb8fTTz9tRU82NDRg9uzZTTbOEYVFXI8hooYS4qMV/RgyxMdQTjZUKcyFElcQfkN09LuClgDpkX0UkU0ULPX19Tj99NPx0UcfWW2lpaV47bXXMHz48Iw+a/HixbjsssscwuSUKVPw+OOPZ+xvZMCAARg3bhz++9//AhDf6XPmzGl1XeHtt9/GqlWrrHp5eTnOOeecjPQpV+RvTsctgS6X8X6qT4WsyNDUhEvPix88jcOOpbUbBuaw7fXKftv8WgiOpiBJ8+rCJ65HrGjIUFwIkWG1BjrU1i9OIqTuz0IPuwgSE698PZvoshx66KFWecuWLYhEIhnfJG4SjUaxdetWa6xmf3YuIXGSwN69e3HKKadg27ZtVlvPnj2xfPlyDBo0KKPPmjNnDmbMmOFou+mmm9ptpVVaWorevXs7ck1s3769Tbs+7XmuAOCwww5rV1/yRX2sBhrXoEguKJILLuaCxGRaGClgONcRtwmKqiUyxhztpvDoeM9oz4d9altoOjHyO+pe2Q+35KHfU6LLQO4JCcg9IXN8H9kLALTo1EYGDx6Mn/3sZ1i0aJHV9vDDD+NXv/oVunXrlseedU1UPY6oFkHUyEsd1c1yBBFb9GMure/cktcpQCoBlLiCKFFKKV81UZSEQiGcddZZDlEuEAjg1VdfxYgRIzL6rKVLl+Kiiy5y5C664IILsHDhwoxbp957770YN26co37WWWfhuOOOS3n+/v37cfnllzvaZs6c2WRMUeiUuII4q98UyyY0lmJzqumEE9djVnshbVRtC4pLQe8BPbBrW2LdZ9e2PZ1OnEzOHeqS3E1yiSa/pzAXfScVITrXEFbrrGhI8xXTM2MvLzMXFMkDzjn9fhBEEXHEEUfA4/EgEokgHA5j+fLlOPPMM7PyrGXLllmbtd1ud8YdNNKFxMkuznfffYfx48c7PPu7d++OZcuWtSvfU0vMmzcPv/jFLxxt1157LWbPnt2h+x5++OEOcfL9999P+w/qs88+c3g4+/1+DBw4sEP9yTUbqlfju0hyqDeDwhRLsFSYq2m5tfeNc2SmdLnBjJU/wmHzojnadHubbn/ffp2WlH9CCIsab/uut0JAYrKVf8RjHBM7Mf2OKEiJyfnuLkEUFOSeICD3hMyyqfp/qIklxjEyU2w5gnyOsv3oos0huP322/HMM89A13X06NEDM2bMIBv5DKLpqkNkdBx1mxCpRfIyLnJJbvjkEviUEniVEvjkEpsAGSShn+hUxGIxTJw40YowBABZljFv3jz06tXL8f2fDn379oWipF5Keu211/DTn/7Ukbd69OjR+P3vf49du3a16TmBQKBVu+2xY8fivPPOw/PPPw9A/Kzjx4/HI488ggsuuMAhhq5atQqXXHIJtm/fbrUNGjQIN9xwQ5v6VSgwJom8kLIXSPMjS+e6le/QLmLGjXQeTmFTiJ2FkhOx78G9HeLkl1u+auHs/CAzRayhSGIdRTbKLskNt+ROLTLKHus9sv7ufHDOEdUbEFZrHSJkWK3NkNsDg08uhV+pgN9ViRKlAn6lAm6ppMuP9TuEJIlXvp5NdFlkWcYJJ5yAt956C5xz/OMf/8iaOGmOnQBg5MiRcLnyM/8hcbILs3//fvzwhz/Ehg0brLZu3bph2bJlGDo0s0mTH3/8cVx33XWOtiuvvBIPP/xwh+99+umn4/XXX7fqb731Fq688sq0rn3rrbcc9dNOOy3juzmzjaqnWtDhIoeEFgc6HGCXLHQqYEwCA0scwcAYS9EmQQIDGIMECTDOsbdZ19mvZQwAg5kngkOHzjk4ODjXwZEo6/Y229HZLu7BjXvoSecni4z5zrGYK8QkyWtYwIijJ6meOHq6pFBNEJ0dck8obveEiOa0pdW4ipBaj5Dacg4aBgke2duseOmxvTrrQtmhhx6KG2+8Ef369cOVV17ZJlG7K2K6PsT1KGJGFE5ylKP9mM/FbAmSITj64VMMAdIQIn1GO4mPRFdiz549ePPNNx1tmqbh4osvbtf9duzYgQEDBqR879lnn0Us5ozOW7lyZbs2/1xyySVNckOmYsGCBdi+fTs+/vhjAEBdXR0uvPBCzJgxA0cddRTcbje2bNmC9evXO66rqKjAv//97y71+S8xyfp+Txeda4gZTj4a16BzreWjMadu9TzHUbU2CNtzaTIw69h/8EF4/9U11nu7tn4Nl+S2nWecbawvOK5nzHk3JsqSISAqlpgoW4KiYhMX5SbnJZ1j5MykuXLXReSFrEdIrUFYq0VYrTFetdA7vigHAFCYFyWuCviVSviVCpQoFfApZZAYLe0TRGfiZz/7Gd566y0wxvDMM8/gjjvuyPjazPbt2/H0009blq4XXnhhRu/fFugTrItSU1ODCRMmYO3atVZbRUUF3njjjYyH8S5cuBBXXnmlI9/EtGnTMH/+/IwM3iZNmoRf/vKXVv2ll15CTU1NWtZsyZOdSZMmdbg/uSb7iz+ZFDoz0BuypWgCgwSX5IIiueGS3HBJLkNU9MIteeCRvXAZR/tOzc664NyV4ZwjroetHZmNajUCSiV6lQzLd9eIAoTcE4rbPYFzjqgWad+10BHRQohoIdS2cq74HvHbREuvI4LeY37fyF7IRRY139Hfv2JERM3ErDzUImImZtn9xa0oGmdbIVkBuiWvQ2hMFh89kpfGigTRhSgpKcErr7yCqVOnYtmyZVb7rl27mo3WHDRoEJ599tm85VcqJiQmwyv7gDYImh2hufl+/WgFi/+81Krv3f49Tjtock76RBAmOlcRVutsAmQtQmoNIlpdxja5M0jwK+UiGtIQIv1KBdw5+hskiHTYsWMHPvnkE+zZswcNDQ3o1asX+vfvj9GjR+ctAs+Oqqr46KOPsGHDBnz77beIxWIIBALo06cPBg8ejGHDhjXrApFvzj//fNx4440IhUJQVRW33nornnvuuYw+4/bbb4eqqmCMwe12Y/Lk/H2fFua/ApFV6uvrcfrpp+Ojjz6y2kpLS/Haa69h+PDhGX3W4sWLcdlllzmEySlTpuDxxx/P2KLBgAEDMG7cOMumJhwOY86cOa1axL399tuOnBvl5eU455xzMtKnXGLGInbWaL+vtn+NjWu2YMsnn2Pr2u0Y8cPhmPrLn+S7WxmECWGRueCS3IbA6LKOLsmd4j1bnXKMdlk0riKs1jiEyFB8P1QedZwXd4dJnCSaQO4Jxe+eoPI4/Eog61FqpsVbfby61XNFriSvsRnGC48RgZ8QNL3W+7RJpu1wzqFxFaoeh2rYxqt63NGm2gRHM8rRLkQWij1fKmQmJ6J2Ja9VNkVIMxpSlmgKSxCEk549e+KNN97Ao48+irlz52LdunUpz+vVqxcuvvhi3HHHHSgpKclxL4l0aG5eO2yYcz6ze/futDelE0Rb0fS4IUDWGtGQQoiMaPWALbq3o7ilEsuK1W9ERXrlUhoj5xvG8mevWuBre88//zxmz56N999/P+X7lZWVmDx5Mn7729+2as2eDbZu3Yr7778fzz33HOrq6po9z+fzYezYsbjmmmsKLlCptLQUN954I2bNmgXOOZYsWYLTTz8d06ZNy8j9FyxYgH/84x+WVnPNNdegsrIyI/duDzSz62KEQiGcddZZDlEuEAjg1VdfxYgRIzL6rKVLl+Kiiy6CridEswsuuAALFy7M+OLfvffei3HjxjnqZ511Fo477riU5+/fvx+XX365o23mzJkoKyvLaL9ywYm9fwQAVk5DsUgVR9y2SKXqqoh+NN5XeRyaLs7RuGocjboeh15AQue/n3oT/1rwhlXfv68Gk689By5PbnfiSKbFi83qRW6xzSjbLWIkF1wsIS66JDdZpRKtYuapCMWrbULk/rQnRiG1dUGB6FqQe4Kg2N0TXJIbJ/eZCABQ9bhlpxnRwohqIeMYtrWFEdOjrdy1Y6g8DlWNt2ora2LmMXYKmB4jCjNhkya+g2VITErRZrwMq/h8wbndcl6HzjVhSc816NAT4zSuQks6JgRGFRqPG0e16flFmLNagmRF3DqPdgFSHMlqlSCyw4ABAxzfw9lkwYIFaVmxZgPGGK666ipcddVV2LhxI9avX489e/YgFouhd+/eqKqqwvHHH19UG5GIBIMHD4aiKI58phs3bsTo0aPz2Cui2InrEUTUuiZ2rFG9MaPPkZkbPqXMsmMVEZHlUCRPRp9DENmioaEBP//5z7F48eIWz9u/fz/++te/4sUXX8TChQtx2mmn5aR/qqrit7/9Lf7whz84vieaIxwO44033kBlZWVBrgPMnDkTL7/8MhobxWfR/fffjxNPPBFVVVUduu+OHTtw//33o3///gAAr9eL2267rcP97QgkTnYhYrEYJk6caEUYAiLR6rx589CrVy988cUXbbpf3759mw2Bfu211/DTn/7U8YEwevRo/P73v2/WWqU5AoFAq7stxo4di/POO89K5hqLxTB+/Hg88sgjuOCCCxwTkFWrVuGSSy7B9u3brbZBgwbhhhtuaFO/Cg2ZyZBlGR7Z2+F7aVwTC2GGkKnqKuKGoKnqcUfOx0ROx+R8kM42HRzgXAifnDtzQqa6FzgYGH526WSHOFnzXR0+e+tLnPnjU5vmrTRyVkrJOTGT25PyW7YoKDKFIhOJnKHqMUuAtL+0DkS6xPUw4noYLolsYAhyTzDpLO4JJmZe6BJXsMXzdK43ESxTiZhRLezI+ZQtzKhMtGoumx52wbKJiAkp5ftmXmuda0Zeas3ITa1D53qz5YQImSh3FSRIcMkeeGUf3JLXsvx1y6JsHj2yDwpz0RiKIIicM3To0Iw7QRD5xe1245BDDsGmTZustg0bNpA4SbRKXI8iotUhotaJo1aPsFHWeGZt612SFz65HD6l3BAjy+GTy+CSfDQeIooWTdMwefJkvPLKK4727t27Y/jw4SgrK7NyP5tz/71792LixIl48803MXbs2Kz2LxwO47zzzmvSP8YYhg0bhn79+qG8vBwNDQ34/PPP8dlnn6UlYOaT0tLSZl0gOsLAgQMd7lmFAImTXYg9e/bgzTffdLRpmoaLL764XffbsWMHBgwYkPK9Z599FrGY80t+5cqVOOSQQ9r8nEsuuSSt3ZcLFiywPgwBoK6uDhdeeCFmzJiBo446Cm63G1u2bMH69esd11VUVODf//43/H5/m/vWWTGFTncGhM6OcnwP4JETn8Lbb79ttb3y1DL835V35a9TBNFBONcR1uoSAmS8GiF1f8Z2aEpMsXJT+JUKMNAOcYLcE0w6k3tCW5GYZOXlawnOOWJ6NKVoGdUiiOkRRLUoYnoEMS2SEyEzHYSw2L4E2ZqmQ5Yl7N31LZbM+yf6HdIH51yWm52++UJmClySG27JIxwdZA/ckhsuSeSmdhtt9nPckoc2bREEQRB5YdiwYU3ESYIAAFWPImwJkPU2MbK+SdqTTOCWSmzioxAifUoZXFL+19CIDCAx8crXswuMW265xSH8uVwuzJ49G1deeSXcbrfVvnHjRlxxxRWW5Ws0GsW5556LdevWoVevXlnpG+ccP/3pTx3983q9mDFjBq688kr06dOnyTWhUAhvvPEGFi9e7Og/kR9InCQ6DSUlJXjllVcwdepULFu2zGrftWtXs9GagwYNwrPPPotDDz00V90k2sH06dMd4uS7776LdevWZdx+kCAyjarHrIlRWBO7M0XeiuqM5Yn1yqUOIbJEqYBHDtLCMeGA3BMEndU9IdMwxgyrTS+AihbP5ZyLfIZ6xLCWjVjlWFI5qkcQ1zO7Qz1TvLX0PWxYvQXLX3gXmqrhjKmn5LtLrcLAoEguyEwR0bPGUQiLhpgoewyx0SlCCmt5Od8/ApFFRESvBpmRXS5BEJ2DYcOGWeM9gMTJroaqRx1Rj9ZLzY4ACQBeOWgTH8utSEiZrOiJLsLnn3+OOXPmONqWLFmCiRMnNjl36NChWLZsGcaPH28JlN9//z3uvvtuzJ8/Pyv9mzdvHl5++WWr3qtXLyxbtgyHHXZYs9f4/X5MnDgREydOLPgIyq4AiZNEp6Jnz55444038Oijj2Lu3LnNhkD36tULF198Me644w6UlLQcPUDkn3PPPRc9e/bEN998Y7X99a9/xbx58/LYK4IQ6FwTuzMtAbLWmjDF9XDGniMzty0/RQX8rgr4lXJadCTSgtwTyD0hWzDG4JY9cMseBFytR5/qXBd2rimEzKhuCppR6FyDZkRCmkeznGk451gw6x+o+S5hLzvo8AEZfUaykCgzxRIT7eKibBMZRbsCmbmgSAoU5oJsHBVJ2M4ThM51Y/NTjbEBqgZhTZR7lxyOfoFj8t1FgiCIjDBs2DBHfePGjXnqCZENONcR08OIag2Iag1GBGQiCjJbAiQDg1cuswmQZfDJ5fAqpZAZLZt3SSRJvPL17ALi7rvvRjyeSDN06aWXphQmTXw+HxYsWIAjjjjCWhN44oknMGPGjA7nS0zmyy+/xC233GLVvV4v3nzzzRaFyWSa23BN5A76F+hCDBgwwJH3KZssWLAgrcXEbMAYw1VXXYWrrroKGzduxPr167Fnzx7EYjH07t0bVVVVOP744zNuK0dkD7fbjSuuuAL33HOP1fbUU09h1qxZKC0tzWPPiK6CsDhsNETHhPgY1uoQ1RqADFoaMjB4lTKUmCKk8XJLfoqGJIhmIPeE4kFiEryyD165fXlwzdzULYmXibLe7PvmkTGGXTv2OIRJAJj4w5/g4MpBYJAgMcnIW50oi5zXzZVlSIyJnJfGe2aea4JoLzpXEVbrENZqEFJrLTEyotU2a60cUmty20mCIIgscswxx+Diiy/GsGHDMHTo0CZiJVHY6FxHTGtEVG8wBMhGS4iM6o2IaQ1ZTBXA4JUD8Mql4qWUGlGRpfDIATBG64MEkUw4HHZEqwMiHUprDB48GOeeey7+8Y9/AABUVcUzzzyD22+/PaP9+/3vf4+Ghgarftttt1G+6SKExEmiUzN06FD6YOokXHnllbj33nut/GUNDQ1YtGgRpk+fnueeEZ0FzjlUHjUW+upsAmQtImo9ODIfreOSfIYVa0KI9CllFA1DEO2A3BO6BowxMDBITIKCzESOr/5/TzrqBx54IMYfcwaJiURe0HgcYbW2SRRkRKtHWzdDhUmcJAiiEzFo0CAsXLgw390gmkHjqhAfTeHREiHFK6aHkclNvU1h8MgB+CwBMmiJkR45AIkESIJoE6+99hpCoZBVP+GEEzBkyJC0rp02bZolTgLAiy++mFFxsr6+Hs8884xVLykpwY033pix++eTnTt3ZuW+/fv3z8p9OwqJkwRBFAUHHXQQzjnnHLz00ktW27x583DNNdfQ4iGRFiIvWgRRvSHFpEnUNZ6NXGjJk6RS+JVy+JUKuCRvFp5HEE0h9wRyTyCa55133nHUf/CDH9DYgsg6qh4T0Y+aIUIakZBRvaH1i9MkotVD5xpteiIIgiA6hLmRN6aFENMbU0Q+NiCuR3LQEzG3NqMeRQQkCZBEhmF5tHUtoN/hV1991VE/6aST0r523LhxUBTFyun48ccfY+/evejRo0dG+vbcc885oiZ/8pOfIBgMZuTe+aaqqiorazdmsE+hQeIkQRBFw/Tp0x3i5IYNG/Duu+9i3Lhx+esUUTDoXENMCyXZxDQiZhMfObL3ZeySvCJXhVwKr1JmmywFaVGQIPIAuScQ6fLf//7XUadxBZEpdK4582YZtqxhtRYxPdT6DdqAcGMoh08WObNE3qxyGoMQBEEQzcK5jrgeQUwPI66HENPCiOkhxHXjqIWN98JZnUvbYZDgkQOGCFkKnxy0REghQNL3GkHkgvXr1zvqJ5xwQtrXlpSU4IgjjsDHH39stW3YsCFj4uSKFSsc9QkTJmTkvoVEJjfL5mqjensgcZIgiKJh/PjxOPjgg7Ft2zarbd68ebSI2EVQ9ZhhB5O0U1MXImQ8w4t8qZCZy4p+FJGQZfAZEyVFcmf9+QRBEERm2bNnD7Zv3+5o+8EPfpCn3hDFiBif1CcESOMVVesQ1UPItIWdWyoRIqRSBp9cbpUVyZPR5xAEUdjE9SgU5qJceURKdK4ZAmMYcS2EWFI5rpvHCLJrtdoUiSlCfJQChghZYomRHqkELslHDhYEUQBs2rTJUT/44IPbdP2gQYMc4uTGjRtxyimnZKRvH374oaNuCqfhcBhLly7F4sWLsWHDBuzZswcejwcHHHAAhg8fjgkTJuDCCy/sNFGWduwCZDF9hpI4SRBE0SBJEq655hr86le/stpeeOEFfPPNN+jZs2cee0a0F845NB5PTJyMV0yzlfWQYbkaz0mfGCR4jd2ZPrlM7NY0BEiaKBEEQXQukqMmS0tLccQRR+SpN0QhImzhw0Jw1OoRNo4RrQ4RtR4qj2bluR45CL9siJBGFKRPLoMsZSbXKkEQxc3a719CXA9DYR4okgcuyQeX5IVL8kCxlV3Ma9Q9cEleEjOLEM51qDwOVY9C5VFx1GPQuDiqPIq4HrXNpUNZ+25KB4V54JFL4JYD8BqCo1l2ywEozE1z6iyi6RFEtf1wyaVwSYF8d6c4kQBIefodLZCP6P3792P//v2Otn79+rXpHsnnb926tcP9AoCamhpH0Irb7UZVVRXefvttTJs2DTt27HCcH4lEUFtbi+3bt+P555/Hrbfeit/85je44YYbMtKfTHPppZe2KdKxvr4e+/btw9q1a1FfXw9AzF+CwSB+/OMfF/znLYmTBEEUFZdeeiluu+02RCIin0E8HscTTzyB2267Lc89I+zoXE3Yw2hhh/hoiZCGRQyHltO+MTC4pRK4rR2aJcauzRLDKqaEJu0EQRBdhGRxcuzYsZBlsgvranCuO+1XzehH46hzNUtPZvDJpYYNqxkJWQavUgaZ0VSdIIjUcM6h6kJ8UnkUqhZFRKtL69qEmOm1XoqtLMTMRHuh5vDjnOOrr77Chg0bMHbsWAQChS/C6FyzCYwxZ9kmOlplLs7ReCzfXXfgkrxJkY+26EcpQJtocoTOVcS0GkS1/Yjq+xHVqhHVqqFx4Sh1oO94VHgOz3MviY5iF+HSpXv37jjwwAM79NyamhpH3e/3o6SkpE33SO5DbW1th/pk8s033zjqvXv3xosvvogLLrggrbyK33//PW688UasXr0aTz75JBSlsMbcTzzxRLuvXbFiBWbNmoU333wT9fX1qKurw8KFCwv6O7Kw/usTBEG0QmVlJX76059iwYIFVttjjz2G//u//4OUr4TVXQCxWzNmTKIiUHkMcT3STKRjOK8TKIkpSRYxQnw0xUi35CPxkSAIggAAvPPOO446WcV3ToT1aiIPdUxrtGzhY1pDVuxX7SjMA68chEcJwieXWVasXrmUcmcRBNFmNB5rd/6/toqZMnMbQqUHMlMgQYHEZEhMMV6yaDfK4v0U7fY24x7tmZNxznHyySfj448/Rl2d+BneeeedDn9/c87BoUPnKjSuQucadK6KF8yy1vR9JM7TuPM8HeJcTRfzaB3Z2uiSCRhckg9u4+WS/UbZL9plvxGd6ytYwbqzIvKC1hsiZLU4atWI63VoaewS1apz18nOhiSJV76ebePcc89t8y3uvPNO3HXXXR3qRkNDg6Pu8/nafI/ka8yovo6SLJw2NDRg6tSpljDZv39/XHvttRg7diy6deuG/fv3491338XcuXPxxRdfWNctWrQIPXr0wJ/+9KeM9KsQOPnkk3HyySfjvvvuw//93/9h6dKliMVi+Oc//5nvrjULiZMEQRQd06dPx4IFC1BeXo5p06bh6quvJmEyTYSNaszaiRnXI0k7NaNNyvEC263pknxNBEePlIiClMkmhiAIgkiD/fv3Y/369Y42yjdZfOhcMyzgE6JjzMpN3YiY3pgTa3i3VCJs4eUgvEoQHjko8lTLAcoHSRBERhF5AnODxmPQtBiyYXbDIDmETpkpYJAAMDQvunDs+fYLS5gEgNdWPYPSofuTzuJmocn15vtCRNSgQ81ihHx+YZAcYqNLMo6yEB7NNpfkoQ28eUas1YQt8dGMhoxp1e1ym4pq+1s/iSCaIVmc9Hq9bb5HsjiZfM/2kixOfvfdd1b5/PPPx8KFC5s8+/jjj8d1112Hiy++GEuWLLHaH3jgAUycOLHTbVCdMWMGNm/ejAULFuDf//43nnjiCVx++eX57lZKSJwkiCKnLvYNVB6HwtyQmRuK5ILM3JCZq9MKNCNGjMDzzz+PM844A36/P9/dySlmjkbHS0+uJ8TGeBOxMYZcJ7xPF5m5rN2aLmvC5DPEyADckoiCpAgDgiAIIhO89957jnweXq8Xxx13XB57RCTDOYfKo7YIx8YmkY9xPZSTvpg5qT02AdIUIz1yABLZsBIEkSO8cimOPWCy2GjKI4ajTcTYeNq0nM/8gy3BoUPjeps3kPQf3BNbN+606ps3bUVIHZXp7hUkDBIUyWPZ8yqS22HVawmQsphHK8zTadeFihmdxw0b1v1WRGRMq4bGM7PxgEEyhH6CyAzt+RzJ1mdPc9atI0aMwDPPPNOsTavX68UzzzyDL774AqtXr7ba77nnHrz22mtZ6Ws++e1vf4uFCxeCc46HH36YxEmCILLDV42foja2J8U7DDJzQZEM0ZK5IUvimGhzWW1NjsxV0DvnfvKTn+S7C2mRsIfRUgqKOo9DNY/JIqN1XkzYwfBY0e3oTOzU9DmFxyQR0iX5KLcSQRAEkVOS800ef/zxcLvdeepN10LnWkp7eCsvtVnWQtBzmJtaZu5E9KNhw+o1IiDdkp8WeAmCKAgYY3DLPrjl9Gz2hC1ktImQWWxipsnAQ3s76p9/tjtPPWk/MnMZazMem9iYEBplW9l6z7DWJYoHMy9kTK9BVKtBzBAi43pm7C0BwCWVwiNXwCNVwC1XwiNXwC2VFfR6XsHDJPHK17NtvPTSSzj44IPbdIvu3bt3uBvJOQrD4XCb75F8TabyHjZ3nz/96U+t5o9UFAWzZ892REq+/vrr2LdvX4fzdBYaffr0wZFHHom1a9fi008/xZYtWzB48OB8d6sJBf+tNnPmTFx99dUYOHBgvrtCEAWJpjdnt8kTFiztRGYuIxrTLnC6IEHkh2BMsqxYxFHUk9sTdQnMuFZqpt1+H/FTcCRMWYwy50nvcYj/54lzzDO47TqbhQs4t87XuQ4OLWHrwjUjd4QGbiubL+7IOSHe50nX2c/tbEiQrUmUXWRMJUKSxSrREWgMQBAtsz/yJTh0uCSvsfHDS5+7bYDyTWYWM8oxVS7qZBEyXwvfLskHj1Ri2MKXGGUzR3UQLrJfLRhoDEAQmYMxSYiZaL+Yqelio6xmy7GYOgejvT1xbntzZKaiakhfR/3zzdkTJ505NlPk0URr+Tdlh+goBEY35W3sZGh6BFG9xhIizWNcz4yNJQDIzAuPXOkQIT1yBSTmytgziMLj4IMPxrBhw3L+3GITJ/v37592eo6xY8eiqqoKn3/+udX29ttv4/zzz89I/wqJgQMHYu3atQCA9evXkzjZHu6//3488MADmDBhAq655hqcffbZlFuOIGyoWcwFaEbvxfTGrD2DyB9NLWFE2WXZw3itHZrOyVTBf3UQnQQaAxBEy3zV+AkaVWc+GQbJJlb6rLLbJmC6yOoLAHDKKaeAc47//e9/0DSN8k0mwTmHzlXEecSyh3csVmtO4TGuhxM5vvKAxBSb8GjmozbqRjtZwxcPNAYgiPzRVjEzHTjXbfkdNUPQtImahpiZenMvs/0vIB17EICHrXdrvq9HWWQouh94gOO8FAWjJurNCYwi/6VsbKDuuuMkwonYhNWYFAkpypmyYwUABsUSHt2SKUJWQpEy9/dIEK1RVlbmqIdCITQ2NqKkpCTte+zbt89RLy8vz0TXUt7n+OOPb9M9Ro0a5RAnN23a1NFuFSR2V6Cvv/46jz1pnqJYYeac4/XXX8frr7+O3r1748orr8Tll1+O3r17t34xQXRyPHIJONeg8libczUQxQ+DDEVyQWIuKMw82uxhJA8U5oZL8jZpl6DQZKuTwbmOmF5r5K4QOSx8yoHo5j06311rNzQGIIjmielNF0I4dMT0EGJp5eFjhnjpdQiZTcRM49jZ7KHuvfdeAEBDQwM++OADjB49Os89yh4iZ3VMiIuGZV/cykcdNez8DAHSJkZmMtKlYzC4Jb9DbBTlhAhJUcOdDxoDEETngTEJMpMgo+NRXpVDB8Lr9SISSYyD9n7eiKH9R3b43gQh5tR1jihIMyqSI5NpdhjcUik8cqWIhJSECOmSgjSeyTssf7auKIx/+27duqGiogLV1dVW25dffonDDjss7Xvs3LnTUT/kkEMy0rf+/fvD4/EgGk04sfTq1atN90geS37//fcZ6Vuh8dVXX1nug7W1tXnuTWqKQpw04Zxj9+7duOuuu/C73/0O55xzDq6++mr88Ic/zHfXCCJvDK04zSpzI5m8xuNQ9ZgQLM0jj0HVk448nnjfOCKPO97bA+cc8ZiKSDiGaCQGf4kXJcHC3lEmQYYsuQzbXNtLckNmCmQj56fMFKPNfk6iLDEX2cF0UcQic9gQIY2XXm1MmJy7jTlUdMPR+eloBqExAEE44ZxD1dtur5N0FyviDahu9exE7iN3Uj6k5GOibH63FTKBQKDgP0vMKEYxzjNzUYtxnGZrV/WYFd3ojHaMohDHeAzMFuWbsIi356j2yAG4JV+nE8eJ9KExAEEQdmRZxtChQ/HRRx9ZbRs2bMDJJ5+cx14RxYamR4UI6bBjrUVMr0Wmx0wuKQC3VA63EQUprFnLIRX4GJno2hx22GFYuXKlVd+2bVubxEl7ZKJ5v0wgyzIOPfRQfPrpp1abx9O21AzJ59s3u3QW9u/fj9WrV1ubHQ444IA89yg1Bf8p+Oc//xmPPvoo1q9fD0Ak/uacQ1VVLF26FEuXLkVVVRWuvvpqXHrppejWrVuee0wQ+YMxSSwKwgNPO1yrzIWvZsVMXURncuhWnkbOdejQwblulEUbh+58L/lc6EZOxo7tyP/lz2Zj1Yr1Vv36u36KC68+zXYGs5nAMFFjZqvNzgWyYeEigzVbV6w2kXdTbnKtZNi/pKoL4dFFi2tEm9B53IqCjGrViOr7EdP2Q0szX1dU2w/OeVHuvqQxAEE0jw4VAVd3IxdUOCfuCSqPQtXanitQRPmnEDIN23CnyCnaE/mszVzVctF8fybGO5o1XkqIiXFrI5n1aqZN53GoXByLzR1D2MT74JaThEezTNbCRCvQGIAgiJYYNmyYQ5w0PysIwo6mRxDT6xDX68RRq0NMr0Vcr0t7Pp0+EtxSGdxyGTxSOdxyuSFIkghZdEiSeOXr2QXC4Ycf7hAn33//ffzoRz9K69rGxkaHeGjeL1MceeSRjvvX1NS06frk8zvjONLj8eDDDz+06oWax73gPx2vu+46XHfddXjvvffw17/+FS+88AKi0ag1ieWcY/v27ZgxYwbuuOMOnHfeebj66qs7tS0TQWQLxpiIyoMLQPo+4h0lWbQ0RU67gGiWzb99s94j+CKAxETkQHkYjj/wYse5BFEMcK4jrtfbIiGFGBnX6zp0X41HoPEwFObPUE9zB40BCKJ5ZObC4ZVnWnWNq1D1iJEDUOQDjHPjaLYZRzXjizEtw6GJZyOMlKmk0oYZgqVkiZfM2jAk2s0NQU5hM/k82boP59zaWGUdHZuqtJRiY6o23RjHFGKEYkdhYFAkrxUZm8hl6msiQrokL+V2JDoMjQEIgmiJ5EVuEie7JsJRKGqIj7WG+JgQI/UsjHkZXPDYhEe3XA6PVG7YsRaOsEQQHeX000/Ho48+atXfeuuttK/973//C1VN2CAPHz4cPXr0yFjfzjzzTCxatMiqb9iwoU3XJ39n9O3bNyP9KiRKSkpw5JFH5rsbrVLw4qTJmDFjMGbMGPz5z3/G3/72Nzz22GPYunUrgMQuykgkgqeffhpPP/00hg0bhunTp2Pq1KkIBAJ57j1BEC3BmAQZUrus1f1+p4gaDodpQEgUPKoedtixRrX9iGnVTSxZ24vC/EbuCmEbw4p8pyaNAQiidWSmQJYD8Mit/87rXIdqiJWxJOHStHlNlAvJDpQbUYha0UUSFhIMMlxSQmQUgqPXqHscAqQV3cpctOmrSNC5irhej7heB5n54VO657tLHYLGAARBpCJZnNywYUPRusUQLSMEyEhqAVKrg45YVp4rM58lPIooyDK45QoozE+/Z0SX4LTTToPP50M4LFKJvP/++/jss88wZMiQVq9dsGCBoz5p0qSM9u3ss8925J1cvXo19u/fj8rKylavra6udkQUAsC4ceMy2j8ifYputbKyshK//vWv8etf/xrLli3DX//6V7z88stQVdWxi3L9+vW49tprMWPGDEyZMgVXXXUVjj766Px2niCIjOP3O6PBQqFQnnpCEE7MxUEzb0Vcr0VMEzktNJ4ZP3sGReSsMHNXGPkrZMmbkfsXGjQGIIjMIDEJbtkPt+xv1SeBcx0qjyKmRWx5DGPC4lWPQuUxqHrUsn9XjfyGJB5mFwa5SS5qmbkceT/t4qIQI0W90HOAEq2j8ZhjcdZcoI3rdVB5Yixc5j606MVJExoDEARhZ9iwYY56TU0N9uzZgz59+uSpR0RH0HkMcb0Bcb0Rqt5glBNWrDqyNa5ktnyQIhrSjIqUpbblsCM6EUwSr3w9u0Dw+/0477zz8NRTT1ltf/zjH/Hkk0+2eN2WLVuwdOlSq64oCn72s59ltG/BYBDnnXcenn76aQBANBrFX/7yF/zmN79p9dq//OUvjhyT/fv3z6jlLNE2inpmOn78eIwfPx579+7FY489hieeeAI7d+4EkNhF2dDQgEcffRSPPvooRo4ciWuuuQaTJ09uc6JUgiAKExIniXxiWrGKxcFaS4iMaXVQeUMGn8TglkqNaEghQHrkSsM6pmvu2qQxAEHkBsYkuJiw62wLQtSMOYRMzSo3f9T0KPQMRZE3x/w/vIC1H2xG/0N6Y8AhvXDs2MNwyLB+WX0mAEiQm4iJQmB0Q2YKJOaCwkRZtLkgMQUKc0NiLsiSApmZ7YWzcEFkHhElEk6MMZKEyHTzZHXUGr5QoTEAQRD9+vVDIBBAQ0NizrV+/XoSJwsQ8Z0WMgTHBqh6o63cgDhvgM6zE/0oYHBJQbilUrikUrjlUrikMqMeACMreoJolrvuuguLFy9GPC42CCxYsACTJk3COeeck/L8SCSCadOmIRZL/E1ffvnlGDRoUIvPSV7XWrFiBU466aQWr/nd736HJUuWWM+69957MWHCBJxwwgnNXvP+++/jnnvucbT93//9X5ddVysEilqcNOnRowduv/123Hbbbfj3v/+N+fPn49VXX7UsHTgXVlQffvghPvzwQ9x000249NJLcdVVV2Hw4MF57j1BEB3B53Mulpp2AwSRKTjnUHkjYlqtZSUjRMg6Y9Evs3aHMvMlIiGlSkOQLIdEkS4poTEAQRQmQtT0wtWOSG6dJ/I96lwz8lEncjqK97VEzkczXzXXbLkfmz9/80e7sXbVVqxdJawhb7ztMpxw7MmJ3JRMsuWzdLY58llCSsphmchlyZLaZKaQ7TzhQAj4jYhp9YnoR0uIrAfPQJRITOuc4qQJjQEIouvCGMOwYcOwatUqq23Dhg047bTT8tirronOVVu0o0185Ib4qDcC0LPcCyaER5sAaZYpFyRBtJ+qqirceOON+NOf/mS1nXfeeZg9ezauvPJKuN1uq33Tpk244oorsHLlSqutW7duuPPOO7PSt4EDB2LGjBmW2BiNRnHqqafivvvuwxVXXAGXy2Wdq6oqnnjiCfz61792CKcjR47EtGnTstI/Ij061UonYwxnn302zj77bOzatQuPPPIInnzySXz99deOyUl1dTUeeughPPTQQzjllFNw/fXX40c/+hGp5ARRhFDkJJEJzDwWiRwWtZYIGdfrMpYL0g6DDI9cYURCJqxZlTZGJxECGgMQROdBYjLAZMhwtX5yO9i59WtH/QfHnIVDyijPCJF5EhucagzhsdYWAVkPnsXFWpn54JKC4Fzv9IuyNAYgiK7J4YcfbomTkiRh3759ee5R54JzDp3HoPIQVD0MjYeg6iGoPGTkNhYWrJlKWdIaDBJcUtAQH8scYqSIgOzc33VEDmEsj7auhTcmmTVrFjZs2ID//Oc/AIB4PI7rr78ev/vd73DMMccgGAzi888/x0cffWSNuQDA7XZj6dKl6NWrV9b69tvf/habN2/GkiVLAAANDQ2YPn06br31Vhx//PGorKzE/v378cEHH6CmpsZxbZ8+ffDCCy84BFYi93QqcdLOQQcdhHvuuQennnoqLr74YuzatavJpINzjuXLl2P58uUYNGgQfve732Hy5Ml56jFBEO2BxEkiHTjXEvkreGPCQkZP7ObkULPybJn54TYmUG5JTKI8cgXt4MwiNAYgCKI5qqur8c033zjaDjvssDz1hugsaHrEsbEp2xucBAwuqcRYlC1NsqsLQmLZEfcLHRoDEF0FjccgwdWlxfVLL70UJ598Mg4//HAceuih8Hrb7tbQFdG5Co2HoephqDwMTTdFxzA0PewQI7O5iSYVMvPCJQWhSCVwSQHj+01YsCpSCc2fCSIPyLKMf/zjH7jiiivw3HPPWe379u3Dq6++mvKaAw88EAsXLsS4cdndAMoYw1NPPYXKyko88sgjVntNTU2zfQNExOTSpUvRu3fvrPaPaJ1OKU7W19dj0aJFeOSRR7Bu3bom79tVfLO+bds2/OxnP8OTTz6JZ555BpWVlbnqLkEQHYBsXQlzR2fCNsYpOqp6A1SeXdFaYh5r0iR2cZrlUkiMdmHlEhoDEATREps2bXLUFUXBwQcfnKfeEMWEzlVhvao5Rci4Xpt2Dsi24ogSkUrhku1CJOXJSobGAERX4ou6F6DyEBTmgyz5xJH5IEteZ5v1nrfTCTtjx47F2LFj892NgkA4AUVt0Y1NhUZTjNSz9J3VGgwSFCkAlxQQ4iMzy4k2SmVCFARMymPkZGF+TgcCASxevBjnnXceHnjgAXzwwQcpz6usrMTkyZNx9913o3v37jnpm8fjwfz583H++efjj3/8I5YvXw5NS7058PDDD8evf/1rTJ06FbJM4+hCoFN96n/00UeYP38+Fi9ejMbGRmvyYbdyqaqqwjXXXIOysjI89thjWL16teOcN954Az/84Q+xatUqhzcxQRCFCUVOdn7MnExxvRFxvd7KYZEQIhszkpepNRgUI/pR7N50GZGQbqkUcjtyqhGZhcYABEGkQ7I4ecghh9DfO2HBuW6MN2oMATKRa1rlDVl5JoPLinZ026Mg5VIozN/pxIRsQGMAoqshhKgwAC7EJy2EdOQmmXkhMx8UyTga4qVo8zneI5Eo94j82TFoPGYco9B5FFpSubkjwFt9RjaRmEdEO7KALfIxIT7KzNelI31zCec6AB2M/o6JDHPeeefhvPPOw44dO/DRRx9hz549aGxsRM+ePdG/f3+MGTOmXTapyRvI2sP48eMxfvx4fPvtt/jggw/w9ddf47vvvkMwGESPHj0wevRo9O3bt8PPITJL0X9KhcNhPPPMM3jkkUfwv//9DwCaTEYYYzjjjDNw7bXX4vTTT7e+DK+44gp89NFH+OMf/4jnn3/eOn/t2rX461//ihtuuCFvPxdBEOlB4mRxkshfETYsZUI2a5mQscszbOzyFBPvXCAiFEzx0bCQMQRJmflpMlVg0BiAIIi2kixOkqVr18OZZ7o2RZ7pzFvYSXA5nBXEGEMIkSKaicYXbYXGAERXRuexdn1WaTxifP61fq4ElyP6UmZeSEwxrGSVFGUFjLlEmSlgcBlHuVN/xnGug0ODzlVwaOBcgw4VnGvgXIUOzSY0tiAy6jHoiOX7x2kWiXmgMB8UyW/kNA40ER+7qp14PhFjmnqovBqaXg2VV0PVq6HyGgRdo+FXhuS7i0QnZeDAgRg4cGC+u5GS7t2740c/+lG+u0GkSdGKk+vXr8cjjzyCRYsWoa6uDgCsCYhJZWUlLrvsMlxzzTUYMGBAyvscc8wxeO655/DWW2/h3HPPRX19PQDgueeeo0kJQRQBZOtaWOhcTbKNSQiNTluZcBZzMDUPg8uYRJU4LWWkoGhjlMeiGKAxAEEQ7WXjxo2OOomTnZfmbFhjem2WLO0kuKWg013BOFK0SOagMQBBwNi8mV10xKHrccRRh45N2xgYFJtoqUAyRUy7oAnFEjoB5rg++W6pnmE/Oj9um78X55ohKAoRUdRV6MZRCI2aQ2jkjvdU5DtasSMwSJCZH4rkg8L8QoyW/IYg7XeIkRLZiOcVzjl0hITw6BAhqwGoKa9R9ercdrIzwSRAIltXgsgFRSVOxmIx/OMf/8D8+fPx/vvvA3DujjTrI0aMwPTp0/HTn/4UHo8nrXufdNJJuOWWW3DrrbcCaLpwQRBEYUKRk9lDDIDj0HRzd2fEyGNhvPSwLdoxDE0PQc+BvWpLKMyfJDradnOyACTmpsXBIoXGAARBZILkyMmhQ4fmqSdEJuCcQ+WNiGk1TfJAxvXs2LAqrMSIgiyFWyq3HBZcUpA2OGUJGgMQhBOXVIqq0p8mbQINQ+MRayOoedR4JM+95eCIQ+NxaMWr4xUVCftevy3vqL9JnebGhYnOI1D1/VB5jXEUQiRvY2StxkmcJAii8CkKcXLr1q2YP38+Fi5ciOpq8eFq7o40LVg8Hg8mT56Ma6+9Fscdd1y7njN+/HirbO7CJAiisCFxsnU4NyaEuk1YNIRG3RIaU7TxKAppJyiD7LCNSYiOJVCkIFySH4x2dHY6aAxAEESmCIVC2Llzp6ONIieLA02PJtmvJoTIbDgxSHBbUY8JO9YyuOVSsq3LITQGIIjUMCbBxcR8qDU414VoaRcx9YhDwEy8FwGyYG2dbeprQ9j62R5s+2wPavY34sqbzsh3lzIAg8w8kJgHMnM7yslH6z3JC4X5aKNMkaDzmBX9aLdk1ZGZyGhV35+R+xAEQWSTghcnx48fj7feegtA6t2RAwcOxNVXX43LL78clZWVHXrWgQce6Lg/QRQD30c+RlSrNgak7laOrk43UO3stq6c69B5XNjqcPMVS9FmfzUVIQtJZExGghuK5LN2d4qjzVrGyGkhMQ99PncxaAxAEEQm2bx5s/VZAoi/90MPPTSPPSJMdK5B1RsQ1xuso3jVIabXZinyR4JbKk2IkDY7VsoDmX9oDEAQmYExSUTNwQ+0so+Tcy4EE25EXdoiM8UmVtXIpxhvpqzmPHXHxx9ux4WnzbLqLpeMS6+dALc7v8udDAoYkyFBhsTc1ppMynUaqakAKa6nz6TOgMg1WgtVr3HYseo8cw4PDB4oUgUUVuE4Eu2EsfzZq9LfPZEh6urq8OCDD1r1O++8M4+9aZ6CFydXrFhhfSGbuyMBWIntzzjjjIx/YSfnrCCIQiak7kFI/Trt8yUYA2PJHAy3JmgmjiL/Q2ExYMAAPPLII/D5fPD7/fD5fDn/G+ZcB4duTcZ0K3eF5qg7xMUmwmJqwZE3kz+g0GGQDcHR7xAeHfkrDEuZQvy9IgoDGgMQBJFJku0aBwwY0MSBgcgOGo8liY71UPVGq67x7DlfKMwPt1yeZMNaBpcU6HSb9joTNAYgiNzDmIjWk+EBUN6ue3CuW0KlmN/aylw1cjqq1lw3uSzm1Nbdku+eVOI4fGiZ44x4XMM3O3QMGdYbwlLW6liKn1cycmDKDjGRMVFmkI08mbLxXivtTIEEGYBEnyVdDCHsN0DltdB4DVS91hIkdWRujMOgQGEVkCW7CFkJCZTbmiAIJzU1Nfjtb39rjaFJnOwgnHNUVlZi2rRpuOaaa1BVVZXxZxxwwAF48sknM35fgsgmGm+b77yOmNgNqbV9lxYzdv2JQbgEBskYnDvLYjAuifPsZfMao4yk65KvAcyd0uZEgtumF6KsBIHJl5zkeK829pnjPIAbcxHe5B7iPXMClVpUTNRVR51zDTo0FKP1TdthRu4KT2LHp2EbYxchzWhHCS4aHBMZg8YABJGamuhn0HjU2Pzht46UQyg1yfkmydI1M3DOofFwk6hHq8wboLdxvNpWGFwOG1a3lCiTDWtxQ2MAgiguGJMgww0wd06ed1AA6NevH7788kurbe/WUkwYdWZOnk90LTiPQ+W1hvhYI8RIXRyR0ahhGQorhyKVQ2GVlhApsQCN8QmCaBP2TX6FSFGIk8cccwyuvfZa/PSnP4XX683ac0pKSnDJJZdk7f4EkQ10Hs3Zszg0aDxsVoiihNnsZDwJwVFK0WZrZyQ2Fi2c60UdGUJjAIJonprYJkS175u0O6PXncKlIvkNC22/+HzvQp/tJE62DZ2rwh5ej9is4kVd5SGHCJkbGz8GlxS0CZDlhi1rOWRGEQOdERoDEASRDkcddZRDnFy7di2mTp2axx4RxQznHDpCUPUaK/rRFCJ13pjhpzHIrKyJJavMSot6Dl/0MCmPtq70705klkIWJoEiECc/+OADjBw5Mt/dIIiCpcJzuJHIPmp42Tc9kpLYeRDRqy7DZtcFCS5n3SjbIxxl5hWio+ShiMZOjM4jVv4KM5+FptfALR+EMvcP8t29dkFjAIJoGVVPbRPFoQnhCA2tbOI28lBJPod46RQ1fZ1G+Em2dR06dGieepJ7dK6J7wkegabbhMaU4qMo58NaXoIbLikARQrAZbwSNqxBMNZKwjSi00BjAIIg0uWoo47CP//5T6v+6aef5rE3RLEg1svqoOl1ULldiKzNwhiIQWYByEk5IRVWTmMbgiAcDBw4MCP3UVXn59jAgQMhSRICgQB69OiB4447DhdccAGOPvrojDyvvRS8OEkTEoJomQrP4S2+zzkHhwqNx6DzaOqj7qwnhM0YOOI5+kk6HwkL20ReCoeIaAmLqcRGV8pzafcckVqErIaOSMrzVb06xz3MHDQGIIjm4VxPuBm0Gx0qbxBW7y2KmMyWM9grIuwlr7UBJhGFnygX4kLLbbfdhnXr1mHjxo3YtGkThg0blu8upYUYy2mOnNSJHNWxpLaYITYmXqoeLZjxnMx8luhoFyBFOQg5RzaAROFDYwCCINLlyCOPdNTXrl2bp54QhYQZAanp9UKE5PU2MbIevJn5c0dgcEFm5VCkMiMishwKKzciIQtvbEw0A0VOEnnkyy+/zFgedHvUpN1hYN26dXjzzTcxa9YsnH/++XjiiScQCAQ6/Lz2UPDiJEEQHYMxBmYIW0BJm68Xi592QTMGDh0cOsA1Uea6yMEI3cjHqDvLxvtocq6e8hqY9xc/AQAGZivDbGEtvGeWGbO9Zz83cZ7IdWlPbi87REVHknur7nyfQUlxXfFHmRD5Q+dhQ4SscRzbOonSeE3GBjYEQRQOHBpKXYdA5SGoeggaDxluCdl5mspDULUQ0n2CBJdDrEwpaCa9n+0NOO21eDPzX3OYebB14UnBjSN0431RTuTLTlyjc7VlYdHRntwWQ3G4YDC4pBIoTAiNTQXIEkiMpp8EQRBEZjnqqKMc9b1792Lv3r3o0aNHnnpE5AqxXmUTH/U6aFyIjxqvQ2bzQCaQWEDkhGRlkKXEUULncBshCCL/ZNqONdX9GGNYsmQJwuEwXn755Yw+L11odkgQRIswJkFhXgDZy/OSKaLRKL766iu4XC7069cv390hiLRoKkKKiMhM7eTkiEPnjZBZfnZBEQSRHSTmQq+SEx1tOteg8RBUPQxVb4TKw1D1EFQegqaHEmWe+Z3iyeiIQ9fjiKM+7WskuA3B0g1zI1FCEDTg3JIBjQbrffv/2o9iHuZs5/b3zXvwRDnx3GIQBbMNSxKVPSkjIBXmJ4cHgiAIIucMGjQIPp8P4XDCUeLTTz/FhAkT8tgrIlMIV69E1KNZVnmdkQMyO2M1BsWKfpQtIbIMCisDo81WBEFkiQEDBmREmFRVFbt377buNWDAAABAPB7Ht99+i3g8bgUy/Otf/8KyZcswfvz4Dj+3rdCnKUEQRc8999yDuXPn4ptvvgEAXHPNNZg3b16ee0UQCcSOzgZjR2etZceaSRFSIAnbGKnckcdCYv4MPoMgiEJFYjIkFoRLCrZ4Hue6IVw2WkdND1tRmIlozI7axrYNHTHoeqxADEg7L83b8drFx8T7EvNQFECRkDzekFkZPHLffHeLIAgiq8iyjCOOOAIffvih1bZ27VoSJ4sAYV0fg8YboPMGaLzRKDdC0+uh8rqs2K/akViJYb1qCpHiKMFP45+uCmN5tHWl37muzvbt2zNyn127dlmCJAB8/vnnVllVVbz88su4/PLLUVtbCwBYtGgRiZOpuOyyyzJ2L8YYgsEgysrK0LNnTxx77LE4+uij4XZTbhOCKGY0TbOEScDpo00QuYJzFRoXE6jkXZ0ar0dmd3QKEVKRKoycFhVQWAVkFuxUUSs0BiCI7MCYBBcrgUtq2e7dzGup6mGovBGqHobGo4l8hnrEVo9Cz5qtLOGEQYLSTI5qd5LYmCw+ujvV90RXxGlhVwvVsLBLNd7wyoOLVpykMQBBEG3hqKOOaiJOEvmHcw0abzSExwZbOSFCZj8vtgyZBSCzUsisFIoUtMoyC1AUJEEQnZKWoi8VRcGPf/xjfPnll/jVr34FzrnjOzSXFPwn8IIFC7K6U8Xr9WLy5Mm4/vrrMXz48Kw9hyCI7JFs4UriJJEthKVMIp+FymutBUJhKZNpZCisrNOLkM1BYwCCyC/C2r0EilQC4IBWzxeiSUKsFOKlTcBMrvOIkU+x88McYqILElzOuqPN3eK5Ik827aruzIjF3IRtndjwVGuMQRqQ7oYnkW+rOKExAEEQbeHII4901EmczD6cc+gIO8VGvdEhQurIjQsHgwcyC0KWSqEwU3wUR4mV0LiJIAgiBSeemEgTs2fPnrz0oeDFSTvJim9LXy7NJflMfj8cDmPhwoV46qmnMGPGDPz2t7+FLMsZ6jFBELmAxEkiUwhbmahtITDxUvVsWsrIRiSksGM1bVm7igiZDjQGIIjCR4iZPijwpX2NEDSTBUwhWDIj76Q4MGeb7ciS6kZnkPirZ7brgVAogr8veA47Pt+JP/7pbuPzgRl3ShzFPZLaIBluS5KtL0aZ2c+zXUsLYkQKHI4LNvExkzm0NL14xUk7NAYgiKboPE6bVWwcddRRjvqmTZsQi8UoQrodcK5DRwQ6DztfEEchPDYam2X0nPVLYiWW4KiY4qNUagiQnpz1g+gCMAmQ8mXrSus/RGZhjDUbRVlZWWmV6+ryM28oCnHS/h8w1cSiOZLPbWmiomkaZs2ahV27duHvf/97R7tMEEQOSRYna2trUVtbi7Kysjz1iChUONeNiVSjdbRyWvAGaLweHNmL4mFwG1YyZYYIWWHktyARsjloDEAQnRshaPqhIPu5cevq6vDggw/i4Ycfxvfffw/GGG68bgYOOeSQrD+b6JokLFhroOq1iQ1PvA46b8jac8V4owyKVArO9aIdY9AYgCCa5/voC9B5GBLzQYYfEvNBYomjbNX9kOAFY51bfE+OnFRVFZs2bWoiWnZVWhMcdR6ytUWR2ZQk6SHBD5mVQGIByFKJzYo1aMyXi2IJmyAIoqBoadxsjodbEjCzTcF/su/YsQMA8Omnn+Lyyy/H999/D845Dj74YJx//vkYMWIE+vXrh9LSUsRiMezfvx/r1q3DihUr8PLLLyMWi4ExhgsvvBD33HMPotEoampqsHHjRrzzzjtYsmQJwuGw9Y/w9NNPY9SoUbj22mvz/JMTBJEuffs2zaWza9cuEie7GGLCFbYsZDQ9saPTEiQRRrYnWhJ81g5OczKlGHUGD+1ubgM0BiAIIpNwzjF79mxrVyjnHA888ADmz5+f554RxYxpa6fptYbdey1UvcYSIrM17mDwiMgRqcyWR8uMIPFm5Zm5hMYABNE8nHPoPAxAM6wzG1r9qBG2l0kipiFq2tsZ3EU5XykrK0P//v2xc+dOq23t2rWdUpwUC8gadMTAeRQ64uLII0JkhFOA1Hg4iw5A6cHgEqIjE6KjxEzx0SyXdHoBnSgeGJPz9vtIfwdEJkn3+zxfwiQAMJ7Pp6fJK6+8ggsuuADhcBjdunXDnDlzcOGFF7Z63d69e3H99dfj+eefB2MM48ePxyuvvAJFSWiy+/fvxzXXXIMlS5ZYE5MePXrgiy++gMdDtgBEbtmwYQMOP/xwq75+/XoMGzYsjz0qHnr06IF9+/ZZ9VdeeQVnnHFGHntEZJJEPgun2OgQHnkIudrhKbFAwkqGldrEyCAkVpzWQYX6+UNjAKKrUKh/g52NmTNn4r777rPqHo8HO3fuRI8ePfLYK6IY0HlcWK86REhx5Ihn5ZkMXkNwTCVAZu57qlA/f2gMQHQV2vo3qPMovo08laXeyEY0pjMSU2JeMLjAmNvKo8xgvMxynqO0J06ciJdffhk9e/bEkUceieuvvx5nn312XvuUCpFKJA7OY9ARBecxcMSgNzlGwXkcHNEm7+XSTrV1mE1sNCIfHcJjoGjnyMWKWOrnaf1NFuoYIJc0+W/w/n0YdljTIIic9GXTVzj8hBmJvnTBfw8id3z55ZeoqqqyxElN03Leh4KPnPziiy8wZcoUhEIhdO/eHW+99RYOO+ywtK7t0aMH/vGPf+DGG2/Eww8/jGXLluHXv/41HnroIeucyspKPPfcc/B4PFi0aBEAYN++fXjhhRfws5/9LBs/EkEQWaBfv34OcZLyThY+5qSsqaWM02ZG4yFDeMzlBIwlhEfbQqApQNJuttxAYwCCIDLNjTfeiAcffBDxuBCTotEoHn74Ydxzzz157hlRCAgb1gYhPPJaaEYEpKrXQEcoK89MdlywR0N25cVcGgMQRPOIuVG2SD8asymykQfTBckhXCo2AdPZLqVoS87dDCvyw57bGU3Omz37T3j00Udw4IEHIt2cz2JBVgeHBkAD51qiDB2cq9b7HBpgvO88XwegGueb1xovroEjZgiRMUuILBYYvIZFsO0FvxAcJUOMhC/vwnRXRaypRKDxWui8FhqvMY518MnD4ZYH5buLBEEUMP369YOqqnntQ8GLkzNnzkRtbS0YY5g9e3baExI7DzzwAN58801s2rQJDz/8MK666qom95k3bx5eeeUVVFdXAwBWrFhBkxKCKCL69euHNWvWWHUSJ/ODGBxHU+SxiFiWMnYhEsj9rhyBnGQpU2Icg1BYGSRWQhOsAoDGAARBZJrevXvjoosuwt/+9jerbe7cuZg5cyaCwWAee0bkCmGH2GjlfhTRkHVGNGQdsrEZyh4BqbAyQ4wsK2rHhWxDYwCCaB6ZleEAz2RoMHMFmvkCQ7b5ViinzjICU5CLJj5Jc/j4QG9x3OdwMHUKmQkxE4aomK/5aP6Q4HWKjcwPCUkCJPMZuUppTlwo6DxqCI+1jmNzYrfGa3Pcw04EY0C+fveL0FabIDpCQYuTNTU1ePnllwGInY3pWLikQlEUXHnllbjpppsAAAsXLsSsWbMc5wQCAVx88cV46KGHwBjD6tWrO9Z5giBySr9+/Rx1Eic7TiKXRdSwlIkatjOiriOSItIxgvxbzEg2sTEhPiYsZkoo92MRQGMAgiCyxc033+wQJ2tqavD4449bnxNE8cO5Dp03GuKj8dJrjXo9srMYLRuW72VQpDIhPkrlUDpJDshcQmMAgmgZxiTh8oKWN9UkNo6aomXIJlyaDjViHscRzVHvcw1POuZWrs0NCiS4ITFPUk5REhyLEW7YyJsCZEKEbFveUJ3ESYIgioCCFidXrlyJaDQKxhiOO+44SFL7v0BPOOEEq7x8+fKU55x00kl46KGHwDl32EMSRCGj8UYADBI8XdpqksTJ5uFcT+SsMITGRDlmiY7290VbDIW3k5TZxMbkqEdTePSS8NgJoDEAQRDZYsiQIZg4cSL+3//7f1bb7Nmzcd1118HlcuWxZ0RbSAiQtYb4aIuE5PXI1mYpkXe6zCFCCteFAI0/MgSNAQgiMzDGwOCFxLytLv5xrial1bCJmTwEHRFwrhq5EuPQEUfhzRWLEwY3GHNDchw9YHBBYh4wuCExt5Hv0ygbYqS4lsTGYkT8zdU5BEiRxzozts0UOUkQxYksy1YOyEyi6/kOJElNQYuTu3fvtsrdunXr0L0qKytT3teOXdwwbV0IotCpi72LmL7LqClitxw8xqDWA8Y8tjZPyjaR36G4F1MOOuggR73YxUkzalHkZIxbk0AOs6wauStU6Pb3eNwSIs0oR454vn+cVhETLx8k5k25w9OMehT5LIr7d5VIDxoDEASRTWbMmOEQJ7/66issXrwYF110UR57RSSTyAGZHP1Yl1UBksFj2K+WWUchQpaCsYKeQncKaAxAELmHMcWKxkx3m47YBKs656rGUedqijmsfS5rm+fa5reFFdcog0ESRyaDQTbaZDAmGfkxJdFuvG+dY3vfFBObEyBpftu5ESJkPTRe57Bj1dGQwacoRq7qMsisHJLh5EC0Eybl0daVNhsQgkx+N2RD7MwUBT2z+v7771OW28P+/fsBiH8Ms5yMPc9MIf+jEYQdp7+8Cp2r0NHYxjE9A4MHUpKgKdqcZTGoTgzCGSTbQNwcuOf+yzQ5cvKrr76CpmmQ5cxGkyZEQzERA9etZPewEt5rAIx2brRDS+w0TZq86XaxEar1XmFNzNqO2M1p2seksJRhPshGOy30EcnQGIAgWqc2tgKqXuOwrbZHklP+3OYZPXo0xowZg/fee89qu++++zB16lRaJMwRnOtGhE4jdOOlGS8RrdMIjTcgW+MhZizkyawUslTqiIYkF4b8QmMAgigOhADnBuBOpHbsAOLvz/niDltWexs3L2ra1ur14jrRf7vgmCgDEn0PEGmTsFCuM0TIOkuQ5GjM4JMkS3iUjHGLzMrAUEK/rwTRRUk1di2mz4OCXg3u3r07APEfec2aNdB1vd2WLu+//75Vbm73ZUNDYtdKSUlJu55DELlG55nIDcHBEYHGI8KYpcNzcoZU4qW581DsLJScbazp+/b+Jfpkn2CYneWo6OlcuFBVFVu+fAm9+xxgOy9xdExSUgqMOhKiYkJgzH8+xfyRsI4xhGrmgQQf5CZ5LEQEJAmOREegMQBBtE5c/x4ar4HKm1+8l+Bv3g5bMiPSu6aAOXPmTJxzzjlWff369fjPf/6DM888M4+96hxwrlkio2YTHu0ipI4wsr0Ri8FliY8yK7VyQspSKbkxFDA0BiCIron4THZ+Lrf6KZ10QkNDA9566y2sWbMGa9aswe7du/Hxxx9nsptEF0ZsrGpwiI+mIImMOlYxSAhClhIipMTKICHQZcftOYUiJ4k8ctJJJ7Vps1x9fT327duHr776CoCxWYJzBINBHHvssdnqZsYo6JXjqqoqq7x//34899xzuPDCC9t8H03T8NhjjwEQg51BgwalPG/nzp3WOT179mxHjwki9/CMiJOZxowu1Ixdic2ckkEC3XS43QpiMdVq+3znGlT2TP333nWRITnERcMC2B4p2yR61rShoUESkTtoDEAQraPz1ndi6whB5yGo/NtmzmCQmN8RfZkcidlZRZyzzjoLhx12GDZt2mS13XfffSROtoCIDIinFB01K9qxERyRnPUpIUCWGeJjIhqys/7udnZoDEAQRHvZvXs3fvSjHzna9uzZg969e+epR0QxwnkMGq83REgzGrIeOuqR6cUsCQGHACmOQWMDP0EQXY1ly5a167rvv/8eL7/8Mh544AFs2rQJ9fX1OOqoo/CnP/0p466CmaSgxclx48ahvLwctbW14JzjpptuwogRI3DwwQe36T4zZszAxo0brXryQMVk9erVVrm5iQtBFBoHeC807CPES+QbjBhtMaMt6jia5WK3DbUjSRJu+92PEQx60eegbuhzUCX6DTig9QuLCAaXkZPCeZSsumKc43aIj6JsWvYW9Mc+QVjQGIAgWkbnsQzlFOZWNBuwr5lzpIRQmcqqG16rzKAUjRgkSRJuvvlmXHbZZVbb22+/jVWrVmHUqFF57FluELnCotB5xMhVHQHnRt1o50a7zqPgRns+xo8MbhH5KJUlxEdWCkUqJQvWTgiNAQiCaC+HHHIIgsEg6uvrrbb//e9/JE4STRDjoJBNhExEQmZjkxWDv4kdq0S5rAmCyBDdunXDtGnTcNFFF+HGG2/E/PnzMWfOHNTX1+Pxxx/Pd/eapaA/ARVFwWWXXYbZs2eDMYZ9+/Zh7NixmDt3Ln7yk5+0ev13332HX/ziF3j22WfBGAPnHIFAABdddFHK81966SWrfNxxx2XqxyCIrCLyJIgFwbZg7nwXi05RcB4zFqKitjZDzETUcV6h2ptedf2EPPfAbktr5uE07GqZZAiHChhzG8ckcTGF8MiYAglu4x608EY0j/ibDtlyXIgdnjLrBp9ydL6712ZoDEAQLcMgo9x9OjTeYItea7By9gFqq/dIHx0ar4fG61s/FbLD4juV7bfEhCU4gyfvUfk/+9nPcPvtt2PPnj1W23333YcXXnghj71KH7Gwphp5sDXo5ia1FKKiKUJys92Rtzyf2MVvvy1617QjLjV+V2gc1FWgMQBBEO1FkiQce+yxeOutt6y2NWvWNLs5gejccK5C5w2GFWvSC43I/IYrMydkEBJKjXKpEQlZ0EvwhB3GgHbayWfk2QTRARRFwdy5c/HVV1/hX//6F/72t7/h7LPPxrnnnpvvrqWk4D8Z77rrLixevBhff/21NTG54IILMHjwYJx//vk47rjj0L9/fwSDQcRiMVRXV2PdunVYsWIF/t//+3+IRqOWTy9jDHfffTd69OjR5DmrVq3Chg0brEnviSeemNOfkyByDWNMJK9nbsgItvl68XelW0JlIjej2aYZC2a2Nm5avRr5HG3nc+i29+3iJ3McWVI91ZHZ644v9kQOC+aoG/kxmQRAaUFgNMvm+WaeTKONBhFEDuBcMyxl6mw5LsRuT4issclX5LqLGYPGAATRPIzJ8Mh9U74nNitEbXabDY6ybgmY2dhopFmLQK1//DAjwt8ZhcmY15afWnxPi+9325E528R3s+1c1rTdOte6L4PLDfziF9dhxoxbAQDHHXcMfnrhT4z/PgB4qpzVzjb7sWlebKOda4aIqAFcNcY7KrhRBlTHOeZ7sMqpry/0z3gGxZnnlPmT6iUU+UikhMYABEG0l+OOO66JOEl0Tswxb0JwdAqQ2bKZF+lvTOFRiI9iM5U/7xvvCIIgAOD+++/Hv/71L6tM4mQ7CQQCeO2113DyySfj+++/t3Y+bt68Gb///e9bvJZzLgQY45prrrkGv/jFL1Kee/fdd1vXHHDAARg3blymfxSC6FSICbwpzJmNeesOQXQ6RJ4Le44L49XGHZ5CtCxOaAxAEO1DbEDyQmJeAN1SnsM5h45wyqhL3RIzQ8iu+MWN6L4IwKuz+JyWmXRxAG+/dwymXX0yxvzgUDAWwneRZ/PWn2KBwZNSbEwc/UbOahogEm2HxgAEQbSX5AjoNWvWWJ8LRPFh2q+agqOWJERm1i3EDjPyQSbER7MsMU+WnkkQBJEZBg8ejEMPPRSbN2/GBx98gC+//BL9+vXLd7eaUPDiJAAMGzYM//3vf3HRRRdhzZo1jgEF56kXTOyTEbfbjbvvvhszZ85s9hmvvPJKxvtNEARBEC3RnBWryHMRzcwzIHLPFusEisYABJEdGGOQ4YfM/HChe8pzONehIwxNN6It0WhYg4aNV8QQOMNIHbldHARLfXji2Wvy3Y28IqzkPUb+UA8k5jWiAow6vOJ95rWiXcmejMg2NAYgCKI9JIuT+/btw1dffYWDDjooTz0iWoJzDTpC4DwEnYeMctjIiW7ar2YzrZBL2LAypw2rhIDhlkV0OZjp0pKnZxNEhhg8eDA2b94Mzjk+/vhjEic7wqGHHooPPvgAjz76KObOnYsNGza0eD7nHF6vF5MnT8aMGTNw2GGH5ainBEEQBJEgYTVjTq7qofN6S4TM/IK+YtvVWWrYyxT3pIrGAASRHxiTIKMEslzS4nlmHmtLuETYKWLCJmbycMY2XxCpsYuKzCY2SvCA2cRGiRl1eGjxrcgxNzvpRm5Y3XgpUi945MH57l6HoDEAQRBtpaqqCuXl5aipqbHa1qxZQ+JkHhC29GEhOjqEx5AlSOZiXCjGQ4HECwEjAjJALg8EQXRaSkoS8/ivv/46jz1pnqIRJwGR2Prqq6/G1VdfjXXr1mHlypVYu3YtvvvuO9TU1MDj8aCiogL9+/fH8ccfj7Fjx6KsrCzf3SYIIsdEo1Hs2rULX375JUaPHg2v15vvLhGdHLHbszEhQFpWM41Zs5ph8DnyXJjHzpq7i8YABFG4mHmsJeYGUNrq+SIi0x6B6YzC1HkUYoe8buRw1AHOjZzVZs5rUbbauHmu8/3s7rRPReqc2GYOaxFtKINBAWOK0a4Yea4V65yU7cY1ieud1yTaacd1ZySx2SkhPmq83tj01IBUm50YdwEobnESoDEAQRBtgzGGY489FsuWLbPa1qxZg0mTJuWxV52PhN2qEBtFOWQrh7OW87EpEiSUOAVIFrDayO2BaBMUOUl0Er7++mvLbWT//v157k1qivbT+YgjjsARRxyR724QBFFAxONx9O/f37EbZN26dTj88MPz2CuiM9A0+tEmQPJGcISy9GQGCUFDfHRazTDmytIzCx8aAxBEcSMiMoWlbC4QEzK7mGkvAwkBkaF5cbH596xzOuHGECL3cB43cmrVQ0edQ4gE4m26l7imc0FjAIIQNMSXAdCMDYs+IxLeB8Z81pHB02W/m4477rgm4iTROmLeGwNHBJxHoPOoURZHnUesSMjcCY8mii3qMQDZJkIy+GlzFkEQhI3GxkasXr3aGgeUl5fnt0PNUNDi5H//+188+OCDVv2hhx4qSG9cgiAKA5fLBV13Rkh8+eWXJE4SaZGP6McETa1YJVZq5LnompMsGgMQBJEpxIRM2JY2t0SrqipkpaCnRkQnIjHmSIqC5PXgCGfsOTqvB+e86MQJGgMQROtovBrW/CR1ClaIrTWGeAmvIWL6UoiYnc/WMjnv5Jo1a4ry8zATcK4awmI0IToiCs4j4MbRXm/hFyrLuCAxHyT4wZgfEvNbQqQQILuu2E4QBNFWotEonn76aas+cuTIPPameQp6Bv7hhx/ipZdeAmMM/fv3pwkJQRCt0q9fP+zdu9eq79y5M4+9IQoFzlXoCINbuS7CVq6L3O38ZIatTIlNhAxCYmWd1oq1I9AYgCCIXHLooYciEAjguOOOw4gRI/CTn/wE3bt3z3e3iCJFRJ6YObYaDXs7cwNUPXQ0IjuLvwokFhTjCwQhsaDxnOIaY9AYgCBahvM40ts4KfLRajxkVptBSoiXViRmsojpBYOraDZOJouT+/fvx86dOzFgwID8dKiDCBcIDRxx8eJxcMQAqOA8ZrRFHSKjbomN2dxkmy4KJPiN3y2/UfYnlbuuMxBRYDCWR1vX4hqzEYVLZWUlzjnnnHx3o1UKWpzUtETejKFDh+axJwRBFAv9+/fH6tWrrfqXX36Zx94Q2UZM0uI2wTFk5CwLCfER4igmbtlH5Fxz5rcQrxKymmkjNAYgCCJX7Nu3D59//jkA4NNPP8Xf/vY3jBs3jsRJolkSkY8hcN5ojEMabWJkGNnLdyoZkSTBhBBpvDrLZicaAxBEy+gZjLA275ieiAlY+Y3hApjLKjPmEm1QrDKzlQGXkVPZfl72Pq/69++PyspKR46tNWvW5EWcFLkZ44AlKpoCYwwcqpircjVJeEycA6jG9fmKaGwN2Rbt6EspPIp//+L/fipUxO9MAzivB4dwYpClAZBZz3x3jSCIDBCJRFBdXY3y8nL4fL58dyejFLQ42aNHD6tcqL64BEEUFsk7qylysnjhXLPZzISg89TiI6C1eq/MYY9+DBpHM+9FCRhz57AvnRsaAxAEkSv+97//Oep+vx9DhgzJU2+IfGPl20oSHO0RkCISJbsw+G35phNCZFfY7ERjAIJoGQk++JUfGPMh0xEmUc6uNacGDjFPczyiXY9LiJXMEDqFaCkBVq7nxIuhabuVE9p2jdl2zLGH4c033rOeturDN3HOpGNt14s81Il81EaZ6+DQUr/PzbLWzHVJbdZ9ihEXJHjBmMeIrPUa1qpew3JVCJCd0Ra4UBFrJAkRkvN66KgHUrhAcV4OkDhJEEVLbW0tHnjgATz33HPYunWr1d67d2+cc845uOWWWzqFu0hBi5N9+vSxyt99910ee0IQRLHQv39/R50iJwsHa7Ev2WrGYTsTMexoIgDieelnIvqxxJHjgqIfcwuNAQiCyBV2xwUAOOaYYyDLcp56Q2QbMR6JJmxW0dAk+jFXFngMHpvwaIiQCIrcWqzr/g7SGIAgWoYxF1ysd7Pvi0i9qNjcibCxydMmZDpEzHyiGpGD4QwInU056pjuePONRH31mvcQ1lZl5uZFiWnf6zEi7VOIjla7p0t/D+Ub8Tfc6BAhOerBEWrDPRqy2MNODpMAKV+2rrTeRACffPIJzj77bOzZsweMMccGkK+//hrz58/H3//+dyxYsADnnXdek+u/+eYbK9+kJEm48cYbIeXrd7oVClqcHDt2LAKBABoaGrB69eoum7yaIIj0Sd41QuJkduFcdeSzaCo0Rhx5L/JvReMyrGYSuS4Y8xk7P30U/VhA0BiAIIhcsWbNGkc9OU8VUXxwHrOEx0Sux0Q9d64LEiSUGFZ3ftvGJyMKksYcKaExQPaJxWLYsmULNm3ahG+++QZ1dXXw+/2oqKjAkCFDMHz4cHg8nnx3s91s2rQJGzZswO7duxGLxdC7d29UVVVh1KhRBbs4l0kYk6zckS0hBJCwMXdrScTMTYqMTHPsiEEYOuwgHH1sFYYfU4URow7Od5cyiOyIOhXzXHcK0VHUJXiRbStdou2IDVONTaIheQZyU4uISoIgio29e/fijDPOwN69e8EYM9JZwfr8NsfF4XAYU6ZMQY8ePTBu3DjHPbp3747Zs2fj66+/BgAcffTROPnkk3P7g6RJQYuTXq8XEydOxNNPP42amhq88MILKdVggujKcK4CkCiayyBZnNy9ezfi8ThcLkqu3hxmDgxhYRZzHhEz8hckt8WMSWpuIgvSQezuNEVGQ3SEyHthtouJG1EM0BiAIIhcQeJk8cF53BAbbcIjb7DquXJfEFZ2fsPy3RAfmR8M5rFz5IDMNTQGyA6fffYZli5dimXLlmHlypUIh5vPW+h2uzFx4kTccMMNGDt2bFb68+qrr+KMM85o0r5ixQqcdNJJbb4f5xyPPfYY5s6di08//TTlOb1798bFF1+M22+/HSUlJW1+RmdDiJgiZUVLWOk2oIJzI3eiUTZzIzbNmWjkSbTOUZHbdBzAmT86Dmf+qNC+05ktB6cLTltbly2XZ9N2U4QUZVr/KSaEuBCGjnpw3mATIRuQOdtfBoYSMBYEQwCMBTN03y4IY/mLYKRxY5fnlltuwb59+wAkhMjhw4djyJAhqK2txTvvvIOGBhEZraoqrrvuOnzyySeOOYcsy7j00ksxa9YscM7x/PPPkzjZXv7whz/g3//+N2pra/GrX/0KY8aMQa9evfLdLYIoGELq+1D5boh8AB5jl5zbZsXhNiyjjHbHOZ3PpiPZ1lXXdezZs6dJe2dC5L0wLXHUFsVE670CFRhTw6ydv2Khz3mUmA8Mvk75+9zVoTEAQRDZZs+ePdaOUhMSJ/OLWMCLWzmmdd4obFdtUZC5siJkhquCZAiQzIp+9BtuC7TpKVvQGCCzjBkzBitXrkz7/FgshiVLlmDJkiWYNm0a5syZg2Awcwvd9fX1uOqqqzJ2v71792Lq1Kl48803Wzxvz549mDVrFpYsWYLFixfT532aMCaDwW9U2n8fc1MsEDcceEwxUxVtpojJOUTUGDfyNnLHi1vlxHuc86TzdNt5qa7lEDankuOY2Phttsu2smQIFub5cgvXifcB5hQeIdOmlU6M+L1uNARIMyKy0YiEzKQ474eEIBgLgCFoCJIltCZCEEVOXV0dnn32WUuUDAaDeP755/HDH/7QOqehoQEXXXQRXn75ZQDAunXr8NZbbzURH8866yzMmjULAFodH+WTghcn+/bti7/97W+48MILsWvXLvzgBz/AwoULMXr06Hx3jSAKgoTFShw64oDpK5+WA4RiCZmSXdBMEjftomehW4FUVlbC7/cjFEp48e/cubNgxEkxaTKFRHOHqSkqmpMy1ZiUJc4T76Wu53oHamZw2fJZ2PNeNM2BIX4fC/d3jsgeNAYgiJZpjL8Lndca0eIlhmiSiOASGzdoZ31LJEdNlpaW4pBDDslTbzo/nMcTdoE8DI5IypxouRnbMMPePeAQIBPRj5RnOp/QGCCzbN68OWV7VVUVBg4ciO7duyMSiWDLli3YuHGj45wnn3wSmzdvxmuvvYZAIJCR/sycOTNj6TcaGxtx5pln4qOPPnK09+3bF0ceeSS8Xi82b96MDRs2WO9t374dp556Kt5//30ceuihGekH0ToiUtMDwNMhkZMg8okZBckhXBvsYiQQyfDTvGAQuanNaEhxLPjlfIIg2sG7776LeFw4wHDOMW/ePIcwCQCBQADPPPMMqqqqsHfvXgBIGRl5/PHHw+12IxqNYuvWrdi3bx8OPPDA3PwgbaDgP82+/PJLHHPMMVi4cCF+/vOfY/v27Rg3bhzGjBmDc889F8OHD8eBBx7Y5l18ydaPBFGscN6RneOmKBYSRhJpCZrmDkGxg5BBBphs2zkoiyNz1hPnSolzzHYmO681dxkye5+a61zT9v79+2LTpi1W/YsvNmL02MNbuI8OQDN2ZergXGvaBg3gxtHe1sr5zrZiFRLTQTLEbK8hZnuTREePQ4ykHX1EOtAYgCBaRke9ePH6Zr4mGRj8KYSXEpt42bU/j5PFyWOPPbZL5CPLNCJSQAiNDrGxieiYW7eGxO9/ie33P0DifRFAY4DsMW7cOEybNg2nnnoq+vTp0+T9LVu24JZbbsHSpUuttpUrV+Lqq6/GokWLOvz8d955B/PnzwcgbMfcbneLFrOtcemllzqEyWAwiEceeQSTJ092fJ6vWrUKl1xyiSXUVldX46yzzsK6devg87Wcm5EgiK6HcJ2yR0HaRchMWbGauG0ipD0ikhwa8gKT8mjrSmPTrsznn39ulXv27IkLL7ww5Xk+nw9TpkzBgw8+CM45Vq9e3eQcSZIwZMgQfPrpp+CcY+PGjSROtocBAwY4ImbMRKDvvfce3nvvvXbdkzEGVS10G0OCSI9c2VolMIU2YyeH9T9JdCx3d4fo3deLTZsS9a1frECjWp63/hQXkmH/6zbsZ9yGNbDbVnYl2pgXErwQOTNo+yuRWWgMQBDNwzk3cuu1eBY4GqHxRmjNfC8nbCsTUZeJKEx/p9+ZTfkmUyPyi5kW8FGjLI46j4IjYgiO4phw8sgtYiOU/ffXEB6t39+uLb4XMzQGyCyyLGPKlCm44447Wo0UHDx4MF588UXMnDkT9913n9X+9NNP49prr8UJJ5zQ7n6Ew2FcccUVRuQRcNNNN2HJkiXYuXNnu+737rvv4vnnn7fqbrcby5cvT/lZPmrUKLz33nsYNWoUtm/fDkBEUM6ZMwe33HJLu55PEERxk8gF2ZAQIS0BMhtrbYplw+q0ZfVk4VkEQRQbZi5JQMxLW1pnHTduHB588EEAaOJ6YdK3b18rD/f27dvbldM72xTNaoPptQvAOpoDWoLoygRcp1uLRRxRcB6Fbi0gRROLSrbFpc7OQf26O+qfb9+bp57kC9kpIDoERruwmEp0LJqvBaILQWMAgmhKpnIGc4Sh8TA0/l3K94X4Y9rElkBi3qRI+eKNiOecd3px0szfmBAVEyKjc/wojrpxLJR81Axu2+9ewBH5K3JA0rils0NjgMywatUqDBgwoE3XzJo1C8uXL3d8Ti5atKhD4uRvfvMbbN26FQAwcOBA3H333ViyZEm773fbbbc56rfeemuLn+PdunXD448/7rA+++Mf/4jp06ejtLS03f0gioN4PI5169ahd+/e6NmzZ767Q+QIEQEZEi+eOAIhcISRnZ31PjCYTg0BMOMIeGhTN0EQzVJZWWmVy8rKWjz34IMPtsqhUAjhcLiJE4T9HjU1NZnpZIYpqtkcTUIIoikS8wEsfRsaMwm9U7hMLFLpDiEzUc5rKGQbOeTQ3o76OyvWOxY2CgsGBhdELk8FDIooG0KhVWcu23tJdeM8cR+5KBeIicwhvisj4MbuTzAvZNYr393qMDQGIAgnDApKlB9C543Q0QjOG6HzkFXPlI04RwQaj0Dj+1s502Wz9fbY7LxF3Z5bWGyKyb9l0a5du/Dtt9862vIpTorPOdMSXjUs4o2jUU/knNbEeTyRf1pY9SeN8RBDYY7hXJDgM3JN+4wIXp+jTLbDhAmNATpOW4VJQIjB06dPx2WXXWa1rVixot19WL16tbXDHwDmz58Pv9/f7vvt3LkT77zzjlX3+Xy44YYbWr3upJNOwsiRI/Hhhx8CEIt1L7/8MqZOndruvhCFzf3334+XXnoJH330ESKRCB5++GFcd911+e4WkSE41yHmvzbx0VaG4fqVeRQwlBjRj7YjSmj8UuyQrSuRJ+wbZ/bvb3n+3bu3c+27vr6+iTipaYk1gVisMIOVCl6cvOSSS/LdBYLoVLQnCb19171Y7DIWxMwFNCPnYqLdnp9Rs+VpNM+1XdvkXNGenod/6h/glAlHAXjK+HkZevSsQE11GBWVzeWkkWw5MyWAyU3brDyaSW0w2liKNkfuTQkJYdEuMtKglWgfwnIvZImQ3GZFYxclGO8OWS5OcZLGAATRPIzJUNgBAA5o8h7n3IiCawSHIViaLzQadrCZjoyLQ0cc4IYVTStagojcN3ISG3mKRRSmEDLF96jziubrTd9jSfVU5VUfLnOcVVFRjr793YjrX0HklObGD2KKhhwc9jZujFuMuiEuJp8jzjMERK4ZZaf4mMhLXewijGyIjk2FRokZ7fBSDiWiVWgMUBgMHz7cUd+zZ0+77hOPx3H55Zdbi2RTp07Fqaee2qG+2XNiAsC5556LioqKtK6dNm2aJU4CwIsvvkjiZCdmw4YNWLlypVW3/9sThU9iPSqV+BgGshb9aOI33BoCtijIElAUJEEQmca0cuWc45NPPmnx3OQNXpFIpMk59o245eXlmehixil4cfLJJ5/MdxcIossjBlzC/jNdQbOj2HdIt3XAN+oojuuu+wLHH388Tj31VHTv3r31iwiiQBEbAuwCZCN0NAAIpXc9Glo/qUChMQBBtA/GmGHH6gXQrcn75iKPXazUzchLIwoz2zbwwk40BnA0mw8z27z/4UuO+tHHHISw9m5+OlPQuAx7VY8R9WqKyD7j98wUHX2gHNREpqAxQGGgKM4lo/buuv/973+PdevWARDWqvYIyvby6quvOuptyaOUfO7rr78OXdchSRSx0hkZOXIkFi5caNVXrVqVx94QyYjIRyOfNSLgPAIgbOS0NqMfs203rxjCoxkFadixUv7qrgljeYycpHF0V6Z3794YM2YM3n33XXz99dd488038cMf/jDluR6PM1dtKqeRtWvXWu0HHNB0U3MhUPDiJJFdYrEYtmzZgk2bNuGbb75BXV0d/H4/KioqMGTIEAwfPrzJL3sxsWnTJmzYsAG7d+9GLBZD7969UVVVhVGjRtHEo8DpyMIWYwwPP/xwBntDENlFTMjC0G3Rj6YY2XEbmjA412hSRRCEhbnpSGZuyEgdZcK5XbwM2aIwjcUjI7d1MUf6rVu701E/4qj+eepJrpBs4qLbsN91G3a8ibrjWCAWvARB5Idt27Y56r16td2NY/369bj33nut+oMPPpiRBbL169c76m3JhTlkyBBUVlZalmmNjY344osvUFVV1eF+EYXHyJEjHfUtW7aguro67Uhbov0I56woOMLgXIiPMARIIUaGAURz1BvTMt4vREf4rTLgps1VBEEUBL/4xS/w7rtiw+yvf/1rvP/++03sWtPhzTffdFjDHnvssRnrYyYhcbIL8tlnn2Hp0qVYtmwZVq5ciXA43Oy5brcbEydOxA033ICxY8dmpT+vvvoqzjjjjCbtK1asaNPuRxPOOR577DHMnTsXn376acpzevfujYsvvhi33347SkpK2vwMgiCItuK0o3EKkGI3aDpWxm1BtnZ/ip2mJE4SBJE+jLkgs3LIKG/2HGEfG3OIlTqPGDkPI0lCZiTr0ZhtpaIygHMmjcQPThqGH5w0DP0GFKLTAoP4PFfEkSlgkCF2+MuGVbz5vpmHOhHhKNnESPE+Lbx1RsQYI2Tb5CSOEusFRSKxhWg/zz//vKOeLPK0hqZpuOyyyxCPi812EyZMwEUXXdThftXV1WH37t2OtkGDBrXpHlVVVY5Fu40bNxaVOBnXPwa4DsZ8ADyG6CJs0oXdJI39TY488kh4PB5EowkRbM2aNZgwYUIee1X8iLzXdrExLOqW8BgBcjr2U5qIjoz5AfiNvw/abEUQROEzadIkTJ06FYsWLcKnn36KH//4x3juuedQWlqa9j3i8ThuueUWAGJjcp8+fQp2jEPiZBdjzJgxDq/91ojFYliyZAmWLFmCadOmYc6cOQgGm8vb13bq6+tx1VVXZex+e/fuxdSpU/Hmm2+2eN6ePXswa9YsLFmyBIsXL8Zxxx2XsT4QBNF1SeSBDAFGDgwzF0b27Gi8Vu4LybKiCYByYBAEkW2EfWz6eaw51w3hUoiVuiFoch6BbhM4OTcXD+1RmdxWS47W5M2UW64/tvAmIzulBPEDiBcz68zeZpallHWAGZ+5zZ0nC1GRGTmnTYGRmUKj0cZkoyxER0Ciz3LCwplvuj4p33TTTU4c/qY3IYg02bVrF1544QVH26RJk9p0j9mzZ2P16tUARG6k+fPnZ6RvyRGdBxxwQJPcS63Rr18/rPn/7J15nBXFuf6f6rPPPgODbLIqAoqAgriRKMgmuaKJS1QEcYkJUXOTGPWnUdR4jZJoEKNGo1FvcIl7jEZEB40iiHJBRBCQkWVYh2H2mTNzlq7fH9Xdp7tPnznLnH3ebz6drqreanDmnOp66n3edeu0+rfffpuUvqULmdcCCHTxFajkdoYbUHM7w62ImWq5Z0wJOp1OjB8/Hp999pnWtnbtWhInTYQW0/oAzX7fpzhliDrnPkATHlNttWqGQfzuFkSIfiRreSJJqMP3TD2b6PH87W9/A+cczz//PN577z2MGzcOv/3tb3H55ZdHdbg8ePAgFixYgA0bNgAQn+0LFy5MR7cTomeMRAiNbdu2WbYPGzYMQ4cORWVlJTo6OrB9+3Zs2bLFcM4zzzyDbdu24b333kNRUVFS+nPLLbdgz549SblXW1sbzj33XKxfv97QPnDgQJx44olwu93Ytm0bNm/erB2rrq7G9OnTsWbNGhx33HFJ6QdBEPmLsF/tUKIf25UJQq9WTt3KUEnkvkChJj6G8mHQVzmRGGTtTqQbxiQweAAWvy0NQfQkRDSKMQoy5LQQu5Uy57mbd5rIPAsXLkRHR4dWHzZsGH74wx/GfP23336LRYsWafW77747aav2GxsbDfU+ffrEfQ/zNU1NTd3pkkZtbS0OHz4c1zVmsTUanAcQXRhSxCQ0dyFg2pVIS7cWdWkUM/Mnl/App5xiECc///zzDPYmPQix0WchNuoER+4znJNZu34JIeFc/R0s1ImPbop+JAgi71mwYAEAwGazobKyEocPH8bu3btxzTXXYOHChRg/fjz69+8fFkn5y1/+Eg0NDVi9ejX8fj8YY+CcY8iQISROpoq9e/fiu+++Q319PVpaWsA5x7x58zLdrZxh8uTJWLBgAaZPn44BAwaEHd++fTtuvfVWvPHGG1rb6tWr8dOf/hTLli3r9vM//vhjbeWkzWaD0+ns0mI2GldeeaVBmCwuLsYTTzyBSy65xDAJuXbtWsyfP18TahsaGjB79mxs2rQpIQ9nIrfgnOfFyxWRGsQLXKciPnq1KEg1+hHoQGpf2Bw64TEUDQkU0O+tCRoDJAZZu5O1O0EQ2QPnPoP4KPNWcLRAjDeScH+05uXYl8YAqWfJkiV4++23DW1Lly6F3R7bFBLnHNdcc402zhg/fjx++ctfJq1/ra1G4T2R93jzNS0tLd3qk8pjjz2Gu+++Oyn3igRP0mcEEFBy3LeCRxQwVcHIBQYHwOwQ7yymvdIuBE+xF3bk2fH5M2nSJEP9888/z/rPR7EwNgjx30kVpJUyt2ozCZFZZadv0wnhnrwWwgmCILrD//7v/ypzkwL1c5ExBr/fj7Vr1xqOqcfffPNNw/kAUFZWhtdeey0uS9h0k3Pi5O7du/GnP/0Jb731Fnbv3h123Oql5JNPPsGHH34IACgvL8cNN9yQ8n5mKzabDZdffjnuuOOOqJGCI0aMwOuvv45bbrkFixcv1tqff/55/PznP48r4bwZr9eLa665Rvtj++Uvf4lXXnnF8r9pLKxatcqQD8PpdGLlypWWdq2TJk3Cp59+ikmTJqG6uhqAiKB8+OGHNT9mIn/wer346KOP8O9//xvvvvsu/vnPf+L444/PdLeIDBASHjtMuTCEpSDgVQTIZOd+tKJAsWAtNImRzjQ8O3ehMUD3IGt3AVm7EwSRTjj3K/buqtNCSIxM/sSxcZGTxIogVIbcn+ylMUD6WLFiBX7zm98Y2q699lrMnj075ns8/vjj+PjjjwGIOYinnnoKNlvyciCaxUm32x33PczipPme2QyDE3Z2vPZeI95lVKvNYJKfJgPqgk0g8jpNy3YGmEVM2AEWqmtiJtOLmnp7dL31eng5VjHLnC/10KFDqKmpwaBBg2K6XvsxOVd+WA7xb6Pfc/CwNiEwRhQULduDAPxIz3tpMnBEtRCmvNdELsE5DOJQup9NEHq6+l2MdIwxhkmTJuH555/H0KFDU9W1pJAz4qQsy7jjjjvwhz/8AcFg0PIfP9IXXe/evXHXXXdpx88999y4k6XnC2vXrsWQIUPiuub+++/HypUrDfkYli1b1i1x8s4779RyOgwdOhR33303XnnllYTvd/vttxvqt912W5eTjb169cJTTz2Fs88+W2t74IEHsHDhwqxeTUDEz/jx4w12xu+++y6Jk3mG+D4IKC/jQmgMFyDFsfTh1OW/8JhyYZAdTbzQGCA5kLU7WbsTBJFcQgufvIrjgrLQSV9OYb5pyWD1XgTAmXeTv/kwBrj++uvx6KOPpvw5ixYtwl133dWte2zYsAEXXXQRAoHQ7+3JJ5+MpUuXxnyPPXv2GBb9/vd//zdOOumkbvUrGon83ufy3wpjTtjYkLB243uRt4v3In+aesqVZ/k17TKiwNmtCXkrAVOf+1nC0UOA8vJiNDSEImQ/XfN39B1wFsxiI9eJjVYCZM/ABvFO6xT5xZkoQ6kzpkRB9qDcpVkPDwJoV7Y2AL0AVprZPhEEETeJjk8kScLIkSNx+umn4/LLL8f3vve9JPcsNeTEN4jf78fs2bNRVVVlabugeuhGYtSoUTj77LPx4YcfgjGGF154AXfccUequ52VxCtMAuLfd+HChbjqqqu0NnUFaiJ88cUX+NOf/qTV//KXv8SdvF7P7t27tVWZgFgBeeONN0a97qyzzsIpp5yi5RpobGzEW2+9hblz5ybcFyL7+P73vx8mTt50000Z7BERD5wHIWxpwlcFc96J1K0QjobdJDp6AEV8ZPDQC1oSoTFAaiBrd7J2J4wEAgGsW7cOH374Ia6++uqE8pcR+QfnQd0kf0hwVMuAF6mdqFadFowiJGOOFD4ze6AxQHrZvn07Zs6ciebmZq1t5MiRePfdd+OKTLzuuus0i9QhQ4bgnnvuSXpfzQulEhlDmK9J1uKrhQsX4qKLLorrmh07duD888/v9rPF34hDiUAsjhg0Ld6x1Hcqr3CSgTeDCzu7S+QIQ+0TggETJh6L91eExoufr/0//PDCcSntWfZgR0hsdCpioyvUxpwAXCEBkiUv0plIMjyAkACp35s/BxkAEicTgUNWFilk5tlEz+a7776L63xJklBaWppUl6t0khOzp1dffTU++OADzUeXc47Jkyfj7LPPhtPpxG9/+9uo9/jRj36kCWorVqygl5I4GT9+vKG+f//+hO7j9/tx9dVXIxgUQsLcuXMxffr0bvVNP3EKAOeffz7Ky8tjunbBggWGROivv/46iZN5xqxZs/Dkk09q9U8++QQtLS05+6Gd63AegJoDg8On5MXo1NrUPBmhHBmpiDaIBUnJe1Gg5MQwRkFSPoz0QWOA5EHW7mTtTlhz2WWX4e2339Ym04cOHYof//jHGe4VkQ70lquwFB/TMTkvgaEwJDxqImRhj58cpjFA+ti5cyemTp2K2tparW348OGoqqpCZWVlzPd57rnnsHz5cq3e3YXIkchmcbJPnz5Zv8BFfLYUgqGwCwFThjElRqdiPerXLEg5F1GRIlpT7NO/aDR2Jp5ynEGcXLfu2wz2JhFsEItk7YCyCZtcJb8nHFAFRiE2qgKko8d/n+Qk3I9wAbINsY9N2lPUMYIgUkm8duO5TtaLk1VVVVi2bJn2MnLMMcfghRde0Cacdu/eHdNLyezZs3H99deDc44vvvgCHR0dCeUl6KmYE9/7fInlR/mf//kfbNq0CYCwVtVHUCaK/uUHEBGRsWI+d8WKFZBl2RBlke1kexL3TDN16lQ4HA74/cK6xu/3Y+XKlZgzZ06Ge5b7qLZBRrGxUxMWOXzgPFQWg+hsWAXGIF7aVBsa1ZLGFYqChJv+rrIAGgMkF7J2F5C1O2GmublZEyYBYOXKlSRO5gGZs1yNhEtxVzDlm0YB2b1bkE9jgDlz5mDgwIEpf86ZZ56Z0HU1NTWYMmUK9u7dq7UNHjwYK1euRP/+/WO+z6FDh/CrX/1Kq8+dOxczZsxIqE/RKC01RgMdPnw47nvohVgAKCsr606X8g7xueRR3o0Qc+paIWqquRNVS9cAwEOipmjzK7kW/abzA0iVfeqECcca6hvW70AwGExqPtQQeptZWwRBMSQ0MtgAOABmca5apvfT/IOr1sdtCBciu5uXuq2b1xMEQaSerBcn7777bgDi5XLw4MFYvXo1evfuHfd9Bg8ejLKyMjQ2NsLv92Pr1q0YN25cknubv+zYscNQ79evX9z3+Prrr3Hfffdp9T/96U8J/be0uq+eeCZMR44ciYqKCtTX1wMQOat27dqFYcOGdbtf6SLAv4Qs1+nsN3TWHHACTGfNoZ3Tcwa1xcXFmDx5MlauXKm1/fvf/yZxUkFY+oReHPUrYLn+xdGwMjZ0LDvERj0OMChiIwsJkGCKEAkXAFeP+hvIZWgMkFzI2j0EWbsTeqZMmYJ33nlHq3fnd5xIH2ICvCNMfORc2K0K8TFd4xRJGX94FMcFZWMe3aInilqJh3waA0ybNg3Tpk1L6zNj5cCBA5gyZQp27dqltQ0YMABVVVVxr9xfsmSJ9l5dWFiIX/ziF4b7RkKf3xIADh48aLiupKQEFRUVhnOOPdYoMh0+fBjt7e1xjSnMjg3mexKJIURNdf5BfyC++4gFJua8j/q8kNbtlnkjuWifdEo/ACGb4ba2DuzYVoDjjz8OmpDI9Pkqu8plGfkYwOh9kzCiLJgKiY96ITLZC6XcAAoAkFtYonDtMyYzzyaInkRWi5P19fVYvXq19qX+8MMPd0vMGj16NFavXg1A5FPoiROTiaK3SwOAU045Ja7rg8EgrrrqKi16bdq0abjiiiu63a/m5mbs27fP0DZ8+PC47jFs2DDtJQoAtmzZklPipMjBp0amKWMewwlWVzl7lJg5a9Ysgzj57rvv5nTEKefqS1cQQBBc2QuRMajkIMhVcTESErRoR0VoDK/TxF8+QWOA7IGs3bMXv7wJnLcoUd/KxgoV++nc//5OF1OmTDHUd+zYgT179vQ4S51sQ+R7VIRGS8vVDqQ236MeuyY4wlJ8pIVPyYTGAOnh0KFDmDJlimEhct++fbFy5cq436kBo01qW1sbJk6cmFC/Lr30UkP9F7/4BZYsWWJoKykpQf/+/Q1jkurqaowZMybm5+zcudNQHzVqVPydJVKG+PtXP1fD3/Hi+sRVTu7fbyCOPvpo1NTUABDRsgf2B3HimKO701WCCMH9COV/1O/bkfy5Fw+AQgghslDZPEpULkEQRG6Q1Z9Yq1atgiyLD+8+ffrgvPPO69b99C80ZgsPIjI1NTV47bXXDG0XXHBBXPd46KGH8MUXXwAACgoK8Je//CUpfTNHdPbu3TvuCIxBgwYZ7OpUq7ncIRGrh26ImXAqgx1JsR4JbaIuAUxfNx1T62m0r5o1axZ+85vfaPWamhps2bIFxx9/fFKfExIN9as2Zd2qTlVMDAA8CKO4GIBBaOQBneiou06r5/pqKgazSG78HdP/zql5MmjSrydBY4DsgazdsxfOG8HRDM4bdI1qwRYmWKoipojuyp2fM9WceOKJBicNQERPzp8/P4O9yl9CdqtqHrMOpdypLLpT2jNiueqJIEI60tgXgsYAqaeurg5Tp07F1q1btbbKykpUVVVhxIgRGexZ7JxwwgkGcXLNmjUxi5Nbt27FkSNHtHpBQQGGDh2a9D4S2cfdd98Nl8uFU045BcOHD6d3TCJ+eBDW4qMXYgF4MmEQ4qMqQKp7jzLvRhAEkdtktTh54MABAGLFVFe5g2KluDgU0t7a2trt+/UUFi5ciI6ODq0+bNgw/PCHP4z5+m+//RaLFi3S6nfffXfSIhMbGxsN9UQSz5uvaWpq6k6XNGpra+POfWEWW2OBd9uHPhZ0Yqb2f10Qk27GEBI2rYRO1RIFirWK+drY68eOBI4+ui9qag5qbW//+28YMepKXYcVAZHrbWDChUbjMbMYmeuCYXcQ9j1CUHSBMbOgrTsGJyhnBhENGgNkD2Ttnp1wzsHR3sUZQXC0gKMl9PWkfU0xiDxSIcEyFH1ZCNbDVlxLkoSzzjoLr7/+uta2cuVKEicTgHO/IiwKodEoQHZqx9I7ZmIQuaU9Wm5pslzNbmgMkFrq6+txzjnnYPPmzVpbr169UFVVhdGjR2ewZ/Exc+ZMrFixQqt/9NFH+MlPfhLTtR999JGhPmPGjJxanEQkzoIFCzLdBSIX4DJCNqxmEbIzBQ+UEC5AigWFoAWFaYdzWUkfkJlnE4QVW7ZswQcffIBPP/0UBw4cQF1dHQAxhuvXrx9OP/10TJ06NS4XiWwgq2ce9KuXY7Xo6gq9zYjDQatfY2HJkiV4++23DW1Lly4Ni6KIBOcc11xzjfZvP378ePzyl79MWv/ML5cejyfue5ivaWlp6VafVB577DEtV0oqcUiTICaAVAGxU+y1ug8cnUjv6vNY4FAT36s181HrSmJMnzkOT/81FGGz/N0P8N+/mtLFFT0RCSJnowPCvswBMF1Zf4ypdSFAimhYEhuJ5EFjgOyBrN2zFWHZnRgcQDs42kMOCobvWqeFYKlGXTrzMupyypQpBnHyww8/zGkL+GQhJkj0NvF+RYDshBb9aIh2DGaglzZFZOwq32PP/u+Ya9AYIHU0NjZi2rRp2Lhxo9ZWXl6O999/v9uTWUuWLAmzX42FIUOGGPI/fvjhhzE5IVxwwQX41a9+pdXffPNNNDY2oqysLOq1zz77bNi9CILoYWh5IL0Ij4T0IjULqWww2rCqZbfFonyCIAgxLrrnnnvwn//8x9Cuvt9w5YVenbc5/fTTceedd3Y7hU66yGpxsqSkRCsnQzA6dOiQVjYnVCfCWbFihcEKEwCuvfZazJ49O+Z7PP744/j4448BADabDU899RRstuStTDaLk263O+57mMXJXFtNKzHl7yTKOEZMLqlCpS8HxczuMX3GSQZxcuOX32WwN6lAZ5kLGzQhMYq4GDpmp6gBIqugMUB2QNbu2YwNdmkCOG8HRxvAFbER7ej+ZIoYE3DeGGoy3DK0OMUqX7U+n3WuiJnmvJM1NTWorq7GMccck6EeJQ8xBtSJi/ArOZHC27Q81VDzVGfDeNBhEBxDImSBIj6S9Xu+QWOA1NDS0oKZM2di/fr1WltJSQnee++9sPzSucCQIUMwefJkfPLJJwCECP3www8bXJus+M9//oO1a9dq9bKysm5bBxMEkYVwDjGW6VA2r2mfqtzVwrEhZMfq0e1dJELmAMIXLTPOaD3Zj40wIssybrnlFjz44IMAwsVIbsrTph5fs2YNZs6ciRtuuAEPPfRQUnWYVJDV4mRlZaVW7u5kUTAYxIYNG7R6IpZk3eX666/Ho48+mvLnLFq0CHfddVe37rFhwwZcdNFFCARCExInn3wyli5dGvM99uzZg1tvvVWr//d//zdOOumkbvUrGolMTPSUyQwxMegGgyLgJixm+hDKjajkUeS6XIlKmzFfYuZtCQYMMNoHdnYmOxdALJgFRDsMuTmZvYtjNjClLXSPUD0XJn6JNKO9jMkAi3/hRqbJtzFArkLW7omRDmt3xmyw4aiw73PxktIBjjZFuFQjJBURMylikypitVnbvYe9VduV/MHZK2aOHDkSffv2xcGDIQv4lStXplWcFP/tzDmpTWWu1mXrc3nAKDjCj8xEM8YCg7B7F+NTxtwQY1WXruzucTbDBI0BUkF7eztmz55tEOWKioqwfPlyTJw4MYM96x733XcfJk+ebKjPnj07oh1wfX09rr76akPbLbfcgtLS0pT2kyCIFMEDCAmNVgJkKsdALoSER70I6SYrVoIgus1ll12Gl19+GYwxkdJFcfXpSsdQBUvGGB555BHs27cvzAkr28jqNz3VVoRzjm3btmHv3r0YOHBgQvd699130d4u8vIwxnDqqacmrZ/5xvbt2zFz5kw0NzdrbSNHjsS7774bV2Tiddddp610HTJkCO65556k97WoqMhQ11v2xIr5GvM9E2XhwoW46KKL4rpmx44dOP/885Py/O4Sr5jZFeLDMTSJZhYuuW6yzSh86mc3I5UjtRnrDrsxL1cgIENigwEADAzQclxKhjIz1cUgk4W3w9xucayHCOFEmuEBhFvQqPkwggAqAZyQse4lCo0BMg9ZuydOuqzdrRDfNYqdpcXXjlhs1K4TLkMippjESQUBcAQQj5gZyklt/j6VYPh+ZpG+t/Xnmq5noXtwLWc0x9lTTsOLL7yh9aKq6m1cfc1MhNZPh841buoiLFn5cWTrc7h5DGRe3JX5xVzJw6GMId1gLCRAgimCI1wQOappbESEQ2OA5OLz+TBnzhwtwhAQrkaPPfYY+vXrh127dsV1v4EDB8Y8Fkg1Z555Ji688EJt4s3n82Hq1Kl44okncPHFFxvySK5duxbz589HdXW11jZ8+HDceOONae83QRAxwmV0LT6metG5HeHio5oLMrujkQiCyF1+97vf4ZVXXgEATZQsKSnBZZddhrPOOgujR49GRUUFOOdoaGjA5s2b8dFHH+GFF15AS0uLds3rr7+Oe++9F7/97W8z/BNFJjtGlBEYNWoUBgwYgH379oFzjgcffBB/+tOf4r6PLMu47777AIgXkrFjx8aUh6AnsnPnTkydOhW1tbVa2/Dhw1FVVWVYwRqN5557DsuXhyw0//KXv8RttRYL2SxO9unTJ6EojnxETDypEX8RdM4Uz025ncZIkUAgCIeUe4IN0UPhMoyio16I9EW5uD3K8eyExgCZhazd8xfG1OjFsrBjnAfB4dUESxhEzHakTzyLnJNa62tYIQ4iXDP5+wPx4guh+kcffQK//BUJaBpqbmo7RISrOyRAKtGOIUGSJuyIxKExQHLZv38/PvjgA0NbMBjEvHnzErrfzp07MWTIkCT0LDk8++yzqK6u1iJkm5ubcemll+Lmm2/G2LFj4XQ6sX37dnz99deG68rLy/HOO++kZJ4iLfAgiSPdoKmpCevWrcMXX3yBgwcPJpQvlegmPAgoqYaMm9rWoexTjQTrCMgCJU0O0ePgsuIml5lnEz2b3bt343/+5380gREAfv7zn+P3v/89CgsLw87v378/jj/+eFx88cVYvHgxbr31Vjz++OPa9ffeey+uvPLKhBf6pZqsFicB4PLLL8fixYvBOcef//xnnHvuuZg2bVpc97jtttvw2WefafVrr7022d2MiTlz5qTlF+HMM89M6LqamhpMmTIFe/fu1doGDx6MlStXon///jHf59ChQ4bE9HPnzsWMGTMS6lM0zPYr8VqoATAIsQB65AtrT8A8IS7LsuGDniAyjmLFGB79qK4KTRSvuHcO/q7n0xiArN3J2j0XYMwGhiIARRHsYnX5qrlPq3N0WuSuzoR9evc46+yxhnptbSN2fLsfx44YkKEepQI1L7Ud+vzUam5qqzZtT5PgRBrJpzEAkVoKCwvx73//G3PnzkVVVZXWXlNTg5qaGstrhg8fjhdffBHHHXdcurqZAtYBvBMit50r8p7sJcP4v//7P4P1ryRJuPfee5O2UL3Ho6UXMYuN5i1dea2Fjbz4m/CY9m4Azpx8VyYIIj/5/e9/D7/fr9m5/vGPfzToLF1RVFSEP//5zxgyZAhuueUWcM7h8/nwwAMP4JFHHklxzxMj68XJm2++GX/5y1/Q0tKCYDCIOXPmYMmSJfjJT34S9dq6ujrcdNNN+Pvf/679B+3bty+uuuqqNPQ8nGnTpsX9QpUuDhw4gClTphgsXQYMGICqqioMGjQornstWbIE9fX1AMSLwi9+8YuYrGL0k6AAcPDgQcN1JSUlqKioMJxz7LHHGuqHDx9Ge3t7XKsfd+/e3eU9ifygoqIC11xzDWw2G+x2O2w2G4mTRPpRJvetLVi9SF36cx/EC1lukU9jgFyBrN3J2j0S4vvSpdhxFseYu9qfU2Lm0KFHoby8CA0NoQjaffuOZFicNOerthnrzKado+as1oTGMIHRTgIjkTPQGICIh759++L999/Hk08+iUcffRSbNm2yPK9fv36YN28e7rjjDsvog5yBcwhxJwigTdkinetEl+JlDxRmRo8eDZvNhmBQ5COUZRnr16/H9773vQz3LMvR0vV0JTqqbal6r42EE5HFRxLpCYLIHV577TUtd+R//dd/xSxM6rnpppvw8ccf45133gEAvPrqqyROJkpFRQWWLl2KK6+8EowxdHR04Gc/+xn+8Ic/4MILLwyL6Pv888+xbds2rFixAm+99RZaW1u1/6A2mw3PPPMMnE5nJn6UrOXQoUOYMmUKduzYobX17dsXK1euxPDhw+O+n36ir62tDRMnTkyoX5deeqmh/otf/CLMaqOkpAT9+/fH/v37tbbq6motT0ks7Ny501AfNWpU/J0lsp5+/frhr3/9a6a7QeQ7nEOsANXnwTCXU2XT4YZ1PgxXzk440BggvZC1O1m7JxORuzpRMdMHkZNaycOoTYbJxnZt4+HtXD2XQ0zeRroH0zaJMfSuLDeIk/VHAmAoN5zHdGWAafmozZvxPAuRkZkFRylcgMzRz2+C6C40BkgeQ4YM0f4tspF4c15GgjGG6667Dtdddx22bNmCr7/+Gvv374fP50P//v0xbNgwnHrqqYY8lLlLAOK7LRbU79VIebUZwLsSL90Ay/qpw7jweDwYM2YMvvzyS63tiy++6HniJA9CLA6LZ8uU5aQd4aKjrkyLr4gkwrVc85l5NtFzWb9+vRbwBQhnrES566678M4774BzjkOHDuGbb77JSs0jJ0YY8+bNw44dO3DvvfdqKx+rq6uxePFiw3mcc5x22mmGOmNMu+b3v/89pk+fnu7uZzV1dXWYOnUqtm7dqrVVVlaiqqoKI0aMyGDPYueEE04wiJNr1qyJWZzcunUrjhw5otULCgowdOjQpPeRIIg8gluJj/p6rBMFieCEUXzU7fN0NWi+jAHI2j35kLV7fmEUM80H09ePyt5H47vq/ejVqxd69+4Nj2sMnLbT09cBgkgE7kdoLOLVlSsAFp8LTjaRL2MAIv2MHj0ao0ePznQ3Ukgy8/CpqSW6SCPBbRBCpYjCh2INbtxblLP4/WTixIkGcfLzzz/PXGe6i7aIK1eERjM2iPdcl8Wmio+U+5EgiPxHr8/079+/W6lxTjrpJPTt2xcHDhwAAGzatInEye5wzz33YPjw4Vi4cCG8Xq+2ithsy6iuCNS/jLhcLjz55JO44oorMtL3bKW+vh7nnHMONm/erLX16tULVVVVOTWQnzlzJlasWKHVP/roo5jsftRz9cyYMSNPVlISBJEwPAjriEe1nurcGHaEi4+qAJkzX9tJJR/GAGTt3jVk7U5kCytWrIDH46HxIJFdcBnGcYl5H2lskvvjhnwYAxBE8ikAMAlCpOyIsE/mgskgRBqKOOESYhYytb1qV664EqRI4Jw4caLBWemLL75IyXPC0ITEoG4LmOqRtq7Oy1bMoqOVCGnLWacfgiCIZFJXV6eV43GFjMSYMWNw8OBBcM4NwVnZRE69rcyfPx9nn302Fi9ejGeeeUaz4rKyKOGcw2az4fLLL8ddd92FIUOGpLm32U1jYyOmTZuGjRs3am3l5eV4//33u/3Lv2TJkjD71VgYMmSIYZLwww8/xFlnnRX1ugsuuMAQpfHmm2+isbExpuiHZ599NuxeBEHkMTyA8NwY+nqHUk81EiyjH1EAscqYXs7M0BggNZC1O1m7E0ZyOgcZkbtoOakjCZCJRknFb3edjdAYgCBMMAmhBYwWaKkmuhIv05EXUEbIVjZBOKAJlYa9VVvsxyZOMOaT3rlzJ+oOf4HevSuUh0baEOW41Tm5IiTGgxpN25XomN3Rs3kHlwHeBsjNAG8BpD6ArSL6dUQYwtQ1M5HFZOvas2ltDaUX6dWrV7fv17t3b63c0NDQ7fulgpwSJwFg0KBB+POf/4zFixdj1apVWLVqFWpqanDkyBH4fD707t0bRx11FE4//XRMnTqV7LksaGlpwcyZM7F+/XqtraSkBO+99x7Gjx+fwZ4lxpAhQzB58mR88sknAMTE6MMPPxzVl/k///kP1q5dq9XLyspw3nnnpbSvBEGkCK6++JrFRrMAmc6XQbdp0+fHyN08kJmExgDJhazdydqdIIg0otnCRxIgUzEJ1oVNY45BYwCCiAPGIKIQHQAi5NM2LIowi5ZqOR2LNmNB/XxM3rvc8cc74HY70dER+hnXrVuJmTNPSdozcgeGUOSqA0JoNNfV6Fal3EMdfbICswgpNwNyiyjrhS0HSJwkiBxDv1C2s7P7Fu76e7jd7m7fLxXk7LdJQUEBpk+fTrkj4qS9vR2zZ882iHJFRUVYvnx5wtEN2cB9992HyZMnG+qzZ8/GhAkTLM+vr6/H1VdfbWi75ZZbwvJXEQSRYTiHyIfRVbRjN1fjJowTRsFRL0C6aJVoCqExQPcha3eydicIIolwGdEjlFJtCw+Ej0c8YiyVRwuiaAxAEEmCMYQi3CJg+GzzQXyO+ZW9vqxvy43IQIfDjpNOOharV4fGwuvWbcsTcdIR52bPq++JvCGiCNmKmBY0yS0p72K+wrkMzjMUOZmh5xLZQZ8+fbTywYMHu32/Q4cOaeXKyspu3y8V5Kw4ScSPz+fDnDlztAhDALDZbHjsscfQr1+/mHJC6Rk4cCDs9uz4FTrzzDNx4YUX4tVXXwUgftapU6fiiSeewMUXX2yYbFy7di3mz5+P6upqrW348OG48cYb095vIn14vV7MmTMHgUAAwWAQgUAAr732Gvr27ZvprvUsNLFR3XymvbnsR+rthiLhQHjEo1p3AcyWoX4RRPcga3cBWbsTBBETEaOL9Ht/mjqj5qV2W+zdtDCKIIjkwtRUFJ7Yr+EywsXLSEKmuZzeSfmTTxphECc3fLmji7NTiS3CZu/imNV5Sg5PEhpzizARUhEiYxUhIyE3J62LBEGkh5EjR2rlr776KizHerxs3LhRS4OQrSlsskNZItLC/v378cEHHxjagsEg5s2bl9D9du7cmVU5PJ599llUV1djw4YNAIDm5mZceumluPnmmzF27Fg4nU5s374dX3/9teG68vJyvPPOOygoiJCvIdvhHRDijZPEkii8//77hro+NxqRIAaxMZLAqBcgA8ic2KjHjsi5MZRJPvp7IvIQsnYXkLU7QRAAdOMYs5Whfu9D+sYuDNbCozo2caSpHwRBEAnCJIh3LGf812rCJocQZWRduau2xI6NHz8OwBva4zds2AngKIjPYvOGCO3Rjqm5LiMJjhKJiT0FTYRsAXhz8kTIMFyAVAJI5AxHELnGiSeeiKKiIrS0tKClpQVr167FqaeemtC9PvvsMy2HpcfjwYknnpjMriYNEieJvKGwsBD//ve/MXfuXFRVVWntNTU1qKmpsbxm+PDhePHFF3Hcccelq5spYAeAw6LIbQi9CKh5AZwWW8/LEWCzhQtNgUA67LVygIirW6NtqviYTagvw6rQGKFMwiPRAyFrd0FeWbvzTogV8vSZliyamprw/vvv48iRI6irq0NTUxMWL16c6W4RiaBFPJrzUJu3dNtnORFZgKSc1ARB9GA0YTM9nHQyAIQWtO3cuReNTf0pZy2ROOrYQ24VoqN5nxIRshhgyl4qAVj6/obyFa78L1PPJnouNpsN55xzDt54QyycefHFFxMWJ1966SWtfPbZZ8PpzM7Php6lThB5T9++ffH+++/jySefxKOPPopNmzZZntevXz/MmzcPd9xxhyHZbG6iz7UXBOBVtihw/YrGrsTM/MhBYGVBnPPiJFdXfgYttnjExlzxtFd/J62ER3XL/d9VgkgFZO0uyD9r920AjgBczYFbgJD9mrL1sMVI3eXgwYO46KKLDG333HMP3G53hnpEWBJmtRppS/cEjw1iPOKOsKcFUgRBENnC6NGj4XQ64fOF5lS+/PLLmFILED0cHtBFQZpEyKQv4LYSIYsB1kW+WIIgcpYFCxbgzTffBCBcIn/3u9+hpKQkrns0NzdraWwYY5g/f36Se5k8cnK2QrXurK2tRVNTE/z++D/477zzzhT0LLsZMmSI5jOcjcQ7MRoJxhiuu+46XHfdddiyZQu+/vpr7N+/Hz6fD/3798ewYcNw6qmnGiYrcxtf9FMskSEmdDpiOFcCuCpcKmKlwZokgXKaBSRJksAYM/wNpFyc5BxG6xhVOFQjFSMJi8Eox/THcxk10lf/u+Uw1XV7yqNEgMYAiULW7nlq7a4tRvIpW1P4KdyByMIlWUSa6d27d1jbkSNHMGDAgAz0pgfCOUKLq7qKekyn1aqKarmqLoiyECBpMUBKoTEAQRDJxOFw4IQTTjCkO1i/fj2Jk4SAywBvt46A5KlIEeTSRT+SCEkQPZUf/OAH2Llzp1Z3ueL/DHC73fjqq6+0+tFHH52UvqWCnHl78nq9eOihh/DUU09hz5493b4fvZT0DEaPHo3Ro0dnuhspJh3RfzJCk0FJgqtiZVdipj5/AyzKXR0LL9tsNoMgGQzsAXgRjAJipBwVVvtox7J3MUBqsCNcXLQSGklsJOKDxgBENHqktTvniMkpQbPgbra4hx0RhUs4emQkellZGSRJgiyHXAXq6upInOwOXEZIbPTFUM7U+EnvxGAV+dgz/yYyDY0BCIJIJePHjzeIk+pCN6KHwDmATkV0bDGJkG1IzZhEL0IW66IiSYTMFjiXwXlmHMYy9Vwiuxg0aFC3rnc6nd2+R7rICXHy66+/xgUXXIDvvvsuLPKPxfmCyDmP+xqCyG7OgBAorSZ5rNqy5YtOTUqfPux2CfpgyUCgBmJClgghQXw1WG0Oizad4EhiI5ECaAxAxErPs3ZPhmVlAECLspmxA9wsWHoQsti25aVQY7PZUF5ejiNHjmhtdXV1GexRFsJVN4hYxcZM2+gzhKzg9ZGP+o0WTWUjNAYgCCLVjB8/HoBYtDZ+/HiKmsw3VBt43g7I7UokZDsgt4XKKXGkYgArAqQi055ESIIgCD1ZL07u378fM2bMwIEDBwCEXkLUl5NstikliLTAGELRaFEmWbucTLISM3PdNtSIy+VAR0fIBnfLlt2YMCFHI2YiokaeRhIYI4mMykYTc0QWQWOA5EHW7nlo7c7cAP8ehD17O0I5p9UtFtv2ruhKuASE5bs5T3WkHNa5JWT27t07P8VJrlrCBxLc68vZ8nnCYB3xaBYec+f3jxDQGIAgiHRwxRVXYO7cuSgtLc10V4hE4f5wwZG3hcTIVC6SYh4LEbJYac+D940eDM+asS5BJEYwGMTevXu1+uDBgzPYm8hkvTh522234cCBA4aXkQkTJuAHP/gBRo0ahfLycjgclC+HIGKCMYSEqBgiBrleyNSLlurkljkvolV7+iMkIzFx4kh88MH/afVH/vwGrrhiWgZWUTOERET9JkVoj/Wc9OfyJIhUQmMAojv0CGt3ZoNYmGSxOInLCBcs9cJld1+4481dnTtCZu/evbFt2zatrhcqkwZXreDVzVyP5ZhVu1lE1JezYzwWO2pu6q7ER7JazVdoDEAQRDooKSnJdBeIaPBAuOBoEB/jzz8cHw4l4tEsQhZSrmmCILKWffv2YdiwYdqCPn3akmwiqz9FW1pa8MILL4AxBs45CgsLsWzZMsyZMyfTXSOIngGzIWTj1g20iE2zaBmtrN2gG+VQfeHP5hnEyXXrtuGzz/bjtNPGQwiGUoS9WjbXEznXRivoiNTAue5FTZcrQyoFnMdnundxQ2MAgugmTELXwmUHjIKlGn2ZDOHSTCJCprogR79ZtXV1LNL5+tzW4QJf795lhh7VHd4N8IMwCoBWYqG53eo8fX7qnobe7SOSOK3LUc1sGeonkWloDEAQMdC5AUBQRGhJBQDTb/T5SeQAnAMIANwL8A5l05cVK1b4ot0pCUgRbFiLyIaVIIicRh1PZytZLU5+/PHHCCgJ4hhjePLJJ+mFhCByES1iM7OcN+c4DB78EHbv3q21Pbz0bZx2+twM9oog4oBz5UWtDeAtinWNIkLyNlhHxaR6JWlqoDEAQaQQJkE4KFi4KHAZIp+lOdqyHUJcTPWKS1XIzBy9exlf3urqvgXwTWY6k/XYEFlsNJcpypGIDRoDEEQMBPcjsmjj0gmWnpBoqbVR1DGRYnjQJDSahUelnM5UQnoBX/tbKNT9ndAYhRBwyOAZchzJ1HOJ7GXPnj345ptv0NjYiM7OzpiFRjU1iXr+s88+G9E5cP78+cnpbAJkXi3oAr2A0L9/f1x66aUZ7A1BELmOzWbD9ddfj9/85jda26uvvoq9e/di4MCBGewZQZjgnSHBUR8FyVsR9wuc3JqSLqYaGgMQRIZgErp0TeABRM5Zbd5y8+W6d2+jxVvdkaYM9STV2GHMVR3v3knROdkE58q4oRngzWJv6wvYB2W6Z3FDYwCCiAIPoOtosk5A7gTQEOG4QxFoPEbBRhVtKFcvEQkui3fViNGOquiYgQWyzGMhQOrFR3KwIggid3j00Ufxpz/9Cd99911S7nfVVVdFPEbiZASam5sBiNWSEyZMyHBvCILIB66++mosWrQI7e3tAESC4Mcffxz/8z//k+GeET0O7ldExzaj+Ci3Irkvcz6A+wDmTOI9Uw+NAQgiS2Fq7uoYLN9zVMgsLS0y1Fta2tPcA70FLUO4La1Vm9puJSSqZX0987k9iQThHEJ4UARIuUlxU2hG+AImW06KkzQGIIgocG83b+AHeBMQjLT4xhYSegwRmEo0PFO2PI2IV6NMIkWY5AVq6h2ujMO4btPqneHHEchgp12AVNiF+EgLpgiCyA9+/vOf4/HHHwcAQ/71ZJMNlq9ZLU726dNHKxcWWuTLIQiCiJPy8nLMmzcPf/nLX7S2J554Ar/97W/h8XQztyZB6OFBJQekssleXbkVwjYxFdhDOTLUPBnIvVWiNAYgiDygW0JmtNyNXR2LlOsxNgoKjLmFvN4ARO5Ocw7LaDktrXJcRhIVdeV8ngwl4oP7jZGQ6hZr/i3enNLupQoaAxBEFJgDcIzRvVso+6QtcAyKRZO8NYa1Q3qx0in6xpxKnj5H6Jhe2MyyBTKcc7z44otYv349NmzYgC+//BIfffQRxowZk+muRYeruawDyuJXH4DOCGKjqZ5FC8PE74Zbt3nEXi9GkvhIpAkOnjHBhvfIvPSEnnXr1hnmrFUSWTCj/z3O1gU3WS1ODh48WCurPrkEQRDd5YYbbtA+6Pv06YOf/vSnWl4bgogZ7hOrluV2owiptqVMfATEC31hSISUipR6MfLFhonGAATRw4hHyEwEHkncVIXBkKBYUPCt4dL2dgfATklNvwgCUGzyWowCJG9WxIZuIDeLiescGxfQGIAgosDcgOOY8HbuV2w128PfUVL2fqKKXvFcI+kiL03CJXMgFOGvW+TDTIt/WIQypLg/8xhj+H//7/9hz549WtuGDRuSJ04aBMSgcY+gskBL3ZuPmc7npmsyGskYC7aQ0KjtzWU3CY8EQRAKL7zwglZmjOG0007D9OnT0a9fP7hcri6uNFJXV4ff/OY3mkD5zDPPJL2vySCrxckzzzwTZWVlaGxsxLp168A5z1qVlyCI3GH06NH4xS9+gZNOOgmXXHJJXB/uRA9Bs0yzEB3VespfBJliU1MULkIyT85NNMYLjQEIgkgq2gRndApMkVqqFTxBdBvOFZFAtWJtUgTEVsQ5s98FTkAqCW2QISb0cwcaAxBEgjCHIu6VWP/Z82BIvAwTML2KXWw6onZkJS9hR4oeZxY1LcramIAD4Dhp7GCDOLn+87cw7+JB4jjn2nn6a4xl9Tyr49kuICaCZB3pGFZ2ZLqjBBE3HDJ4hiKLM/VcInv4/PPPtfKll16KZcuWJXSfPXv24De/+Y1WnzdvXrf7lgqyWpx0uVy4/PLL8eijj6KhoQFvvvkmLrjggkx3iyCIPGDJkiWZ7gKRKbjyMqxtncrea3w5T9egkBWYBEhFkGQFygt0z4TGAARBZAqzzTuJk0TMcA4RRRQhaom3ITwvZKLYhPjISkxipCvnFzDRGIAgUgSzifcMFFkf196TzJ9dXkVMzEY7UCtUd4SAUfzsQggdP3YA3vxXqL5h4zeA3JCi/mUbDAZ7XnNu0bC6C/ni1pOvcLkDAAOTaCE+QeQa1dXVWrTjFVdckeHepJ6sFicB4N5778W//vUv1NTU4Ne//jW+//3vo6KiItPdIgiCILINHjSJjhG2WPM0JQ2HEBolNVeGR2fJWkgWNl1AYwCCIDJBQUEBAMDtdqOgoAClpaUZ7hGRNajio6XwmCpnBaYsXioxipGsMK8nhmkMQBAZgEnifQUFkc/hHMJW1JzLUMkbzTsRyn1oynOYxYwfO9RQ//KrXTkatW2LQVw01eHI6++TfIVzDshtQLARCDaJfUDZ8w6g8FTAMzrDvSQIIl6am0M544cOHdrFmflB1ouTpaWlePnll3Huuedi165dOPvss/HKK69gxIgRme4aQRAEkWq4YoOjRTh6LSIeVdHRn5k+atY1BaHNIESSlU2i0BiAIIhMMH36dASDQUhSz41e77GEiY9tFuJjsiIfLWAeUyRkqeKm0PMWMtEYgCCyFMYA2JVc0V2ImGY4B+DXiZW6skHI9ENEPQbFnuvLyl7bkse4E40TwM3N7di95zCGDO6T1OeEkCD+HW3GPWzKv63F3nC+1TmOHvl9ke9wHgSCzRYiZBO6XBAVbExPB/MQYcycDotr62cTPZuOjg6t3BPSkGW9OLlnzx707dsXL774Ii6//HJs2rQJY8aMwY9+9CPMnj0bo0ePRnl5edyTB4MGDUpRjwkizfi3AXJj5MTitAqOyBYMq2w7jS+jvBPGlbe6czJqG8QshEd93UMvgCmExgAEQWQCEiXzHC4rQmMrILcKAVJuS4/4qOHQiY86MZIWNGnQGIAg8gymsw5NBpzDIFRqwmVQETQjiJp6sRPqPAnDwCFARUUZ6usbtUd8uYVhyLEnKefpN4TKzFS3PMcGo8io5r8kiBBc9hkFyGATEGgE5BYkJFkFm5LbQYIgchLGmGYTm41kvTg5ZMiQMBsFv9+Pf/zjH/jHP/6R0D0ZYwgE8jEhNdEjCR4B5ENdnGCLLFwa6ln/cZBy9uzZgyeffBL/7//9PxQWFma6O9mNJjSqAqJOZAyz+NEJj1mVn4SZ/h4sIiCZm8T9DEJjAIIgCCIhDAJkm3HP25GWdemGMUWhsrhJzStN44to0BiAIIguYQya0AeE9MBEbwdg7Njx+PDDD7W2jV8fwPk/Gty9GxOEDmHF6lXEx0adENko2pNJsDn6OQRB5D3ZLEwCOSBOqqhe7/oXlGz/xyWItMA7opwQVCyp2qKc54gg1OjLrryMElu1ahWWLFmCN954A7IsY8CAAfjZz36W6W6lDi5D2OgEQnvuN7X5IexUTefpj2Wt4YQqyLssfqf1UcVOmhjMEWgMQBARCB4BwBXBg8QOooehCZBtugjI1jQJkFbOCvrFTR6KikkSNAYgCCJdjB071iBOfvnll5nrDJGzcM7FPF2wRbFjbRbRj0HFipUnOR0NcwC2UsBWFtrbywCpOLnP6UFwLoPzzCysz9RziewhmbmO1Xtl89g5Z8RJILv/IQkiY/Bkra5SRCfeEuU8p2I5peY5MO8dYm/Vpj8XtqyZRH3ggQfw9ttva/WlS5fipz/9aVK/EOJGjUxEULGhsSrLEAKisoesCIhBC7FRFSCV4zmJvWuxkbnEZCDsWfO7RSQPGgMQhAX+bwD5sFKxKQJJYSg6SysXkFBC5CZcVvJN6yMg0yFAmsRHqVCpq39PbvqbSiM0BiAIIh2MGzfOUN+4cWNmOkJkPSICsl0nPCoiZLAFkJuTL0ACYhGUWYS0lQGSJ7NzVwRBJJXvvvtOKw8YMCDh+wwcONBwr2wl68XJ+fPnZ7oLBJHdOEaJVVncq+yVDb4UPVC150Q354MYrAVOvfDJIBLF6/M5qBNBunbtGAtvN1xnzgMhjt348wUGcXLr1q14f/nLmD79+7pcFty0ycrPH+mYqQ7AIC5GFBzVcr6vltLlHGEuZe8Mb9PqZD3cE6ExAEFEweCKEBQLjIIRFhlp1pKqYKkvU547Io1wGWI82Rl5g1r2InUCpFP5GzAL+WrkI030ZRIaAxAEkW7Gjh1rqO/cuRNNTU0oLS3NUI+ITMK5LBZEqaKjQYhsQWoWfTPAVmwSIMWeSUnK10rEAAfPmFMYLcjq6SQrP7okSTmRaz3rZ3qfeeaZTHeBILIbxzDrdh40ipVm8VKtI1N5VzhCFqHI6PfvOZOB0aOOxpZvarS2hx9ejOnfp8FfbKhCo05k1IRFs/Coio4U3UhEh8YABNEFqqVlzOe3i02LtNSjE2n0oqVUCMDVIz+vX3vtNbS3t2vb3LlzUVlZmeluZSecQzg5WImLVsJjqhbQWeEApCKdAKn+jhcp4xEiW6ExAEEQ6WbUqFGw2+2G3LRfffUVJk+enMFeEamE84AiPCoRjwYhshWpm6iyC9HRXmYSIUvA8jCVEkEQRCSyXpwkCCJBmE1MvqCw6/O43yRaRhAy8ziSjzGGG392Ln564xNa27srNqChoRXl5UUZ7Fk6UCNYHQjZ76rWvI4Ix/RlEhoJgiAygw9gxUr0ZHe/o32A7APQYHHMZoqyVBeZqItP1PnMwTwAAQAASURBVLojr74LLrvsMvh8IRHte9/7Xn6LkzwILdc0AkY7eKs99yEU/diBzI4TVQFSjYIkAZIgCIKIH5fLhdGjR+Orr77S2jZu3EjiZA7DZZ8S/ajYwuvLwVZlDJMqJMBWBEglgK1EiYhUhEipkKxYCYIgQOIkQRBMEZvQRbJsrkY5qmJlANrElZbXMBC9PYvtCeb++PsGcZJzjr37jmSZOMkA2MTGbOFlQ5tJaFRFRVVsVMtZlPuTIAiCiAPmBjzniO9o3iFESi0vn7LJbQC6m/MmCHBlJXnXHUJ4FL3L1GYWNrN3ZXhBQYFBnGxvjyNKNdVwGZoFvN4O3kpgjJR/2nwsi8doAocu8rHIZMfqynTnCIIg0g7nnMSNFDB27NgwcZLITjjnYpGUWXDU73mq3RpsivCoiI+SKkKWKAIk5afORTiXha1vhp5NED0JEicJgogO0+UHREli99ByN5onxroSOfX5GnW5HcPyOZpyPkbMExnpGENhYRFKSwvR1BTK39XQFFCiT815KiPkr4x6LJqgGOW4lj+TIKzhsh8INhk3ezlYwbhMd40giFTBmMiPBw+A3uHHuS9csFTL3JvEjnCErDxjvcZuEjHN9t/mvNSmPaSUfS8WFBSgsbFRq3cpThrGOKpAGIAQDdU2U15py3JQJzyq58vh5awXEuNB/W9uscElRHipUDmPxkAEQRAaTW+Dy50iMstWLKLFbcWAVCzamJvEywQYO3Ys/v73v2v1L7/8MnOd6eEI8dEbWXgMtiItaYqYUxEbi41CpK0EYB76OyMIIqnYbDbx+ZdkZNkofFs9x3xOOshpcXLv3r347rvvUF9fj5aWFnDOMW/evEx3iyAIK5g+6i87V7iXl1caxcn2YwHP9Az2iCDC4VwGZCUPhipABpoAuQmQLYQG2QvkoThJYwCCiBHmBGxOAOXhx3gwXLTUxMt2pN6qU7UPTTQqUbUmV50AHMreLGJGEjhtCBcVxb7AY3xNam/aAHQUIaIASSjYTOJiFxucyqIugogPGgMQBMQ7APeJPHmWJgl2cFuRIqgogqUU2jOJbK+tmDhxIs4880yMHTsWY8eOxUknnZTpLuUdXHX9kL2A3N7Fvh1inJUGmCckOBqiIEvApOycvyIIIr9J5sKHrsRO9TmpEERjIefEyd27d+NPf/oT3nrrLezevTvsuNVLySeffIIPP/wQAFBeXo4bbrgh5f0kCCL3KC8vx65du7R6Q4NV7i2CSD3aC1uwyShCBpuAYAviEgyCTSnrZ7qhMQBBJBlmA1gJgBKh0+lRV6sbxEuviIzUcg36kLZJI0tU23l/qJokCjzGl0Fv2yFArk3eA7IafT5q014Td50RBMice70kcgQaAxBECC6r38FdEQCCjWKzEC85c+kES3PkZSFYD/08/973vodPPvkk093ISTgPmgRGncgoe8U4Ui2n2wWCeZTf9yLLPWOO9PaHyGqEx1pmhJpc8UfZuXMnvvzyS+zfvx+tra3o168fBg8ejNNPPx0OB/09EbGTM6MNWZZxxx134A9/+AOCwaClmhtJUe7duzfuuusu7fi5556L4cOHp7S/BEHkHuXlxqgSEieJVMN5QCc+mkTIZOXH4F5w2ZfTq6NpDEAQGYAxgBUAKABQGfk8HlA+r3SCpSZcmupqWw5QWOg21JuasyjnZER0eafVnNNh+af1e73gqNun0C6XIOKFxgAEYYHc0v178E4g0AngiPVhqSBMsATzAJILkNzCdps5ydIyjxELZpVxnKxa93cCcodRdFRFSJ6pMR4DtN9XKwGy54rtBJFsXn31VTz00ENYs2aN5fGKigpccskluOeee9C7t0XKkTTT3t6OMWPG4LvvvjO0z58/H88++2xmOhWFs846Ky1RjOl6TjRy4tPZ7/dj9uzZqKqqskz6zRjr8h9z1KhROPvss/Hhhx+CMYYXXngBd9xxR6q7TRBEjkHiJJEKuOxTbFjV3BgtIQFSbk3BE5nyIlYa2pC7kwY0BiCILEcTwApiO5+r0Y464dJS2NRbp+r2aeKoPqWG+sFDjXHeQRUK7bq9pJQl3XGbrt1cVuqWZdN9KC91j4VzLiKbDYudlLJrGFhh7loS0hiAICJgKwNKfxB6xwi2GN83khF7o4pPga5cA5iIwJTcInpevze0uXWCpp0EzTTDuWwhMFqJjqZjGRMbzUgi/3SkyEepEIxs4okkwiGDpzy9ReRnZyOtra249tpr8dJLL3V5Xn19PR5//HG8/vrreO655zBjxow09dCa22+/PUyYzHaqqqry6jnRyAlx8uqrr8YHH3wAxpj2AjJ58mScffbZcDqd+O1vfxv1Hj/60Y80S5cVK1bQSwlBEGGQOEkkAud+3aSAft8qJgmSFQFphrl0AmSJocyY2Z8xd6ExAEHkGYxB5BpMIJqbc0QULXmk9q72QQjBTy8g2gDY0b//0QA+1x59oJYDjhNgzHFptVfLNPFKJBcud5hcFnRiZCR75WBjOruYdGgMQBDWMGYHHH0A9Ak7JvLTt5sEy5bQO4qcTCcANRVFRxzXSOBhwqVLJ2C6FNt50/ctE9/P4phYmJOPIqdYcCErzhS6MQ43jWEs23zWAiO3TEqaHTC3EvXoibAvAqSCvPxvTRC5QjAYxCWXXIJ///vfhvbKykqMHz8epaWlqK6uxoYNG7RFY4cOHcKcOXPwwQcf4Mwzz8xEt/HZZ59h6dKlGXk2ETtZL05WVVVh2bJl2svIMcccgxdeeAETJkwAIHJPxPJSMnv2bFx//fXgnOOLL75AR0cH3G531OsIgug5mMXJxsbGzHSEyCqE9WprePSjuk/pilLJJDyGhEgm5f93GI0BCIIwwJRciLCnPCC838CVAF7T6vsPtgOOY1P7UKLHIxY8me3elUjIRMYbOZx3msYABJEYjEkiosxWBKBf2HHOA0q0tYVwmfJ3GwBQxFO0dzttNdfESlXENAuZdk3I1MqGBUXiLvo7ih03HbM4x/J8tc1UV4VE6ATFiMJj0HR9LiJ1ITYqe1YASG6KeCSIHODWW281CJMOhwMPPfQQfvKTn8DpDC043bJlC6655hrN8rWzsxPnn38+Nm3ahH79wr+PUonP58PVV18NWRaRqMXFxWhpSYIlOpF0sl6cvPvuuwGI1UODBw/G6tWrE/IsHjx4MMrKytDY2Ai/34+tW7di3LhxSe4tQRC5DEVO9jy0PBqqbZFV9CP3pr4jUoGlAAmpqEe/sNEYgCCITNG/f39Dff/+/RnqCZFviKimFgsBsinJEU0Ags2Wdqi5AI0BCCI1MGbXpX4Ih8v+cMFSblHel5R8g2m0We8aVehLnaDa0eHH5m37cNzwvigq6skLGyQlwlWNcu1CfGSunPzeyXU45+Lv1X8E8NcD7oFgzqMy3a2chHOesVx82ZADUM93332Hhx9+2ND2yiuvYM6cOWHnjh49GlVVVZg6daomUB45cgR33303/vKXv6Slvyr33HMPtmzZAkCMBS+66CL88Y9/TGsfiNjIanGyvr4eq1ev1r7UHn744W4lUx09ejRWr14NANi+fTu9lBAEYcAsTjY3N2eoJ0QyEKuCvWJlsCo+aiKkrpyul2upAJCKlZXMJYaISMYc6elDDkFjAIIgMol5de+BAwcy1BMiFxECZKsu/6Nuk1uQmqgYu3GBk7rPQWgMQBCZg0kOQKoA7BURzxHvWZ3C0lXuUGxETWXzsSzNoxaJa3/5LNZ8UY1tOw4iGJTx3iu/wrSzjs90t5KAPSQyamKj06LNZWzLUxvdXITzIBBoFAKkvz4kRgbqlQhchdLTARIniW5y9913w+8PWUNfeeWVlsKkisfjwbPPPosxY8bA5xMpjp5++mncfPPNGDZsWMr7CwAbN27EAw88oNUff/xxrF27Ni3PJuInq8XJVatWaeG3ffr0wXnnndet++lfaGpru0rqTRBET+RHP/oRzjjjDJSXl6O8vBwFBQWZ7hJhAeey8rJrEhnNImTKLYlMMI8iPBaL3BjavkiJgMyfPJDpgMYABEFkEnPk5KFDhxAIBGC3Z/XrE5FGhADZZiE+NovIhZRMxEtifKGJjyWApERASZ68mTimMQBBZDci+tIOoDCm84VbTUAnWHZ0IW76TBaoQXTb/zUBvtq8F1u2hVwTtmzbn0Fxkpmsas35OFXLWqeFwGhso3fS3IHLfiE4quKjugUaEdMYw1+f6i4SeY7X68Wrr75qaLvllluiXjdixAicf/75ePnllwEAgUAAL7zwQkx2/N0lEAjgqquuQiAghPpLL70Us2bNyjtx0u/3o76+HowxlJeXw+HI3YCHrH67VlcoM8a03BLdobi4WCu3trZ2+34EkQ3wjmog2AjYCgFJtzFn3kxQpIvKykpUVlZmuhs9EiE4mlbZai+sXp34qJQzkYeDuRWhsVgTHPUCJGNZ/ZWac9AYgCCITGIWJznnqK2tDWsn8hvOuUmAbFLEx1QKkBBjeasoyB5i905jAILILxhjAHMAcIj3pzgRNod6sVKfq1FfNx9TRU5zzkcrwZMZ9qOOG44vNuzUjn5T3QI4B0U831Bm5mO2KKKimk9bf47+mERzO3kMD3qFABkwRUIGu5kfj8TJhOGQwTMU7Z2p51rx3nvvob09lHLgtNNOw8iRI2O6dsGCBZo4CQCvv/56WsTJP/zhD1i/fj0AoKKiAkuWLEn5M9NBdXU1li1bhlWrVmHdunVoajLmlS8tLcWECRNw5pln4oorrkhblGoyyOqZ1Pr60Aep2W4xEbzeUN6wXFaUCcKAbyfg22NxwA5uFixtBSRgEmlBWP3oVsVqZa9pZaxutWymYa5QpKMh6rFYER/peyOd0BiAIIhM0qtXL9jtdm3VLSDyTpI4mX+ICEivEvXYZIqEbEHKInaYO1x8VKIhe/qCJxoDEAShR8xZqKJdehg97kvgpQ+0+jc7msFKzknb84n8IpQPUo1+1EVDyt7oN4gH5gQcFWTpSnSb5cuXG+pnnXVWzNdOnjzZ8C61YcMGHDp0CEcdlbrfy23btmk5ywHgwQcfRJ8+fVL2vHSwd+9e3HjjjXjrrbc0VxHGWNhcfnNzM6qqqlBVVYXf/e53OO+88/DII49gwIABmeh2XGT1W09JSYlWbmnp5ooRCDsmlYqKyP75BJFTyO0RDgTE6u5gU4TjAJgdXDILmOYITAcJmD2U0ApVHyD7FIsddfMbrXgMEY8dSFsex5iwKb/PBYpAb94KFSu0rP5K7HHQGIAgosM7vhUTGpqwUUyfZUlCkiT069cPNTU1KCgoQP/+/dHR0ZHpbhFxIGwEfZHt37XNi5Q5MjCnzn61BPqc00xypeaZeQCNAQiCyDSjR4821Ddv3gzOOc2NEBERuSCbhe1qoEnZ68o8yYudpAIhQjp6KXslV6ytiH5PuwtX58My8+xs4euvvzbUTzvttJivLSwsxJgxY7BhwwatbfPmzSkTJ2VZxtVXX43OThH4MGXKFFx55ZUpeVa6+Pe//40rrrgCDQ0NmiDJOe/yd1M9580338THH3+MZcuWYebMmWnsdfxk9eyF3l7x22+/7da9gsGg4Q+iX79+3bofQWQNwbbEr+WxCphFOhGnUMlboG6O0F5tp2TpWQHnQZ2QaBYXVcHRb9Gma88iS4lwGCB5LIRGk/hIEcI5CY0BCCIGOr4FAgcNTVwqDIvCEjnpKPdtvHzyyScoLy9HcXExfY9kGZz7LXJPm/NQe5GWPGXMYRIedRtz0+9OAtAYgCCITGMWJ+vr63H48OGcj8IhuofIA9kYLkD6FeeFVChLttKQ+KgTI5nkTv6zCELHN998Y6gfc8wxcV0/fPhwwxhsy5YtmDJlSlL6ZubPf/4zPv30UwCAx+PBE088kZLnpItPP/0UF154ITo6OjTBUR8x2adPH5SWloJzjqamJhw+fFi7Vj23oaEBP/zhD/HBBx/g9NNPz9SPEpWsFifHjBkDQPyjbtu2DXv37sXAgQMTute7776r+SQzxnDqqacmrZ8EkSk454BrKCC3Kvlw2gGeZEsIHhA5LYONcVzEwA3CpROQHOFiZtgx4/F8zqkjciwGEJ4TI1pdVzbk2NDVNWExDRNyqYA5FYtVt9iYO1x8tBUoE375+zvS06ExAEHEgNXiIrlNbP4DpgNMLDYyC5e2kh6Txy5eBg8enOku9ChEpGOnkl+6Q4xptbzTpo3709w7u0l4LCUBMoXQGIAgiEwzZMgQuN1ug2vCli1bSJzsAfCg1zr60d8oxtgpwQY4yoTwaNeJkPYyMInsyIn0U19fb7DZB4BBgwZFONsa8/ndXXAWiV27duG2227T6osWLYpbSM0m2traDMIkINISXHLJJbj88stx2mmnGVxGAKCpqQlr1qzB888/j3/84x8IBAJgjKGzsxM//OEPUV1djcLCwkz8OFHJanFy1KhRGDBgAPbt2wfOOR588EH86U9/ivs+sizjvvvuAyBeSMaOHYuysrIk95Yg0g9jDCgyvmBzHgytGA+2hSYp1S3YJuw3U4oyudTNPIIcDICkJJSXlLKyB9OVzecw07nR7gGAywA4qr/bg7ojjWhoaEFjUwu+f+aJ6Ne3AuBc/FyQlbKs1LlFXVfWzudGITGbvBpSCrMQGnV7rewCmAeQXBTZQwCgMQBBRIPL/jgXJHFAbhGbf5/pmARuK9ZZT+qjLgtJeCESRoxL9UKjmn+6w1RXyhkdH9lFzmmzeG8rAZiH/g7SCI0BCILINDabDccddxw2btyotX3zzTdx5VwjshMu+0X+x4CSWzrQFBIi/Y3dnsfqEjUfpGbDqliy2ktpoWAWwSGDZ8hFzPzcHTt2xH2PysrKbi+kaGxsNNQLCgriFrfMfWhq6sK1rxtce+21aGsTCwfGjh2LX//61yl5Trp48MEHUVtbC0As1Dv++OPx0ksv4fjjj494TWlpKWbOnImZM2fi5ptvxqWXXootW7aAMYba2lo8+OCDuPPOO9P1I8RFVouTAHD55Zdj8eLF4Jzjz3/+M84991xMmzYtrnvcdttt+Oyzz7T6tddem+xuEkTWwJhNmVgpBiIssBITRUreHbOAqdZTLmDGgprz0NSUQqbO/g327A2tDvrnshvwXzPGpfahOYPNZOnrjCI0uslSlegWNAYgiK4IAK4RwkJKbu4iB3UsyF3YvNvADVGWBcrnu7In++wehXB+8OvyTJujHE3iI/dlussCgwuDaVPzUZMAmVXQGIAguoYH22lhZ4oZPXq0QZzcsmVLBntDxALnXIxFgs1K/seWUFkVJOUku42ZkdyAvRSwl+k2pW6jRX9EfJx//vlxX7No0SLcdddd3Xpua2uroe7xeOK+h/maZOQRN/P000/jgw8+AABIkoS//vWvsNuzXu7qkqeeekqzZh0+fDg++ugj9OrVK+brx4wZg//85z+YNGkSvvvuOzDG8PTTT5M4mSg333wz/vKXv6ClpQXBYBBz5szBkiVL8JOf/CTqtXV1dbjpppvw97//XfPn7du3L6666qo09JwgshchYCqTjBEFzIAuArNdsY5VrbR0OQnlHLcQNVFRVmgQJw/VNmewN8lEimCjq7aZbXWdMOcWpRdfIt3QGIAgIsMkD1B8plbn3C8mX7StKVTu1oKjIBBsEFtEJHDJYxItPcaNqXsSMjOJsE61yjWt1ju7ON6ZATvVKDCnIjKqOagtck9LHhrD5CA0BiCIKNS+CviPiAVE9lLAUaoTRESZctJ1D3PeSRInMw/nQSDYahQbNQFS2fNA6jtiK7QWHx1l9HdH5AVmcdLtjv/32ixOmu/ZXfbv34+bbrpJq994442YOHFiUp+RbrZs2YJ9+4TLkbpALx5hUqVXr1549NFHce6554JzjpqaGmzZsiXsey0byHpxsqKiAkuXLsWVV14Jxhg6Ojrws5/9DH/4wx9w4YUXon///obzP//8c2zbtg0rVqzAW2+9hdbWVvESDmHL8Mwzz8DpdGbiRyGInIIxe1QBUw/X5zrUi5Z6IVMTNH3Gc/XHM8ywwZX48usarb51hzlnVyqxAcwGMDsAu9gb6kpZ3dBV3SQwwkaTwUTOQWMAgogdxhzCGsoe/vLC5c6QUCmbhctkRLbJIQcGHIlyripk6gRLSyFT5B8miytFUNTyS/t1eaZ1ZfhDbbJOTDSLj9kSyRgNzZ3BA8soR2VjjPIw5Ss0BiCIyHDOhQ0leMj5wMKJkmsRXEbRUkRwUb7paJA4mV6E8Ki4ewXbhAhpjoAMtiE9FvAMsJdYC5D2UsoDmefIXGyZenY2ksh8YqrnIBcuXKjZzw4ePBj33ntvSp+XDvTR+gMHDsT06dMTvteMGTMwYMAA7N27FwDw1VdfkTiZKPPmzcOOHTtw7733aisfq6ursXjxYsN5nHOcdtpphjpjTLvm97//fbf+oxIEERnGFGENia8SE6v59UKlrMvfqJaVulbWnWN5PMK5hvsxbRt1/BjgnfVan77Z0Qp4TkQob6W6RapLobawetfiI4mHRLLgPCDyZQQahN2TO77E5dkEjQEIovswyQVIlYCj0tAuvnc7IkdcIhUrz/VCZnQ4s4vcxcyp5DB2Wpe1BTlq2YXuLszp7OzEZ599hv379+PAgQPYv38/7r//foNVEFfzTmt5pYNKWdnzgFKOIC6GiY4W4mNK/jukG6ZYq3pCkbVMH2Hr1gnTbop0JADQGIAgIiJ7Y1vYK3cAvg7Ad8jioARuL7EWLu2lYBKJ+aNGjTLUDx48iPr6elRUVGSoR7kJl306wVGXSiisLcV2q2Ykt0iHpImQeivWYhqLEFnBm2++iWOOOSauayorK6OfFIWioiJD3euN/+/TfI35nt3hpZdewj//+U+t/vjjj8edEzMbqaur08rjxo3r9v3Gjh2r5XA/fPhwt++XCnJCnASAe+65B8OHD8fChQvh9Xq1iQb1xUNFXR2pfxlxuVx48sknccUVV2Sk7wRBxAZjTInyy9yL0PHjagA8p9W3bNsHVjghY/0hiEhwHlRWkTYA/gYg0BgqB3Ve/u4hQA6LkwCNAQgiVYjvXUUcchxlOCaES69RrAy2KhOi3vTlE9QiA2MTM41I4KpQqTkK6MrMCbGIyUpMDKKxtg5nnXWJ4Y7/feWxGNC/xChC9ljsRgvfMPFRX3bRIiwiIWgMQBAWBKxyRMeLrLw/NALYHXaUSx6TcFkirCwljxbFnu/RY8cccwzsdjsCgdAioW+++QZnnHFGBnuVHYjcjt5wgdFKeMyIQxYDbEXK760iQNpKAHux1kYCPBEJGQxBnplxqwzjc4855hgcf/zxae9HNouTdXV1uPHGG7X6pZdeilmzZiXl3pmmrS30zltcXNzt+5WUlFjeO5vIGXESAObPn4+zzz4bixcvxjPPPKP9kqsvIno457DZbLj88stx1113YciQIWnuLUEQuYh5deTu3bvR2tqa1BU+BBErnMtCaFSjIA1CpGLlFI1AY2o7mSZoDEAQ6UUIl4p9pqOf5TmcB8XElLpxr7GutXVkyE5UViJDE8u52btEht1uQyAQEiBr9u7BgL7Dk9XBDMMi5J+2EHItolTJUpVIFzQGIAgjzNUPfMDPxPuAtjWGysEWdNv6UvYCPi/gOxjxFM7siuW2J2S9bSswCJihYx6ROiaHcDgcGDFihMHONd/ESc5lkW9a7hTjtbB9h0V7u7BfhZy5jjOHSXg078m2mCC6Q2lpqaHe3t6Otra2uKITa2trDfWysrJkdA033nijFgVYUVGBJUuWJOW+2YA+v+SBA91PM6a/RyK5K9NBbo0MAAwaNAh//vOfsXjxYqxatQqrVq1CTU0Njhw5Ap/Ph969e+Ooo47C6aefjqlTpybtF58giJ7Bcccdp622Vtm6dSsmTKDoSSI1cM7FitIw8bFRiJLdjcoJNIHzYF7Y0tAYgCCyC8ZsYlW6LfoCHs4DyqRWuyJWWgiZqpiZBTmoAUCSJAwe2AvVu0Iv1v9890ucOiEbxEnVHt5hsY8QJWoQH10AI0t5InegMQBBGGE2jxD+XH3DjoUcVszCpbJP1vcsD+is4GM4nTktREudmKmWmQOQQt9tmXyPGT16tEGc3Lp1a8b6YoVwulBcJiyFRauybs8tkpVmHEn5fSjS2a4WK5GPigApuWkMQxAppFevXigvL0dDQ4PWtmfPnrCAjq7YvdsYlX/sscd2u1/btm3Diy++qNX/+7//G+3t7di1a1eX16m5KVVaW1sN10iShEGDMu841q9faFHwZ5991q1gmdbWVnz22Wfa/Lb+3tlEzomTKgUFBZg+fTrljiAIIql4PB4MGzYM1dXVWtuWLVtInCS6hRYBGWgOWbEGGkNCZKom4m2FgL1cvHjaClLzjAxAYwCCyD0Ys8cnZHIfIPvEpFlYWdlzpU3WlZP8eXrerHH40+MrtPqyV9bg3tsugM0WbTU+U3JK6/JNMzsAR6jMIpQtz9EfJ1GRsIbLHToxohlwVIB5hmW6W0mFxgAEER3GbICjXGwmNDtOfaSlXrgMtqauY9wHBHwAGuO7DFLou1CK8P0oWS3WsRtEzrBzEf279PIfz8GkiSdi1MgRGD3qOAwadDS4vyHqdcYfINDFpuSXlmM4R7+p5+eSvbwqTtsKlTGhUpaKjO0kPBIZRuZiy9Szs4VRo0Zh9erVWn3Hjh1xiZPfffdd2P26i9kq9s4778Sdd94Z931ee+01vPbaa1q9tLQ0TMDMBGeccQYkSUIwGERHRwf+8Ic/4O67707oXosXL0ZnZ6eW8iBbo/5zVpwkCIJIFaNHjw4TJwmiKzgPAAFFfAw2h0RItRxsRbetlSIheUQuGEe5ECId5UpumDLKo0EQRE7CVBFOin9RBeeyMonXaRQ0zSKmWoakiIc2CCHRrivbMP/KMoM4ue9AA6rWFWD69CkICY82iEjG0H3ISoxIBVz2K2MLnQCpL5sjYApGAXkmThIE0T0YY6EoRVf/sOPivabZGG3pV0RLuR0IepF+QUwOLUpKs5PonIkAJhYC2Ce2Q+l9fk6gWfqaREdbESAValGQ+Z6jlCDyjRNOOMEgTq5Zswb/9V//FdO1bW1t+Oqrr8LuR3RNeXk5TjvtNKxatQqMMdx///0YM2YMLrzwwrju8/LLL+OBBx7QoibPOOMMlJeHL1jKBkicJAiCMDF69Gj861//0uokThJc9unExpZQLhdVhJRTnFiaOXWio06AdJSDSe7UPpsgCCKHYEwSlqVwAUlwgRt7yliMHz8eGzZs0Nr+94V3MGP2Zd2/OUGYCDktRBAf4x1vBJtS01GCIPIWxuyAo0JsFggbUZ/IOSh7lb0iWurLal5C2YuULdIkkowESG5hCy+5TWVdm82jRDwKUTIf0ofkI5xzikAlusXMmTPx5JNPavWPPvoo5ms/+eQTBAIBrT5+/HgcddRRyexe3nLbbbdh9uzZ4JwjEAjgxz/+MX7+85/j7rvvjpq2oKGhAYsWLcJjjz2mfQZwznH77benp/MJQOIkQRCEidGjRxvqJE7mN5q1UbA1POJRLcsdqe8Is4eLj2pZ8tCLBUEQRIaYP3++QZx844030NTUhNLS0gz2ishFxJijzSQ66kTIYAuSOokfIHGSIIjkwhgTi4AkF4DoURjic6/DWrQMtoeLnOl478przAKjhbgYqZ1yUeccnHMg0Ap0HgY660Jbx2HgqLOAipMz3cWcROYMMs/M30KmnmvFjBkz4PF4NCvVNWvWYOvWrRg5cmTUa5999llD/YILLkhKn8aNG6dFA8bDXXfdZbBHnT9/flgfs4WZM2fiBz/4Ad5++23tZ33kkUfw5JNP4gc/+AFOP/10HHfccdq7aFNTE7Zu3YrVq1fjnXfe0axcAfEZcd5552HGjBkZ+3miQeIkQRCECbM4+d1338Hr9cLj8WSoR0QiaC/CwVZla1O2VtO+DWnzB2IOwF4C2EuF8GgvBxxlYm8ropdBgiCILOSyyy7DTTfdpK3+9Xq9eOWVV3DNNddkuGdENmK0Xm0Ue3+TiGIMNCk5wlKMrVgZb5RR5ARBEBlF2Mh6xBaDq6eYiA0Csj7Poj+0l011HtCdG+U8rT0DuRq1XNJdbbr80lKU4/pNO9dFAmOewnkQ8DUYxUe1LHdaX9RxOL2dJPKOgoICXHjhhfj73/+utT3wwAN45plnurxu+/bteOONN7S63W7HZZeR60w8vPDCC/j+97+PDRs2aGN5n88XlivTjJpfUr3m5JNPxvPPP5/GnscPiZMEkeNw73ditbW9RJuIYJIr093KacyrgDjn2LZtG8aNG5eZDhEGjKJjBLFRLac7KYnkAmwlyoRgSXhZctPLIkEQRI5RWVmJ2bNn45///KfW9txzz5E42UMR45B2o/iobY3K+CPFSB5loVNpaNGTrVQbc5DFHkEQuYp4V7IDttROV3KeyHtiIpHtHCIXNb0DEtHhwU5jBGRnnYiK9NUD8f7OdtalppM9AJkDwQy5UctZ5oJ911134aWXXoLf7wcgIiIvuOACnHfeeZbnd3R0YMGCBfD5fFrb1VdfjeHDh3f5HPNn5Icffoizzjqre53PYQoLC/Hhhx/ipz/9KV566SVDtGik7xPOuSZKMsZw2WWX4fHHH0dhYWG6up0QJE4SRK7TtgVo325o4sxlIY4Uh8pkEdklRUVFGDx4MHbv3q21bdmyhcTJFMJ5ULHz8Yq93BEqB9tNwmMb0r7SVUUqEH9L9lJdVEIpLQwgCCIjUERU+pg/f75BnFy1ahWqq6ujvmgTuQnnAZP1aqNRhOT+1HaAOXVOC4roaAuVmeRM7fMJgiDyHMakuK+pra3FihUr8N577+HOO+/Esccem4KeEflOyIpVJz6qZX9z8h5E4iSRBIYNG4Zf/OIX+OMf/6i1XXjhhXjooYfwk5/8BE5naEz6zTff4JprrsHq1au1tl69emHRokVp7XO+UFxcjOeffx5z587Fgw8+iA8//LDL89V5gbPPPhu//vWvMWvWrHR0s9uQOEkQuU7AYvDCOwH/YbFZwezgNkWw1AuY2r4wocF6PjF69Gjs3r0bbrcbI0eOhN1OH5exwrms5BXRi41eINihK3uNZe6LfuN0YCuyjnhUIpOZFIMXEUEQRLqo+xe4r1YnYJTpyqUUrZ1EZs+ejV69euHIkSNa2//+7/8acpcQuYOwXm0VOR6DrUCgxShABltS3ANbaJyh/5u1ldDfLkEQRBZy3nnn4V//+pdWnzhxIomTRJfwYIewYvXVA531gO8I0KGIkZGsWBOF2QFX79DmrhR7gkgC999/PzZv3ox3330XAOD3+3HDDTfgd7/7HU466SQUFxfju+++w/r16w0Rfk6nE2+88Qb69euXqa7nBbNmzcKsWbNQU1ODTz/9FF988QVqa2vR0NAAzjkqKirQp08fTJw4EWeccQaOPvroTHc5Lmi2nSByHStxMho8AATqxWaJBG4rDhcvVetYmwdgrryeNPnjH/+IRx55BEOGDIHN1vOssTiXhWAodwKysg+rd4aLjGrUY7YhFQC2QiE+2gpNZXVfQDZoBEHkFoFGkdsu2Ax01oQfZy5wvfBhEC+L6TMvDpxOJy677DI88sgjWttzzz2HRYsWQZJ69oKubMJo/a4Kj7qyWudJnhS0QiqIvHCA8kwTBEHkFL17G4We5cuX48Ybb8xQb4hsgQfaTQKkbgukwObdVhASHrWtEnCU9PgAg2Qic0DmmRmnZZutKwDYbDa8/PLLuOaaa/CPf/xDa6+trcXy5cstr+nTpw+ee+45TJ48OV3dzHuOPvpo/PjHP8aPf/zjTHclqZA4SRA5DOcccA9UbKeaRf6bpCADwSaxdTF3w5lL5NiT3BZ7c5uxPdsHTqNHj850FxKCcy7EZx5JVPQpxyIcV69LtV1ZspA8FoKjuU6iI0EQ+YewhGqKclIn4K8VWxhMWYhUZhRNlI3ZPKnodk4zf/58gzi5e/dufPzxxz06H0o64VxW7N31oqNJeAy2Ajxd1u82U+RjmfFviKxXCYIg8oaZM2fimWee0eofffQROjo64Ha7M9grItVwzsXYQy886svBVCzMZoCzLCQ86oRIZi9IwfMIIjpFRUV46aWXcOGFF+LBBx/EZ599ZnleRUUFLrnkEtx9992orKxMcy+JXITESYLIYRhjQO8faHWRH6dFCJXB5pBoqZaDrUgsiXsEeCcQ7BT3j/dS5uxSvITkBphNbJBMZaUOm66sniMp7aFyOlamC+sCZdMSlctKXW0PKsJhQIh/Wtlik7s4Fm3LdSS3EB0lj4jSldwRBEgSHQmC6MHI7d1cSMJ1UZcWR5nLJFiWadbvsBX2yPzVJ510Eo4//nhs3rwZADBgwADU1VE+n+6gWcEH20N5pg17nRgZbEdSx7GxIHkiiI9llAaBIAiiB3HOOedAkiTIsnjX93q9+OSTTzBt2rQM94zoLmLBX0u48KiW5RSloDFbsap2rM4KSidDZC0XXnghLrzwQuzcuRPr16/H/v370dbWhr59+2Lw4ME444wzDHkoY0VvB5sK7rrrLtx1110pfQaRGCROEkQewZgdcJSLzQKx4rzVQrxsCZWRptXm3AcEfWnI6QNwsAgCpipsQhEQTWKiVrZoh6zMjynHCGuYUxEZzYKjbm8ou2mijyAIIhYkN9D3csDfGMqTp+XLa0a3v5u6jLoEAAYuFQh7KZtina1ZaJvqeZI/jzGGn/70p1izZg2uvPJKTJkypUdav3eFZqsqtxuFRrVsJUBmEuYC7MqiJwsRkkmuzPaPIAgiAnzn34FAO+CqAJy9jHtbQV5872YTFRUVOOWUUwzRQsuXLydxMgfgsrKI39cE+HWbWvc1ptY5ylEKOCvE36ZeiHSU0txHliJsXTP37Fxg6NChGDp0aKa7QeQBJE4SRA+CMSmUO9ICMaHUHh5xGWgJlXmKVo2lFB6KKMyRL/qsQ4t0dYqJPEmtRxIZhSDJGH3NEARBpALGbIDzKLGZ4DyoOCmogmWjsZyU73IOyG1iizqfI4HbPICkEy5tBdZiZpYLmddffz2uv/76THcjqYg803E4NMiKfXxYlKMiPmbLYMvgtlAk8qbbdWVbEUUmEASRu3gPiM/fjgPhxyQ3uJVo6epFtu3dYMaMGQZx8r333sODDz6YwR4RwnbVGy446suBVC+IV2xYnRUhEVItO8vBJJoTIQiCiAR9QhIEocEYC9m1ufpZnsPVPIVyh7J1xr5PV1QmocMWEhUllyIyqmW9yGgSHQ1ipDOrJ4oJgiAII4zZAEeZ2ExokW2GaMtGXdRlC5IvLqm5AuMRMgsUW+9QZH34YhglKp858u57KpRD2h+ygpd1Ze5XREK/8by4bOEVu3nIUfuTXdh0ImMk4ZGs3wmCyF94UFkYEgm5A/DuF5v5WptHJ1oKwVLdMxvlT+yKmTNn4u6779bqmzdvRk1NDY4++ugM9iq/4XIA8Ddbi49qPZVRjyrMZhQgDSJkGY05CIJIGv/5z39Sct/vf//7KblvdyFxkiCIuGCSIm6hOK7rtEm2iOJlh1iFr2/nQSV/o7LnQV1Z156iSbXOzgA2bN6HzzfuwecbdsPptONvf/xxcm7O7IltUrRzHMp5QlikyMWei5Y7gwfBnNZWzwRB9DzEQiRF3HP1DTseirpstLaLlTtS3EOdkBkzNvAw+3B93cJaPIKgyVU7d22coR+DKPuuyubrtHGLXlTUC4oBU12Xk7qnIbmUaNoC5b+VujcJj1keXUsQuYDP58P27dvxzTff4ODBg2hubkZBQQHKy8sxcuRIjB8/Hi5XamyN6+vr8fnnn2PHjh1oamqCzWZDaWkphg4dihNOOAEDBw7s9jO++eYbbN68Gfv27YPP50P//v0xbNgwTJo0CZKUBzaKnfWJXxv0At69YjPBbQUGsVK/ZzayuZ44cSLKy8vR0NCgta1YsQJXX311BnuVe4h0Qx1AoFXZ2qz3/haxTxfMHh75qJYdJWTB2oOQwRDkmRlryqAxbk9nypQpKcnBqeZMzjZo1pogiLTAGBPCmeQAUJTUe4sPbavJQ7OwaW5XywAYA8Ag8lKK8vJ/vY8LLrlFe05xcRGeeu5iSJJNnMuU8wEljyULbUxflkJ7Zgdgo0k1IikIG5s2MUHhOwJ0HtGV68Ukd8lIYHCSRHWCIPKerqIuAUW8DLYrOQXbdPkE1XJb6HjKhUyVYAKCpgQuuSG+q01iIpEcmEsRwvVio66sRsgqgjFFHRBEatm6dSveeOMNVFVVYfXq1fB6I+d8dTqdmDNnDm688UaceeaZSXn+66+/jkceeQQff/xxlxNk/fv3x4wZM7Bo0SIMHjw45vtzzvHXv/4Vjz76KL766quI9543bx5++9vforCwMO6fIWtw9QaGXBEa82v7BnRr4W6wHWhvB9prwg5xe6FYKKLfHEWAud3mydt3XZvNhmnTpuHll1/W2pYvX07iJFTB0RtBZDS3tSEjrg2SQxnjlgLOUrFXN1cFYC8iAZIgiKwhmd+lqRA7kwWJkwRB5DziA9uOZC8wmjT5vwBcp9VbWlqxfVcLRo0aldwHEUQUeNBrEh6PAL56sZc7u764OyurCYIgTDBmA+zFiMVBIaKQGWwztslt0T/Lko4s+kBEgEVxcnAaBUeD0FigTE6T2EgQ2cIZZ5yB1atXx3y+z+fDK6+8gldeeQULFizAww8/jOLi+JxzVHbt2oV58+bhk08+ien8/fv345lnnsHFF18cszh56NAhzJ07Fx988EHUe99///145ZVX8NJLL2HChAkx3T/bYDYXUDwcwHBDO+dBYXMZJlqqwmU3Jic1UelQlM5J4JpYWWghZuraJVfOCZkzZ840iJPvv/8+AoEA7Pb8mV7lckBENsodYh9UnK3Usvq7YBYiM5pzmgGOYqPg6DSVyXmBiJHU+bPF9myCSPSzShUhc+mzLn++PQmCIJJMv379MHDgQOzdG7K8Wbt2LYmTRErgwc6Q4KjtlQmFrnLKRMNXD85lWgVKEETaiU/IDIgV95pw2QHI3tAW9Cq2797QsQy+vn/+5R688s5GeNwOuF12DBlYgcvOPym1D2W2kH07cyiOFHZTW6K28MaNvjMIIr/Ytm2bZfuwYcMwdOhQVFZWoqOjA9u3b8eWLVsM5zzzzDPYtm0b3nvvPRQVxeeAs27dOpx77rk4fPiwob2wsBDjxo3DUUcdBafTiSNHjmDz5s3Yvz88R2I02tracO6552L9+vWG9oEDB+LEE0+E2+3Gtm3bsHnzZu1YdXU1pk+fjjVr1uC4446L+5nZCmM2EQHmqgj76hXCZaPpXUPZ+5uQNGGJy0qOwOYYOmwPCZlaFGahlqJE22xOY13dmD3tE7DTp0831JuamvD555/j9NNPT2s/IiFyi/vCxcVgp6luEhz1x3gWukhIThH1aI541OrFtCiKIIi8YNGiRXGdL8syGhoasGXLFqxZswZerxecc/Tu3Rs/+9nPYLNl92cjiZMEQRBdMGnSJIM4+fnnn+PKK6/MXIeInIYHOwF/o2klsxIJmcp8GoE2sZKUIAgiS2HMLoRMe2yfVSKXtc9CuDSX1a1D1JMhaDIbNmw+iAef/EhrOn3CMbjsomkAbIqIKIk9lL0+N7RkEhiZvYs2BwmGBEEklcmTJ2PBggWYPn06BgwYEHZ8+/btuPXWW/HGG29obatXr8ZPf/pTLFu2LObnbN++HTNnzsSRI0e0thEjRuD3v/89zj33XLjd7rBrdu/ejX/961/429/+FvNzrrzySoMwWVxcjCeeeAKXXHKJIb/k2rVrMX/+fE2obWhowOzZs7Fp0yZ4PJ6Yn5erCOGyl9hMcDmgvKNEEi5TBFee628EIrsMdwEDNwuWmpDpsBY0Jd1xfWoWhlDZsi5E0P7lDGNOGIVNX3+j9eLdt1/FaScdo/XJmOIFgKzaxys5peVAqB6pzAPKdRZlHlTONZXlTiFCZjSCMU5sblOUrSnaVhEfmS3884IgCCIfufPOOxO+trGxEQ899BDuv/9+1NXVYePGjXjhhRdQUFCQxB4mFxInCYIguuCUU07Ba6+9ptXXrl2bwd4Q2Q4PdogVyf5GZd9krAcTeuuODpMAZwXg7CVWSjuViQdXBWAvpgltgiDyDpHL2iWiK+xlMV0jBE2/UcRkDEJQVMVEnbhoITSqn6cdHg7gH9q9PaWDwfrNT/JPSRCJwTkHAi0AAOYoyXBviGzAZrPh8ssvxx133BE1UnDEiBF4/fXXccstt2Dx4sVa+/PPP4+f//znOO2006I+T5ZlzJs3zyBMXnzxxfj73/8Op9MZ8brBgwfj+uuvx/XXX49AIBD1OatWrcKrr76q1Z1OJ1auXGlp1zpp0iR8+umnmDRpEqqrqwGICMqHH34Yt956a9Rn5TNMsos8lq7eYce47BeWsP5mxb5TzSGo39pS957TJVwIcmm2hp9+chk2fR2qr/jXy7jnUvqs1bB5IoiN5rZC8btHEFkG5wwyz4wtJs/Qc4n8oKysDPfccw9OO+00zJkzB2+99Rbmz5+PV155JdNdiwh9CxAEQXTBKaecYqh/9dVX8Hq9PWJ1LWGEcy5eulWh0Up8TOmLMQOcZSHh0VkRWv3sKCUBkiAIIgpC0FQiJuyl3bqX12uchKVxAZFuQpFOSi45X0Mor5yvQUTRVEwEBszOdFeJLGDt2rUYMmRIXNfcf//9WLlyJdatW6e1LVu2LCZxcsmSJYZFnVOmTMELL7wQl7VYLDn8br/9dkP9tttu6zKPZK9evfDUU0/h7LPP1toeeOABLFy4ECUlJC5ZwSQH4O4jti7gckCXf9AkXJrFTNmXpt6nhplnHIMHn1uj1b/YvA/1TV5UlObhWIDZRXSjzQVIbqXsCRcb1XyitgISHAmCIDLMrFmzcPPNN+P3v/89XnvtNTz33HOYPz87F9LSNwZBEEQXTJgwAZIkQZaFDVwgEMCXX34Z00s5kVuIKIM2XdRjI+BrMtZlf+o74ig1io9qNKSjjF70CIIgsoSOjg5D3cqekCC6Cw+0WwuPvvrY8rn56lPfSSIniFeYBMSCjoULF+Kqq67S2j788MOo13m9Xvzud7/T6i6XC0888UTScx7t3r0bH3/8sVb3eDy48cYbo1531lln4ZRTTsHnn38OQFigvfXWW5g7d25S+9fTYJJdWHA6oy/+4bJPF4FpFjTbhXhpuaXhXSwGzjxpEPpVFuG4Ib1x4oijMG5kXzjsWbpQVHIJYdHm1omLbqXdbdwkd+hcpU7vn7kJ5zLAg2JxAUEQPZJf//rXWLx4MQKBAB588EESJwmCSA3cux8IeAFXuRI9ld2JbnONoqIijB49Gl9/HfJtWbt2LYmTOQTnit2Pv0V5CW4RVmdWex7dPiop2IuMwqMWDVlOLxAEQRA5AEVOEsmAc1mIjGbh0dcAdDYI6+Hu4GtITkeJHsv48eMN9f3790e95h//+AcaGxu1+sUXX4xjjjkm8gUJos+JCQDnn38+ysvLY7p2wYIFmjgJAK+//jqJk2mESU4lJUVFXNdxLguBUhUqI4qYyha0EDf1dXCAq/kZua7O1QeG2sGVZg6Xy4a9VTeBgemOR/2plXzSujzU+jKzAZJVuatjyvWS2u40iY0uctfJc3jQB3gPA95D4O21gLcWaD8EeA+DDTsf6Hd6pruYk8hcbJl6NkEkg/Lycpx88sn4/PPP8fXXX2PTpk0YM2ZMprsVBomTBJHr1K0FGjcqFQbuLAOc5cpWYSgzmyuTPc1ZJk2aZBAn9S+yRGbhsk+Iil0JjoGW9K+ytRcLC1ZHqbIv09VLxQs5QRAEkbOQOEnEQpglvL9JZ8NaL9q5nLoOBFrBuUyT00TCmK1Vfb7odpxPPfWUob5gwYKk9kll+fLlhvpZZ50V87Xmc1esWAFZliFJ9LeSzTAmKZF9mZ/XMGeF43pR0yxyMokWkRPdgvtbAUV85O2HFBGyVixkiiCO8/ZDYb+nBEH0LI4++mhtDnvz5s0kThIEkQIMK6J5aNW1BdxWEBItXSYB015EExcROOWUU/D0009rdRInUwvnQWHnE2wX+0BbBOGxNcU5HiPBAEdJZPHRUUr2NwRBEHkO2boSgBLFE2g12cA3hfbpsITXxve6cb1LKdP4nugmO3bsMNT79evX5fler9eQa9LtduPMM89MSd/0i0cBxOVsM3LkSFRUVKC+Xlgft7W1YdeuXRg2bFhS+0j0HBhjMEiWpAoRccK5DHQ2KpGPtUok5CEhQgba4r+h91DS+9hTCHKGIM/MH3GmnkvkJ3pL/X379mWwJ5Gh2VOCyHXisWsKtgPedsBr8YHE7ODaxIY56rK8R4stp5xyiqFeXV2Nuro69O7dO0M9yh2E9U6nIjDqBEfzXl/uroVZd2GSIjKWiZwpmvCo1kto5StBEFkBD7QDkrNHf0dnCoqc7BlwHlRsVxt1omNjSIz0NwM8mOJeMCUfdYXlOJ3ZSBgnUserr75qqJvfi8ysX78egUAoTcKECRPgcIiUBTt37sSyZcvwzjvvYPfu3aivr0dZWRn69++PyZMn47zzzsM555wTU7+am5vDJtmGDx8e07Uqw4YN08RJANiyZQuJkwRBpBwuBxQrVhH9yL2HNCvWpC5oaq9N3r0IgshJ9IvMxCKa7INmMggih+E8CDiKlJwJ3Ywg4wGg87DYrA47SkITIvYisUrbXgDYPMpeqedhXoMTTjgBHo/HMBH5xRdfYNasWRnsVXrhnAPcDwQ7gGCn+H0LersWHNV9TDk40oTkBhzFYrPr90WKFWspYC/Ou99hgiDylH3/Apq3gbvKAVdvZavUyiRapA4SJ/MDLvsUobHJKDpqkY8tSMs4RnLoBEezCEk55YnMUFNTg9dee83QdsEFF3R5zbp16wz1UaNGIRAI4L777sO9994Lv9848V5bW4va2lp8+eWXeOSRRzBp0iQ89thjOOmkk7p8jjmis3fv3igoKIj2IxkYNGiQob/ffvttXNcTBEFEgvMg0NEAdBwBOo6Ae+uAjsNCMOw4gqSPLVzlQMFRgKcPWEEfwHMUUNAnuc8gCCKn+Pbbb7FhwwbFdhzo0yc7PxNInCSIHIYxG3DMdaF8Nmr+GtXaVS37m7v/MH+z2Np2R+sVuCpWmoXLsL1yXHJn7QoOQORaOfnkk7Fq1Sqtbe3atTkjTnI5oIiJqqjYEbne1bFsEhnNSC6T4FhkrCtlJjky3VOCIIjk0VkHQAY6j4gN2wyHub0oTLCEuzdgL8nq791cgGxdsx/NctXfpBMgm4z1oDf6jZICU8YjZQZnEi3Vgq2Q/iaJrGPhwoWGz7phw4bhhz/8YZfXHDhwwFDv27cvLrnkErz++usxPXPt2rWYPHkyli1b1qUQ2tjYaKgnMuFmvqapqSnue1hRW1uLw4etF/xGwiy2ErlHe3s7Ojo6UFFRkemuEGmCB32a+AhvHXjHEaCjTmlrAJDknNLMBngqAU8foOAoME8fIUB6KsGyIA9rPsE5IGdo+otn8bQbkTu0tLRg3rx54JyDMQbOeVz29+mExEmCyAMYY0LksxcABQPCjnPZL1aAm0VLdeOB8JsmDFcsPOPxxJfA7R6jeGnzAJITkGwAs4tNsoeXJbsYpIW1GcvdjYSbNGmSQZzsTt5JEYUYFJGIckD8+2t7v6ke6Po8y2t9OnGxM8n/fdOMzQ3YCkORjRaCI+xFNBgnCKLHwXlQfJ93RaBVbG27jO2SE1yLtNRtzgqyiI0RipzMPDzYaS04quVAM8CTPDEYCWbT8k4breDLyBKeyEmWLFmCt99+29C2dOlS2O1df0eYRcNnnnkGe/fu1eqzZs3CFVdcgdGjR8PpdGLXrl1466238PTTT2tRle3t7bj00kvx6aef4uSTT7Z8Tmtrq6GeyGew+ZqWlpa472HFY489hrvvvjsp9+oKLvtp4WWGee211/Dyyy9j48aN2L59O375y1/iwQcfzHS3iCTC/e0hwVETIBUR0peEIAArbG5TFKQQI+GuoLEEQRBdsmfPHrz99tt44IEHUFNTowmTY8eOjdv+Pl3Q7ANB9ACY5ADclWIzoa0q14uWnbpysD0NPZRDgmY33WkjwSFFFjoZlKBArp0NcEPbxIH1OKp3MSadOBgTTxyMyScPA9/2sHK66bqwNmXPgyEhsSciOXQCdKF1NK0pspYG3wRBEBHwNSWe6072Ad79YjPAwJ0VoQhLnXDJbCS+6SFxMnWE8lV7Q5GPVtGPwTTmqJacOuHRQoC0F5IlPJE3rFixAr/5zW8Mbddeey1mz54d9VqzOKkKkw6HA8899xwuvfRSw/FRo0Zh1qxZWLhwIWbOnIn9+8X3UmdnJy677DJs2bIFNlv4+4BZnEwket38uW2+Z7bDNz0G7j0CFIj3fKZEUMFTCbh702KjNLBx40a8/PLLhjqRW3AuA74WTYAU9quhaMiUOiw4S5XIxz5gBUeFrFgdxeSmQBA9mKFDh8Z9jd/vR2NjI9rbxRw+Y0wTJgHg/vvvT2ofkwmNVno4Pp8P27dvxzfffIODBw+iubkZBQUFKC8vx8iRIzF+/Hi4XKmJSKqvr8fnn3+OHTt2oKmpCTabDaWlpRg6dChOOOEEDBw4sNvP+Oabb7B582bs27cPPp8P/fv3x7BhwzBp0iRIEk0gABATKY4SsRUODjvOgx3GKEt/k3VewawX3GRAlgEklmD8R2cNxEVTfmkcJPoaktO1XITZxYq+MIGxMKLgSCt7CYIgkgdzVYCPvkVYu3bWiUkVteyrR2JW3BzwHRFbi5VFbC9j3umwz3yx8KQnLCwhcTI6nAeVXNVeITQGLbZI7enG5rGIdiwLiZE2D00UEglz/fXX49FHH035cxYtWoS77rqrW/fYsGEDLrroIgQCoXe7k08+GUuXLo3pelm2jlb+4x//GCZM6hkzZgzeeustnHrqqdqzt2/fjpdffrnL61QS+fvM5b9pzjnQflh8Xja3Ac27TN/6DNxdoVlAMlW09PQBnGTtnizGjRtnqG/cuFGz0CMyj5b+qLNR27iuDJ+yT3SxXyzYPICnF+DuJRYNaFasfcDslBIgW5E5g8wz83ecqecS2cOePXsS/i5Rr1GvZ4zh/vvvx4wZM5LdzaRB4mQPZOvWrXjjjTdQVVWF1atXh02u6HE6nZgzZw5uvPFGnHnmmUl5/uuvv45HHnkEH3/8ccSXFwDo378/ZsyYgUWLFmHw4HDRLBKcc/z1r3/Fo48+iq+++irivefNm4ff/va3KCwsjPtn6Ekwmxvw9BNbF3DZp4iVXmvxUtt7lXJbageBScZmyxcxmwlRUXIBNpeydxvL5mNq3eYCJHFuT5h4JgiCyHaYzQMUHC02HVwOCIGyUydYdh4WezmxRTqaRWwMcMllFC71EfNWi1kkV85N5OVbzknOZcVy3mwtHzTZyCv1YGcXQqMiSMopssOIF2ZTFuKptqulobJSZ5Iz070kiIyzfft2zJw5E83NIavCkSNH4t133435M66oqCisbfjw4bjhhhuiXnvyySdj/vz5ePrpp7W2ZcuWWYqT5ud0NacRCfM1Vn1PhIULF+Kiiy6K65odO3bg/PPPj/2CQFuUhRw8FP3VsNUoXEpOcE2srFTEEiX6ksSSuBg7dqyhXldXhwMHDqB///4Z6lHPggeV9EWdDSbxsQHobBLHgmkYizhLFPGxF5i7tyJGChcS5ihI/fMJgshLeAIJSNV3asYYjjnmGCxdujSrhUmAxMkexxlnnIHVq1fHfL7P58Mrr7yCV155BQsWLMDDDz+M4uLihJ69a9cuzJs3D5988klM5+/fvx/PPPMMLr744pjFyUOHDmHu3Ln44IMPot77/vvvxyuvvIKXXnoJEyZMiOn+RGSY5AScTgBlMZ0v8i76IwuYajRmpEkytc1QDuaU4BkGkxTLWUeE3JqO8Lyaluc6IguOzJFzE8BE/HA5CHTWA97DgOQEKzsm010iCCKNMMkOuPuITQfnXOTh67AQLWMUHmNC7gR8nQCi5MTUOmwDN0fd6yy+Dfmo1bLkzOj3Wb9+/dDW1oaOjg54vV4UFCRv8knYmvqVnNO6zVyPdI7eRj7S2El/Dg+kLzdjKrAVWAqOWpksVwkiKjt37sTUqVNRW1urtQ0fPhxVVVWorAxPDRIJK4Fv7ty5MX9ez5s3zyBOrlq1CsFgMMzaNZvFyT59+qBPnz7RT+wO7bXRz4mE7APa9okNRp8F7iwxipaaTSzlurNi6NChKCoqMlgCb9y4kcTJJMDloLBz10U4hqIeFTEykI4URAAgAa4ywNNbESB7KeXe4m/Dlhq3OSJzyACCiZjQJOnZRM9myJAhcQuTDocDpaWl6NOnD8aPH48pU6bg7LPPTlEPkwuJkz2Mbdu2WbYPGzYMQ4cORWVlJTo6OrB9+3Zs2bLFcM4zzzyDbdu24b333ot74L5u3Tqce+65OHz4sKG9sLAQ48aNw1FHHQWn04kjR45g8+bNWq6JeGhra8O5556L9evXG9oHDhyIE088EW63G9u2bcPmzZu1Y9XV1Zg+fTrWrFmD4447Lu5nEonDGANYfIJmLERe+W8xEReW/5GpnQuVDW1q3apN2Vu2qXtbl4IjTZwR8cC5LF7KvIeBjjpw72GRF8N7GOiohzasLR9F4iRhCVm79zwYYyHBpni44RgPdoQLlp11YqFDQhaxccCDQKBFbLHCJCFo2goAu8coZkYSNm3uhL5rxdhCP67wY+W7Lxnq4AHwxq8NdcPxWMRGtZ7LC62SDbNZC45auYSiHomsZ86cOUn5XotGok5HNTU1mDJlipYfEgAGDx6MlStXxi2ylJWVhbWdeuqpMV8/ceJE2Gw2BIPic7C5uRn79u3DoEGDDOeVlpYa6uZ5hljQC7GAdd+zlpLBYCffKsb93sPg3lph89pxGPA1R78+Er5msTVVG7/5mQTuqgBcpSJKzFEC5iwRZWcJ4CwWn8u23HNC6A6SJOHEE080BAB8+eWXmDVrVgZ7lZ0Ii9UOwN8qcjz6W5WtBdzfCvhCdfhbhRtDOpHsmvVqmADpKgeTSJwnCCI9VFdXZ7oLaYXEyR7M5MmTsWDBAkyfPh0DBgwIO759+3bceuuteOONN7S21atX46c//SmWLVsW83NUe5gjR45obSNGjMDvf/97nHvuuZYWMbt378a//vUv/O1vf4v5OVdeeaVBmCwuLsYTTzyBSy65xDAJuXbtWsyfP18TahsaGjB79mxs2rSJ8gXlAYxJIgIRDoDGj0SOwzkXL2iK8MgVIVKtx5Tr1Rv/ZA2Rv5C1O1m7R4LZ3EDBQLHpEBaxDUouywYLt4O2kOtBOuFyyGo2ZscuBm7zhMRMmwcAV0REv2lRk9+4uInoHpJDEYgtNnsX7eT4QOQB06ZNw7Rp0zLdDUsOHDiAKVOmYNeuXVrbgAEDUFVVFSYIxsKIESPC2vr16zo9iB6Px4OysjLD3MGRI0fC+nLsscca6ocPH0Z7e3tcUey7d+/u8p7ZDGO2UFQjQstiAYAHOpR3hVpl8aIow1snoiYTgcviHaSjLtRkdZ7kBHcW60RLRcR06ARMZwlgz588vmPHjjWIkxs3bsxgb9ILl4M6kVERFn2tQmzUC42q+BjLu2uqcBSL6EdlY061XC72zmJaLE4QBJEBSJzsYdhsNlx++eW44447okYKjhgxAq+//jpuueUWLF68WGt//vnn8fOf/xynnXZa1OfJsox58+YZXi4uvvhi/P3vf4fTGXmV8+DBg3H99dfj+uuvRyAQfQCzatUqvPrqq1rd6XRi5cqVlnatkyZNwqeffopJkyZpqxGqq6vx8MMP49Zbb436LIJQoWT3RLLggXajAKmKjx2Hu58no6MeXA7Sak+CrN119yZr99gRFrEiF1VXcB4UK+IDbSHhUi9eGoTMTOWe5uLZwXYAR6KeTQAACzk+MLuIZJRUC/kCC5HRbSk0MoleOwki2zh06BCmTJmCHTt2aG19+/bFypUrMXz48C6ujMzxxx8f1havC4P5fHOOXwAoKSlB//79DY5L1dXVGDNmTMzP2blzp6E+atSouPqZrTC7Gyg+Gig+2ihaci5sMhWhkntrtchL4bqSBJcE2RfKdak+17qTEURMpc2upChRU5XYXFn7PWLOO5lL4iTnQSCg5JAOdCjjOHXvBYKd4FbH/G1KdGO6bFWjYPMYhUetrAqPpVn7+0NkJzJnkHlm5voy9VyCyBT06dzDWLt2LYYMGRLXNffffz9WrlyJdevWaW3Lli2LSZxcsmQJ1q5dq9WnTJmCF154ISxnRFfY7dF/TW+//XZD/bbbbutysrFXr1546qmnDP7LDzzwABYuXIiSkpKY+0b0LDZt2oQHHngANTU12Lt3LzweD77++utMd4vIAUSetzago0F5YdeLkIdT92JnLxR2NIF2sVqZ6NGQtTtZu6cSxmziM8ceWzQq51xMYhoiMdsQloPaXM7l3IjdQc0pLTkUS3iHdV1vH8/sgGQLb1MFRkPOaus2yjFGEPlJXV0dpk6diq1bt2ptlZWVqKqqsox+jJVRo0bB4XDA7/drbY2NjXHdw3x+r169LM874YQTDGOGNWvWxCxObt261bCAuqCgAEOHDo2rn7kGYywk4JSNMAqXciCUHsIccZmK9xQeUPIGNoSaol3CbAaxMiRgugxCJjMcc4cdh80FSMmLyh83bpyhvn37dni93qS4cnHOlZQ1QUDWp64J6va69mCnQUTkgQ6j8GgQHzsSj6RNJ5Ij9HurRDsyvfDoKqOcjwRBEDkMiZM9jHiFSUAMYhcuXIirrrpKa/vwww+jXuf1evG73/1Oq7tcLjzxxBNxCZOxsHv3bnz88cda3ePx4MYbb4x63VlnnYVTTjkFn3/+OQDxEvTWW29h7ty5Se0fkT+0trbi+eef1+oul4uiJwkAqvjoBTqPKAJkPXhnvViF3CnqKXv5s7lERJOnN+CpBPMoZXclmCN2ayuiZ0HW7mTtnmkYY6FJQmd5TNcIQVNd4a+KmN5QNGTAQswMtKfORkwv5JmFQcu6SVS0bHNaiI+Ul5ogiORRX1+Pc845x7Bgp1evXqiqqsLo0aO7dW+3242zzz4bK1as0No2b94cc97JnTt3or09JIZJkhTRFnbmzJmG53z00Uf4yU9+EtNzPvroI0N9xowZPTYfNaC4JBT2FRtMNrH+NiFSdjYAvhZwNS+lfguGR7cmHR5UFjG1dX1aTDeTwG1OsTCHSQBjSmoYpQylziRjmTHlnFB5NPOBMSbGKBDuYV+9/QAmjhkeuh6yEBE1+/hgyDbeSmTUt+cjNhfgKNJtxYCzCMxUh6MYsBfQfAtBEEQeQ+IkERPjx4831GOJavjHP/5hWPV48cUX45hjjkl21wwTpwBw/vnno7w8tkmuBQsWaOIkIHJhkThJRGLgQGMers7OTtTV1aGysmurOyI/4AGvEBk76oHOevCOhpAY2VnfffvVrmB2TXyEpzeYu1Irw1FML2xETJC1O1m75zpC0HSLLUZBEwC47NOJmDphM9ihTDCqIqJDJyZGqTM7ffYSBJFzNDY2Ytq0aQbryfLycrz//vtxWaJ2xYUXXmgQDZcvX46rr746pmuXL19uqI8bNy6ipfwFF1yAX/3qV1r9zTffRGNjI8rKyqI+59lnnw27F2ENcxQCjqEARGSp1TcfD/pEfsHOJiXvYLO1iJktNqCQkyaoFgI4dmAZtteEokC//OJTTOzXkpT75wYMcBQKMdFRpAmLmtjoLDaIkcwW+T2AILIBmYstU88miJ4EiZNETJitVX2+6BFATz31lKG+YMGCpPZJxfwCc9ZZZ8V8rfncFStWQJblnFo1yQMdgGQnD/000K9fP0iSBFkOWcrt3buXxMk8gQc6hMioCJBcjXhU21K+IlgC3BWK6FgJpoqR7t7CroaiZohuQtbuArJ273kwyQk4nQBKk3K/FStW4J///CcGDhyIo48+GqNGjcLJJ5+clHsTBEGkipaWFsycOdPgNFBSUoL33nsvbDFyd/jRj36Em266Cc3NzQCAf/7zn6iuro6ax9Ln82Hp0qWGth/84AcRzx8yZAgmT56s5bP2er14+OGHsWjRoi6f85///McwPikrK8N5553X5TVE1zCbE7D1AtwhC15LEVMOKEKlEDDhtxAx/a2KPakPScmDmQZOPKbSIE5uqq7LYG8SRVkAZndb7D2A3QVm84i63aMTItXoRnpXJQiCIOKH1AwiJnbs2GGoR7JWUfF6vYYBv9vtxplnnpmSvplz/sUyYaoycuRIVFRUoL6+HoDIWbVr1y4MGzYsqX1MJXz3u8CB1eDu8pCo4e6tlUnUSB52ux39+vXDvn37tLaampqkvswTyUe8BLcAviblpbcJ3NcEdDYrbUp7KiMfNSSRG8PdyyhAeioBVwWYRLm9iNRB1u4hyNqd6A6rVq3CY489ptXPP//8MCcPgkgmnMtinBLwmnKGebW2sNxiAS9QPBjSsDmZ7j6RBbS3t2P27NmGd/SioiIsX74cEydOTOqzKioqcMstt2iLh/x+P+bOnYsPPvgAhYWR8xLfdNNNhhyYRUVFuOGGG7p81n333YfJkycb6rNnz464SKm+vj4sivOWW25BaWlyFq8QXcMku1iM6a4ItUU4V3zu+RShUt06wuo82AkE9MfCz0GwM6U5q08c3huvfrhdq3/9XZrESS1ftE1sWr5NK2FRERUthUc3IDnJESKP4IFOABzMHp5Cg4iOzIEgRU4SRFogcZKICb1dGgCccsopXZ6/fv16gxXbhAkT4HA4AIg8EsuWLcM777yD3bt3o76+HmVlZejfvz8mT56M8847D+ecc05M/WpubjYIRQCirsg0M2zYME2cBIAtW7bklDgJ72EAMtBxRGwNW43rC5kd3NNLy0nHVCHEU0l2kAlw9NFHG37n9u7dm8He9GxEnsc2k8jYJFbfdoaESPhb09grJsRHV7l46XZVgLnLAZfyEu4qBWMkQBK5BVm7Zy+8cbsQIAr6ie94WoyUFszf/Wbbd4IwwzkXE+S+JkVQNAqJPKCIiWZxURMixSRj3JB1HgERkThnzhwtwhAQVu+PPfYY+vXrh127dsV1v4EDB0Z1NvjlL3+J5557Dtu3C8Hms88+w/e//308/vjjYWLo/v37cdNNN+HFF180tN97773o3bt3l88588wzceGFF2rzFT6fD1OnTsUTTzyBiy++2DLvtGrrDoi5g1gWNRHphzFJidLrWlyJZTaDcy7yOQZMwiWXAcgA50pZ2ZvLnCvnWZS5jDGnlgFPrdaet2lXE/jAqWDqPZhNLELVbOJtgFY3t5uPm9tDYiTN5fRsOOdiLqT1INB6ALz1INB2UNS99WDH/xgYOiXT3SQIgugSEieJqNTU1OC1114ztEXLyaC3fwOAUaNGIRAI4L777sO9994Lv99vOF5bW4va2lp8+eWXeOSRRzBp0iQ89thjOOmkk7p8jjmis3fv3igoKIj2IxkYNGiQob/ffvttXNdnnI4oq/J4AGg/JDaYpjVsLnAtylIRLpVcdswR379jT8E8AVlTU5OhnuQvXA4A/jaxBVo12x+uRjh26qIdeTDNvWOAs0QTHuGuAFOFSHcF4Cyj6Eci7yBr9+yF7/8EqN8iKpIDvKAvUNgPrLA/UNhflO30fZ5szN/9JE4SPNgJdDZqG+9sBHxqvUmU0+LQYCKQakt6IhfYv38/PvjgA0NbMBjEvHnzErrfzp07o7oxeDwevPvuuzjttNNQW1sLAPi///s/nHLKKTjuuOMwevRoOJ1O7N69G1988QWCQeOYfv78+fjFL34RU3+effZZVFdXY8OGDQDEAuZLL70UN998M8aOHQun04nt27eHOS6Vl5fjnXfeiXv+gMg9GGMib7TTAcA6h2l3OPHsQQDu1Or1jS045ByH/v37J/1ZRM+Dy0Gg/bAiQh4UImTrAVEPeCNf13owJvGeIAgik5A4SURl4cKF6OgIvdgOGzYMP/zhD7u85sCBA4Z63759cckll+D111+P6Zlr167F5MmTsWzZsi6FUH1UBgD06dMnpvt3dU1TU1Pc97CitrYWhw8fjusas9gaDS4HRC68RAl2Am37xAajcMntBVq+u1C0pRAymc2V+DNznKOPPtpQp8jJruGcA7JPRC/62wx7rq8HdOWU53aMgrMkFOmoFx9dFcImmfK7Ej0MsnbPYtp04y3ZD7TWAK01xu9zV5mIrCzsD1Yo9iLKkhZSJIr5u988NiDyCx7064RGsXFTPeNjl0h0MWlJEKlm2LBhqKqqwmWXXYZNmzZp7du2bcO2bdssr2GM4fbbb8c999wT83MKCwvx73//G3PnzkVVVZXWXlNTE3Eh6fDhw/Hiiy/iuOOOi/k5BBGJIUOGYMGCBRg5ciROPPFEjBkzJup4mSDMcL8XaDsUioJUt7baxBZltx5Mfid7CDIHZJ4ZaZdsXYmeBs2wEl2yZMkSvP3224a2pUuXRrVxMYuGzzzzjGEiZ9asWbjiiiu0FZO7du3CW2+9haefflqLqmxvb8ell16KTz/9FCeffLLlc1pbjXaNHo8n1h8t4jUtLS1x38OKxx57DHfffXdS7hUJJtmBU38nrF29h8G9dUDHYcBbJ9q6M1ESaAdadgMtu8NMpLjNJZKfa1sx4CwCM7SpW2Fe2cz15MjJUN4PxWIs0B6KbvS36cRGnRAZaAPkQPSbpwNmV4THUrF3loJpdWVzlYJJjkz3lCCyCrJ2z054wAt0NkQ/URVPGr4JfZ8zuynKsp8oO4pS1+E8gXNOkZN5AueyEO/UsUsk4THQntF+hsOUvGKe8JxhSpmpbU76myYyywknnIB169bhoYcewt/+9reILkUulwuzZ8/GnXfeibFjx8b9nL59++L999/Hk08+iUcffdQghurp168f5s2bhzvuuKPL/JcEEQ+SJOFvf/tbprtB5ACcc6CjUdivtpisWDsak/uwNhInCYLIfkicJCKyYsUK/OY3vzG0XXvttZg9e3bUa83ipCpMOhwOPPfcc7j00ksNx0eNGoVZs2Zh4cKFmDlzppbPqrOzE5dddhm2bNkCmy18hb9ZnHS740/2bBYnzffMdpjdAxQPAooHGSwbOOdiokUVLjsUwVIVMLsjGKk5GjqOGJqtF/gwcEdhmGjJHEViwkQvcDqKAJsrq3MnmCcgcyVykstBISpqOYw6TbmMlHxH2jlqLqRO4zWJ5DtKOUz87jhLAZcqOpbqhEilbC/I6t8tgshGyNo9iwl4gbIRInrSH+fCKh4A2vYCbXuNUZbOEhFZWaATLT19yK5aR1NTE9ra2gxtFDmZHXA5qHNiaNUs4rnZvUE7px2AnP6O2lzhoqLNLcRGuxvM3GbYu5Wxcv4s/CNSz5AhQ8S7YYZwOp249dZbceutt2Ljxo3YunUrDhw4gI6ODvTq1QtDhgzBGWec0W17VcYYrrvuOlx33XXYsmULvv76a+zfvx8+nw/9+/fHsGHDcOqpp+aUfTtBELkH5zLQ0SSsWNvrwNsPA22HRQRk28HkW65LDqCoL1DUF6yon1ZGYfzOcgRBEOmGxMk0cv311+PRRx9N+XMWLVqEu+66q1v32LBhAy666CJD5MPJJ5+MpUuXxnS9LFu/6P/xj38MEyb1jBkzBm+99RZOPfVU7dnbt2/Hyy+/3OV1KokID/kqVjDGAGex2EqHmYRLWeTsU8RKrgiY6KgTgiNP5kQND00SGVsjdNwO7iwC7EXK5I1DDLYkByA5xd7mENFt+s3mjKne3ckcK1tXznlCv0ecy8KGT/YLsVgO6Mq6dm7dziOdL3dqgqO2l/3RO5R1MMBeIIRHRXTUoh11QiQcxTRxThApgqzdEyMd1u7MXQF2wnUAAO5rAdoPAK37wdsPAG37Ra7peC2gfM1ia9iqi7K0gRccJWxhC/oC7l6AqwxwlYvFRnk6joqE1aIkyimVfEK28G3htvCBVsv2rLBWtRcofx9lIg+1WtbaSskenujRjB07NqHIyHgZPXo0Ro8enfLnZBLeXifci+zxL9AmCKJ78KAf8B4RomP74ZAAqQiSKZl/cRZbi5CeClq0lGSErWvmnk0QPQl6MyLC2L59O2bOnInm5matbeTIkXj33XdjjkwsKgq3EBo+fDhuuOGGqNeefPLJmD9/Pp5++mmtbdmyZZbipPk5Xm/8eVXM11j1PREWLlyIiy66KK5rduzYgfPPPz8pz+8KxiQxqegqB8pGGIVLOShs4rSIy8OhiMvORqQ8co4HQjZaXZ2W6O2ZLVy8NP4LWD9J2fWvN1rodXZ2orbqDlSWmW2BTPfhXEwS68XGpIrAOQCzaVa/UKNp7UVgWmStrt1RqEQ60iCbIDIFWbsnTjqs3fUwdTGS7judy0HAWwu0HQBv3y8iLNv2C/ExHnhQXNe2P/y7l9lFTkttK1fEmHKtLd/yVJstXfv06QOXK79+xmTDg34RrRhoF9GKgXYlerEdPNCus4n3au0ItCeWXymV2NwGoZE5y4RDg/o77ywFszkz20eCIHoM/P+eBJp2gbvLFZGiH5gqVhT1FekqetgCIoJIJtzXpoiNQnjk7XVAe60QITsakZq5MQYUVOpESPG3jaK+YE6yoiYIIv8gcZIwsHPnTkydOhW1tbVa2/Dhw1FVVYXKysqY72Ml8M2dOzfmwfG8efMM4uSqVasQDAbDrF2zWZzs06dPQlEcmYZJNsDTW2wYZRIu/UBHg84uS2xcLfvUtpYszM+jwINAMJjw6vp+hTIkiUHWLWfau2c3Kt2599+629hcgF0vLCo5Rg02voWhc7LcspcgiBBk7Z77MMkWyiWJkEUu97cKS6m2/eBt+0XEZdtBsXAmXnhAcV2oCzWZT9EiyYRgyXTCpRB0SnJqIYo5crInWLqKKEbFmUG19g94DWIjD7QBfq+1CJktuae7wuZSXBnKLKIeS0WdopMIgsgSOOehfHIdDWKr+8b4HWz3gIeJlv2Agt7kOkMQgHCi6mgE2o9YRD8eVuzfU4TNaVxUUBiyYmU2R+qeS8SEDIYgz8zclQyaMyN6FiROppE5c+aE5atLBWeeeWZC19XU1GDKlCmGSZfBgwdj5cqVcdtVlZWVhbWdeuqpMV8/ceJE2Gw2BINixXRzczP27duHQYMGGc4rLS011OO1UANgEGIB674TAiY5gII+AIxCnNVXZ1jeH59eyGwJa4fsS8vP0F3sdgn9exdib21oAvvbvQ0YPyKXxEkWynNkc5nyGLmVfEdqfiPr47C5c2oymSAyDVm7k7V7tsAcRUDZMUDZMaEoSx4UDglt+8HbDogoy/b9UV0MYkKNjGsTonN49KUE7iw1Rlu6ypToeo+wyVS3LFjkYhYn0zG2jxcuB4CgT8kj7TOKikGfVub6NrlT5JmWO43XqsczkZsxYZj43dEvlFIWTjG7yaVBXVgl0UQgQRA5REdj9Lx1AS/QuBNo3Gn87mU28MI+lvaQtAij+3DOsXv3bmzatAnDhw/Pe3vhbEUTHr2KeO+tB+9oBLz1IUG/M043kXiRHEBBb6CwEiioBCuoBIqOEosE3GU0n0IQBAESJ9PKtGnTMG3atEx3w5IDBw5gypQp2LVrl9Y2YMAAVFVVhQmCsTBixIiwtn79+sV8vcfjQVlZGY4cOaK1HTlyJKwvxx57rKF++PBhtLe3o6CgIOZn7d69u8t7EonBJBvgLBGbvj3C+TzYqcsdpGxBn5JH0SeiNoN+rQ514k3Ltahs+rYU2YGNGtzLIE5+teMwLp5yXPIeINkBJnJrgtkV+1m7sjms90zstVycdndIVDQLi5Iz45O7RGrhvjag7RDQVismXY8ak+kuETkCWbvnv7W7FYzZgIKjgIKjwCrHa+080K7YwR4QUZbew0Kw9DUmz5qcy8JOvjNkmx45L7UkIjHNoqWjAExft3sAh7GerAkgs61rrOIk50HdOEYdy/hNbf6wsU34+MdvcZ3+Xr7ss0PtLsyms4PXCY2WlvCiThN+BEHkNd46iDfrBGwleRBoPSA20x3IIrZ7/OpXv8JTTz2lpQm4/fbbce+992a4V/mHEB6bgI56TXzkmgjZINo7W5DylEQA4CwSNqwFlUChIkAWVApR0l1K4xGCIIgokDhJ4NChQ5gyZQp27NihtfXt2xcrV67E8OHDE7rn8ccfH9YWbz4e8/kdHeErA0tKStC/f3/NAg4AqqurMWZM7BPxO3fuNNRHjRoVVz+J5MBsLhGl566wPp7APcMnApVJO/OEnjpm1R5ifppSV17IzpruBwq/wNgTRmLcCcfhtAkngg0+Ovo9JJtJbLTYMxu9+BExwYOdwnam9RDQdghcFSPbDomIZJXK40mcJGKCrN3J2t0MsxcApcOB0uFGm3cuA74WJUe0EBa5Vlb2qbB353JoAZP5ULRLbapg6TGKmGDivjyoCK6yUte16co136w23Hcgq4a87vcW5yv3knX37fGw0L+/Jh4rOaYdBbr2QuM5NjeNjQiCIHSwimOBWX8W4/7Wg0DrQfDWA1oZsj+xG3dlEVt4FOApFxFf7jLAsJVT1CUAm81myF++adOmDPYm9+BcFlaqvhYhLnY2Ad4GcCXyURMfO5uRFuERAJgEeCo0wZEpIiQK+oi6I/6c90T2I3OxZerZBNGTIHGyh1NXV4epU6di69atWltlZSWqqqosox9jZdSoUXA4HPD7Q4Nicw6qaJjP79Wrl+V5J5xwgkGcXLNmTczi5NatWw3RmQUFBRg6dGhc/SSyF8ZsgN0GILkvSrfduxS3JfWOBGENlwMiB0abKkDWamIkOhqi3wAQ5xIZh6zdydo9n2BMEnn4XKUABos20zk86NOJl43gmnAZaksoz2WiBL1i6yZ7Dxh/z/qXwZBzs2fAFNv3AiVa0aPshZjItHazCEmW8ARBEMmC2RxAyUCxATqrdlkIOa0HgdYD4Kpg2XpQiD6JEPACTbvEBmtZiNtcmlCpipZhIqarBEzK32lI8zxUTxcnhdjoBXzNQGer+P1ThEeulVvFcZ+S8idZzhzxYHOFoh3V6EfFihWeirz+nSUIgsg09Anbg6mvr8c555yDzZs3a229evVCVVVVt33x3W43zj77bKxYsUJr27x5c8yTkzt37kR7e2jFvSRJEW1hZ86caXjORx99hJ/85CcxPeejjz4y1GfMmAFJokkTgiDSB+eyyIfRdghoNUVAttd1/wWt/Qh40C8mMIiMQdbuZO3e02A2p7KqXESQhomXnIsISIOAqZR9TUquSq9YQZ9FUYcdPqOgGgjmwPJmySkm3mzqXrdJoTZmdY5kvsZJ9vAEQRBZDGOSEFkKegN9TjA6H/hadZGWBxV714PinaO7kWjBTm1Bpfa88N6Bu4qNEZeuUpOoWSrs2CVb2NXZzoknnmio79y5Ey0tLSguLs5Qj5ILlwNibOZrC0U3amJjq7HN15I5sVGPzSl+tzzlwqXLUw6m1ctFVKTdQ+MagiCIDEHiZA+lsbER06ZNw8aNG7W28vJyvP/++3FZonbFhRdeaBANly9fjquvvjqma5cvX26ojxs3LuKA7oILLsCvfvUrrf7mm2+isbExpuiHZ599NuxeBEEQyUasYG4Q+WHa64wRkG21iVsvdYU6MVF4FBDoEDlMCcIEWbuTtXumYIwBzmKxFQtrdKtpIc65mPAMtOs2RbQMtIu8mIF2ra4dD7Sn5LP1hGG9setAM0YcXY5Tj++HYwaWJX4zZlPEPyVftLZFarODSU5ju013XHIYxUXJCdicFK1IEARBAACYswioOAaoOMYoWgb9JotYnXCZ1O9SLiw5O5uBpj1qi/WZNpcSme9WLMHdgMOjlD3CTtPu1uraMYeuzZbexTSjRo0yuH8AwNdff43TTjstbX0ww7ks8ln7veKdMKDuOwx17veK8VbYeV4g0Cn2chodL2JBcghxUSc0imhdXZujgIRHIm44Z5B5Zn5veIaeSxCZgsTJHkhLSwtmzpyJ9evXa20lJSV47733MH78+KQ950c/+hFuuukmNDc3AwD++c9/orq6Oupkp8/nw9KlSw1tP/jBDyKeP2TIEEyePBmffPIJAJE/6uGHH8aiRYu6fM5//vMfrF27VquXlZXhvPPO6/IagiAIKziXxUt2e52wYfXWgbcfEXVvnbBWStWqUXe5ECCLjgIr7CPKhUcBBb3IgoboErJ2J2v3XIAxpkw+ugGE56Xu6vWdB/0mUVMVMb2KqOlVbmATCzqYJPJDQxKCnraFjv/pj6fh6eJiVFb21h03nmMsSwAkJbe0UXQk0ZAgCILIBqJbxB4QbiydTUpeysbQ5k9BjmlACGXBTqDT+nBMcZ5MAlcFTJ2wqQmdzCa+93Xf20yy6b7LbYBk+m43nR86xwYns2HE8CH4Znu11oWvvliFU48fJPJSywFlHwzt9eUI53Cr68LuE1AWc3WYxMXOWP+1sgu7G3CVGIRGpomQShQkCY8EQRA5D81a9jDa29sxe/ZsgyhXVFSE5cuXY+LEiUl9VkVFBW655RbcfvvtAAC/34+5c+figw8+QGFhYcTrbrrpJsNEaVFREW644YYun3Xfffdh8uTJhvrs2bMxYcIEy/Pr6+vDojhvueWWsPxVuQD31gOcC3sKmuQiiJTAORe2NO11gFeIjlxXhvdIaleSOos00VETIIuOEjkxbPFFpBEEQNbu6rl6yNo9/2A2B2BTc2OajiV4z2NidygmiLQirJLbgfbDymKpOqC4P9hRJ0a/mCAIwgKDRSwiOBwEO4GOJoNgybWyImR2NmUm6o7L4nPR3w78f/beO06Sus7/f32qOnfP9HRPDptm87LLJtglrSAIBgzAqYhyIIeKxwl+vd+heCbw7lTuEAEPPDwV04kEWUwoaVGBhSVsYHOaDbOTZ3o6TOeu+vz++FRXdfXk2enpnpn38/HoR9XnU+kzMDtdVc/P+/0eY9np09V4K2s49h8y2ruf+yl48+HTPOsMwOIwMmbYtaXNA2bP79P6KesPUUQULj7FujZBzCZITs4iUqkUPvShD+kRhgAgyzIefPBB1NfXm2pNjYWmpiZYLCP/Cn3hC1/Az372Mxw6JO7OXnvtNVx44YX4wQ9+MEiGtre341/+5V/wyCOPmPr//d//HVVVVSNe54ILLsCHP/xhPPHEEwDEz3rJJZfgoYcewkc/+lHTy8Zt27bh+uuvx9Gjxmy2hQsX4tZbbx39hy5B+NFngeNbANkG7qkDPPVgnnrAUw+U1QGuaoqeKjChUAiHDx8eVoYTpQ/nXMwuzb7Mi/cJ+ahFQSLWJ2aiFhLZDrhrNOlYC+auFW13LZht+AkdBDFeKLW7gFK7EwQx3eBKWtyXRHu1LA3afUtWSGbyUmA3nkNykiCIgsKyzzDuGqMvbx+9znRuxKVJYmqfVGSKRl04Vs334fGXjfaulr7hd57OyHazUNTWhWz0DBKOJBsJgiCIoSBjMYtob2/H888/b+pTFAXXXXfdhM537NgxzJ8/f8R9nE4n/vSnP+Hcc89Fd3c3AOCtt97Chg0bsHTpUqxYsQI2mw0nTpzAG2+8YcrNDwDXX389Pv/5z49pPD/96U9x9OhR7NixAwAQDodxzTXX4Itf/CJWr14Nm82GQ4cOYc+ePabjfD4f/vjHP8Llco3xJy8xBjrEUkmJug2hk+bZfkwGd9dosrIezFMHeBpECkjZVowRzwhOnTqFW2+9FTt37sSxY8cgyzIGBgbgcDiKPTQiD65mxGzdRBCIB4HkELN5E6HCy0dA1AJzVhrS0V0LeLRISLuX0tIQBYdSuwtmSmp3PtAJgIkoasqeQBDTHs5VcV+iSUeeKx5jfUAyOL4TxnoKMUyCIIhxYaozXT7H6M/bTzy3RYyUpOm4th4H0nHwbLpSU3/CtE8h6k2PhzXN5on1bxzuRSKVgcNWIq9fJauW4taR83Galizbb9ovZ93qondJJQhXFSDSDR7uAEIdYLXLwKpHfvYiCIIoNiXy7UjMZJqbm/HCCy/g4x//OHbv3q33Hzx4EAcPHhzyGMYYvvKVr+Cb3/zmmK/jdrvx9NNP49prr8ULL7yg97e2tqK1tXXIYxYuXIhHHnkES5cuHfN1So6snBwOrmjF7DuAztw0JQzcVQnkRluWiYhLZp2monYK8Xq92Lx5s95WFAV79+7F+vXriziq2YWevizRr6US6jfPwE1mlxFMWZ0NySLko6sKcFaCuaoAVyXg1NIh2TwkIImiQandBTMqtfvhPwJt2wDZDu6dC5TPAfPOBbxzxfe5JBd7iARB5MFTUSNTQ6wHPN5nCMh4YHJTH8Z6J+9cBEEQBYZJFlFPEL6ht4/hHFzNDCk2c+sw8uw2rmo1G7Wlvp7fVrQ+1ajzyHP6VaN9wZnzIEkMqiqeP5NpBa8e6MY7V88x6lVKMsAseW1tOeo+Qx/HmAxY7IDsAKxDS0dY7JRVa5rDORfvN0Id4OEO8FAHkF1GusXvpIa0+iqSkxOEcwaVF+e9DS/SdQmiWNC3EjElrFy5Em+++Sbuuece/OQnP8Hhw0Pn3Lfb7bj88svx9a9/HatXrx73derq6vDcc8/hhz/8IR544AGTDM2lvr4e1113Hb72ta+N+JK01OFKSitwPqGjjRcj3XtM6obby7XoyjowTVjCU0eRXTmUlZVh0aJFOHLkiN63a9cukpOTAOeqqO+YGhCpfZIRINGvScdQTrRjcOpnxjIJcPo12ajJR20drirAXk7RS0RJQqndBTMttTtCJ8VSSQKBw0DgsPF9LlnByxoB71xDWJY1UlqtApBMJmG1Wqlm6SyGK2kgGRafVFhf58mIuT8REi/ECwoT9yquKsBVDc5VujchCGLWwCSLllbUM/w+Bby+D8C6ddvx5ptv6n1/TazDJZePfeI9QXAlDYS7RBSkJh+zEZFIRcd2jvAogQwEQRAlAMnJWcT8+fPFLJsiYbPZcPvtt+P222/Hrl27cODAAXR0dCCRSKCyshLz58/H+eeff9rpVRljuOmmm3DTTTdh37592LNnD9rb25FKpdDQ0IDm5macc845M+IFEpNtwLvvFSkrBzqASAd4NkpyoFO8CJkI2ZcofQfM8WZWF7i7TsxmtHvBHF7Arn2y6zb3rHkBsmbNGpOc3LlzZ/EGU8JwJS0koy4bxZJn27nLZEREQ05VpOMgGOCo0F7o5UQ/ZqMhHRUUiURMSyi1+8xL7c4zSfFdPxxqGggdB0LHjb+oTAL3NOQIyzki2tJCKcnHA+ccTz31FLZu3YqtW7fizTffxM6dO7F8+fJiD42YRLiSFPclybDpw4eQkINqPRYam0dMjnKLSVLMVa1NlKoGnD6KjCEIgigiF110kUlO/uUvfyneYIiShXMOxIPm6MfsMtoDnOb7Wx4e4TmBIAiiRKCnFqIorF69ekKRkeNlxYoVWLFiRcGvU0wY02SKowKoWm6aBchTUfHicqBd1KWKaOIyPsGi7OkYEGwBgtr5hxyQLCIvc4SlkJjZvgpNaJZN+xcnq1ev1iN1gJkvJznngJoy6nqkY0ZkY2ogRzZGjMjHZGRqajmOBcli/FtxVAD2CjC97RNLeqFHEJMKpXYvIIkAYC8b30QkrgKRU0DkFPiprVonE7WpvfNyhOVcMNv0zSxRaBhj+PznP2/63dq6dSvJyWmAnp0hm40hKZY8GRokIYt6/yJZjYlSrmqwrHjU+mhCAUEQPNQuJgY7p19a+pnOO9/5Ttx99916e9u2bYjFYtNyMhxxenDORaTjQA94uMscBRnuEO9WJht7GeCtB6ucP/nnniWoXHyKdW2CmE3QG1iCmMEwmxvwLwT8C83SMpMEop1ApNMcaRntEi8uTweuaGk3+4GQ1jX06MBtHnPUpb3ciMZ0eI3aCLJN1E+QbCWVVnbNmjWm9q5du8A5L6kxZtFrbwyqv5HQ13luLY7cfXKPOd3fj0JhKzOJR5YrIR0+8ftkpXqPBFEMKLV7YWCeerBL7xYpr0OtQPgkeOikSPU6rklIXHz/R7vA2183ep2VRoRluUgLyxz0AjTLueeeO0hO5tcyJaYOQzoawhGJoJCOuSIyGS6RexkmMpFkZaOr2hQJKdLE0z0LQRDDo7z8ENB7VIiIikawiiYwbYmKJjBHWbGHOGu54IILIMuynhUklUrh1VdfxSWXXFLkkRGFgCspYKAXfKAHiHSDR3qEjBzoBiI9WmaoSUayAGW1YN56oLwezFsPVl4vpKR9+JTGBEEQpQbJSYKYhTCLHfDOE1ESOf1czYj0EZqwFNGW7UJcTnptP25E2UVO5faONHLwrKiUHYDFBsh2rW03RKZsFzPKx7KvxS6KyGvnFwumt0d6MZQvJ8PhMI4fP44FCxaM/JNzVfz3VDJiqWby2iNtE0uuZgAlZ7veTouZ/jnSEen41NdmnCwszhHEo8+IzqUaagQxIpTafealds+i/02sXaV/p/PUABBuBUI5wjLajXGlzI73AfE+8M4dehe3lwPuGq3WbpVIe539OCpmTVp3ADjvvPPw2GOP6e2tW7eOsDcxUYR0jIoSBtl608kQuCYfdRGZDJWGdGSyli2kXAgDezlgKwfT+8q12tV+ytRAEMSE4ZwDoTbRSEaArgPgXXklWRzlmqg0xCUqmkhcTAHl5eVYv349Xn/9dTidTpx//vmj1monShfOVSAeEuJRE458ICshu4FYEAUrS+OsMARkVj6W1wOearAZ9DxTaigAlCI9Oiuj70IQMwr6diQIQodJFqCsXnxgFIoXN2MBIS2jPdosdO1FUHaZikzBCLkQb0oSwMhp7CbrPsI4z2BxWQ+gstyBvrCRimP7T/4J885bOGhfMAaoipCEpfDyrCgwUSPJXgZYPYDdI8SjrQzM5jG22crEus1DL+4IYgZCqd0LD7N5gKrlpnTvPJPIEZZiiYH28X0nZdNdQtRbNn3XMllEW+o18HLEpatyxkWvn3feeab2gQMH0NfXh8rKyiKNqPThXBUTptJRI/27ti5Sw0eBtLbMtlMRkZWjmEgWXTLmikddOOb2W10z6vecIIgSJdo3ejrIRBi8cx/Quc/8fe305klLbZ3SuU8q3/rWt2C323H22WfDbrcXezjEKPBUTEQ7Rrq1pRCPIhqyp7CTvWUbUF43OAqyvA7MRqmACYKY2dBbX4IgRoUxyXjBCGCoVy5czYhZm9mZ7VrtHp4vMUtlZvu40R7puFlXrp7vx5a32/W+nYc7ceXGpikeW5GQLIZIzJGKQjRqbbsmHW1l2gs7mt1HEARRDJjFAfgXA/7FhrBU0kCkzRxhGTklovHHC1eAWLf4YIhJQhYHuFMTlXrUpVZDz1kpsjpMI9asWQOn04l4PK73vfbaa7j88suLOKqpg6uKJhazQtGQijxHOhoCMiqWJXMPyIRMzNZC1+qjsyEkJCxOEo4EQZQW0V5Rm3YiwiQeAo+HgI69edLSp0VX5kVakhyZEJTCtXTgqRgQ6wePBYBYPxANgMf6gVhA9EX7gORAYQfBGOCqBCuvM6Ifs0u3n96TEAQxayE5SRDEpMAki6id4/SZ+/P2M6fnMoQlz60RlI3MUJJTNv6Jsqa50iQnn9/ZhjuvPauIIxoLDLA6jZqeVm1pceltZnGI7YP2M9qUSnV6UKp1UAmCKD5MtgIV84GK+YawVDMinXtWWIZPipqWp/udnEkI8amlcs+Xl9xWlhNpWQVm92qTX8q1yS5lgNUNJsmDz10ErFYrzj77bPztb3/T+7Zu3VrScpJzDigpowZ1ts60qZ0Az8SBTDJv2xB9JQkTvyuOCsBeYaR/d2TXKwwRSS8CCYKYprDaZZA/8WMR2RU8BQTbwIOnwINtQKh9YpOM4v3g8X6gY4/5O9rlE9GV3kYwd6UQKe5KwOUXKScptSRRJDhXgURESMZowCwg9fXA6FHGk4XdA3hqwMqq85Y14t8NZYWaNqi8eGld1eJVYiGIokB/GQmCmFIYk7QaPGVAuRFhOGQ0JlfFS7TsizQlJV6MKQkgk9KWSUBJiXR1Skq8PNX3TWhtbV/9+MmTnu9a24h7ntqtt1872I2OQAz1/gnMMGWSmAErWcRStpjbkgWQc7cP3sYki1ZLU5OIVkfOuiYZZTvJqhkG5xyIB8HDHUCoAzzUAYTbwUMd4uXFBTcVe4gEQUwTmGQR38/lTWBzROpSzlVRs3KgA4j1gsf6gFgvEO8VtaonI9VVtg518Ji45tCjA7e586Lzy8H06P0yI5LfXviI/fPOO2+QnCwEXM2YJWF6sFjk+nqOPEwnxP1POq7Vo46jYDWRCo4mHe3enGjHCjBNPuq1qW1lJSOwCYIgCgmTJJH2sbwOmGtMjuWqAkS6hKjMSstQGxDqmJi0jPWLKLP23YO/QZgEuHyAyw/m9ovIMLdfiBiXEJlwemkyCDFuuJIWdR716MbcaEcR/Yh4vyidM1VIVqCsGsyTKx+rhXz0VFOUMUEQxAQgOUkQRMnCmKRF9DlE5MRI+47jvEJ6pjVxmdRSjHEYqVsBcxrX7GMYz9km1i/ekEL53esRjhg1N//Qtxyf+cDHBu0LSR5eNEoWeplGjApXUkC4yyQheagdCHdoL52HOMYx8r8dgiCI0WBMAjx14gPzdy7nXEjFWK/+4dn1eK+oWT1pqTy5kSoUHbm9wwxcAjelGtfqHOfKTEmGXhsaTPvhctoj9J17ZrPpcq+/vg3pvhZYrFYYtaq1F7J6xKImD9NxTSrmRy/GDbGYXS9knaNiIVm1tO9uUYc6u27zgFmz65qItmuRjnSfRBAEMSpMkgFvA5i3AZh3tt5vSMu8SMtwx8QFD1dFSsxoH3iP1jVoQLIQmG4/mMsPuDWB6fLrkZhwUDT7TEZkz4qJKMdkBFxbIhEGTwyIrFmJnP5kZOqiHfNx+XTxyDw1QFmNkJFlNSTaCYIgCgDJSYIgZh1CetrF5zRLXNkBvPd978Ojjz6q9/32uVdw0xe+cnonJmYtnHOR3lgTj6ZoyGiPqe7pmAi1U2pXgiAKBmPMqM/nE7LOJC9VBUj0Dy0uY73ihVSh4KqRKj63e5JOf45qfnEWi8Wx6xf/gnWLqibpCtMEiwOwujXB6NHXmS4fc7ZlBaQ8vWqMEgRBTHfM0tLo52pGTH4MtgHBUznSslPUkz5duCJqZEZ7c6f8mpFkkSY2G4Fp8wB2F5g+UcUF2N3mtnX61QPmnINzDmmap8LlSkqIxkQEPBnJkY5hQJONQjQOAImwWJZCzWm7R6QpdvlNS7j9WjRkFZhsK/YoiRJA5cVLr0ppXYnZBslJgiCI0+SKK64wyckXXngBkUgEZWVlRRwVUepwJZ0TBSkkJA8JEYl0bPIulI4L2emsmLxzEgRBjBEmyUYtSQxRi1pJinpAsR4hL+N9QLxPzJpPabPp09GpH/gYqPI6sLihHIfbDfm581jf9JGTTDZqSssOkQo+u8zWl85msBj0ceoikmpQEwRBTF+YZAEqGsEqGgFs0Pu5kgHCneAhTVZGusGjfSKdZiwwsRSxw6EqwEAPMNBjEpcjvqNnkpCUmqxkNjdgd4/czvZZXVNWK/PIkSN48cUX8eKLL+Ivf/kLHn74Ybz73e+ekmsDOfWm0wkjLXxay9yQ1lK+Z8SSZzM35O6XTujb9aVSYhkdGBPPui6/IR7deQLS5QOz0MQogiCIUoPkJEFMc3gmCUhWKkRfRN773vfCarUinU7Dbrfj0ksvRW9vL8lJQvz7jPSAD3SLB/qBbkNIDkwgCnI0ZCtQXg/mrdeWDWLd7pnc6xAEQUwSTLYDZfXig2FqUKuKEJTJsEghmxT1Kbm2RP4yM3Sa60JQWebAYRhyUin4dGdmCMJsLWlL7tIOWJxDSEVnznFCQpJUJAiCIIaDyRbA1wTmaxq0TWR6CYv6f9GASOsa05ZZeRkLFLYeIFdFRF5yQDTzN492vNWplVnJll6xALJFTNyRLVrZFUvOdnnQduRsZ0McD0nG9Vd/Dlu379Yv++KTP8Ol8yTxHKgqIrKUq4CqAlwFN7XN28AVY13VtvGctpISMjFHLiKTmPxnzqlEtplko0lAZsWj00up3wmCIKYpJCcJYpqj7v4d+N4/ARVNYP45YL65YL65gG8OGAmJKcHr9eI//uM/sGjRIlx22WVwu93FHhIxRXCuArF+XUDySDcw0A0e6QEi3SJisRA4fUI6eoWA1IWku5LqYBAEMeNgkmykjs3tH2Z/rqS12pRZYRkGUgOazAwbEjOlpRnjOfWh9VrRufWmc+tSa2nJtO3JjDlNmd1qEdEcpprVEC8pcwVhrjC05kYp5ohGq2PwMbJ92qWxIwiCIGYWjDHA6RVSqHLBkPtwrgqBmSMss5GXWZGJWH/x0n2m4+IzAuNResPte2Gjiq3bjfaLzz8L9bxZ/LxmsYsa4I4yMEeZuLdzeMAc5Ua/toSjHLC56b6HmHJUDiiU1pUgpgSSkwQx3elvFWk6+lrA+1rMN8UuP5hvDuCbC+bXpGV5Hc0qKwC33XZbsYdAFAiejmtRj0I48kiPJiC7RfTjZKY0ykW2in+v5YaEZOX1os/mKsw1CYIgZgBMtgJOn/jk9hfgWkn7FgC9etu58SZIl19t2ofq/hIEQRCzDcYkkWrTWQFWtXDIfbiqismcuQIzHgSSUSAlPjwVy2nHMHmVo6eGC5fV4tu/36u33zoeQDyVgdM2A17HMiaEokk25gpGIRyZQ5ON9jIwC9V0JAiCIAxmwLchQcxueH/r8Btj2qzEtl3GLbxkBSoajAjLbLSlo3z48xDEDIZnUkZKoqx0zJGRSEYKOwBnhTn6MRsNSVGQBEEQJU8ymTS17fbB9YxITBJTAedcRAHF+sHj/UAsCLh8kOrPKPbQCIIghoRJklEPsHr0/TlXRarSVBRIRsGzwtLUNvp40twuaJrZYThnUTUYMxIyKCrHnlMhnN1cOeVjASCEYjbFu7ZkOev60qpldLA6RLSj1QlY7WAWJ2BzalGNLnpeJWYkShEjJ4t1XYIoFiQnCWIaw1MxEbk1HtQ0EDgBHjhhnnPo9GrpYOeC+YSwhLdB1JogiGmI/pIuGgCP9eu1T0QaoZw+rU5JQXF6AU8NWFkN4KkGK68z6kJSFCRBEBNE3fdn8J7DYFULwSqbgcr54gUTMWXcdttt6OnpQTKZRDKZxJIlS4o9JGIGwtMJs3SM9Yvoopwl4kEgY5blbP45AMlJgiBmCIxJgM0lPp7qcWVE4JyLv5G6rIyBqxmRBUdVxFLJa+cs+ZDbc9o523jOPm41g8X1fhxqD+hjeTtkx4a6FSINvCSJOpVDrmvt3PXc/SRJ/DfJfix2s0i0Oo22xa7VnLbRpCmCIAiiZCDrQBDTGGZzQf7oAyJ6sv8keP9JsR5sG3+qyXgIPL4baN9tSEsm50RZztHFJZwVdENLFBXOuYhojA4hG2PaejQAZBJTMyDZBpTVgHmqxbKsJkdGVoFZBkfSEARBnC68bRd4+27w49tEB2OiBnVlM1hVs0ij5msCk+iWv1DcdNNNxR4CMY3hmZSQijnikcf6gfz19MTuZ3isf3IHTBAEMU1hjOkRgXCLqMWpeqOx5v9acOixx/T27kwT5Hf/6xRdnZhN8HQCPNAO3t8OVj0PUuWcYg+JIAhiROhNBUFMc5jTC+b0Ag0r9T6uZoBQpyErNXGJ8b6g4ArQ3wre32qOspStIuWkyy9u7N1+MHcl4KoUS7efosEApNNpJBIJlJWVFXso0wauZoBEBEhEwJNhsR4PDSEg+wtX63E4XD5dOOoRkGU1QFkN4PCSsCcIYkrhnIP3Hs3vNL63j/xV9MlWwD9fl5Wsqhkoq6W/WQRRILiSBhJhIBEG15aIZ9dDQjpmox1T0cIOJk5ykiAIotisXr0aj+XIyV27dhVxNMR0h6sKEOkFD7RB7W/XZSQPtAEDffp+8gUfJzk5QdQipnVVKa0rMcsgOUkQMxAmWUSkhK/J1M8TEfBgq/bi8iR44CQQPAUo6fFdQEkD4U7wcKdx7vx9rE4hMN1+TWQKaSn6NIEpz7xi6AMDA3jmmWfw1FNP4Y9//CNuvfVW3HHHHcUeVtEQL+gi2gu6CKAJR/GCTutPRvSXeEjFijdYq0PIx0HRj9Ui+nEG/r4SBDGNiXSN7W+mkgZ6DoP3HDa+q21uISmzEZbVC8GcFQUcLEFMX7iqAqmBHMGYFY+hnHscQ0IiXcR7mSx2j8h0UlZb7JEQBEHMelavXm1q79q1C6qqQpKoXiMxPDwxAB5o08Uj79ckZH/HmN7h8UD7FIySIAji9CA5SRCzCOYoA6tbAdSt0Pu4qgKRThFl0X9Sj7gYdy3LfNJxIHgKPHhKXGeofRzlgMtvyEp3pSEvXX7xYsVin1bRHXfccQe++93v6u2nnnpqRshJzlWtRkdc/L9Nx8FT0byXcvmyMSL2LQXsZeJ3zOUTv3Muv5DlLp9Yd/ko2pcgiOmF3QPpvE+B9x4F720B+lsBro7t2FQUvD0vlbu7Uk8Hi6qFYJXz6e8iMWPhXBX3KrF+8FhQpFbNCsd4XtRjMiKikksBqwtwVYjJBC6fuH/R1pnLBzgrxHaaUEUQMx61/SBgsYH5m8As1mIPhxiBNWvWmNqRSATHjx9Hc3NzcQZElAxcSYMHuwYLyECbuB85nXP3t03SKAmCIAoHyUmCmOUwSQK8DWDeBmD+Rr2fp2JGhGVWWPafFIJqssjOPA8cF9cccoAyYHOKSEybC7A6xctSq0vrd4m2La+ds/9UCs4PfvCDJjm5a9cuHD9+HPPnz5+S6+fD1YyoU5SO62KRp7OCMWG0c6Tj0H0JDPN/qLgwpr2IywrHrGzMFZD0ko4giJkHs3vAFl8ELL4IAMAzSSBwAry3xRCWka6xnzDaBx7tAz/5RvYKgLdeTwXLqppF7WmZXoASpQvnXNy3xPqNVPDxIHhU1G4Uff1APCTKF5QKFruQjc4KTTL6wFwVmnz0Aa4Ksc3qKPZICYIoETIv/hi88wjAJDBfA1jVXLDqeWBV8yBVzQW8NWCMIvNKgYaGBlRWVqKvz0i5uXPnTpKTswTOVWAgoEnINiMNa38beLBr7JMLxwwDyqtFBihiQqgoXnrVyf5tIIhSh+QkQRBDwmwuoHYpWO1SvY9zVbzQifaBRwP6i0xE+7SagH1COE4mXAGSA+KT7crfZbRzMMkQlUMJTtkq9mESIMniIS73I8k565IQpowN3sYknDPXiSq/D70Bo8bPU7/8X3z+pn8QI1UyQhhmP8ow66oi9jP1ZdvKoD7TvkrKEItKarL+T0wxDLC7RXStvUykB85GObr9erQjnBVgklzswRIEQRQdZrEDNUvAapbofTwRAe87BuQKy0RojGfkQKgdPNQOfvQl0SXJRr1dz+D6u8zqnPwfjCA0uJICYsEc8dgPHu83tREPTu5EutOBSYCjTNSldpSLexpHuZCO+dGOVue0yhRCEERx4VwF723VGip44BR44BRwaKuxk9UBVjUHrGoeWNVcSNqSubzFGfQshjGGNWvW4IUXXtD7du3ahauuuqqIoyImC845EA+Bh3rAQ13goW7wcBd4qAcId4GHe8S7msnG7gLzNYL5G8zLijowq33yr0cQBFEASE4SBDFmGJOAbOrVYfbhSgqIBoS8jPVp673aUrSnvBYPV0cVnKbdT+NSEoD3rfDh5y8bcvK3v/oxPjfnxGmcdQbAmEit6igHc5Tp63CUaS/sygB7ec66h6QjQRDEacIcZWCNZwKNZwLQXp7EAoao7D0K3nsMyCTGdkJVMdWcHvR9aS/Lq9lbA5RVg3lqRET7DKutFAgEsHbtWtjtdv3z7LPPwu/3F3toJQ3nXEsVHxV1U5NRkSo+FTWvp2Iiw0ZWOubcxxUNm9uQjM4c4egoNyRktt/moqglgiAKQ7Br9IkY6QR4x2HwjsMAAD1W3FUhZGW1Jiur5oFVziGZUWBWr149SE4S0weejArpqMlHhLuNdrhHyzRVACQZzFsroqP9jcbS3wA4vTSxqUCoHFCKFTlZggnLCKKQkJwkCGJSYbINKK8DK68bdh+eiglZqctLEX1pisAcQ4HvUuWDa5vw85db9PZLB7sRjqdR7pxBqfAsdsDqMF7I5YrHrHS0a6LRUQ7Y3fSCjiAIosgwxozazvM2ANBqT4c7dGHJe4+KNO7qBFJeJiNAMiLOgTx5OQOjLuPxOE6ePGnqmy0viThXxYs4k1CMDRaMSbHk2W2ajCyZlKpMApxekYnB6c2TjZpwzMpGexmYTI/PBEEUHx4PA+U1QLh7/AfHguAng1BOvp3TycB8dXqUpVjOA6uopQmjk8Tq1atN7Z07dxZnIMSQ8HQSXBOO0KVjjnxMFHiClMubE/2YFZGNYN4auvcgCGJGQ3/hCIKYcrI1IpmvacjtnHPjBVYqBp6O6euidmIMPBUXEZhaH8/ZhnS8qCm9Ll1ZD4vMkNGmWikqx66TAWxaWlu0MQmYEIrWbA1Pp3gZnPsZoo/Z8vaxOughtYThXAUiAZHeqb8dcPsgLzm32MMiCKJEYZIEVDSCVTQCi94BQMuCEDipyUpNWIY7Tu9C44q6rAZzVgB2j3niS4nJoWRy8L2G3T49Ik+EXIwb91epmFkg5t9/pWKGgEzHxX68xKd22z1azcYKwKXVoHb5jbqOLp+QjzMsopcgiJmP1LAU9k//D3gyBt7XCt57AmrPCfDek+C9JyYgUjh4fwd4fwdw+DWj22ITUZVVc8XSWwNWXg1WXk1RW+NkzZo1pvaJEycQDAZRUVFRlPHMFjjnQGJAZPYaCIAPBMAH+sEH+oCBfvBoADzcK9LGFxqLDayifnAaVl8DmMNd+OsTBEGUIKXzdE8QBKHBGBMvlOwe0Z7AObiaMeou6i/YskIzr0/NiNSvXBUvTzkXM/r1PrHkak6faX/zfi6XiuWNfuw+mVPw/lQEm1bOAySL8ZGz67Lex+Sc7ZKcs4/5OGY6PuccskXU0LS6hGS0GUIRFjtFL84geDoBHmgH72/X6sy0gwfahJDMkfNs/hqSkwRBjAsm24DqRWDVi/Q+nooCwXbwgW4g0g0e6QYf6AEi3UAscPoXHSnqMherU0v/nZsWvCwvct9Yh8VRsJenxZSTgyMXhxKL0TzxmDfZ67QS2RcRi92oO50rHV0VYE5NOroqxO8xQRDEDIbZXWANS4GGpchOHeWcA9H+QcKS950af3aiTAq86yh419HB2yw2sLIqoKxKF5b6p6wKKKsEk2dQ5qDTZNmyZVi6dClWrFiB1atXY82aNdNmQlOpwtMJ8IFc6ZizHu0X7Wg/kElNzYAkWfx78NYKke+tASs31uGqIKE/TVCKmNa1WNcliGJBcpIgiBkJkyxaStEy0Z7i66/7Yxi7f/Yzvf22vByWj/9oikdBTHc450CkD7y/DTzQBlWTjzzQBkR6x3aOQHuBR0kQxGyA2dxAzWKwmsWDtnElBQz0gkc0cTnQDUR6dJE5qdkM0trEo0i3Sa0N+xwvWQGHFoFpL9PvDXSBabFrk32s+gQfll3P6YNs1SYBiSVjbJCclGUZsjz2zAJcyWgCUUhEnoya24NSpeYIx3Ss9CMXx4rVBdjdIquGza2tiw+zuzUR6TOiHa1OerlHEAQxDIwxwOMH8/ghzV+r93NVAQ92ClHZownL3pPgwU5MaLJKJiUmRfa3D3M0Azw+sLKstBQSE+XVRp/dNcGfcvphs9lw4MCBYg+j5BFZtOJAIgIeDRrCMSqiHflAvy4gkYpN8ei0f1sm+Vijt+HxU4YpgiCIcUJykiAIogCsXbsWP8uRkzt27CjiaIhSh6eTunTkuoA8JVIrpROnd/JwD3g6CWalmbkEQRQGJtsAbwOYt2HQNpFOK5wjLQsQdTkSahqI9QOx/rHJzLEiWRE9Zh673SIh8/uvCsEp5wnOTMqQjVkJqUzRTP5Cw5gmE11CKOYLRptrsHDU1mF1UlpVgiCIKYBJMpi/EfA3AkvO0/t5OiFSw2rCUs2mho2FTvOK3Ihi6zg49C52lxZpqUlLLeqSOcsAh0fLiuARpUdoUsq0g3MVSMaAeAQ8HgZPRLT1iJCP8fAQ7QGR2apYuLyDpGN2HWVVYBaKBiYIgphMSE4SxDRH2fEnKPv/BlbbDKlmAVhNM1jVHEqhUmTWrl1rau/duxfJZJJSt8xiuKqIKMhgh5aOVYuEHEcU5LiwOsD8jeIlRDoBkJwkCKIIMMYAp1fUphox6rIHiHQJgTnQB54Ii1SviQiQHEDJpSBV00gn4qauRCqDl197HRcsqSm10Y4MYyJ6MVsT3ObKabv1WuG5H5aVizaX+L6htPEEQRDTEmZ1gNUtBurM39E8FgTvOQlVj7DsELX5BvpEaZPJIBkD7zkB3nNilEFKJlnJnB6tLUrBMIcHcHpEZgSHx9jX7qJIttOEcy7SAaeTQDoOnk4CiagQiQlNLGrycXB7QJS/KRVcXjC3H6zMD7j9YB4fmMcvIh7LtUhIq6PYoyRKAJWLT7GuTRCzCZKTBDHNUdsPgHccBO84CP22T7IIQVnTDKmmGaxmAVjNfLrRmkLyC95nMhns3bsX69atK86AiCmBJwbAQ13gwS7wUGfOepcQkJP1IK/DxCxjfwMkfyOYr9EQkm4fzTAmiBmO2roHvL8DrHG5+Lc/Df/NjxR1mYWrqog0TGgvvpKRvHXRNtYjImKywMyrckNiDKqWXlXlHB/775ew7c73otE3hanqciMXrS4tMlETiVY3mM2ZE9moyUctapHk4syEp5PgoS4wiw2soq7YwyEIYhrCXBVg8yogzTvT1M9VBRjoB4/0gId7wMPaBKNwtt1z+plf8uEqEA8L4YVxTleyuw2R6SgDc+S0LTYj24HFaqRxz6Z5H9RvBbNYTG1YrEX7DuWci/82XBWp3jMpIJ0ATyVESv10QsjEVEL8P0knwbWlLhrT2f2MfcR+cX29pATjUNhdYG6/ns6Yefxgbp+oe+rWBKS7gibwEwRBlCAkJwlimsO7WwZ3qhnw7mPg3ceg4gWtk4H5G0RkZc0CSLULhbR0eKZ0vLOF8vJyLFy4EEePHtX7duzYQXJymsOVNBDuFdIxX0KGukTamkKQjYL0NejykfkbwSrqKV0rQcxilD0vQN33V9FwlkNqWgHWuFwsq+fPmGgBJknjqiPNORcv5UaVmQMitaqSEVEBalqsq2mtPfKEkjmVbtx2+Qrc9Ye9el9XOIGPfv9v2PLlS2G3juO/v2wzBKJdS42alYh6pOLQ26gG4+yEp+KiflywU0Q0Zdf7O0RkEwBp9XtgfddnijxSgiBmEkySgfIqsPIqoHH5oO2cc1EnOSsqs9Iy0qste4BocOoGnNTqNoe6xPgKcQ1JNknNQWITXMhDVQWgiqUuFrlIf8q1fmj75UpH0zLn+OmVp2H8yFZDOLp9YGWVYgKuxw/mqRQ1Td0+MQmLICYRlQMKRU4SxJRAcpIgpjE8FQcPtI91b72eHQ68BP11W3m1EV1ZKyItKeJqcli7dq1JTu7cubN4gyHGBOcciIfAQ916xKMhIjuBgUBhZ46WV4P5GkUUpL9Bj4SEx0//JgmCGIR6ap/RiIehHn4NOPya+I63OcEalkFqWg6pcQVY3SIwi61YQ51SGGOA1SE+ZTWjyszh4FwVdY+y8lJJa21j/d8uSWBH5B/x7F+36se93tKH//dsCA99/WZAyYCraREhmhWKQ8lHms1PDAFPRMUkqP6OPAnZMaaX+zzYWfhBEgRB5MAYMyITaxYMuQ/PpES5C11cGgITkYCYPJQYKEDWmQKhKuKTk7RhNL/AOUdnJAkAqC+fBRmuLDYRueosB5xlWl1Rc5s5ywBnuUjJ6yzTMjvQMzBBEMRMhuQkQUxnJAusf/dVqF0tIkqyuwUY70uIcA/UcA9wZJvR56rQoiu1KMuaZsBbSzeG42Tt2rV44okn9PaOHTuKOBoCAHgyBj7QJx6GI33gA33mdqhr8tMQ5WN1mCMgs+u+BoqCJAhizGSjEYYlFQc/vgPK8R1CVspWsLrFkJpWQGpaDtawjGaajwJjkoholIeXulYAjzz5e5x99tloaTGyWfzo8T/h7Hddgc98hqLWiOHhnAOJAU06doD3myMhoaUwnPD5gx2TNFKCIIjJg1lsgK8ezFc/7D6cc/FcloiAx4Ws5IkB0U6M0I5HxASiEuXnb5zAoztO4e22IHqiKfy/CxfhOx9YVexhjQ+rQxOK5ZpgHCwWB7XpOZcgCIIYApKTBDGNYRYr2Py1kOav1ft4MgrefRxqdwt4t5CWvO/U+KK9YkH9haaO3aXVsFwAVlEPeGtE0fDyarrRHIYLLrgAf/d3f4e1a9fqH6IwiIjHsC4cMRAw5GOkD8guCy0eAYBJQFkVWEUtmHfwB84yEv0EQZw2XElDWrYJ6qm9Iqp7NJQ0eNs+KG37oGwDwCQxASmbCrZxOZjLW/Bxz0T8fj82b96Mc889F7GYkd77c5/7HFatWoVzzz23iKMjSgEej4gMJv3tgyMgC5USHtAid5UZk+KZIIjZA2MMsDlFJojymnEdy9NJISu1CExDbkZypOaAuDdStJTumbSRGUHJiOjO7LZs/yRwrC+KFw516+3tp4KTct5BSBbAahcTY60OY91mrIttQ63btWO0dZvTOMZio+8UYsajFDGta7GuSxDFguQkQcwwmN0NNucMSHPO0Pt4OgneexK8u0VIy64W8N6T47vBTsbAW/dAad0zeJvLa4hKTVqSvATe8Y534B3veEexhzHt4aoCRPs12RgwIh1zBCQG+sSD41Th8JilY46IRFkVmExfrwRBFBbJ1wDp8i+IyRnhbqin9kE9tQ+8bZ+oOTcaXAXvOgql6yjw1u8BAMzfBNYkalZKjSvAyqsL/FPMHM4880z85Cc/wcc+9jG9L51O4+GHHyY5OUvgmZSQjoF2ISH727X1NvESvFCUVYFV1Ik61BV1YD5t6a2l6GiCIGYlQrLZRY3CSYJzbqR6z6T1mtVcSeeIzYwhPHNlJxggSQBjONu+FXj+K/p5d3bFIX3gi5AsFjFxjIn9wKScDxMfKb/PaDPGRI3LrFCkdPEEQRDENIDenhLELIBZ7WD1i4H6xcjOceNKBjxwSkRWdrVA7T4G3t0ysciyWAg8FgLvPDz0dlcFmLdak5U1msCsBma5vJytcCUj0u/EwiLaMRbSlmHwuLYej4jfq3hYpOYpZJ3HoZBkTbLXDh0B6XBP7XgIgiCGgTEGeGshe2shn/FOAACP9kNt2w9+ah/UU/vBe45j9OpHEPcFgVNQ335OdJRXQ2pcoUdXMn8jRX6PwNVXX4233noL//Vf/wUAuPPOO/HVr361yKMiJhPOVTFBKtAm6kD2t0HVJKRIs1yA6e5MEjWpK+oGS8jyGrqPJgiCmAIYY4BsFZ+ciR/jvSs6u3wRcIshJ8MDUZyQqrCoedEkjZSYrfBMCryvA2pvO3hfG6T5Z0Ceu7zYwyIIghgRkpMEMUthsgWsej5QPR/IvszkqkgxlVPDkncfO+16N4gFwWNB8I5xykuXF8zhAewewO4UswiJkoOnk5pQDGtCMZKzHgZypWMsDCSjxR6yqH/hqQQr8wOeSrCySjCP34h+9PgpXQ1BENMW5vZBXnIesOQ8AABPRKG2HxCysm0feOdRMft/NMI9UMN/hbr/r6LtLAermmuqmyv5GoQ4ob+ZAIBvfetbaGlpwfXXX48PfOADxR4OMUF4Igre32aKfhTRkB1AJjX5F5RkLRODIR+RjYAsr6YIGIIgiBlCY2Mjqqur0dNj1A1/6623sGgRyUlidLiSAe/vAu9t0yRkO9TeU+C97eDBHtOkbsslHyc5OUFUMCi8OBMy1XFPeSCI6Q3JSYIgdBiTwHwNgK8BWHYBAC19SaTPqGHZ1woe7gEPdZ++tMwymrwExKxxu0sUVHe4AbtHiEuHW+9jdo9It6n3izYsdor0GAKupIFUAkjFwVMxbRkHtI95PabtG9P7eSIqfgemoo7jWGES4K7QxGMlmKdSiMayvLbFVuyREgRBTBnM4YbcvB5oXg9AS/feedhIBdtxaGx/y+Nh8NY94Pkp3mWrkCj+RpO4ZL7GWRdpbrFY8MQTTxR7GMQImCZVaUseCeSkYm2bvHvcXCSLyMbgaxgUAYmyKhL8BEGMi+Sjd4MHuyE1NEOqFx9WMxfMSs85pQxjDOvXr8ef//xnvW/79u24+uqrizgqopTgqgoe6jEEZG8b1N428L528EAnoCpjO09ve4FHShAEcfqQnCQIYkQYY0B5FeTyKmDRBtM2nk4YojLcLW6gwt3iM5nyEhAzwLLF67NdYz1Wtmgy050jLz2azHQDFpt4YSRbAEkWxeNlbSnJ4iNbxEujbJ9pe86xef2Q5UERn1xVxA2lqoi6FKoiIlhUBVwx1kVNC0Vf56b9FaPmhdbPs32Z1LCiMbdvXDVHSwHZIqIccyIdoQlHpglIuH30co8gCGIUmNUONmclpDkrAWizsLuPiajKU/uhtu0bX408JS0mL/W1Dt7m8gpJ6W8wxKWvUUga+ntNnCZcVYBsxgZ9mSMeY1qq+Jy+gkQ+5uLx5/yui997yd9IEcYEQUwqasvb4KEeqMd2G52SBFY9B1L9Al1YSvULRLYYomTIl5NvvfVWEUdDFAPOuZgY1dMG3pcnIQMdombp6V6jt20SRjo7Ubn4FOvaBDGbIDlJEMSEYVYHWOUcoHLOkNt5Ki7kZbgbyBOXPNxTmFnpQ6Fk9OhMoCDVgEaGSeBMwsn+KHa1BrCpuRI+F81oBSAksdMLuMrBnOXa0gs4y8D09XIhHp3lFAFLEARRAJhsAatfDKl+MXDWh0Sa975T4G37tejKvcBAYGInz9albttn7pdkMK8WbelvyBGYjWCu8tP/oUqUnp4ecM5RU1NT7KGUFFxVgGQMSEbBkzGRqSEZExPThhOP8cj4JPpkYnWY5KOxXg+WU4uMIAiiEPBYBDzUM3iDqoJ3nYDSdQLKzr8Y/Z6KPGHZDFbdJCbYElPOunXrTO3t27eDc07PujMMnkmDh3rB+zvB+7uhBjrAe9v1KEikCpSBqswHqbIRUuPCwpyfIAhiEqE7EYIgCgazOcGq5gJVc4fcPqK8jPSKF05jTFlRylz98Fa81NKLQEzMfvvNDefg8jPqizyqAiDJQipmZaOjTETMOMvFi2anV1tqItJZRhEEBEEQJQhjkv79La9+t0jxHu6G2n0MPNCmp77k/e0Tl0OqotXxawOO5m1zeMSkFFcFmLsCzOUD3F7zussHOD3Tqh71m2++iauuugoLFizA888/D6t1ZtQR5KoiMjIkY+DJqLFMxbR1bZmKAomoSBWv92nrpZQiPguTtDSsjUI65shIuH30EpkgiKKhdhwb3wEDQaiHd0A9vMPoky1gtfP06EpdWrrKJnewxCDWr19vavf39+PYsWNobm4u0oiIicCVDHiwR9SA7O+C2t8F3t+tt3m4z1QDclJxlUOqagCrbIRU1QhW1SCWlfWzrqQCQRDTG5KTBEEUjVHlJefiZVU2nWtiQLzsikfEMrc/MSBm22ttJGMoQozkkPTFUrqYBIDXTgRKUE4ywOYAbE4x49/m0tYdOetObenS9nWZpaPdTS/qSgweDYGnU5Aqqos9FIIgpjGMMcBbC9lba+rnnIsItkDbIGnJg50TfyGjp3E/MfI3uSSLSTCaxITbB+byiqW7AsxVIeoQuyvEd1YRv6N++tOf4rOf/SySySRaW1vxL//yL7jvvvumdAycc5HSNJ0A0gnwdAJIJ4F0Mmc925/bTuatx4FUQheRJSkWxwKTxISp7MSpijpzJKS3BkyeGQKZIIiZhVS/ALa//zp4RwvUjmNQO1vA+zrGdxIlA95+FEr7UeROB2beKrB8YVlZT5NKJ5G5c+eisrISfX19et/27dtJTpYYXMlokY+58jH76QYP9RZOPgKA3QmpqgmsqgGssgFSdZNYVjXSJIICo3JAobSuBDElkJwkCKJkYYwBWSFWPj65YkoPliswEwPgyQExcz8rMpW0UQdSyeTUetTqQA5RG1Lfdww3o+fMr8TLLcaDxyvH+kbYO/vDS6LGYrbmpV7rMlv7Mrc2prGdyRZAtgJ2l0g5ZncBVk0s2p1i3Z4jF7X/vrDap1X0CWHAFQW8vxNqdyt4zymoPdnlKSAWhnzmO2D/+JeLPUyCIGYgjDFNDnqBphWmbVxJgwe7zMIyG205WWndVQUYCIAPBEafjiRbdVGpS0tXhZhYY7WL70WrU6xbHYDNAWZ1iHWrA7DYJiw3BwYG8PWvfx3JZFLvu//++7F+/Xpcd911wx7HlYyISExrNaOT2noyW0c6ptWRThjruQIxndTWDQlZKhO3CoLdbWRmcOZlasjP3OD0AvbiCmuCIIiJwlxlsJxxLnDGuXofT8agdh6H2tEC3nEMakcL1M7j404dyUO94KFeqAdeNzqtdki184Sk9NVC8tWC6Z8aMAuVLBkPjDGsW7cOzz33nN731ltv4cMf/nARRzX74KkEeDigC0hDPnZOjXwExHuYynot+rERUmUDWHUjpMpGwFNB9ykEQcx4SE4SxDSHJ2NCWNEDgQmmpRiFswyFvJ3jXM2RlQqgprWlAq6JzAvrn8PdW27Uj3mzLQL149+Fw+02pKNJNMokColB8EQUas8p8O5WsexpFSKyr0OI8mFQu1uncJQEQRACJlvBKpuAyqZB23g8oonKNvBAu7EMdopJQIVASQPhHpFOfiLHMwnQxKUuLW0O8VLJKjIPwGIXGQe07Uzb7rQ48Pg938CFn/hHJFNGJoWbPv0pLOvfhbVz/UI+puL6Eqm4iHKcjTBJTLKyu8WEKk0qDhKPrpy2o4xqpxEEMathdhfkeSsgzzMmC3FVBQ90CFHZcQxq+1HwjmND16sciXQS6qlDwKlDQ1+7vDJHVtZC8tcJaemrA6uopr/PQ7B+/fpBcpI4fTjnIm18OAAe0T7hgLkdCYiUq8n41AzK7gTz1QmpX9VgkpCsrBJMonc/BEHMXugOgSCmOZmtv0f6+V9CalgIqWmJ+MxZClbVSDc5UwBjEiBLIiIjL/NXVope8L6rwNinxI0ygFQqhTePnMKmTZumdrBEycNVVdSt6MkVkCIaEpH+iZ2ztw1cVenvAUHMQJRDb0E5thvy4nWQ5i4Hs0yPFJTMWQbWuAxoXGbq56oCHuoCQl3g0SB4tB+IhfLW+yde5/J04KouDfPl5lhk5xoA379yFT7z6Ha9L5FK4/P3/hR/+dyFkzjQIpMVizaXEIt2l0gHb3eL9VzpaDPaxn5a5geKFCAIgjhtmCQJEVLVCKwynj15LCJkZUeLFmF5DLzrBJBJj3C24eHhPiF7TuwbahBCXvqz8rLOiLz014KVV4HJsy9lbH7dye3bt4NzTt9/wyBKCQzkyMa+HNnYb7TDAS1TxBRic4L5ayH56kwRxdnfc1Ejnf6/TieUIqZ1LdZ1CaJYkJwkiGmOeuoQoGSgth6E2nrQ2GB3QWpaDGnOUk1YLhE3/nRTNOVUVFTgzDPPxK5du/S+l156ieTkLIanEnrq1dw0rLy3bfIfprgKHukD81LdSYKYaWR2vghl+wvIvPgoYHNAaj4T8uJ1kJesF5OUptl3PpNkMF8D4GsYcT+upHOkZRCIBQfJTMT6xTI1RbPix8B1Z8/DjlNB/OCVFr3vteMBhOJpeJ1FEssWe05EqJbSNhsNalrP22ZzmoSiLhlJLBIEQZQ8zFUGeeGZkBeeqfdxRQHvPWUIS01eTnSCpHFiFTzUI6I1j+0ZvF2SRXRlhZCVUkUN4BEp45mrDMztBVwiPTezzpxsUevWrTO1+/r6cPLkScybN69II5paeCYtZGM8Ah4TH8QiehvxCHgkaIp2nKg8P21sTkM4+g0BSfKRIAji9CE5SRDTHJOQzCUZg3p0F9SjhhBjZX5dVEpzlkJqXEyFtKeITZs2DZKTxMyFcw5EQ1ADneCBTlETsk9b72sffyqlseAuh1Q9B6x6DqTqJkg1c8CqmsTD0yycjUwQMx3OOZTDRhQeUgmoB16HeuB1pAGwihpIi9cJWblozYz6vmeyFSirAiurGnVfnk7myMugtt4PHgsB0SB4OiHqcaUTYj3bzhRm1v2XLllqkpMAkFLGWM/I6hAi0KrVkbY5jdrR2TrSo8jF3Jqaoo4mRdUTBEEQAJNlsNp5kGrnAWveqffzgaCQlb1t2nONUZsPscjpX1hVxHkDnUALoIy0r80hUnq7RWpv5ioH09ZFX5kuNeHW5KbNcfpjLAALFiyAz+dDf7+QvxaLBYcOHZp2clJIRkMw6mJRE42IGeu6gIxFSmryGGyOQcLRJB9dZSQfZxlcBdQClxsd6doEMZsgOUkQ0xg+EBTpU8a6fyQAZf9rUPa/pvexqkY9FazUtARSQ7N4cUVMKps2bcJ///d/6+2tW7dCURTIJI2mLTydAg92izougU7wvk5jPdBZmAcuSQLz10OqbtIlJKuZA6mqCcxdPvnXIwiiZOFdx0eMZuDBbihv/BnKG38GGIPUuFiXldLcZdMmBezpwqx2wFsL5q0d13GcqyKSPZ0A0klRCzK7niMxB68ngXQcPJXQj+fpBJhkAexOWCpUAH8yj/Hsq2Cpr9cko1NEI9ry5aODRCJBEAQx5TBPhZjotHjdoG08EQXv7xayUhOXurwMdALJ2OQOJpUQ36/B7rHXj7bahazMEZnMVS6EU3aijtUmJvHo6zZt3Z6znt3HCsjW05ZVjDF89atfhcvlwvr167Fq1So4HIURqVxVgHRKu5/J3pskgVRSu68RS3Evk8zZLznkMTwR1aMckUoUZMyTgsMNVuYXn3KfSC+cbZf5wcq1j91V7JESBEHMWkhOEsQ0hnkq4PzG41DbDkNtPSRSu546ND5h2dsGpbcNys4XRYckg9UvgJxbv7JmDphEEu10yE/hGg6H8fbbb2Pt2rVFGhExGpxzYKDfiH4MdGrrHaId7gN4gQoC2F0i8rG6SYuG1CIh/fWzRigQBDEKdhcsF30UyuHt4G1HRt6Xc6inDkE9dQiZF38N2JyQF56py8rpmAK20DAm6YIQMOpIny6Ovj7gU9819cnrLodcVzdJVyAIgiCIqYE53GD1CyDVLxhyO49FTJGWvL9LPE/1d4P3d06N2EonwUNJINQ7dqE5GowBFiExmWV0sanDufb8KJb/VM8BBIHDzwOHnkNS6zf2E8fwbChV3vHmdQCZ1JCisWjpUAuFqwysrFIIR100VhoSMttXolGzBEEQhAHJSYKY5jCnB/KitZAXGZJLDfXqLyHVVrFEIjq2E6oKeNsRZNqOANueFn02B6TGRUZ0ZVaS0M3emKmvr8fChQtx9OhRve9vf/sbyckiwlVFRB+Heo2PJh716MfJrv+YC2NgFTVGBKQmIqWaJsDjI1FAEMSISL5a2N5zA/CeG8AHglCO7IRyeDvUw9tHn6SUikPZvw3K/m1GCtglWgrYhTMrBWypIUmDox/VYuWNIgiCIIgCItKslkFqXDRoG+cciIW1KEtDXvJQj5YeNAweDQPxSOEmhE4Uzo2owtzuog1ommN3gjnLtNqiZWDOMiPatTwnyrHMD1bmE0KYIAqIAkAp0j/oEVNbE8QMhOQkQcxAJG8VJG8VcMZ5AACuquB97ZqsFNGVavvRsc+gSyWgHtsDNa+APSuvFJKysh5SVYNIN1nZAFbVAOZwT/aPNe3ZtGmTSU6+9NJL+PznP1/EEc1ceDoFHu4FD/UZy1Cvtt4LHu4DjwQKX0hAksF8NWD+Okj+ejB/HZivDlJVo/h3QoKfIIhJgHkqYFlzESxrLgLnHLz7JJTD24WsbNk96kQLHuyG8vqfobz+Z4BJkJq0FLBL1kGaswxMpkeGyYLkJHE6jDc1HyuvhOXMdxR72ARBEINgjAFuL2S3F2haMux+XFWAeFTIyqyw1Jamdu72eKR4BeNmM3ankTLXmRWNHiEZtT5dQGbbTg9lBiIIgpjF0JsGgpgFMEnSorKagLUXAxCFy3nncSg5wpJ3nxzXrEQe7hPRGcf3DJ7d4yqHVFkPVtkg5GVlA1hlA6TKelGcfhZGhW3atAk//elP9fZLL70Ezvms/G8xUTjnQCJqCEYt4lHVRaToQyw8dYNylxviMVdC+uvAyqvAqK4oQRBTCGMMrHYepNp5sF5wJXg6BfXEPl1W8vajI5+Aq+K+oPUgMlseAexOyAvXaClg14rvdfremjAkJ2cfXFGM7AyhHlEvTZeJYt2Qismcel+J007NJy1aQ3KSIIhpDZNkwC3qRY4VrqrimTEWAY+FRH3EaEi0szIzHgHXJnsgnQLPpIzJH9n1TApQMgX86YqIxSrqcVrtgM2Rs64ttQ/Tton17NKZIxmFeITTQ5PZCIIgiHFD3xwEMUthFitY02JITYuBcy4HAPBkDGrbET0VrNp6EDzYPbELxMJQY2Gg9eDgbXanLirFUkRdsqp6UTtgiBd3M4H8upPd3d04fPgwliwZfqbobEAXjtGQmAEbDQHRkPYAGQaPBE1RjwVNtToUsgXMVysig7PSUZeQtRQlTBBEScOsNsiL1kBetAZ47z9oKWB3QDmkpYCNBEY+QTIOZd+rUPa9ijQAODyQ6udDqm+GVLdA1JqqnUeR4GOE5OTMhMcig2pT6+vBHkAtUpKu1BTfMxEEQZQATJJ0eQY0nNa5uKqIiSHppJCZmrjk6WTeejpHbCaBdBo8I5YAF3UqGQPARCFrJuWtQ5T9yFkHGCBlj8k7Hkwcp68zEYGYKxpNstGhy0VYbUL6EgQxJCovXlpXlfJDE7MMkpMEQegwuwty85mQm8/U+/hAEOqpQ1BaD0JtPQTeeWz0WlajkYyDtx+FMlT0hsUmxE9lA1i5X0RZusRMSeb2grm9Yuakq3zavQhdtGgR6urq0NnZqfe99NJLM05O8kwaPBYGomHwaFAXjjwaFtIxFgYfCIHHQpqIDBfvpR0gUq+WV4J5qzQJmRP9WFk3o4U5QRCzD5EC9p2wrHmnSAHbdcKcAjaTGvkEiYHBqd6ZBFbVoAlLIS5ZfbP4u0pRliZITk5PeCYNHuwBD3Todal5oEPUSuvrBBIDxR7ikPCpntBFEAQxw2CSDNhkwOZAoe5o0uk09uzZg23btiEYDOL2228v0JUIgiAIorQgOUkQxIgwTwXkZRsgL9ug9/FUQswI72sH72sH7+uA2tch1oM9AD+Nl2yZlKiV1X1y9H2tdrOsdHuFxHRpfdl2Vmo6y4qaYpMxhk2bNuHxxx+H3W7Hxo0b4fP5ijaeoeCci1mfyZhIJ5aMgydjIqVYMgYktWUqDh7PRjuGtLofmoBMRIv9YxjYnOLluLdSpFjVl1WQNCEJt5fkI0EQsxLGGFjdfEh182HddJVIAXt8r5ECtqNlbCfiKnjPKSg9p6C8/Tej3+mBVLcAUv0CTVhqUZZWe2F+oGkAycnShHMORENm8Rjo0td5qPf07m8LicVmTsNnc+ip+aTK04sYImYuqVQKhw4dwv79+9HZ2YlwOAyXywWfz4dly5Zh7dq1sNsn72815xxHjhzB9u3b0d3djXA4DIfDAZ/Ph+XLl2Pt2rVwOCZv4un+/fuxd+9etLW1IZVKoaGhAc3Nzdi4ceOQf4enI4mnfwU1EoRl7iLIcxdDqptL5SSmIS+//DIuvfRSJBIJAIDb7cZtt90Gmf5fEmOEqwp4fy+U7jao3e1Qu9ugdLfBdu6lsK3bNPoJiEGovHgRjBQ5Scw2SE4SBDFumM2hv8zMh2fS4P1d4H3tmrDsEBJTS3E1qTUb0kmRdjbYjTF/fzs9uqxkrnIhMW1OUXPBYgWTrYDVCshWkRZF/9hEW9b2s9hytmWPs4ntsmVY2fXFL34Rt956K84+++xhH/g55+IFmKoA6uAlN7UVsa8illxVRH2MVDxHJsa1dnwU6Sj2K2oU43hwe/WIR8lbZchHb5URCUkpVwmCIMYMs9ogL14LefFaADeCR/pFClhNViLSP74TxgegHtsN9djunItIYFWNmrDUpGXdglkTZWmz2dDT0wNJkvSPx+Mp9rBmJFxVjDpjA0Hx0daR7csuwwFxD1RIbE6RDt7pEen1siLRZh9cz2tQDTBDOJq2W2w0wYoYMwcOHMDmzZvxwgsvYOvWrYjHh/+dt9ls+NCHPoRbb70VF1xwwYSv2dfXh3vvvRc/+clP0N7ePuL1rrzySnzhC1/Axo0bJ3Qtzjn+93//Fw888ADefvvtIfdpaGjAddddh69+9atwu6f3c0Lq9S1QO05Cz3dgtUFuXAB57iLIc4SwlBvng1ltxRwmMQqLFy/WxSQARKNR7Nu3D6tWrSriqIhSg6sqeH+PWUD2iKXa0zFkTWq5bg5AcpIoEMeOHcPOnTvR3t6OgYEB1NfXY968eTjvvPNgtVqnfDzxeBz79+/HgQMH0NPTg4GBAXg8Hvj9fqxcuRKrVq2CxUIarBSh/ysEQUwqzGIFq24CqpuQP9ePqwp4sBc80G5EWva2Qw0IiTkltQTjA+DxAfDetsJeR7aYxaXFCjCGMzSpqPz1QcQGiUdNNM7mCAotGlaPiM2m9dWlY5W29AtBTBAEQRQMVuaDZe3FsKy9WKSADfVAbW8B7zgGtfMY1I4W8L52gI9jii9XwXtaofS0DhNl2QypfoFIs52dbGJ3Tv4PVyQYY6iqqir2MKYleo3qgaBIGz+gZW8wiceQti0IxMLj+908XZgEVlGt1aauh+SvzVmvA1zls0LAE6XJ+eefj61bt455/1QqhccffxyPP/44brjhBtx3330oKysb1zV///vf48Ybb0RPT8+Yrvfoo4/i8ccfx6233oq77757XJFjXV1duPbaa/H888+PuF97ezu+853v4PHHH8evf/1rnHXWWWO+RinBk3Gona3mznQKyvGDUI4fNPokGVLDPFjmLBLScu5iyE3NYI6Z87063amtrcW8efNw4sQJve/1118nOTkLMQSkJh3HICBHQu0efkIIQUyUJ554Avfccw9effXVIbf7/X5cffXV+OY3v1nwZ57t27fjqaeewpYtW/D6668jnR7+34jb7cbVV1+Nz3/+8zjzzDOH3Y+YekhOEgQxZTBJBvPXAv5ayIvWmrZxzsEjAXBNWqqBTqM+YTSs1y1ELDQ95J2SEZ9kfOxRnTMNxkQq3RzJCE82atUL5vHq6Xh1ETnN6ogSBEHMFhhjYBU1kCpqgBXn6P08lYDadQK8owVqxzHx6Tw2/hTfQ0VZZnG4jYj47DKbnjs3RTeJn5JFpI1PAYmYkckhGdMyORhtsR4HT2RTyA8YkY7R0ORm4JgITo9Wm7rOJB6Zvw6sogZMpsdrojQ5ePDgkP3Nzc1YsGABqqurkUgkcOjQIezbt8+0z8MPP4yDBw/imWeeGXOk9+bNm/HRj34UmYz532xlZSXOOussVFZWIh6PY+/evTh06JC+XVVV3Hvvvejr68PPf/7zMV0rGo3ife97H7Zv327qb2pqwplnngmHw4GDBw9i7969+rajR4/isssuw6uvvoqlS5eO6TqlhHKqZWyTL1QF6qkWpE61AK8+K/oYg1TTKESlHmW5EJK7vLCDJoZl48aNJjm5bds23HjjjUUcEVEoBgnInnYtGnJiAnIklO4CT8ifwShcfIp17VJkYGAAn/70p/HrX/96xP0CgQB+8IMf4Mknn8TPfvYzvPvd7570sSQSCZxxxhloaRljCRKIe4Wf/OQn+NnPfoZ/+Zd/wb/9278VJcKTGAw9PRHENIdzPiNexjHGwMorgfJKYMHKYffTZ81Hw0PWOxzcDgOJgSn8SWYYjGkpx5yA3Qlmd4k0Ytr6oCjHEqrxSWgp7ZIJMOf0TltFEETpwmwOyHOWAnOMl7ucc/BgN9SOY1qUpRCX446yzJKIgiei4CPVo5YtZoGZjbT3GgKTlflFinZiWLiqComYToFnkiJVfDoFntbWM0nwdEpLC5+VivnLHOmYlZGp2PSYXCbJYL4aTUDWawJSW/fVgrnGFzlGEKXIpk2bcMMNN+Cyyy5DY2PjoO2HDh3C7bffjs2bN+t9W7duxWc/+1n88pe/HPX83d3duPHGG01i0u/347777sM111wzKCJy586duPnmm01RGL/4xS/w3ve+F9dcc82o1/vkJz9pEpNlZWV46KGHcPXVV5vqS27btg3XX3+9Lmr7+/tx+eWXY/fu3XA6p1ckIfP64fjgdVBOHkWm9Qh4X9fYD+YcatcpqF2nkH7jRb1bqqwVwnLOQl1cSl5/AUZP5LNhwwY89thjevv1118v4miI04GrCngoADXQDbWvWywDXWK9rwtqT/ukCkgTdifkmkZINY2QahogN8wrzHWIWYeiKLj66qvx9NNPm/qrq6uxdu1aeL1eHD16FDt27BDvbCEyGnzoQx/C888/f1rp4Ycik8kMKSYZY1i6dCnmzp2LqqoqDAwMYM+ePaZ9FUXBXXfdhcOHD+PRRx+lVK8lAP0fIIhpTuqlPyL5/JOwLDwD8sIVsCw8A1Jt04ytP8MYE7PWnR6gqmFMx3AlowlL7RPTpGa2nUmKG0Ttw/X1FLiSztmWMrZl+0sFSQKYBEiySCWrSURm16SizQnYXWB2R07bad7P5jT2t4v9qZbR9IAn41C6TkHtbIXScVIsO1uhdrfBuu4CuG/8crGHSBBEAcgcehuZw2/DcsYGyHMXlczfa8YYmK8Wkq92cJRl53HwzmNGlGVHC5CMnf5FlYyoed0/ygtaT4Up6hJOD5jVYdT+s2XXtaU1t63V/pOmbuIN51zcc6SShiBMZ9eTxnoqCZ5JAamkIRC1/Xk6aQjHfMmo7yP6SureZjJxesA8FdoEqgowj1f8Lri9Wn+FkUqYJlYRMxBZlvGJT3wCX/va10aNFFyyZAmefPJJfOlLX8J//ud/6v3/93//h3/6p3/CueeeO+LxDz74IPr7jRrFTqcTW7ZswerVq4fcf82aNXjxxRdx8cUXm1LPfvOb3xxVTr788st44okn9LbNZsOWLVuGTNe6ceNGvPLKK9i4cSOOHj0KQERQ3nfffbj99ttHvE6pIVfVQ778Wr2tDoShtB6BcvKIvlS7To3rnGpfF9S+LqR3vKz3Ma9fi6xcJKRlTSOkqnpKCzvJbNiwwdTes2cPotHotK+LOhPhqaQmHLVPX5e+zgPdUAM9olxPocgTkFJNI2RtycoqZkTgAlF63H777SYxabVacc899+Azn/kMbDaj3NK+ffvwqU99Sp9slEwmccUVV2D37t2or68vyNhkWcZll12G66+/HpdccsmQqWTfeust/PM//zP+9jejpMiTTz6JO+64A//+7/9ekHERY4fkJEFMczJH90HtOoVU1ylg6zMAAOYug9y8AhZNVsrzl8zqdJlMtgBlfrCyyZ35qb8wzEpNJQ2kDXHJNaGprwPixbEkC5koyYAkI5nOYCCRQFVllRCMsmyIRm1fZjomb8kkugmdBYjUx0GzfOw8CaWzFTzQPexxg+rREAQxY0htewGpl/8E/O7nYGUVsJxxFqwrz4ZlxfqSTM/GbA7Ic5cBc5fpfeYoyxZRy7K7FTzUV5jMB1p9QqXtyMTPYbEOLy5tDsCaIzez21Q1RyimwFMJcY+QMkSjWT4m9PUprZs4XbA5RXp4TSwiKxmz6eOzwtFTIbI7ULpVYpazbds2zJ8/f1zHfOc738GWLVvw5ptv6n2//OUvR5WTv//9703tm266aVgxmcVut+P+++83ScUDBw7gyJEjWLRo0bDHfeUrXzG1//Vf/3XEOpKVlZX40Y9+hHe+851631133YWbb74Z5eWl9705ViRPOaTl62Bdvk7v44kYlFMtUE4eRuakJiw7Towrip2HAsiEXkdmjzmSj5VVQKpugFRdD6mqHnJ1vdauAyv307PpOFm3bh1kWYaiCKmlKAq2b9+OTZs2FXlkswvOOXg0IiIdA93g2WjHfiMKkkeChR+ILiAbNAlJAnKqUYuY1lUtsdv+lpYW3Hfffaa+xx9/HB/60IcG7btixQq88MILuOSSS3RB2dfXhzvvvBP/8z//M6njstvt+NSnPoXbb78dTU1NI+67fv16bNmyBX//93+PRx55RO//r//6L3z605/GvHkUZVxM6CmNIKY5ypG9g/p4NILM7m3I7N4mOiQZ8txFsCxcAXnhGSK6sqJyikc682CMARab+AAYzy1iJBLBn/70J2zevBlPP/00Pv7xj+MHP/hBYQZKTCu4okDt7dTFY66I5LHxv6hXOlvBVbVkIqoIgpgcOOdI73nDaEeCSL/2PNKvPQ8wCfKCZbCuPAuWlRsgzymdqMp8houyBESkJQ/1gof7xCfUa7Szy0g/wKc4XWh2UhIiYpzjPPyvJ/qgcA6VAyrn2NhYAa99lqWblSQto4NLW5ozN4h+J5jDrQtHeCqM6Eervdg/AUFMK8YrJgHx9/nmm2/GP/zDP+h9L7744ghHCPJTrX3gAx8Y0/XWr1+PxsZGtLUZddIOHz48rJw8ceKEKQrC6XTi1ltvHfU6F110ETZs2KCnzgwGg/jd736Ha6+9dpQjpxfM4YJl0UpYFq1E9i8mTyWhtB+HcvKwiLI8eQRK27FxR83zSBBKJAilZd/gjTY7pKp6SNX1kLWllJWX/howq23wMbMct9uNlStXYteuXXrf66+/TnJyEuGpJNRQADwcEMtQP9RQH3i4H2qwV49+RDIxNQOyO3XhKNU0QqpugFwrlqzcRwKSKBnuvPNOpNPGd8QnP/nJIcVkFqfTiZ/+9KdYtWoVUqkUAODHP/4xvvjFL6K5uXlSxuRwOHDkyJFRpWQusizjxz/+MV5++WW0tooJ/KlUCo899hhuu+22SRkXMTFIThLENEYNBaD2doxhRwXK8YNQjh8EXhC1Q6TKWj0NrLzwDMiN86c0Tdls54EHHsCXv2yk2vztb3+LBx54wFQXhZjZ8EQcSlfroChItXuS61CkkuDBXjB/zeSdkyCIoqO2HwcP9g69katQWvaJl4bTJKpyKJjNAVbdBFQP/+DJFQV8IAAeyhGYYU1i5vQhk5rCkQ+PonK8/9E3TLOit37yPKyuLXE5abUDVhuYxaat28EcLiNFvEkwugzJ6HAZaeMdhnSExUYv3ghiGrB27VpTu729fdRjotGoqT2el4dz5swxycnc9LD55NbEBIArrrgCPp9vTNe54YYbTHX9nnzyyRknJ4eC2eywzF8Ky/ycOtFKBmrHSS268jCU1qNQWo9MXNKkklDbj0NtP45M/jbGwHzVItIyKy6r6o0oTPfsreu7YcOGQXKSGBmuquCxiKjxGAqIZbgfPNQHNdxv9IUCQGISSgiMB4sVkr9GfCprIPlqwCprxe9+TSMJyBJHKWLkZLGuOxTxeNyUOh0AvvSlL4163JIlS3DFFVfotXQzmQx+9atf4atf/eqkjMtisYzr3iKL0+nEDTfcgG9+85t634svvkhyssiQnCSIaQzzeOH51/+GcnQfMkf3InN0L3j/MC8q89BrSryuzX51uGBZsEwXlpYFy8CcVOOgUFx55ZUmOdnR0YFt27aNmiaJmF7wRAxqTweU3g6oPR1QezugdreLaMb+nsm9GGOQKusg1c2BXDcHUv1csaybA8njndxrEQRRfGwO2C6+Epm9b4xaV2pQVGXzMljPOBuWlWeXdFTlWGCyDOatBrzVw+7DOQfiA4OlZbgPPBUXkzhSCSCVEMu0tkyK9clMq9oTSw1K11TjHmcUSTZzg80uUstahTBkmkCExaavM6td7Gu1i2iV7L66ZMzdxzjOtI/FSi/QCGKWYrGYXxlloyBGoq6uTo9KAIBEYuySK39fv3/4shx//vOfTe2LLrpozNfJ3/fZZ5+FqqqzcqIoky2Qm5ohNzUD510GAOCqIp5ZcmpYKp2tw0+KGiucgwe6kQl0Awd3DdrMXB5IVVpq2DIvpDKRrlsq1yLnyyq0da+oEz2D2LhxI/73f/9Xb2/btq2IoykeXFXA41Hw2AB4JAQ1nBWMhnQUElJEPxa0vuMIMFcZpMoaMF1A1hoy0l8j0q/Owr8nxMzimWeeQSxmiP1zzz0Xy5YtG+EIgxtuuEGXk4CYBDRZcvJ0mMikK6KwkJwkiGkMk2VY5i2BZd4S2C++AgCgBro1UbkPytG9UE61jK2uRCKGzP7tyOzfjiQAMAlS43whKrV0sFJlLb2cmiSWLl2K5cuXY//+/Xrf5s2bSU5OM7iqioekng4oWfmYIyJ5JDT5F7XaINU2Qa6fC7lWyEe5fq6YgTnDHtIJghgeuboerqv/EcA/QulpR2bPG0jveQOZg7tEncLh4CqUo/ugHN0H/O5nYOU+EVV5RjaqcuZFLTDGAFcZmKsMqFswrmM551ptyIRZYKaShsQcyzZJBrPZ0dPaC8BIiyhJDI0fvhmyw6WJQbv4W66Lw3z5SLKQIIip48gRc33e+vr6UY/ZtGkTfvWrX+nt7du348wzzxz1uFgsZno2Yoxh/fr1w+6/Z88eU3s8z1HLli2D3+9HIBAAIKI9jx8/Pmkp56Y7TJIhaxMescGoz8lTSVF+QnveUXraRVtbnm72Fx4bgHJyjDWh7U5IZV4hgUwCU5OaZRUmwVnq6WQ3bNhgap84cQJdXV2ora0t0ogmDleygjEiJGMsAh4dMNZjA0P2q7EBIB4d/QKFhklgFX5I/loj8tG0XiMyQxDEDOd0JgFt2rQJFosFmYyIod+xY0dJ/E2byKQrorCQnCSIGYbkr4HNXwPb2eIhgifiyBw/AEUTlpmW/WO74eMq1FMtSJ1qQeqvvwcAMK9fpIFtWgCpTovKqmks+Rv9UuWqq67Cf/zHf+jtJ598EnfddRe9cCwxeCqhPXTnCEhdRJ7+Q/hwsDIvpNr8KMi54mGIZmESBJGDXN0A+Z0fgv2dHwJPJZE5vBvpPa8js+cNqN1tIx7Lw/1Iv/oc0q8+Z0RVrtwgoiqbFs76vzeMMSONqfv0o9B7//hHAPfq7draOjgu+shpn5cgCKIQ5KdzyxcoQ3HzzTeb5OSDDz6I6667btSoxIceegjJpDG55n3vex+qq4eOig+Hw6b0rwCwcOHCUceWS3Nzsy4nAWDfvn0kJ0eB2eyQG+ZBbpg3aNugSZu54rKnAzwantzBJONQk3Ggt3Ns+ztcZoHp8YI5nIDNISYF2cTkIGZz6H2if6jttkkvibNixQq43W5TWuQ33ngD73//+yf1OvlwRQHSSfBUUtTTTiXB0ykgnQJPJ4GUtkynRH8qCZ6IDZKLao50nPIUquPBaoPk9YN5/ZDKs0ufHvnI/DWQfFVgMr0un81wYFCmk6m8dqlwOpOA3G43Vq1ahR07duh9e/fuLbqcnMikK6Kw0F9bgpjhMIcT1mVrYV0mQte5qkLtOJETXbkPas/Ywth5KID09peQ3v5SzgXyUknmLKWyigL8RDOHK6+80iQnjx49ij179mDVqlVFHNXsgyuKeJDu7xHSMS8NKw8FRj/JRMn++8lJwSrXzdVSsU6PmnAEQZQWzGaH9YyzYD3jLOBqQOluE1GVe7NRlSPMDs2NqvztT42oypUbYFm+bkZGVU41HR3mWuH0QEwQRKnS2tqK3/zmN6a+K6+8ctTjzj//fNxyyy34/ve/D0AIls997nO4//77B0UsZHn66adNJS+cTifuvvvuYa+R/3KxqqoKLtf4Ipnmzp2LN998U28fPnx4XMcTZpgkgfmqIfmqYVkyOFKWx6ODpWX2mSvQPbZsT6dDIgY1EQO6JymFn8UKZndo0tIsME1y0+oARhDzufOS181rwEv7jN/Dlx9+EJfEhkjdP8xkZp7JCNE4SC7mCcZ0Ejwl9ilWWtTJhnm8umg0iUevD5K3EqzcB8nrF/WvaTI4QYyJ3GwGALBo0aJxHb9w4UKTnNy3bx8uvvjiSRnbRJnIpCuisJCcJIhZBpMkyI0LIDcugP0dYhaeGgoIUdmyD5kje6GcPAwog8rXDw3neirLzB5z0XbmLh9aWlbWgcmTO9NwOrJu3TrMnTsXJ0+e1Ps2b95McnIS4akk1GAv1P5ecG2prwd7ofb3gIeDAC/gwzBjYBWVkKobIFfVQ6qq09OyUuQxQRCFRq5phHxxI+wXXyGiKg+9LUTlntehjvKCbnBU5XKR6n3uIshzl0Cqrp/1kZXjJb+uSUNDQ5FGQhAEMTI333yzqQZkc3MzrrrqqjEde++998JiseDee+8F5xw/+MEP8Le//Q2f+cxnsHHjRlRWViIej2Pfvn147LHHsHnzZpFGG4DH48FvfvObEetaBYNBU7umpmbcP1/+MaHQ5JRj6O7uRk/P+GrL58vWmQhzumGZuwiYO/jlNlcyUAPdQlgGesAjQfBIEGokJNYHQlAjQVEyY6zvKQpNJg2eSQPRyKRFOq2xpJAzDRxvvP46klUl8vMWA4tVRDmW+7VoR5/RLveBeSsheX1g5T6KdCSISSYQCJiyCwBiUs94yN+/2JOA3njjDbzyyiumvrFMuiIKC/31JggCktcP27oLgHUXAAB4OgXlxCFkjuxFpmUflCN7J5SGhUfDou7l0b3mDRYrpJoGISuzaSvr5kKua5pVufsZY7jiiitw//33632bN2/G17/+9SKOanrAORd1LPp7oAZF1CPXlmqwF2qwD7y/BzwamZoBWe2Qqus0ASmWUlW96KusIwFJEERJwGx2WFeeDevKs4Grb55AVGXed7rDBXnuIljmLoY8bzHkuYvFpAsSlsNCkZMEQUwH7r33XvzhD38w9Y0U+ZiPJEm455578LGPfQx33303nn76aezduxef//znRzzmyiuvxF133TVqitaBgQFT2+l0jmlcIx0TiUzOc8ODDz6IO++8c1LONVtgskWkqK8eecKO/gyoiUo10g+uCUx1QBOZ4Zz1gVDhIzInkbNqRPp4r82Cs2u9uLipssgjmgQsVjBXGZjbA+byiHWXeV1yD9Hv9oiU+hTlSBQBhYtPsa6dy0Qmr1RXV09o0k4u+ZOAXC4X3G73uM5RqElAEyGdTuOmm24y9W3atIkiJ0sAkpMEQQyCWW2wLFoJy6KVAMRDgNrdpkdVql2tUDpbwft7J3aBTBpq+wmo7ScGX7uiSpOWTaLguNeXMzPOD+Ypn/T6DsXkqquuMsnJnTt34tixY1iwYEERR1U8uJIBHwiDD4TAoxHxYBnuFxGPwV5wbakGe4FkYvQTTiKs3K8LSKmqDrIuIOvFbE16cCIIYpoxOKpyF9J73kBm7xujRlUCABIxKIfehnLobaPP7oQ8ZyEsmqyU5y6GVNc0o767T4d8OUmRkwRBlBrPPvssbrvtNlPfpz/9aVx++eXjPlcqlYLFYoHVah1xP4vFgltuuQW33HLLmJ6D8uWkw+EY99jy5WT+OYnSgzEG5vIALg9Q2zTq/lxVRR3EgTxpGQ5CHQgD6YSosZhKAqmEtkxqfQkgqS0z6Sn46YALm/x49SPnYkmFG1Ixny0lSYhBmw2w2LT0tDYwqw3MagfsDjC3IROlXLGo92tLm714PwdBzACuuOKKcR/zjW98A3fcccdpXbeUJwFNhNtuu82UYtZqtZrexRLFg+QkQRCjwhiDXNsEubYJOP/dej9PxKB0nYLaKWSlvuxum/ANPA/2IhPsBQ7sGHoHJoGVVRhpPcr9Wv0As8SUyn3Top7ABRdcgKqqKvT2GqJ38+bN+Od//ucijmpy4KqiPQyGwAfC4mEwKx6HaSMeLd6ALVZIlbWQqushVTVAqs4KyDpIVXVg9vHfjBEEQUwXRFTlBlhXitmjSlcbMntfF7Ly0NsjR1XmkoxDObIHypE9Rp/NDnnOQshzF+vSUqqbOytTvOendaXIyeLDE3HwWES88LY7S/7ekZh+fO5zn8MDDzxQ8OtMxsvIHTt24CMf+QgyGSOV5Pr168f9Ai8YDOKmm27CY489Nqb9M5kMvve97+H+++/Htddei+9973vw+Xxjvt5E/t1O93/rPJMBG2Mk62yFSRKYpxzwlAN140tHmAtXFVG7MU9gZoUmTyW0vqG3g48SgqVtr9Y+w+w0yjkAWCyaTNQkoiYUYbOLZVYu2mxgFqNf32azCyk5C+/PCCIXrjKoanG+I3iRrpvPTJoE9JOf/AT33Xefqe+OO+7AmjVrijIewgzdyRAEMWGYwwXLvCXAvCWmfq4qUPu6BkvLzlaRWuV04Cp4OAAlHABaR9nXas+TlrkyM2fpdIui9UW4CZdlGR/84Afxk5/8RO8rFTnJVQVIJsCzn1QCSMaNdjyqi0UeDUHNEY18IAQeGxj9QWyqcLgg+aogVVRB8lWLGpBam/mqIfmqwNzl0/4lBUEQxGQh1zZCrr0S9ouvBE8lkDn0tsig0HoEyonD4JHg2E+WSkI5ug/K0X3QFafVDrmpWdSvnLcYlrmLITXMm/E1gyhycmrh8ahI+d6v1ZnuN2pOZ/tNE6OsNjCPF1JZBViZV0yIK6sA82TXxZKVafsUeeIS5xxIJ8HjMSFZkzHweAxIxMCTcTCPF9YV64s6RmL6cOjQIbznPe9BOGyU81i2bBn+9Kc/jeulZDgcxiWXXILt27frfRaLBddeey2uueYarF69Gn6/H7FYDC0tLXjmmWfw/e9/H+3t7VAUBT/72c/w0ksv4cUXXxy2vpXH4zG14/H4OH/awcfkn3Oi3HzzzfjIRz4yrmOOHDky7uiY/vu+jfSJY7A2L4Zt4WJYm5fAumARJNfsKZMyVTBJBhxOMAdNViUIYnYyXScB/fnPf8ZnP/tZU9/73/9+fPnLXy7SiIh8ZvbTP0EQRYFJsl4zwrpqo2mbOhCC2nkKSudJQ1p2tULt6QT4JNeDSCeh9nYCvZ1QxrK/bBGzB+0OMWvQ5gCz2sW61sdsDrGPad2Rd5zoG3QckwBwgHPxMkn7XPHed5vk5CuvvIKOg3tRW11t7Atj/8Ef7b+bqor5lJkUeDJhiMVUdj0+pGSE1se1fbL7TlX6mtOFlXkhVWSFoyYaK6qEfMwKyFlUy5QgCGKyYTaHKaqScw4e7IVy8ggyJw5DOSk+PBQY+0nTSSjH9kM5tt/os1h1YSnVNIpodu0zEyaQqKqKzs5OUx9FTk4MzrnIzpAVjYEeI/17tv50fy+QiI3vxOkUeH8PlP6ese1vtYOVV0Dy5EhLfb1Cl5y67LQ5wFVVRNMk4uCJmP6BqR0fvT8p1keqp2Y54yySk8SYOHbsGC655BJ0d3frfQsXLsQLL7yA6urhY7mG4pZbbjGJyerqavzxj3/E2WefbdrP6/Vi7dq1WLt2Lf7xH/8RH//4x/H0008DAFpaWvDBD34Q27Ztg90+OC1kKcvJmpqa0671NRZSRw9BDfRB6e5E4rWXRCdjsNQ3wdq8CNaFS2BrXgzL/GZI9vFHvBAEMT3gnEMNBZHpaofS0Y5MZzsynW1wnn8RnGefV+zhEafJU089hUWLFo3rmPF+bw9FKX/PjpVXXnkFf/d3f4d02ni3ecEFF+DRRx+d9s+VMwmSkwRBTCmSxwtpkReWRWeY+nk6BbWn3Yi07Dolag2G+8FDARFxWegoPCUDxDMiIrCwVzJxdkaBxypjIC0UKuccj376I/jk8tHraMxkmKtM1Bj1eCFVVA4Wjr4qSN5KkYaGIAiCmDIYY1rUeTWsq8/V+9VQH5STIrIyc/KwiLAMjqM+dSYN5fhBKMcPDt5md0Dy10KqrBHC0l9rlpdlFWCSNAk/XeHo7e01pUoEKHIyH64o4PEB8OgAeCwCHgnqUY/5kY9IJYs9XBG12NcFpa9rbPtbrOJ+c4oyS/DE+F8kEZPPhz70ITQ1Ff6+/oILLpjQca2trbj44otx6tQpvW/evHnYsmXLuP9GHThwAL/4xS9MfY899tggMZmP1+vFE088gTVr1uDQoUMAgF27duGHP/whbrnlliH3z6WnZ4wTCnLIFbEAUFFRMe5zFAulPwA10Dd4A+fItLci096K+Msvij5JgqVpnhZduRjWhUtgnTsfzDJyHVCCIEoHzjnUSBhKR5suHzOdHVC0dT6EOLJU15GcnCCqCqhKceRV/pyzRYsW4Ywzzhh65wIy3eXkW2+9hcsvvxyxmDFRccOGDfjjH/8IF2UYKClIThLENCf+2suI/um3sK1YCfuKM2FdvBzSBHKBFxtmtUFumA+5Yf6Q27migA8EoYb6wcMBYxnuBw/1Qw0HhMwMBcY/S77IOCwyLp1Thc0txoutPxzrnlly0uESkQSabGSeckhuY515vJBytjF3OdW6IAiCmGZI3kpIqypNWRPUcL8WWWlISx7oHuEsw5BMQO04AbXjxNDbLVZI/hqTsMxts4pKkZatiOTXm2SMTUl0zVQzSDDGcpZ6X0RbH4Cq7zMw7e7hxs0UZ6XgM/2/5zTh0ksvxaWXXlrsYQxJR0cHLr74Yhw/flzva2xsxAsvvDBsStWReOKJJ7SsL4ILL7wQF1100ZiOdTqd+NKXvoQbb7xR73v44YeHlJOLFy82tXt6ehCLxcb1wvHECfP3Sf45S5l0y+Gx76yqyJw8hszJY8CLz4o+iwXWec05KWEXw9I4O2tBlzqcc6RSqSEjiImZhS4gO7PRj+26fMx0doDHoqOfJIdMZ/voOxHEMORPAorFYohGo3C73WM+R7EmAb399tu47LLLEAoZZcXWrl2LZ555BuXl5VMyBmLskJwkiGlOcvcOpA7uRergXgxsfhSQZVgXLoF9+SrYVpwJ29LlkGZAbQQmy2DeSkjeylH35anEMBJTW2oSk4f7xez1EuD9C2p0OVnlsGJxhRuc89JKNSBJgN0p0tfaneIzSC7myMdc0UgzcwmCIGYlUrkPUk5KWECkeFe0yErl5BEoJw+LNOynQyYNtbsNanfbMAORIfmrIflrwXKjLz3lova00w3mdIE5tGUBal/m15usra2FxVK8xzHOOZBJg6eSIp1pOgmkkuDplL4UfTnLVELsm4jpQjErHtXYAHg0UpKCkXm8oua0noFBSwPv02pRe8rFzxIJiWjNSBA8EgSPhKAOhIz1SFBk8yjV1PeSDOZ0AQ4XmMMFubax2CMiSpiuri5cfPHFOHLkiN5XV1eHLVu2YOHChRM6565du0ztSy65ZFzHv+td7xp0vmQyOUjMlJeXo6GhwTTp4+jRo1i1atWYr3Xs2DFTe/ny5eMaazGxrzkL1Xf9N1JHDyHdchjpo4eRPnkMUMZUzATIZJA+egjpo4cQe050Mbsd1vkLRe3KhYtha14Mua6h5LMSzER2796NZ555Blu3bsXWrVtx44034j/+4z+KPSxiklAjYV0+ZjrbjWjIrg7w6MCkXSfTOcw9MUGMgcrKSvh8PvT39+t9J0+eHNd3ZTEmAe3btw/vete7EAgY5UZWrlyJZ599dlplSJhNkJyc5aRSKRw6dAj79+9HZ2cnwuEwXC4XfD4fli1bhrVr107qDC3OOY4cOYLt27eju7sb4XAYDocDPp8Py5cvx9q1a+GYxKi//fv3Y+/evWhra0MqlUJDQwOam5uxceNGSDPkJju1f7e5Q1GQPrQf6UP7gd8+JmTlgkWwrzgTtuUrYVt6BqQZHsLObA7I1fVA9ch1nES9oohRczGlvZTT6i+K9Zy+VFLsm872iz69P78vlRhz2q7L5lbh2qUNuKK5Fhc2+mEZ7+8nYwAYwADIFk0eOrSal0ImQpeKDlFP0+7QRaO+n8OpbXPq27PbYLGWliwlhkSNxZDpOIVMWysyba2Qa+vhvvjdxR4WQRAFINPZgUxnG+xnrAazTp9JIJLHC2nFWbCuOEvvU6NhKCePCmnZfhxqXxfUvi7w/t7JqUmtKlB7O8cuQa12sKywNIlLtxA/udsceUttG+xO0/dmJBKB0+nUUxzV19eJGoKZtJCEmZSQXmltPZ3O2aYt02Jp9KX0Pp5JC3Foko1iaQjHHNmYTk1ZetFCwsp9Rrp3X42RAj4rIyuqxpYC3l0OVI+ewpJzDiRimsDUZOZACDwcFFk+sv0DIX19xMlwFqv43XG4AIdTX2c564P73eKeLW9fulcjxkpvby8uueQSHDhwQO+rrq7GCy+8gCVLlkz4vMFg0NSuq6sb1/H5+6uqikAgMGR93pUrV5rk5KuvvjpmOXngwAH09RlpUV0uFxYsWDCusRYTJssi8nFeM3DxewAAPJVC+uQxpFsO69Iyc6p1zN+hPJlE6uA+pA7uM67jcsO6YBFszYthbV4ES0MT5NqGaZmpaTrxq1/9Ct/5znf09quvvlrE0RDjQbxjikLp7YbS2wOlpxuZvm4oPd1QerqQ6WyfVAFpwmKBpbYecl0DLHUNsDbNK8x1ZgGqyqCqxUrrWjr3ccuXL8fWrVv19pEjR8YlJ1taWgadr5AcPHgQl1xyiSnV+7Jly/D888+jqqqqoNcmJg7JyVnIgQMHsHnzZrzwwgvYunXriHmjbTYbPvShD+HWW2+dcA0LAOjr68O9996Ln/zkJ4NSWuVf78orr8QXvvAFbNy4cdj9RoJzjv/93//FAw88gLfffnvIfRoaGnDdddfhq1/96rhC0ksNpT+ATPupUXZSkD5yEOkjB4HfPQ5IknjAWL4K9hWrYFt2BiTX9P1vcDowxsDc5eJlVAEwIhISQFITlYwZIlHKCkWGcsbws5xt+gzVbB9jAMvtk4SIZBK9hJqFcM6h9vch03YKmfZWpNtakWkX6/n1Z+yr1pKcJIgZSuyvz2Jg86NgTifsq9fDcda5cKw5C5KnrNhDGzeSuxzS8rWwLl9r6udKBmp/L3igWxeWaqALam8X1EA31EB3YbIgpIXI4+HA6PsOB2O6PAKAd2fSaPv0ZQjH4ugMDyClqAh9/kOTNOAZiMUqMjFUmEWj5KuG5K8WtagrKqc8OwNjDHC6ITvdQM3okYmcc1HPPBICj4XFhC+705CKlF2CmGICgQDe9a53Ye/evXpfZWUlXnjhBaxYseK0zp0flRCNji8N4cDA4Jf2w9Woes973oNnn31Wb//lL3/BZz7zmTFd5y9/+Yup/e53v3vaT15mNhtsi5bCtmgpsk/3aiKO9PEWESWpSUtlHKkeeSyK1N5dSO01R8RKvkpY6uphqWvQRYilroHE5SRx3nnmOoHbtm1DJpMparYFQsBVBWp/PzK9XUI+ZiVkb7f+Gar+46QhZwVkvfbvrhGWevFvT66qKnoJA2JmsXLlSpOcfPXVV/GBD3xgTMdGo9FB7+RXrlw5qePL5ciRI7j44ovR2WlMRF28eDG2bNmC2tragl2XOH3om22Wcf7555v+sIxGKpXC448/jscffxw33HAD7rvvPpSVje+F1+9//3vceOONYypSn0ql8Oijj+Lxxx/HrbfeirvvvhvyOOoedHV14dprr8Xzzz8/4n7t7e34zne+g8cffxy//vWvcdZZZ424f6kiuT3wf+lOpPbvQXLf26L2RH715HxUVU/hEv3DbwAmwbqgWcjK5ZqsnIYvNUsRxhhgtYnZ+gUSoMTMhmcyyHS16xIykyMhx/rQk25rLfAoiekKZU+Y/iTefA0AwONxJF57GYnXXgZkGbblq+A46xw4zjoHlqrpXdOQyRbIVXVA1dDRN1xVRdr2QFeOvOzW5KVoI52a4lFnB8eBeBQ8brycZwC8EuCtmCUTwyxWMFcZmNsD5vJo62XaugeSy1g3+rWlbWbU12KMgbk8gMsDgNKsEsUlGAzi0ksvNaVf9fl8eO6558aVEnU4GhrM0cc7duwY1/FvvfWWqe1yuYZ9/3DllVfin//5n/X2U089hWAwOKa0bT/96U8HnWsmIjmcsC87A/ZlZ+h9anQA6ZYjSLUc1qTlISi9o7+ryUXt70Oqvw+p/XsGX3NIcdkIubaexOUYOffcc03tWCyGt99+G+vWrSvSiGYPajKRJx3zJGSgd+zpkyeKbIGltg5ybb0hH7MTAKqqSUASU8Z73vMe/PCHP9Tb+RN7RuKll15CJmNMIF27dm3BJOGxY8dw8cUXm4KhmpubsWXLliEzLxClBcnJWcbBgweH7G9ubsaCBQtQXV2NRCKBQ4cOYd++faZ9Hn74YRw8eBDPPPPMsLMX89m8eTM++tGPmv4gAWJm5llnnYXKykrE43Hs3bsXhw4d0rerqop7770XfX19+PnPfz6ma0WjUbzvfe/D9u3bTf1NTU0488wz4XA4cPDgQdMM0aNHj+Kyyy7Dq6++iqVLl47pOqUEs9ngWHs2HGvPBiBmRqYO7kdq39tI7t+N9NFDo984cRXpliNItxxB9I+bAcZgmbcA9uVnwrZiJezLV5GsJIgCo8aiJvGor3d1nPbDjxrohRqPQXLO7HTOxNig7AkzJ3tCpqsDmdYTgzcoClJ7diK1ZyfCP/0fWOY3w7H+HDjPOheW+c0zLtqeSZJeRxALzxi0nXMu0m5mpWVfjsTs7xHiMB4Fj8cmJ33sTMBqA7PaAZu2tNqEKNSWzGoXKd81kSi5Z75gJIiZQCQSwXve8x7T83J5eTmeeeYZrF27doQjx85FF12E+++/X29v3rwZ3/3ud8ecTu2hhx4ytTdt2jTsvvPnz8emTZvw0ksvAQDi8Tjuu+8+fOMb3xjxGn/961+xbds2vV1RUYEPfvCDYxrfTEBye2BftQb2VWv0PiUUFLUrsylhjx6GGuof/iQjMLq4bIClrh5yXaMmMUlc5lNVVYXFixfj8OHDet/WrVtJTp4GPJ2GGgpCCfVDDfbrSzUUhBLo06Me1Uh4agYky5Br6vSo41yZL1fVgI0jSIOYfHgR07ryEkrr+u53v9tUkuLVV1/FgQMHsGzZslGPnapJQCdPnsTFF1+M1lZjUv68efOwZcsWNDU1FeSaxORCcnIWs2nTJtxwww247LLL0Ng4eBbvoUOHcPvtt2Pz5s1639atW/HZz34Wv/zlL0c9f3d3N2688UaTmPT7/bjvvvtwzTXXDIqI3LlzJ26++WZTPv1f/OIXeO9734trrrlm1Ot98pOfND1olZWV4aGHHsLVV19tipDYtm0brr/+el3U9vf34/LLL8fu3bvhdDpHvU4pIzmccKxeB8dqcdOqJhJIH96P5L7dSO3bjdSRg6OnPuMcmeMtyBxvQfRPTwEALHMXiBSwK1bBtmwl5HJvgX8Sgph5cEWB0tcjit3nSUi1/zTSBg4FkyDX1sHSOAeWhqbCz+4kpgWUPUEwU7InqAMRWBcvR/rIgRHrBmaOt2DgeAsGfvMryFXVIvXr+nNgW74SbBakB2OMiZqE5T5gwfAP0pxzUT86ERMpOONR8ISQlkY7JkRm7j7Z7VofUslJGLQkIg6tVsAiPix3aTXaos9m9OWJRWazifqZVpuoKZ1t6+IxZx+bXZxvhkQWEwRhEIvFcPnll5uknMfjwZ///GecffbZk3adSy+9FH6/H4GAuLeNRCK47rrr8Nvf/hbWUWoj//jHP8ZvfvMbU9+HP/zhEY/51re+ZRKY3/rWt3D55ZcP+90eCARw4403mvq+9KUvweud3c+3srcCcs6kZ8451EAfUi1CVKaPHkK6rRVqoPe0rmOIy92DtunisrYeks8PucIHyeuDVOGD7K2AVOETqbBn2CSr4TjvvPMGycnPfe5zRRxR6cEVBWooKARjMAA11A8lFDSkY9AQkQWr8zgcjEGq8EOuqoZcVQNLVY1Y16Ih5WoSkETp43K58OEPfxi/+MUv9L677roLDz/88IjHHTp0yOQSLBYLPv7xj0/6+Nrb23HJJZfg+PHjel9jYyO2bNmCefOo5up0gXE+wtsMYsZRW1uLSy+9FF/72tfGHCn4pS99Cf/5n/9p6tu6deugVBP53HHHHbjzzjv1ttPpxKuvvorVq1cPe0wymcTFF19senm6bNky7N+/f8Rrvfzyy6aHEpvNhldeeWXYh5K+vj5s3LgRR48e1fu+/e1v4/bbbx/xOoVm7969phzce/bswRlnDI4CmChqMoH04QNI7t+jycoDQDo97vPIVTWwzJ0P65z52nIeLA1NVDOnAPT29oIxhsrKymIPhRgDaiwKpasTme4OZLo6oHR3inZXB5Te7tHTLo8TZrfD0jBHl5BiOQeWugbxUnscFPrvD1F8qqqq0NfXN6h/LNkTAPGSZCqyJ2T5+7//+3FlT3jHO94xruwJgEhlVyrZEyb6b1AJBpDY/joSb76G5O4dY/5eZ24PHGvOguOsc2BffRYkF0VXTwZcUXSpiVypydgQktFmkpBim41eVhFTDt0DzGxSqRQuv/xy0+QdWZbx8MMPjxiZOBxNTU0j1r6755578P/9f/+fqe/ss8/G3XffjXe84x2D9j916hS+/e1v48EHHzT1L126FHv27Bm1zt5HPvIRPPHEE3q7vLwcDz30ED760Y+OOEkZABYuXIi3334briJ/B06Xf4NqMgGlqwOZzg5kOtugdHaIiZedbYPq3hcCZrNDqvBB8lZo8rICktcHOU9iSl7ftI/E/OEPf4ibbrpJb8+bN8/0An4mwlUFPBaDGouCR6NQIiGzaAzlRDwG+6EOREacoFdQrDZNPFZr4jH7ETJSrqyaNu/Hpsvfn0KS/9/g/f/zXVTMm1OUsQRPtOIPnzW+Q4v9/6OlpQXLli1DOucZ87e//e2wGQcSiQQuueQS03v9m266Cf/zP/8z4nXyJ568+OKLuOiii4bdv7u7GxdeeCEOHDig99XX1+Ovf/0rFi9ePOK1iNKC5OQs4/jx45g/f/64juGcY8OGDXjzzTf1vptvvhkPPPDAiMetX7/e9JLw//2//4fvfe97o17vrbfeGiQVDx8+jEWLFg17zIUXXoi//e1vevuOO+4YNZ3LX/7yF7zzne/U2xUVFThx4gTKy4tXG3Cqbwp4KoXUkYN6GtjUoQMTr8sky7A0NAlhOWc+rHPFUuTEpxn44yEcDuOpp57CI488gueeew5f+9rXRv19JqYGrioi7UtXBzJdnVC6Ow0J2d1ZsDQwUoXPLCEb5sDaOAeSv3LS/n3RQ8nMJ1dOTiR7AgB84hOfGHP2hGXLlqG/30gJNt7sCQDwq1/9akzZE/JfTI41ewIgXkyWQvaEyfg3qCbiSL69HYk3X0Ni++vgA5GxHWixwH7GalGncv05kP00IYYgZhN0DzCzOX78OBYsWDBp5zt27NiI7xRUVcXVV19t+l7O0tDQgDVr1sDn8yEej+PIkSPYs2cP1LwJfD6fD3/961/HVAczGo1i06ZNg+pbzpkzB6tXr4bNZsOhQ4ewZ485zehMmKBUShRbXObDHE6zxKzQJKbXB6miArLXB+Z0gTkckOwOMIcTsFhKJjJzz549g37/T506NeR9e6nAM2mosRh4dEAIxlgUajQKNTYAnl3GYlCz26NRqPGosW2EchNTjVRWDrmyGnJ1nnTUPlK5t2R+V06XmfD353QhOTkyt912G+6++269bbVacc899+Azn/kMbDab3r9//3586lOfMonJyspK7N69e9Taj+ORk8FgEBdeeKGpjIvb7cbjjz+O5cuXj+dHA4BxexJicpn5uZwIExP5B8cYw80334x/+Id/0PtefPHFUY9raWkxtT/wgQ+M6Xrr169HY2Mj2tra9L6R5OSJEydMYtLpdOLWW28d9ToXXXQRNmzYgNdffx2A+OP2u9/9Dtdee+2YxjkTYDYb7CtWwb5iFcog8vCnjhxEav9uJPftRvrQfvCxpidTFGRaT2j1r/5qXMPhhGXOPE1azjOkJaWGHZavfe1rplotv/71r/H1r399xtz8ljpqIq5HP5qWXR1QerpHT408USQJcm09rA05UZCNc2Cpb6S6r8SkIMsyPvGJT4wpe8KSJUvw5JNPDsqe8H//93/4p3/6p1GzJzz44IMmMel0OrFly5ZhsyesWbMGL7744qDsCd/85jdHlZMvv/yy6QWozWbDli1bhsyesHHjRrzyyium7AlHjx7FfffdV/TsCZOB5HDCueF8ODecD64oSB3ch8SbryLx5mtQujuHPzCTQXLXW0jueguhHz8A68IlQlSedQ4sTfPo+2cSCYfDOHjwIA4ePIgDBw7gkksuMU2WIwiCmO5IkoT/+7//Q1NTE+677z7kzodvb28fsf40AKxatQq//OUvxyQmAfFC8umnn8a1116LF154Qe9vbW011aDKZeHChXjkkUdKQkzOFCS7A9LcBbDOHSzCB4vLdn29UOKSJ+JQEnEoXR1jP0iWwewOISwdTn2dOZxgdrsQnjnrw+7rcIDZjX7IMsDYuO6nVqxYgfLycoTDxuTXV199ddRUx6b/BpwDigKeToGn00A6DZ5Og2fS4OmU1hbb9HYmA55KgWfSQM42ns4AmbTYlohD1cQjjxkikicnIbV9oZEtJmktV2hRt5WagKyugVxZDckxvUs+EcRk8p3vfAd79+7Fn/70JwBAOp3GLbfcgn/7t3/DunXrUFZWhpaWFmzfvt30nW+z2bB58+ZRxeR42blzp0lMAmKi0vve974JnY/i9ooLyUliTKxdu9bUHu2BAhB/GHIZTyHaOXPmmORk7gvOfPKjOq644gr4fL4xXeeGG27Q5SQAPPnkk7NKTubDrFbYl6+EfflKlF11DXgmjfTRw6Jm5f7dSB3cO+4bTp6II334ANKHD5j6Ja8PlrlCWmaFpaVpLiT79E6/MhlcffXVJjl54MAB7Nq1C2vWrCneoGYIPJWEEghACfRCCfRC7e8TkZCBPtHX3Qk1FCzoGJjTCUt9Y1461rmw1NaPOxUrQYyHbdu2jXuS0ne+8x1s2bLFlD3hl7/85ahy8ve//72pfdNNN42Y1h0A7HY77r//fpNUPHDgAI4cOTJi9oSvfOUrpva//uu/jlhHsrKyEj/60Y9MQuiuu+7CzTffXNTsCZMNk2V9AlL5338amVMnkHhDiMp0y+ERj00fPYT00UOIPPpzyLX1uqi0LVlBKUdPk+uvvx5PPfWU3k6n0yQnCYKYcdhsNnzve9/Dtddei+9///t44oknBr0fyGfDhg349Kc/jeuvv37U+pT51NXV4bnnnsMPf/hDPPDAA9i9e3BNQ0CkfLvuuuvwta99DW63e1zXICbO2MRlOzKd7VB6ukX6Ti2dpxrsB08mpmagiiIkWyyKyS3GkQNjeR9JSMshPuvKXfhLjpx87t++hgte+K0QnRIDwIBshhBJAjIZTTymdfFYtLSnU4kkaSl+K/To2Kx0NESk6GNuD026I0ZFVRhUpTi/J8W67kjIsozHHnsMn/rUp/Doo4/q/d3d3fjzn/885DE1NTX42c9+NqH08cTsguQkMSby6zykUqOn/qyrqzPNVEwkxn5Dmb+v3+8fdt/8P4Qj5aTOJ3/fZ599FqqqmlLAzWaYxQrb0hWwLV0BXHk1eCaDTNtJpE8eR6b1BNKtx5E5eRxKX8+4z62G+pHa3Y/U7p05F2QicmzOPCEra+sh+6sgV1ZB8ldN+7oRY+Xcc8/FvHnzcOLECb3vkUceITk5ApxzqJEw1ECvIRv7+4y2JiHHnOLwdGAMcmUV5Jp6WGrqRNH72jrINeIjlZXTAxFRFCh7gsFsy57AGBOTgebMR9lV10AJ9CLx5jYk3noNyT27RowIV7o6EP3jZkT/uBlSWTlsy1fBtuwM2JaugHX+QpKV42TZsmWmdm6KYYIgiEIwf/78okUFrF+/Hj/96U/xox/9CHv27MGePXsQCAQQiURgt9vh9XqxYMECrF+/fswTjIeDMYabbroJN910E/bt24c9e/agvb0dqVQKDQ0NaG5uxjnnnEPP+iXGSOIyi5qIQw0GtZqDQlgqIVGD0KhHqInMsWZ+KhacDxKGw/3rXO/14C+njPYbpzqg9k99ityiIMuQ3B5DMHp9kCr8OXVFs1GPfkieMiolRBAFxuPx4Ne//jU+/OEP47vf/S5ee+21Iffz+/24+uqrceedd6K6unqKR0lMR0hOEmPiyJEjpvZYQrI3bdqEX/3qV3p7+/btOPPMM0c9LhaLYf/+/XqbMYb169cPu39+7YjRojlyWbZsGfx+PwKBAAAR7Xn8+HE0NzeP+RyzCWaxwDqvGdZ55v8+aiyqi8p06wlkWo8jffI4eHRgfBfgHEpnO5TOduCNVwdtZm4PZH+lLixlv5CW2XW5skrUjZjm4ocxho997GO466679L5f//rX+Pa3vz0rH6Z5KqXLRSPSsdfc7u8DMgVKtzoEzO6AXFsnBHpNnSEha+ogV9dSBCQxo6DsCTMP2V8F92WXw33Z5VBjMSR3vSmiKne+CR4bPrJFjYSReP0VJF5/BYD4W2hdtFSXlbbFyyA5XVP1Y0xL8lMIHjhwYJg9iemOOhBBpq0VmfZTSLeLpdLXA8nhhFReodc8M0V7aP2UTo6YaVgsFqxZs2bKJluuWLECK1asmJJrEYVHcjgh1TmBupHfQ3HORcrRoCExc4WmEJkBITLDoZIXmWdVme9p9wTDiGcUOC3TYGKY1QrJ5YHkdoO53JDcHjCnSwhHlxvM7RZLbZvo80ByucBcHpE6d5q/1yGImciHP/xhfPjDH8axY8ewfft2tLe3IxqNoq6uDvPmzcP5559vqkM5VsYzieqiiy6iVKwzCJKTxJjIL2a/YcOGUY+5+eabTXLywQcfxHXXXTeqXHnooYeQzEkd+r73vW/Y2RbhcNj0AhMQ9SPGQ3Nzsy4nAWDfvn0kJ8eJ5HLDvvQM2JcaRZo551D7+4SsPHlcyMvWE0ifOgmkR4+8HQoeHUAmOqDVtRwa5nAKaVmpScw8eSn7q8A8ZSV/o3vNNdeY5OTJkyfx6quv4vzzzy/iqE4Pzjl4PCYiHAcig5Y8t28gDDUSEf3xWFHGK/krzdKxtl6XkVK5t+R/hwhisqDsCTMbyeWC89x3wHnuO8AzaaT270HizddEncpRMiPwZAKpvbuQ2rtLdDAJ1vnNetYF29IzIPsrp+CnmD7kR04ePXoU6XR63CkMidKAqwqU7m5kNPmYaW9Fpu0UMh2noIZDEz4vs9shaeJSLq8wC8wKrV1eAdlbQSnqCGKWwlNpMBt9d+TCGBMCzOmCpb5x1P25qoAnk+CJBHgiDp5MQM1Zz/arOeti/zh4IqH1i3WurauJxITfd+SzrrICEgNU7R18WuXYFQjhnJrh743HjMUCZrWCWW2AxQpms4FZrGKSrdWqbzPvYxX72O2aSMyRj1kBqa2zCcgJgigVOGdQ1eLcW3E+Pe7pFixYgAULho94J4ixQnKSGJXW1lb85je/MfVdeeWVox53/vnn45ZbbsH3v/99AMAbb7yBz33uc7j//vsHvejM8vTTT+PLX/6y3nY6nbj77ruHvUZ+RGdVVRVcrvHN2J87d66pltbhwyPXYSo1uKIAklRyLyUYY7ocxGoj8pWrCpTODqS16MpslKXS1TEp9RB4Io5MeyvQ3jr8TlabISz9lSLNptMFyekUkZcOJySnS3+wYVq/5HQCVtuU/Lc+88wzsXz5clMU8SOPPFIScpIrCngqqYnGSJ5MNJZ8YMDcPxAB1IJV7xgXQmJXQvJVatG4lZB9VZBrakVEZHUdPVARhAZlT5g9MIsV9lVrYV+1FuWf/Cwyx1sQf1PUqcycaBn9BFxF+tgRpI8dQfTPvwMAyDV1uqi0LV0BS+OcWZ16Kz9yMpPJoKWlZVA/UVqo8ZgmH80CMtPRVpDMDTyZhNLdCaW7E+nRdrZYhKisEMLSqLlVAdlfCee575j08REEUXy67v4ukgcOwr5sKRxLl8K+bCnsixZCstuLPbRpA5NkMKcLmOSsD1xVwBNJQ3KqqpHOlasij6u25Dx3m/hwbVslV3Hm/o9i534jy8KeM87C+z51g/FcrZ2bg4ufx2rLkYtCJiIrHrUlLJZZfS9GEARBlA4kJ4lRufnmm01RDM3NzbjqqqvGdOy9994Li8WCe++9F5xz/OAHP8Df/vY3fOYzn8HGjRtRWVmJeDyOffv24bHHHsPmzZv10GyPx4Pf/OY3g2aY5xIMBk3tmpqacf98+ceEQhOf5ZxLd3c3enrGV4sx/wXwWBh46WX0/ehhuNauhnPtGjjXrIZlhCiTYsMkGZaGJlgamuDceIHeryYTIvVVNjVseyuUvl4ogd7JrxOYThnpY8eLLOfIS6dJYEpOF5jDBeZyQXJootOZs6/FahS4B/R1BgYwAEzSlqK4/Uff917cmfOS/vFHH8Xdt38RFovVtF92XZyHiYehVBI8lRIzO1Pig7y2WE+Nuz1SbbKiwxikCh9kTTpKWenoN7elcU5iIIjZDGVPKF0ygQAynV2wL1s66S+ZGGOwLlgI64KFKP/Itcj0dCG1922kDu1D6sA+MRFoDCjdnYh3dyL+0hZxXrfHkJXLVsDWvGRWpcL2+XyoqalBd3e33nfw4EGSkyUA5xxqX6+egjVXRqqBEq7xlclADfRCDfQO2iT5q0hOEsQMJXngIDI9vcj09CL6kki3DlmGvXmBEJbax1JfX3ITmWc6TJLBXC5gEp45N73rUpOcfPPESThWDz9xjyCI00dVUbTIyRKZz08QUwbJSWJE7r33XvzhD38w9Y0U+ZiPJEm455578LGPfQx33303nn76aezduxef//znRzzmyiuvxF133TXqS8aBAXNNQ6dz/PVZ8o+JRCZHhD344IO48847J+VcIxHfsQtKXx8iz29B5Hnx4s86by5ca9cIWbnyjGkhYiS7A7bmxbA1Lx60TU0moGbrDGrCUgn0Qu3rM9ZDwakZqKKARwegjLee5gS4NBJF7m9Qd28vNl/7d7iwbnYWlWZ2uxbpqMlGnyYbs3VIfZWQKnxgY/z7RBDE6FD2hNIm8vwLCDz8c8iVfnjOPw/u88+D44wVYPLk1yKyVNfCctGlcF10KQBACYd0UZk6uBfpliNjmrzCowNIbn8dye1avU+rVXz/a5GVtqUrIHnKJn38pcTSpUtNcvLAgQP44Ac/WMQRzQ445+Ierqcbmb5uKD3dUHq7ofT2QOnuRKb9FHhy7Cmox4RsgaWuHpaGObA0NEGurRdpA0NBUQctHDLqoIWCk5YKUL98RcWkno8giNIg09uHTM/gCQlQFCQPH0Hy8BGEf/9HAIBUXqZHVjqWLYV9yWLIHs8Uj5iYKJdddhlaW1txwQUX4Pzzz8e6deuKPSSCIAiCmDToDS4xLM8++yxuu+02U9+nP/1pXH755eM+VyqVgsViGbWejsViwS233IJbbrllTLmr8+Wkw+EY99jy5WT+OUsZzjniO3YM6k+fOInQiZMIPfU7QJbhWLZUj6p0LF0y7eSNZHdAqm8csW4ET6eh9Pfp8lLNFZl9vVACfVCDgUlJHTtVLChzY43fi50BI5r3yRMdM0NOyhZIZWWQPOXmpbsMbFB/OWSfH8zlplm/BDHFUPaEiTFV2ROiL28FACh9AYR+9weEfvcHyBUVcJ93DtwXnA/nmasKIioBQC73wnnWuXCeJVIgHxAdAADl6klEQVTp8lQSqaOHdFmZOrhvbDWD02mkDu5D6uA+vcvSNBfWuQsga9/94tM0LSZbjYVly5bhpZde0tsHDx4s4mhmDlxRoPYHkOnNSscc+agteSJekGsztweWxjmwNsyBpbHJkJE1dWP+N8g5F/XKQkEoISEs1WAQaliISzVkSEw1FBzTvy/J6zvdH40giBIkcfDQmPdVwxHE3ngTsTeMyVjWOXOEqFy2BI5ly2CbN7dg9wvE6fH+978f73//+4s9DKKE4YqCTFc30h0dSHd0It3RgUxHJzzvvBCeTReMfgKCIIgiMr0MxTTnc5/7HB544IGCX+cb3/gG7rjjjtM6x44dO/CRj3wEmZwaKuvXr8f9998/rvMEg0HcdNNNeOyxx8a0fyaTwfe+9z3cf//9uPbaa/G9730PPt/YH6onIi6ms+z4/9l77zg5jjr9/+numZ6cN+fVrrTKOSfLCpYTDpxtMBgbE494cMePHI7M8YU7jMF3GAMGcwZjH07Ysi3LypKV4652pc05To49092/P7qnZ2bzSrs7G+r9es2rq6qru2s2zHTXU5/nE+voGHzFZDI8j3BlFcKVVXD9+VlQOh10S5dAt2IZ9MuXQ11UOK1/BnEotRqqrByosnKG7CPGYhDcLiXaUrGNDQYghIIQQyFpGw5BDAYhhEPSxA/PT+I7SeXuotwUcfL11k78aOVCGNRT5OOboqSk9yYzaKNJ2hqMqXWjCVRSmTaZQWm0M+LvjkCYyRD3hOtnMtwTol1diFwbKGjybje8r78B7+tvgDabYFi/HobNG6FfvmxC7VMpVgPNgiXQLFgCQMq3FGtpVoRKrqYSfO/oBNtYazNirc0D2mmLDaq8hGCpiJdZudPKGra/hWt1dfUQPQnJCOEw+D5ZbOzplsrJ0Y/O3on1wqJoMFnZcnqCVBGSNplv+L6GoiglXYAqJ2/E/iIXkYRKOfoyLloKHhcErwe8xwV1ydisrgkEwvTAsH4tCv/nVwhX1yBcfRWR6hpwTU2jXogbbWlBtKUFvr1vAwAorRaaueWKFaxmfsWUThVDIMw2hHAY0c4uxNrbFQFS2nYi1tU16P2PKjeHiJPXiWTrmr5rEwiziSkyu02YSly9ehW33norvF6v0jZ//nzs2bNnTJGJXq8XO3bswNmzZ5U2lUqFhx56CA8++CCWLVsGu92OYDCI+vp6vPnmm3j88cfR3t4Onufxxz/+EYcPH8b+/ftRVFQ06DWM/exIQqGxr4buf0z/c14vn/70p3H//feP6Zja2lrcc889o+6vys1F4ZNPIHTuAoLnzyN84RKE4PCrqMVQCMETJxE8cRJ9ABi7XREqdSuWQeVwjGnM0wlKpQKTkQkmY/SRh6IoAtGoIl6KoSCEcFASL+NCZigIQd6XLHAKwSDEcFDZj1gMUtZ7+bxITXwPEYk2mXuK8vCDCzXg5bZgjMdrrZ14oLRg5MEzKlAajZT4ntVIL428Zdmk8sh1DLpfC9poBEWTVbZTFTEahRAOgzHNbItEwvhD3BOmPnyfE+qiQkSbh879KHh98L21F7639oI2GKBfvxbGTRuhW7kCtEYzoeOjaAbq4lKoi0thuEVa8R/r7VaESq66CrGWxjE5GggeFziPC9yVy/0vBiYzSxKNclPFS8aeMe75OG+U/hHBszlyUozFIPi8EHweSWTzeiD4vJLdqc8DweVSIiAFn3fkE44DlFan5EdX5RdClVsgCZHZeaBYdlLGMBooVgNVZjaQmZ3uoRAIhEmGYhiwxcVgi4th3n0LAEAIBhG5VisLljWIVNeA7+cyMRRiOIzwpcsIX0p8v6qyMpNyV84HWzYH9BT6DCQQZhKiKELw+VIiH6OKENkJ3ukc8zljHZ0TMFICgUAYX4g4SUihoaEBO3bsSMmDU1ZWhn379iEzc2xWkp/73OdShMnMzEy89tprWLNmTUo/i8WCFStWYMWKFfjUpz6FD3zgA3j99dcBAPX19bjrrrtw4sQJaAaZRJvK4mRWVtZ1WcyNBYqiwBYWgi0shOWuOyHyPCJXryF47jxC584jXF0jC2JDwzud8O/bD/++/QAAdVGhlK9y+XLoliwGbZgZFmrXC0VRAMuCYVnAYp3Ua4uiiFxRwK3vuQuvyf8TAPCyzo5/+dOLEIVkgROJMk1LAiKx5pk18H4/oq1t4FpaEG1pBdfaimhLK6IdnTBu2Yzsr3wp3UOc9RD3hJEh7gljQ7twAYp+8wS4pmb4jx5D4OgxcPUNQ/YXAgHl+57S6WBYsxqGzZugX7MK9HUIu9eDKiMLqows6Ddtk8fkB3etWhErudqa68u5JwrguzvBd3cicv50yi6K1YDJyUsRLeMv2mQeh3c1dvpHTvb19aG3txcZGRlpGc94IYoixEhEFhgTQmNCdPRA8CYJjz4vxEnI4T0AigJts4OR/x4Z+aXKzYcqvwC0zTGtPxsIBMLshNbroVu2FLplSwFIn8mx7m6Er9QgUiMLlrV1I84PxIl19yDW3YPAoSNSA8NAnZMDdWEB2IJ8qAsKwBYWQF2QD8acnu9TAmE6IQoC+L6+fpGPHYi2S2KkEAiM6/WiRJwkEAjTACJOTiJ33303CgpGEe10g2zefH1h+y0tLdi+fTtaW1uVtuLiYrzzzjvIyxvZWiiZ6upqPPPMMyltf/vb3wYIk/2xWCx44YUXsHz5cly9KuVRuHDhAp588kl87nOfG7R/MmPN7wQgRYgFAKvVOuZzTBUohoF2wXxoF8wHPvB+CKEQQpcrETp/AaGz58E1No54jmhzCzzNLfC8/CpA06n5KudXTLt8ldMZiqIAisGHH300RZw8cPAgmto7UFJSkr7BESYdURTB9/aCa25RxEeuRdryLteQx3EtQ0dVEQj9Ie4J08c9IQ5bXAR7cRHsH3g/ou3t8B85hsCRo4NavsYRQyH4Dx2G/9BhUBoW+tWrYNi8CYY1ayZ1URJtMEK7fDW0y1dL44pFEW2oQ7T+GmIdbcqL7+kGxOvzOBK5CGLNDYg1DxRuKaMJjN0h2Y6bzKDNFtAmS6JuMoOJ181myUlgHCgpKQHLsuC4hBBbU1OTdnEyLi6K4SDEcFhygwjLzhHhkGx3L5f9/gECJO/1XJ+4PN6oWTAZmZLwmJkFxpEJJjNbFiEzpWhacj9LIBBmOBRFQZ2dDXV2NkzbtgIARC6KSEMDwtXViMgRlrHOrtGdkOcRbWtDtK0N/b2aaLNZEiwLC8AWFEBdUAB1YQHUOdlkwSxh1sAHAoj19CLW0wO+pxexXqkci5e7eyBGoxN2fdpggCo3B+rcHKjz8sAWFU7YtWY6okBB4NOzUE0UyAI5wuyCPJVNIrt27cKuXbvSPYxB6ejowPbt29GYJF7l5+dj3759Q04KDscLL7wg21ZK3HTTTdi2bduojtXpdPjKV76Cj370o0rbH/7wh0HFyblz56bUe3p6EAwGodePfmKtqalp2HNOZ+h4ZMQaadIv5nQhdOGCZAN77jz43hHyVQoCwlVXEK66Atf//kXKV7lkkWzrUgZN+RySi2ISeM973gObzQaXy4XS0lI88sgjY/obJ0wvRC4Krr1dinxsbU2Ika1tEMPhMZ8v2toGURCmnK0hYepB3BOml3vCYKjz8mB74D7YHrgP0a4uBI4eh//IUUSuDJ3TUIxwCBw9jsDR44BKBf2qlTBs2gjD+nVgTOPz8xgtlEoNdu58sHNTbU/FaBSx7g5JrGxvBa8Il+0QPEMvzhgJ0e9DzD/6PKOURqsIlf1FTEnYHNg+2KSsSqVCeXk5qqqqlLbq6mps2rRJGpcoSmIsL0DkeUDgAUEu8zxEua6U+cR+kYsMLiaGQqMQHcPXLQJPJrTJnBAaU7bSizZbSOQjgUAgDALFqqGtmAdtxTzgbqkt5nYjUn1VEixrriJccxXiGO+pBK8X4SovwlVXUneoVFDn5ioRlinRluN0zzWbEAQBVVVVOHLkCJYtW4YNGzake0izBiEclsXGXkWATNQlAXKs/zfXA2O3S+Jjbg5UublQ5+VCnZsLdW4OaJOJ3P8QCIRpBxEnCejq6sL27dtRW5tYYZ+Tk4N33nkHZWVl13XOCxcupNR37NgxpuN37tw54HyRSGTA5KTZbEZeXh7a29uVtrq6OixZsmTU12poSF1Jv2DBgjGNdTqhsttgunkbTDdvgyiKiLa1IyRbwIYuXhrRRkIMhRA8eRrBkwnLNMZmBVs2B5qyMvk1B6rcHHJTNI5oNBr88pe/RFFRETZv3gyaiEwzAt7nk6MfW5QIyGhrK6Kdgye0v17ESAR8Xx9UYxSXCOMLcU8g7gmTjTo7G9b33gPre+9BrLcPgaPH4D96DOHLlUPneYzFlLzUPQwD3fJlMG7eCMOG9WD6/bwnE0qthjq/COr8gQvmhGAgNcoyqSyGx3eSSIyEwUfC4Hu7R+4sQxmMikgpyiIiBB7FIR/i0qRdwyL4h/9G+4FXFKFxNkIZTWDiIm88itVsSYiPchQkrdWNfLJZCu/zg2tsBNfQiEhDI/QrV8C4ZVO6h0UgEKYwKqsVqvVrYVi/FgAg8jy4ltaEFWx1Dbim5jHliFaIxRBtaUF0ECcXxmaFOj9fEisLC6DOl4RLVVYmibYchO9973v4r//6L7jlPKKf+cxniDg5TohcFLG+vkEFx3hd8I1+MdsNQdNQZWXJomOOIjyq4gLkJKVimO0IAgUhTRGM6bougZAuiDg5y+nt7cWOHTtQXZ1YUZ+ZmYl9+/Zh3rx5131ed7/E6zk5OWM6vn9/QRDgdDqRm5s7oO/ixYtTxMnjx4+PWpysrq5GX1+fUtfr9SgtLR3TWKcrFEWBLcgHW5APy3vukPJVXqtF6Nx5BM9fkFY9jiIfBe9yI3T6LEKnExEytF4Pdk4pNOWSYMmWzQFbVEgeMm6Ahx56KN1DIIwRURTBu1yIdXYh2tmJaGcXYp1SQnuupRWCxzO+F6Rp6eGlSLZTKkxsycrk9EPcE7aN6ljinjAxqDIcsNz9Hljufg9iThcCx99F4OgxhC5cHFoI43mEzpxF6MxZ9Dz+BHRLFsOweSP0K1dAlZs7ZRYh0XoD2LJ5YMtS71tFUYTgdiHW3poQLztl8bKrQxIBJwEx4Ac/SF7FMq0aAGBWq/CXm1ajwmICJtDqa9JhVJLAKIuNTFI5LjoqIqTZAtpoIveJY0DkeUTb2mURsgFcQwO4hkbEevq7oohEnCQQCGOCYhhoSoqhKSmGefctAAAhGJTcXFpaJWvXeHqJjo5R57DsD+9yg3e5pUVTyahUUDnsYOx2qOx2qeywg7FJ5fg+2micMvcikwHLsinzbEeOHEnfYKY4oihCCATAuz3g3W7wHk+/sluue8B73BC8kyQ8ylAaFurcXNmCNRH5qM7NlcR5Yj1PIBBmEeQTbxbjdDqxc+dOVFYmbgYdDgf27duHhQsX3tC5+0ceBMaY2NnvHziJM5TV2q233oq33npLqR84cACf+MQnRnWdAwcOpNR37949a6PSKIaBdn4FtPMrYHvwfRDCYYQvVyJ47jxC5y+Aqx+Yq2kohGAQ4cuVKQ8alFoNtqQYmvIyyRK2bA7Y0hLQg1j1EQjTBSEYRLSrC7GOTkS7uhDt6EKsq1PadndBjIx/7i1Kp1NWGCsiZGEh1Lk5oNTqcb8eYWZD3BNmj3tCHJXdBssdt8Fyx23gPR4E3j2JwJGjCJ6/MPQEoyAgdOGiJGYCYGw2aBcthHbxQugWLQJbWjLlhCWKosDYpMlMzaKlKftEngff04VYZ3siZ6Ly8vRr802I1em9RXl4+loT/rR1NRbb0heVOiwMA0qrA63TgdLKL50OtFYPSq9PFR4VwVHaUjrdrJo0nkh4tweRhkZwjQ1KRGS0qXlUeau4hsaJHyCBQJjx0Hq9MleQjMjziHZ2JdJRyKkouJZWCEn5y8dELIZYVzdiXd2IDNONUqvBOCQBk4mLmHYbVHaH3G6T8kobDTPi+6i/O8qlS5fg8XgGOInMVASOgyCLjLG4uJgsNHrkrUsSIK9XNB8PGKsVqswMqDIyoMrMAJOZKZUzHFDn5YKx2WbE3ySBQCCMB0ScnKW43W7s2rUrZQLRZrNh7969Y5rUG4r+FnDnzp0b0/FnzpxJqev1ephMpkH73nvvvfjXf/1Xpf7SSy/B7XaPyprt6aefHnAuggSt1UK/ehX0q1cBkHJRhM5fQLiqGlxdHSL1DWPKfydGo4hcq0XkWmICHDQNdWEBNIot7BywZXNIlBdhyiDGYoj19CaiHlOEyM7rf+geBYzDkRAhCwuVHC2Mw04eZgjjAnFPmL3uCXEYiwXm3btg3r0LvN+P4ImT8B85htCZs8MKH7zLhcCRowgcOQpAWjShXbgAukULoV20EJqKeVN68RHFMFDl5EGVM7JlsSgIEIOBFMGSTxEv+4mbXg/E4MiL8uZbTdh/2xbk6cfJopRRATQNimVByyJiipio1SbK8r5B+yXtg1pNvm8mETEaBdfaCq4hYcvKNTSCdzqv+5xcYxNEnp9yiwcIBMLMgGIYsPl5YPPzAKxN2cd7vYpQKQmXUsRltKNjXOzLxWgUsc4uxDq7hh8jy8qipT1VzLTbQRsNoPV6aRGOvKX1OlAazZT7/lu9ejVYlgXHSYtfBUHAu+++i927d6d5ZKND5KIQgkH5FYAQDEnlQP9yUKoHAhD8fkV8FILBdL8FAABtNErCY2YGVBmZibIsQDIZDtAsm+5hEm4QYutKIEweRJychfh8Ptx66604ezZhw2k2m/Hmm29ixYoV43KNbdu24Ze//KVSf/HFF/Hzn/8cGRkZozr+N7/5TUp9y5YtQ/YtKSnBli1bcPjwYQBAKBTCY489hu985zvDXuPgwYM4ceKEUrdarbjrrrtGNb7ZiMpqhWnbTTBtuwmANFkXbW9HpLYeXF09InV1iNTVj02sEQREm5oRbWqG/50DiWvlZENTNgfqggKos7Kgys6CKjsbqqxMcqNHGFeEcBi804WY0ynlk5AtWJVtT+/E5v5iGKjz8pJEyAJJhCwoAG0YvTUlgTBWiHsCcU/oD2M0wrRjO0w7tkMIBhE4eRqBo8cQPHUaYmS42AUpJ3XcAhYAoFJBM7ccukWLoF28ENqFC8AMschsqkPRNCijCbRx9OMXYzEI/rhYKW0BEaAZSSSiaYBm4GBoQK5TNCNFKjIMQDMQKQoCABWrSRzDMKDi26TzULP473Y6Erd95xoaEalvUMRIrqVlfOyGVSqwRYVgS0ugKSkh4iSBQEgLjNkMZqEZ2oWprhRiNCqlvGiRBcvWVkXAFPxju2ccDSLHjUrETIGmQet1/UTLhHhJ66XFPHTyPr1uQoVOrVaL1atX49ixY0rbkSNHxkWcFAUBiPEQ+RjEWAxiNAYxFgWUcuKFWAxCOAwhEEwSG5NegYFlMRgcVbR/uqF0OiXaMVlwTK6TnI8EAoEwvhBxcpYRDAZxxx13pIhyRqMRb7zxBtasWTNu19m1axfsdjuc8kpfn8+Hhx9+GC+//DLUI9gO/u53v8P//d//pbTdd999wx7zox/9KEXA/NGPfoQ77rgDq1evHrS/0+lMyWcFAF/5yldmjSXGeEDRNFhZRMG2rQDkyZbePkWojNTVgaurR6y7Z0znHu7hgbHbocrOgloWLGezeFlbW4tDhw7hIx/5SLqHMuUQOA6804lYnzN163SC75PrLueEPAAPQKWCOicbqpxsqHNyoM7Ohjo/D+rCQqhzsklOCcKkQ9wTJIh7wtDQej1M27bCtG0rhHAYwTNnEThyFKHzF8H3i4wdlFgMkSvViFypBl6Q7unYkmJoF8pWsIsXQZWZObFvIo1QKhUYqx2M1X7d5/jBD36AY8eO4YUXXhhTHlXC1EHkecS6usG1tSHa1q7kaYs0NI6b8wLjsENTWgq2tER+lYItyCf3FgQCYcpCqdVgCwvBFhbCkNQuiiJ4jwexjk7pmc3pQqyvT36Gc0nPcM6+yckPKAgQ/IHxeVak6aQFRTQohk5alERLC4ySFxsl9ZH6JbbLojyOJZ16/5//jA6GTZxDECSBMZoqJsbFRqmNl9piUaXfZOXhTgeUTgfGYgFjtYCxWlO3lkRdleEAbZgZFsAEAoEwnSBPLbMIjuNw9913KxGGAMAwDJ544gnk5uaisbFxTOcrKCiAaogHX6PRiG984xv4t3/7N6Vtz5492LRpE372s59h69atA45pbW3Fj3/8YzzxxBMp7RUVFfjwhz887Fg2b96M++67Dy+88AIA6b3u2LEDv/nNb/DAAw+kREKcOHECjzzyCOrq6pS2srIyfP7znx/xPU9FApeq0fu3V2FavwqmDSuhtlvTNhaKopRVZYb165R23uuVxcp6yRK2rh7R1jZAFMd8Dd4piUyRK9WD7p/p4mU4HMaf//xn/PGPf8SRI0dAURR27tyJoqKidA9tUhC5KGIulyw49kkPqS4X+L4+xPoS4qMwSOTVRMI47FDn5CgCpCo7W0pqn50t2bCSqBbCFIG4J0jMFPeEaHcf/BcqYdmyDrR2YmxUaa0Wxk0bYdy0EaIoItreIeWVrqxCuLIS0faOUZ2Ha2wC19gE7+t7AACqrExoFy2CdtFC6BYvhLqwkHxWyjz22GP41re+BQC47bbb8Oqrr8JsNqd5VITBiEdBRlslATJFiOzoHLecVxTLgi0uksTH0hJoSkvAlhSDIQsrCQTCDIGiKKisVqhGWGCW8jwYX3jqHLggdVJEzNEgCFJkoszYZ0ASLOdTHX3ONDfDc/xdqGfT/RPD9BMWZbHRkiw6xtvMJNKRcF0IAgWeJ7auBMJkQMTJWUR7ezvefvvtlDae5/Hwww9f1/kaGhpQUlIy5P4vfOELOH78uCIYAsCpU6dw0003IS8vD8uXL4fNZkMoFEJtbS0uX74MoZ99os1mw/PPPz+kCJrM008/jbq6OiVCw+v14sEHH8SXv/xlLFu2DCzL4urVq7h8+fKAa7z22mvTdlW65/AJuN8+AvfbRwAAuvllMK1fBfPGVdAvnDslbJwYsxn6FcuhX7FcaRPCYcnOqrZOibTkGptueBJn1OKlIlpmQWWzgTYaQRuNYIxG0CbjlMwzAUiTYF/60pfg8XiU+jPPPINvfOMbaR7Z2BBFEWIkAsEfAO/3Q5BfvM8nlX1+8H45z4TXO7krZQeB0ukksTFZgMzJliIis7KmdG41AiEOcU+QmEnuCc439qPzv58BrdfCctMG2HbfBOOqpaBUE/PdT1GUklvKvHsXACDmdClCZaiyClx9w6jssGPdPfB3H4B//wEAAG0yQbtwAbSLF0G3aCHY0pJZOaH09NNP4wtf+IJSP3ToEHbu3Ik9e/bA4XCkb2CzHN7vl0VHWXhMEiLFUGhcr6XKzgJbWioJkPJLnZs7Je7pCQTC1IHr6AZjMoAxGkbuPIOgWDXU8mLk4RA4DrzLlYjA7LeolXe7E/kNQ6FxW0wykay02lLqYUFApdeD5f3apzwMI1ngGvSyJW7SK7nNaJBESFsi0pE2kuhGAoFAmEkQcZIwYdA0jf/93/9FQUEBHnvsMYhJUXLt7e1ob28f9vglS5bgz3/+86gt5gwGA15//XU89NBD2Ldvn9Le0tKClpaWQY8pKyvDX/7yF1RUVIzqGlMR37FU+7tQdR1C1XXofvpvYMwmmNYth2nDKpjWrUhrVGV/aK0W2gXzoV0wX2kTo1FwLa2SHWxjE2JdXYh2dSPW1Q3BNz6i1EjipYJKpQiVimipCJiGRLvJlCpsGg0TKmzqdDq8733vw5NPPqm0/fGPf8TXv/71tNykCxyXJCZKW8HvH1xw9AfA+xLtUynvBKXVQuWwQ5WVJVuw5qRsaZOJPAQRpjXEPUFiprknuN88BAAQgmG49uyHa89+qOxWWHdtgW33TdDNL5/wzy6V3Qbjlk0wbtkkjSUQRLi6GuHKKoQqqxCproHIcSOeR/D5EDxxEsETJxPnzsyQ8vDK+XilnLz5YDIcM/Yzef78+bBarXAn2eeeOnUK27Ztw1tvvYXc3Nz0DW6GI3AcYh0d4FoTAmR8Oyo74zFC6XRgS4qTRMhSKRrSMLuEBgKBcH20/eIpeA+fhHZOEQxLF8CwdAH0SxeAzc2asd+RY4FmWdDZ2VBnZ4+qv8hFJbEyFErdBkMQ+7fLZTEYGuSYiRM6bSyLcqMRtUkuQaddzokXJxkGlIoBpVIDKhVoDQtab5DybBoMiZybcpnS6+T9gwiOBj0oliV/o4QpjSBQaYtgJJGThNkGEScJEwrLsviv//ovPPTQQ3j88cfxwgsvIBAY3rd/7dq1+PjHP45HHnlkxAiL/uTk5GDv3r148skn8etf/xqXLl0atF9ubi4efvhhfOtb34JhGk8AcN29CNc1Dbmf9/rg3nsY7r2HAYqCbn45zBtWwrRhFfQLyqfcCmxKrYZmTik0c0oH7BMCQUS7JaEy1tUll8dfvFSIxcC73dc3GaVSgUkRLw2SgKnVJnJOMEwiz0S8rmzjOShS2+L1B1auwpNJl7t27RoO/Pl/sWHVKoBhAFGEGI1C5Dgpj0Q0Kr+4pLKcY4Lr3xaFyEVH0cZBDEdGNeGcTigNC8bukIRHux2M3QbG4YDKbofKYQfjsENls4PS68gDEmFGQ9wTZp57Qqi2EeH6gfcAMacbvc+9it7nXoWmKA/WW26CbfdN0BRMjqhFG/TQr1oJ/aqVAKSFR5HaOoQqqxQ72NFab8d6ehHr6UXo3PmUdkqngzo/D2xBAdQF+QnxMj9v2keyr1+/HgcPHsSuXbvQ3d2ttF++fBlbt27F22+/jeLi4jSOcPohiqK0QMqZZP3nTLIEdLoQ6+5BrKfnulIOjARtNEJdkA91fr4UeSzbs6qys4iVMYFAuC5EUUTwUjUgigjXNSFc14S+F98AAKgybDAsWaAIlrp5pSQP7SigWDUYVrIJvVFShM5QSMrrKAgJi1dBgMgLgMAr9YH7ktr4RL/NYhS1b76pXOu8QQ/bhz4o9adpUCoVKLUKlEot/d7jdSbeLrepVKDUUp/UNpXSJomRDPmuIhAIBMKEQe5QZhElJSUp0YuTyapVq/D000/jqaeewuXLl3H58mU4nU74fD5oNBpYLBaUlpZi1apVsNlubNUXRVH45Cc/iU9+8pOoqqrC5cuX0d7eDo7jkJeXhzlz5mD9+vUpkRTTFUavQ8HXPgPf8bPwnTwvrdIbClFE6Mo1hK5cQ9fvnwNjMcG0bgXMG1fBtG4lVNapncuINuihkXPsDMZQ4mWsuwfRrq7JtQONxcC73OBdbkxEbGCxKKJEb0BjMCH0/+br30DR4qUTcLWpCaVWS8Ki3S5Z9TqStw6o7DYwDjtJak8gpAninjDxiNEojGuXw3/64pA2qpHmdnQ99Rd0PfUX6BdXwHbLTbDu3AyVbfIsbCm1OuGUcN97IQoCoi0tslgp2cHGunvGdE4xFAJXWweuti51B0VBlZkJdWFBP+EyH4zdPm2+D5YuXarYuba2tirttbW12Lx5M95+++1p+3c7noiCAMHrQ8wlC4x9gwmP0r6JdmugNCzUeXlQ5+dDnS9t2QKpzJB8oQQCYZzhWjsQc3kG3RfrdcGz/xg8+48BAGitBrqFc2FYMl+Krlw8HyqzcTKHO+sYT6GzP7t8HjydJE6eaKiH9f0PzIj5LQKBQCDMPog4SZhUVCoVli9fjuXLl0/K9RYuXIiFCxdOyrXSAWM0wHHXLXDcdQuEaBTBS9XwHjsD3/Gzg0ZTJMN7fHC/dQjutw4BFAX9gnKYNq6Gef1K6BaUT7vVcSOKl8Egot09kmDZ1Y2ovI11d6fYjk4HKIrCe/ML8J/XapS2f3S042vzF8I4TVfFSjklZOtck2yda0xEnzJ2uyw4SlGQtNE4bSaZCYTZCnFPmFj0C+ai7LHvItrrhHvvYbjeOohQdd2Q/YOXaxC8XIO2x56Cae0K2HbfBPPWdWB0k5vXkaJpsMXFYIuLYbn9NgBAtLtbzlspvbim5uuLYBNFxLql7/bQmbOp19XpJLFIES4l0VKVmTElF7JUVFTgyJEj2LlzJ2pra5X21tZWbN26FW+99RaWLVuWxhGOH6IgSE4OkQiEiOTKIIalshAIJATHPqciRPJOJ2Iu9+TmCKNpqHOyUwRISYTMA+NwTLt7ZwKBMH2JNLWBUqsgRkf+DBTCEQTOXkbgbMI9QjunCPolC2BYKgmWbH7OlPseJAxOcp51AHC5XKisrBz1gj4CgTAyopg+e9U0xRQRCGljes5iEwiEAdBqNYwrl8C4cgnw2Q+D6+qB7/hZeI+fgf/0BQjB8NAHiyKCVdcQrLqGrqf+ApXNAtO6FTCtXwnT+hVQWab/im9ar4empBiakqGt0ESel+xXfP1yJvbPpTggr2IAwggT7uPNPXkF+MW1GsRjZQJ8DH9va8HDxQMtcScLSqdT7GyVHJyD5ew09SsbDFPOYphAmGkQ94SZ554QR51hR+aDdyPzwbsRbmyF682DcO89BK6tc/ADeAG+42fgO34GtE4L89Z1sO2+CaY1y0Gp0vNZrM7KgjorC6abtwEAhEgE0fZ2RFtawbW2IdrSimhbG7iWVojhYe5nhkEMhRC5VovItdqBO1UqMFYrVDYrGIsU6cBYbdI23maT62bzpNnjFRcX4/Dhw9i1a1eKJXF3dze2bduGPXv2YP369RM+DpHnE/m0AkEIgQDEcBhCRBIUE6JiRBEVU8RG2QZekPtK7Yljp5pFPOOwKxascQFSXZAHdXY2qDEumiAQCISJwLx5DRbv/QtC1XUIXLqCwEXpxXtG5xYUrm9GuL4ZzpelCDyV3ZqUt3I+dPPmgCafd1OSwsJClJSUpOSLP3z4MBEnCQoizyPa3QtKo4Habk33cAgEAmFYiDhJIMxQ2OxMOO7ZDcc9uyFEowhcuALf8TPwHj+DSMPgFndxYi4PXG8cgOuNAwBNQ79wLkzrV8K8cRV0FWUzdmU4xTBSlJ7JhLE+iok8DyEQkERLX0K0lMRMH3i/H4hGIfK8lEOC5yEKvLTleYAX5K1UV3JL8IP0EXgU8Tx21hfhrZZmZQzPtDTjQ3MrQFOUlGRerZZyRqjVSXV1Unu/Nlbdrz7COTQaWXiUohyJwEggEIaDuCdMPNqSAuR+8oPI+cQHELxcIwmV+46Ad3sH7S+EwnC/eRDuNw9CZbPAunMzrLtvgn7hvLRGUNAaDTSlpdCUpi64EUURfG+fJFi2tiLa2gpOFi7Hag2bQiwGvrcXfG/v6MZnNoGxWCXh0mqBymoFY42LmHLZKu2jdbrrHxekiOCDBw/i1ltvxalTp5R2t9uNnTt34pVXXsH27duHPF7guBRRUSkHA/3aQ1JbICi3J8piaJi0AdMM2mQCY7clbOHtNsUWXp2bC3VeLuhpmIOWQCDMPmgNC8OyBTAsWwBA+o6MNLchcLEaQVmsjDS3jepcMacbngPH4TlwHABAsSz0C+dKguWS+dAvmQ+VxTRh74UwNrZs2ZIiTh46dAif/vSn0zcgwqTDh8Lg2jrBtXeBa+tEpLUDXHsXIm2diHZ0Q4zFkPOpDyH74fvSPVQCgUAYFiJOEgizAFqthmn1UphWL0Xe5x4F19EN37vxqMqLEELDRCEIgmIFF4+qNCxfCP3CedAvnAtdRRkYA5nEoRgGjNkMxmwes7B5vXx1/368lTQh2eD3ofZTH8ett946SSMgTEV4nx/h5jZEmtoQaW4Dm5cDx1270j0sAoEwiVAUJeWWWjIf+V/4KHwnzsP15kF4Dr0LMTJ4lFrM5UHv86+h9/nXwBbkwrb7Jth23wRNYd4kj35oKIqCKjMDqswMYEWqpakQDiPa2pYkXLbJwmXrkO/5ehG8PgheH6JD5DNNGbNGA8ZqAcVq5AYAFJUk/lJSG6T2/vV4vz+uXI1H29pxoj0x0RwIBHD7Lbfgf+68C7vKyqWxcVyKwDiptqdphLFawdhtkvBos0tbhyNJiLSBsdlAs2y6h0ogEAgTAkVR0BYXQFtcAMd7dgIAYm4vApeqEbh0BcGL1QheuQaRGzkHr8hxCJyvROB8pdKmKS6AtrwY2tIiaEsKoZ1TCLYgl0RYpoGtW7fimWeegdFoxMaNGwdYvRKmP6IoIubygEsSHbnWDkRkMTLW5xrxHEO6qBBGRBCotNm6puu6BEK6IOIkgTALYXOz4Lj3VjjuvRUCF0XgQlUiqrKxddhjYy4PPPuPw7NfWlUJioKmpAD6hXMVwVJbVkweUiaBbdu2YfHixSlWb7/85S+JODkLEGM8uI4uRJraJCGyuQ2RplZEmtoQc3lS+hpXLyXiJIEwi6FUKpg3rYZ502rwgSA8h07A/eZB+E5dAARh0GO41g50/e6v6PrdX6FbMBe2W2+CdeeWKW0NRWu10JSXQVNeltIuCgJivb2SNWxrG7gk4ZLv65vwcYmRCGJd3Td8HhbAU4uW4rMch4O9iSjRCM/js/94BXu33Iws7eTmD51QaBq0VgtKpwVjGzzSUWm3WSfNapdAIBCmEyqrGZYta2HZshYAIHBRhGrqFBvY4KXqAc8OQyE9a7TCg6OJRoaBpjBXEixLC6EtLYKmtBCawjzQLJkPmCjuvvtuxY1ERb7/pi1iLAauowdce6csPnYi0iaJkVx75/CpmUYBEScJBMJ0gHyLEQizHJpVw7RmGUxrliHv8x8B19EF7/Gz8MWjKsOR4U8giog0tCDS0ALXa+8AAChWDd28ObJgKYmWbEFuWi3iZiIUReHzn/88PvGJTyhte/bswdWrVzFv3rw0jowwXsTc3lQBUo6I5No6IY4yGma0dk4EAmHmwxj0sN92M+y33Yyo0w3324fheuMgQleuDXlM6Mo1hK5cQ/svfw/T6mUwb1kL05plYAvzpsX3OkXTSk5LrFqZsk8Ih8F7PODdHvAuN3iPO7Xscif2e71DirmThY5h8N8r1+DfLp7Dns4OpV0AcMbtxG05kxDlSlGgdTpQOh1orQaURgOKZUFr5LJWA5plpbJGk2jXyO3apHa5H63VgGKT+7NEbCQQCIQJgGbVirMCPngvRFEE19qhiJWBS9UjpoBJgecRaWxFpLEVnv1J7QwNTUEetKWF0MhRltrSIkm01JAI9hslMzMTmZmZ6R4GYQTEWAzRHiei3X3genoR7exBpLUTXFyA7OoB+Im7t4w63RN27pmOwFMQ+DRFTqbpugRCuiBPfQQCIQU2NxsZ770NGe+9DUKEQ+BCFbzHz8B37MyoRQ6RiypWsHEYkwG6BXNTBEu1wzZRb2PW8MEPfhBf+cpX4HIlbD1+9atf4Ze//GUaR0UYC0I0KuWJaGpDuKlVESAjze3gvb4bPn+0uw98KAxGN4MiaggEwg2jtluR+cB7kPnAexBpboPrrUNwvXkQXGvH4AfwAnwnzsF34px0fJYDxjXLYFq9DMbVS6HOsE/i6McHWqsFrdVCnZ09Yl+R58H7fEOIl0lllxu82w2RG18r2TgsTeMXy1ZCz1zAXKMJq212LDJboB5NPnCVCrReD9pgAG3Qy2U9aL0hUTYYQOt1UptBD8ZgAKXXg5H7UTrtjM09PhOIOt0I1zYiXNeEUG0jTBtWwraT2P0RCITBoSgKmsI8aArzYL9jBwAg5vEheLkmEV1ZdW3s32m8oERaAscT7TQNTUGOJFjKkZba0kJoivJBazXj98YIhAlGiEYR63WC6+5DtLsX0a5eRHv6JCGyqxfRnl7E+tyAKE7oOFQZNmjyc8Hm54DNy4amIAdsfi40+TlgrOYJvTaBQCCMB0ScJBAIQ0JrWJjWLodp7XLgXz6KSFsnAuerEKy6iuCVawhfaxx19BbvC8B/8jz8J88rbersjBQ7WJK/cuzo9Xp8/OMfx09/+lOl7Q9/+AN+8IMfwGwmN6NTBYGLItrVA66jW8oZ0dyGsJwTkuvoGv8VkwwNNi8H2qJ8aIrypdwyRJwkEAhDoCnKR87HHkT2R9+PYNVVuN88CPfbR4a1eot298H12juKa4J2ThGMq5fCuHoZjCsXz7jvc4phoLJaobJagZLiYfuKoggxHE4RL8UYD0CUJqlEqY/cW2kbrC71S9ov138fP16U2kS5D8WqJaFR30+ANBhIvsUZhMBFEWlsQai2EeHaJoTqGhGubUSsX5QExdBEnCQQCGNCZTEpdvCAJMKErtYjfK0R4YYWhBuaEW5oQazXOfaTCwIize2INLfDe+hEop2mweZly5GWBWBzsqDOdECdlQF1ph0qq5ksjCFMGorw2NWLaFx87JbKnLyNOd0TLjwCUnoGNi8LbH6uJD7m54AtyJEEybxsIuoTCIRpDxEnCQTCqNHk50CTnwP7HdsBAEKEQ6i2AcGqawhVXUOw6ioize2jPl+0qxeert4h81dq50jWLyq7dVpYx6WLT3/60/jZz34GQbabEwQBZ86cwc0335zmkc0eUsTHjm5wHV1J5W4pYf0EPLwwVjM0RfmSCFksCZGaonyw+dkk7yuBQBgzFEXBsKgChkUVyPv8R+E7dQGuNw/Ae+gEhNDweW/C9c0I1zej92//ABga+gVzYVwt2cbrF1fMqtxTFEVJtqc6HdR5uekeDmEaI4oiot29SiRkuLYJ4bpGhJtaR7WwKVTbNAmjJBAIMxlarVbuDZLhfX5JrGxsUUTLSEMLot3Xkc9ZEMC1dkjuDYdPDthNqVWyWOmQtnHhMl7PckBtt4FSMdf7NgkzHFEQwPsCiLk9iLm94F3SNub2INrnlsTHnj5Eu3oHLPSZaBiTQYp8zM+BJi8uPuaAzcuBOssBiiF/15ONKFIQhPTMQYoimfskzC6IOEkgTHMinb3oO3gaju1rocmcXEs1WsMOeFCJef0IVdfK0ZW1CFZelYSZ0TBI/koAoHVasAW50MgvpVyYC1WGfdYLl8XFxbjnnntw7tw5fPazn8Wjjz4Km41Y5o4nI4qP17NyeJRQKpX0gCILkPFoSE1xPlQWEh1LIMxm/Ffq0fz7F5Fz7w7Y1i0Z18kLSsXAvGElzBtWgg+F4T18Er7jZ+A7fQGx3hG+13lBsXfvfvpvoLUaGJYthHHNMhhXL4NubgmJgCAQ+sGHwgjXN0mRkLWNsj1rI3hf4LrPGa5vgsjzZGKTQCCMO4zJCMPSBTAsXZDSzgeCslgpPdeHG5oRbmxBtLPnuq8lRmNSjr72rqE70TTUDluqYKlEXybqM3WxlCiKCIfD0Ol06R7KpCDGeMQ8XsRcHvAeL2IuryI8xpKERz5e9/omNL/jcFAsC3V2BtgsB9jcbEmITBIgVRZTWsZFIBAIUwEiThII05yet47h2g9+A3ybgnlZBTJ2rEPGjvXQlxWmRbRTmY0JK1jIK757+hCUIytDVdcQvHINQnD4CIxkhFAY4WsNCF9rGLCP1mqkFWYFuWAL82QBMwdsYR7UGfZZM/n55JNPwmq1giGTT9cFHwxJ1i1JgiPXOTniYxyV3ZoQIIsLElGQuVlkFTCBQBiUjhffRtfL76Dr5XegyclA9l03I+ee7TCUF43rdRidFrZbtsJ2y1aIoohIYwt8py/Cf+oC/GcvQwgEhz1eCEdS8lUyFhOMq5bCtGYZjGuWQZOfM67jJRCmMqIggGvvQri2EaG6Jmlb2wiurXNcXBYoDQvtnGLoyouhLS+BGCPiJIFAmDwYgx6GxRUwLO4XaRkIItLYmhRp2YJIQzO4ju7xubAgSJFvPcNHbqpsFqgy7FBnOqCymMAY9WCMBtBGAxijQanHy/H2qShq1tbWYs+ePTh8+DAOHz6M++67D48//ni6hzVqxBgPPhiCIL/4YAhCIKi08V6/JEAmCY6824OYywve50/38AFI37lsdgbUmXIkb7YkhrNZGVI5ywHGbJr1C+oJBAJhKIg4SSBMc3r3vSsVRBHe89Xwnq9G/c//CF1xniJUWlYuSNukBEVRYLMywGZlwLptgzRUnkekuU0WLGXR8lojwPNjPr8QjiBc14Rw3UDbKoplJaFykKhLdXbGjBIuHQ5Huocw5RC4KGJON2J9LkSdLsScHqnc50LM6Va2Mad7RLvC8YIxGaDOyZL+HmUb1rglK2M0TMoYCATCzECIxtD16kGlHunsRfOTz6P5yedhWjIPOfdsR9YdW8HaLeN6XYqioC0tgra0CJn33wkxxiNYXQv/6QvwnbqA4KVqiNHh81HzHh887xyF552jAAA2N0uOqlwK46qlUNut4zpmAiEd8D4/Iq0diLR2gGvtlMrNbQjXNY3bfQeblw1teQl0ZZIQqSsvAZufQ8RIAoEw5WAMeugXzYN+0byUdj4URqSpVbKHb2wB19IhiYzdfYj2uQBhfKPdYi4PYi7PoAufh4Ni2SThUg/aZABjMIAxGcAY9PLWADpZ3JT3URoWFMOAUjHyVgUw9A0LVs8//zy+/vWvK/VDhw7d0PmGQhQEiDEeIs8DsRiEcGSgqBgMgQ8M0hYMQQiGU9rifUWOm5DxjheK8JiVodgIs0lldVYGGLORCI8zEEFIn61ruq5LIKQLIk4SCNOYqNcP96nLg+4LNbWj5fcvouX3L0JtM8Nx81pk7FgP+6YVYPTaSR5pKhTDKBOb9jt2AJDzV15rQPCKnL+ypg5cWydELnrd1xE5TsmBNWAMrFpKKF6QC3VWBlRWM1RWCxibtJXq0otSkY/KqYLI89LKyT4Xon1uxJypQmO0z4VYnyQ4pmM1JWMygs3NApubBXVOpmTbItfZnEwwJuOkj4lAIMxMnEfOItrnHnSf79JV+C5dRe1PnoLjpjXIuWc7HNvWTMiqf0rFKBES2R9+AEI4gsCFKiWyMnS1fsRoMK6jG85X9sL5yl4AgLa8BPpFFdDNLVEEF8agH/exzwQEQUBVVRUOHz6MQ4cO4Sc/+QmKi4vTPaxZgSiK4D0+WXzsSBIipS3v8Y3btWi9Tvlf0JYVK1vyf0EgEKY7jE4L/fxy6OeXD9gnxnjEnG5wPb2SWNndlxAu4209fSMuihoPRI5DzMmNaz5CSqWSHHLiwqVcp1QqRcwE069dETgZlHe0ppzv0qVLuPiVH8CsZgFegBiLQVS2PMQYD8hbqS7tR9L+wfqNR1T/VILWa5U5H8ZqgcpmhjozQxYiHYoYyZgMRHgkEAiECYbMuBMI05iYN4CMXRvgPHQGfCA0ZL+oy4vOv7+Nzr+/DVrDwrZxOTJ2rEfG9rVgM6ZGbkJaww6wfxFla5ZIS2Kih2vtQKRFKt/ISjuRiyLS2IpIY+uIfRmTQbpptZolGxiLSbqZtVnAyKKmKknUpLWa6x7XbECIRiEEQuD9AfCBIAR/AHxyPRAE75deQiCAmM+vCI4xt3fcV8+OhRTxMS465mZJImROJol+JBAIk4Z56TyUf+1j6HxxH/zVg6/+F6Mx9L59HL1vH4fKakL27VuRc+8OmJbOm7DJFlqrgWndCpjWrQAAxDxe+M9cgv/UBfhOXwTX2jHiOcJyvr1klAix8hJo55ZKEWJ52TPKBeF6WLRoEaqrq5X6bbfdhocffjiNI5pZiKKImMsDrqUDkdb2fkJkJwT/9eeDHBSahqYgN/G3Xi4JkeqcLDJBSiAQUmj67QsINbTCumYJLGsWQ1eQne4hjTuUipHFIgewaPA+oiiCd3vBdfch2t2rWLtGlboT0e7eSXPKGQtiLAYxdv3CaonAg6VocKL0fCyKIg6+/Cq22maXXT5jMkJlM6fO2VjNUFnMiTmbeJvVAlrDpnvIhCmOIKQvgjGN010EQlog4iSBMI3RFWRj8WNfg8BF4TpxEb373kXfvhOIdA2dZ0GIcOjbfxJ9+0+ihqJgXl4hCZU71sNQVjiJox8ZiqbBZmeCzc4EVi9N2ScKAmK9LmWiKFm45Fo7IIQj4zYO3hcA7wuAa2kfVX9aq1FW4CVHYdIGPWhWDYplQalViTKrlspqNWiWBcWqpLKGBaVWp+ynWPWYJqfcbjfUajUMhpFFM1EUpRWWfL8Vk8mrJpPKAsdBkEVEPhBICI796/0Ex6ls30LERwKBMF1gHVYUPnovCh+9F/4r9eh8+R10vXoAXI9r0P4xtw9tz76Gtmdfg760ANn3bEfO3TdDm5c1oeNUWcywbt8E6/ZNAKQoSSVf5ekLiLk8ozoP194Frr0L3kMnlDZar5Vy680tlcScuaVSNJleNyHvZSqyYMGCFHHy0KFDRJwcIyLPI9rnUqxXU6Ig2zrGlCd9LDBmkxQdXBaPEC6GtrSILHIjEAijovv1Q/BX1qHjBcl1QJOXCeuaJbCuWQzr2sXQFefNikUNFEVJwpPNAlTMGbSPKIoQAkEl0pLr7kOs1yk95wcC8jYI3heAEJCfZ/2BG3JxmgxYmsESow1nfIn5n9PevmkrTtJaDWi9DrReB0avA23UJ+ZTbPFIR3Nqm8VEnK4IBAJhGkM+wQmEGQDNquHYsgqOLasgfufT8F2uRe++d9G7710EahqHPlAU4T1XDe+5atT/7GnoSvORsV3OU7li/pTOV0PRtLKK0rhySco+URQR63MpEZaSaNk+4ZNMcYRwBEJnN6Kd3RNyfkqtAsWysmCZVI4LmDSNa71deKbyLF66VokvLtuAD5UvHig6xgYKjzMRSqWCymGFym6D2m5NlB1WqBw2qOxWqO02qOwWYo9GIBCmJcYFc1C+YA7mfOlRuI6eQ+dL+9D79rsQIoMvBgk2tKLhv/6Ehl88A+u6pci5Zzsyb9kIlXHiPwPZ3Cw43rMTjvfshCiKCNc1KVGVgXOXxxTZIATDCF6uQfByTeo18nNSBcvyErC5MzPybOvWrXjxxReV+uHDh9M4mqmFGIsh6nQj1utCtM+JaI8zkXs63tbrlARyfoKWqdM02JxMJec5m58DbWkRdOXFUGXYZ+TfJIFAmHhivgD8V1JdEyLtPeh6+R10vfwOAIDNssO6WhIqrWsWQ19eNGs/cyiKUvJAaucUjfo4IcIlnH6SBExF0JRFTMEfSCzSlbdxkXOiLVFXmR0p4uQZ79AL1ccbSq1KCInJomK8bBikLXmbvF+nndLzTwQCgUCYGIg4SSDMMCiKgnnJXJiXzMWcL3wIoZZO9L5zAr373oXn1GUpp8AQhBra0PK7v6Pld3+H2m6R81Suk/JU6tKbp3IsUBQFdYYd6gw7jCtS/V/i9lyRlnZ5ZXwnYi43eLdXymXo8iDm9oL3jl+eoPFGjMYgRmMQhnASe7K1Bk+0JiZqn6k8g39SW8HMpIfR+ApZhyw42q2JskMWHu2SCEmS1BMIhNkCrWLguGk1HDetRswXQPcbR9D50jvwDJGfGqII97sX4H73Aq5+9wlk7tqInHt3wLZ+6aRMEFEUBZ1sX5n54N0QYzEEK68hcOkKQrWNCF9rRLipdcyLZ7i2TnBtnfAcOK600Qa9bJMZFyyLoZ1TPK3ubwZj69atKfWrV6+is7MTOTnTM2piNAhcFLE+J6K9stDY45SFRleS+OiUrOAnI08Wwyh5zDUFOYoQqSnIhTo3C7R6/HO9EgiE2Y3nTNWI3n9ctxPdrx9C9+uHAABqmxnWNYthWSOJlcaKEiIGjQCtYSULULv1uo4XBQFCKCw9v8di0qLg5G0832OMh8gnt/P9+vKpeSGVY3jsvHwBT/7iJ8o1rwQ90L3vTphNJiU3JSXnrQRDp+SzHJDXst9+JPWhGBUoFS1tNWpJbCTfb4QZiihQEPj0zCGJabKTJRDSBREnCYQZjq4wB4WP3I3CR+5G1O1D38FT6N33LpyHzw6fp9LpQef/7UXn/+0FrdXAvmk5HNvXIWP7OrAO6+S9gXGGoiio7Vao7VZg2cIh+4kxHjGvDzGXB7zHi5jLi5jbkyRgehKCpvyaKpGHK82OlHpLJIi3+tpwW0ZBmkY0DAwNxmAAY9SDNujBGPRgjHowRkOibjJAZZMiHtVypKPKYpYemAgEAoEwKCqTAXn370be/bsRau5A5yv70fXSOwg1D57zUQhF0PXKfnS9sh+abAey77oZOffugKF89BEGNwqlUsGwbAEMyxYkxsVFEWlsQehaI0K1DQjLW94ztkVEQiCIwIUqBC5UJV1QXsyU5YA605HYZjqgzsqAOtMOdaZjSucmWrZsGUwmE3y+xM/j8OHDuP/++9M4qtEj8nwi0sTnlyNREuWY24tYr1MSHPtciPY4wfv8kz5OSq0Cm58jRT8miY9sQS7Y7ExyT0IgECYVQ0UJyr/xCbhPXoLnVCWibu+Ix0RdXvS8dQw9bx0DAKjMBlhWLZIjK5fAuLAMNPksG1comp5wZ547gneBfeI/wcmpUwRRRO28fNx+++0Tel0CgUAgEMYDIk4SCLMItdWEnLu3I+fu7VKeyuMX5KjKE+C6h8lTGY6gd5/Ur4aiYJxfCsvKhbCsWgDLyoUTnq8qHVAqJiFijgJRFKUJNbcnIWQmiZq82wshFIbARSFyUQjRKESOg8jFkspRaX80ekP5LVaZHFhosKAqkMjj9VTbNex25IMerwhCeVUlYzQogiIdFxYNBtAGnbKPNhrAJNeTBEhKw5KoRgKBQJhgdEW5KP3sB1DymQfhPXcFnS/uQ/frhxHzDR6CH+nqQ/NvX0Dzb1+AafFc5NyzHVl33gTWbpnkkUvW9bp5c6Cbl8gjJYoiYr1OhGobEbrWgHBtI0K1jYg0t43NnlMUEe2R8k8NB2M1K6Il21/IzJKEzHTZgjMMg02bNuGNN95Q2g4dOjRp4qQoipKdvS+AmM8vCYteeZtcjguPivgotQmB4KSMczRQGjZFdEzeqjPtJMKIQCBMGbS5mcoCZFEQEKxrgfvkJbhPVcJ96tKQ+aeTiXkD6Nt/En37TwIAGIMOlpULYFm9GNa1S2BeMhc0SyLjpjp6vR7r1q1LsXU/cOAAEScJBAKBMC0g4iSBMEuhWbVi/TbvO59KzVN5tWnoA0UR/iv18F+pR9v//gMAoMnNlB5kVi6EZdXCWWkRQ1EUVGYjVGYjNEX5N3w+URRl+9YohAgnC5YxCJxcjsgCZzQKMcLJAmdMEjlFEV89vRIP//i7yvnqQj5U3rkJd23fIf1ukq1cUuxcBmkbzPaFCIoEAoEw7aAoSvquXrkQ5d/8JPreOYHOl96B89DpIW3ffZevwXf5Gmp/8hQcN61G5i2bYNu8AppM+ySPPgFFUYpYaN6wSmkXwhGE5SjLcG2DsuWHEGFHC+/2gnd7Eb7WMGQfWq+FOlOOtszK6BeF6ZAcAZLyQ9Osety+T7du3ZoiTo4m76QoihAjHPhgCEIgKOXUCoakbUDaJtr69wklcmz5AhBjsRt+DxMKw0CdYZPcFzLsUDtsUGfYocqwQe2Qtxl2qOxWcn9DIBCmHRRNwzC3GIa5xcj/4J0QRRGhpna4T16WBcvLiHT0jHgePhCC8/BZOA+fBSBZmppXzId1zRJY1y6GeVkFGK1mot8O4TrYtm3bAHGSQCBcP4JAQUiTvWq6rksgpAsiThIIBFA0DfPSeTAvnYc5X3wYoeYOWag8AffpyhHzWUQ6etD9Wg+6X5PyWTAGHczL58sToAtgXlYBlTE9EQXTFYqiQLFqgFVfVzTGB+/ZjZ+++n+4fDmRZ+w///4cPviNL5OJNwKBQCCA0bDIum0Lsm7bAq7Pja5XD6DzpXfgr6obtL8Y4xUXBQAwLpgD+5ZVsG9dBcuKBaDV6X+soLUa6OeXQz+/XGkTRRHR7l7FDjaeyzLS0j6u+QiFYBiRplZEmlpHf5D8XU/LgmX/clzEpFg16HhbclktvRb7U90WLl68iKqfPA6TSCXERkWElLfB4NiiTKcgFKtOCI4ZNqgcsvCYaZfyT8tCJGMxgaLpdA+XQCAQJgWKoqAvyYe+JB95D+wGAIRauyQL2NOX4T55eUiL92SECAf3uxfhfveidF61Cvo5BTBWlMAwrwTGilIYKkqgyXaQ58s0s23bNnz/+99X6mfOnIHX64XZbE7jqAiThcjziHQ7EWrpRLilU9lm3roZmbs2pHt4BAKBMCzpn0UgEAhTDl1RLgofvReFj96LqMuLvoOn5TyVZ8AHwyMezwdCcB09B9fRc1IDTctWsAtgWbUIllULoc3JmOB3MbuhaRrf+MY38OCDDypt586dw549e4jFywwn5g8i1NSOYEMbQk3t0ORmIPe9u9I9LAKBMIVhHVYUfvgeFH74HvhrGtH58jvoemU/uG7nkMfEXRSan3wejEEH24blsG9dBfvmldAVZE/i6IeHoiiw2ZlgszNh3rxGaRfCEYSbWhHt7kW0W7J27b8VQiPf89wQ8ejFCHdDp8kReGgoGhFRkE8rYu8f/oxt9pzxGOXkwTBgTAYwJqNkBW8ySK4U8UhHhy1JfLSDMRnIhDiBQCCMAl1BNnQF2ch9704AQKSzF25ZqHSfuoxgXcuI5xCjMQRqGhGoaUxpV1mMsliZECwNc4uhMugm4q0QBmH9+vVgWTaRd1IQcOTIEfLcP4OI+YOK8JgsQoZaOxFu7YIYHehiwWbZiTh5nQhiGiMnRXJvS5hdEHGSQCAMi9pmRs4925Fzz3bwEQ6+i1fhOVMFz9kqeM5dQczjH/kkggB/VR38VXVo+7NsBZuXqVjLWVYumJVWsBPN/fffj+985zu4evWq0vb9738ft912G5nMm+YIXBSh5g5FgAw2tCHY2IZQY9uAHDO2DcuIOEkgzFBCHX3o3HsCBffcBLXZMC7nNFaUoPzLH0HZvz0C57Hz6HrpHfTsPQ4hHBnyGD4QQu/bx9H79nEAgH5OgSJUWtcumZI2cLRWA31FGVBRNuh+URQhBIKKUMl19yEmb6M9vYj2OBHt7gXv8U3yyAfC0gyWmGw47U3kznyjry0t4iRt0EviosmgCIz9BccBZXlLazXk/mQciacIIDnjCARCfzQ5Gci+cxuy79wGAOD63HCfkoRK98nLCNQMbWPen5jHD8+py/CcupzSri3MkcXKYhgrSmGcVwJdcS555p8ASN7J6Y/I84h09iHU0pEqPsrlqMs75nOGWzonYKQEAoEwvhBxkkCY5oR73Gh76SDy7twMXa5jQq/FaFhY1yyGdc1iAIAoCAjWt8JzuhKes1fgOVs1KosYAIi096C7/SC6/3FQOrdBB/OKBUruSvOyCrLa8gZhGAZf//rX8eEPf1hpe/fdd7F//35s3749fQMjjAqR5xFu65ZFx3YEG9sQbGxHqLEN4faeEe2W4wQb2yd4pAQCIV00/+1tVH7v97jwtf9G3u0bUfT+ncjetnJcJv4ohoFjyyo4tqxCzB9Ez5tH0bf/JJzHzoP3B4c9NljfimB9K1qffhm0hoV17WLJAnbLKujnFEwLAYqiKElAMxqgnVM0ZD8hHEG015mIuuxJir7slkXMPteoP7Ovl+223BRxcp+zA+4oB6uaHdXxlEoF2qADY9BLAqNBB1qfuk3dp5OERXNcaDSCMejIpHOaiLq88F9tROBqEwJXG+G/1oTA1SYUPnovSj/3gXQPj0AgTHFYhxVZt25G1q2bAQBRtw+eM5VyZOUl+Krqx/w9FpZFlfjCJUDKY2mYWwRDRSmM84qlbUUJWId1PN/OrITknZz6xHyBgZGPcjnc3j1o9OONECLiJIFAmAYQcZJAmOa0/+MILnz1CVz42n/DsW4h8u/agrw7N0GfnzXh16ZoGobyIhjKi5D3/tsAAJEeJ7xnryhipa+yFmKMH/FcfCAE15GzcB05K52boaEryYehrBD68iJpW1YIfWk+GJ12Qt/XTOIDH/gA/v3f/x2NjY1K2/e//30iTk4RRFEE1+1MESBDjW1SRGRL57g8oEQ6esCHwuT/hkCYYYiiiOa/7AUACGEOrX8/gNa/H4A2x4Gi+7ej6P27YJ5fPC7XUhn1yP2nXcj9p10QojF4z1fDefgM+g6fgb9y8ByVcYQIB+fhs3AePgvgt9DmZ0lC5eaVsG1cPu1zUtNaDTQFudAU5A7ZR+R5iNEYBC4KkeMgRqNSORqDGOEgRKMQ5brAcXJZ7pNclvsNVn6fdz5+8dQVcLx0zxUVBRwoMOMTt71HEhX1krgYL8dFxrjgSKLrpgd8MIxAbTMC15rgr2lE4JokRvZ3TYgTuNY4uQMkEAgzArXVhIwd65GxYz0AyVLSX92AQE0D/DWN0mKImkbwgdCYzitEOPgu18J3uTalnc2wJuWxLIa2IAfavCxosh1TIqf1dKB/3snq6mqEw2FoteQZcKIReR5crxuRrr6UF9fVh0hXr1If6//LWKF1GugKc6ArzIG2MAeG8vF5DpiNiDwFgU/PYkoxTdclENIF+ZYnEKY5ba/Iq+NEEX3vVqLv3Upc/Pr/wL56AfLv3oL892yGvnDycj9pMu3I3L0Jmbs3AQD4UBjeS9cUK1jvuSuIeQMjnkfkBQTrWqT8F28dS+ygKGjzs6AvK1QEy/hWbTFN1NuatqjVanzta1/DJz/5SaXtwIEDOHLkCDZv3pzGkc0e+GAY4Y4eRDp6EG7vQbitKyFENrWPKo/rmJH/T3Ql+dCX5EGIRIk4SSDMMFxna+C7NjBHVLizD1cffx5XH38e1uXzUPz+nSj4p5uhsZvH5bq0WqW4KMz510fA9brgPHIOzsNn4Dx8FlH38LZT4bZutP91D9r/ugeUioF5xQI4tqyCfesqGOeXgqLpcRnnVIJiGFAMA3oC7W1LAfyTtwV/+ctflLYX6qrw7U/8dVpEqhJSEWI8Qo1tCFxtSomIDLV0AqI46vMEapomcJQEAmG2oDLqYV29CNbVi5Q2URQRbuuWBMurjQhUS6JlsKFtzFGWXK8bXO95uI6dT91B09Bk2aHJy4Q2Lwva3Exo8zKhycuS6vlZ036R03ixYcMG7N69G1u3bsW2bduwevVqsOzo3BMIQxMLhGSRMf7qHSBAcr0uiPzEOmTE0eRkQCsLkHERMl5WO6zkno9AIEw7iDhJIExjIr1u9B69OOg+5+krcJ6+gkvfehK2FfOQf9cW5N+1BYaSoVf2TwSMTgvb2iWwrV0CQLaCrWuB50wV3LJgOSYvfFFEuLUL4dYuOA+eTtnFZtoksXKOHGUpC5dsln1W36Q98sgj+N73voe2tjal7Yc//CH27NmTxlHNDERBANfrRrijG5G2HoQ7uhFu70GkvUcSJNt7RpyovxHYTJssQOZDV5IHfUk+9KX50BbmgNGQh1ECYSZDs2rk3r4RnW+dGNKhwH3+Ktznr+Lit55E7i3rUPT+ncjZtXZcoxDYDJuSm1rkefgq6+A8chbOQ2fgOV897ASlGOOVPFX1//lHsBlW2DathGPrKlhWLYQmN3NWf3+PlY9+9KMp4mRdXR0aGxtRWlqaxlERhkMURUQ6eqQoyKuNckRkE4L1LePinhBsagcf4cg9AYFAGHcoioKuIBu6gmwlwhIA+HAEwboW6XNNibJsANfrHvtFBAGRzl5EOnvhPXtl0C4qkyFFvNTkyyKmvGUzbbPCclyn0+GNN95I9zCmBaIgIOYLIOryIur2get19RMgE6+RUhmMN4xeC21h7qDioyY/i3yfEwiEGQcRJwmEaUwsGEbBe29GxxvHEfMNfdPkOncVrnNXcfm7v4N1WTny3yMJlcay/EkcrQRF0zDMLYZhbnGKFazn7BUlutJfVTcqK9j+cD0ucD0uuN9NFWxVJkOKWBnfavOzZsWDikajwZe//GX8y7/8i9L2xhtv4NSpU1izZk0aRzb1iQVCUsRjR6rgqIiQnb3jnhuiPyqzYVABUlecR1YKEwizGOuSMmx45juI9HnQ+n8H0PTXvXBfuDZoXzEaQ/trR9H+2lFoMiwo+KebUfz+XbAsKRtX8Y9iGJiXzoN56TyUfPr9iHp8cB2/AOehM3AePoNIV9+wx3O9bnS9/A66Xn4HAKC2mWFcVA7TwjKYFpXBtKgc2sIcIlgOwc0334zS0lLYbDZ87GMfw4MPPgir1ZruYREgL2bqdiLY1D4gL+R4TXzSrFq6x51XAsO8YhjlLbHsJRAIkwmj1cC0qBymReUp7VyfWxYsG+C/2oRATQMC15ohRLgbul7MF0CsJoBATeOg+ym1CppshyRe5mVJQmZuJjR5mWDtFqgsJqitJilvMrm/mHaIgoCYVxYaXR5E3T5ZdPQi6vQm6vE2lxcxj2/SIh0HQFHQ5GYMEB+lbS7UNjP5O5wCCAIFQUjP7yFd1yUQ0gURJwmEaYyhKAdr/ufL4CMcug+eQ9vLh9Gx5ziiHv+Qx7gv1MJ9oRaVP/gDLItKkX/XVuTftRmmeUWTOPJUNJl2ZO3ehKwkK1j/lXoEZFvX+Dbc1j0mK6s4MV8A3vPV8J6vTmmnNawSZabJtIPNskOTZQebaQebaYMm2yHdHM4Ai7mPf/zj+OEPf4ju7m4AAE3TOHr06KwVJ/lwBFGnB1GnB1xffOtGuL07Yb/a0YOY2zcp46G1GuiK86AvyZOEyNI8WYzMJw8oBAJhWDQOC8o+cTfKPnE3PFca0fzXvWh+/h1EupyD9o/0elD3m5dQ95uXYF5YiuL370ThfduhzbaP+9jUFhOybt2MrFs3QxRFBK41Sfavh87AfbpyxMUdUZc3JR81IC04Mi6cA9PCcpgWl8O4sAz6krxZsdhoJGiaxsmTJ5GRkZHuocxKYv4gwq1dCLV0ItTSiXB829qJcGsXBC46PheiKOiKcyXxcW4xDBXSVlecB1pF/g8IBMLUhHVYYd+4HPaNy5U2kecRauqA/2oj/DUNCMiR4+GOHgihyLhcV4zGFOel4aAYGiqLCSqLEeqkrdpqkgRMizGxz2pS+qjMRvLZe4MI0Rj4UBh8MAw+EIIQCiMWDIOXoxs5lxcxWViMuvqJjR7/mG2EJwpKxYDNtEOT7VBebFI5LpKTRUMEAoGQgIiTBMIMgNGwyL1lHXJvWQeBi6L78HlJqHz9GDjX0OKKp7IBnsoGVP34jzDPL0aebP1qnl+cVjGE0WlhWbkQlpULU9r5UBjBhraEYFnbjEBdC0JN7dcVaSlEOPirG+CvbhiyD6ViwDqsYLMc0GTZJOEyyz5QzHRYpvTEqE6nw5e+9CV8/etfx4c+9CF89atfxbx589I9rHGDD4URdXrBORNCY9Qll51eRPvcyr6o0zMxeR5HQG01yyt1M6AtzFWiH/Wl+dBkO2aECE4gENKLZUEJlnz341j0rY+g+8BZNP91L9pfPwYhMrgo4q1qwKVv/xaXv/s7ZG1fjeL370TurRvAaMffMoqiKBjnlcA4rwRFH/0n8MEwXCcuKrkqQ03tozpPzBeA+8QluE9cUtoYvRbG+XNgXCRHWC4sh76scFzta6cLRJicOIQYj0hnb4romCxERl3jb+POZjlgrJAcRwzzSmCcVwx9WSHJI00gEHD1V8/DW9mAzK0rkLl1OfT5meke0pihGAb6OQXQzylA1q2blXZRFBFz+xDu6EG4TV482tYtude09SDS0X19NrHDIPKC8qwYGuOxjFEvi5hGqM3GJPFSEjVprQa0WgWaVYPqt6VZNShWBVqtBq1WgWLVg/RVT6oAKooiIAgQeQGivE2uC1wUfCAkiYmhsFIW4gJjMAw+GEoqy/2CIfCBcEKIlPtMtBPReKAyG6DJzhggNmqy7IoIyTqs5Jl+piCKgDD2wIhxuzaBMIuYfU/sBMIMh2bVyNmxBjk71kD4+efRc+QC2l49gvZ/HAXX5xnyOG91E7zVTaj+6Z9hmlsoC5WbYVk0Z8pEbTE6rWTttrAspV2IxhBq7pBFy+aEeFnfesMrLsUYr+QbGDaGjqbBZliliMssh7TNtEs3r5mSqBm3i2F0WtA6zaT/XD/1qU/h/vvvR0lJyaRed7SIggA+FFEeUoRgYsUk5/Qg6kpEOSoRj670iY3JUGqVlJw+LxPa3KxE3pO8TGhyJesgRk8mEgkEwuRAqxjk7FyDnJ1rwHn8aHvpEJr+uhfOk1WD9hd5AV17T6Jr70moLUYU3HsTit+/C7bV8yfsu4rRa5Fx81pk3LwWgJQbz3n4LJyHTsNzpgoxX2DU5+KDYXjOStbwcWhWDUNFKUyLE7awhnklZLU6YUhEUUTM408RHhNCZBfC7d3XtRhuNKhMhiQ7VkmINMwthtpqmpDrEQiE6U/bS4fgOncVzX/bBwAwluUjc8tyZN20AhmblkLjsKR5hNcPRVFQ28xQ28wDnv3j8BFOcbyJtHcrzjeKmNnePWmiF+8PShbdI0Rn3hA0LYmXcVFzgJAp3d+IAg8kiYqiIKTWeQEQ+CGFx3h9tkBrNVDbzMNGO2qyHORZnkAgECYIIk4SCDMYWq1C9s2rkH3zKiz/6WfRe+wS2l45jPbXjiLS7RryON+1FtT8/FnU/PxZGObkSTkq794C69LyKSNUJkOrVTDIeSQzsVFpFwUBkY5eBOQIy6BiE9uM2DDWt9eFnEuI63bCX1k3cn+KAqPTgNFrQeu0YPQ6MHoNmOSyXifXtaD1WqiUvvJLp1XEzngbrdMOuqpSFEUY9HoYCgshxCfWRFFZlSUmlaX2fm1ye3KbGOOHWBkZStomxEY+EBqwSjL5mPGy7pkI1LZ41GOS4JiXqbSxGWSVJIFAmJqwFiNKH7kdpY/cDn9dG5qeexvNz72NUGv3oP2jHj8ann4NDU+/BmN5AYretxNF79sBfX7WhI5TX5wHfXEeCh66E6IoItzSCV9VHXyVdfBX1cJ3uXZMkWkCF4Xv0lX4Ll1V2igVA8PcYpgWlcG4sBymRWXQlxVCbTZOxFsiTCFigRC4Xhe4Xre07XGlbCNdfQi3dI5JFL8eaK0G+jkFMMwthrEiYcuqyXZMyXtsAoEwNeE8frgu1Ka0+eva4K9rQ8PTrwEALEvKkLllGbK2rkDGhiVQGXXpGOqEwWhY6EvyoS/JH3S/KAiJtB3tctoOpdyNSGcvYl5/+nIPjhVBkPJzRjiMtExGFEW0RAO4EHKiOxrCRzMqJmWI6YbRa6G2maXIVZsFaqtJErmtZkXsVtrkMnEiIBAIhPRCxEkCYZZAqxhkbV2OrK3Lsfw/Po2+E1VoffkQ2l89gvAQeakAIFDfjquPPYerjz0HfXEO8u/agpyda2BfvWBCbN/GE4qmoc3PgjY/C46bVivtoigi2ueWBMuGNkS6esF1uxDp7pMmqXqckk3MRNopiKIizI07NJ0iPBKGhlIxUNstUNssYO1mJcpRiXzMzYQmN4M8tBAIhBmBsSwfi77+CBZ+9UPoOXIRzX/di7Z/HAEfGPy7yF/biqofPo2qH/0RmVuWofj9u5B72waozYYJHSdFUdAV5UJXlKvYvImiiEhXH/yVtfBV1sFXVQvf5Tpw3X2jPq8Y4+G/Ug//lXoAe5V2ldkAbX42tAXZ0BXkQFsQL2dDm589I1bL8zwPZgrbz18PAhcF1+dOCI1DCI9cr2vyHBYoSsopVZANXWEOtIU50MkvbWEO2AwbESEJBMIN03vk4ojRbZ5LdfBcqkPtE38HpWJgW1mBrK3Lkbl1Beyr54PRTO1n+RuFomloMqV0LFg2f9A+oiiCD4QQdfsQ8/ikrdePqMePmNuHqMeHmMc/6HaqLqxtjPjwpbaTcPLS+CgA99lKYWGmz++bZtXSQm2jThYWBxMZU8VGlc084/+mCZMHLYig02Trmq7rEgjpgoiTBMIshGIYZGxcgoyNS7Dsx5+C89QVtL1yGG2vHEaovXfI44JNnbj2+PO49vjzoDVq2NcsQObmZcjctAy2VRXT5maQoiiwGTawGTbY1i0dtI8Q4xHtcyPS7ZTEym6nUk5spQmvKWd7MtXGM4nExUbWbpFER7sFrMMKtd0M1ia3OazyfjNUZiOZJCQQCLMOiqYTC5Z++lm0vXoEzX/di54jFwY/QBTRc+g8eg6dB6VWIWP9YuTcshY5u9bCWF4wKZ+jFEVBm5MBbU4GMnasV9ojPU74q+rhq6qFv7IOvqo6hMdoqxbzBuD3xkXLgagdVkmolMVKXUE2tIWyiJmbOWWtYkVRxMmTJ/HUU09h3759uHLlCjQaTbqHNSQCF1UmfmO+gDQB7PIiIguN0T43IkmCY8w9rOH+hMEYdCnCo7YgIUBq8rOmzf0wgUCYvthWzMOyn34WPYfOoefIBUTdw7sCiTEezpNVcJ6sQvXPngWj08CxbhEyty5H5pblsC0rBzXDFrCMBoqioDLqoTLqgYLsMR3LRzjp+8rrT4ibiniZJG56/RAiUQjRKAQuCjEagxCNQeSiEKKxRJu8vVHy1HoEhcR5RAAnAz3YZR48wvRGoNSqfk5OSQ5QSn0Q56fBynqpPpQTFIFAIBBmJkScJBBmORRNw7FuERzrFmHJ9z8B15katL16GG2vHEGwZejJPSESRe+Ri+g9chFX8AxoLQvHmoXI2LwUmZuWwrZy+oiVg0GrGCXHwHCIPA/O6QHXI1mCcT1JEZhJgibX65qwPEU3SkiI4XSwF1uMOekeSio0rTzUsHbz4GKjw5oQIx0WqEwGIjYSCATCGFAZdSh+cBeKH9yFYEsXmp/bh6bn9iJQ3z5ofzEaQ8/h8+g5fB6XvvUkDCW5yNm1Fjm3rEXGxqWT7qqgybRDc5M9xSEh6vbBV1UHf1UdfJW18FXVIdTQdt3XiPa5Ee1zw3uhZuDO5Ei5pKjLeOSlJtuRlgnfQCCADRs24NKlS0rbK6+8gvvvv3/CrimKIoRQBFGvPzFh6/Eh5g0gJrdFvf5B6lKbEJ4aUSgUQ0tOCgWpUY86WZBW28zkXoNAIKQVXV4Gyj76HpR99D0QeR7uy/XoOXQe3YfOoe/dy+CDw3+e8qEIug+cRfeBswAAtcWIjE1LkbVlOTK3Loepooh8zo0Ao2HBZNmhybKP2zlFUUwRKgVZwEwVMqOJ9n59AWl+56af+PDmyWPKeasXZOJfv/0dKQ0JTYGiaVAMLd2fxMtJWyh1BhRDp/QBTSmRjbSaTCkTCAQC4cYg3yQEAkGBomnY1yyAfc0CLP7ux+E6dxXtrxxG6yuHEWzqHPZYIcwpk5VXADA6TSKycvMy2FbMm7KRBTcCxTCKXYxpYdmQ/URBgBDmUnMthsKDl4MhCKEw+IDcnlwOJupCSOp7vXkyoqKA1zzNeMZZCxfP4TeFmzBXa7muc0krJlNXScbzZErlYVZQptQTZVrDkodiAoFAGIZQtwvNLx9D6fu2gR0Hq1V9YTbmf+kDqPi3B+E8WYWmv+5F64sHEfMFhzwm0NiBut++jLrfvgxGr0HW1hXIuWUdsneugT4/84bHdD2orSbYNy6HfeNypS3mD8J/pV4SKysl4TJQ13LjbgOiiEhnLyKdvfCcrhywm1KroM3NhNphSfkeVBl0YAza1O9GgxaMQZ/6fWhI+l4dQySBwWCA3Z46YfrUU08p4qQoitLkZigCPhSWtuEI+GAYQjgCfph2IRRGzB9UREZFjPQFxiXqYyKhdRpoMu2Sg0amLWWrzc+Soh9zM8mEK4FAmDZQDAPbsrmwLZuLeZ+7HwIXhfNMNboPSc/mztPVI342Rz1+dLx+DB2vS4KWJtuOrC3LkLl1BbK2Loe+cGxRhYTrg6IoUKz6hudN3ttTlyJO7j9/GtYtK6FSke82AmFUCCIoPk32qsTWlTDLIN9MBMI0R5RzC1I0Pa7npSgK9pUVsK+swKLvfBTui7Voe+Uwuvefgfti3Yj5DPlQRLGAAwBGr4Fj7SJkbFqKzM1LYVtRMasmfiglCnB881bFV1fGRU0+GJYePilKfiEh8PXbbr77DpzvqVLO9cIcFi//6alEH4pKOjapLf6eVIw0Waplx/3vj0AgEAgjU/fMXpz6/36Dk198AiX3b8Xcj9yG7M1LbnhhB0VRiqvCsh99Cu17jqP5ubfRc+i8sjJ/MPhgBB1vvIuON94FAFgWlSJ711rk3rIO9tXz02oZpzLqYV2zGNY1i5U2gYsi0tmLUEsnwq1dCLV2IdyaKEf73Dd8XTEaQ6i5A6Hmjhs+F61hBwiWqWXpHkMIRsCHw7gFNhxMOn7vW2/h+RV3Ixtq8KHIjLGBp9QqsA7roIJjfKvJtEHtsEJl0KV7uAQCgTCh0KwaGRuWIGPDEuArH0IsEEbficuSWHno3Kie5SNdTrS8sB8tL+wHABhKcpG5ZRlsKypgWVIGy8LSSXdKIIye22+/PaXudrvx7rvvYvPmzWkaEYFAIBAIgzN7lAECYYbivFCHt+/6Jua8/2bM+cAO2JeVjXu0GUVRympMfOsj4Nw+9B6/jN6jF9Fz5AI8l+tHFiuDqdYxjF4Dx7rFyNy0FJmbl8G6fO6sEivHi+TVlWqraUzHPvDBB3H+6wm7t70H9+Nkw1XcdNNN4z1MAoFAIIwzoiji2h/eAADEgmHU/vEt1P7xLZjn5mPuo7eh/JFboM8d3pp8NDA6DQrfuw2F792GqC+InkPn0bn3BDr3nkK4s2/YYz2VDfBUNuDqL54DazMhe8dqZO9ci+wdq6Gxm294bDcKzaqhK8qFrih30P18KIxwW7ciXkqipVxu60LMG5jU8QoRDkKEQ9TlHVX/lQIPA61CQM49JQL4e9NlfCJj/gSOcnxg9FqozEaoLCZJYHRYU4TGZOFRZSH5owkEAmEoVAYtsrevRvZ2yf6cc3nRc+SitJD48Hn4rrWMeI5AYwcCjR1ofEa676AYGqaKYliXlMG6rBzWJeWwLJ4D9Ti4OBBunIKCAixbtgwXLiRyib/22mtEnCQQCATClIMoAQTCNKf+2X0Itvbg8s/+hss/+xusC4sx5wM7MOfB7TCVDj7ZdqOwVhPybtuAvNs2AJAecHqPX0bPkQvoPXpREitHgA9G0L3/DLr3nwEAMAYtHOsWSTawm2SxkiRCn1A+//nP47HHHkNXVyK36Ne+9jUcPXqUTPIRCATCFKfnxBW4q5oGtHuvteHM15/C2W/9HgW3rcXcj9yGwjvWj8sCILVJj7w7NiLvjo0QRRGeS3XofOskOveehPNM9bALlTiXLxGFQdOwr56v5Kq0LJozJb93GJ0WhvIiGMqLBt0f9folobKlU466lETLeDndORQ1NIOdpny87En8nbzsbsL7bHNgYSY+4kVlMkBlMUoio9kItdkgC45y3WKEKqlNbTZJ+4z6GZkKgEAgEKYCrM2M/PdsRv57JKEq1N6LnsPn0X1Ycj0KtfWMeA6RF+CtaoC3qgHNz72ttBtKc2FdKouVS8tgXVIObZZtwt4LYWhuv/32AeLkj3/84zSOiDAZ8KEIAs1dCDZ3wlCcA9O8we9hCcNDCyLoNNmrpuu6BEK6IOIkgTCNEQUB9X/dn9LmrmrC2W/+Hme/+XtkbVyEOR/YgdL7b4I20zph42BtZuTdvhF5t28EAEScXvQeu4TeoxfRe/QCPJUNI56DD4TR/c4ZdL8jiZUqgw7WFXNhWTRHei0shXl+MRidZsLex2zDYDDg29/+Nj7zmc8obcePH8err76Ku+66K40jI9wIoiiCc/kQqG9HoLEdaosRObvWpntYBAJhnGE0ahTdvREt/3h30NzDIi+g5R/vouUf70KbZUX5h27B3I/eBuv88ZmkoChKmoBcWo75X/oAIn0edO07jc69J9G17zSiHv/QBwsCnCer4DxZhaofPg1dXgayd61Fzs41yNq6Airj9LDeVJuNUC80DppzWhRFRPvcklDZ1g3eF0AsEEqxYef714MhqS0g558exkJ3tLzXWoxXPU2I/4WERB7/527ERxzzBvSl1CowWg1onRaMTgNaqwGj18htGjAp7TpZUJTFRpNBFhuNisCYThvf2YgQjcFf1wbf1WZ4a5rgrW5Czo41KP7ALekeGoFAmMLo8jJQ9L6dKHrfToiiiEB9uyxUnkPP4QvgnKOL1geAQEMHAg0daHv5sNKmzXHAurQM1qXlsCwph3VpGfSF2VNyUdJM4o477kgRIy9duoTm5mYUFRGxajojRGMItnYj2NyFQHMngk2d8rYLgZYuRLqcSt/5/98HsfCrD6dxtAQCgTAyRJwkEKYxPSerEWwdemVj97FKdB+rxIl/+RXyd6/BnAe3o+juTVBP8KSfxm5G/p2bkH/nJgBApM+D3mOXlMhK75XGEc8RC4TQe+Qieo9cTDTSNExl+TAvKoVlYaksXJZCV5BFHm6uk4997GP4+c9/jvr6RLTrN77xDdxxxx1gyKTilEUURYQ7nQg0tMPf0I5AQzsCjR3w10vlaJLVYNbNq4g4SSDMQBwr5mLHi99HsNOJumf24trv98BTM7g1W7jbjcs//xsu//xvyNq4CHMfvRWlD2yD2qQft/FoHBYUPbADRQ/sgBDj4TxVJUVVvn0K3qrhFymF2nvR+MfX0fjH16VcWZuWInPTUthWzIN1xTywFuO4jXOyoChKsh7NsMGy/PpsVIVoDHwonCpkBoJJQmaqsBkLhECBAq3XKoLiXK0G9/xWhb8ffkc57ytcJ370zPPIyM2WhEZZcCT2+tMDgYvCX98Gb00zvNVN8MlCpL+uDWKMT+nLaFgiThIIhFFDURSMZfkwluVjzofvgCgI8FQ1oOfQebjO1sB9sQ7++rYRU7okE+7sQ2dnHzrfOqm0qa1GWGWhUhIsy2EqzyeLWsaR9evXw263w+lMiFWvv/46/vmf/zmNoyKMhCgICHX0IdjciUBTZ0KEbO5CoKkTofbeUecMDzZ3jdyJMCgkcpJAmDzIEyiBMI3JWr8Qd1/4Ler/dx/q//IOAi3dg/YTeQGtr59A6+snoNJrUXT3Rsz5wA7k37J6UiaiNA5LinVMpNedKlZWD7SlGxRBgO9aC3zXWtD20iGlWW029BMs58C8oAQqg3Yi3s6MgmVZfO9738NDDz2ktF2+fBnPPvssPvShD6VxZAQhxiPU1gN/fZuU56WhXRIf5ZwvfGh0doGBhvYJHimBQEgn+hw7lvx/78PiLz2A7uNVuPa719HwtwOIBcKD9lcWLn3h1yh9YBvmfuQ2ZG1cNK6LfGgVg4wNS5CxYQkWf+ejCLZ2o3OvZP/ac+j8sJ9fAhdNsX0HAGNZAWwr5sG2ch5sKytgXVw2K5wUaLUKtFqKTrwRfrC6HC8uWgRRnkz2+v34/Rsv4zvf+c54DJMwQQhcFL66NviqG+GtaYZPFiP99QNFyKHw1jRP8CgJBMJMhqJpWBeXwbo44RAQ9QXhqayH52Id3Jdq4b5UB++VxlF/LgFA1O1Hz2Ep52UcRq+BZeEcWJaUwViWD0NxDgwluTAU5UwbR4WpBMMwuPXWW/Hss88qba+99hoRJ9OMKIqI9HoQbO6UBchEBGSwpQvBlu5xcc4AgEBz57ich0AgECYSShTHsOSJQCBMKJWVlVi8eLFSv3z5MhYtWjSqY0VBQNfRy6j/331ofOEgIk7fiMdoHGaU3r8Ncz64A1kbFoKi6ese+40Q7nGj95gUJdlz5AJ8V8dhIoWiYCjNlQTLxXOkB51FpdAXZaftfU5VBEHAihUrcPFiIkq1pKQENTU1YNmJz0k1m+EjHIJNnUr0o7+hQ4mCDDR1jukhfygohsbdba+OuBDhRj5/CATCjTOe/4NRXxANfzuAa394A93HKkfsb5lfhLmP3oqyD+2CPsd+XdccLXwogp6jFxWxMtg09okTSsXAvKAEtpUVkmi5Yh7M80tIrupheP/734/nnntOqVutVjQ2NsJisaRxVARAuhfw17WlREH6apolEXIQy+axwOg1uKvppRHvfck9AIGQXqb7/yAf4eCtboLnUh3cF2rhvlQLT2U9+OD45F7WZFigL86VBMviHOiLc2AozoWhJAe6vEzy/T8Ezz77LD74wQ8qdZ1Oh76+Puh0ROydCAQuinC3C+GOPoS6nAh39kmvLidCnX0It/ci0NIFfogFhOOJJsMC2+oF2Pi/3x2x73T//BkP+v8Mlv/z/0CfVZKWsQS7G3H+fxKLCGbj74MwuyDiJIEwhRivmwKei6LtzVOof3Yfml85PqoIK2NxNuY8uB1zPrgTtkUlY77meBLudsF56go8VfXwVDbAW9UAf337mOxjhkJl0MG8sESxhLUsmgNjeQFYu3lWW8O+9tpruPPOO1PaHn/8cXz2s59N04imP6IoIur2IdTRh1BHr/SQ0tGLUFsPAg0d8Dd2INTWMy5/14NBqRjoi7JhLM3D6v/5CjR287D9yUMJgZBeJup/0H2lCdd+/wZqn3kL4W73sH0phkbhnesx99HbUHD7ugmf7BNFEb6rLejcewKde0+i793K616Uweg0sC4tlyMsJdHSUJo3q7/bk+n/9wUAP/jBD/CNb3wjTSOafUR9QQSaOqQIyJpm+Kqb4K1pQqCh/YZFyGS0OQ6YK4pgml8Mc0Uxih/cBZpVD3sMuQcgENLLTPwfFHke/ro2uC9K0ZXui7VwX6xF1D1MTurrgFIx0BdkDRAt9UVS5CVrM83ae4G+vj5kZWVBSLIBff3113HbbbelcVTTD0V07JRFRllwTN6GOp3g+jyTNiaVSS/9zRdJgr2hKAf6omzpf6Awe0zRxjPx82es9P8ZrPjk/0CfWZyWsQR7mnDuN0ScJMweiDhJIEwhJuKmIOoLoumlo6j/yz607z0zqskP29I5KPvADpS+/2YYi7Jv6PrjRcwfklZjJgmWnsv1Kbn1bgRGp4EuPxP6gizoCrKgL8iEPj9R1uVlgtHO3ChCURSxZcsWHD16VGnLyspCXV0djMbpl+trohGiMYS7nQi3y4JjRy9CHX0Iy9u4GDla69XrhdayMJbkwlCaB0NpLoyleTCU5sFYmgddQdaYhAXyUEIgpJeJ/h8UojG0vPYurv1+D1pfPwlxhHw1uhw7yh++BXMfvRWWisJxG8dwRL0BdO0/g96jF+E6dxWey/U3ZG2lthphW5GIrrStrIAuxzGOI55e3H///XjhhReUut1uR2NjI0wmUxpHNTOIL0gKNEuWbKFWaRto7kKwtRuhli5wrpFdTcaCNjcD5ooimOcXwxTfzisCax3775PcAxAI6WW2/A+KoohQazfccUvYi7VwX6xDuKN3wq4ZF3EMxbnQF2fL4mUuDEXZ0GTboTYbZrR4uWnTJhw7dkypf/azn8Xjjz+exhFNDURRRMwXBOf0ItLrkUTHfoJjvBzpnTzRMQ6j00BfKIuNRdnQF2VLAqQcPay2GMft73a2fP4MBxEnCYT0QXJOEggzHLVJj/IP7UL5h3Yh1OVEw98Oov4v+9Dz7pUhj3FdrMfpi/U4/dXfInvrUpR9YAdK7ts6YuTVRKIy6mBfPR/21fOVNlEUEWrrkXJexAXLygb4altHnSQ8Dh+KwF/bCn9t65B9NFk26PMzZcFSFi3zpbIuPxOaTOu0fbChKAo/+clPsGXLFqWtu7sbjz322KyLqoj6gpLI2N47MOqxvRehzj5Eul0TFvHYH5VJD+McSXQ0lOTCOCdf2pbmQZtjJzbFBAJhVNBqFYrv2YziezYj2N6L2j/txbU/7IH3Wtug/UOdTlz66V9x6ad/RfbmxZj7kdtQct9NUE9g3ie12YCCu7ei4O6tAGSbuKpGuM7VwHm2Bu5zV6UceqP8/I26/QPyV2pzMxSx0r6yAuaFpdP6+3ssfPOb30wRJ51OJ5544gl85StfSeOopgeiKCLS7UKwuQtBWXgMtnQj0NKFkJwjKhYITci1dXkZMFUUDxQhLWTxGIEwm2l84SC8te3Iv3UN7MvKpsX3GEVRkuBSmI28OzYq7eEeNzyXJUtYX00TAs2dCDR2ItzZd8PXjPmC8Fyuh+dy/eBjUjFgHRZo7GZoHBawDjNYuwWaDAs0dgvYDGkfG687zGA002fR8h133JEiTr722mv45S9/OS3+XkaDKAiIegPgXD5wTi84tw9Rl0+qu6Vt1OVDxJXaHnX7xtW1YKxQKgb6wqxExGO/CEhNlm3G/I4IBAJhOEjkJIEwhZjMFUveunbU/+Ud1D+7D57qkXM80moV8m9bizkPbkfhHesndHLyRuFDEXhrmuGprFcES09lPTind0KvS2vUUvRlfhZ0BZmygJmlRGRqs+1QGXVTWky688478dprryl1s9mM+vp6OBzTL9JEWQ2Z9FASL0svb2p7nxehjj7E/MFJH6sm06oIjoak6EdDae6kWQ6TFZMEQnpJx/+gKIroOnIJ136/B43PH0IsOHwOHJVRh6K7NqLo7k0ouHUN1Cb9hI5vMKK+INwXa+E6VwPXuatwna1BsLnrhs6pMulhLCuAsSwPxrICmMryYZiTD2NZ/owTgO6991689NJLSr24uBh1dXVgmNmdr0uI8Qh39iHY0iUJkC3dkggpRz4GW7shRK4/inc06PIzkwTIEpjnFcFUUQS12TCh1wXIPQCBkG6u53/wzd1fRvteafGNLtuGvFtWI3/3GuTvWgVtpnUihztp8KEIgi1dCDR1yq8OBBo7EZTFy3Q8twGAyqgH64iLmbKwmWFRRE02ue4wQ2XQgVKr0iI2XbhwAatWrcLmzZtxxx134Pbbb8fChQvTLnyJoggxGkMsFAEfjIAPhhELhcHH66EIonJk4wDBMbnN7Z+0RcOjhdaooc1xQJtthy7HoZS1OXboC7NhKM6BLtcBaorce5F7gIE/g5Uf+28Y0hQ5GehpwtmnPqXUZ+PvgzC7IJGTBMIsxVyWh+XffAjLvvFB9J27hvpn30HDX99BsH3w1YlCNIaWV46h5ZVjoNUqZG1ejPxdq5G/e7W0UnMKCW6MTgPb8rmwLZ+rtImiiHCnE56qengrZcGyqgG+q83Xnd+qP0IkikB9OwL17UN3oiioTXqoLUaoLQZpq9SNUJuTysntFgPUZulFqyfuo/uHP/xhijjp9XrxH//xH/jpT386YdcciZTVkC5plWPyysjBhMd4n3SuhkxGk2GBNi8TulwHdLkO6AtzpGjIEslWaDImHgkEAqE/FEUhZ8tS5GxZinWPfRYNzx3Atd/vQc+Jwd0VYv4Q6p/dh/pn94Fm1cjdvhxFd21C0V0boM/LmJQxq016ZG5aisxNS5W2SK8brvPXJMHyrCRaRnrcoz5nzBeE+/xVuM9fHbBPk2GRhct8GGXB0lheAGNpHhidZjze0qTyrW99Cy+99BIMBgM++9nP4l//9V9npDApCgKiHj8ivR5Eet3Sts8DLl7vk7Zcn0fpM1n3DLqCLJjnF0t5ISukvJCmeYXkXoAwqXi9XlRXV6OlpQUdHR3w+/3geR4WiwWZmZlYtmwZ5s2bB3ocn/GCwSCOHj2K1tZWdHV1wWq1Ij8/H2vWrEFOTs64XQcArly5gsrKSrS1tYHjOOTl5WHOnDlYt27duL6ndBELhtF16KJSD3W5UPfMXtQ9sxegKDhWzpWEyt2rkbV+4YQ+P04kjE4D07wimOYVDdgniiI4pxeBpk4EZdFSirjsQKCpE6HW7gn7XI/5g4j5gwg2dY7+IJoGo2PBaDVgNGowOg0YLQtaK22llwaMjgWtkevxPppEmdFqwGjVieN0GjAaFoyOBShaFupEaSMIKKINqDt4CmajERABcCJc564CggiIIkTIW7kuVUVAEORTiYlUAKIIURQhcDHwwYSQmBAVw4jJwiIvt8WCYUVs5EMRSYwMhMGHwlPmWX200Kwa2hz7kMKjLlcqq62zN88pgUAgjJXpeYdCIBDGDYqikLFyHjJWzsPq//g4ug5dRN3/7kPT/x0C5xk8n6MQjaFz/3l07j+PM19/CtosK/J2rUL+LWuQt2sV9Dn2SX4XI0NRlCIM5exYo7QLMR7hrj6EWnuUlfGh1h4E27oRau1GsLUHUY9//AYiioh6A1KuzJbrOwVj0EJtMiTETbNcNksipkqnBcXQoFSMtGVoULS8ZZh+2+T9DLIYGvdu340X33kTALBiwSJsLKpA38lKUDSTck4A4MMchAgnb6PgIxyEMCdvpfpgbfFj+Eg0sS/5PPHzRjjwIW7KrYaMQ7NqaOW/K11uhlzOgC4vQ6lrs+3TyvqHQCDMTlizARUfvwMVH78DrspGXPv9HtQ+s3fIPDsCF0XbG6fQ9sYpHP/0L5Cxdr4SVWldWDypkzKaDCtydq5Bzk7p+z1u++46mxArXeevXVeEhSRcedB3onLAPl1+ZkK0LC+AcY4UeWkozpmyE8ErV67E008/jTvuuAMZGZMjKI8HoiCAc/sR6YkLirLA2OdJavOkiI5pmfSkaehy7JJFW0E29IVZUrkwW3HUmI6iNmH6I4oifvGLX+D48eM4efIkmpqaRjzG4XDggx/8ID7/+c+jrKzsuq/d0NCAb3/723jxxRcRCAx8vmQYBtu3b8fXvvY13Hzzzdd9HVEU8dvf/ha//vWvcfHixUH75OXl4eGHH8Y3v/lNGAzTd0FA58EL4IeK5hZF9J25ir4zV3HxR/8LtdmA3B0rkC9HVppKxlcIThcURUHjsEDjsMC+smLAfiHGI9TWI4mVsmgZbO5SxEuub5LzCAqCJMoFhnepIEw+NKtWBEZp60gIjznxOhEdZxO0IIIW0jMHla7rEgjpgti6EghTiKlkpxALc2jbcxJ1z76N1n+8O/TDzyDYl5VJYuXuNcjatBgq7fQWZqLeAELtPQjKAmZctAy1yWJme++4RV9OBTr5IH7qP48HdGVYp86atTfgaqtxSMFRl5sBXa4DrMMyY34+U+nzh0CYjUzF/0Gei6Ll1eO49oc30PbGqcTK+REwlefLQuVGZG1cBHoKROaJggDftdaU6EpPZf2EWHVSDA19cU6KRawuLwMauxlqqwmszQTWagTNqsf92lMZkeelBVqeADiPH1FPAFGPX1m0FU1uk9s5p1eKeHR6p0SEBaVWQS/b9aeIjnJZl5cxZYXp4ZiKnz+E8SUWi0Gtvr7PHK1Wi+985zv46le/OuZjn376aXzuc5+D3z/yYk+KovCFL3wB/+///b8xR3R3dXXhoYcewttvvz2q/mVlZfjrX/+K1atXj+k6E8VY/wedl+pR8z+vou3NU/DVd4zpWpaKQsUCNnfbMqj02use93QmFgxL3zG9HnBODyJ9XnB9bkT65O8deQEM1+eV9jt9wCjvgwjpgWbV0j2WzQS1zQTWZlbqrDXeNrCdMWhnzDP99UDuAQb+DFZ/5Im02rqe/v2nlfps/H0QZhfT78mJQCBMCioti+J7N6P43s3gPH40/f0I6p7dh86DF0YU4pwX6uC8UIfLP/sbGJ0GOduWKRawlvlF0+7GL26nap5fMuh+kecR7nKlRFsqImZbD0Kt3eBcvskd9A2Qw+jxc/OGafd7Gg5KxQx8KLEmPbjIZW22XREgZ+uDOoFAIMRhWDVK/mkrSv5pKwJtPWh++RiaXzmGzv3nIURjQx7nq21D5X8+j8r/fB7aTCsK71iPwrs3In/XqrR9tlI0DXNFEcwVRSh+/y4A0vd3sK0H/rq2pFcr/PVtCDR1XfckpMgLis17196h+6kMOrB2s/w9ZBwwYaYImXaz8j3F2kyTJmrG80HxkSgELgqBi0nbCIdYMDKIsJgQF7kBYmMgbbnBxgKtZWEozIauMEvKC1UoRz8WSuKjNts2ZXJEEQg3itlsRnl5OfLz82EymRCLxdDT04MLFy7A6XQq/cLhML72ta+hra0Njz/++KjP/+yzz+IjH/kIktfDq1QqrFmzBoWFhejp6cGZM2fg9XoBSJ85//Vf/4VIJIJf//rXo75OIBDA7bffjrNnz6a0FxQUYOnSpdBqtaipqUFlZSICvq6uDrfccguOHz+OioqBUXdTHfuSOdjw638BAHhr29D25im0vXkKHfvPIzZCZJ6npgWemhZcefxF0KwaOVuXIO8WyQLWtrh0Rj0DDodKr4VKr4W+IGtU/UWeB+cJgOt1I5IkanL9xMxIXMzs85AoybFC01DpNGAMWjA6jXSfFH9Wtw/+LM8mLfxidJpZ8/dLIBAIMwUiThIIhBFhLUbMffRWzH30VnDeADr2n0f7W6fR9tZp+OqGya8IKYl9256TaNtzEgBgKMxSoirzdqyAxm6ejLcwoVAMI0XV5WUAaxYO2ifmD0lJ2+MTdcmTdt4Aol4/OHkCL+YNSGVvYlJvsiMzp+pN/ahXQyZN4qqtJqiMuin7nggEAmE6YMjPxIJP340Fn74bnMeP1j0n0fzKMbS+flKyKh+CcI8b155+A9eefgOMToP8W1ah6K5NKLxzPbSZ1sl7A4NAMQwMRTkwFOUg++ZVKfsELopAYwf89e2KYOmvbYOvrg3hjt5xuX4sEEIsEAJausZ0HGPQJr7/khfa2Eyg1SoISWIiz0WlejS+jSXtl178gPaYsm8moDLowGZI1n+aTKtiAyi1WZU2XUEWNBkzxxGBQOiPxWLBrbfeit27d2PTpk2YN2/eoP0EQcC+ffvw1a9+NUXw+9WvfoWtW7fi/vvvH/FaZ8+exaOPPpoiTN599914/PHHUVhYqLT5fD78x3/8B374wx8qbU888QSWLVuGT3ziE6N6Xx/+8IdTxmkymfCb3/wG73vf+1LyS544cQKPPPIIampqAAAulwt33HEHLl26BJ1ON6prTUXM5fkwl+djwWfuAR/h0H2sEq1vnEL7W6fhvFA37LECF0X722fR/vZZnP7yb6DPc0ipWnavRv6uVTPiWX28oBgGGrsZGrsZplEew4ciiDi9Ur7FcARCSE5bEubkNk5qD3NKmQ/F051IZT4ckb6nk/rzSn9OaR/0O5uiQNEUQEkviqIAWt5SAEXR8j5pEZfURg1+nFKWXARUei0YvVYSE/UaKfelTiu3x+saqHRyXS8Ljkp/uW/S8TSrJt/BhCkBLabR1pUYXBJmGcTWlUCYQkxHOwVvXbskVO49jY595xD1jX5VPEXTyFhToYiVmesWgFaR1ej9EUURfCiSImSmWKEpZamdD0UgCgJEPuklCBB5XirH+IH7eQGikLRfOWbo/QCkhwiNGoyGBa1lk7b92+S6hgWjZaVj4vv6tcXr0j41GJ0GaouRrIacYKbj5w+BMJOYrv+DPBdF54ELaH75KJpfOYZg2+iEO4qmkbVxIYru3oSiuzfBXJ4/wSMdP2KBMPwNbQjUt8NX2ypFXNZLkZeTnsNqHOHlx0Jmin/Pqkx6aGRhUREdM6xyW7LoaIHGbiE5HkfBdP38IYyNWCwGlWr069MjkQhuv/12vPPOO0rb/PnzceXKlRGP3blzJ/bt26fU77vvPjz33HMpYmEyjz32GL7whS8o9czMTNTV1cFkGl4GOnLkCLZs2aLUWZbF0aNHh7Rr7evrw7p161BXlxDtfvzjH1+XZe14MlH/g8FOp/Ss/uYptO09M2Qe6cGIP6vn37Ia+beuQcaa+eRZfQojCgIgiqmC4mD9RBE1NTW4ePEiHnjggUkeJWEqQu4BBv4M1j76axgy0mTr2tuEk3/4jFKfjb8PwuyCiJMEwhRiut8UCNEYek5cQdubkljZe6pGukEeJWqzAbk7VigWsKbS3AkcLeF6CIfDiEQisFgsEEWRCIUziOn++UMgTHdmwv+gKIroO3NVtn89CtelhlEfa11YrAiVGavnSSv4pyGc25ewiK2Pb9vB9XnAuXxT0trUJUSwL9KGvZFWfEw/H2vY0Vnc3QiUioHaYoTaYoDabARrMUBlNkiLkeQ2tUWqxyMbWYcFmgwLGM30zmU+FZkJnz+EiaGurg7l5eUpbVeuXMH8+fOHPGb//v3Yvn27Us/IyEB1dTUcDseQx4iiiO3bt+PAgQNK23e/+118+9vfHnZ8N910Ew4dOqTU//3f/x3f+c53hj3mwIEDuPnmm5W61WpFU1MTzOb0RQlOxv+gKAjoO3tNjqo8he7jVWPK5ctaDMhYOx8Za+YjY00FMtdUQJ+XMa5jJEwcnZ2d+OIXv4gDBw6gs7MTNE3D6XTCYrGke2iENEPuAYg4SSCkE2LrSiAQxg1arUL25iXI3rwEK7//KMJ9HskmRraAHSmaIuoNoPnFI2h+8QgAQF+QiYw1FchYNQ8ZqyvgWDUXWge5eU4Xb775Jj7zmc9g27ZteOqpp4gwSSAQCIQUKIpCxuoKZKyuwMrvPwpffbuSp7Lr8CVpVf8QuKua4K5qwsUfPwtdrgN5O1YgY+0CZK1fANvSOWAmKc/ijcJaTbCvmg/7qsEn7oVoDJzbD87pRdTtA+eKv7xKOdGeaIuNwZliLPwlWIsXww3gIS0mezPSOipxklIxYK1GSVCUxUVFbLQYpXzdFqPSxiYJkWqLEYyeOCEQCNOBsrIyVFRUKFaoAFBbWzusOPmnP/0ppf6xj31sWGESkL4/vvzlL6eIk3/605+GFSebmppShEmdTofPf/7zw14HALZt24a1a9fi5Ekp7Yjb7cYrr7yChx56aMRjpzMUTSvf0cu/+RA4jx8d75xH6xsn0f7WafibhrcY5zwBtO89g/a9Z5Q2fZ5Del5fPR8Za6Vza2yjNT0lTCYWiwV///vfwXEcAMm++fDhw7jzzjvTPDICYQoiiKDSZOuKdF2XQEgTRJwkEAgThtZhwZz33Yw577sZoijCc6VJiarsPHgRfCgy7PHB1h40t/YoYiUAGEtzkbF6HjJWzYNjdQUcK+dCYzVO9FuZ1XR2duJzn/scXnjhBQDSCuqPfOQj2LhxY5pHRiAQCISpjGlOHhZ98T4s+uJ9CPd50PraCTS9fBTtb55GLBge8rhQRx/q/vw26v78NgCA0bJwrJqHzLXzkbl+ITLXzYehMGtailu0WgVtpnXM+TbjombU5QUXFy+dPqUclcVMURBAq9WgNWrQrBo0qwLDqkGxajBsvF0l71Oj7sjbeOF/fqZc53ysDyW/+zeUlpRKfdUqMEnnolnJcp1i6Gn5858NCDwPf2MXPDUt0Ofa4VgxN91DIkxz7HZ7St3n8w3Zl+d5vPrqqyltjz766Kius3v3buTm5qKjowOA9Mxx8eJFLF26dND+L774Ykr9nnvugc1mG9W1Hn30UUWcBIC///3vM16c7A9rMaL43s0ovnczRFGE92or2t48hdY3T6HzwIURn9UBINjeJy1CevmY0mYqz0fmGkmozFgjPa+r9NqJfCuEUaDT6bBhwwYcPHhQadu/fz8RJwkEAoGQVog4SSAQJgWKomBdWALrwhIs+uJ9iIU5dB+5pIiVrov1ozqPv6ED/oYOND6fuKk2z82XIyvlCMsV5VCb9BP1VmYdgiDgzTffTGn71Kc+hTNnzowpbw2BQCAQZi9ahwXlD9+C8odvQSwUQce+s9KE5qvHEO52D3ssH+bQffQyuo9eVtp0uQ5krl+AzLXzkbV+IRyr50Ft0E3wu0gf1ytqjsSn79mMH/7lt/B4pDxkoijihZMH8KN7bhnX6xDGn3CfB56aVnhrWuCpaYHnmlT21rZD4KIAgPn/fBc2PPEvaR4pYbrT3NycUs/Lyxuy76lTp9DX16fUc3NzMW/evFFdh6ZpbN26Fc8995zStmfPniHFyTfeeCOlvm3btlFdZ7C+b731FgRBGDIn5kyHoihYKgphqSjEws+/V3lWb33jFNreOg335dHbtPtq2+CrbUP9X6RcpRRNw7q4RBErM9ZUwL5kDmg1eY6cbG6++eYUcTI5UplAICSgBYBOUwQjPXq3bQJhRkDuBggEQlpQaVnk7VyFvJ2rsAafRLCjD+17z6DtrdNo33sG4R73qM/lvdYG77XEAxAoCpb5hdIDUDzCcnkZWbF5neTl5eF73/sevvjFLyptFy9exK9+9St84QtfSN/ACAQCgTAtUek0KLxzAwrv3IAN/BfQc6IazS8fRfPLR+G92jqqc4Q6+lKs4CmGhm1xKTLXLZBEy3ULYKkonLa5KycLg8GARx55BL/85S+Vtt/97nf493//d7Asye2YbnguCl9duyQ+1rTAW9MKz1WpHOnzjni852rLJIySMJPZt28f2tralLrBYMCaNWuG7H/58uWU+oYNG8Z0vY0bN6aIk5WVlRNyrfnz58Nut8PpdAIAAoEAGhsbMWfOnDGNd6aS/KwOAMH2XnQfr0LvqRr0nKpG3+mriI7SblwUBLgu1sN1sR7Xfr8HAMBo1LAvL5ee19dKOSwt8wrId/YE01+UP3fuHFwu16gjjglTD4HnEWzvQ6CpC/7GTvibuqVtcxfKPrgT5Q+TxWYEAmFqQ8RJAoEwJdDnOpSIClEQ4L7SjL4zV9F7+ip6z9TAea4WfJgb3clEEZ4rzfBcaUbdM3sBSJOW1oXFyFgl28usngf70v+/vfuOj6rK/z/+nkx6r5TQCSAI0hSRooirgroqKsoqWBDFtSzr6j5EXV1grejXruuKrrJrg5UV9GdDRVyVpggiECAQQi9JSO/J5P7+GHLJTZ0JycwkeT0fj3lkzplz7jlDLpPPnc+95/aWPYgv3lxx11136a233tKvv/5q1j388MO6+uqr1aVLFy/ODJJUnl+k/LTDyk874jwYSTui/D3O53HD++rsN+/z9hQBoE5+drs6jh6ojqMHasT8mcrZvk+Hv9mojB+3KWPtNpeTlYajUlmbUpW1KVU7FnwiSQqMClP8yAGW5WC5d3Vtt912myU5mZ6erqVLl2rKlClenFX7YRiGio9mn7gCcsf+4wnIAypIOyzD0fRT6HN3kJxE023fvr3Wkqx33HGHQkPrX6EmOTnZUu7Tp49bYyYlJTW4vSp5eXmWpGldfRvTu3dvMzlZNRbJybqFJsar51XnqOdV50hyJhxzUw4o86cdzsf67c7j9dJyl7bnKC1Xxrptyli3TXrFWRcQGaa40/sq/oxTFD2guyL7dlVk3y4KTohmGfFmMnLkSAUHB6ukxLm0vmEY+u6773T55Zd7eWaoT2WFQ4UHMo4nHo+qYM9RFe49qvy9R5wJyX3pMiocdfaNHtCD5CQAn0dyEoDPsfn5KWZgT8UM7GkGU5UVDuUk71Hm+hQdq0pYbtptLlvVGMNRqezNacrenKadC51LAPkF+CvmtF6KOa2XInonKrJPF0UkJSqyT6KCYiNb7P21Rv7+/nr11Vc1ZswYs66goED33nuvFi1a5MWZtQ8VxaXOA5I9R5wJyLQjKthb9fywSrPqv/cPSyYBaE2i+3dXdP/uGnCH84uy0qw8Zfy4XRlrt5lfZJblFLi0rbLcQh36cr0OfbnerIvo00Udjl9ZmTBygKIH9ZJ/cPs+UenUU0/VOeeco++++86s+8c//kFyshkZhqGy3EIV7j1qSUDmpRxQ7o4DKs8rbPYxg2IjFN6joyrLK4gF4JKysjJlZWVp8+bNWrp0qd58802Vlp647+CIESM0b968Brexa9cuS7l79+5uzaFm+507d7o0Tnx8fINJ0/rGWr/+xN+H+sZCbTY/P/PvdZ/rL5DkvNI7e0tatYTlDuVs2SOj0rUTLMrzCnVk5S86svIXS31AZJgi+3ZxPvp0MZOWkX27cMKRm4KDgzVq1CitXLnSrPv2229JTnqRo6xchfszzGP9gr1HTzz2HFHRwcwmn6RUsO9oM8+2/fCrNOTn8Nayrt4ZF/AWjlIAtAp+/nbFDk5S7OAk6eaLJEmO0jJlb9mjzPU7jicsU5S9Ja3eM8dqqiyv0LENO3VsQ+0D0cDo8OPJys6KSOqiyKRERfRJVGRSokI6x7XLszdHjx6tm2++WW+++aZZt3jxYs2YMUMXXHCBF2fW+pkHJdWvftxzRPlph1Ww56iKj2Q1vpF6FKQdbsaZAoBnBcVGquvEM9V14pmSnFdr5O086ExUrt2m9HXJyv51t8tf3FTdCyv1na+dFTabwnt2UlS/rs4vPPt1VVS/roo6pZvCuiW0myXmfv/731uSk99++622b9+u/v37e3FWrYNRWani9BwVHchQ4cFMFR3IUNHBTBUezFTh8edFBzJVUVTS7GP7BfgrIilRUad0VWS/buY946JO6abgeL60R8MmTZqkjz76yKW2V199tV5//XWFhDR8b9+cnBxLuUOHDm7NqWb7/Pz8Ou8FebLj1NWn6t67Jys9PV0ZGRlu9amZbG2N7IEBih/eT/HD+0m3XSpJKi8sVtbGXWayMuOnHcrfdbCRLVmV5xXq2M8pOvZzSq3XAmMiqiUuTyQtI/t2VVB0eLO8r7Zm/PjxluRk9edoXpUVDhUfzVLxkWwVH8lS0cHM40uuppuJyKJDxySjZZJRBXtITgLwfSQnAbRa9qBAxZ/eT/Gn95Nuc9ZVFJcq+9fdyly/Q5nHl4XNTd7r8hmbVcpyCpzbWL+j1mv+ocEK791ZkX0Sq11x2VmRfboorFsH+fnbm+Pt+aT58+dr2bJlliWQ7rzzTm3evFlBQUFenJnvqnQ4VJqZe+Kg5PAxFew5qvw9zsRjQdrxMyLd3EddVZqVr7K8QgVGhrXI9gHAk2x+fmbypWp1hYqiEmX+nOK8uvLHbcpYk+z8sscVhqGCtMMqSDusg8t/srxkDwpQRN+uZuIyql9XRZ7STVH9uiooLrJNnah05ZVXKiEhwfKF+muvvabnnnvOi7PyPkdZuYoOHasz8VhUlXw8dMzlE+OaKqRjzPF9r5uiTnEmzyNP6aaIXp3bdNwJ7/Lz89PUqVN15513auTIkS71KSiwXtneWDKzpprtDcNQYWGhIiIimnWcuvrk59e/Eok7/v73vzd6hWl7ERAWoo5jT1PHsaeZdaXZ+c7j7J92KPOn7cr8aYfrf7NrKMvOV+aP25X54/ZarwXFR9WZuIzq21UBEe5dZduWjB8/3lLetGmTjh07pri4OC/NqHUxDEPl+UUqPpzlPLY/klXt+THzmL/4cJZKMnNbLPFYkz04UOE9Oiq8ZyeFde+giJ6dFNXfvSvXAcAbSE4CaFP8Q4LMpdqqlBcWK+uXVOcVllUJyx37mxwoVhSVKGdLmnK2pNV6zeZvV0SvTs7lYZNOLBMbkZSosO4dFBDm/oGzL4mPj9eTTz6pmTNnmnU7d+7U008/rYceesiLM/MswzBUlp1//CAkWyVHs82Dk5L07BMHJUeyVJKR22KJx5pCE+MU3rOTwnt1UkTPzgrv1UnhPTvJHhTgkfEBwBv8Q4PV6ezB6nT2YLOu8ECGeXVlxrpkZf68U47i0ga2UpujtLzev/eBMRHOZGVV4vJ40jKiT2Kr/FsfFBSkm2++WfPnzzfrFi5cqMcee8ztpRJ9XaXDobLsApVm5ak0K1+lWfkqycgxr3AsPJhhJh5L0nM8Ni97cKDzyt3jSUjz+SldFRjFFUDwvMrKSv33v/9VeXm5Zs+eraFDhzbap2bSMDg42K0x60oyFhQUNJqcdHecusaquU20jKCYCHW54Ax1ueAMs67oUKYyji8Hm70lTXk7Dyg/9bDLt3CpS2lmrjIyc5WxpvZ9S0M6xiiybxeFdolXcIcYhXQ88Qiu9twe1PaWfR8xYoRCQkJUXFxs1n333Xe64oorvDgr76uscKgkPduabDz+s/iotc7deLI5+IcFO4/ze3ZUeHdnErIqGRneo4OCO8S0qZPmvM1WaXhteVUby7qinSE5CaDNCwgLUccxg9RxzCCzriyvUFkbd+nYhp3K23VQeamHlJ96SAV7jjR5TX9JMiocytt5UHk7D+qgfqr1uj0kSMEJUQpOiFZwfJTzefzxckKUgqrXJ0QrMDrc54LMGTNm6J///KfWrVtn1j322GO67rrr1Lt3by/O7OQYhqGKgmJngtFMNjp/lhzNNpdkqXq9srzC43MMio9SRK9OCu/VWeE9OiqiV2dnuWcnhfXo2O7vmwYAVcK6Jiisa4J6XnWOJOdS7lmbd5+4unLtNuWlHGjy9suy8817YNYU2jXhxNWWpziTTGHdEhQcF6mguEif/bJz5syZluRkTk6O/vOf/+imm27y3qQaUFleodLsfDPBWHos17laQFU5K898vayqnJXv8j1LW0pYtw51LsPanpYRbm/uuusuvfLKKy0+zpw5czR37lyX2y9YsEDPP/+8WS4sLFRGRoZ+/vlnLV68WD/99JOKioq0aNEiLVmyRPPmzdODDz7o1pzcPY5p6nFPU/r52jFWexaaGK8el8erx+VjzLpKh0OF+9KPH1sfcP7c5Xyen3bkpK5YLz6areKj2Y22C4wKsyQrqycyq9eHdIyRf6j7CXJvCAoK0pgxY/T111+bdStXrmwTyUnDMOQoLlVpdr7zJKQaP8uy81WaXaCynHzLa6XH8lSS4bmrHOsSGBVmHtOHVz3MBGRHBcW2rRU7AKAKyUkA7VJgZJg6jRuiTuOGWOoryytUsC9d+VUJy10Hlbf7sPMeVbsPy1FSdlLjOopLVbgvXYX70l1qb/O3W5KVQfHWZKblZ3ykguKiWnx5Lz8/P7366qs644wzVHn8isCSkhL94Q9/0CeffOKVoLmyvEJleYUqzytSeV5Rw8/zi46XC1WWV6TyXOfPspwCr5wFWV1AZNjx5GMnRfTsdOIqyOPJyPa8BBEAnAy/AH/zXlgD7rhcklSeX6TcnQeUl3JAuTsOOL/8TDmg3B37VZ5f1OSxig5kqOhAhg5/s7HO1wMiQhUUF6ng+CgFxTsTlsFxUdXqqp5HmnWeSGj27t1bEyZM0PLly826f/zjHy2SnDQMQ46SshN/i82/zdWe5zv/Npdm5VdLQuaZyceT+R21BJvdT6GJ8QrtGq+wLvEK7ZKg0C7xCusar7CuzuehiXE+m5xG+1PffRrPPfdc3XvvvVq2bJlmzJihrKwsVVRU6C9/+YscDocefvjhercZHm69yrf61VmuqKt9zW02xzh19alrnKa44447dPXVV7vVZ9euXZo0aVKzjN9W+Nntx0/E7KwuF55hea2ywqGCPUdOJC2rJS4L9hxttlVrynILVZZb6NLJTP7hIdbEZbVEZkBUmPxDg+QfFiz/sBAFhAU7n1er8+QS3eeee26t5KS3GYahyrJyVRSXyVFSJkdxqTMOqCPJWJrtPNHIWc5XWU6hmXg8mattW4rN3+7cFzrFOpON3TuYiciI4z+5R6pvsRmG165gtHkxSQ54A8lJAKjGL8BfkUmJikxKVJcarxmVlSo6dEz5qYeUt+ug8+fxKy7zdh1SeV5hs8/HqHCYy4O6xGZTQESo7MEBsgcH1n4E1agPqnpeR/uabas9egbH6NapN+q1t98yh/7ss8/0r/kv6aKx41VZ4ZBR4ZDhqHQ+r/ppqXOWKysqZTgcZjtn3YnnjrIKlR9PKpYdTyo6E40nnp9s0tgjbDZnYrljjHlAUnXVY1UC0hevlAWAtiogItRMWFZnGIZK0rOdCcuU/cpNcSYuc1MOKH/XoZO+cr4835l4K9hzxOU+/uEhzisv46slMeMizbqqsn9YsPPviM0m2VTruc3PT7JJstnM12zHy7LZdP2lky3JyXXr1umHT77UkEGDj7d3tjXKK6xJxfwi829zRfW/1wXFJxKNVXX5xSrPKzyplSo8zR4SpLCu8ceTjQnHk5AJlrrgDtHys3P/R7QdkyZNUteuXTVmzBiVlTlj7blz5+qSSy7R8OHD6+zTEsnJsLDa90335eRkhw4d6k38onn4+dsV2aeLIvt0kS6yvuYoK1dBWs3EpfN5wb70Frs6rqKgWPkFxcpPPdSk/n6BAdWSlc5HQFiw7KEnnvuHViU0Qyztqvr5BZz4itdyTGl5Lg0K62QZe8uWLdr83xWKi46p1d5yaHq8UFleIcfxJGJFcanzeXHpiedmfemJ5yVlchSfqK843qd6vTevXGyKgMgwhXaOVUinWIV0jlVIx9gT5eN1oZ1infcpZ2UEAKgTyUkAcJHNz89cJq7mFZeGYaj0WN6JpOWuQ8rffSKJ6bF7FhnG8YRdyw91mlGhKAUqVycSg/c+cJ/KdJYCbO3ny7nAmIjjZ0I6z4YM6Rhbo+z8GZwQ7dEzYgEATWOz2Y5/lseq0zmDLa9VVjhUsPfoiaRltcSlq6siNEVFQbEKCopVsPdoi40hSQ6jUjEKUrZOrCTw8KXTdYOtf4uO6y32kCAFxUYoKDbi+JWN8cdjPWfSMbRrgsK6xCswJoKTh9Bkl19+ubp27dri44wdO7bZt3nGGWfozjvv1HPPPSfJeR/KZ555Ru+++26d7aOioizljIwMt8ZLT7d+jkZGRsqvji/1T3acusaKjo52exvwPfbAAHO57JoqSspUsPuQcnceVMHuw87lXdOdS7yWHF/qtSQ9xyu376gsK1dZWblHlh6vMCoVKD+V6cRJQv+YfLfOsJFUt9n9nMfvneMU0ilGoZ3ijicbq+qOJyBb0VK+AODLSE4CQDOwVV0VFx+lDmedWuv18vwi58FORo5KMnJP/MzMVUmm83lptfqKohIvvAv3hNr8NcXoowVKliTFK1jXqV+bSEz6h4dUSyzGVEs4xlqTjh1jWJ4NANoRP3+7ucJC14tGWl6rKCpxLiuXcsBytWXezoMqzcz10ozdY7f56RwjUR8pTZI0SLEaqngvz6px/uEhx5OMzqVwg2IjFBTjTDoGxkaaCcigas8DYyLkHxLk7amjHbjgggt0wQUXeHsaTXbttdeayUlJWr58uQzDqDNh37dvX0t57969bo1Vs33N7dVXn5GRoaKiIoWGun4LBFfHQtvhHxyo6FN7KvrUnvW2MQxDZdn55n0pqycunclLa72j1PeWEW2Mv81PfY1obVWWAuSnPopSoFr/MXxNAZFhCooJV2BMhAJjwhUUE6HA6OM/Y6r9jI00j/GD46O4yhHyqzTk56VlXb01LuAtJCcBwAMCIkIVEBHqXHrGBRVFJc7EZfVEZkaOSqvqMq1JTk+cYVmXkeqoNTqqHgrXJeqpIB9ITNr8/BQQGXr8EabA6s8j6qk//jz4+L1BAsJDvP02AACtjH9osGIHJyl2cFKt1yorHCrLzldJZq5Kj+VZf2bmOZ8fyzXrSzNzVZpd4JUlzs5Rosrk0DglqoPNM/c69gvwN/8mB0SEKDAyVP4RoQqMDD2eUIw8nmisO8loDwzwyDyB9uiUU06xlI8dO6acnBzFxMTUajtgwABLedeuXW6NtXv37ga3VyUyMlKJiYk6dOjEEpqpqak67bTTXB4rLS3NpbHQvthsNvPvTvSAHg22NY6vWlScnmNNYFY9T3deiVleUKyKwhLLo7nui9lUl6qnfqse6q0oBdh8NBlnsykwKkyB0eHWZGJ09eRijUTj8Z+BUeGsWgQArQDJSQDwQf6hwQrvHqzw7h1dal9ZXqGSY3kqychReX6x894N9TwqS8ud936oXl9aJkdJeaN9TrR3niFqs9l0t22o7P522fzt8vO3y2b3cz6v+lm9zvK6XTZ/v+N1zv42+/Fyted+Af7O5G5kqAIjw8zEY33P/UODWXoNAOBT/PztCk6IVnBCtMt9Kh0OlWUX1EpolmaeSGKWVCUyj7/uKCmTDOcXpjr+MAwd/3m8XGk0mPSMsQXpavVpdH7myUDmiT/O54GRoQoIt9aZf6sjQpwJyOptI0NZhQDwYQEBtZP/paWldbSUBg0aZCmvWbPGrbFWrVrV4PZqvlY9OblmzRqXk5Pbt2/XsWPHzHJoaKh69erl1lwBm82mwChnIiyqr+tLNxuGocqyclUUlqi8RtKyoshaLq9ZX1R/28qqezlX/xtf7Xn16iFGbD1tqvdVnfV+dj/ZQ4JkDwmUf0iQ83lwoPxDAk/UBzvr7CFB1eqPP69R7x9S1bZa+Xg77uUMAG0byUkAaAP8AvwV2sl5w3VPMCorZTgqnYlGlj0BAKDZ+dnt5pLxLcVMWBqG80vI48/NBGYdr8kwZPO3czIQ0E4cOHDAUvbz81NCQkKdbUeMGKHY2FhlZWVJkg4fPqyUlBT169ev0XEqKyv1/fffW+ouuuiiettPnDhRX375pVn+9ttvNXPmzEbHqWpb3YQJE+q8tyXQEmw2m+xBgbIHBSooNtLb0wFQg5/DkJ/DS8u6emlcwFuIvgAAbrP5+ckvwJ/EJAAArZjNZnP+TbfbzdUK7IEB8g92Xg3hHxqsgLAQBYSHHL/SMUyBUeEKCAshMQm0E9UTgJLUq1cv2eu5msnf31+XXnqppe6tt95yeZzqV0ImJSVp8ODB9ba/4oorLOVly5YpJyfHpbEWLlzY4LYAAADQ8vhWGQAAAAAAABZFRUV6+umnLXWXX355g31uuOEGS/mNN96wLKFan6eeeqrB7dTUs2dPnX322Wa5uLhYL7zwQqPj/O9//9O6devMcnR0tC677LJG+wEA2glDslUaXnmICyfRzpCcBAAAAAAAaKOeeuopl68qrFJYWKgrr7xSe/fuNesCAwN16623NtjvvPPO03nnnWeWMzMz9fvf/16VlZX19nnxxRe1cuVKsxwfH68//elPjc7x8ccfr1Vev359ve2zsrI0Y8YMS93s2bMVFdVyy2cDAACgbtxzsp3Ly8vT9u3btX//fh0+fFgFBQVyOByKiopSQkKChgwZon79+jXr/ReKioq0atUqHThwQEePHlV0dLS6dOmiESNGqFOnTs02jiRt27ZNW7du1cGDB1VWVqbExET17t1bI0eO5J4SAAAAAIA27/HHH9cTTzyha665Rtdcc41Gjx6tkJCQOtvm5uZq8eLFeuyxx7Rv3z7La7Nnz1b//v0bHe/pp5/WqFGjVFZWJklasmSJrrrqKr344ovq1q2b2S4/P19PPfWUHnvsMUv/xx57TBEREY2OM3bsWE2ePFlLliyRJJWVlek3v/mNXnvtNV1zzTWWY/5169bpxhtvVGpqqlmXlJSkWbNmNToOAAAAmh/JyXbGMAw9//zzWrNmjX788UfLWZD1iYuL09SpUzVr1iwlJSU1eey0tDT99a9/1dKlS1VYWFjrdbvdrvPOO08PPPCAxo8f3+RxDMPQ66+/rldeeUW//vprnW0SExN1ww036KGHHlJYWFiTxwIAAAAAwNfl5ORowYIFWrBggex2u0455RR169ZN0dHRstvtysvLU2pqqlJSUuRwOGr1nzlzpubNm+fSWMOHD9ebb76padOmmXXLli3TJ598ojPPPFPdunVTZmamfvrpJ+Xl5Vn63n777Zo5c6bL72vhwoVKTU3Vxo0bJTlPwL722mt13333aciQIQoMDFRKSoq2bNli6RcTE6NPP/1UoaGhLo8FAGj7/Cor5dfA1f4tPTbQnpCcbGccDofuuecet/ocO3ZML774ohYsWKA5c+bo/vvvd3vchQsX6g9/+IMKCgoanNtXX32lr7/+Wnfffbeefvpp2e12t8Y5evSopk2bpq+//rrBdocOHdKTTz6pDz74QIsWLdIZZ5zh1jgAAAAAALRGDodDycnJSk5ObrRtTEyMnnzySd16662y2WwujzF16lSVlZVp1qxZ5vcAFRUVWr16dZ3tbTabZs2apWeeecblMSQpLCxMn332maZNm6YVK1aY9fv379f+/fvr7JOUlKT3339fp5xyiltjAQAAoPmQnIQiIyPVp08fdenSRREREaqoqFBGRoY2bdqkrKwss11JSYkeeOABHTx4UC+99JLL23/vvfd08803yzBO3NXX399fI0aMULdu3ZSRkaGff/7ZPGPSMAw999xzKi0t1SuvvOLyOIWFhbr44ou1YcMGS33Xrl01ePBgBQcHa8eOHdq6dav5Wmpqqi688EKtWbOGAxMAQLvC0u4AALQPS5cu1aeffqpvvvlGmzdvVkVFRYPtbTabhg0bpuuvv17XX3+94uLimjTu9OnTNW7cOP31r3/VsmXL6lxByc/PT+edd54efPDBJq+g1KlTJ3311VdasGCBXnnlFW3evLnOdp07d9YNN9yghx9+mBWUAAAAvIzkZDsUFRWliRMnasKECRozZoz69etXZ7vKykqtWLFC999/vyXh9/LLL+ucc87R1Vdf3ehYGzZs0PTp0y2Jycsvv1wvvfRSrXtNzJ8/33Kvib///e8aMmSIy0u63HTTTZZ5RkRE6LXXXtOUKVPqvNfEjh07JEnZ2dm65JJLtHnz5nrvuwEAQGvH0u5OLO0OAGhvxo8fb/59LSkp0datW5WWlmaenFRZWamIiAhFRUUpKSlJQ4cOVXh4eLOM3bt3b73zzjsqLCzUDz/8oAMHDig9PV3R0dFKTEzUmWeeqc6dO5/0ODabTbfddptuu+02JScna8uWLTp06JDlBKWzzjqLE5QAAA3yqzTkV2k03rCFxgbaE5tRPWuEdqGiokL+/q7npUtLS3XxxRfrm2++Mev69++vbdu2Ndr3/PPPtyytMnnyZC1evLjeA4IXXnhBd999t1lOSEhQamqqIiIiGhznhx9+0Nlnn22WAwMDtWrVqnqXaz127JhGjhyp1NRUs+6JJ55o0pK1zWnr1q0aNGiQWd6yZYsGDhzoxRkBaC/4/Gn7KioqFBAQ0KS+wcHBLbq0exWbzdbiS7tXSUpK8qml3fk/CMBb+PwBvIv/gwC8hc+f2v8G51/2f4qM6dZAj5aTl71fX3/8Z7PcHn8faF84ZawdcicxKUlBQUFasGCBpW779u3avn17g/1WrlxpSUzGx8frH//4R4NnKs6aNUvnnnuuWc7IyNBzzz3X6Bz/8pe/WMoPPvhgg182xsXF6Y033rDUzZ8/31xaFgCA9iAyMlLDhw/XpZdequuuu07XXHONxo8fr9jYWEu7qqXd//CHP7i1/aql3asnJv39/TVq1ChzrMjISPO1qqXdZ82a5dY4VUu710xMdu3aVRdffLGuvPLKWgd1VUu7V62kAAAAAABo32yVhvwc3nnYuHIS7QzJSbgkKSmp1j0Zd+3a1WCff//735byLbfc0ui9Kmw2m+67774Gt1PT3r179d1335nlkJAQl77UPPfcc3XmmWea5ZycHH388ceN9gMAoLWKiorSlClT9Oabb2rHjh3Kzc3Vzz//rI8//ljvvvuuFi9erG+++UYZGRn68ssvNXz4cEv/l19+WR988IFLY9W3tPvu3bu1evVqc6wDBw7UOsno73//e60ToxpS19Lu7733nvbu3atPP/1U//3vf7VlyxatXbvWEs9ULe1eXFzs8lgAAAAAAAA4OSQn4bKaV1Hk5+fX29bhcOj//b//Z6mbPn26S+NMmDDBcs+J1NTUeu8bJUlLly61lCdNmqSYmBiXxqo5pw8//NClfgAAtDb+/v7KzMzUokWLNH369HrvOS1Jfn5+uuCCC7R69Wqdd955ltf++te/ujTefffdp7KyMrM8efJkffjhh5Z7TkvOROKjjz6q559/3lL/0EMPNRhrVPnhhx+0ZMkSsxwYGKhvvvlG1157ba3VGkaOHKlVq1ZZ7p+ZmpqqF154waX3BAAAAAAAgJNHchIu27dvn6WcmJhYb9uffvpJx44dM8udO3du8EvQ6vz8/HTOOedY6j7//PN623/xxReWcvVlYRtTs+2XX36pyspKl/sDANCasLQ7S7sDAAAAAOpmqzS8+gDaE5KTcMmKFSt08OBBsxwWFqYRI0bU237Lli2W8qhRo9wab/To0Zby1q1bW2Ss/v37W64ILSws1J49e1zuDwBAW8fS7gAAAAAAQJLS0tK0dOlSvfLKK5o/f77+/e9/63//+5/Ky8u9PTVt2LBBixcv1rPPPqtnn31Wixcv1saNG709LdTDvdPn0S5t37691vKnd9xxh0JDQ+vtk5ycbCn36dPHrTGrL7dW1/aq5OXlWZKmdfVtTO/evZWVlWUZq3fv3m5tAwCAtszTS7sfPnxY0oml3QcPHlxn+5Nd2v3HH380yx9++KGmTZvmUl8AAAAAANqTJUuW6Nlnn9WaNWvqfD02NlZTpkzR3/72N8XHx3tsXuXl5XrmmWf0xhtvKDU1tc42ffr00S233KJ77rlHAQEBHpsbGsaVk6ilrKxMR44c0VdffaU77rhDQ4cO1f79+83XR4wYoXnz5jW4jZpXVHTv3t2tOdRsv3PnTpfGiY+PbzBpejJjAQDQXrG0OwAAAACgrfMzJL9KwzsPH13VtaCgQNdee62uvvrqehOTkpSVlaVXX31VgwYN0vLlyz0yt507d+qss87SAw88UG9iUnLmEO6//36NGjWq0ZWg4DlcOQlNmjRJH330kUttr776ar3++usKCQlpsF1OTo6l3KFDB7fmVLN9fn6+Kisra92r6mTHqatPbm6u29uoS3p6ujIyMtzqw4cjAMDXeGNp98WLF5vlll7avWr1hKql3Vk9AQAAAAAA58pIU6ZM0WeffWapT0hI0LBhwxQVFaXU1FRt3LhRhuHMrh49elSXX365vv76a40dO7bF5nbkyBFdcMEF2rt3r6W+T58+GjhwoAzD0NatWy1Jy59//lkXXnih1q5d26Q8ApoXyUk0ys/PT1OnTtWdd96pkSNHutSnoKDAUm4smVlTzfaGYaiwsFARERHNOk5dfRpaqs4df//73xu9whQAAF/G0u4AAAAAgPai6ipGb43ta+6//35LYjIgIEDPPvusZs6cqcDAQLM+OTlZt9xyi3llZWlpqSZNmqTNmzerc+fOzT6vyspKTZo0yZKY7Ny5sxYuXKgLL7zQ0vaLL77Q9OnTdeTIEUnOe2ZeccUV+uGHH2Sz2Zp9bnAdy7qiUZWVlfrvf/+r559/Xr/88otLfWomDYODg90as64kY81tNsc4dY1V1zgAALQHLO3O0u4AAAAAAOzevVsvvPCCpe6DDz7QXXfdZUlMStKpp56qFStWWFYzOnbsWItduPPuu+9q3bp1Zjk2NlarV6+ulZiUpIkTJ2r16tWKiYkx61avXm1ZsQneQXLSg+666y7ZbLYWf8ydO9eteS1YsEBpaWnmY8uWLVq5cqX+7//+z1y2raioSIsWLdKIESP0+OOPu/3e3T0LoalnLTSlH2dIAADaq0mTJlliiKCgIHXu3FkXXnihXn31VZWWlpptr776an311VdeW9q9ucepq09zLu2+detWtx4s7Q4AAAAA8BXz5s1TeXm5Wb7pppt0+eWX19s+JCRECxcutCQu//nPf2r37t3NOi+Hw6E5c+ZY6p599ln17Nmz3j69evXSs88+a6l76KGH6vyuAZ7Dsq6o98u8c889V/fee6+WLVumGTNmKCsrSxUVFfrLX/4ih8Ohhx9+uN5thoeHW8rFxcVuzamu9jW32Rzj1NWnrnGa4o477tDVV1/tVp9du3Zp0qRJzTI+AAAni6Xdm4al3QEAAACg9bFVGvJzeGd5VZsPLetaXFysJUuWWOpmz57daL9+/fpp0qRJ+s9//iNJqqio0HvvvaeHHnqo2eb2ww8/KC0tzSx36dJF06ZNa7Tf9ddfr4ceesi8PUxqaqpWr17dovfFRMNITqJRkyZNUteuXTVmzBiVlZVJkubOnatLLrlEw4cPr7NPSyQnw8LCmn2cuvo0V3KyQ4cO3FgXANCqVS3tXl5ertmzZ2vo0KGN9mmppd0bS06ytDsAAAAAACdv+fLlKioqMsujRo1S//79Xeo7ffp0MzkpSR9++GGzJieXLl1qKd9www2y2+2N9rPb7Zo2bZrmz59vmRvJSe8hOelBl19+ubp27dri47TEf6gzzjhDd955p5577jlJzi8rn3nmGb377rt1to+KirKUMzIy3BovPT3dUo6MjJSfX+1ViE92nLrGio6OdnsbAAA05K677tIrr7zS4uPMmTPHreXdFyxYoOeff94sFxYWKiMjQz///LMWL16sn376yVzafcmSJZo3b54efPBBt+bE0u4AAAAAALQeX3zxhaV87rnnutz37LPPlr+/vyoqKiRJGzdu1NGjR9WxY0evz+3cc8+1JCc///zzWsu9wnNITnrQBRdcoAsuuMDb02iya6+91kxOSs4zKAzDqPOLvb59+1rKe/fudWusmu1rbq+++oyMDBUVFSk0NLTZxwIAoK1haXeWdgcAAAAAONkqDa8tr+pLy7pu2bLFUh41apTLfcPCwnTaaadp48aNZt3WrVubJTlZWlqqXbt2WerOOussl/uPHj3aUt65c6fKysos98mE55CchMtOOeUUS/nYsWPKyclRTExMrbYDBgywlGt+aDSm5o1ya26vSmRkpBITE3Xo0CGzLjU1VaeddprLY1Vfo7qhsQAAaG9Y2r1pWNodAAAAANBabdu2zVLu06ePW/2TkpIsycnk5GSdd955Jz2vHTt2yOFwmOUOHTooMjLS5f6RkZGKj49XZmamJMnhcCglJUWDBg066bnBfSQn4bKAgIBadaWlpXW2rfkfes2aNW6NtWrVqga3V/O16snJNWvWuJyc3L59u44dO2aWQ0ND1atXL7fmCgBAY1ja3XUs7Q4AAAAA8Aa/SkN+XrqC0Vvj1pSVlaWsrCxLXffu3d3aRs32O3fuPOl5SbUvgHJ3XlV9qpKTknNuJCe9g+QkXHbgwAFL2c/PTwkJCXW2HTFihGJjY80PssOHDyslJUX9+vVrdJzKykp9//33lrqLLrqo3vYTJ07Ul19+aZa//fZbzZw5s9FxqtpWN2HChDq/APWUmsled684BYCmqvl5U9/JJ2galnZ3XXtd2p0YAIC3EAMA3kUMAMBbiAFqyys86jNjN+XvQUJCwkmv4pOTk2Mph4aG1rmaUUNqziE3N/ek5lSl5tya8l5bam5wH8lJuKx6AlCSevXqJbvdXmdbf39/XXrppfrXv/5l1r311lt64oknXBqn+pWQSUlJGjx4cL3tr7jiCt1zzz1medmyZcrJyXHp6oeFCxfW2pY37d+/31Lm3lMAvGX//v31LtuJ9oel3VseMQAAX0EMAHgWMQAAX0EMIH374wvenoKpKX8P5syZo7lz557UuAUFBZZySEiI29uo2Sc/P/+k5lTFl+cG93nvEjG0KkVFRXr66actdZdffnmDfW644QZL+Y033rAsoVqfp556qsHt1NSzZ0+dffbZZrm4uFgvvND4H5L//e9/WrdunVmOjo7WZZdd1mg/AADaG19e2r2pY7G0OwAAAAAAVjUTgMHBwW5vo2YCsOY2m8qX5wb3kZxsZ5566qlalz83prCwUFdeeaVl6bPAwEDdeuutDfY777zzLDe6zczM1O9//3tVVlbW2+fFF1/UypUrzXJ8fLz+9Kc/NTrHxx9/vFZ5/fr19bbPysrSjBkzLHWzZ8+udf8qAADQtKXdq1Qt7e6KpiztXl3N5dob4mtLuwMAAAAA4Gvqup1LS/RpCl+eGxrHsq7tzOOPP64nnnhC11xzja655hqNHj263sufc3NztXjxYj322GPat2+f5bXZs2erf//+jY739NNPa9SoUSorK5MkLVmyRFdddZVefPFFdevWzWyXn5+vp556So899pil/2OPPaaIiIhGxxk7dqwmT56sJUuWSJLKysr0m9/8Rq+99pquueYay5eN69at04033qjU1FSzLikpSbNmzWp0nJY2btw4LVu2zCx369ZNQUFB3puQB+3atcuyXMGyZcvUp08f700IcFFb2XdLS0stS0qNGzfOi7OBr2Fp95bXXmOAtvIZivaprey/xACAdxEDOLXWz1C0T21l/yUGcB5zbtmyxdvTsDh27Jiys7Ob9PegvpOI3REeHm4pFxcXu72Nmn1qbrOpfHlucB/JyXYoJydHCxYs0IIFC2S323XKKaeoW7duio6Olt1uV15enlJTU5WSkiKHw1Gr/8yZMzVv3jyXxho+fLjefPNNTZs2zaxbtmyZPvnkE5155pnq1q2bMjMz9dNPPykvL8/S9/bbb9fMmTNdfl8LFy5UamqqNm7cKEnKy8vTtddeq/vuu09DhgxRYGCgUlJSav3BiYmJ0aeffqrQ0FCXx2op0dHRjS6X21706dNHAwcO9PY0ALe15n23vd9bAnVr6tLu1ZOTb7zxhv785z8rLi6uwX5NXdq96mrLqqXd58yZ02A/X1zanRjAqTV/hgKtef8lBgC8hxjAqTV/hgKtef9t7zFAcHBwq/3dtRRfTgD68tzgPpKT7ZzD4VBycrKSk5MbbRsTE6Mnn3xSt956q1uXP0+dOlVlZWWaNWuWuYZzRUWFVq9eXWd7m82mWbNm6ZlnnnF5DEkKCwvTZ599pmnTpmnFihVm/f79+2vdYL5KUlKS3n//fZ1yyilujQUAQGvz1FNPaebMmS5dVVilsLBQV111VZOXdv/mm28knVjaffHixfUunXoyS7tXv/f0448/rksuuURnnHFGne1Z2h0AAAAAgLrVPDYuKipSYWGhwsLCXN5Genq6pezO9xANqTm3jIwMt7fRUnOD+7ixTjuzdOlS3XvvvRo2bJj8/RvPTdtsNg0fPlzPPfecdu7cqZkzZzZpXebp06dr06ZNmjp1ar0fZH5+fjr//PO1YsUKPf/88/UuF9eQTp066auvvtI//vEPnXbaafW269y5s2bPnq1NmzZpxIgRbo8DAEBr8/jjj6tXr1667bbbtGLFigbPMMzNzdWCBQt06qmnavny5ZbX3FnaPTAw0CxXLe1e84Sh/Px8Pfzww7r77rst9e4u7V6lamn3RYsW1brP9bp16zR69GifXNodAAAAAABvi4uLU0xMjKWu5i3fGlP9BGdJ6tu370nPq67t1BzHFS01N7iPKyfbmfHjx2v8+PGSpJKSEm3dulVpaWk6fPiwCgoKVFlZqYiICEVFRSkpKUlDhw5ttkube/furXfeeUeFhYX64YcfdODAAaWnpys6OlqJiYk688wz1blz55Mex2az6bbbbtNtt92m5ORkbdmyRYcOHVJZWZkSExPVu3dvnXXWWfVeuQEAQFvF0u6+u7Q7AAAAAAC+YMCAAZZVD3ft2qUBAwa43H/37t21ttccTjnlFNntdvP7ivT0dOXn57t0YrPk/K4gMzPTLNvtdpKTXkRysh0LDg7W6aefrtNPP92j44aFhWnChAkeGevUU0/Vqaee6pGxAABoTVjanaXdAQAAAACoadCgQZbj9jVr1ujSSy91qW9hYaF+/fXXWttrDkFBQUpKSlJKSoplbhdeeKFL/Wt+F9G3b18FBQU1y9zgPi4dAwAAaAdY2t2Jpd0BAAAAAKjfxIkTLeVvv/3W5b7ff/+9KioqzPKwYcPUsWPH5praSc2tZtuLLrqoGWaEpuLKSQAAgHaApd1Z2h0AAAAAgMZMmDBBISEhKi4uluS8OnH79u3q379/o30XLlxoKV9xxRXNOrcrrrhCL774oll+++239cgjjzR6krPD4dA777zTonODe0hOAgAAtDMs7Q4AAAAAAOoSGhqqyZMn6+233zbr5s+fr7feeqvBfikpKVq6dKlZ9vf313XXXdesczv77LPVq1cvpaWlSZIOHDigd955RzfeeGOD/d555x0dPHjQLCclJWnMmDHNOje4h9PGAQAAAAAAAAAAIEmaO3euAgICzPLChQv18ccf19u+pKRE06dPV1lZmVk3Y8YMJSUlNTiOzWazPBpbptVut2vevHmWunvuuUd79uypt8+ePXv0pz/9yVL36KOPsqqSl/GvDwAAAAAAAAAAAEnO27P88Y9/tNRNnjxZL7/8siUBKUnbtm3Tb37zG61evdqsi4uL05w5c1pkblOnTtXIkSPNclZWlkaPHq0vv/yyVtvly5dr1KhRys7ONutGjx6tKVOmtMjc4DqWdQUAAAAAAAAAAIDpySef1NatW/X5559LksrLy/WHP/xBjzzyiIYPH66IiAjt3r1bGzZskGEYZr/AwEAtXbpUnTt3bpF5+fn5aenSpTrrrLO0b98+SdLhw4c1YcIE9e3bVwMHDpRhGNq6dat27dpl6duzZ099+OGHstlsLTI3uI7kJAAAAAAAAAAAAEx2u13/+c9/dMstt2jx4sVmfXp6ur744os6+3To0EH/+te/dPbZZ7fo3Dp37qyvvvpKv/vd77Rx40azfufOndq5c2edfYYPH67FixerY8eOLTo3uIbkJACfkJCQYLnUPyEhwYuzAVzHvgsATcdnKFoz9l8AaDo+Q9Gasf+iPQkPD9eiRYs0efJkPfPMM1q7dm2d7WJjYzVlyhTNmzfPY/8n+vXrp3Xr1umZZ57R66+/rt27d9fZLikpSbfccovuvfdey3004V02o/r1tgAAAAAAAAAAAEANaWlp2rBhgw4dOqTCwkJ16tRJPXr00JgxYxQYGOjVuf38889KSUnRoUOHJEmJiYnq16+fTj/9dK/OC3UjOQkAAAAAAAAAAADAI/y8PQEAAAAAAAAAAAAA7QPJSQAAAAAAAAAAAAAeQXISAAAAAAAAAAAAgEeQnAQAAAAAAAAAAADgESQnAQAAAAAAAAAAAHgEyUkAAAAAAAAAAAAAHkFyEgAAAAAAAAAAAIBHkJwEAAAAAAAAAAAA4BEkJwEAAAAAAAAAAAB4BMlJAAAAAAAAAAAAAB5BchIAAAAAAAAAAACAR5CcBAAAAAAAAAAAAOAR/t6eAADfUVxcrO3bt2vv3r06dOiQ8vPzVV5ersjISMXFxWnQoEEaOHCg/P1b30dHWlqafvnlFx06dEgFBQXq3LmzevToodGjRysgIMDb00MrU15erlWrVmnfvn06fPiwwsPDlZiYqGHDhqlnz57NOhb7LgBPIAYAXEMMAKCtIQYAXEMMAADNzADQrr355pvGtGnTjL59+xp+fn6GpAYf4eHhxs0332xs3LjRrXEa225jj7S0tCa9vw8++MAYNWpUvduNjY01br/9diMjI6NJ24fvmzJlSq3fe48ePZq0rfT0dOP22283YmNj692nRo8ebSxZsuSk582+C6ClEQPwOdrWEQMAQN2IAfgcbeuIAQDA95GcBNq5Ll26NOkgwW63G3fffbdRXl7u0jiePijJz883fve737m8/Y4dOxpffPFFE/4F4cs++uijOn/fTTko+eyzz4wOHTq4vE9NnTrVKCgocHsc9l0AnkIMwOdoW0YMAAD1Iwbgc7QtIwYAgNbBZhiGIQDtVteuXXXw4EGzHBoaqqSkJHXv3l2RkZGqrKxUVlaWNm/erCNHjtTqP2nSJC1ZskR2u73BcWw220nNMy0tzeVlMhwOhy677DJ99tlnlvqEhAQNGzZMUVFRSk1N1caNG1X9IzAoKEhff/21xo4de1JzhW/IycnRwIEDdejQoVqv9ejRQ3v27HF5W99++60mTJigsrIys85ms2n48OHq3bu3cnJytHHjRmVmZlr6XXrppVq2bJn8/Fy7xTP7LgBPIgbgc7StIgYAgIYRA/A52lYRAwBAK+K9vCgAX9CvXz/jsssuM1599VVj06ZNhsPhqLftmjVrjN/85je1zth66qmnGh2nevuRI0caaWlpbj1cPTPTMAzjz3/+s2W8gIAA46WXXjJKS0st7bZu3VpruYy4uDjj0KFDLo8F33XzzTebv9eIiIgmnzG5f/9+IyYmxtJ/zJgxRnJysqVdSUmJ8cILLxgBAQGWtg888IDLY7HvAvAkYgA+R9sqYgAAaBgxAJ+jbRUxAAC0HiQngXaurKzMrfYOh8OYNm2aJRiKiooySkpKGuxXvf24ceNOYsYNS01NrRUULlu2rN72RUVFtYK72267rcXmB8/46quvzN+nv7+/8dxzzzX5oKT6wY3kvJdEcXFxve2XLl1qaR8UFGTs2bOn0XHYdwF4GjEAn6NtETEAADSOGIDP0baIGAAAWheSkwDclpuba4SFhVmCoc8//7zBPp46KLnhhhssY910002N9tmxY4cRGBhoCWJTU1NbbI5oWQUFBUbPnj3N3+d9991nrFy5skkHJSkpKYbdbjf7BQYGGikpKY32u/HGGy3jTZ8+vdE+7LsAWgNiAPgyYgD2XQAthxgAvowYgH0XQOvj2uLXAFBNZGRkrTXtd+3a5aXZnFBcXKwlS5ZY6mbPnt1ov379+mnSpElmuaKiQu+9915zTw8e8sADD5j3kejdu7fmzp3b5G299957cjgcZvnKK69U3759G+1Xc7/7z3/+o5KSknrbs+8CaC2IAeDLiAHYdwG0HGIA+DJiAPZdAK0PyUkATRIbG2sp5+fne2kmJyxfvlxFRUVmedSoUerfv79LfadPn24pf/jhh806N3jG6tWr9corr5jl1157TSEhIU3e3tKlSy3lmvtJfQYMGKCRI0ea5cLCQn355Zf1tmffBdCaEAPAFxEDsO8CaHnEAPBFxADsuwBaJ5KTAJpk7969lnJiYqKXZnLCF198YSmfe+65Lvc9++yz5e/vb5Y3btyoo0ePNtfU4AGlpaW6+eabVVlZKUm68cYbdf755zd5e0eOHNGmTZvMsr+/v8aMGeNy/5r73+eff15vW/ZdAK0JMQB8DTGAE/sugJZGDABfQwzgxL4LoDUiOQnAbSkpKVq3bp1ZttlsGjdunBdn5LRlyxZLedSoUS73DQsL02mnnWap27p1a7PMC54xd+5c7dixQ5KUkJCgZ5555qS2V3N/Gjx4sMLCwlzuP3r0aEu5of2JfRdAa0EMAF9EDODaWABwMogB4IuIAVwbCwB8EclJAG45fPiwrr76asv6+5MnT1bPnj1d3sa+ffs0ffp0DRw4UDExMQoMDFTHjh01cOBATZs2TQsWLFBWVpbbc9u2bZul3KdPH7f6JyUlWcrJycluzwHesWHDBv3f//2fWX7++ecVFxd3Utus+ftvyf2JfRdAa0AMAF9EDMC+C6DlEQPAFxEDsO8CaN38G28CoD2rqKhQdna2tm3bpk8++USvvfaa8vLyzNd79+6tl19+2a1tpqWlKS0tzVKXnp6u9PR0JScn691339U999yjW2+9VY888ojCw8Mb3WZWVlatA5nu3bu7Na+a7Xfu3OlWf3hHRUWFbr75ZlVUVEiSJk6cqOuuu+6kt7tr1y5L2d39qUePHpbysWPHlJ2drZiYGEs9+y4AX0UMAF9HDMC+C6BlEAPA1xEDsO8CaP24chKAxd133y2bzWY+AgIC1KFDB40bN05PP/205YBk/Pjx+u6779ShQ4dmn0dhYaGef/55nX766S4tTZGTk2Mph4aGurX0hqRa7yM3N9et/vCOJ5980rwnRFhYmF599dVm2W7Nfcrd/Tw8PFzBwcGWurr2KfZdAL6CGOAEPkdbB2IA9l0AzYMY4AQ+R1sHYgD2XQCtH1dOAnDbZZddpjvvvFMXXnihW/38/f01duxYnX/++Ro8eLC6du2qiIgIFRQUaN++ffr+++/173//W+np6WaflJQUnX/++Vq7dm2tM9CqKygosJRDQkLce1N19MnPz3d7G/Cs5ORkPfroo2b5kUcecWtpoYY01z5VUlJiluvap9h3AbQmxADwFcQAdfdh3wXQUogB4CuIAeruw74LoLUhOQnAbZ9//rkcDoeCg4N1zjnnuNTn0Ucf1a233lrvWWdDhw7VZZddpkceeUTz5s3T/PnzZRiGJOnIkSO68sortX79etlstjr71wzsap6p5oqagV3NbcK3VFZWasaMGSotLZUknX766Zo1a1azbb+59qns7Ox6t9mc4zS0TQBoLsQA8AXEANZxGtomADQXYgD4AmIA6zgNbRMAfB3LugKw+Otf/2reCyItLU3Jycn6/vvv9dJLL+m8886TJJWXl+vTTz/VuHHjdNddd8nhcDS63b/85S8uLYcRHBysJ554Qi+99JKlfsOGDXr//fddfh/1Hbw0dx94zwsvvKC1a9dKcp6N+8Ybb8hut7fYeJ7ap9h3AXgLMQBaC2KAk+sDADURA6C1IAY4uT4A4EtITgKwiI2NVc+ePc3HgAEDNHbsWN11111asWKFvv/+e8uyKq+88opmzpzZ7PO48847ddlll1nq/v73v9fbPjw83FIuLi52e8yafWpuE75j9+7deuihh8zyPffco6FDhzbrGJ7ap9h3AfgKYoD6twnfQQzg/jgA0BhigPq3Cd9BDOD+OADgy0hOAnDL2LFjtXLlSsXFxZl1b775pj766KNmH+uBBx6wlNeuXVvrpuFVCOzaD8MwdOutt6qoqEiS1Lt3b82dO7fZx+GgBACsiAHgbcQATRsHAE4WMQC8jRigaeMAgC8jOQnAbb169dJf//pXS91TTz3V7OOceeaZiomJMcsOh0PJycl1to2KirKUi4qKVFhY6NZ46enplnJ0dLRb/eEZr7/+ur755huz/NprrzXp5vGNqblPZWRkuNW/oKCg1sFCXfsU+y6A1oQYAN5EDFAb+y4ATyEGgDcRA9TGvgugtfP39gQAtE6/+93v9Mc//tEsV53N2JzBkJ+fn7p37265kXh9gWFcXJxiYmIsbfft26cBAwa4PN7evXst5b59+7o5Y3jCnDlzzOcXX3yx+vTpoz179jTY58iRI5ZyRUVFrT6JiYkKDAw0yzV//zX3j8bUbB8bG2s5yK7CvgugtSEGgLcQAzQ+FvsugJZEDABvIQZofCz2XQCtDclJAE3SoUMHSyBVWVmptLQ0DRs2rFnHqXkmXENLXQwYMECrV682y7t27XIrsNu9e3et7cH3VN8HPvvsM/Xq1cvtbRw8eLBWv40bN1ruV1Hz979r1y63xqi5P5166qn1tmXfBdCaEAPAW4gBGh+LfRdASyIGgLcQAzQ+FvsugNaGZV0BNFlAQIClXFpa2uxjZGZmWsrx8fH1th00aJClvGbNGpfHKSws1K+//trg9tC+1Pz9//rrr+b9LVyxatWqBrfX0GvsuwB8HTEA2jJiAACoHzEA2jJiAADwHJKTAJqkpKSk1gFDx44dm3WMzMzMWmeCJSYm1tt+4sSJlvK3337r8ljff/+9KioqzPKwYcOa/f2gdencubMGDx5slisqKvTDDz+43L/m/nfRRRfV25Z9F0BrQgyAto4YAADqRgyAto4YAAA8h+QkgCZZsWKFKisrzXJoaKi6dOnSrGMsWrTIMkbHjh0bXKZiwoQJluVf1qxZo+3bt7s01sKFCy3lK664wr3JwmNycnJkGIZbj5UrV1q20aNHj1ptqi/lUqXmfvDWW2+5NMft27dr3bp1ZjksLEwXXnhhve3ZdwG0JsQA8BZiACv2XQCeRgwAbyEGsGLfBdAWkJwE4LbKyko98sgjlrqJEydabiJ+so4ePapHH33UUnfppZfKZrPV2yc0NFSTJ0+21M2fP7/RsVJSUrR06VKz7O/vr+uuu87NGaMtmjp1qux2u1n+8MMPtXPnzkb71dzvrrnmGgUHB9fbnn0XQGtBDID2ghgAAKyIAdBeEAMAgIcYANqtF1980Th06JBbfcrKyoybbrrJkGR5rFixos7227dvNz7++GO3xjh8+LBxxhlnWLYfGBhopKamNto3NTXVCAgIsPT96KOP6m1fXFxsjB492tL+tttuc2u+8H0rV660/I579Ojhct+bb77Z0nf06NFGcXFxve2XLVtWa9/ds2dPo+Ow7wLwJGIAPkfbC2IAALAiBuBztL0gBgAA30ZyEmjHhgwZYoSEhBhTp041Pv74YyMvL6/etkVFRcZ7771nDBw4sNYByfXXX19vv6pg8LTTTjPmz59vpKSk1Ns2Ly/PeOmll4yOHTvWGuNvf/uby+/rz3/+s6VvQECA8dJLLxmlpaWWdsnJybWCuri4OLcP1OD7TuagZP/+/UZMTIyl/5gxY4xt27ZZ2pWUlBgvvvhirQOLBx54wOWx2HcBeAoxAJ+j7QUxAABYEQPwOdpeEAMAgG+zGYZhCEC7NHToUG3atMks22w29enTRz179lR0dLQCAwOVn5+vvXv3Kjk5WeXl5bW28dvf/lZLlixRUFBQnWN8++23Gj9+vKUuKipKgwYNUnx8vCIiIlRQUKD9+/dr06ZNlht6V5k5c6Zee+01l9+Xw+HQpZdeqs8//9xS36FDBw0fPlwRERHavXu3NmzYoOofgYGBgfr666919tlnuzwWWoea+2GPHj20Z88et/pPmDBBZWVlZp3NZtPpp5+u3r17Kzc3Vxs2bFBGRoal329/+1stW7bMsiRMQ9h3AXgKMQCfo+0FMQAAWBED8DnaXhADAICP815eFIC3DRkypNaZia4+QkJCjMcee8woKytrcIyaZ6q58wgLCzMWLFjQpPeWn59vTJkyxeWxOnToYHz++edNGgu+72TOmKzy6aefGgkJCS7vU9dee61RUFDg9jjsuwA8gRiAz9H2ghgAAKyIAfgcbS+IAQDAt5GcBNqxH3/80XjooYeMUaNGGUFBQS4FQP379zceeeQRY//+/S6NceTIEePBBx80xowZY4SEhLg0Rr9+/YzHH3/cyMjIOOn3+MEHHxhnnXVWvWPFxsYat99+u5Genn7SY8F3NcdBiWEYxtGjR43f//73tZZ3qf4466yzjCVLlpz0nNl3AbQkYgA+R9sLYgAAsCIG4HO0vSAGAADfxrKuACRJ5eXl2rZtm3bv3q2DBw+qoKBA5eXlCg8PV2RkpHr27Klhw4YpJiamyWNUVlZq586dSk1N1cGDB5WTk6OSkhKFhIQoJiZGnTt31ogRI5SQkNCM78wpLS1NGzZs0KFDh1RYWKhOnTqpR48eGjNmjAIDA5t9PLRtZWVlWrVqlfbu3asjR44oLCxMXbp00bBhw9SrV69mHYt9F0BLIwYAXEcMAKAtIQYAXEcMAADNi+QkAAAAAAAAAAAAAI/w8/YEAAAAAAAAAAAAALQPJCcBAAAAAAAAAAAAeATJSQAAAAAAAAAAAAAeQXISAAAAAAAAAAAAgEeQnAQAAAAAAAAAAADgESQnAQAAAAAAAAAAAHgEyUkAAAAAAAAAAAAAHkFyEgAAAAAAAAAAAIBHkJwEAAAAAAAAAAAA4BEkJwEAAAAAAAAAAAB4BMlJAAAAAAAAAAAAAB5BchIAAAAAAAAAAACAR5CcBAAAAAAAAAAAAOARJCcBAAAAAAAAAAAAeATJSQAAAAAAAAAAAAAeQXISAAAAAAAAAAAAgEeQnAQAAAAAAAAAAADgESQnAQAAAAAAAAAAAHgEyUkAAAAAAAAAAAAAHkFyEgAAAAAAAAAAAIBHkJwEAAAAAAAAAAAA4BEkJwEAAAAAAAAAAAB4BMlJAAAAAAAAAAAAAB5BchIAAAAAAAAAAACAR5CcBAAP2rNnj2w2m/m46aabvD0lAADgAcQAAAC0T8QAAADURnISAAAAAAAAAAAAgEeQnAQAAAAAAAAAAADgESQnAQAAAAAAAAAAAHgEyUkAAAAAAAAAAAAAHkFyEgAAAAAAAAAAAIBHkJwEAAAAAAAAAAAA4BEkJwEAAAAAAAAAAAB4hL+3JwAAvm7r1q369ddflZGRocLCQsXFxalz584aM2aMYmNjvT09j6ioqNDq1auVlpamw4cPKzAwUP3799e4ceMUFhbWYN+cnBz98MMP2rlzp4qLixUXF6dBgwZp1KhR8vM7+XNksrKytHr1ah05ckSZmZkKDg5WQkKChg4dqoEDB5709gEA7RcxADEAAKB9IgYgBgAAtDADAHzcXXfdZUgyH6+//nqTtjN+/HjLdlavXl1v2/z8fGPevHlGt27dLH2qP/z8/IyxY8can3/+uctzSEtLs2zjxhtvbLB99bbjxo1zeRzDMIwbb7zR0j8tLa3etm+99Zal7VtvvWUYhmHk5eUZ999/v9GxY8c6/w0iIiKMOXPmGOXl5bW2uWfPHmPq1KlGQEBAnX0TExONt99+2633VKWystJ4//33jZEjRxp+fn71/o66dOliPPnkk0ZRUVGTxgEAeBcxADFATcQAANA+EAMQA9REDAAAbQvJSQA+75dffrEEmmeddZbb29i9e7dhs9nMbQwYMKDetqtWrao3CK/vcdlllxn5+fmNzqM1HZSkpqYa/fr1c+n9X3jhhUZpaam5veXLlxtRUVEu9X3wwQfdel+pqanGsGHD3Pr99OzZ09iyZYtb4wAAvI8YgBigOmIAAGg/iAGIAaojBgCAtodlXQH4vCFDhuj000/Xzz//LElau3atkpOTdeqpp7q8jTfffFOGYZjlGTNm1Nnuiy++0BVXXKGSkhJLfZcuXTRkyBBFRkbq8OHDWrt2rUpLS83XP/74Y40bN04rV65UZGSkO2/PJ2VnZ+uCCy7Q7t27JUmRkZEaOXKk4uPjlZubq7Vr1yorK8ts/+WXX2r27Nl67rnntGrVKl122WXmv09iYqKGDRumqKgoHTlyRKtXr7b8+z7++OMaMWKEJk2a1Oi8fvzxR11yySXKzMy01MfFxWnYsGGKj49XaWmpdu7cqS1btpiv79mzR2PGjNG3336roUOHnsS/DADAk4gBPI8YAADgC4gBPI8YAADgUV5OjgKAS1599VXLGXD33HOPy30dDofRtWtXs29AQICRnp5eq93+/fuN2NhYyzi9evUyPv30U6OystLSNjc31/jLX/5i+Pv7W9pfd911Dc6ltZwxGRMTY0gyoqOjjQULFhhlZWWW9mVlZcbcuXMtfex2u/Hzzz8biYmJhiTj1FNPNb7++utaY2VmZhpXXHFFrX/nmv/GNR0+fNjo3Lmzpd/IkSONL7/8ss6+O3fuNCZNmmRp37dvXyMvL8+1f0AAgE8gBiAGIAYAgPaJGIAYgBgAANoukpMAWoWcnBwjNDTUDC4TEhJqBcr1+eyzzyyB6VVXXVVnu5qBcv/+/Y2jR482uO1FixbVutfBJ598Um/71nJQIsmIiooyNm/e3OAYt99+e50HMyNGjDByc3Pr7VdeXm4MHjzY0reuA5jqLr74Ykv7GTNmGBUVFQ32MQzDmDVrlqXfvHnzGu0DAPAdxADEAMQAANA+EQMQAxADAEDb5ScAaAWioqI0efJks5yRkaH/9//+n0t933zzTUv5lltuqdUmNTVVH330kVm22+16//331aFDhwa3PWXKFN1xxx2Wumeeecalefm6F154QYMGDWqwzf333y+bzWaWs7OzFRgYqEWLFjW4rI2/v7/uvfdeS92KFSvqbb9+/Xp99tlnZnnUqFFasGCB7HZ7Y29Dzz77rAYPHmyWX375ZctSPAAA30YM4HnEAAAAX0AM4HnEAAAATyE5CaDVqHl/iH/+85+N9snMzNTHH39slrt166YLL7ywVru3335blZWVZvmaa65x+Z4E8+bNU1BQkFleuXKl9u7d61JfX9WtWzdNmzat0Xbdu3dXv379LHXXXHONevfu3Wjfmr+HX375pd62L774oqX8+OOPy8/PtT9hdrtdf/zjH81yRkaG1qxZ41JfAIBvIAbwHGIAAIAvIQbwHGIAAIAnkZwE0Gqcc845lgB4+fLlOnjwYIN93n77bZWVlZnl6dOn1xnM/vDDD5ayKwF5ldjYWF1yySWWulWrVrnc3xddeOGFLp2NKEl9+/a1lCdOnOhSv06dOik8PNwsHz16tN62X3/9taXfuHHjXBqjyvjx4y3l77//3q3+AADvIgbwHGIAAIAvIQbwHGIAAIAnkZwE0KrcfPPN5nOHw6GFCxc22L76Ui42m03Tp0+vs9369est5VGjRrk1r9GjR1vKP/30k1v9fc2AAQNcbhsVFdUsffPy8upsk5qaqsOHD5vlPn36aO/evdqzZ4/Lj+oHplXbBAC0LsQAnkEMAADwNcQAnkEMAADwJH9vTwAA3HHTTTfpoYceUkVFhSTprbfe0oMPPmi530GVH3/8UVu2bDHL559/vnr27FmrXVlZmXJzc81yQkKCYmJi3JpX//79LeX09HS3+vsad96/v7/1T0l0dHST+paXl9fZZv/+/ZbyDz/8oF69erk8Rl2ysrJOqj8AwPOIATyDGAAA4GuIATyDGAAA4ElcOQmgVenYsaNl6ZTU1FT973//q7NtzXtR1LxXRZXs7GxLueYZgK6o2ae1B72u3sehufvW5dixY826PUnKz89v9m0CAFoWMYBnEAMAAHwNMYBnEAMAADyJ5CSAVqfmwUXNgw9JKioq0qJFi8xyXFycJk2aVOf2DMOwlOs6+9JdzbENONVciqU51PydAwBaB2KA9oUYAABQhRigfSEGAIC2j+QkgFbn4osvVmJioln+73//a1mORZI++OADy70Lpk2bpqCgoDq3FxsbaynX3JYravZxdzmYluBwOLw9hWYRHx9vKc+cOVOGYZzU49tvv/XOmwEAnBRiANcQAxADAEBbQwzgGmIAYgAAaC1ITgJodex2u2688UazXFxcrPfff9/S5s0337SU61vKRZICAwMty7Gkp6crJyfHrTnt2LHDUu7QoYNb/etjt9vN51X313BVzWVqWquOHTtayikpKV6aCQDA24gBXEMMAABoa4gBXEMMAABoLUhOAmiVZsyYYVkypfqSLjt37tR3331nls8880yddtppDW7vjDPOsJTXrFnj1nxWr15tKY8YMcKt/vWJjIw0n7t7oLR169ZmmYO3DRw40HLQuGbNGu4VAQDtGDFA44gBAABtETFA44gBAACtBclJAK1SUlKSxo0bZ5bXr1+vX3/9VZJ7Z0tWGTt2rKX87rvvujyX7OxsffLJJ5a6MWPGuNy/IdXPvNy5c6fKy8td6rdt2zbt2bOnWebgbXa7Xb/5zW/Mcmlpqd5++20vzggA4E3EAA0jBgAAtFXEAA0jBgAAtCYkJwG0Wrfccoul/M9//lMOh0P/+te/zLqwsDBde+21jW5r2rRp8vM78ZG4ePFibd682aV5zJ07V6WlpWb53HPPVY8ePVzq25jhw4ebz8vKyvTll1+61O9vf/tbs4zvK/7whz9YyvPmzdPhw4e9NBsAgLcRA9SPGAAA0JYRA9SPGAAA0JqQnATQal111VWKjo42y++++66WLVtmCVavvvpqRURENLqtPn366LLLLjPLFRUV+t3vfqfMzMwG+y1ZskQvv/yype7ee+918R00rvqZgpLzAKixe0689NJLWrRoUbPNwRece+65uuCCC8xyenq6Lr74Yh04cMCt7eTn5+u9995r7ukBADyMGKBuxAD1IwYAgLaBGKBuxAD1IwYAAN9EchJAqxUcHKypU6ea5WPHjun222+3tKl5VmVDXnzxRcXExJjl5ORkjRo1SsuXL5dhGJa2+fn5mjNnjq677jpVVlaa9VOmTNFvf/tbd99KvaZMmWK538T69es1adIkHTp0qFbb/fv365ZbbtGsWbMkyfJe2oJ//etf6tq1q1n+5ZdfNHjwYD311FMNHjzm5+fr448/1owZM9SlSxc9+OCDnpguAKAFEQNYEQPUjRgAANoeYgArYoC6EQMAgO/z9/YEAOBkzJgxQ6+88opZzsjIMJ/379/frXs+dOvWTW+//bauuuoqc3mWXbt2aeLEieratauGDh2qiIgIHT58WGvXrlVJSYml/9ChQ/Xaa6+d5DuyCg8P1xNPPKE777zTrPv000/Vo0cPjRw5Ut27d1dpaal2796tTZs2mQdP1113nQICAixL27R2nTt31ieffKKLL77YPCjLzs7W7Nmzdf/992vAgAHq3bu3oqKiVFpaqpycHKWmpmrPnj2Wg8rY2FhvvQUAQDMiBiAGIAYAgPaJGIAYgBgAAFo/kpMAWrVhw4Zp+PDh2rBhQ63XZsyY4fb2LrnkEn311VeaPHmy0tPTzfoDBw40uHTIJZdcovfff9+lpWPcdfvttys5Odly8FVRUaFVq1Zp1apVtdpff/31+uc//6lbb7212efibUOGDNHGjRt1/fXXW+67YRiGkpOTlZyc3Og22tqZpADQXhEDEANIxAAA0B4RAxADSMQAANDasawrgFavroOPgIAA3XDDDU3a3tlnn61du3Zpzpw56tKlS73t/Pz8NHr0aH3yySf65JNPWuSARJJsNptefvllvfvuu0pKSqq33emnn65Fixbp3//+twICAlpkLr6gQ4cOWr58ub777jtNmjRJYWFhjfbp1auXbrnlFn3++edav369B2YJAPAEYgAnYoD6EQMAQNtEDOBEDFA/YgAA8G02o+YC6gAAiy1btmjTpk3KzMxUYWGh4uLi1LlzZ40ZM0ZxcXEen8/mzZu1fv16ZWRkyN/fX126dNGQIUPUv39/j8/FF1RUVGj9+vXatWuXjh07pvz8fIWGhioqKkq9e/fWgAED1KlTJ29PEwDQChED+DZiAABASyEG8G3EAADQ+pGcBAAAAAAAAAAAAOARLOsKAAAAAAAAAAAAwCNITgIAAAAAAAAAAADwCJKTAAAAAAAAAAAAADyC5CQAAAAAAAAAAAAAjyA5CQAAAAAAAAAAAMAjSE4CAAAAAAAAAAAA8AiSkwAAAAAAAAAAAAA8guQkAAAAAAAAAAAAAI8gOQkAAAAAAAAAAADAI0hOAgAAAAAAAAAAAPAIkpMAAAAAAAAAAAAAPILkJAAAAAAAAAAAAACPIDkJAAAAAAAAAAAAwCNITgIAAAAAAAAAAADwCJKTAAAAAAAAAAAAADyC5CQAAAAAAAAAAAAAjyA5CQAAAAAAAAAAAMAjSE4CAAAAAAAAAAAA8AiSkwAAAAAAAAAAAAA8guQkAAAAAAAAAAAAAI8gOQkAAAAAAAAAAADAI0hOAgAAAAAAAAAAAPAIkpMAAAAAAAAAAAAAPILkJAAAAAAAAAAAAACPIDkJAAAAAAAAAAAAwCNITgIAAAAAAAAAAADwCJKTAAAAAAAAAAAAADyC5CQAAAAAAAAAAAAAjyA5CQAAAAAAAAAAAMAjSE4CAAAAAAAAAAAA8AiSkwAAAAAAAAAAAAA8guQkAAAAAAAAAAAAAI8gOQkAAAAAAAAAAADAI0hOAgAAAAAAAAAAAPAIkpMAAAAAAAAAAAAAPILkJAAAAAAAAAAAAACP+P+HbVtF5BC4WwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df = pd.read_hdf(\"eos.h5\")\n", + "\n", + "cmap = colormaps.get_cmap('Spectral').reversed()\n", + "norm = colors.Normalize(vmin=0, vmax=1)\n", + "\n", + "formulae = [f for f in set(df['formula']) if 'Fe' not in f]\n", + "methods = set(df['method'])\n", + "\n", + "with plt.style.context('default'):\n", + "\n", + " fig, axes = plt.subplots(\n", + " ncols=len(methods),\n", + " figsize=(6,3),\n", + " layout='constrained',\n", + " dpi=300\n", + " )\n", + " \n", + " for i, method in enumerate(methods):\n", + " ev0s = []\n", + " for fi, formula in enumerate(formulae):\n", + " filtered_data = df[(df['formula'] == formula) & (df['method'] == method)]\n", + " filtered_data = filtered_data.drop_duplicates(subset=['method', 'formula', 'volume'], keep='last')\n", + " \n", + " ev0s.append((filtered_data['v0'].drop_duplicates()[0], filtered_data['e0'].drop_duplicates()[0]))\n", + " c = Formula(formula) // Formula('Cr') / len(Formula(formula))\n", + " # Plot EOS curves at different compositions\n", + " axes[i].plot(\n", + " filtered_data['volume'], filtered_data['energy'],\n", + " c=cmap(norm(c)),\n", + " lw=1\n", + " )\n", + " axes[i].set(\n", + " title=method\n", + " )\n", + "\n", + " # Plot equilibrium volume and energy line\n", + " ev0s = np.array(sorted(ev0s, key=lambda x: x[1]))\n", + " axes[i].plot(ev0s[:, 0], ev0s[:, 1], \"--\", color=\"black\", lw=1)\n", + " axes[i].set(\n", + " xlabel='volume', ylabel='energy'\n", + " )\n", + " \n", + " sm = cm.ScalarMappable(cmap=cmap, norm=norm)\n", + " sm.set_array([])\n", + " cbar = fig.colorbar(sm, ax=axes, orientation='vertical', aspect=20)\n", + " cbar.set_label(\"Cr fraction\", rotation=270, labelpad=15)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
methodformulatotal_run_timev0e0b0b1volumeenergyCrNiFe
0MatterSimCr11Ni210 days 00:00:28.339838354.196669-225.6766970.785822-1.069017335.92320-225.2798310.343750.656250.000
1MatterSimCr11Ni210 days 00:00:28.339838354.196669-225.6766970.785822-1.069017343.38816-225.5828400.343750.656250.000
2MatterSimCr11Ni210 days 00:00:28.339838354.196669-225.6766970.785822-1.069017350.85312-225.6937260.343750.656250.000
3MatterSimCr11Ni210 days 00:00:28.339838354.196669-225.6766970.785822-1.069017358.31808-225.6559140.343750.656250.000
4MatterSimCr11Ni210 days 00:00:28.339838354.196669-225.6766970.785822-1.069017365.78304-225.5002590.343750.656250.000
.......................................
6MACE-MP(M)Cr26Fe4Ni20 days 00:00:00.433071369.308334-290.5555811.2287565.063066380.71296-290.3498540.812500.062500.125
7MACE-MP(M)Cr26Fe4Ni20 days 00:00:00.433071369.308334-290.5555811.2287565.063066388.17792-290.0228580.812500.062500.125
8MACE-MP(M)Cr26Fe4Ni20 days 00:00:00.433071369.308334-290.5555811.2287565.063066395.64288-289.5619200.812500.062500.125
9MACE-MP(M)Cr26Fe4Ni20 days 00:00:00.433071369.308334-290.5555811.2287565.063066403.10784-288.9699100.812500.062500.125
10MACE-MP(M)Cr26Fe4Ni20 days 00:00:00.433071369.308334-290.5555811.2287565.063066410.57280-288.2591250.812500.062500.125
\n", + "

117810 rows ร— 12 columns

\n", + "
" + ], + "text/plain": [ + " method formula total_run_time v0 e0 \\\n", + "0 MatterSim Cr11Ni21 0 days 00:00:28.339838 354.196669 -225.676697 \n", + "1 MatterSim Cr11Ni21 0 days 00:00:28.339838 354.196669 -225.676697 \n", + "2 MatterSim Cr11Ni21 0 days 00:00:28.339838 354.196669 -225.676697 \n", + "3 MatterSim Cr11Ni21 0 days 00:00:28.339838 354.196669 -225.676697 \n", + "4 MatterSim Cr11Ni21 0 days 00:00:28.339838 354.196669 -225.676697 \n", + ".. ... ... ... ... ... \n", + "6 MACE-MP(M) Cr26Fe4Ni2 0 days 00:00:00.433071 369.308334 -290.555581 \n", + "7 MACE-MP(M) Cr26Fe4Ni2 0 days 00:00:00.433071 369.308334 -290.555581 \n", + "8 MACE-MP(M) Cr26Fe4Ni2 0 days 00:00:00.433071 369.308334 -290.555581 \n", + "9 MACE-MP(M) Cr26Fe4Ni2 0 days 00:00:00.433071 369.308334 -290.555581 \n", + "10 MACE-MP(M) Cr26Fe4Ni2 0 days 00:00:00.433071 369.308334 -290.555581 \n", + "\n", + " b0 b1 volume energy Cr Ni Fe \n", + "0 0.785822 -1.069017 335.92320 -225.279831 0.34375 0.65625 0.000 \n", + "1 0.785822 -1.069017 343.38816 -225.582840 0.34375 0.65625 0.000 \n", + "2 0.785822 -1.069017 350.85312 -225.693726 0.34375 0.65625 0.000 \n", + "3 0.785822 -1.069017 358.31808 -225.655914 0.34375 0.65625 0.000 \n", + "4 0.785822 -1.069017 365.78304 -225.500259 0.34375 0.65625 0.000 \n", + ".. ... ... ... ... ... ... ... \n", + "6 1.228756 5.063066 380.71296 -290.349854 0.81250 0.06250 0.125 \n", + "7 1.228756 5.063066 388.17792 -290.022858 0.81250 0.06250 0.125 \n", + "8 1.228756 5.063066 395.64288 -289.561920 0.81250 0.06250 0.125 \n", + "9 1.228756 5.063066 403.10784 -288.969910 0.81250 0.06250 0.125 \n", + "10 1.228756 5.063066 410.57280 -288.259125 0.81250 0.06250 0.125 \n", + "\n", + "[117810 rows x 12 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Calculate compositions\n", + "elements = set().union(*[set(Formula(f)) for f in df['formula']])\n", + "\n", + "data = df.assign(**{\n", + " k: df['formula'].map(\n", + " lambda f: Formula(f).count()[k] / sum(Formula(f).count().values()) \n", + " if k in Formula(f).count() else 0\n", + " )\n", + " for k in elements\n", + "})\n", + "\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "a": [ + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375 + ], + "b": [ + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625 + ], + "c": [ + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ], + "hovertemplate": "Fe=%{a}
Ni=%{b}
Cr=%{c}
b0=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.648121405688189, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.6065689124922915, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.8161007519093767, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.9036897307606689, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 0.7400179772172396, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3647658856647487, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.3923953471398407, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.1144729306717664, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.2088955488933493, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 1.280990533582233, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.9277250641417655, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 0.8442614461367155, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 1.0218803812043997, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.7607241148737857, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.67918204520111, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.6148630286287793, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5400933163217492, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.5191359013461411, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4491338967948867, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.4628564949192671, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.42940570099360503, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.4175778517612351, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.43303277399690177, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4302370681097323, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.4809298477193203, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.5198243249135552, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.612402049999382, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.5426307572893886, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.766936733590317, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 0.6991115801774469, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 1.3226406372223152, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 0.8666305390458526, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.2447049459853732, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.3070143484914507, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 1.1505036457112914, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 0.8620570658445563, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 1.0536151566421657, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.952280363356952, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.6744936113855244, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.7668262000280497, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.6142708791100622, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.5454703256938414, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.48127021295385597, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.45375371956953375, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4259663800074568, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.4050958277113617, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.42107927548359425, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.40090761497071553, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.4222763412982076, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.48307191967069113, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.6188581140667893, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.46731212318076004, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.4380747694381937, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.5648960354293239, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.46797455538105326, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4748892341163201, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.4383177621333183, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5334142035991463, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.5474805903377804, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.7432732498214824, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.6845830519527205, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 0.5323588946675519, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.4575132662298824, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.441343857981958, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.1800975566445984, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 1.0862871155644653, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.8473446167465762, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.7845174356600704, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.66588514414406, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5832603426181434, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5331838873552612, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5579279299492891, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.5867220232998458, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.6613349726891555, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.8349294196110232, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 0.9773651084306288, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.348983266755145, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.2638096293960563, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.429205849483664, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.3690028482352794, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 1.2590980940943262, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9764565164903333, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.9531388288248361, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.7104587115843171, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.6354599424348486, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5906231524983899, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5436921506859275, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.5674471725162639, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.6313158403959562, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7087979885870921, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.7570466627845108, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 0.8860153847638977, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3258845099255283, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.3884852379193768, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.337057956521414, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.1865931813069748, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.016528180536752, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 1.0965793715139307, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.9203626246032571, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.7744087887483594, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.8609988636919369, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.5918618503011597, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.7078665935159436, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.6508022400287878, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5873801403784759, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5269978021908025, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.5239437443050636, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.49288005197697093, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.4916857804607791, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5016497204753387, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5738559650056698, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.5200864238125791, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.718607890612511, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.6005018845898383, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.8449657985848499, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.6558935286432295, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 0.7842105117194984, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.5620393359784652, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 1.3937156103518067, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 0.9392680425953321, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.3485806913984448, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.2614662461767736, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.1196594222164382, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.195066924234153, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 1.028478608516184, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.9267627241467374, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 0.8434403709118878, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.512776118240454, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5151549208915776, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.5133198413802507, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4995829511779033, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.4855836056665064, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.456136548121634, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.4142920595761825, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3131863059848157, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.3595915384621606, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.1424471022901088, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.2741685740653952, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.1978710265096348, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0809377710440375, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 1.0202108534484837, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9203382963166375, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9906313276552611, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.9101877393170608, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.8619934687501569, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.7983250971200933, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.8488725599271771, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.7858363684281475, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.8174608575311949, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7800886802823676, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.7586777304271743, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.803263588641601, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8284755156200764, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8364029720504027, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.8763300867508355, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 0.9333745283754629, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 1.047773069239452, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 0.9703841017500053, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.0042067456203154, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.102461482465835, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.499967702118144, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.4990963649642246, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.499556176824454, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4011538101528518, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4727900458044996, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.4447375439712689, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3525311183007909, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.3048205178401973, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.2475142729882, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.0549191796509907, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1291115350130922, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 1.1954935620679261, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.8605768697019749, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.995104407668795, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.8001207567163662, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.927418731399825, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.8286280689219976, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.718077144339358, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7592373665122487, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7075733165592432, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7210376755144979, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7005900064544699, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7228498229650799, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7205901890394998, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.7438148364498952, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8043560136694288, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8073511242143473, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.8592686853405845, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9295456652433403, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 0.9672675658102468, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.019759619077629, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.075818018679701, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.507437428981261, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4649848618749055, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4996902615105134, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4501253575967408, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.4212146620798072, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.359024402887425, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.1766589927187079, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.310911656930612, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.2380092727614773, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.0470922923681873, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 1.1108468267592826, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.9192945160100608, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.8477542895677836, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.9820538243858871, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7107971643342604, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7959503195874015, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.7499011872345657, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.6716262056192851, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.676443676171752, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6454051055931422, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6456260841686848, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6721453097949734, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.6576469148109991, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7210368717208985, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.7680802106588817, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.8297691315153171, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.6907346145103976, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8733407473955415, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.8989923324028066, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 0.965263467087414, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.4985957466816104, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.0435981476463445, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.4535487521080293, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.360246838055928, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.479486848851551, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.4178160057984464, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.2269599477733817, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.313376819386789, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.1632754379723285, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.0956343280684588, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 1.024769559426669, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.8227506275168359, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.9411310426570435, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.8772719446622704, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7394748975931328, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.7040983578690966, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6677907531062066, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6345074294290928, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.6047107575178499, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.5893594772560934, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6198226287008265, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6001038483461654, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6625345409700868, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6027405273609933, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6992753560240664, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.6488702802816024, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.878156915873158, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.8215967862984858, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.7604605897484776, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 0.9291639016198985, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.4899019072390403, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409, + 1.00861321139409 + ], + "coloraxis": "coloraxis", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "showlegend": false, + "subplot": "ternary", + "type": "scatterternary" + } + ], + "layout": { + "autosize": true, + "coloraxis": { + "colorbar": { + "title": { + "text": "b0" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "ternary": { + "aaxis": { + "title": { + "text": "Fe" + } + }, + "baxis": { + "title": { + "text": "Ni" + } + }, + "caxis": { + "title": { + "text": "Cr" + } + }, + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + } + }, + "title": { + "text": "MatterSim" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAFoCAYAAACypkvfAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QWc3NXV8PEzPrMuUdyCU6AUKGmBIEWDFguuIUhwa4IkhACBIAGCa6BQgrsULUUKLZQ+tBQoLZ5ks+5jO+977u6szu7Mjv93f/fzed7t7N/u/d7Jy86Ze8+xRSKRiNAQQAABBBBAAAEEEEAAAQQQQAABCwvYCHBYePboOgIIIIAAAggggAACCCCAAAIIGAECHLwREEAAAQQQQAABBBBAAAEEEEDA8gIEOCw/hQwAAQQQQAABBBBAAAEEEEAAAQQIcPAeQAABBBBAAAEEEEAAAQQQQAABywsQ4LD8FDIABBBAAAEEEEAAAQQQQAABBBAgwMF7AAEEEEAAAQQQQAABBBBAAAEELC9AgMPyU8gAEEAAAQQQQAABBBBAAAEEEECAAAfvAQQQQAABBBBAAAEEEEAAAQQQsLwAAQ7LTyEDQAABBBBAAAEEEEAAAQQQQAABAhy8BxBAAAEEEEAAAQQQQAABBBBAwPICBDgsP4UMAAEEEEAAAQQQQAABBBBAAAEECHDwHkAAAQQQQAABBBBAAAEEEEAAAcsLEOCw/BQyAAQQQAABBBBAAAEEEEAAAQQQIMDBewABBBBAAAEEEEAAAQQQQAABBCwvQIDD8lPIABBAAAEEEEAAAQQQQAABBBBAgADHCHgPhMJhWVldL8FQSMpLi6W4qGDAqPyBoASDIfF63eJ0OEbAqBkCAggggAACCCCAAAIIIIAAAj0CIzrA8djzb8mchfeb0S69Y45sssFafeZeP/DvfPDZUlvfJNv9YhO5e+H5w3pvhMMdcuNdj8s6a06UA/bcvs+13/24Qh577m3ZcbvN5RebbzCs+yZ68vKVtXLLvU/JUy+90+eSAp9Xdv71lnLsIXvIRpPWNMcuueZeefLFP8ntC86V7bfdLNFHcB4CCCCAAAIIIIAAAggggAAClhAY0QGOpc++KXOvf8BMxJ47bysLLz2lz6S8+Ppf5Px5t5nfbbvlRnLvDRcOa9I0QLLFb06UKZO3kMVXntXn2g8/+bccd/bVcsFp0+SYg3cf1n0TOVmDK0fOnC//+NfXsu6aq8iO220hleUl8tX/fpD3//ZPWbGyTs6dcYgcf9he5nYPPv6qvPfXf8rpxx0wINCTyPM4BwEEEEAAAQQQQAABBBBAAIF8FhgVAQ5d0dDa1i4vP3yNrL7KuO75OOiky+TbH1aYY7kMcEQiEbHZbMN6nzz+/Nty2cL75JB9d5LLzjmmz7W6HeWBpS9LWUmROZ5qS6Z/qT6T6xFAAAEEEEAAAQQQQAABBBAYjsCoCHDoSobrbl8qRxz4G5l1xhHG5+P/+1KOmnmlnDfjUFl4+6N9Ahx1DU1y1U2/l3//5ztZVlVrAiDrr7OaHDR1Rzlk353F5XSY35116S3y7kefiQZQottQfF6PHHvI7jJ/0UPy2Rf/k9UmjpV11lzFPPPnm02Sk46Yav53Q1OL3HLvk+Z6DbLo/XWbi/bR4bCbc3Tryatv/1UuOesoc86b730iPy6vlmMO3kNefP0D0S04i+bNlF233yrunD/36nvy4ht/MePXIE+7PyBnX7bY9GmdNVaR+5e+bEx+tvG6cuK0vc0Wl6df/rM88cKf5JPPvpI1Vxsvpx6zv0z9zXZxn8UJCCCAAAIIIIAAAggggAACCGRbYFQEODS3xn2PvmSCCX9+5maTiPOMS26S9//6L3nhwatlp4PO6hPg0PwZex5xoYwfW25yWGjAQc/VoIZu+dCASXNLmxw1c758+d8fzJxFc10UFfrMNpDZV98tPyxbKRVlxTJ+bIU5Z/IvNpFzTj5Eauoa5eDpl5ltJBoA2XzjdeWF1z8w50Tvr//7hjsfk7sffsEEHXQrSrTNu+B48Xo8ZnvNb3b4hVz5uxNNkGWoprk6blvyjDx+11zTV+3/tnv3bNnR6zWI8flX35rb/Hyz9U3Ao//vo37ZfqPyPAQQQAABBBBAAAEEEEAAAQSGEhg1AY6OSESmn79QZh5/oOy1y7YmgHHWSQeZLRyT9zmtT4CjrT0gPy5bKeutvWq3na64mHrURdLuD8pHL91ufp9sDo55NyyRPzzzhlz5u5Nk390mm+0pGjyJbpl5+8lFMqaitDvAoUGG8085VH651cbicbvF43aJy+WUbfaaYfqhx/fe5Zey8fpryobrrWECGHq8dxsswKHXXn7+cbLHTtuYfix97i2Ze9395p5XXHiC7LbjL8zvH37qdZm/6EG5Ye7p5nc0BBBAAAEEEEAAAQQQQAABBPJJYNQEODQ4sN+xs82WE/0wrxVF3n3mFrHZbQMCHNEJ0m0c//nmR1lRVSe1DY3y4GOvytff/iTvPbdYSosLkwpwdHREZLOdjzMrN1546GqxSU/ujVsfeFpuX/Ks3HfDRbLNlht2BzgeufUSs4qjf9OtI5df/0D3KpLocV15cv4ph8nuU7YRu73z/oMFOPSc6+ec2n1r3QKz22HnyT67TZarZ03v/n10VcvhB+wis888Kp/ew/QFAQQQQAABBBBAAAEEEEAAARk1AQ4tA/vMK+/KrKvuMtMezcehKzP6r+DQCiV3PPScLL7vqZhvEQ2MlJUWJRXg0ADLroecM+Rbb8Hsk02ui+gWlafvu0Imrb3aoNdo8EG3lvzry2/NNpzoNpM55x0rB0+dMqwAR31Ds/xqv9PNipBrLulcIaKturZBdjzwzAGBD/4NIYAAAggggAACCCCAAAIIIJAPAqMqwKHVRTS4UFvfJC/9foGssep4k+yzf4AjutpBy69qUtBJ66xmtoxcs/gRkysjlQCHrgDZ95hZsukGa8vB+3QGH/o3Xb2hfUs0wNH/ek1OevGCe0SDOpp/RFuiKziiHv0DHJp49df7zSTAkQ//aukDAggggAACCCCAAAIIIIDAAIFRFeDQ0b/9/qdSVVPXvbIhVoBDAxC9t6JE1XT1h64C6R/g2H7bzeT2Bef2wf3wk3/LcWdfbRKSauLQaNNtL1vtPl223HSSPHTL7CHfkkMFOELhsDgdjpjXR3ODaB6NaL4QAhz860cAAQQQQAABBBBAAAEEEBjJAqMuwNF/MmMFOLbec4ZJ+vnB87dKcVGBuaSxuVVOvuA6U80kGuDQ328y5VhTfeTFhxb0ubWWmP3tiZdKrJwV006dZ+5z+4JzZPttf9bnOs2roas3KstLhlzBoVVgNlhndTnusD0HVFDRIM6pv7tBdvjl5nLb1Web+xPgGMn/jBkbAggggAACCCCAAAIIIIAAAY4YW1TOmXOrvPLWh2aVxU6/2tLkn3j+j++ZrS3aegc4TjzvWnn/r/+UA/fawVQx+Wl5jVm1oQGSHQ88y/w8/fgDpKSoQBwOhxy2387yzy++kUNOnmPupa833XBtWVlTL3/99AuTQyNaynWoFRynXHSD/OmDT01wY8ftNjeVU1pa2+T9v/2ru6Tsk/fMkw3WXZ0AB//OEUAAAQQQQAABBBBAAAEERrzAyA5wdJU8vee6C0yJ1VhNV2ZsN/XUPvkqqqrrZebsRfLZF//rvkRzUmig4y+ffC7vPbtYSksKzbGvv/lRFt//tLzy1kfmde9tIbqS4q7fPy+6KkNb77wWeu+rb364+1j0QXrOhacfblZw3HjX4+b6Z+6b36dkrZ77t398aSrBPP3ynwcMS7fMnHXSwaZkbLRpwtRbH3hGokGPltZ2U2a2fxWVqIcmOdVkp9EWTT66/x6/lvkXnTji/2EwQAQQQAABBBBAAAEEEEAAAWsJjOgARypToeVcv/+pyqzAWGX8mO6AxmD31MBAY1OLjB9TLi6Xs89pGjCJRCIytrKsu2xr9ATNyfHTihrxedwydkzZoHk1Bnuu3reuodmsAPF53TJxXOWA56fiwLUIIIAAAggggAACCCCAAAIIWEGAAIcVZok+IoAAAggggAACCCCAAAIIIIDAkAIEOHiDIIAAAggggAACCCCAAAIIIICA5QUIcFh+ChkAAggggAACCCCAAAIIIIAAAggQ4OA9gAACCCCAAAIIIIAAAggggAAClhcgwGH5KWQACCCAAAIIZFbgH//62lQS69+0/LmWKqchgAACCCCAAAL5IECAIx9mgT4ggAACCCCQxwJnXHKTvP7OxwN62Ls0eh53n64hgAACCCCAwCgRIMAxSiaaYSKAAAIIIJCsgAY4VlTVyUOLL+5zC5tNhl3ePNk+cB0CCCCAAAIIIBBPgABHPCGOI4AAAgggMMoFNMCxsqZBHrn1kpgSTc2tctM9T8jrf/5YVqysk2233EguOG2abLjeGqNcjuEjgAACCCCAQDYFCHBkU5tnIYAAAgggYEEBDXD8538/yhUXntin9xuut7p43G45/NR5Ut/YLIcfuKtUlBbLQ0/8Uf773TJ547HrpbiowIIjpssIIIAAAgggYEUBAhxWnDX6jAACCCCAQBYFBsvBsfSOOVJVUyenz1okD996iWy+8bqmV1/+9wc54PiLZdG8mbLr9ltlsac8CgEEEEAAAQRGswABjtE8+4wdAQQQQACBBAQ0wPHT8hq5fcE5fc4uKy2Su3//gtx875Oy0aQ1u4+Fw2ET5LjwtGly9MG7J/AETkEAAQQQQAABBFIXIMCRuiF3QAABBBBAYEQLDJWD48a7Hpe7fv/8gOCHgqy52gRZY9VxI9qGwSGAAAIIIIBA/ggQ4MifuaAnCCCAAAII5KXAUAGOZ155V2ZddZc8c998WW/tVfv0PxKJiE1LrdAQQAABBBBAAIEsCBDgyAIyj0AAAQQQQMDKAkMFOFpa22WfY34nXo9bLjztcFlr9QnyzffL5ZlX/iz77DZZdpq8pZWHTt8RQAABBBBAwEICBDgsNFl0FQEEEEAAgVwIxCsTqxVTrrhhifzlk8+7u6c5OeZfdKJssO7quegyz0QAAQQQQACBUShAgGMUTjpDRgABBBBAIBMC7f6AVNc2SHlpsRQWeDPxCO6JAAIIIIAAAggMKkCAgzcHAggggAACCCCAAAIIIIAAAghYXoAAh+WnkAEggAACCCCAAAIIIIAAAggggAABDt4DCCCAAAIIIIAAAggggAACCCBgeQECHJafQgaAAAIIIIAAAggggAACCCCAAAIEOHgPIIAAAggggAACCCCAAAIIIICA5QUIcFh+ChkAAggggAACCCCAAAIIIIAAAggQ4OA9gAACCCCAAAJxBULhsNhtdrHbbUOeGwgEpa6hWcaNKRObbehz4z6UExBAAAEEEEAAgWEIEOAYBhanIoAAAgggMBoF2toDcujJc2T6kfvI1N9sF5MgEonIbUuelcX3PWWOV5QVyy1XniWbb7zuaCRjzAgggAACCCCQAwECHDlA55EIIIAAAghYRWDh7Y/KfX94yXR3weyTBw1wfPLZV3Lk6fPlwZtnyWYbriM33fOkvPD6+/Lao9fHXfVhFQv6iQACCCCAAAL5LUCAI7/nh94hgAACCCCQU4H6hmZpDwTk8FPnyTnTDxk0wHHd7Uvl8/98K3cvPN/0t6q6XnY66Cx5/K65stGkNXM6Bh6OAAIIIIAAAqNDgADH6JhnRokAAggggEBKArtPO19mHn/goAGO8y6/TcpLi2T2mUd1P2eTKcfKrVedLTtut3lKz+ZiBBBAAAEEEEAgEQECHIkocQ4CCCCAAAKjXCBegGP6+Qtlg3XXkHNnHNIttfWeM2TOecfK3rv8cpTrMXwEEEAAAQQQyIYAAY5sKPMMBBBAAAEELC4QL8ChKzg0seisM47sHikrOCw+6XQfAQQQQAABiwkQ4LDYhNFdBBBAAAEEciEQK8DR0RERsYnYbTbRHBxffP2d3HnteaZ75ODIxSzxTAQQQAABBEa3AAGO0T3/jB4BBBBAAIEhBULhsEQ6IjL16N/JjKP3lam7bicul1O0LKw/2GGu9bjs8vd//qerisps2WyjdWTR3Y/Li69/QBUV3l8IIIAAAgggkDUBAhxZo+ZBCCCAAAIIWE/gnDm3yitvfdin488vuUrWWn2CLK9rN7+fUO41P2+57ym5fcmz5n8X+Lxy57XnypabTrLeoOkxAggggAACCFhSgACHJaeNTiOAAAIIIJA7gY5IRJrbQub/tBX5nOb/dKtKuz8gtXWNMmFcpdjtttx1kicjgAACCCCAwKgTIMAx6qacASOAAAIIIJCagObeiK7eiN5JV3EQ0EjNlasRQAABBBBAIDUBAhyp+XE1AggggAACo0pAgxv1LQFpD3Tm34g2r9suZYVughyj6t3AYBFAAAEEEMgvAQIc+TUf9AYBBBBAAIG8FgiGOmRlgz9mH8eWesTltOd1/+kcAggggAACCIxcAQIcI3duGRkCCCCAAAJpFdDVG9WNfgmFIzHv63TYZEyJh1UcaVXnZggggAACCCCQqAABjkSlOA8BBBBAAIFRLKBlYdsCYalvDg6pUFbkEp/bITYbCUZH8duFoSOAAAIIIJATAQIcOWHnoQgggAACCFhLQAMcy2o7y8LGaxMrvAQ44iFxHAEEEEAAAQTSLkCAI+2k3BABBBBAAIGRJaBbU5ragtLSHk5oYIVehxT7XGxVSUiLkxBAAAEEEEAgXQIEONIlyX0QQAABBBAYoQLhjoisqEts9UaUYHy5Vxx2tqmM0LcEw0IAAQQQQCAvBQhw5OW00CkEEEAAAQTyQ0BXb9Q1B8Qf7FsWNl7vPC67lBdRNjaeE8cRQAABBBBAIH0CBDjSZ8mdEEAAAQQQGHEC/mBYahoDSY2rssQtHpcjqWu5CAEEEEAAAQRiC1y84B5Za/UJcuLhew9J9MOylfLR3/8tdQ1NsvGktWTbn2804nNkEeDgXw0CCCCAAAIIxBToiERkZb1fdItKMk23qIwt84idiirJ8HENAggggAACMQUOOuky2WyjdeSyc44ZVOjDT/4tx519tRT4vDJxXIV8/e1PcuBeO8i8C44f0aoEOEb09DI4BBBAAAEEkhPQ4EZbe0gaWkPJ3aDrqtICp/i8ToIcKSlyMQIIIIAAAj0CiQQ4Djj+YvF6PfLAjReJ2+2SJ174k1x67b3y8K2XyOYbrztiOQlwjNipZWAIIIAAAggkLzCcsrDxnkLZ2HhCHEcAAQQQQCBxAQ1w6KqMCeMq5OU3P5R2f1AO3W8nOfPEg8TldMi3P6yQvY68UK6eNV322W2yuXEwFJYtdj1Bjj9sLzl3xiGJP8xiZxLgsNiE0V0EEEAAAQQyLaCJRRtbg9LqT6wsbLz+FHgcUlJA2dh4ThxHAAEEEEAgEQENcHz+1bey3S82kV9vvZm89s7f5JPPvpJzTj5ETpi2l0S3pyy9Y45sssFa3bc89OS5surEsXL9nFMTeYwlzyHAYclpo9MIIIAAAghkTiAU7pCqen9aHzCuzCNOhz2t9+RmCCCAAAIIjEYBDXBoktGFl57SPfwjT58vK2vq5ZVHrpVX3vpQzplzqzy35CpZZ42J3eccf/YC0S2o99940YhlI8AxYqeWgSGAAAIIIDB8AV29UdsUkEBoeGVh4z3J7bRLRTFlY+M5cRwBBBBAAIF4ArFycFx/x1K555EX5dPX75E/vf+pzLz4Jnn2/vmy7lqrdt/uqJlXisfjkrsXnh/vEZY9ToDDslNHxxFAAAEEEEivgObd8Ac7TIAjE00DHB6XfcSXqMuEHfdEAAEEEEAgKhAvwPF/n/9XdEXHQ7fMli03ndQNt+8xs2TjDdYyuTlGaiPAMVJnlnEhgAACCCAwTAENcKyoa5ckq8LGfZrdJjK+3EuAI64UJyCAAAIIIDC4QKwAh1ZNCYc75NkHrpTa+ibZfv+ZcsFp0+SYg3c3N2poapHJ+5zWnadjpPoS4BipM8u4EEAAAQQQGIaA7sltbQ9JY4plYeM9sqTAKQWUjY3HxHEEEEAAAQQGFdAAh8vllItOP9xUTXn65T/L7598Teaed5wcNHVHc90Zl9wk7//1X3LTvJkyprJUbnvgWZOb4/XHrpcJYytGrC4BjhE7tQwMAQQQQACBxAXSWRY23lMpGxtPiOMIIIAAAggMLqDVUH5aUW1WakTbiYfvLWec8FtxdCX0rmtokjMuvlk+/r8vzSkFPq9cc8nJstPkLUc0LQGOET29DA4BBBBAAIH4AppYtKElKG2B9JSFjfdEn9shpYWUjY3nxHEEEEAAAQSGEmhpbZflK2tl4rgKE8CI1RoaW6SxuUVWnTBW7LpXdIQ3AhwjfIIZHgIIIIAAAvEEgqEOWdmQ3rKw8Z45ttQjLidlY+M5cRwBBBBAAAEEEhcgwJG4FWcigAACCCAw4gQ090ZNg1+C4UhWx+Zy2KSy1CN228j/NimrsDwMAQQQQACBUSxAgGMUTz5DRwABBBAY3QKad6M92CF1GSoLG0+3vNgtXsrGxmPiOAIIIIAAAggkKECAI0EoTkMAAQQQQGCkCWiAY3ltu2R37UaPoq7dmFBB2diR9r5iPAgggAACCORKgABHruR5LgIIIIAAAjkU0K0pza0haW4P5bAXIkVepxQVONmqktNZ4OEIIIAAAgiMDAECHCNjHhkFAggggAACwxLQyinL69qHdU2mTp5Q7h0Vmd0z5cd9EUAAAQQQQKBTgAAH7wQEEEAAAQRGmYAGN+qbAyb/Rj40zcNRVuQmyJEPk0EfEEAAAQQQsLAAAQ4LTx5dRwABBBBAIBmBQCgs1Q2BZC7N2DVjSt3idjoydn9ujAACCCCAwEgQaGhfR7QAmebPsolNNJ9WNl6XeP5rCT4CHJaYJjqJAAIIIIBAegQ090Z1vV9CHblKLRp7HE67TcaUUTY2PbPMXRBAAAEERqpAY+s6nUMzUY1e/y3P8OuSAgIcI/U9xbgQQAABBBCwpIB+y9PmD0t9SzAv+19W6BKfxyE2/SONhgACCCCAAAIDBBqb1+lcuSGRrP4sLvraErPBCg5LTBOdRAABBBBAID0CP9W0pedGGbrLRMrGZkiW2yKAAAIIjASBpsZ1czKM4hICHDmB56EIIIAAAgggMFBAE4s2tgWltT2c1zyFXocU+1wkHM3rWaJzCCCAAAK5EmiqW9fsTulMwtG1TaXX62hOjnQfLyqLHeDQvy/0mQ6HPVckfZ7LCo68mAY6gQACCCCAQKdAU3OrhMJhKS8tToikta1dgsGwlJYUDnl+uCMiK/KkLGy8gY0v94rDPvQ2leraBiks8InP6453O2lrD0hdfaNMGFdJ4CSuFicggAACCOSzQEvNut0JRjujHD0JRzP5uqhyYIBDAxtzrrvf9GHueccNybZg8SOy5LFX+pyz5aaT5KFbZqeVmwBHWjm5GQIIIIAAAskJaKDiwivukDfe/cTc4Gcbrys3X3GGjKkojXnDFSvr5Iobl8gHH39ujm+43hoy64wjZKNJaw44X79dqWsOiD9PysLGE/K47FI+SNnY735cITMuvF6+/WGFuc2Be+0gl55zjLgGqcAyc/aibtOKsmLZf4/t5dwZh8TrAscRQAABBBDIS4GWKl3BEa2ekr2fBWP/08fjlbc+lCtufFBq65vkoKk7xg1wXH3Lw/L9T1VywanTuu/j8bhkwtiKtDoT4EgrJzdDAAEEEEAgOYG7H35BHnvuLXnw5tlmVcIpF90ga68xUeZdcHzMG14w73apb2yWxVeeJTa7TeZe94CsrKmT2xec2+d8/XYlEOqQmsb8KgsbT6myxC0e18CysdPPXyhFhT6Zf9FJsryqRg45ea5cevbRss9uk2Pe8pZ7n5Ldpmwta6w6Tj7427/ktFk3yh9uu1Q226grC328jnAcAQQQQACBPBJoXb5eTnpTMKFvgKO1zS+NzS1yw52PidfjTijAoX+3XD1rekb7T4Ajo7zcHAEEEEAAgcQEDjrpMtl9ytZy0hFTzQX6zcg5c26Vz968L2ZVkSNPny9rrjZe5l90ojn/qZfekZvvfVLeeOyGPg/UsrBV9X7RVRxWarpFZWy/srENTS0yeZ/TzHJWXdaqbf6iB2V5Va3cPP/MhIa388Fny2H77SzTj9wnofM5CQEEEEAAgXwSaP1xvc7UG5qCQ6upRCJZee1bpW+AI2py+Q1LJBwOJxTgePXtj+SXP9/YbMPd+dc/l61+tn7aaQlwpJ2UGyKAAAIIIDB8ga33nCFXXHiCCXJo+9eX38jB0+fIe88tltLigfk13vjzxzLz4ptkl+1/Lgfsub1ce+sf5PjD9jLLRKNNgxut7SFpbA0Nv0N5cEVpgVN8XqfYu8rGfv3Nj7LvsbPlrSdulLGVZaaHDz7+qjzzyrvy+F1z4/ZYt7XsdeSFcutVZ8uO220e93xOQAABBBBAIN8E2r7vWsERTTAa7WCGX/tWTy3A8dyr78k3PywXj9sln33xP3n9nY/l+jmnyu5TtkkrMQGOtHJyMwQQQAABBIYvoN++bLrTcX0+eEc/zL/26HUycXzlgJv+uLxaTjrvWll/ndXl3Y8+E6/HJffdcJGst/aq3efqfZfVtg+/Q3l0Re+ysZ989pXoypXeQZ+lz70lty95ZsDKlf5DaGltlyNPv0KKCgvk/hsvypts73lETVcQQAABBCwg0P6tBji6y6Z0pxiNSMSs6Iiu7ej/M9Xj3jW/iqmT6AqO/hdfdOWdUt/QNGBrbapTQIAjVUGuRwABBBBAIA0CuoJDt5vstuMvzN3ireA49OS5suPkLeTUY/YzlVcuW3i/vPOXf8j7zy8Wp8NhtqT4Qx0SCnWkoXe5u4XTaReP026qn0SDPm8/uag7+WoiKzi0isqZl9xktrIsuWmWlJUW5W5APBkBBBBAAIEUBPz/m9S1PWWwUEZmfu9dO70Bjhvvelz+9o8v5cGbZ6WgMfBSAhxp5eRmCCCAAAIIJCegOTj22GkbOfHwvc0NhsrBoasRttlrhqmyontYtf3zi2/kkJPnyNP3XSGT1l7NBDg0uWjQ4gEOt8shLqfNbFOJlYNj3g1LpKq6btAcHI3NrXLGxTdJW5ull9oHAAAgAElEQVRf7rjmXIIbyb09uQoBBBBAIE8E/P+Z1L2Ao6eaisj/r9jaXV0lupAjncfd6/YNcITDHdLR0SFXLHpQQqGwzDn3WHE4HOYLCf3i5bizF8gJ0/aSPXfe1shpMtJ9d5ssa6w2Qb74+js57qwF5m+ek49Kb04sAhx58kalGwgggAACo1vgrt8/L48//7apolLg85hSqL2rqNy/9GWzXzX6Tcfu086XtdeYIAsuniEFXo/oNyFvvveJPPvAlWK32aW2OSCVxR5ZVttmWVj9I2lcqUfqmwNS1lU29sTzrpWSokKz2iVWFRVNzLrKhEo5b8ahohneD5sxV0LhsNww93RTfUWb3W6XiePSW5bOssh0HAEEEEDAUgKBLzuTbPdsU4l2P7o9JTOv3ev3DXAsffZNmXv9A33stPKblm9vaGyRyfueJhefdZRM238Xc46uPNXcG9G2/x6/lkvOPtpUYElnI8CRTk3uhQACCCCAQJICuirjvMtvkz998Km5w6YbrG1WJYwb05lMU5OIar6Jj1663bz+/Ktv5bYlz5igR4HPK7/YfAOzXWXTDdcWf7BDapsCUuxzidgi0mTRJKMa1NCVKI2tQako1rKxdvnm++Um+PPDspXGQf9A0m+NXC6neX3A8RebwND1c06TFSvrRKum9G8VZcXyztM3JzlTXIYAAggggEDuBAKfT+peqdGzQiNaTSVzP10bfpnyoHVlR11Dk4ytLBefN72BjWjnCHCkPE3cAAEEEEAAgfQJ6DaMYDDUnWMi3p01MKJLQ0tLOiutaGLR5XXtZqmqtvHlXqlu8EvYYmVi3U67CWqsqPd3l8CbUO7tLpmrwQtdkVFY4I1HxHEEEEAAAQRGjEDwn+kvrZoIjmuT1AMciTwn1XMIcKQqyPUIIIAAAgjkiYCWhW1pC0lTW09ZWK/bIQUeh1nRYaU2ptRjSty2+sPd3S72OaXQ11M21krjoa8IIIAAAgikQyD4j/Wlq3q62aaiX2xk47VzMwIc6Zg/7oEAAggggAACCQpogGN5jLKwlSVuaW4Liz/YEyxI8JY5Oc3ndphAhq486d8mVHhNwlEaAggggAACo1Eg/Pf1O6uo2LqCG9HCsBl+7dyCAMdofL8xZgQQQAABBHIioLkq6luC0h4YGMRwOnS7h0uq6gcGDHLS2SEeqrGLcWVeqWsKmCow/ZuuSCkrdJks7TQEEEAAAQRGm0D44/XFpis3JDLgZzTxaCaO23/+hSWo2aJiiWmikwgggAACCAwtoOVgV8ZY8RC9qrTQJaFwRFrae7av5KNpcYFLnA6bCXAM1saWesTltOdj9+kTAggggAACGRXo+OsGg9/fLO0Y4vEpHLf/ggBHRieWmyOAAAIIIIBAp4Cu3qhu9JsAxlBtlUqf/FSTv2VjHVoWtsxjVpoMlRRVAyBjSjys4uAfAAIIIIDAqBMI/2WDzoTbmk08ui0lC6/t2/zbEtas4LDENNFJBBBAAAEEYgtocjHdllLXHIxLVOh1mtURDS3xz417swycUF7sNkGaptb4/SsvcoluVzF/5NEQQAABBBAYJQId728UzboxxIhTWKph7jrwevt2n1tCmACHJaaJTiKAAAIIIDB4gGNZjMSig3lpfovapvirPbLtrWVhNcBRVd9T4jZeHyZW9JSNjXcuxxFAAAEEEBgJAuF3NxqYg6M7wWjs3Bw9CUmTP26f/C9L8BHgsMQ00UkEEEAAAQQGCmjVlObWkDQPI6+Gx+WQIp9Dahrzq2ysloXVErdtMZKkDjb3RV6nFBVQNpZ/GwgggAACo0eg451Nugfbf51FJl/bt/+nJZAJcFhimugkAggggAACMQIcHRFZXtc+bJqKYre0+sMxK64M+2ZpuKDA65QCjyNmWdh4t59Q7iUXRzwkjiOAAAIIjBiB8FubdJWINSk4RLeqdq/Q6JWToytFR9qO23f8zBKGBDgsMU10EgEEEEAAgb4Cmli0rjkg/uDAUqrxrDSZp66YWJFEcCTevYd7XP8o08Sig5WFjXc/j8su5UVughzxoDiOAAIIIDAiBMJvbmZSZJjgRnREWXjt2Pn/LOFHgMMS00QnEUAAAQQQ6CsQCIalOoVtJiUFTumI2KS5LX5Cz0zalxS4xG4TqU8h8emYEre4XY5MdpN7I4AAAgggkBcC4dc2G2TFxmArOdLze/su/8iL8cfrBAGOeEIcRwABBBBAIM8ENPfGyjilVBPp8sQKnyyvazOV5nLRnA67aHCiqsFvSt0m23RFytgyj9ipqJIsIdchgAACCFhEIPzq5jnpqWO3T3Py3OE+lADHcMU4HwEEEEAAgRwKaHCj3R9OacVDtPua+8LtsKXlXsmQVJZ4xB8MS3NbKJnL+1xTVugSn4eysSlDcgMEEEAAgbwWCL+sAY7OEun6/0Z6lXSN5uTIxHHHHn/Pa5do5whwWGKa6CQCCCCAAAKdAppMbDhlYeO5jS31mABHMDT8XB7x7j3Ucc2dUVrokpUN/rStIKFsbCozwrUIIIAAAlYQCL+4ZU666djrk5w8d7gPJcAxXDHORwABBBBAIEcCuo2jsTVoKqCkq7lddinxuaS60Z+uWyZ0H00s2tASTCpJ6mAP0EosJqeHJvWgIYAAAgggMAIFws9taTKMRqundC/g6CmbkpHjjqkfW0KTAIclpolOIoAAAgggIBIOR2RF/fDLwsaz0yok7cGwtKUxcDLUMwu9TvG6HVKTgaDK+DKvOBwEOOLNOccRQAABBKwpEH52q87yKZ37U7L207Hf3ywBRoDDEtNEJxFAAAEERrtAWMvCNgUkkIGtJJqcc1y5R5bXpj940n/edHWFrt6obghIKJz+bTFup10qiikbO9r/vTB+BBBAYKQKhJ7aqquKSlep2Ei0SkpmXzv2/6slSAlwWGKa6CQCCCCAwGgW0GWogWCH1DQFMsZQXODSBB/SlIaEn0N1UpOB6hdOuj0lU61Sy8Y67eYPQBoCCCCAAAIjSSD8xNa90op2jiy6kCM6zky8dv72I0swEuCwxDTRSQQQQACB0SyglVOq6tolhUqqCfFNKPemXLJ1qAdpWVgNPlTVa2LR5MvCxhuM3S4yrsxL2dh4UBxHAAEEELCcQOixbbqrp9jE1muXSkQy+dpx8IeWsCLAYYlpopMIIIAAAqNVQIMbre0haWxNvZRqPEMts+p1OaSuOTMrRTS40RboMOPJdCspcIqWwdXtNzQEEEAAAQRGikD40W1jpt6Ijm+w1BypHnce+hdLEBLgsMQ00UkEEEAAgdEqkO6ysPEcx5R4pLEtaLbEpLP53A4pLnCa1RvZapSNzZY0z0EAAQQQyJZA6OFtc5ODY9oH2RpiSs8hwJESHxcjgAACCCCQOQEtC6u5KtoC6SsLG6+3LqddNE/Gyob0BSJ0EYVuGalvDqS1LGy8seiKlFLKxsZj4jgCCCCAgIUEQg9t19nbTC3ViFr0u7/zyPctoUSAwxLTRCcRQAABBEajgFYZyeaKh6ixBjgC4c6tMeloRT6nSfpZm8EkqYP1Uyu2aO4PGgIIIIAAAiNBILRk8oDghn6RYFJbDRL0SMdxx1HvWYKPAIclpolOIoAAAgiMNgFdvVHT5JdgKHPJOAcz1T+EJpT7ZFltW8rspixsqcesCNFSt9luLqdNKos9ov2gIYAAAgggYHWB0P2/yskQnMe+m5PnDvehBDiGK8b5CCCAAAIIZFhA8274gx05WfEQHVqRzyV2WyTl5KZlRW7RYE1ja+bKwsabjopit3hclI2N58RxBBBAAIH8Fwje++uehRo2m6lK1r1wI4Ovncf/Of9xdBFLJJN12ixBQCcRQAABBBDILwH9T/PyuvbO5aY5bOPLvVKdwsoL3ZaiwYUVGS4LG4+oc0WK1yRloyGAAAIIIGBlgeDd23dVUYmGNSQrr90nvmMJNgIclpgmOokAAgggMFoEtCxsS1tImtrSk/8iFTev2yEFHkfSK0nGlHpMHo9Wf/aSpA423mKfUwp9lI1N5f3AtQgggAACuRcI3LmDSDSpRhZ/uk96O/eDT6AHBDgSQOIUBBBAAAEEsiWg2zl09Ua+tMoStzS3hcUfHF6QQsvCakBBV4DkS5tQ4RU7qzjyZTroBwIIIIBAEgL+O6ZEl2xk9adnxltJ9Db7lxDgyL45T0QAAQQQQCCmgAY36lsC0h7oyBshp8MmFcUeqapPPOiiW0G0ekldU0ACofwZi9etJXDdJBzNm3cXHUEAAQQQGK5A+607mS2XJvdGFn96TnljuF3NyfkEOHLCzkMRQAABBBAYKBAMdZhqI/nWSgpcoltnmhPcNqPnOxw2E+DItza21CMuJ2Vj821e6A8CCCCAQGIC7Yt36awJa1YkdtWG7X7ddY8MHPeeToAjsRniLAQQQAABBBAwlUaqG/0SCuc4s+ggc7FKpU9+qolfNtZht4kGEXJVFjbeW0lXpIwpoWxsPCeOI4AAAgjkp0DbTbsMyMERXckxWG6OdBz3znwtP0H69YoVHJaYJjqJAAIIIDCSBXSZaVsgLPXNuSulGs+30OsUDQ40tAzdx/Jit+hKlERXe8R7biaOlxW5RHOEUFUlE7rcEwEEEEAgkwJti35j1m1EW08tlc7fZOp1wZl/zOSw0nZvAhxpo+RGCCCAAAIIJCegAY5ltYnnuEjuKalfpXk1apuCEgrHzqvhcTlEgwearyPXJW7jjXZiBWVj4xlxHAEEEEAg/wRart+tM/eGRMQmvXJxZPh1wdmv5B9GjB4R4LDENNFJBBBAAIF8EKiubZDCAp/4vO6Eu9PS2i6Nza0yfkx5zOSWujWlqS0oLe3Dq1KScAfSeKIGMIp8DqlpjJ1bQwMgTa0hsxol31uR1ylFBUOXjQ0EglLX0CzjxpSx2iPfJ5T+IYAAAqNEoOW6PXpyb3SPuSsXRwZfF55LgGOUvMUYJgIIIIDASBf47scVMuPC6+XbH1aYoR641w5y6TnHiMvpGHTob7//qSxY/HD3NU/de4Wsv85qA84Pd0RkRR6VhY03l7oFpd0fHhDEKPA6xee2Dxr8iHffXBwfX+4VzRnSv+mKmtuWPCuL73vKHKooK5ZbrjxLNt943bjd1Hk/9Xc3yK1XnS07brd53PM5AQEEEEAAgeEINF+7R+fKjeiKjSz9LDz/peF0M2fnsoIjZ/Q8GAEEEEDAKgLTz18oRYU+mX/RSbK8qkYOOXmuXHr20bLPbpNjDuGt9/4up826UU46Yqrst/uvpLy0WDwe94CVH7p6o645IP5g/pRSjTcnGhAYU+rpE5SJloXVlR2DbV+Jd99cHPe47FJeNLBs7CeffSVHnj5fHrx5lmy24Tpy0z1Pyguvvy+vPXr9kCVmv/j6e3Nda1s7AY5cTCjPRAABBEaBQPOCvaK1U7L6s/jCFy2hS4DDEtNEJxFAAAEEciXQ0NQik/c5TR66ZbZsuekk0435ix6U5VW1cvP8Mwd0S7/9P/CES2SD9daQq2dNH7Lb/mDYUiseooMpLnCKRGxma4220kKXSWpWHycBaa7mcKjnjilxi9vVdyXOdbcvlc//863cvfB8c2lVdb3sdNBZ8vhdc2WjSWvGvN3Kmno5dMZcOWf6ITL3+gdk4aWnsIIjHyecPiGAAAIWF2i8am+zgsOUiNVcHJHOXByZfl38u+ctIUeAwxLTRCcRQAABBHIl8PU3P8q+x86Wt564UcZWlpluPPj4q/LMK++aD7z9W219k2y//0zZ+VdbSjAUkpZWv2y31cZy/LS9xOvpyd3REYnIynq/6BYVK7aJFT5ZXtcmDrtdxpS6pareb0rdWq2ZsrZlHrHberaqnHf5bVJeWiSzzzyqezibTDl20FUZbe0BOfbMq2T7bX8mpx9/gGy95wwCHFZ7I9BfBBBAwCICjfP3yUkOjpLZBDgs8hahmwgggAACCAwuEN2u8N5zi6W0uNCcuPS5t+T2Jc/IG4/dMODCz7/6Vg466TI5eOoUmbz1ptLY1CILFj8ie+/yS5lz3rHmfA1utLWHpKE1ZFn6Ao9T3C6bCXC0B8LS0m7dsegKFJ/H0R3k0C1JG6y7hpw745Du+dGghc6fzmPvpkEdDYho01UbdruNAIdl39V0HAEEEMh/gYZ5++rCjc6VG2YFh1nIEeNneo+XXPxs/uNomdyIytAQQAABBBBAIKZAdAXH208ukjEVpeacoVZwRAMc7zx9s0lOqe3JF/8kV938sHz44m1df4xEpLnNugGBKFSh1ym6KrZlBIylyOfsrpSiAQudu1lnHNn9nhhsBUd0+8pBU3eUQp/XnP/AY6/IlMlbyL67/Up2n7I1/7IQQAABBBBIm0DD3P363qtrd8qgD0jT8dLLnknbGDJ5IwIcmdTl3ggggAAClheIlYNj3g1LpKq6LmYOjuj5j9x6ifysq+rG0mffNHkZ/u+N+4yHfuPS3JW/wspAhT7NxSGWXr2h/ro9RavA6Hc+ugJDc3B88fV3cue155npGSoHhyYUfeiJP/aZxkV3PyFTf7OdTN11O7NthYYAAggggEC6BOov23+wJRsZ/X3ZnM7KYvneCHDk+wzRPwQQQACBnAuceN61UlJUKPMvOnFAFZWm5lY57uwFcsK0vWTPnbc1fZ1x4XUmH8WNl58u1bWNcv7lt8nE8ZXmdTjcIS3+DrHbItJo4S0quuLB43JIuKNDAsGItPqtuyJFS9+GwxFT5tbhsEtPFZXZstlG68iiux+XF1//oLuKyv1LX5bX3/nYVFmJ1cjBkfN/snQAAQQQGLECdZceaPajRLendOYXzfzr8nkEOEbsm4qBIYAAAgiMLoH/fbdMZlx4vfywbKUZ+P57/FrmnHusuFxOaWhskcn7niYXn3WUTNt/F3Nczzvr0ltEt6to23bLjeSaS2ZIRVmJ1DYFJBDqkPHlXqlusGaSUV3lMK7MI9UNARPIGVfukeW17ZZ8U7iddtEAhyZJdTlsUlHsNnuZb7nvKbl9Sed+4wKfV+689tzuKjrX3voHk4flo5duJ8BhyVmn0wgggIB1BWpn/3aQnBsZXcAh5Vc8YQk0VnBYYproJAIIIIBAPgisWFknRYU+KSzozLUQr+nWBqfTYfI56PYHf7DDBDi0ed0OKfA4ul/Hu1c+HS8rdOnOFGnoKgtbXOAy3x41WTAXx5hSj8kh0hYIG2INcHhcdvPNWLs/ILV1jTJhXKXZukJDAAEEEEAg1wK1sw7KSRcqrnw8J88d7kMJcAxXjPMRQAABBBBIQkADHCvq2qV3JdXKYrc0+8Pi7/pwncRts36J02GXypLOFQ+985RPKPdKVYO1SsVqgElzb+hKmmjTOMa4cm+fsrFZR+aBCCCAAAIIDCJQfdHBYhObRCTS56dJihXj99HzUj1eefVSS8wJAQ5LTBOdRAABBBCwsoCWhW1tDw3IueE0WyI8UlVvne0dGtxoC3SY8fRuWmbV63JIXXPnCpV8b7pCY3yZp3vLUO/+lhQ4TeBDk4/SEEAAAQQQyCeB6gsO7Q5u9PQrWiu28zc9QY3oGakfH3MNAY58eh/QFwQQQAABBHImoCsdlg2So6KkwCUaALFC2Vif2yHFBU6zeiNWqyzxmOowuhUn35u667aT+kECMhMrvN1lY/N9LPQPAQQQQGD0CFSdd2h3yfloolGNx+vfGp2v+/+M5uZI7fjYa/9gCWRWcFhimugkAggggIBVBTQJp+aqiOZ4iDWOVSp98lNNW14PUf94GlfmlfpmDWB05qvo31xOu2h+jpW9tnzk46AcdpuMLfUMuaVGgzmlhZ1BEBoCCCCAAAL5IlB17rSuzSjRTSc9PevcpNLz++jr6BmpHB933SP5QjBkPwhwWGKa6CQCCCCAgFUFgqGOuB/4C71O0e0q0aSd+ThWLQurAYy6riSpg/VRgwKhcERa+m1hyacxaSJRrWQTb9XM2DKPuBz2fOo6fUEAAQQQGOUCy88+vCf3RnTFRjT3RgZfj7/h95aQJ8BhiWmikwgggAACVhTQrSc1DX4JhvU7k6Gbll2tbQpKKJx/2zuiKx50ZUa4d5bUGEPSb44mVPpkWZ6uSNEKKWVFmiS1XQu/DNm0bKxuu2EVR7x3L8cRQAABBLIlsOzMI80ajeh2lOiajUy/nriIAEe25pjnIIAAAgggkHcCuge2PdgRd8VDtOMel0OKfA6pacy/JJ3lxW4JhyPS2BpMyFlXe2iCzkTPT+imaTpJA0mNrSFpT7ByTe+ysWnqArdBAAEEEEAgaYGfZh45SK6NwXJspOf3E296MOk+Z/NCVnBkU5tnIYAAAgiMGgENcCyvbTf7ZBNtGkho94eHzNeR6L3SdZ7baRftV/+ysPHuP77MK9VNfhMYyZemlVE0t0ZNY+wkqbH6qblHtASufjNGQwABBBBAINcCP55+dE66sOotS3Ly3OE+lADHcMU4HwEEEEAAgTgCpipKa0iah5mHQreCjCn1yIq6/Ckbq/1paQsNO+jidTukwOMwZVjzoWmAQldv6AqZ4W4D0hUp0VUp+TAW+oAAAgggMHoFfjj1mJ5Eot1VU7SKilZL6aqiEk00msbjqy5+wBLoBDgsMU10EgEEEEDASgJaOWV5kkEKLcMqEZs0tSW2HSSTLhqg0FUP1UlWRdHtHa3+cMLbQTI5Fk1+qmsw6luSc9VVHOTiyOQMcW8EEEAAgUQEvj/l2K4yKaY2bK+yKdH6Kd3RjbQeX/32+xPpXs7PIcCR8ymgAwgggAACI0lAgxv1zQGTfyPZNrHCK8vr/KaWfa6afgs03iQ+DZiKI8k0rQxTUewxCT1z2ZwOu1SWuE01G52fZJrXrSVw3QQ5ksHjGgQQQACBtAl8N/24ngSjun0yMniODUnj8dXvuDdtY8jkjQhwZFKXeyOAAAIIjDqBQCgs1Q2pbcso8DjF7bJJfXNyqw3SgV5S4DIf5jVYk0rT+5gtO22hVG6T0rVaCaUtEJbWYW4Z6v/QsaUeUyqXhgACCCCAQK4Evj3phJw8es277snJc4f7UAIcwxXjfAQQQAABBAYR0A/yup0jlIbEmvphWrdTBJNcPZHKJEXLwlalsOKh9/NXqfTJTzkqG6tlYXV7iiZJTbXpipQxlI1NlZHrEUAAAQRSEPjmhBN7bUuJbkfJ/M+17r47hV5n71ICHNmz5kkIIIAAAiNYQLeTtPnDSed46E+j1UtKCl1J579IhVpzZ+i2lHStuij0OkWDAw1J5r9Idiy6MlcDRfpcfwpbhno/v6zIZSqxUFUl2VnhOgQQQACBVAT+d/xJXTk4et1Fd1/2LvaVgddr33dXKt3O2rUEOLJGzYMQQAABBEaygAY4ltWmN9eEfpgOBCPS6s/e9g5d8VBWpGVh203usnS1sWUeqW8KSjCcXD6PZPqhlU88ruGVhU3kOZojhQBHIlKcgwACCCCQboH/HjvdRDMiEhFbTz2VjL9e5/470j2UjNyPAEdGWLkpAggggMBoEtDElVr1pKU9nNZh27W0ablHlqc5cDJUJ7WUamNrKO2VTzRwUuRzSU1j6ltFEkHW/CHjSj1SnURZ2Hj3L/Q6pNjXmaOEhgACCCCAQDYFvj56Rq/HZWCpxiBLQdZdcns2h5n0swhwJE3HhQgggAACCHQKhDsisiLJsrDxDIsLXCZDelMWknRqSVjdfpGpIER5sVva/WGT8DPTraxQk5uKNLZmJlHr+HKvaK4SGgIIIIAAAtkU+OrIGV1VVKSrSEpnFRXpinXoilJ9bSrImiIr6Tm+3oO3ZXOYST+LAEfSdFyIAAIIIICAmLKjdc2BtOV4iGU6odwr6Ur4Odic6WoEzVdRk4EVD9FnakBgTKknY8Gg6HM0f4kGUzSxaKZK7eqKlPIiysby/wcggAACCGRX4KsjTo3GMgZ9cP91Hf1PTOb4pN/fmt2BJvk0AhxJwnEZAggggAACKuAPhk1QIJPN53GI1+UwgZRMNV3xoE0rt2SyFfuc5iulpgytrNC+axCl1Z96Wdh4DpUlbpPjg4YAAggggEC2BL6YdprJvRHNwZGtn+s/cku2hpjScwhwpMTHxQgggAACo1lAy8KurPebLSqZbpUlHmluS181kN79dTrsMqa0c8WDrkjJdJtQ4ZWqOr+oX7qbbrEp9DmzUn3GlNMt84jmSqEhgAACCCCQDYEvDpvZue0kGuQw21Ey/3rDRwlwZGN+eQYCCCCAAAI5EdAP523tIWlozU6FE5fDLmXFLhNQSXfT4El7ICwt7dkZS4HHKW6XTeqb07taROMM48q8UtcUMGVus9FKC5zi8zoJcmQDm2cggAACCMjnB8/sSq7Rk2OjM9lGZl9vtPSmmPr6xYgGWBwOe17MDis48mIa6AQCCCCAgNUEMlEWNp5BaaFLQuFIWgMRmktC76urN7LZdBtJY0swrYEITcjqdNhMgCObjbKx2dTmWQgggMDoFvjXQWfmBGDjxxcNeK7+LTTnuvvN7+eed1xO+tX/oQQ48mIa6AQCCCCAgJUE9NsKrc6heR6y2XQjxIRKnyyraUvLY/ULH00s2tCSma0vQ3VSE4GWFLrStpVEt4toiVsN1GRjy1DvsRV4HFJSQNnYtLwpuQkCCCCAwJACnx14VleVlGi1lOz83OSJG/r065W3PpQrbnxQauub5KCpOxLg4H2LAAIIIICAVQVC4Y6sr3iIWhX5OrdDpKP8qd5Lk2RmqixsvPktK3JJIBiRVn/qW2O0aoqubslk8tKhxqPBFc1lQkMAAQQQQCCTAv93wDmZvP2g997sqev7HGtt80tjc4vccOdj4vW4CXDkZFZ4KAIIIIAAAikK6OqNmqaABLOU4yFWdzXPRG2T33ygT7ZpWdhxpR6pzmBZ2Hh9s9lsMqHcI8tq2+OdOuTxnrKw7ZKBvKUJ9U37UFFM2diEsDgJAQQQQCBpgU/3OzcnKzh+9vTCmH2+/IYlEg6HCXAkPd3XgowAACAASURBVKNciAACCCCAQI4EdK+pP9ghtVnO8dB/uF63Q3RbRCr90LKwWjAlHStBUpmOYp9LxKYrL5JfxaH5PFraQtIWyO6Wof7j1gCH5jTRwA0NAQQQQACBTAj8fd/zxUTze/+3JppgNPrADBzf4rlrCXBkYkK5JwIIIIAAArkS0ADH8rrcrRLoPW79MK05QLT6yXBbz4oHv8l8nus2vtxrcnEkkzujwOs0wR69PtfNbhPRsRDgyPVM8HwEEEBg5Ap8MvUCMzj9r3dPOF3/V9//nqf7+JbPLyDAMXLfVowMAQQQQGC0CWhZWF0l0NSW/EqDdJpptZCKYk2qOfztHbriQYMjrVkqCxtv3D63Q7wex7Crn2ggQXNfZLMsbLyxlBQ4RYMumieFhgACCCCAQLoFPt77IvPlhE1sEpEhEoym+fhWLxLgSPdccj8EEEAAAQRyJqABjuUp5opId+e1cof2q3kYQRcNJhT6nHmx4qG3R2WJW5rbwuIPJr4ixVQusYnUtwTTTZvS/SgbmxIfFyOAAAIIDCHw1z0u6t6eYtZt9NqOksnXv3jpqj69Coc7pKOjQ65Y9KCEQmGZc+6x4nA4RHN85bJRJjaX+jwbAQQQQMASAppYVD9EJ7MdJNMDnFjpk+U1bf0WpsZ+qi4q0ASl+bTiIdpTrUBSUexKuDqNloXVErdVDX7R+cmnpkGk0kLKxubTnNAXBBBAYKQIfLT7rJwMZetXruzz3KXPvilzr3+gz+/mXXC8HLjXDjnpX/ShBDhyys/DEUAAAQSsIKAVU1bmQY6HWFaFXqfodpWGBFYxFBe4zLka4MjHpkEBrQzTksDWGc1BEgh1DGv1SjbHrMEXl5Oysdk051kIIIDAaBD4y29m56SKyjavXmEJXgIclpgmOokAAgggkCsBXR1Q3ZhaSdZM931smUfqm4ISDHcM+ihd8aD5Kqrqk0vmmekxRO+/SqVPfqppG/JxWqlEgyEadMqDHKkx++py2KSy1EMujmy9cXgOAgggMEoEPtj1kpyM9JevzcvJc4f7UAIcwxXjfAQQQACBUSOg+1p1W0pdc37leOg/AfqBv8jnkprGwSuJlBe7zeqIptb8HkuRrzNB51DlazVQoytWtGRvPjc191I2Np+niL4hgAAClhN4b+dLc7KCY7vX51rCigCHJaaJTiKAAAIIDCUQCASlrqFZxo0pS2uJTg1wLMuzxKKDOZQXuaU9GJY2/8AknT1lYfOjxG28d7PmCaltir1qRiuUaI6LoYI58e6freOaZm1CxdBlY3WFUFVNnYypKBWnw5Fw12rqGs25leUlCV/DiQgggAAC1hd4d6c5mlm0M8jRPZxoVZWuX2Tg+K/eJMBh/XcPI0AAAQQQyGsBDUDctuRZWXzfU6afFWXFcsuVZ8nmG68bt99vv/+pnPq7G+TWq86WHbfbfMD5pjpJa0iaE8gHEfdhWThBs5aPK/XI8rqBZWO1LKyWuG0LJF6hJAtdHvQRHrdDijwOqemXK0THqLktahoDEhpiO04u+97/2UVepxQVxC4bq+/B8y6/TVrbOufssnOPlUP2mTJo9zUYcs8jL8iSx16R2vomKfB55aOXbs+n4dIXBBBAAIEMC/x5xxiBBlM+ZYgHp+H4r9+6LMMjS8/tWcGRHkfuggACCCCQA4FPPvtKjjx9vjx48yzZbMN15KZ7npQXXn9fXnv0+iHLlH3x9ffmOv1gOWiAoyMSM1iQg2Em/Mhin9OUjuu9DUVXPBR4HHlXFjbeoDSJaKs/3KdyTVmhy/z9lkhC1Xj3z+bxCeXeAe/HtvaA7HDAGXL68QfIEQfuKm+993c585Kb5ZVHrpXVJo6N2b3rbl8qT7/8jsw4ej/Zc+dtJRAMyoSxFdkcCs9CAAEEEMixwDs7zDMrOMTW9UNLpGXh9fbvXJrjkSf2eAIciTlxFgIIIIBAHgroB77P//Ot3L3wfNO7qup62emgs+Txu+bKRpPWjNnjlTX1cuiMuXLO9ENMebOFl54yYAWHflNe1xzI+xwPsQaoWyKq6vyiK1B0+armq8jHsrDx3k4Oh03GlHhkRdeKFC0jW1niNklSdeWOlZrm4SgrcvcJckRXEH3y6l3idrvMcPY68kIT7DjiwN8MGJ6+b6f89iy54sIT5IA9t7fS8OkrAggggEAaBd7+1byu7Sld21K6t6Nk9vUOf744jaPI3K0IcGTOljsjgAACCGRYQJf3l5cWyewzj+p+0iZTjh10VYZ+a37smVfJ9tv+zHxzvvWeM2IGOALBsFQ35mcp1XikBR6nuF02qW8OSkmBS+w2kfoESsjGu28ujmv/zVahtpBUlnjMFptWi2wZ6u81ptQtbmdPjo2lz70l9z/6krz40ILuU2fOXiRrrT5Rzp1xyADu19/5WM645CY5bL+d5cv//iAej0v23W2y7Lvbr3IxNTwTAQQQQCBHAm9Nnp+TJ095b3ZOnjvchxLgGK4Y5yOAAAII5I3A9PMXygbrrtHnA6EGLeacd6zsvcsv+/RTV2VoQESbrtrQfA6xAhz6gXplnpdSjTcBJudGe0hKC1xS1eAXHbtV28QKn9Q3B6S4wGlWb1i1Oe02GVPWUzb27odfkJff/NCsNoo2fX8WFfjM+7d/+/2Tr8mVNz1kAnMbrLO6fPHf7+WWe5+Say6ZMeC9blUj+o0AAgggEF/gjV9emZMqKju9/7v4ncuDMwhw5MEk0AUEEEAAgeQE9AOhJhaddcaR3TcYbAVHdPvKQVN3lEKf15z/wGOvyJTJW5hvwXefsrXZ+hAMR8RvkWScg6k57DbxeZ2iK1ECeV5KNd7Mu5x28bgc0hYISThs3UCNjtPrdojTYTN/mA53BYcGOB595g159oEru8kuuvJOaW8PyI2Xnx6PkeMIIIAAAiNE4PVtr87JSHb5y0U5ee5wH0qAY7hinI8AAgggkDcCmoPji6+/kzuvPc/0aagcHJpQ9KEn/tin74vufkKm/mY7mbrrdmbbiglwhDosmXuj98A0f4XP7RR/MGzGY+XmdtnFrQGO9pCELbwSJRrg0ICNtmgOjr//8W5xuZzmd7tPO1+OPni3mDk4us9/7R5xdW110QBfW7tfFl95lpWnmL4jgAACCAxD4I9bX921gsPkFe/ML9rnZ1cJ2QG/j56X3PFdP7xwGL3M3akEOHJnz5MRQAABBFIU6KmiMls222gdWXT34/Li6x90V1H56O//lgWLH5HrLjtV1lxt/ICn9d6iots4GluDUuRzSW2TX0IWXi2giUWbWkNSVuSSZbUDy8amyJ61y6Olb+t1XjxOqW607hYVt9Mu5cVuaW4LSrHPJe3+gGy958ly4WnT5PAYVVSamlvluLMXyAnT9jIVUxqbW2WXg8+RYw7eXU45Zj/57Iv/yeGnzjP5Zw4/YJeszQkPQgABBBDIrcCrv7jGVBTTyq/Rlo3Xu//1gtwOPMGnE+BIEIrTEEAAAQTyT0BXXNxy31Ny+5JnTecKfF6589pzZctNJ5nXb773iZw+a5E8ec882WDd1YcMcOj2hxX17WY7RJHPITVWTTLqdYrPrf33mw/SYouYYIcVm1YeiQaeyovc0h4MS5s/bMWhiMmL0hYyiVLHl3tFtxG98e4noolFo+3is46Saft3BisaGltk8r6nSe/fvf/Xf8oZl9xsyhtr08DGhacfLk5HT/JSS+LQaQQQQACBhAVe/vm1PUs2TJhj0KUaXWGQ9Bzf42+dq2XzvRHgyPcZon8IIIAAAnEF9Nvw2rpGmTCusk8pzrgXdp2gH6JrmwIS6NrOUVHsllZ/WNotlotDVzyMLfWY4Ewo3Lk1RT9MVzf4Lbe9Q1c86Dys6CoLG13NsbyrbGyic5sP5xV4nVLgcZh50OZx2UUDNjqmcLhDlq+slXGVZd1bVYbqcygclhUr60z1IA3o0RBAAAEERpfAi1teF2NfSjSWMVgwI/Xje/39XEtAE+CwxDTRSQQQQACBTAnoKhANbPResaHfrus37iss9mG6rNBlmHqXhdXVHF6PQ+qarFX2Vv21JKwGmqKt2Oc031o1tQYz9XZI+301oahuGVL/aABNH1JZomVj7WYfNQ0BBBBAAIFEBZ7/2XWdOTi6YxZdOTUy/HrvT89JtIs5PY8AR075eTgCCCCAQK4FtCxsVX27dPTLxVlS4JSOiM3kTLBCczrs5kPzyhhlYfX3zW1hk3TUCk2DMoU+Z/eKh959nlDhlao6v+i8WaGVFLjEbusbdNJ+mxUpvcrGWmEs9BEBBBBAIPcCz212Q2cnunandPcow6/3+b+zcz/4BHpAgCMBJE5BAAEEEBiZAvohWVcJNA6So2JihU+W17WZDOX53ipLPCa/g46nf9PgR0WxS6rq8z9J52ArHqJj8nmc4nXZpK45/wNP6j6mxC1VMYJOOp7SAqcp52tnFUe+//OifwgggEDeCDyzyY1dVVSi1VCy83Pfz87MG4OhOkKAwxLTRCcRQAABBDIhoNtThqoyorkT3A5bny0fmehHqvf0uh2iK06GCmCUFrpMZZiWGAGQVJ+fzut1xYOWuR1qS41uX2lsCfbZ8pHOPqTrXhp00lUzzW2DJ3mdWOFlm0q6wLkPAgggMAoEnt74ps7EoqLbVCJi617KkdnX+/+LAMcoeHsxRAQQQAABqwpoYtGG1mDcqhyatFNzWgS7EpDm23j1y/9xZV6pbw6IP9hvn02/zq5S6ZOfatrybQjd/dHcJ+qt22zCHYMvm3E57aL5RvS8fG2aSFSDStrHoVYA+TwOKdVtLLqPhYYAAggggEAcgSc2vKkzMK7/cYnxU7+8ycTxAz+faYm5YQWHJaaJTiKAAAIIpFtAq4wksmXD7bJLic8l1Y35+WG6yOc0ySq1Cky8pufqdojGPE3SWV7sNoGkoVY8RMeoAY5AuHOLUT42za/R0BKMG3TSvuu5up2FhgACCCCAQDyBxze4JeYp/VNw9D8p1eMHfXF6vK7lxXECHHkxDXQCAQQQQCCbArp6o6bJL8FQYsk1tKRnezAcd7VHNsegz4qWTo234qF3v3S1R22T32xXyaemQRoNcGjC10RynuiXVhPKfbKsNv9WpBR6naLbhmoSDIrpipTK4s6ysTQEEEAAAQSGElg6aXGMhRs26Vy5MdjCjtSPH/zlqZaYGAIclpgmOokAAgggkC4B/QNAt3IksuIh+sxoIGF5npWNLStyiwZrhrMiw+N2SJHHITUJrPhIl3ki99G8Gi1tIZMoNdFW7HOJ2CLSNEiS2ETvk87zotVRqhsCoquEEm0VxW7RbS2UjU1UjPMQQACB0Snw6Hq3RlNw9PyMUnTXju1VZaV37DyF44f+hwDH6HzHMWoEEEAAgbwW0ACHBioSWSXQeyDFPqfZ69qUJ9s7dMWDfiheUa85Hoa3GkOva/WHpX0YwYRMTqomc/W57VLTGH+bTf9+jC/3mnKyQ+XsyGTf+99bt87obOj2lOG0zhUpJBwdjhnnIoAAAqNR4JF1bjOJRaMJRrP187D/zrAENys4LDFNdBIBBBBAIB0CWhZWVwk0DVHVYqjnTKjwSlWdX/Q+uW664kHzT2igYrhNk3nq9SvyYEVKtCysBjeGs+IhOmbdClLgcQxrRc5wvRI9X/NoVGpZ2CSCTvoMDaIVduVJSfSZnIcAAgggMLoEHl7rjs4aKr2SamTj9RHfnGwJaAIclpgmOokAAgggkA4BDUwsr21P+lZa8cLrckhd8/BXGiT90BgX+twO80FYVy4k27SsbEfEJs1tw1tpkOzzBrtOy8Jq6gmtVJNs06BCc1vYlGTNZdN+tAU6Ukp8qkE0TQRLQwABBBBAIJbAQ2vcqRViB25TGWz7SZp+f+S30y0xIQQ4LDFNdBIBBBBAIFUBzVVR3xKQ9kDieRFiPXNMiUca24ISiFOSNdX+DnZ9dMVDXVNAAimWrp1Y4ZPldW3D3q6TrrHpiocxuuKhwW9yiSTb9D4Vxa6EquIk+4x412nQqbjAmXIfdEWKbnMh4Wg8cY4jgAACo1Ngyep35WTgR39/Uk6eO9yHEuAYrhjnI4AAAghYUkDLj2q1kVSbVrzQD6DpuFcyfdEVDw6HTTTAkWrTah9Oh23Y+SJSfW70+soSj8kD0pKGUq+lhS5TGSYd9xru+HTBhVanqW/WsrCpryIZW+oRfZ/REEAAAQQQ6C9w/6p3m4TUnVVTsvfzmB9OsMRkEOCwxDTRSQQQQACBVAR0dUB1Y/pKo2qAIxCOpLQVIZnxaO6McWUes0ogXUk19cO0bg/RAFA2m1YM0aCEjiVdbZVKn/xUk/2ysUU+pwlIpCPopBYadNKVQqziSNc7g/sggAACI0fgvlXu7bU/JTqu6D6UzL0+7icCHCPnXcRIEEAAAQQsK6DfcGjpUf12PV2ts+KFT5bVZvfDdHmx26xSSGclF7fLLiU+lwkAZbNpoEYrjWjJ3nS1XKxIiZYQ1hU96Qo6qUd5kUt0uwplY9P17uA+CCCAwMgQuGfCvVlduRFdKXL8suMsAcgKDktME51EAAEEEEhWQP/DvCyFxKKDPbfIp8kxI9LYGkq2a8O6zuNySFmRrngYfonbeA8qL3JLezAsbUlUZIl371jHNRChH95rMhBU0cBJbVMwqYosyYylrMht8oc0ZqB88MQKysYmMydcgwACCIxkgbvG39+1giM6ysEyjqb3+EkrCHCM5PcVY0MAAQQQsICAVk1pbg1JcxpyPMQa7vhyr6lkks5v7gdj1Q/uTa0hsxol3S26CmF5FsrGmmeVeaS6IbmysPHGroGgIp8GT1LPURLvWW6nJjd1y4oky8LGu3+R1ylFBU6qqsSD4jgCCCAwigTuGHtfV43YrmIqWrq+q/qWCXVk6PXJVcdaQpkVHJaYJjqJAAIIIJCMgAYeVmTwQ7uuQijwOKQ2DQk/hxpfgddpnpNKWdh4fsU+p/kDKZ3bX2I9U/OX6E5h3Z6SqaZBh1Z/2CQwzWQbU+oxeVj0WZlqE8q95OLIFC73RQABBCwocNtYXcGhLbpyIzqIzL4+ZSUBDgu+XegyAggggMBIEdBtA3XNgbTmeIhlU1nilua2cFqqZ8S6fzrLwsab2wkVXqmq84uufMlE03Ku6qWJRc03TBlqmoxVgw+ZDG5pWdhCnzOjQSfl0WSsuoWIhKMZerNwWwQQQMBiAosrHzCxje6FGl35RTP9+rTqYywhxQoOS0wTnUQAAQQQGK5AIBiW6ixsU9AP7RXF6a0G0nusWhbWbhNT6STTzedxiNflMIGhTDQNbrQFOrJSfaakwCkdEZs0t6XfLZtBJ52HMSVucbscmZgS7okAAgggYDGBmyuX9FRRyXRUo9f9Z9YQ4LDYW4XuIoAAAgiMFAFdgbAyjaVU47louVOtbtKS5lwfGjzRD7dVDX6TyDIbTcuTNrYFJZDG6ibab13xUFzgTGtZ2HgeEyt8sryuzXzLlc6mQSeHw5a2srDx+qYrUsaWecjFEQ+K4wgggMAoELix/IGuKiqdqTeiMYien5GMHD+z9mhL6LKCwxLTRCcRQAABBBIV0OCGVgPJZI6HWH1ZpdInP9Wkt2xsZYnHbH1pbstOpRYdl8tpF82ToWVP09X0D7BxZV5TqlfHk62muUvcDltaV7+YYEOpx/hkI7ls1ErnRFfYUDY2W+8enoMAAgjkp8D1ZbqCQ4MbNrPd0yY2iUg0qNET0U/38XPqCXDk5zuCXiGAAAIIjGiBTJWFjYempU+dDlvaAiuae0FXhugH6XSvQIg3Fv0wHQhH0raVpMjnNIGTugwnY401Lg1G6PaeYKgj3rATOl5e7Db3ymbQKdoxysYmNEWchAACCIxogYWlDw6ycmOwFR3p+f259UdZwpUVHJaYJjqJAAIIIJCIgG7jaGwNZrSqxVD90PKntU1BCYVT/zCt99JVKP40bxVJxFFXXEwo98my2tRXpORqxUN0nG6XXUp8LqluTH1FipagLSvSfCvtWQ866Xi0ko7JyaJJWWgIIIAAAqNS4JqSh3pycJi6ZNHqKZn9eUEjAY5R+YZj0AgggAACuRMIhztkRX3qH2STHYF+AC7yOaQmxeSmuhpES9DWpOFDebJjKfJpclMNGKW2PUZXPITDnYGnXDWtQtIeDJutS6k0DTo1tYakLcPlZ4fq4/gyr8n/QUMAAQQQGJ0CVxdrgKOzdebgiAY5elZqZOL4RU1HWgKcFRyWmCY6iQACCCAQT0BXb9Q2BSSQpq0I8Z432PGKYrdZQdKe5Idg/XZeP0hXNwTSshIk2XHodePLvaYMarK5JtxOu2iAI9NlYeON0W6zybhyjyyvbY936qDHNZ+Hz21POXiVdAe6LlRTfY+xiiNVSa5HAAEErClwZdHvc7KCY1YzAQ5rvmPoNQIIIICA5QT02wvdyqEBjlw33ZIxptQjK+qS+zCt+S/0u5i1y27sTI2uS09tESn0ueTd/5zcPbwNVlsktu5vbSJSUlYgH/5zujn++h+/lvOOeclcGol0Llkdt2qRvPrRseb43Xf8Q667/C2x2aLJyGwyacNx8sxrh5nj11z6vvzhnk/MdSZ5WSQiW24zUe55+kBz/NKT3pK3nv/K9Mu0iE2mTJ0kl981xby8YP8/yj//8oPY9Nk2k/pM9jtpc5l++Zbm+LwdX5bv/t1oLtej2tFp87aQnU9e3xxfuOUr0vhja8+3UraIHPn7ybLBbyZ09n/9V6SloWv7jH59JRE5c/n+3TYvbvGkBEx52OhyXYcc9f0049nUFpK/7ny3dAQ6uvpvM9VJfvGnk7qv//7QhRIMh3uuttllm9cuMcEN3X7UNvM8CfVaFey0ifhuXth9vePq4zvH1jU/NodNQhfe0328fMl+oslwO/unmV1d0nD4493Hx724q0TCnd/EaZ8jzkJZueez3ccntH0otsoNxObr9KAhgAACCIwegSsKNcDRUz0lukulu6JrF8WgFWSTPH5xyxGWQGYFhyWmiU4igAACCAwloB8Wq+raJUuVVONORkmBUzoiNmk2H7ITb1oWtrLELasWXSeRAWk8IjLnml1lvyM2lA1XWxTjphH59w9nmd9vueqtXd/u9DotIvLJT6eZX2y02k3Rj9bdJ+jH7c9/OMO83spc379F5G8/dl6/w8S7Oj989759RORPyzqDBFMn3Nf16bzv859f3hlgOWn80oHPj4jcVXWIOX7J2CcHVAvRYMnclZ1BjEXjn45xXGTmiv3k2yVfysfzPzGBmd7NbnPI9BVHyIeXvS3LH/+0O7YQPcfhdMhWb54gy2f/Qdq++HbA6F2FblntgbOlfe7VEqquHnDcXVkp7jm/E8eNp4itbeA2Kecq60n7MbOk9KHfiq2j77YfE+rYcIrUb3O2jH/hN12Bkb52LZucKi3rHCgTXp0iHd5x4tj9HrEVjIsxT/wKAQQQQGAkC1xe8HBOVnBc2kqAYyS/rxgbAggggECeCGhwo7U9lHKuiHQPZ2KFT5bXtQ0rGaUGN9oCHTKpYpHEyiPpLXTI+1/OkPVXjX18zTVL5JV3j5MtVrklZjnRXXZbSxbet7dstOpNAwIUOv6jZ2wjF138S9lqlVsHBAD0m6BnPzhGVlujcMgAxw/ftciMbR4bcL1CPL/8OHn0ik/l9Zu/GMgdEbmz6hC5bY+3ZdnHtQOO6/PnrTxA7tzoBWmvi5EXpEPkjKr95JlNn5BIjFK0GjA6/Ltp8tYv7xRbx8BcHLriYus/T5dvDrqma1VJ/y5EZO3HL5LW08+Vjv7RHXNqRIpuvk6cVx4/cOydhyU0614pe2AfEZs9xvgi0nDMszLu+V16Vnb0OqvD7pTqvV6WsS9PMXNr3/xUkQlbiL3yZ+l+63I/BBBAAIE8FrjM+3BOqqjMaTs8j1V6usYKDktME51EAAEEEBhMIFdlYePNiOZscDtspkRpIs3ndkhxgdPkq9h8lcUEOPqhpSPAccBXh8hfptwjtrD1AxzK4zj4DbG5ChJ5e3EOAggggMAIEbjU+4hZ6afB7mz+nOcnwDFC3kIMAwEEEEAgXwU0saiWUs1lVYuhbMaWekyAIxgn8akuCBhX5pX6Zi0LG5afr77YsltUNAfJnuPuzcstKvv++7fyw6IP5afH/j7sLSqOAressSRPtqiYvCoitrX3EvtqO4ht9c7cJzQEEEAAgZEvMNv9SE5WcFzhn2YJXFZwWGKa6CQCCCCAQCwBDRysbMhdWdh4s+J22aXE55LqOOVei3xOcTntUtcrSeoWqy7OqySjW/1yVVn6ysEmoDRUklGtmjJ9txfls/e+z6sko/t/cVD3dP1tl7sl7B9ektE1Hzu/+/pcJxnVbSr6161uq3Hseb/YKjaM91bkOAIIIIDACBH4nesPOcnBcVWQAMcIeQsxDAQQQACBfBTQ1Rs1jX4JhqOVQPKxlyLlRW5pD4alzT9wW4T2WFc86EoPDdQkW441WyPX8rW1TcFBy9d6XA4pK3JJVX37sHKPZKv/0efoipkJ5T5ZVttViSVGBwq9TvG6HeY9ls/N5bRJZbGHsrH5PEn0DQEEEEijwIVODXB0Nv3vmSnKlYXXC0KdldbyvbGCI99niP4hgAACFhdoam6VUDgs5aXFcUei562saZCKsmLxuF2Dnt/4TY00/KNKHL9aq/ucWKVBe39rf+86z0goEDZ/COgCf5vY5aT/x95VgEdxtd0zs7vJxt1IsOJeIDjB3QkOxaFQpLgVtwJFU9whQYMFAhS34O7uISTZuOvu/L0zm93szuTvRxsgtPd+3/PQ3XfunTvnzm72nnnfc0L01qIzXQ/x8+TVIHkPDgaztK4d5CQ/uvmDkCrEEpV/dM7IsCFMnxXQy2WnIE6pdf9kwWBreDfegtTZzhSepuvAQSPUy4KBzITFofe9QDIe1GoOxe1+B8NpeEtVMr6ZUomgV/1111c132rBclU7vqW1Kc4+ee6OZAAAIABJREFUEeLEFnY0bwtL4oJ/iKOrOU7f7sfHt629D59ZF4WxiO0oGHxX3Bb+54R62t+nXYH/+vvarADBuLVcRTesPtqGjy8Zdx1Htt0Hl+2XVLlqbvAJaMnHF/YMwr3jwQbrVa3tdxi+vjr/3pS6xxD2NJ7HRjg7g7YTKqH1mKJ8XMoWtvOqWijX0YWPby53EkmqJH5t+DkAaOdXHfm1trFHKh1CWmIKP2+yPuQQ7+eCIwtpV+tvhzolVVc2Q9ak8Z0fwTIcL077sr0P1JlaAooBZGBQO2gSIrW2sLGDpkKjVgtzZwCWY2G7Ya7+eqcPgVqjt5VlGRbMrNW6uMVq7VzIbcNwYFg5Egbt1MUd9zbT3Xfk/pApTKFql80W9mpNaEjCifYomcIMoVVO6/q7ZZwBbKuAUebsqvIpn0MycHJKKjIy1LCxtjBYV/qCIkARoAhQBL4uAuNku79KBsdCNSU4vu7K07NTBCgCFAGKwFdFgGyQJsxZizOX7vDzKF+6CJbP+RmO9jaS81q//TCWrd+rizWtVwXTR/eR3GBlJqXjeP31UCer4Xl+IF5vf4d7s65KWoMS3YWgSXfxxPe1SBeCYVkMfN8W69udx/vLYucOhTmLaW/bYmrVYwh7Fy+at4OHJebfaoHBRfcjKUH8pL9YZRdMO9oA3gW3Iy1dLDbaomtRzN7SCPktfQAjZw9CZIycXhs/DCqPKvnWgmEMfWPJZv5GyE/8nCq4r5DAlMO9kOH8+575VknYunK4qbWNre22TsJVhUPQx0F8/wZuGyRcWTic/jiAj//gQizrxL6x21QCgTLAhfwYE8c3qLrwcSlbWEJUZBFMy10PiNaWxIeFt+X77yu2W2wbywDtn3VGuP9zvFgSJIrLGAZtn/yEx1MPI+rcfRF+MrkCRfYPR8r8tUh5JWEba2YGq9+ngvGZCnVkhKg/6+QC/DwTVut7gctMFcddyiLeexoc9jcHY+xvzHHIKNIScZV+hsvVmgKpZtA4JBafhCSH1nC9VwWczBpszWNgFNai83zq5zA8IgZzlvni6u0n/FglixbALz/3QKliBb/q9wk9OUWAIkARoAgICIxhyd9U3fMUHSza5x+f7fVijfA3O683msGR11eIzo8iQBGgCHyjCGzYcQR7As/Bb/lkmClN8NPEpShcwA2zxwtZBcZtz+FzyJ/PGRVKF0XwRxX6j16A/t1aok8X8nRb31Tn3iLyzge82HiTz0aocmEwjlTah4wkcQkIsQYlzhkbCh2CJusJfbaxCIkwKKQ9pjodkLb2/DPTYraqHQY4+0vaqpL+G1Sd0dN5Zw79Ab/wbmjhskXKGRTELPR0dH+UdiC2rcabWEBhIsPlN4PgmW+1pKuKvaMJjt3rj/L5lkv2L13OCTuPdYFnvpWS8R4/VcLIKdUhRXCQa9t1rQdvCytFcJD4mVAhg+QH5x0SoqIcCMFxavN77JpwVdJ2dqOqM7b1vY7nR0JE90OWa4pf1ROIe58sjv9ZojRc1R5HawQgNSpdfENpAO+XnXG17lao06XLgxreGogHzX/js16MGwMOxQ6NQdSAXyTXHtDAfv18cFMHCVk3Ro30Z2avheWazsKvUKNGOI3kIf4QsjckGssi0vsoXK7UlLSNBWOK8Opn4HKnipB5U2ggYFcOrH19g8E+9XM4fvYaxMYnYuWvI8GwDGYu3oqIqBisWTDmG/0motOmCFAEKAL/LgRG8QRHFp1h+G9WluTniC/V0AyOf9edRK+GIkARoAhQBD4JgY4Dp4NkYQzs0Yrvd/zcdYyesQoPz26W3GwbDz71t00ICY3ApqUTDEIpqkScaLBBeO9fQHAEhvbJkYDIKwRHQ7eNYgKHA7Ze68oTIP8fwXFs+XPsnS12LSEExv9CcPg3Ow/V3RhJhmDYPyQ4al3phxdtF/8rCA4CEOt1DoyJgwFWn/o5/GHYXBT0cMHciUJ2zoE/grB8036c2bP0kz7/9GCKAEWAIkAR+DwI/Mzu0pUs6q1iBS0O3essCkRnJfvP4z60ROXzLCgdlSJAEaAIUAS+DQSqNB+MORP68yQHaY+fv0WnH2fgcuBK2Fj9/3X9GZlqNO02Fi0b1sCYwXothbDzb/Bu/0OEnX7Fj0l0NL6FEpX2BbYjPUO6RGXo0tqokn9tni5Raei2QZyhASGDQ8ay6Oq47SuUqLAYFi5ohPzdEpXql/siaukpRJ39xktUsjJQnJqAdW8LxqGO7kviUz+HZy7exvApv6OhVyW0b+6Fhat2oV/XFujYqu638cVDZ0kRoAhQBP7lCAxjtS4qvC5W1sXy7MZnfb1CQ11U/uW3Fr08igBFgCJAEcgJASKUWLZ+X6yaNwp1a1TgD3v1NgRt+kzGqd2L4eZi+JTZeJzpizbj6OlrOOI3H86OtrpwxLVgXO63lxeaJEUBVc4LGhGk5VWR0az5tXLzlRQZzYp7uq/+pkRGy9dww5bj7SCTsfil/Wnc+eO9wTLmdZHRGpf76ub70tsH6gxDkdGih0bp4nldZNTpThX+dy0vnltpC1g7T37uf+dzGBIWiYFjF6L4d/lx6cZDKE0V2Lx0IooWdqdfeBQBigBFgCKQBxAYwpKyWK19Spb6tO511vu5H19FMzjywOrTKVAEKAIUAYrAV0OAPDkmae5N6gqbrf81g2PVlgCs3BKAXWumo1zJwrr5k81acmomjPUYj9fYDZsyDqi+oZHoWt8cDMWlqVfhWt0ZjdbVEsXv+r7BkWmPULqlO9qvrCiKn1/5FMcWPEONHkXQZl5ZUXzPgmc4ufoxGv9UGp0mlBDFfSfdxOntb9F+Qlm0G1qSj5uZyvisB3ItM4ecxcXj7zFimida9Cot6v9zrz9w90oIpi6qh8ZtBceR7O3Hdkfw+LEKF5/rN+vZ44OaHMaHlwk48lr6qUuvugcRHRaHw896Sd4nfasFIDkxBbsfSfcfXekIv6tecktwUzFuE8oEwsRShtnXWkjGZ5c4CktXU4w631Ay/vt3R+BY1ALdT9STjO8scxBWZe3RareXKB5+/CUez7sOe08XVFgkHl91+DHCN56BbbViyD+xKazMFbz9bZadb9IfVxATeBxWdT1h00UoszJoJw8gJegCzLzqAI3bi+NnNwIPLkJRrRMyqomvX3lxEdKDr4GpOAjqkuJ71+zOBMjiHyCxxM+Aq1inw/zZILBJL5BY6YzBuVkGMFPKefce0j71c9hl0EzUrfk9hvRuC+K8Mn3RFgRdu48rh1dCLpNJrgN9kyJAEaAIUAS+HAKDZTtzktj4rO+voRkcX26R6ZkoAhQBigBFIO8hQGr/m9WvigHdhc3vX2lwEAvWxWt2wz/wHLb6TETp4noL2IRX0Yi98w6xN4NRaFpzfryDJTcLFaY6cU4Oxft7otTY8nx8PbF1hTqb3geHHz/qN+pTLPcZgsYBc5I66N4bbuUvko78PUFfLtPdartB2Qapfd2ZILiGkNaJj+tPQeJ7E3rAzFQOuYxBGZMVovGvxAoZKWuX3MXyOUH6sg9i7crK8ChqCB+fMeIs9vg90g1OxiYb2ofRQ/n3Rrc7gmvnPurHJ9a0rBxBMYLA6w/V9uDFs2hdnJBHJiZyBEUIugvdy+3Bh+C4bP0BhZkCp8J68/G+hfYgMSpNf/0cBzNrJXxDBNvcwc57kZKckW1pODi4W2DxM8H1ZJztfsGWNQsfDihUxQ4/nxU2+vPt9kHwRRUOIKJpheq5oluAQGSsz6dNz9UiQOZfuldJ1F5QiX/nRIX1IKauWbcGyeAtNrIqivb5no/fbrRQsPTN1r/elSnIzNQgNV2N973G6WLCBDgU8Fukey9+bD+jkh0O1gs36eKZv3UyWFsyP/kEvUOQfENTg/5knhn9jun6mx8n9rpacMgtznJIanKVj5uG+IAN3pLNVYasLYOkqrf5uNxkJFimNkzYqmCYIviUz2FSciqqthjMux01qC1g+ejZW3QeNAMBm+egWGEPQ1zoK4oARYAiQBH44ggMZHfotTZ0GhuMYEP/GV+vU9MSlS++2PSEFAGKAEWAIpB3ECC2r3sPn+ddVMzNTDF4whIDFxUiOJrP1QFjBwu2Y1MWbOQFDYlbw3cF3XQX4uJkBxnD4lT133g+o8yxn/Fq2SO88xU2dMatwe2euDbiNl4ffi0Ocgy6ve6ALQ0vIPy+hHAlw2KCqjVmlwxEarRYM4Nlgdlh3hjqcQCZEpoapko5fn/njf4u/gYb6KyJ2DgosSO0C8qbrJR0VSlW2h4rT7dHdfc1Er4cQP3WxfHrmgaonm+1SBOD/LAZO7c+OvUtiWaum0RCriR+LEwgOBoTTQ2jM5Dt/imtK0pLt80iW1ZCCBwJFTJF+roQgTND5xDSf3O4sJbDnPaIbWnBYYVKIIimO+0Xzx8cZqm8+fgKYgtr7CrDcRga1h5vNr/H1TliS2BCQnR93RlPp51B1Mm3orVnOKDm1X54N3ob0l6oRHEWLGoGTcDrATOQkSC2BCaZETZr5gGzhoPLFLu2MHITYNpymK/qBkiZtphbI7n/WtjvagOOkDdGjbMvgthmPnC94CVluoJ0twaIKTYTTveq8u47xi2xwAQk2XWAuVVpMDCBteIBGMYEn/o5bNptHAoXcMWCKYNhrjTlrZvPXr6DQ1t/pRkceefrlc6EIkAR+A8j0F9GrNmFv+I5SnB8hvhGjf4hTl6Gn9rE5uXVoXOjCFAEKALfMALkafDYWatx4eo9/irKliiM5XNH6DQ12vebwhMeS2YIWQdkY/UhNEJ0xYcnj0PavVAE777FxzzPjsKxir5Qp0tsEjkODe/0wo4S+8FkiuNkE9ztdScscDqU/WeB/pwcMCGyLSY77ofkLhLAXJU3Bjr7S9q2kkyKdarO6OPkD5YVe4NqwGB3TDfUtlvLP3U3bhqOwamwfqjG28JK2cYqcOFNf1TNIW7raI5j93qhucsmktIhGr9oBWcsP9YSjVw3SDrZeDUriGmbG6Gl6xaxNSoH9JhcGU3afoexnoESBASw8GYrPD0dhV3jr0nawq6I6MTbwr6QtIXlMCvCG8QWNj5YyhYWGBbeDnsr7ENmosTaa4BubzrhUq0tQvaHceM41LraX3BN0UjbupY9Nh7hfSeAI2yIqD9gt24ebwsryT5BA2bWepj93k3aVpbhkDxsF+y2t5QUbOU4DWJ7HIXLBXG5DZmKGiwi65yHyz0i2iueP+RmSKh8CYyiOB83YfvBROaF1JRqn/Q5fPLiHVb7HsTpoNswN1PCs0IJvlylXKnvvuFvIzp1igBFgCLw70GgL6vNIBVsU7LsUT77v5vVlOD499xF9EooAhQBigBF4G8jEJeQhIyMTDja2/ytMZLeR+Nyh/VCXw3Q8MZ4HKy1E0kfE8XjaYAGd3tib4VDyEgUP2XPIjgWuh2CJlNqE8tgQmQbTHY6AEhtcjXA3EhvDHL2l9xjkm31+vDO6OvsD0aiP8MxvDVqYz7DQnx+mVKOP970zpHgsNESGIQAEWU4AChZzgVbjrWXzOAgYHUZWgp9plSXJDjI76Qt1wXb11auWyRtYQ+H9eEx7+u8SzJDZLOqKx8f7rQnR4Ij6n0SfCqfkCRQZka0x9U5T3Fr5VNJgoJkcJxqcxKRj2Kl+AuevLrecicyolMk7g0Ota71xwtvH3BZgqLZjmI4DsUOj0Hc4MnQcGKChAEH27XzgWmDJDMs+Gqp2WthtqILGE6cY6FhOKQO2wXbHa2k+REwiOkeCOcLtXh3IFFjzRFe+zhc7laRJEg0pvnB1jiChMzvdNk1lorzkDH5+aE+9XNICMrMTDVsrP9/x6O/9aGmnSgCFAGKAEXgbyPQW7b9b/f9Jx23qnv8k+5frC/N4PhiUNMTUQQoAhQBisCnIhB94y3e+l5H1NU3QlcGqH5uNL/BO1hyo/hJtoxBgxs/IOl9Eg7V+0O0yTa1UsL7biu8DYrFrvbnDDbpZINvV9gag27Ux7nlz3Fy1gPDjSTHoUh1Z/QL9MLWEddxaedbg0066V+rWyH09qmKua1P49W1CFH/rjMqo8mQYuhTZTc+BicaanT8KUC6wL8FKnm5oWHJzUhOSDOEi+Ow52ovnoCo5bEWanLCbI2UkFwL+Yl/p6nrJlEGSPYSlUauG8UlJBxwKqw/37+V62ZxCYmGw5HwvjCRs+hut0uUoaLRMPCN6gKipSJJcGgYrIgUNDqkSlSIeuzMSKFEZaUrIZiMshS0JSokvus7QjAZxlk50PlZJ37t73beJYrLLRWodrInkm6F4sOMnYYaGQDMXeyRf0MfcEcvIObgUcMSHKJRUqwALMYNAQI3QXPDsESGYM9WqQ607gfTPdMgC30uWnumdjckVWoL+8AfwSV8FH0UUhv9ihTn8nC73ByaTEPyjoyvquwHWBSG490akDGGNTDkVkirdYe/pnSmmO6+ljP1YCrrBzlb+1M/evR4igBFgCJAEcijCPwg28b/jSJ/G0T/ZmlwfIa4HyU48ugdQadFEaAIUAQoAt8MAhFBL3F3NBFnZPiSizJHh/Nzd7VX4uqsy3iz6bHwtJ2ETU1Q/4qQQUDa7YnX8dT/na5G1dTcBB0eCiKXpO3reR0v/gjl/5v8TFA6KjHiqd6tYl2Li3h7U6X9iQDYuptj/B1B4JS0GV4nEPosRrCs5Ti4lbDDjKAmuvi4ioGICknSpY+WquaCcYH1dXHvMjuQGEUyDQS5y+qNC2G2n95No1GxDUgkQp1aHqNlp7KY4qMvX6hdaCMyMoQ4mUPvQWUxZJreKaaFxxZo1KQzBxYM+s+ohQ6DSPmC0Brn28gLkpGrJ//7ZX1d1G9VRBdv5bZFm6lARMtkOPxRcFpxtDFFcpoaXW136LQkGJbFzphuUCpkiNFmzgxz2muQpbJc1Uk39t3DYTjQl5Sx8FKgkP35g2x6eDt9fG0wLs+4DQ0f5cDIWAz5oF+7Owsf4dmaJ7ztLtnUK0wV6PBY72Ty6tcghB7SkwwKpQmqnf1BN75q7n7EXBEIKoKAwtIc3+0crIunL1yHpBevwfEcCgNTeztYzBuvi2PVLHChH3SvGTcPYMg03Wsr36HIjIvmX/Orm68UUjtM18VtDnQFk5ygHR/Q5PdEgtdMXdztcjOoM5J4/IhrUIZrS8SWmKSLO9+vCWgyhPseLFLde0NZfDRUsWk8wWRpWVawJGYAS/lmyFlpFxr9BdH/oghQBCgCFIFvBYHusm38VA00OL7A6x1q/d/RvIwVzeDIy6tD50YRoAhQBP7DCGj+fGIfEZsGtZEv7O0Wu2BV0g5V1rVCbKKhEGjU4TDcnXcdztWcUW4JcaIwbK+3v8P1hfdRoG5B1PQR3Fayt7trgxG0+DHKdc2PerPEtq0nFr/EtfVPUG1gKTQZI7ZtDZj2GFd3vUGTMcXQQEsmyGUsHG1M+M3n6uHXcPd4CLpPrQSvHgX5U1ubK0CuNTElE4sGXsWjix8xaGFNVG/lKprfrC5n8fJBFHwfC5kQxo1kjoS/jsfvjyRsSwGMbXwE0eEp2HRfuv+UuseQkqjB4lvStq7L6p5FerIG429I27ournWG32CPuyIdX1P+BCxcTNDzZA62r98fh20RczTfJ61DcaLOYdh4mKHaDunxb7f1g0VhJ5RYJrZVTbr8CmErzsCinAtcJ7XhcWdZBrFaQib13G2kHTwGi7IlIO/fAW72ZgiLSSFVTUK7eA44dxT4vgbQSowvezUQyruHkfp9K2iqtxatjfXNNTD5cBYp5bsg6TshUyV7s302D2ZRlxBfcBCS3MX97YMnwTT2LuK/G4kki6YGfR2sTSE/PxJs4lOEeh00iMlYBk62ppKaLpI3EX2TIkARoAhQBPI0Al1lfp/VLSUnN5admZTgyNM3Bp0cRYAiQBGgCORdBOLuBiPhSTBCg17Cfbbw5P9Kzc18tkY2Z1EU7lgO+cZU5eN/lN5lpI3Aodyoysg/UMha2FJwv6GwKAf0ea+3hV3keFBUVjA2Up81MMmZ2MoalkXM07p+kPFHOuttQMlrsi/2UXUE2XwS69H2Nn4i7QW/cMFyLZ+DGWrK1+lLZkhWBhjsDRfqXbfNf4Q9y27qyibIjw/y5P5AeE8+vnzgVVw/9CZb/E89CBkD31DB1WRC0+N4di88my0sIJez2Bsi/FgZV+UIIt4lZLNt5WBqqsDaYIEImVP+CGJDU7M78oJkxMx5J2zEZxQ9jKS4NL0tKweYO5hg5lMhviTfYWSmZxrYyjqWsUG/80JGy6ZCB6FRZxqUhbjXdUGzbUJGyuHSu8HLYmQ5p3KAW4uCqKIlsW54rddmewj3NMHH44fKcB/syb9+3nIZOCbbAADqXpoEVZyQ8RAzYArfX9c4Dvm3/QYTBSFAMpAxkQjhGnr+Khas1B2uXNbDqOSFQ+pIQeWeNLudLQ2ujZAmMd0P6+LOZ+oYxElmSVj983zcInQzLMPW6OdG7gyWQViFa/x7Dk+XQPYu0GB6RKA2rPEZIf5wBBTu9QDbYmAdiUApbRQBigBFgCLwLSPQWeb3VabvrxZ+c+T1RjM48voK0flRBCgCFIH/IAKatExcavwrv+UsemAcwnY9xWufi5LWprWu9Mfd8Zfx8fB7MVIMixaPOuNQi5OIfiS2/iRijr3ftceq0ieQHJEq6s8wLMaoWmFqwUPITMkUxVk5i7kf22GU635J609TayU2R3ZAc+VWPkvDuLkVscFvl1ugk8s2SdHSSg3cMGlHQ7R13SqyZSVjdRxZGT9MLIOevOin0egch1Hb66NiY1e0c9kqKQoaEN6b79Sbt30V99+iEgiYcTx5Y6yJASyMEAii8U57JW1rF0YIBMkCxwBJ15XxWgJpY34xeUTQGhDsDdXJMFwbfk5CkwNo/bQLQtbcRMh2CctgjkPVi4PwYUYAkm5qNVyMLrHE4VGInbIU6rBI8doyQHH/RQgbMxyaZIl7g5VD/usyKFf0AZMpthRmFKZIHroJdrtbgedWjBprZofIdn5wPVsHnFALY9A4y2JQVd0A17vV9Fkk2Y5Id2iG2IIz4XSsvqQgbFK5YUjK1wFOF2rzJUps26tgiFAJbRQBigBFgCLwTSPQQeb7VTI49mZSguObvnHo5CkCFAGKAEXg6yAQffk5IoOeIfzIHT4NokjAON4ZIzNabB1K4o3uDMKBUruhThdvMkm8xZOu2Fpon+QmkcRJFsdCx0PS1p4cMDayDSY67gcjYWxBECJZHCOc90o6Y5CsgzVxndHJdpukLSzpT7I4OroI6abGjWgw+If2RFtnX8nzK8xk2POmhzTBQZ7+2yux+kk7tHfxlSRQCn/vgCXHWqK3807J8zcfXgpdplTAWKd9kqKkk24JpSDzKx+TjBMC5Pycp7jm80y8gec4TIhsh4A25xF1J0p8s3Ec+n/ogJNeAUiNNBJcJUdzHFo/7YqbDTZCI+GKQvikahd/xItWywyzM3Rn4lDi8GhEDfhF0naVECz5tsxD0tghOX4QFPNXQLmsuyT5ROaXMmqHKHsja7CsLA6X03WkXVE4IKLhebjcqSZ5fjVrgtTqV2B+kAiIStnG2kDVIADOF7z4KFOoPZDPC6xLna/zwaZnpQhQBCgCFIFcQcBb7sv/pvmCDrH8+Q6oBS2uvN5oBkdeXyE6P4oARYAi8B9DIPFlGO70W6e76iIHxuFRnwOIeyaINmZv5A9ux+dD4VtmFzKixE/ZSbzlk67wLRYATbqh8wQ/jgboE9wBC50DeaFQ8QmyCI4DYFhxnBAY8yO9McJxrzQBwgHLIjryBISU7SwhTXxDu6GDyzaioSpqpuYKbHvdBW1dyNMacdy1gBXWXG+fI8FRsYUHRm2ujXauvhIZGkC/+VXRum9JSYKDlHksudkGDgUsMM5pn6Tt6yJtBgeJS5ie8BkexBZ2Q6VTkrawJIPj6px7eLT2leTaDvjgjQudTiLuoXjtifpm62dd8aCzP1JCxbaxRHy1CiE4Oq2AJkWa/CpxZBQiB04Dw0ncG+DgsOFXZEwYLm0ZTMRJCcGxtIc0OabhkDKaEBw52cJyiO52BM6n60iSS2q5ApF1TsH5dhWQTCLRvS+zBVv3PNS7q0sSLJk2ZRBdbQVcztfWEShsg11gbMTaMf+xrxh6uRQBigBF4JtGoK1MyMrMSSvjc70fkEkJjm/6xqGTpwhQBCgCFIEvj0D8g/d4s+Y04h8ECydnOBTZL7hXXKq+QVxmwQLNbg9G0ttEBNY/INrEKyyUaHyjHVRBsTjS47ThRpQDrD2s4H25Ca4tf44LM5+KbF8L1nBB58BqCBhxH1d3vBTFq3cvinY+5eHTOgivr4YZzo/j0GLm97wtLNG4CHsXb0gScBwm76uPkl5u6FV0D1ISjbMUOCy97s3bwnbw2AZ1pnGdA4eAMKHEpJfrTmKlIiJ//FSCq0x7Z19ityGKB4QLP1YkMzg0wJaIrrwt7M+2hMAxsqXlgL8iOJZEdeRFYn/j9U3E55+gLVHZ4LFfgiRg0D9YEPM8VJKU4BhdHxi0edKZj1/zWidae46RodqF/rxtbPBPRN/E8PxyC1MU2T0EePwSkUs2izQ0TJ3tYPXrOLCnjyP1BMnw0Q9AkDApVBQYPBJmJ1aBe3zRUGOD6GSUro2UJkNgc2YCZGGPjCQ8OKRX7IWkUl3gcrULkBxmuDbgkFBtIVIsqsHtQSNoMhNE8fSK+6ExLwyTg3XA8gIl2RrHQdX0HP+G84Xa+rk5VgZbahAYx0pf/sNNz0gRoAhQBCgCuYJAa/nWXBnnUwcJzBR+c+T1RjM48voK0flRBCgCFIH/CALkiUPU2cd4PEMo95DJZCi0d4zu6j8uv4332++AGIuS3aJCIUPVoD583MVOiTODgvDu0EtenJM0uYUCTW/oRUTP97+O1yeDBVs1hoOZnSm63tW7VexocREh16O0m0EOlvktMfiO3q0iJ+7/AAAgAElEQVRjmdcJhD/TbzRdSlhhZDZb2GkV/0A8sYXVCox+V80BI7LZwv5U8gASolO0OaVAhaYeGOendwvpUWg30lIz+LIcUpri1aUEfvYRBFRJ61xoG9JSNdpEEBZthpZGv2n6jWo/N39kqNXajTSDbrMqoUU2W9j2+fwAtSClSbRHJmwkTi16W9jebrsA0l1rjbolXBAoJbawSSmZGG67h7ceJY3hWPwWYegEMsHpADhGyIRgOBl84jrC3FSG6IR0vOBtYW+A027Eie3r+HA99k/XPselOY8E5Dhh7fu80wu8vvN9joe/3oWa2MISW14Zg1YPBXKDNHJvfNx9CxoyP4aBzFSGyqf66+KRS04h8swD7cowUJgpUGTPMF08dflWJN59zlvSEnTk1hawWUpKV4TGrV6MjLevdbayJnaOwAS9ravF1vHQRH/g7z0yBmvvgaTev+n6OxzsC3USsRwWqkk0DqUQ12SRLu52uRXUKQn8+ESrRe1QA9HfL9DH79eDOjNZiJPEI7dWkJf6lXfmIZ8b51NNoFGnC9gASC3cCfHF9KU1zhfrAWqiIcNAVn0B4NZAMmtEd0L6HxQBigBFgCKQZxFoIdui/Q4X/mZlZWzo/mZxxN49y0Q29+JHKMGRZ+8JOjGKAEWAIkARyIMIaNIzoErMJJUHuvag/RZo4lL45ASnJiXgPqGBwcyvNNwOdUI6WIZF4Z4V4TbM0Po1sPx+ZKaqoWGBsmMqoITWUSVrkC3fBUCToSE7ajRZUQ0eRtasv+c7DE0Gx/cfnW1DntV/ritx/+DAyhhMDhM25CTjwc7KBCf83mF7/8u8+wejYPHbR/2GnRx3Zu1zBEx7yMflJiyWhrTj+1uZy/lsjC3T7+KIz2NeoFKplGHlO0NCYce4e7ji9wJqDrCwVGDhK8Px1w28iluBITypYGmnxBKto0nW3Fd3uYTXZ1TgwMHWzRRT7rc0wHZ16yC8vari37MtYI1JtxobxDfWP43whwKh41TSGgODDK1ffaueQdSbRH7D7VrJEV2P1zTov6fiMSSQsiLieNLEHU026skcHp8aB5Aemw5Su+PetIDI9vdao21Qp2SA5Tjk8y6LAmMN+4f8sAjqNAK+Bg4dvJCvXz1+LrFJQrlKSO/54NIzwbKAVZdGsGpjaCus/mUkv7akPETepQdcG9TWua6Q/mY+Pfm5E9YhZYRY0d52Z1uwUIORKRDV+YDBtVvgOCzfT+TJEI3MBCr364Zx4pzyfj2fNaOBGVRVBEeUrOYY/xtk0bvBEFch1gyhBS8bxG1jJ8M0PRCcmoFGbolIp0u6OCmFcrEF3482igBFgCJAEfj2EGgu36Kl47NIDMG5TaC4hR9Rn+P1sUzhoZJxi4yOg4W5GcyUJnkCTJrBkSeWgU6CIkARoAj8txGIvfoYSS9DEbr7PPJtmcSDcafBSsOyAI6DqaUZSh/qx8eDqm0SWXdaF3VAhR3CRn9fcX8DUMle1KWKG7x2CFkTGwrsM9Qu4DiU8i6Gmj4CSbJEZBsL1JpeEtWGC7azs3lnkGyn4IApke34jIdD8x9h37S7opKVRVpXkd0jruPijveGJS/E7lUluI4s9D6LJxfDRba1m7QlJzOrHkP4W+GJv65xHFaqhKyGkcUDkEzIAQNnUw7rVUJWxqT8AUhPM9SdYDgGi7RZGRNd90FjVPVANC0WaDU35jgHiCRFCAk1RSWQNEudDol0K1hWhhFhrfj4pvz7jcp1/tSzULLo+ULof7TUToNr50tCrJVofFWIX6qx0ahciINVfnuU9xdIoDcd54l0Kay/LwDHaT14W9gP3eaISmZsGn4Pq/7C/NLHDxcJd9q0bA1ly5aISUyH2ZIfROVGKaO3830tnuyG4g6xBDa0lY3pIdjC2sbMhEn8flE8vNA9Pu74ZChkcXeMXWmhqi6QGK7v2wIZ7wzmR0iq8CJ3hf6q2mDVxiUtQISbML5danUoLAaBtfAEqzAkhbLdTfQ/KQIUAYoARSCPItBETsoqCUWelTf4Zf49bkRwvA8Jx+AJS/DuQziPlHeLOpg2ujcUcpkkcgtW7oTvnuMGsYpli2Hbism5ijQlOHIVTjoYRYAiQBGgCPwdBDLjk3Gn0xz+mYP7jmmIO/YUbxYaPrUm45I0zIpnhuLptDOIOE42eUaN4+B1vR+ONz6FxHc5iJK+6Ixt5Q4hLU5s+0oeefQP9sbv7keRmS4RB4vREa3wq0sgNBqxMCXZxC9L64jeil3gJLxBFQoW80LaY7jTXklhSgtrE8x72QZ9nXdLxt2LWGH25RYY6uwv6bzh2b4I+q6phB/5uBienkuqwatHQYxxJrasYuwWawmY8RKioiRb4TdtfK5jgKQ16eTILIJDWnNjdIRAPm0itrBiX1v0e98BoQfe4c7kK+LpgUPLx93wZtoZhJ4S274SAotYBoeMWoeMYIm1B4fCeych5MdF4BLFgrQsxyDfzsnInDQGGrWE7SshF9asRdLsLmCM2R9yb7IsUkf4wnZnG0nBWkYuQ3TnALgGVwCnES8Oy1ojNP8FOF2raSyXImBhUQCqcrvg/LKipGNPmlUTxDgvgFNoBcl4kvUUJFl0gl18OZ54My1wGwxr9Xc+rrQPRYAiQBGgCHxFBBrKN+tyNLR1rUJGoS6DQ1+ekpvx05nCA6as9uO4RbC0MMPciQMRpopC50EzMW1UL7RuYpixmXX8/BU7EPxRhfFDBAt60kxNFXB1ss9VNCnBkatw0sEoAhQBigBF4FMRiLnyFFHn7iDm3AP+77D7zql40G4j1Alia1Dy97vimSG4UH1LDq4nHJrd/xF+BXZokzQNZ8O7rrzojI0eBwApVxQOGBDsjcWOgbwOhqhxwOjINuLsDe2BZPw5cR0wzNY/R2eNRZEd8bPTHkmCgpSrLI/siH6864oEQ8Ex2KTqjKHOpL94eqTUxSe4Q44Eh5W9CRY/aYcxUgTGn8RDgUqOGHGsLu+aInX6Bj8XRZVeRbG60klJ15SfbjfGQ99g3P5dbAtLFmRURFveFjb6rpQtLNAv2Ju3hZVyxCG1Sy2edsPVuluhyRCTT4T8qnVlAN51mgfOSHA1C6lCeycipNscYz3WrNWDx46pyBj/s+S9Q1x2zJeuhPy37pLYk7VPHb0NdttbkvoPiVuHQ2z3w3B5Wz7HuKrgPbhck/5hqGFYpNS9CsuHZaVtYWUKhBW6DqfQ8tK2tawjVC6nYR9fjr+3WIs2kFs0A2tuWHr0qZ9fejxFgCJAEaAIfFkE6slJFuOXd1E5m6EnOOISklCz9VA++4JkYZA218cPYapoLJ87QhIQQnDExidi/i8/flbAKMHxWeGlg1MEKAIUAYrAXyGQ8Ogdno5eq9tk/tMMji6vhmJzpcCvlsHxS3hrjOMFN41dTwCawfFtZ3Aofvsd5j69wH2FDA7GogDgFQDuZqlcyeAgHzgTt71gTSv81UeUxikCFAGKAEUgDyFQR7FBq7Ghn1RW/kbWO5/jdVDGAN0JX70NQZs+k3Fu3zI4Odjy7/vtPYGDxy9h73q9CHd22AjBceL8DVSvVBp2NlZoULsSKpcXyn5zs1GCIzfRpGNRBCgCFAGKwCchkPzqI94s3ofkV6F8+QlrqvhHGhyWRe3gdaATWIbBZg9BE0H3x/4LaHBMj27P26KeW/4cgbPu/20NjrmtT+PVtYivosFhqmAxymFPrmtwyFgZRke0QaZa81U0OMzKuMNlZk/+dvg7GhwmTVsCDZvy5ILyK2hwZDS+CbWag9nTZmAyiI1ydtvaT9PgYDKIOCwDxqQcFA4zwZqW+6TPLT2YIkARoAhQBL4eAjUVxBr9y2twXMoYqLvoOw9f4Idhc3E5cCVsrCz49/0Dz2GN70Gc2bNUEpzAE5fx9kMYTE0UePjsDU4H3caSGUPQtF7u6kFRguPr3Zv0zBQBigBF4D+NACE0os8/xJt5u8AS29aKxWAztqsBJp/iopKvc3kUGlOR7+9sq0R0QhoOlNn3ZVxU5CwWxHVAfLJeu+Hu4TDs6H/lk11UsgDYN//RV3FRcbY1RVxSBpY1O5+rLiq9z3jB0kyGqPh0/hK/tIuKRZdaBvfWp7qooKKnrr+lmRxY0I0ns76Ei0psjXO8M0+WLax15AKYJfr/LRcVchH2GUOA9CAQYVm540q+TEWwFKSNIkARoAhQBPI6AtUV67JNMSftjaxDci9+NWOQ7rxZGRzn9/vA0d6Gf/+vMjiMcZ346zrExiVgzYIxuQo5JThyFU46GEWAIkARoAj8rwhwmWqExaUb6B287rkGmthksGBgXrMIXCe1MRjufusNUCdl8nG7FqVQYGwdg/iFmjtB7GaJvEaxoVXh1q+kQfxQ6b1QZwKMjEPFkRVQcJBhauSGwgfBkf23TIN6q2qgmJFtrI/rEajVashkxBFEsFXNsoUlm8/fnA+BpD7IFDKM/ig4cmQ1Qnj4978GRqMGY8JijtYWNitOsj6Ozn7IZ7LIzRWY9064ditzBS8e5jfuPm6secbriJlYyTDjtSE2h4bdxG3/YF5/wszWBBNftDA4//ae1/HkWAivuW7tosSEh80M4n6tgxB8NYZfD7sCZhhiZAu7q+llhN2N5PMG7Apaotd1Q8vevQ1OIPZ5Mj+mXWkrdDjR0GD8gzWOIFmVxtu6OtV0RYNthoTDlYb+SI9LBcewyNfQA8XnG9rOPmi1BZnJKbxtrlNzsWXwmx98gCTBOcaupScK/dyEtxzOIp3ihs0AMoT7zaZNMzAtDe8dbsoIaDLVvLYI27kPshMa5EIUS/uBzdQQNVGkjd+kI9EyiU8vcUfZ1AUclwmGkSO2326Da7dQXYDlTaL9QYRpZVA1P2EY/7gDlu9WCbaxjAlU1c8axB3TV0P2bj3/xI6VKfHxO73tKznQJmkulHF7+HuHk1shwuWiQX/7tDGQpZ0UxE3lNoi0vKCL8za+9jIwTN6w9/tfvz/ocRQBigBF4L+KgKdijUBKa63KyXf/l3h9I11PcEhpcMxe6gtVZEyOGhzG67Vs/V7cuv8cfst/ydWlpARHrsJJB6MIUAQoAhSB/wWBuJuPkfTwNaIPX4b92ql8l+dtFhtqC/wp2Cm3VqLw9qF8/FZ9sgHMbr0JmHnYodQ2IevjbKWtRiUhgP337ii/Sdho7y9m6CxCtqWFvQuh0nwhNXKtxwGD85MfDDUmlkV5rS3sEifiDGJ4flJyQWxhk1IyMcN6v8g2dnykoDlByIvjsx4YPSXn8KuqAx/fPeI+bux4YSTcyWGh1jZ2TZMLeHfHqGQFHOZp+/9W7iiSwlJFT+FnqNrz488odATpSWkG4xMN1TlaW9h5+Q5Ck2EsqspicoRAovi4HgbHGbvGMBgZLsQ3FggARxRSszWGZdH/neCqsvM7YgtrGJcp5Oj8VIifrWy8dhwUNuaodaaTsPb1VotsYU0drVB2r1By8qr9b6KSDZuiHnBe1IPf9Mf8ONHIUhiwqucJeQ8B//SJQ42EOTkoGrfhS1JIUyzoZWRZDMimboO5qQzRCemwXt9BZMmbMHA/39fi7W6YP14rundVLU/zcdu382AaclgkXBpeUyAxXEJ+BJN40wBbosYbVuKOEI9oDS7tnaGtLgdEeGhtZxNrg8uIM7h+DcHE/gHf3z69ClizPpArPcEqDUklo5PSlxQBigBFgCKQBxCoZLL6q8zidvpPBucdMHYhrC0tMHfiAJGLSkJiMvqOWoD+3VqgeYNqfL+l6/agTZOaKODhimev3qPvyAUY0L0lBvVsnavXQwmOXIWTDkYRoAhQBCgC/wsC6RGxeDJAsIV12kT+BV60WSzRlUOxQ2PxZs4ZxJyWcubgUOncEFxvfxDJ78kmzrARj/j6t3rjD88ApGhLIwyPYOH9vCM2lTiMzCQpa1AWAz+0xRLXw3xmhnEjT0zmpnbEeNM9Wos2wyPkJgxGh7TBL05kgy++PKW1HNNetsF4l/38Rty4uRa1wZjLjTDReb+ksGQ570LovqYSZjgfkIS91dJK8OxREJN5W1jDCZDz/RohbPD/yvZ1mctB8fgcMFIlEDjrPYzIHa2B3cBgbz6+s8geifMD3V935OPnPH0l177ezd68ZfCrBYYZDeRgglblsz8hevExxFwUNuvGq1/kwHgkT1mKNJVKFGUZwGbtPGDGeGSkCpkn2ZsMADt/BZRL+0KTIbX2HCxm7ULmUoKBOM6xDBL67YXT0UZ8ZoZodnIlIpocgeuVmpKuL4zSEeGVD8HlSUXJe0dtWQER7pvhHFJe0lUl1bo34q1Gwz5asIU1bql2U5GETrBNLifoiuS7DEbmLHkf0TcpAhQBigBFIO8gUMGEPPAR/g5mNV1Ch6GBbK7G76YNMQDhzftQDJ6wBB9CI/j32zWrjRlj+kChkCMuPgk12wzFlJE90a2d8KCpy6CZvPZGViPHTx3VC0rT3M0gpARH3rlX6UwoAhQBisB/AoH4208RefQSEm484f86O22ejdeD10H9MUHy+osdGoO7TdZKbjIJJ1D53E84X9kPhMwQ7yKBVk/6Yav7DinnTv783i86Y737fnASm0CSlDDoY3sscTwEiJ0/eVJiUkx7zLE9kIN1KIcJke0wyemApO0s4UzmR3pjbA62rCT9dGFER0x0EhMI5FoZGfBrqDdmOEmf38RShl9et8HkHAgW+0KWGHO9CeY4BkjawpZolQ/1Z5aBr+cpSVvYmlNLwdpSiUtTb4qun6xN98tNcXPuHXw8FSa5Nt1ed8S19geQEixee56cutkbd1ptBEdKT4wbJ5BbrzssAkdqUSRakQPjEDNworQlL8leWDcPGROHSX/uOA6KBSthsqC39NqSO26SHyzWeEvazpL5JwzYD+cjDSX7a8AhssUZuFwmtrBiAoKUGqU2vgazO2VIYYp4jqwMYcVuwDlE2gUlk7FEdL5LcIghAqLi8TWcDWLsg2CXLNjOsmaNobDoBtbMsHTnP/GlRC+SIkARoAh8QwiUNVlpOFtjtsP4WnIp/jBdyKg1buERMbC0MIOFufIvUSSZHTFxCXBysIOZMneJjayTU4LjL5eBHkARoAhQBCgCuYlAwt3neD09SyDr82dwdH87GJsK7/xsGRyjwlsL2hsSGRj/5gwOcrmjvkAGx8f1lxC2476Y3wCHymeHfNUMjrRxvrDeQMpocj+Dg1U6gWt4DNyV0pLkU25ncBCATZz8IFPWyM2POx2LIkARoAhQBHIZgVImy/nMvCztjS/17+O0HB4I5PL1/dPhKMHxTxGk/SkCFAGKAEXgf0Yg7WMEXs/eiPSPkXwfmcLks2pw2FZwR62dTSGXMdicb7uhTkIuaHCMjWoLjTZ7YIHjwc+mwbGi4QWE3P88GhxKExlmOO6H+gtrcMgVcvR46Y30TM1n0eCwKJwPbsTOFfgsGhwZE7bq7vvPocGR0fQGj43yRR/Ik24bfcZyV4ODy0zlx2fkRWHiuAKsouj//JmmB1IEKAIUAYrAl0WghOnvfM6q3ipWKFf53K+fp/38ZS/0b56NEhx/EzjajSJAEaAIUAQ+DQHyhCH27C18WLYLYBkoSpSA9fgeBoPkpouK+8DKKDK4DD++k40pYpMysK+4f664qMjlMvwS2xaJf4qLZm8LXQJz3UUla/yAaY9z3UWFVOUQS93YxHRsaHb+i7qoNNvlBWsLBSLj0vhLzG0XFdv+9Q3WJrddVLIPbqGUQ7GqQ665qMR5nYetJbGFTeUTg6wSVsA8bNNncVEh12Gt7g95xnXeZUXhuBgyZWtqG/tpX2/0aIoARYAi8MUQKGLqo8/gyNLcyDJV0b3WZnjkYvxl6ogvdo3/5ESU4Pgn6NG+FAGKAEWAIvBJCHyMStEdn3T5MWJ+PwiNhqgRAHKZDO47iduF0BL87+Ptxgu8tgbDcWDlcpQ5qhe4EkoXHur1FxQKVD7VX9f/1YwghBx+yesvEHJFYWaCmkF6QuXqkCCEnfkoPPHgOJjbm6PJFb2S9/H2FxF2J0yn4mWZ3wIdLjaHqYLlN5/Lyh5DzKtY3fnsitiiW5DehWJTxdOICU7U6h9wcKvqgO5Ha+uOX1fyGFKiU7XzA4o2dUMrP8HRhbRFhY4gMzGDt3Ul7fsehdHcpzwszeRgGQbT7A8iIzWDF7BkGBZVhxdB/WkCoUPacrfDvKUtITHICHVmVcL3g/Lr4/kCAbVQWkE0HppurGJgi7ulwH4Q3xTitkLG6PteEAzNanuK7tM7o3AsOr0UBEuz2olyuwVnFTIAx6LpQ8HthrSo06/wbOp5QViV4fjrqXFJv3YJh+4jdO0ZofCD4cCwcpQ4NFzXP8nvDOKPX+SzZ8i1saYmKLV3Oohla0JyBjK370PypSv8xMm9I1MqYb5EELPl29Z1UL+4DYYTCpMZC0swvyzShZU7Z0Lz8YXe+cTWEWn9l+ridoeGQR0Vonstc3CHvNd6xCZkIEOtgeu5H6BO/CgAT25u+7KIqPm77ni3662gTo/mcSUJQGoHL0SXWqCPv6kNTUaScO9wQJpzW8TaTdfFncMqQ5ORoVvbVJs+vKBoVnOOqgxNJiHfOLAsiySL8Ugy766ff3oFcBkaQReGYZButghJEBxjSHOzNwFDBF5oowhQBCgCFIE8h0Bh5TIjhVFjxdHP8/pN2sg8h4XUhCjB8U0sE50kRYAiQBH4thFIun4HiQ+eI+74BViuFjaS77vMFYsfchwK+E/m4/ebkBpTw+smG+LyJ4QUSWIdKnIGYRl4nhmEpPdJuOm9R9Tf1EqJame6QhUUi8sDjotsZa0KWKDByZa4v/w57iwmug/ZbWE5OHu6oPfpRtjb/yYe7RDIE13jOJTsXAT1fcrDv/U1vL8SbhyG1/SSqDa8ODZXOYu4d/Ei69N2++qhkJctlhU9jtQ4oWwg+/gDbzeGQwELLHQ7BHWmkbAmB0zU2tL+7npI7MrypzXoCJVgy7rc+aBYNJUDhocLrigbiSuKsa6lhkG/D4Lt7J6ie8S6lRzQ6aVg63q8zA4+S8dg+hqg2aNu/FuXam4UyV4SF9kaVwWS42nLpRLCoBxKHh7Fx0N6zDSydQU4mQwefpPBhasQP2OhaO0VZkooF82G2Zv7SNy42siSmAPr4AiMngPcPgjTs3tFlsEoWAppnSbD7PoqKB6fNIwDyCjTFOYNR4A5PRRs+D1DfDggqeyPSCrUBS43uwCpH4xvLSRUXIIUi2pwe+sFLp2QGwZLj/ASxAmnMBxDKoEVWfZyUHkIOiUOEeXAcsaLxyHCWYjbJJcFa4w+A8SYCU40dullITPvA7kJsY9tZngP0lcUAYoARYAi8NURyG+6RPj9wj8k0GtxfO7X71OFv8F5vVGCI6+vEJ0fRYAiQBH4FyCQFhKGt2TzCMBq1UJknLiDjxuPijap5IFyfv9f8GrqESRffy2+co5DuRM/40GP7UgPkXDe4ADP84Nxud52SdtX8se/zs2+OFh6j/DoXKK1fdoZWwqRDa6EryvHYXRMD8w29wfDivuTXJShH9tjkeMhSWFI8oNktKo1fIgoKblYo8aYyPBzcCvMdwyQdP5QOsox8klLzDPW+9CO417ZFj2P1YWPs3T/74eXQN0pJbHcNUDStrXHjUY8gbIx/z5xiQIH9NPavv4VwXGs7A5Rf/I7rNnDbjz5dLfLLknyqtaVAQjfdB4x++9Irn3JI6MQNWMj0l7osyd0B3JAvh3TkDR+JjRJJHPGuHGwWrkI3IwR4DKlXVnYuWugWNILMgnBWDJa6hg/WG9tC0ZEIAjnYocdgdzfS2ppwXEsIlqdhPPlmtrMEcP5qcEg2usSnJ99DylbFk5mhvAil+D0obzkvcnJ8yHC9Q84hpeXLC9Jk9dDvL2PzjXF8Owc0s3HIAl9YZtalu9v6nwarLzgv+Dbh14CRYAiQBH4dyHgrlysvaCsNEHjf7OuN3fjIaljvgkgKcHxTSwTnSRFgCJAEfh2EUh5/AKR+/5A8sPn/EVYzRiHj5O2IzNRX66i36QKGRwPWqzUlU9kv3Ky7yx/Yjhu110taetKjq18bjCCPDdL275yQKvHA7HNY7uk7SspB2j7rDO2FtpvlN+pnQUH9P/QCcudiS2rlC0th59CcyY4yPzHRrbBMqeDOdrWjlC1zZHg0IDBLxFtciQ4ZHIG40LbYJkzsX0VEzQmFgr89LoFlrtIEyC2BczgvbcWdtUi2S3ie869oQeK13HFzbnXJDM4yo+ogOQXKqjOBkvxC6h9tA2ejj2CtA8SlsAch5pXBuBFpxVQG2mb8IORDJkjoxDSay4YNSmeMWpZBMfQcRKeJsJyWa5aCG7yIHCi9BQyPAfZ3DVQLu6Z44eNJzg2t+VLgqRaQr8AOAU2kDIsBsdoENHiLFwu1pQkr8gE0xrfgGkOtrAaFlAVvQ3nD9K2sORujPC4B0dVDgQIa4pIx+uwTS4rTd7JbBFjGgS7NK1trKkXFFYDwZoQG1vaKAIUAYoARSCvIOCqJJmwhuRFlquK8ftZr3MjHppCCY68cg/QeVAEKAIUAYrAV0KAi41F4ov3+LhIbwtrtUpbotJ5rmQZQoHdQonKg6ZEs0BUo8JncISsuYmwXTcl9rgcPM/9hKfTLkP1h0CoZG9Ea6LTqx+x1ysQUc9iJFBh0PZpJ+z6PhBpseKn/CzDoueb9lhfKBCZ6eJNNtH5GPCqBRbzYqNiAsTMSYkhj5vgd5eDkptgp7J26H66DuY7HZIkWMp2yI9WayphnqMEgcFxaLywEir3LYBlzkaOLuRKs5eoSBEcHIfh4UIJy8b8+8UZFgD6a3U4/IuKy3+IVkrnF535/sfK7RTlv2RlcJD4pRobJTI4gFpXhBKVJy2XiQkWLcFBsn9UWw+JN+lagoPbuhuJ18X3BrmTLFcuBFbMgybsvWjtWVJSM2sVzNcOgSZRgoBhGaSO8oX19nPyQKYAACAASURBVO5gMsTkHCczRXzPXXA50hQcDMVnyck0plaIbBQA16u1IKowIQdYFAXq7wZzo7SU6yzSbBsjxnkBnIKlMzSS7MYhyeKHHAgOfYmKbXI5qdwkxJhrS1TSyumwMbFfD5nSUKz1K32V0NNSBCgCFAGKgBYBJ7OFX0WDIyJ13DexBjSD45tYJjpJigBFgCLwbSKQGRWDd1MWIzM6ln9CbupsB9OZAoHxoft8aDKJCKVwbWQDbP6dO5zm9+ZfP2y6UitSqb12joN1zeIoOEPQBbhVb63WA17f362bJ9wHe/JvBHlu4Z/k6zMRONS50RfmpnKYKBj4uu8Alz0LQ5u9kYX0loJ7DbIgyPz7BXfS2cKudiNZENnWhROyN7LaIr6MxFCjY4xWI4Mc4+Ny0GhRGYwIb8O/d235c5yd+SQbNkRIlMHECEEj48i4e7i/+Y1ufG0Zri4e0OUS3p2L0BFEZO6MXI4RH1vBzESGzbVOQfUkTkcS8NkLpnIMfd+KH39/zROIJQKpuulzUJjK0POFQIAcrBKItJiUbOfnYGZpgtZ3hfipanuRmZRucP0WzuaofVqY/7Xam5CpIfkoWYsP2FVwxfcbWyMtQ4PnrZZDw5ME+rhVpcJwny30D/1hFoh+qW5+JDujfkVYDxREYhOHjeXvp+wHWHq3AdOwjoD55J+gyb40xLJ4DtF0EZrJop4GEiKEvEkbs00Xt9rcjhdGzWqEy0roe0D32ulIAwMChswlotVpXdz5Ui2DW4eMlNH8JlLS1UhOzYTL84rZsOEAGRBWVCjbIY4qZnHrdWOR/2AZDmHugsaGfdwYyNJOZsOOAyeXIdJB6G+DrmCSH2WHDiSdKNbsntBf0xSa9BB+7RiZO0wctoOVexicj76gCFAEKAIUga+HgL1ygdZFRfiNw/+N57U4Pu/rqJTxX++iP+HMlOD4BLDooRQBigBFgCLwvyOg4Th+sxY5ajYYYqM5VZr5/zjkd5jYW8Bxjt5FI/tZHnfeAKsCjsi/SNg8G7cHbf1gUdgJ3y0TCyISt47n827CwdMFxefrHU4cbUwRn5SBd1vf4MGK+3Cs64JK8/UOJlnneLr2Oe6veoGSnYqh+pzS/PVkbzcWv8TDTS9Rtl9RVBlTVDS3c9Me48muYNQYU9rAwSTrwLMj7uPF8Y+oNbUUyvQQ6x0EDLyN4IvhaLawooHDSVZ//y6XoHqYjGGPGkti4986CAmvk9H/keCQkWULG5OQjvRMDfwbn0NKeDp6328i2T+g0VmkJ2Wi8xXp8U82PMb3a3xaWozyYtODkClNUeOgdPx26x0wcbFB2Q0toZCxsLVSICJWsI0l7UWPDVB6WCP/AiEzJHuTsQzChywEU8gNDmMN7Yb54+48RtIuf1gUKwoM+EF8fdcugzu9H0zxSkBHvcOI7sCbf8DkWiBQsg7SG+odYLLilnf9IXscCHXp1kj83nB+hEQzf7ASeHMcKcV+QNJ3hg40ZAzbt/NgprqE+CKDkOnaFjYWCqiyXbu9agxMk+8h3olkZugdTrLO7xA9BCbpTxDqelZy7RxjewOZHxDpqCdWsh9om9YJMiYGUSanJPvbZXQAK09GpsVJmCkF5x7aKAIUAYoAReDrI2BjRly3iIsY8VHLap//dVyK3unu66OQ8wwowZGXV4fOjSJAEaAIfMMIaNLSEJYo2JBmbThjV+2ARsObj0LGsrBZr7fuTDh0FfHbTkMwjQVkChb5tv+i6x7jdwnR/lf5OPkzzpooUHSf4KhC2qtfgxBx9Cn/556MQMpFKp/soz/9kCBEXXrLx8iTDqWNKWqfF1w/SLvR8xhi70Xy2h1kK2fhYo2aJ1pDaSKDtbkcW6sFIu5lHG87So6xKWqD5sf1xMC+2n8gMVjrfsEArhVd0fSA3haWlL2k8htYYfxCDfOj7kY9qbKl2BFkJAtx8v8yHYqgpk953fx2FD+AjHQ1P3/iklGufwlUnFYGFko55DIGPo57eVtY4dE8g1pTyqDkoOK6/r6FAqDmMnkBS+Ki0XBVTXi0ctXF95cgwqsa7fWz8H7e0eDuO1Vhl2DpS2xbORZNHgiOKFktyNMXaq36hQwsvG720sUI0fR6+lloGJK1wUHGMKh84UddnNjChq8/BTUZm6ytjEXRA3o7OvXJq4jcdhyENCP9WZkcJffO5kmaRKLXEXgEySfO6GxtZXIFzJbN108ucBNw66pQ9kPwkZsCk1fo4lZHFiHz9S3+KRi/kTe3RnL/tbq4zYmxQCixjRWqRxQWLojqmFV2BThf6A0uTi98yti4Q9N6F0+ikTm6Xu8AdWoYnxXCfyJsyiGi/Bp+fHI616cNoUmL15ZKc8ggtrHueltat9DaUGck8DoiBMEM6/aGtrGxlaHOJJbBwu2TbtsH8TK9baxtChEuzeSxZVgGacqRSEI/3fXZ/aVtrAwMY2Kw3vQFRYAiQBGgCFAE8iIClODIi6tC50QRoAhQBL5xBJJv3ELivftIvHAZyqVESwOI7j9JrLmh0cB+k7ARDe48R1KTI//uKXz8RZss1fBs4LAsigWM4p05HvbYIUJNZqWE59GeSAoKxeVhpw11HTjA2sMCVY+0R/D653iy/IahbSs4OFdyQ9OAljjx00U83f1GNH6xTgX5zI8/OgQh4ma4wfwJzVJxTHmUH14c++udQMKbBJE1aIttDeHsZQvfkoeRlphhOD7HofuVprAoYAG/IvuhURtqepBXfd524PtsLHBAqPHJ1sjLAR+EzIHN+ffyG1vjeN/3Qv/9xfzFcicaoMNLITPhZLntItFWstlu/EDIfDjnuUVSU6PeTYFguu6lJwOy5sBpGFS7NFBY29ZLRMYhDKNBsYNj+XhYzxmi+TEcA9dt0/nLThg2Rnx+FrDyWQyoVGBWk7Iow+tnzM2gGefD28YygfNEtq6snQsSey6DxZODkN/YJNYUcSqJuOYLYHtvHkzekywIg3olZBZsDJnXdHAXBkAWf1dkOZxYbACS3PrC9XV7INHQNpZcVFyRlYJt7AcvaDSGmiDk3lIVIE44heEYWQkw0vwgmEQ5CSUrUpobpH+s+UM+/pe2scnENrYz5BZNwFI9DtF3AH2DIkARoAhQBPIWApTgyFvrQWdDEaAIUAT+FQikvX2HkBlz+U23csnv/CYz6pelEsKQHOw3zkP8tvOIC7wovnaOQ37/KXg3xhfpL4imhFHjgGKBY3C7pS8y4vWlDbpNNMeh+sUfcbr6bnCpRgQCOUgDNLr/A05W2Kl9Nm80vgbo+q4fVjpsl7SFJbvyLq87YquRXkfWKCTbpM/bjjm6srAyBj1feWO9O3FlEV+ewlyGPs/bYGvBfZJxS3crdLjUBBs8xKKgZDSPRh5ourkqthTYKyaPOKDSuHICASNFcABodqolT7AcL79DQjSUQ9MHQmnI+SpbJJaGQ70bfQXyqft2CdFQoOrFH3lb2LiAW6L+hEApFjga8T47kXzrmcTngoOr70wkzpoDREgIxhJdjhWLgfnDwaSJ7w2SzMHNWAfzVT0kHXvIvZv88y7Y+hJdDwnXFI5DbO9DcDzcgM+oEV+ABuldg2B6tKqkawrRAImqcwnO9z0NxeKyBmIUCCt7Gc7BFSRtZTnWASqP03CMJKKg4ptHw5ZBtP3OHF1T0s37Iwkjc7SNjTEP5AkUu2TBVcXU5TBYk5L/iu8nehEUAYoARYAi8O9FgBIc/961pVdGEaAIUARyFQGNhoMqKgaO9jaQy2Q5jp326jUid/iD/MsTHBOnIHrRZiA6TrKP/YZf8bH/UqgTk8VxDsjvPxkv2i3lyyfEu2gOxQLH4pqXoeii7jgOqHZxIE5XIBkIUrauQPsXfbC/yFZp21gN0PxxT2wvSDIcpPt3ed0JvgX2SfYnJQE933rnSFAQfHq/65gjwUGuY+CH9thaaK/kJpbEe7/tgI0ehAARb3IVSha9XrTD5gL7JG1flY5KdL3VUpLgIGNbV7BDjcU1canlQUmCpWDvMlAqU/B2y1PJtfPc3wlv55xA0hMxOUWyDKpd/BGveq+FOkZb2pNtFBIvETgaEf1mQU3EaI0bB7j6zUDiiLGSjjXkcMvli8HMHCBNUJBSpunrYbaiC19yI3VvCQQHEX4VY0vuhrheB+F8uAEgSXAAEa1PwzmoJl8WJGoMkNb0GkyvSRMYGoaDquxNOL+vIGnrqmFZRHjczpHgAJS8LWwWQWF8fjVrhnhlznGN3ANxJqtgl0wIHlIS5gmF7ViwpoKIb04tU63+f78fcvVLiQ5GEaAIUAQoAhQBIwQowUFvCYoARYAiQBH4SwTOX7mHsbNWIzkllT92+pg+6NxaL9qZNQAXF4fEx08RsXajbkzlYh/+v6MH6PU0dMdzgMPGX/mXwV2IHodRGQU4FNg9BfEH7yB84xnRPMkms/ihMXgz7QxUZ1+J95Acg6oXB+B6x6OIfxktjjNA97cDsLviNmREiZ/yE86g0d0eOFB6P9LTxLawMhMGHZ90hF/h/bx+g3FTWpmi84NWOWZwWBWygfe5RtjgcUDSNrZwHXc02lEVWwrtk7T2LDu4JCpPLIMN+UlcvIlusqkm8jd2xeYCho4w/Dw5oI+2RGVf8d2i/qSMocPzLvyhJ8qLy38IOdMkK4PDc7NkhkhdbYnKNa+1EuMD1YIEHY5nrZdI2sIWDxyDjBNXEOl3XKIEhoOb30zg4GEknpIQ2uQ4WK5YArnfKqhfkxIR419AADdtHSz8xoKL1etn6I5iOSQP3QXbnT2AjESJzwiD2F4BcD7aDFCLbWGhMIGq2VG4XPQSlQ+RwViFDTTNT4O5+H/t3XucTfX+x/H3nvsYZoZxPSW345TcuqgTnXIp11wSKnfliIQUIRJSyqEkxAmVSxLhSIVESqg4ksIpJeQ+LuMyY8xt/37ftWf2mNlbkWFm1nqtv6ZZe6+1Ps/PyuOxPvNdn09Vv2Nh08Ku1+GKM1Ryb3WZ13myb0lRDXU8arRiYs3YWN/LOxM+wBobGx1f1e/I37j0sbDR8VWyTvux7g23jkd4XmE59xWX4CKvKbDAzXK5SvjxkPbsO6zG7Qdoxdyx+kvJon4/wy8RQAABBBC4nAIUOC6nLsdGAAEEbCBwJjFJd7bso14Pt1T7++7W6nWb9fjQCVr+7hhdXapYlghT4+P121NDlJbgWY0RFB2toKEjrJ+P9xiqtORU78OWqQeEliqugs97mknuf/BFpZpVGhkPa24pvFpZFX3G8xrEzy3Gye32NCj1PIO5VbhBNRXr7Wn0+fUd07KMjTW/K9/9NhXrYJbwSytvmJ2liGDKEfU3d7CaiBYIDdTc8qbPQuaTojl+w+87egsXc8vPyzY2VnpwZ2aTUp/XVNxuddqd2ahzRtkFWazMgpBOuz09MMw29aqFmUUC0+xSAeq6zzM55r8vbdUPUzJXSXgajWZ+f2W3Tdq1bJf3WFYbVleAuu5pqQJhQVrY6FMd+PZI5lhY08Q10KVOOz09OpbV/0jxu09n2R8cEqDmP3iu/8u7Fish9txVFm6FhIeqztfp++vOUcrps+d8363QyAjVXOnp4bGx9nSlmSJA+pO4ub7wCkVV7W1P/L+0eFWp5+ZWbhW5uYxKv/CAEpNSFdtlhOfeOCc/hW6rrIieHv+E3v1kWpRkPOib4xe6u57UwjP21jWim9xuV5b9Gpa56qfApHbZVoG4ldB7rtczcmaLLC+pmFePTnb6wLu/+JK7svXYkA43z5xOUmJNZrNZ8yXTLNXdbKM1lSfhbKr1mkqWKSUu6WCVDdbxIxLfUsHDniKhtZlGqwEuHSztKdpExQ9V0Jn/ZBm56wpwKzbme2t/ZGpXBSR+c87/d+b7AToe7unRYaaluJN/yjI2NjAwWEdDN1n7Y5LuVmrKQc/xA4oorORSuQJjMq8n/ae2PUdqyzZPkZEChw8Pv0AAAQQQuEICFDiuEDSnQQABBPKrgFm90fPpcfr2k6kKCQm2wmjSYaBV7Gh/X+b4UPPQFn8mRUeHPitXaJCC+/mu2DDfPdFvtBRZSFHDevolOdRjgkJKRKvwiI5+9+/u8G8FlSuiq0ZmFhcyPmimdfw2/isVuOkq/W247wqTA4t26+dxX6tIvbKqPDxzgklMZIhOn0nVT9O369ep36ncA9eqUv+bfMbCfv/yz9o5d7vKP1hJVf2Mhd387Db9tPhXVetZMcsEk4zrWzdoi/Ys261bn6qm8n7GwppCxeGvDumOF2/MMuEk4/urOqxV7LY4PbDpHr82ptnpyZ0JenBzo/Rij0vFo0N19GSSUlLT9HHT1Uo4Gq/W6/1/f0XjZXInpanByiZ+j7++xTKlJp7VP5a38Lt/QyvPQ/8tC8xrHb7b9y3nyBUTpirTfMemmk/v6jxFgSWLWGNhTQGmaKFQHYrzrBoKCgzQkcfGyl0yWoUHZ04AOfcsZ58eqoBr/qLgRx/1PfmPG6WP5sh19V/lvt/33ov4/lO5v5kvd+nqOtPAz/5tCxW0ZYHcf62vkzUyp/NknKjg9pkK271EiWWa6XSlzAkyZn94SKAidoxT8P5lOlmmg9LKdlREeJCOnMhcNRR9YITCT3yhk8X6Kj7GvBaSdStyop9CT23UyasHK15+xsae7ilX2nYdifQ/NjbK3VnBqb/qSNAXfnNzQWNj0xKUXHiFVTTLPjb28JE4HTx8VKbQQYEjv/5rz3UjgAAC+V+AAkf+zyERIIAAApdVYN6S1Xr7vaX6eLaZu+7Zeg8Zr7KlS6lfD89f6M2WeuqkDk2fKXXs6vnvcZOUsGNXeu8Kz6z2yHq1pFYtrf3HnpmslL37rb98e0aPSjHt71Fg/dus/ft7T1JqbFz60T2vf5Qe0Fa6qYL18662E5WcYB5+Xd4BIuZ1lYztu0bTlZLRWNT88dnt0o2ru3v3r/3HLKUmm1cLzOhR00LDpdu/fsjzMBoepEXXTfWsGkhfGWBWRNz5TeaDq2lMalaUeObQmxUTgar/Xebo1I8qzZPpo5C+V4GuADXZmlmUWVhxvtwusxbAZf1VPigoWPduz3zw/7jyPKPoic3lssbeNtiYuX951Tlyuf6/j4RZmSC3QqJDVGdNGxUIDdKxtQe0vtsyb98Qc4gCJQvpto899ofm/aSdr35hfTd9Kq0iyker2mzPiopdk9br0Ltb0lcFeEarFq5ytSpO9hRGDr64TMc+/1+W1TZFal+nkk838uwfsFAntu224jIjdc1WsuUNiu5a15P7gZN1dv+h9Nx5gEu0aajA5p7cxw0Yq7RjR62fPYNj3Srdv7PcN1Sxik7JwwYrLf60ZyBwevyhL0/w5jZoTE+ZMcXWSF/TP8IlpTyT+dpUxJT2SrP6eli4lqN5HSVjK/p+M2ucsbly6xMBLh1t/ZF3f4ml9ZVm5d6zP8AVqEONV3j3l/zqdqtljGe/WTERqJQGX1tFtKSUVJX4Xw250zz3ndkfGBSq/RXXe79f/MANngJVuoDbFa7YUl979xeOq2rdr9ZmUhgYqSMFPU16I/S5ghN6eWM3ZwgM/ouOhnySvv9NBaWMs/5/s/xcLgUGldMxeYpTkRotV9Jsb2zWD8HVdUKzrf0F1U+FCr8oV0CU93oyfjgUe1z12jxBgcNHhl8ggAACCFwpAQocV0qa8yCAAAL5VGDanI+07LNv9P5Uz6smZjP9OAoWCNfw/p6/ZJ/5fovi161R/KaNCh71uvW7Uz37+/RlMA9tka+PtfYfemion74RbhV/a6S13+rJka25gGkFedVcM/JT2tHCd2ysSwH66+IndGjeFu2bvM5HPDDApeoru+uXUWu0b/EOn/O7ggPUamt3fdpqsY59d8Dn+yGRIaq5sp2+bLhYZw769mUoWDpSNT9spuU1FqcXX7IeIubmkqo5q7YWV12klLO+U13K3VfWGju7rPI8pZkRL9m2G5+vqVIty2hFtXc9D6fnbKYQ0jB9bOtnN8/yM5nDrbqbPAWa9bUyH/a9h3C7VXO9achpXvd5w3dqijJ7Zmxt9KpP3waT28rLPK8b/a/pK357elz34ZPW/gNm7Gv2M7ilUrOHWfuP/dPPSGG3ZBrSmu1s/94+3w8IkIL/9Zq0cakCls73vT6XS2lDpil03QwFbFrqJ/fBiu8+U0W/GCD3QU//iXO3gMAIxbaarxKfd5Y7fq/v/vDiOlj3XZXa0EhpyVnHupoPuwtVle54S0Hf3Ky0tOz9XtxKjGqhuFLDVOLgjXJnb6hrVkcVHqT4Au0Uc7qaqXtlzb3cOhbleSWlSGI1q3iS/d6Ii/Dsj0qp6tutxS3FBafvT67iN3cngj0mkUlVFBzeTMFhTRUQdneW81Dg8Lkt+AUCCCCAwBUWoMBxhcE5HQIIIJDfBC5kBUfKsaOKX7vGCi3g7qZSfLySPvvST+NJt0KaNtTZbT8r5ac9vhRuKaJlPZ1esUlpcf4aO7oV2aa2ji/aKHdikt/vF2lXSwdnbvJ9SLSeMt0q9dAt2jNts9/Gj6ZIcF2vGto+YaNv48X075fpfqN2vr7F71QR85Hyj1bTjolbfQoQZp9Zi1CxV2Vte22r36ah5jOV+lTWjok/+D1+QEiAKnS7Xr9MMuf3MzUlKkjXtK+kXVO+83ubFbymkIo2Ka+90zz9FbJvhaoVV9StV2vfm75jW009pXjrqgqOClHsrK98r88tFet4m5JPJOnEh//1WyAp2r6mzm75Wck/+xYIzPELtqqjpC82KDXOd+KOiTas+d1K+2yl3El+xr6aviINm0hrlijAz8QdUxBy175XwRsW+M29qQgl39pGBbZ6Vipk30zJ4EzlDiqw422/DV3N5+MrdlbEb9P87jfnT63QXcH7JnlXtWQ5h8ut0zE9FHFqsv/zuwKVUPARhSe+7vfecQeE6UzIwwpLnuT3/KmBxZUU0FphaZPOM1b2JiXpNoWl+tvvVmJgO9Oxw7s/MLyNAgJLZblWChz57V93rhcBBBCwnwAFDvvllIgQQACBHBXI6MGxecU0BQcHWcdu2PYpdWrTIEsPjhw9KQdDAIF8J0CBI9+ljAtGAAEEbCdAgcN2KSUgBBBAIGcFEs6c1S2Nu2vgY23V7g+mqOTsmTkaAgjkF4HklFSryWijdgOsfj1mTGxwUGB+uXyuEwEEEEDAJgIUOGySSMJAAAEELqfAqrXfWo1FM7Zn+nZU23vNaEw2BBBAQLqlcQ8lnPFMvDFbkehCWvOfzMavGCGAAAIIIHAlBChwXAllzoEAAgjYQCA1NU0HY4+peEy091UVG4RFCAgggAACCCCAAAI2EaDAYZNEEgYCCCCAAAIIIIAAAggggAACThagwOHk7BM7AgggkAMCZjxoalqaggLzz/v2R46dUESBcIWHhVyQgPl8wYhwhYVe2Ocv6KA58KG0NLcOHz2uokWiLsr/6PGT1tljCkfmwFXkzCGSkpJ1/MRpFS8a7X+CTc6c5ooc5WJiMTk8FnfSWhUVVSjiilxfTpzk1OkEpaSmqnBUoZw4HMdAAAEEEEAgRwQocOQIIwdBAAEEnCuw5JN1Gjd1vlbNH5fnEfbsO6QeA1/R7r2HrGu9r8mdevbJzudthrh2ww+a+NYi7d1/WIlnk1WzxvUaNaibVezI7c1Mt+n/3GRv34Nh/bro/mZ1zntZ5kF6+rsfaeb85ToWd0oFwsO0YemU3A5DpkA2eeYHmvTWIutaTO+GiaP6qvr1Ff7w2jIm/Lz+4hOqXbP6H37+cn/gYmNZv3Gr+gyd4M3hLTdcp/6PPqAq15a73Jf6p49v+mwMfP7fMn15zFbt+gqa8Hwfq8jGhgACCCCAQG4LUODI7QxwfgQQQCCfCphiQbf+Y7X3QKxKFCucLwocjzw11ipOvDComzXx4f7uI/TsE53UrEEtnyyYv05Xv6urej3cUj06NteZxLNq3W2YWjetrYcfbJKrWTuTmKQ7W/axrq39BU62eXnKPP1n2Rr16NRCjev9XUnJySpZrEiuxmFO/u0PO9Sh1wuaNWGwql5XXq9NX6iPVq7Xp++9ooAA13mv78dffrO+Zx6480qB42Jj+WrTNsUeidOdNasrMTFJz42bIVOImvzSE7mel/NdwLQ5H2n+ktWaNWGItQLq0UHjVO6aUho54OE8e81cGAIIIICAcwQocDgn10SKAAII5KiAKQCYVzdWffmtps35MM8XOE6ciletZo9p9sQhurFKRcvihfGzdPDwMU144XEfm4zxuM8P7KqWje+w9g9+caoCAwNz/WEuY+XCt59MVUhIsHVtTToMtIod7e+r7xNL7NE41WnVV+fGkqM3wyUczBRetv+8W9PGPmUd5fCRONVt3VfvTx2hShXL+D2yieeBHiP05CP3a8QrMzT22UfzxAqOPxPLuQGa1VCDRr2h71ZOv6hXji6B/6K/aop8Devcom7tm1rfXb76Gz05/HX98Nlb+f7VoovG4AsIIIAAAnlOgAJHnksJF4QAAgjkL4Glq77WmMlz83yB45dd+9S8yxCtXvCqisVEW8iz3v9Ei5evtR6m/W2v/Huepr/7sR56sLH1sP3ShHf0xpj+533wvlKZm7dktd5+b6k+nj3ae0ozxrds6VLq1+N+n8tYuWaT+gx9TQ+2qKefdu5VaGiwmjeopeYNbr9Sl3ze85jXbApHFdSQxzt6P1O5Tpfzrsowq1e6PP6i7vh7NWsFixlPmlcKHBcbS3YUU9z4+dd9570fcz1Z8oyDNYUyU+Qw27afdqnNI8O1bsmkfNVDJC9Ycg0IIIAAAjkvQIEj5005IgIIIOAogfxS4Mh4feDcBzFTKJgyc/F5izPmFYKnnpts9RlYvW6zbr+lisY8+2iuP8iZ1wSWffZNlgdh83BdsEC4hvfv4nP/vbPwU416bbZVELi2fGn9uPM3TXxzkf41tIfuueu2XL1fzWtD11a4JkthxjxEmziyX5t5fcPEaTZTRn2TOAAADQFJREFU1DCvsOSlAsfFxJIdPWP1hlnJUrNG5VzNyflObnqMVKn7UJbiU0bh8NP3XlapEjF58rq5KAQQQAAB5whQ4HBOrokUAQQQuCwC+aXAkfEg9vnC8d6GiL+3giPjlZY3xw3U32+sJNNzpNfg8fpruav1yvCel8XyQg96sSs4TIHjvcWr9MGMUd5TmNUCpu/Dq8/1utDTXpbPmYKFaSw6uE8H7/HPt4Ij4/UV0wclIjzM+vyM+ctVp9YN1mqUjFUFl+VCL+CgFxPLuYczzWxNcWTYk511f/O6F3Cm3PuIKSi9MOifalC7hnURrODIvVxwZgQQQAABXwEKHNwVCCCAAAKXJJBfChz+enCMHDdTh48c99uDY83X36vHwJe1dvFERUcVtIzMBJIJby7K9ekjGT04Nq+YZo0XNVvDtk+pU5sGfntweD//6XTvxBjzMG4ap04a1feS8n+pXzZ9K378ZY/16o/Zfq8Hh2koOnvBiiynHD9tgZrWr6mmd9e0XlvJze1iYsm4zoweFnmxP4o/S9ODo1HdW/XPdvdYu+nBkZt3HOdGAAEEEMguQIGDewIBBBBA4E8JmOXqKSmp1qsSZkzs8jlj5Apw5dnmiCbIf/Yfo8iCEdZfoLNPUTl1OkEPPTFaXds2saaM7Dt4RA0e7K+enVvokQ7NdOZsknoOGqdCBQvk+pSLjAaoAx9rq3Z+pqhkj+Xk6QTd1eZJdW7TUI92bqEffvxV7XqOtPpetGt515/Kf059KXPyyBBVrVRe46e9r49XfuWdorJh8/80etK7enlYT5W5uoTPafPSKyp/FMvb85bJ9EMxE2PMZvq/mMa1g3q1U71/3OSNzfQkMWN88+I29Z0P9f6Hn1tTVAqEh1pjl5mikhczxTUhgAACzhSgwOHMvBM1AgggcMkCphlii4eGZDmOGbf60uBHLvnYl+sAv+45YD2QmdG2Zru30T80vF8XaxXEiZPxqtX8MT3Tt6Pa3ut56Dd/nZ71/gqZkaRmM8vye3e9L0+MV1219luZxqIZ27nX7S+W9Ru3qs/QCdZYVbOZwsbAXu1yvSBlCmUT31qkKTM/sK7LPNi/Maafd9LNZ+u+tV4NWjh9pK6tUNrn1shLBY4/imXM63NlXi/asHSKFcdz42Zarw5l3/Lyao74hESrD8oXX31nXXaVa8tZK6CKF/U07mVDAAEEEEAgNwUocOSmPudGAAEEEMgVgUOxx1UwIlwRBS7sr+RmLGlkoQiFpo9kzZWL9nPS1NQ0HYw9puIx0d5XVX7v2sxoXxN7XlwhkHg2SceOn1TJ4jFW89D8vNkplvPlwbzylZyc4u1nk5/zxbUjgAACCNhHgAKHfXJJJAgggMAFCZh+DKmpqar0t7IqVbyI9zt79h2WWeFQu2Z163dmuf3e/bEyqzLYEEAAgT8rYAo+W7bt1M49+3U2KVlXlSxqNe41r3uxIYAAAgggkJMCFDhyUpNjIYAAAvlAwEyoMNsdf6+qKaP7ea84Y5To1tVvW78bPvZtzf9wtTL+Ox+ExiUigEAeE9j0/Q49PeoN67WwEsUKW6s+jsWdsq4yL7+Kk8cYuRwEEEAAgQsUoMBxgVB8DAEEELCLgClwVCjzF/2ye79mjH9aNapfa4WWvcBhGlkmp6QoqlCEXUInDgQQuIICGRNxKlUsozFDe1jNSM1mXpN6bfoCFYuJVt9ura/gFXEqBBBAAAG7C1DgsHuGiQ8BBBDIJmAKHGb6xqKlaxQWFqo5k56Ry+XyKXCY1RumMeUrwx/DEAEEELhogRGvzNC8Dz7T0ndG65qrfCfgmCKqmcQy9F9vqtw1JVWx3NVa8sk6HT4ap/Eje1NcvWhxvoAAAgggQIGDewABBBBwmIApcAzu00HXXFXcmigyaVRf1al1g0+Bw/yF9T/LvtSq+eMcJkS4CCCQEwLNOw/WVaWK/eFY5dbdhmn7jt3WKc2/RYGBARr5VFdFRbJ6LCfywDEQQAABJwlQ4HBStokVAQQQkJRR4Gh/393q0OsFnTwVr0VvPq+5i1dp1GuzvT03KHBwuyCAwJ8VMBN7qt/VVZ3aNLRWjP3eZgocZlSzKbYWiS70Z0/J9xBAAAEEEBAFDm4CBBBAwGEC5xY4TAPAjr1f0Ogh3WXGPlLgcNjNQLgIXEaBWxr3UKO6t2rkgIf/sMBRtVJ5DXuy82W8Gg6NAAIIIOAEAQocTsgyMSKAAALnCJxb4DC/fmzwq9by8A6t6uvlKfNYwcHdggACOSJgVojFJ5yxVoj93mZWcFDgyBFyDoIAAgg4XoACh+NvAQAQQMBpAtkLHD/+8pvu6zrUWhpuxjdmjIXlFRWn3RnEi0DOCkx950O9OvV9jRvRSw1q18hy8FOnE/TrngOqdn0FUeDIWXeOhgACCDhZgAKHk7NP7Agg4EiB7AUOgzBo1BvW9AKzUeBw5G1B0AjkuMDZpGS1fPgZ7d57SI91uVe331pVqamp2r5jj6bMXKxW99S2xsRS4Mhxeg6IAAIIOFaAAodjU0/gCCDgVAFT4BjyeEe1a3mXl2DPvsNq3H5AlgLHhDcXWqNkmaLi1DuFuBG4dIGTpxM0YfoCzVm0MsvB6t1+o3p2uVeVKpbRA91H6Ppry9KD49K5OQICCCDgeAEKHI6/BQBAAAEEEEAAAQQur4Db7Vbs0RM6m5SkEkULKyQk+PKekKMjgAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UoAChyPTTtAIIIAAAggggAACCCCAAAII2EuAAoe98kk0CCCAAAIIIIAAAggggAACCDhSgAKHI9NO0AgggAACCCCAAAIIIIAAAgjYS4ACh73ySTQIIIAAAggggAACCCCAAAIIOFKAAocj007QCCCAAAIIIIAAAggggAACCNhLgAKHvfJJNAgggAACCCCAAAIIIIAAAgg4UuD/ACF2Ly02wBqRAAAAAElFTkSuQmCC", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "a": [ + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125 + ], + "b": [ + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625 + ], + "c": [ + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125 + ], + "hovertemplate": "Fe=%{a}
Ni=%{b}
Cr=%{c}
b0=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.3490356679162232, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.302727188114675, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.2256744854157375, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.579237151284946, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.4956545678951416, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.1549666408202321, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2289747851976736, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2830698128833613, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2074836325870342, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.2231658232392213, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.079893094524451, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.1783204484785976, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.2781598159299712, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1414415247506944, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.1887299068893928, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.202189650149858, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.203021470832302, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.0264787785015148, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1228379321115558, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1051901538811966, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1553818246424343, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.1770719783950725, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2438090393943089, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2049529372409604, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2871461141723155, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2831346835783903, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.2512151906721192, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.400437417551112, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.4859692818384262, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.5585430605828807, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.406092645151004, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.197223936909217, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3777927141749469, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3616772164880875, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.3775347957179764, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.187691106567414, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.2265862394737832, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1453838962360978, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1340761655286788, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1634199358867328, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1092181924055222, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.1808547965724958, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.0060686340719636, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.035008229782981, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.1672412735877336, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.172276132061266, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2250357567181078, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.2284545220201963, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1528780321854275, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.1465568793681664, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.0485796389923945, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.1831382452108319, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.2313824939960567, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.180117743073395, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.232746413991885, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.2439362107117868, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.0454882476976362, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.2285754710136592, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.149784004462137, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.225355615598339, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.1710317036263937, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.6184950613793316, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4404162454027343, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.4602755178370588, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.231339191599495, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.3052820238219884, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.278188737384458, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.327695272789155, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.3047315459449649, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.2290329878782913, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.187695919097429, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.0947230834576662, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.2396867583442457, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.3832468145705699, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 1.506101369807737, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 3.278801496684366, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.4744966729524882, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.234519506274075, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.2249736313717612, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.3688931358524257, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.213337756397407, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1819331526066932, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.1296332583354174, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.198706904336841, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.102044812014857, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2148419220592703, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.2268100268699438, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.444084632006384, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6391767350946347, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6951809850795365, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.6252072955325152, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.569343864836338, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.2998803882757672, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3719491178883505, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.3043482038603271, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1490593513376917, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1982298261143995, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.1922139714456224, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.356578814395837, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.265483065418641, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.192276804165295, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2421532960933346, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.2884258983382775, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.1675810983604955, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.197407038020412, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.1938080654862662, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.0964636829515675, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.161494159366167, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1214576316419944, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.1241565192427623, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.253413472681642, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.3354941764542614, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.2453795491057145, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 1.4968049247001187, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 3.181735675948858, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3980174842689526, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.3328098420158014, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.160546916415697, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.2803122387663028, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.402296523769419, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.4680980431821937, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.2099598708478738, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.1312096599955033, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.3484262952226025, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.2253375111642064, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.7319287215404005, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8056197257529798, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8126958143106966, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.8197189106051244, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.677999993842593, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.6934159903431163, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.3470252173127475, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4278459671906512, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.4307274349143857, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.40570494905431, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.3767925228408175, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.2946376239557167, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1516244640835507, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.1478423573536765, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.267771409502467, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.1876409479460446, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2022504705981696, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2265248731004688, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2432829067021933, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2233332231576357, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.2218777137255699, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1973804829868369, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.1326803171521902, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.0941182910785066, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.1594080637989017, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.2322264853296745, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1518668604462703, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.1657530556692484, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.5115267920256201, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.7176436443511913, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.6787697324980846, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 1.9169578167454961, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 2.0180174956251897, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.6730992646945784, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.7635300542899512, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.2762092227795285, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.7248388359316635, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.760343873304335, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.6006015944729481, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.4649821256502575, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.212749072838667, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.346548334475759, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.0840023507124144, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.3525871535413903, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.2624760442323455, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.1403211242600009, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.0986294324916341, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.1831105130847155, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.207269224117995, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.2248237673560005, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.1662064812718174, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.258372069947023, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.0700634856846196, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1080445868736541, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.1293549337197382, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.2260982825021953, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.137758459930352, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.2960483663305187, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3048478283020684, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.3769605151823392, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.6108931688299184, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.5931801469207778, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 1.4241791389825698, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.841373937408712, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 2.0422625915608923, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.7451294119424898, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.6706058236185857, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.7021855659209146, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.6262085357072162, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.2183169768988587, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.5628460819424752, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.1777430949767536, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.103065015161773, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.202987544564067, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.1499204760504536, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.3423726805277754, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.1039244925819445, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.180656267124656, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.2825930812106974, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.201981681402278, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.232394771890126, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.1345458506090769, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.2434797532077648, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.1252838729398176, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.114130344919223, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.211889891506134, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.2716051992460617, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.1719045902232978, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.151885320199051, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.1579879614819, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.2692105084143404, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.3814136601996967, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4743219434511114, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.4492786912414466, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 1.6420465447861408, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 2.973658536563259, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6680755824237976, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6473257927196994, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.6936251266280284, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.3818336286076542, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.1218026476107097, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.277089585938174, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1870641344796615, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.1436184264456462, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.2052310805047448, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.121349501343765, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.1748308866165127, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.2628755936372638, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.3311968766717068, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.165605052597361, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.1416332729908976, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2275359873545564, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.2357377676775947, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.198105258005905, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.18008699509524, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1169686492897148, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1029968916968103, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.1967502532364904, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.2491689429355353, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1823803655105878, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.1635935805243938, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.424605426812594, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.3867014298467042, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.4278256522175239, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 1.674387838028183, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 2.5624621409336386, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 3.1070556986905387, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713, + 1.5247681580940713 + ], + "coloraxis": "coloraxis", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "showlegend": false, + "subplot": "ternary", + "type": "scatterternary" + } + ], + "layout": { + "autosize": true, + "coloraxis": { + "colorbar": { + "title": { + "text": "b0" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "ternary": { + "aaxis": { + "title": { + "text": "Fe" + } + }, + "baxis": { + "title": { + "text": "Ni" + } + }, + "caxis": { + "title": { + "text": "Cr" + } + }, + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + } + }, + "title": { + "text": "ORBv2" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAFoCAYAAACypkvfAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3Qd8W+X18PGjLXmPDIe9V6GUtrQlZUOZYW8Im0AKCStA0oRAwgiEMBP2Juy9VxmFUkahhdJS+AOlZcdxvJcsybLe91xb8pIsWfvKv+fzeV9Xvlf3Ps/3in/s4/OcYwmFQiFhIIAAAggggAACCCCAAAIIIIAAAiYWsBDgMPHTY+oIIIAAAggggAACCCCAAAIIIGAIEODgg4AAAggggAACCCCAAAIIIIAAAqYXIMBh+kfIAhBAAAEEEEAAAQQQQAABBBBAgAAHnwEEEEAAAQQQQAABBBBAAAEEEDC9AAEO0z9CFoAAAggggAACCCCAAAIIIIAAAgQ4+AwggAACCCCAAAIIIIAAAggggIDpBQhwmP4RsgAEEEAAAQQQQAABBBBAAAEEECDAwWcAAQQQQAABBBBAAAEEEEAAAQRML0CAw/SPkAUggAACCCCAAAIIIIAAAggggAABDj4DCCCAAAIIIIAAAggggAACCCBgegECHKZ/hCwAAQQQQAABBBBAAAEEEEAAAQQIcPAZQAABBBBAAAEEEEAAAQQQQAAB0wsQ4DD9I2QBCCCAAAIIIIAAAggggAACCCBAgIPPAAIIIIAAAggggAACCCCAAAIImF6AAIfpHyELQAABBBBAAAEEEEAAAQQQQACBMRXg8Hb55YcVq6SivETGVZWb4unrnFc1NEkg0C01E6qluMhtinkzSQQQQAABBBBAAAEEEEAAAQSyKTAmAhxvvvuxLL7hAfnm+5UR2yKPWw6ZsoPMPPEg8bidg8y33nO6dHq7Bn1v/bVXk313/60cc/Bu4nQ6Ise++uZH2ffYucOeWVVFqew4eSuZecKBMmFcxaif6Yf/+kIuvma5fPHf7we993fb/1Lmnj41qWuOehK8AQEEEEAAAQQQQAABBBBAAAGTCBR8gOP6O5+Um5Y/bTyOQ/fdSTZZf01Z1dAiL7z+nhHwWHuNifLQzRdKWUlR5JGFAxxHHbirhEIhaWpplxdf/6txfMfJP5MbFp0ZOfc///tB9jt+nnGd7X+zpfT09Ein1yfv/O0TWbmqSSaOr5Q/PnSl2G22UX0kHnjyNbn0untFAxo/+8kG0t7hlWdfeUe+X7FKttp8Q7l32VyxWCyjuiYnI4AAAggggAACCCCAAAIIIFCoAgUd4Pj2h5Wy51GzRbM1bl0yywgMhIcGDM5ecIO8/cEnctpx+8upx+0/KMDhdjnkraeWRb6nwYopx/zByOzQgMXqNeOMY+EAx/57bCuXzjkpcr7fH5CDp10omuHx9F2Xygbrrj6qz9A/P/1KXC6nbLz+mpH3tbV3ym+mnGq8fvXhq2TSxOpRXZOTEUAAAQQQQAABBBBAAAEEEChUgYIOcMy/4k554oU/y9mnHConHrHXsGe4oq5Rdj30bOP77z53YySLQzM4hgY49Jzw9W687CzZYZstRwxw6MHT5y+V1976UJ5bfpmsu9Ykufa2x+Tzr76T+WceLav1BUjCk9J5vvLnvxuBli02WTfm5+33c66RP7/3sdx3/bxBAZtC/YCyLgQQQAABBBBAAAEEEEAAAQQSESjoAMdeU2cb21AGBi+Gopx38c3y/GvvDQoYxApwnHPRTcZWlUQyODSQMXXGpbLGpHHy5J2XGLd95Jk/ycKr75EzTjpITp66T2QqPT0h2fWws6Wt3St/fnLpsJog4RP1vB0OPF0am9vkpQeukDVXm5DIM+YcBBBAAAEEEEAAAQQQQAABBApeoGADHN3BoGy5y4mixT4HbjUZ+kRvufdZWXrH43L53JNln90mG4ejBTg+/vQrOfLUi41aGy/ctzhymfAWFd0GE95O0tjcGilo+uojV8ukCVXG+S1tHTJ5n9NkjUnj5cX7rxCrtbeGhhYUPXrmIjnqwN/J3NOPivmhe/dv/5aTzlkim264tjx228KC/3CyQAQQQAABBBBAAAEEEEAAAQQSFSjYAIfWzNj5kLNk843XlYdvuTCmx6PPvSELrrxbzpx2sEw7akokwKG1Ng7YczvRQMkPK+qNIIQGS667eKb8fIuNogY4woEMnz9gZFnoNbTI6KI50+Q3v9jMeM+8y2+Xp176iyxfOld+8dPe61x45V3y2HNvyuO3XySbbLBW1LnW1TfLQSfNN65797VzZOufbZLoM+Y8BBBAAAEEEEAAAQQQQAABBApeoGADHFrkc6vdphkBhtcfvSbmg7z9geflmlsflUtmn2gENHREaxOr348WgIhVZFS3k7z+9odyxvxlg7I+wtkaB+61vVx83glGx5Wt9zxlxEBMc0u7HHP6IqNg6ZwZR8rRB+9W8B9MFogAAggggAACCCCAAAIIIIDAaAQKNsChCJrBoZkcf3/5VnG7nFFdwoVDB2ZUDN2iEm41q1tD9LwijytyrVgBjvAJZ15wvbzy579FOqlo29k9jjzPaPf6wYs3y5/e+YdoHZCLzj1BDtp7+2FzrG9skWnnLJEv/vv9oCyT0TxkzkUAAQQQQAABBBBAAAEEEECg0AUKOsARLgp6/plHyxH77zLsWep2j+32n2l8/y9PL5PK8lLjfw8NcGg2xpkXLjM6ovxu+1/K1QtOi9TPiBfgOHvBjfLyG+/LAzfOly03W9+4/t2PvCRLbnzIqPvx9B/fFq2t8dfnb5KSYs+gOf5QWy8nnLXYCIZobQ6t0cFAAAEEEEAAAQQQQAABBBBAAIHhAgUd4Pjyf9/L/sefL1oAdPnSPxjFOcPD2+WXeZffJi+/8YGcdOTectbJh0SORSsy2tHZJUf8/iJjm8gpR+8jp594kHH+SAGOT7/4Wg45eYFx3gcv3hLJ/NCsjB0OPMMoNqrBi0Om7CgLzjlu0NP57Mtv5ORzrzRqbgwsgMqHGAEEEEAAAQQQQAABBBBAAAEExliAQ5e77M4n5OblzxgrP2y/nWWj9daQhsYWozWstpDVrigP3nSBlJcWjxjg0IMajDjghPlG8dBw0CEc4NBgxQ7b/Oz/lwwNSXuHV777cZVRmFSHBi80iDFwnL3gBiO4ouPBG+fLT/uyO8LnaLcUzezQ6277qy2GPbnVJ42TEw7fi880AggggAACCCCAAAIIIIAAAgiISEFncISf8JvvfiyLb3gg0rpVv69ZHQdP2cHIxPC4B9fn0AyO0hJP1OKkf/v4czn2jMuMSz9yywJxuxyy73Hzhn2YNDChwZTjD99zUNeV8Ilv/fVfMn32VbL+2qvJM/csGvb+cIAj1qdUAyIaGGEggAACCCCAAAIIIIAAAggggMAYCXCEH7RuM/n2h5VSUV4qNeMrxWKx8BlAAAEEEEAAAQQQQAABBBBAAIECEBgTGRwF8JxYAgIIIIAAAggggAACCCCAAAIIjCBAgIOPBwIIIIAAAggggAACCCCAAAIImF6AAIfpHyELQAABBBBAAAEEEEAAAQQQQAABAhx8BhBAAAEEEEAAAQQQQAABBBBAwPQCBDhM/whZAAIIIIAAApkV+OenX0l9Y8uwm9hsNtlhmy0ze3OujgACCCCAAAIIJChAgCNBKE5DAAEEEEBgrAqcPn+pvPbWh8OWry3XP3jx5rHKwroRQAABBBBAIM8ECHDk2QNhOggggAACCOSbgAY4VtY1yX03nD9oatpt3W6z5dt0mQ8CCCCAAAIIjFEBAhxj9MGzbAQQQAABBBIV0ADHqoYWefDG+VHf0tbeKUvveFxe+8uHsnJVk/x6q03lvNOOkE02WCvRW3AeAggggAACCCCQsgABjpQJuQACCCCAAAKFLaABjv/87we5ZPZJgxa6yQZrisvplCNPvViaW9vlyAN3laryUrnv8Vfkv9+ukNcfvVpKS4oKG4fVIYAAAggggEDeCBDgyJtHwUQQQAABBBDIT4FYNTgeuWWB1DU0yYy518kDN86XLTdb31jAF//9Xg444Xy57uKZsut2v8jPRTErBBBAAAEEECg4AQIcBfdIWRACCCCAAALpFdAAx4+1DXLz4rMHXbiivERuv/95WXbnE7LphmtHjgWDQSPIMfu0I+SYQ3ZP72S4GgIIIIAAAgggEEOAAAcfDQQQQAABBBAYUWCkGhzX3vaY3Hb/c8OCH3rBtdeokbVWn4AuAggggAACCCCQFQECHFlh5iYIIIAAAgiYV2CkAMfTL78tcy+7TZ6+61LZYN3VBy0yFAqJRVutMBBAAAEEEEAAgSwIEODIAjK3QAABBBBAwMwCIwU4Ojq7ZJ9j/yBul1Nmn3akrLNmjXz9Xa08/fJfZJ/dJstOk7cy89KZOwIIIIAAAgiYSIAAh4keFlNFAAEEEEAgFwLx2sRqx5RLrlkuf/3os8j0tCbHpXNOko3XXzMXU+aeCCCAAAIIIDAGBQhwjMGHzpIRQAABBBDIhECXzy/1jS1SWV4qxUXuTNyCayKAAAIIIIAAAjEFCHDw4UAAAQQQQAABBBBAAAEEEEAAAdMLEOAw/SNkAQgggAACCCCAAAIIIIAAAgggQICDzwACCCCAAAIIIIAAAggggAACCJhegACH6R8hC0AAAQQQQAABBBBAAAEEEEAAAQIcfAYQQAABBBBAAAEEEEAAAQQQQMD0AgQ4TP8IWQACCCCAAAIIIIAAAggggAACCBDg4DOAAAIIIIAAAnEFuoNBsVqsYrVaRjzX7w9IU0u7TBhXIRbLyOfGvSknIIAAAggggAACoxAgwDEKLE5FAAEEEEBgLAp4u/xy2CkL5OSp+8iU320TlSAUCslNy5+RG+560jheVVEq1y86U7bcbP2xSMaaEUAAAQQQQCAHAgQ4coDOLRFAAAEEEDCLwJU3Pyx3PfSiMd3F806JGeD46JMvZeqMS+XeZXNli03Wk6V3PCHPv/auvPrw1XGzPsxiwTwRQAABBBBAIL8FCHDk9/NhdggggAACCORUoLmlXbr8fjny1Ivl7JMPjRnguOrmR+Sz/3wjt195rjHfuvpm2engM+Wx2xbKphuundM1cHMEEEAAAQQQGBsCBDjGxnNmlQgggAACCKQksPsR58rMEw6MGeA456KbpLK8ROadcXTkPj/Z8Ti58bKzZIdttkzp3rwZAQQQQAABBBBIRIAARyJKnIMAAggggMAYF4gX4Dj53Ctl4/XXklnTD41Ibb3ndFlwznGy9y6/GeN6LB8BBBBAAAEEsiFAgCMbytwDAQQQQAABkwvEC3BoBocWFp17+tTISsngMPlDZ/oIIIAAAgiYTIAAh8keGNNFAAEEEEAgFwLRAhw9PSERi4jVYhGtwfH5V9/KrUvOMaZHDY5cPCXuiQACCCCAwNgWIMAxtp8/q0cAAQQQQGBEge5gUEI9IZlyzB9k+jH7ypRdtxGHwy7aFtYX6DHe63JY5R///k9fF5V5ssWm68l1tz8mL7z2Hl1U+HwhgAACCCCAQNYECHBkjZobIYAAAgggYD6BsxfcKC+/8f6giT+3/DJZZ80aqW3qMr5fU+k2vl5/15Ny8/JnjP9d5HHLrUtmyVabb2i+RTNjBBBAAAEEEDClAAEOUz42Jo0AAggggEDuBHpCIWn3dhv/T0eJx278P92q0uXzS2NTq9RMqBar1ZK7SXJnBBBAAAEEEBhzAgQ4xtwjZ8EIIIAAAgikJqC1N8LZG+EraRYHAY3UXHk3AggggAACCKQmQIAjNT/ejQACCCCAwJgS0OBGc4dfuvy99TfCw+20SkWxkyDHmPo0sFgEEEAAAQTyS4AAR349D2aDAAIIIIBAXgsEuntkVYsv6hzHl7vEYbfm9fyZHAIIIIAAAggUrgABjsJ9tqwMAQQQQACBtApo9kZ9q0+6g6Go17XbLDKuzEUWR1rVuRgCCCCAAAIIJCpAgCNRKc5DAAEEEEBgDAtoW1ivPyjN7YERFSpKHOJx2sRiocDoGP64sHQEEEAAAQRyIkCAIyfs3BQBBBBAAAFzCWiAY0Vjb1vYeGNSlZsARzwkjiOAAAIIIIBA2gUIcKSdlAsigAACCCBQWAK6NaXNG5COrmBCCyt226TU42CrSkJanIQAAggggAAC6RIgwJEuSa6DAAIIIIBAgQoEe0Kysimx7I0wwcRKt9isbFMp0I8Ey0IAAQQQQCAvBQhw5OVjYVIIIIAAAgjkh4BmbzS1+8UXGNwWNt7sXA6rVJbQNjaeE8cRQAABBBBAIH0CBDjSZ8mVEEAAAQQQKDgBXyAoDa3+pNZVXeYUl8OW1Ht5EwIIIIAAAghEFzh/8R2yzpo1ctKRe49I9P2KVfLBP/5PmlraZLMN15Ff/3zTgq+RRYCD/2oQQAABBBBAIKpATygkq5p9oltUkhm6RWV8hUusdFRJho/3IIAAAgggEFXg4GkXyhabricXnn1sTKH3P/o/Of6sy6XI45ZJE6rkq29+lAP32l4uPu+EglYlwFHQj5fFIYAAAgggkJyABje8Xd3S0tmd3AX63lVeZBeP206QIyVF3owAAggggEC/QCIBjgNOOF/cbpfcc+0ccTod8vjzf5YLltwpD9w4X7bcbP2C5STAUbCPloUhgAACCCCQvMBo2sLGuwttY+MJcRwBBBBAAIHEBTTAoVkZNROq5KU/vS9dvoActt9OcsZJB4vDbpNvvl8pe02dLZfPPVn22W2yceFAd1B+tuuJcsLhe8ms6YcmfjOTnUmAw2QPjOkigAACCCCQaQEtLNraGZBOX2JtYePNp8hlk7Ii2sbGc+I4AggggAACiQhogOOzL7+RbX75E9l26y3k1bf+Lh998qWcfcqhcuIRe0l4e8ojtyyQn2y8TuSSh52yUFafNF6uXnBqIrcx5TkEOEz52Jg0AggggAACmRPoDvZIXbMvrTeYUOESu82a1mtyMQQQQAABBMaigAY4tMjolRf8PrL8qTMulVUNzfLyg0vk5Tfel7MX3CjPLr9M1ltrUuScE85aLLoF9e5r5xQsGwGOgn20LAwBBBBAAIHRC2j2RmObX/zdo2sLG+9OTrtVqkppGxvPieMIIIAAAgjEE4hWg+PqWx6ROx58QT5+7Q7587sfy8zzl8ozd18q66+zeuRyR89cJC6XQ26/8tx4tzDtcQIcpn10TBwBBBBAAIH0CmjdDV+gxwhwZGJogMPlsBZ8i7pM2HFNBBBAAAEEwgLxAhz/+uy/ohkd910/T7bafMMI3L7HzpXNNl7HqM1RqIMAR6E+WdaFAAIIIIDAKAU0wLGyqUuS7Aob925Wi8jESjcBjrhSnIAAAggggEBsgWgBDu2aEgz2yDP3LJLG5jbZbv+Zct5pR8ixh+xuXKilrUMm73NapE5HofoS4CjUJ8u6EEAAAQQQGIWA7snt7OqW1hTbwsa7ZVmRXYpoGxuPieMIIIAAAgjEFNAAh8NhlzkzjjS6pjz10l/k/idelYXnHC8HT9nBeN/p85fKu3/7VJZePFPGVZfLTfc8Y9TmeO3Rq6VmfFXB6hLgKNhHy8IQQAABBBBIXCCdbWHj3ZW2sfGEOI4AAggggEBsAe2G8uPKeiNTIzxOOnJvOf3Eg8TWV9C7qaVNTj9/mXz4ry+MU4o8brli/imy0+StCpqWAEdBP14WhwACCCCAQHwBLSza0hEQrz89bWHj3dHjtEl5MW1j4zlxHAEEEEAAgZEEOjq7pHZVo0yaUGUEMKKNltYOaW3vkNVrxotV94oW+CDAUeAPmOUhgAACCCAQTyDQ3SOrWtLbFjbePceXu8Rhp21sPCeOI4AAAggggEDiAgQ4ErfiTAQQQAABBApOQGtvNLT4JBAMZXVtDptFqstdYrUU/l+TsgrLzRBAAAEEEBjDAgQ4xvDDZ+kIIIAAAmNbQOtudAV6pClDbWHj6VaWOsVN29h4TBxHAAEEEEAAgQQFCHAkCMVpCCCAAAIIFJqABjhqG7sku7kb/Yqau1FTRdvYQvtcsR4EEEAAAQRyJUCAI1fy3BcBBBBAAIEcCujWlPbObmnv6s7hLERK3HYpKbKzVSWnT4GbI4AAAgggUBgCBDgK4zmyCgQQQAABBEYloJ1Tapu6RvWeTJ1cU+keE5XdM+XHdRFAAAEEEECgV4AAB58EBBBAAAEExpiABjea2/1G/Y18GFqHo6LESZAjHx4Gc0AAAQQQQMDEAgQ4TPzwmDoCCCCAAALJCPi7g1Lf4k/mrRl7z7hypzjttoxdnwsjgAACCCBQCAItXeuJNiDT+lkWsYjW08rG6zLXf03BR4DDFI+JSSKAAAIIIJAeAa29Ud/sk+6eXJUWjb4Ou9Ui4ypoG5uep8xVEEAAAQQKVaC1c73epRlRjQH/lmf4dVkRAY5C/UyxLgQQQAABBEwpoH/l8fqC0twRyMv5VxQ7xOOyiUV/SGMggAACCCCAwDCB1vb1ejM3JJTVr6UlX5niaZDBYYrHxCQRQAABBBBIj8CPDd70XChDV5lE29gMyXJZBBBAAIFCEGhrXT8nyygtI8CRE3huigACCCCAAALDBbSwaKs3IJ1dwbzmKXbbpNTjoOBoXj8lJocAAgggkCuBtqb1jd0pvUU4+rapDHgdrsmR7uMlFQQ4cvXMuS8CCCCAAAKmFWhr75TuYFAqy0sTWkOnt0sCgaCUlxWPeH6wJyQr86QtbLyFTax0i8068jaV+sYWKS7yiMftjHc58Xb5pam5VWomVBM4iavFCQgggAAC+SzQ0bB+pMBob5Sjv+BoJl+XVBPgyOfPBXNDAAEEEEAgrwQ0UDH7klvk9bc/Mub1083Wl2WXnC7jqsqjznPlqia55Nrl8t6HnxnHN9lgLZl7+lGy6YZrDztfszea2v3iy5O2sPHgXQ6rVMZoG/vtDytl+uyr5ZvvVxqXOXCv7eWCs48VR4wOLDPnXRcxraoolf332E5mTT803hQ4jgACCCCAQF4KdNRpBke4e0r2vhaN/09eegydFDU4TPGYmCQCCCCAQKEL3P7A8/Los2/IvcvmGVkJv59zjay71iS5+LwToi79vItvlubWdrlh0ZlisVpk4VX3yKqGJrl58axB52uqqr+7Rxpa86stbLznWV3mFJdjeNvYk8+9UkqKPXLpnGlSW9cgh56yUC446xjZZ7fJUS95/Z1Pym47bi1rrT5B3vv7p3La3GvloZsukC027atCH28iHEcAAQQQQCCPBDprN8jJbIpqCHDkBJ6bIoAAAgggYEaBg6ddKLvvuLVMO2qKMf2X33hfzl5wo3zyp7uidhWZOuNSWXuNiXLpnJOM85988S1ZducT8vqj1wxavraFrWv2iWZxmGnoFpXxQ9rGtrR1yOR9TpP7rp8nW22+obGcS6+7V2rrGmXZpWcktLydDzlLDt9vZzl56j4Jnc9JCCCAAAII5JNA5w8b9Jbe0BIc2k0lFMrKa89qBDjy6XPAXBBAAAEEEMhrga33nC6XzD7RCHLo+PSLr+WQkxfIO8/eIOWlw+trvP6XD2Xm+Utll+1+LgfsuZ0sufEhOeHwveTgKTtE1qnBjc6ubmnt7M7rtceaXHmRXTxuu1j72sZ+9fUPsu9x8+SNx6+V8dUVxtvufeyP8vTLb8tjty2Mu0bd1rLX1Nly42VnyQ7bbBn3fE5AAAEEEEAg3wS83/VlcIQLjIYnmOHXnjUJcOTbZ4H5IIAAAgggkJcC+teXzXc6ftAv3uFf5l99+CqZNLF62Lx/qK2XaecskY3WW1Pe/uATcbscctc1c2SDdVePnKvXXdHYlZdrTnRSA9vGfvTJl6KZKwODPo88+4bcvPzpYZkrQ6/f0dklU2dcIiXFRXL3tXPEZrMmOgXOQwABBBBAIG8Eur7RAEekbUqkxGhIQkZGRzi3Y+jXVI+71/4ybwxGmgg1OEzxmJgkAggggEChC2gGh2432W2HXxpLjZfBcdgpC2WHyT+TU4/dT7TzyoVX3i1v/fWf8u5zN4jdZjO2pPi6e6S7u8fUdHa7VVx2q9H9JBz0efOJ6yLFVxPJ4NAuKmfMX2psZVm+dK5UlJeY2oTJI4AAAgiMXQHf/zbs254SK5SRme+71yXAMXY/dawcAQQQQACBUQpoDY49dvqVnHTk3sY7R6rBodkIv9prutFlZedtf26c/+/Pv5ZDT1kgT911iWy47hpGgEOLiwZMHuBwOmzisFuMbSrRanBcfM1yqatvilmDo7W9U04/f6l4vT655YpZBDdG+bnkdAQQQACB/BLw/WfDSAJHfzcVkVBIIt1Vwokc6TzuXJ8AR359EpgNAggggAACeSxw2/3PyWPPvWl0USnyuIxWqAO7qNz9yEvy2lsfyr3L5hqr2P2Ic2XdtWpk8fnTpcjtkmtve0z+9M5H8sw9i8RqsUpju1+qS12yotGbx6seeWqatTGh3CXN7X6p6Gsbe9I5S6SspNjIdonWRUULs65WUy3nTD9MOr0+OXz6QukOBuWahTOM7is6rFarTJpQZVoXJo4AAgggMHYF/F/0Ftnu36YStghvT8nMa+dGBDjG7qeOlSOAAAIIIDBKAc3KOOeim+TP731svHPzjdc1shImjOstpqlFRLXexAcv3my8/uzLb+Sm5U8bQY8ij1t+ueXGxnaVzTdZV3yBHmls80upxyFiCUmbSYuMalBDM1FaOwNSVaptY63y9Xe1RvDn+xWrDIf999hWFsw6ThwOu/H6gBPONwJDVy84TVauahLtmjJ0VFWUyltPLRvlE+J0BBBAAAEEci/g/2zDSKZGf4ZGuJtK5r46Nvki94tPYAbU4EgAiVMQQAABBBDIloBuwwgEuiM1JuLdVwMj3d1BKS/r7bSihUVrm7qMVFUdEyvdUt/ik6DJ2sQ67VYjqLGy2RdpgVdT6Y60zNXghWZkFBe54xFxHAEEEEAAgYIRCPx7o5ysxfETAhw5geemCCCAAAIIjFUBbQvb4e2WNm9/W1i30yZFLpuR0WGmMa7cZbS47fQFI9Mu9dil2NPfNtZM62GuCCCAAAIIpEMg8M+NpK97urFNRf+wkY3X9i2GBzh8/oCsamg2Mkk1OzIfBhkc+fDq4JeMAAAgAElEQVQUmAMCCCCAAAJpENAAR22UtrDVZU5p9wbFF+gPFqThdhm7hMdpMwIZmnkydNRUuY2CowwEEEAAAQTGokDwHxv1dlGx9AU3wo1hM/za/rPBAY7zF98hT774VuQR/HyLjYzi57nuVEaAYyz+V8GaEUAAAQQKTkBrVTR3BKTLPzyIYbfpdg+H1DUPDxjkG4TGLiZUuKWpzW90gRk6NCOlothhtI1lIIAAAgggMNYEgh9uJBbN3JDQsK/hwqOZOG79+eeDqG+591nZ9ldbyEbrrykrVtbLUaddIkcfvJucPHWfnD4SAhw55efmCCCAAAIIpEdA28GuipLxEL56ebFDuoMh6ejq376Snjun9yqlRQ6x2yxGgCPWGF/uEofdmt4bczUEEEAAAQRMINDzt41jz9JI7RhhESkct/5ycIBj4F20dpgW9Z55woFy6L475VSRAEdO+bk5AggggAACqQto9kZ9q88IYIw0Vqv2yI8N+ds21qZtYStcRqbJSEVRNQAyrsxFFkfqHx2ugAACCCBgMoHgXzfuLbit1cTD21Ky8Nr6q/8bJuX3B+TOh16UN9/7WMZXl8uiOdMiLdlzxUqAI1fy3BcBBBBAAIE0CGhxMd2W0tQeiHu1YrfdyI5o6Yh/btyLZeCEylKnEaRp64w/v8oSh+h2FeOHPAYCCCCAAAJjRKDn3U3DVTdGWHEKqRrGVYe/37rNZ8Pu5+3yy7zLb5f/+883MmFcpVw292SZNKEqp0+CAEdO+bk5AggggAACqQlogGNFlMKisa6q9S0a2+Jne6Q2q9G/W9vCaoCjrrm/xW28q0yq6m8bG+9cjiOAAAIIIFAIAsG3Nx1egyNSYDR6bY7+gqTJH7dO/jQmn/4sMu3cK6VmfJVcMvvEnDIT4MgpPzdHAAEEEEAgeQHtmtLe2S3to6ir4XLYpMRjk4bW/Gobq21htcWtN0qR1FhCJW67lBTRNjb5TxDvRAABBBAwm0DPWz+JTHlonkUmX1u3+/eIVIuW3if//XaF3H7luTklJcCRU35ujgACCCCAQPICWnujtqlr1BeoKnVKpy8YtePKqC+WhjcUue1S5LJFbQsb7/I1lW5qccRD4jgCCCCAQMEIBN/4SV+LWKMEh2j2RCRDY0BNjr4SHWk7bt3hk4hhe4dXbr3vWTlgz+1kjdUmyKdffC0nzVoiJx25t5xyNF1UCubDxkIQQAABBBDIloAGN5ra/eILDG+lGm8OWsxTMyZWJhEciXft0R7XH8q0sGistrDxrudyWKWyxEmQIx4UxxFAAAEECkIg+KctjBIZRnAjvKIsvLbt/K+IX0dnlxx7xmXy2ZffRL63/x7bygVnHysupyOnzmRw5JSfmyOAAAIIIJCcgD8QlPoUtpmUFdmlJ2SRdm/8gp7JzTCxd5UVOcRqEWlOofDpuDKnOB22xG7IWQgggAACCJhYIPjqFjEyNmJlcqTn+9Zd/jlMTQMdDU0tMq6qQoo8rrxQJcCRF4+BSSCAAAIIIJC4gNbeWBWnlWoiV5tU5ZHaJq/RaS4Xw26zigYn6lp8ohkpyQ7NSBlf4RIrHVWSJeR9CCCAAAImEQj+ccuczNS228c5ue9ob0qAY7RinI8AAggggEAOBTS40eULppTxEJ6+1r5w2ixpuVYyJNVlLvEFgtLu7U7m7YPeU1HsEI+LtrEpQ3IBBBBAAIG8Fgi+pAGO3hbp+v+HBrR0DdfkyMRx2x7/yGuX8OQIcJjiMTFJBBBAAAEEegVG2xY2ntv4cpcR4Ah0j76WR7xrj3Rca2eUFztkVYsvbRkktI1N5YnwXgQQQAABMwgEX9gqJ9O07fVRTu472psS4BitGOcjgAACCCCQIwHdxtHaGTA6oKRrOB1WKfM4pL7Vl65LJnQdLSza0hFIqkhqrBtoJxajpocW9WAggAACCCBQgALBZ7cyKoyGu6dEEjj626Zk5Lhtyoem0CTAYYrHxCQRQAABBBAQCQZDsrJ59G1h49lpF5KuQFC8aQycjHTPYrdd3E6bNGQgqDKxwi02GwGOeM+c4wgggAAC5hQIPvOL3vYpvftTsvbVtt/fTQFGgMMUj4lJIoAAAgiMdYGgtoVt84s/A1tJtDjnhEqX1DamP3gy9LlpdoVmb9S3+KU7mP5tMU67VapKaRs71v97Yf0IIIBAoQp0P/mLvi4qfa1iQ+EuKZl9bdv/b6YgJcBhisfEJBFAAAEExrKApqH6Az3S0ObPGENpkUMLfEhbGgp+jjRJLQaqf3DS7SmZGtXaNtZuNX4AZCCAAAIIIFBIAsHHtx5QVrR3ZeFEjvA6M/HaftAHpmAkwGGKx8QkEUAAAQTGsoB2Tqlr6pIUOqkmxFdT6U65ZetIN9K2sBp8qGvWwqLJt4WNtxirVWRChZu2sfGgOI4AAgggYDqB7kd/FemeYhHLgF0qIcnka9sh75vCigCHKR4Tk0QAAQQQGKsCGtzo7OqW1s7UW6nGM9Q2q26HTZraM5MposENr7/HWE+mR1mRXbQNrm6/YSCAAAIIIFAoAsGHfx219EZ4fbFKc6R63H7YX01BSIDDFI+JSSKAAAIIjFWBdLeFjec4rswlrd6AsSUmncPjtElpkd3I3sjWoG1stqS5DwIIIIBAtgS6H/h1bmpwHPFetpaY0n0IcKTEx5sRQAABBBDInIC2hdVaFV5/+trCxputw24VrZOxqiV9gQhNotAtI83t/rS2hY23Fs1IKadtbDwmjiOAAAIImEig+75temebqVSNsMWQ69unvmsKJQIcpnhMTBIBBBBAYCwKaJeRbGY8hI01wOEP9m6NScco8diNop+NGSySGmue2rFFa38wEEAAAQQQKASB7uWThwU39A8JRmmrGEGPdBy3Hf2OKfgIcJjiMTFJBBBAAIGxJqDZGw1tPgl0Z64YZyxT/UGoptIjKxq9KbMbbWHLXUZGiLa6zfZw2C1SXeoSnQcDAQQQQAABswt03/3bnCzBftzbObnvaG9KgGO0YpyPAAIIIIBAhgW07oYv0JOTjIfw0ko8DrFaQikXN60ocYoGa1o7M9cWNt7jqCp1istB29h4ThxHAAEEEMh/gcCd2/YnalgsRleySOJGBl/bT/hL/uNoEksok33aTEHAJBFAAAEEEMgvAf2nubapqzfdNIdjYqVb6lPIvNBtKRpcWJnhtrDxiHozUtxGUTYGAggggAACZhYI3L5dXxeVcFhDsvLaedJbpmAjwGGKx8QkEUAAAQTGioC2he3wdkubNz31L1JxczttUuSyJZ1JMq7cZdTx6PRlr0hqrPWWeuxS7KFtbCqfB96LAAIIIJB7Af+t24uEi2pk8atz2pu5X3wCMyDAkQASpyCAAAIIIJAtAd3Oodkb+TKqy5zS7g2KLzC6IIW2hdWAgmaA5MuoqXKLlSyOfHkczAMBBBBAIAkB3y07hlM2svrVNf2NJGab/bcQ4Mi+OXdEAAEEEEAgqoAGN5o7/NLl78kbIbvNIlWlLqlrTjzooltBtHtJU5tf/N35sxa3U1vgOik4mjefLiaCAAIIIDBaga4bdzK2XBq1N7L41fX710c71ZycT4AjJ+zcFAEEEEAAgeECge4eo9tIvo2yIofo1pn2BLfN6Pk2m8UIcOTbGF/uEoedtrH59lyYDwIIIIBAYgJdN+zS2xPWyEjs6w0bed13jQwcd88gwJHYE+IsBBBAAAEEEDA6jdS3+qQ7mOPKojGexWrVHvmxIX7bWJvVIhpEyFVb2HgfJc1IGVdG29h4ThxHAAEEEMhPAe/SXYbV4AhncsSqzZGO4+6Zr+YnyJBZkcFhisfEJBFAAAEECllA00y9/qA0t+eulWo832K3XTQ40NIx8hwrS52imSiJZnvEu28mjleUOERrhNBVJRO6XBMBBBBAIJMC3ut+Z+RthEd/L5Xe72TqddEZr2RyWWm7NgGOtFFyIQQQQAABBJIT0ADHisbEa1wkd5fU36V1NRrbAtIdjF5Xw+WwiQYPtF5HrlvcxlvtpCraxsYz4jgCCCCAQP4JdFy9W2/tDQmJRQbU4sjw66KzXs4/jCgzIsBhisfEJBFAAAEE8kGgvrFFios84nE7E55OR2eXtLZ3ysRxlVGLW+rWlDZvQDq6RtelJOEJpPFEDWCUeGzS0Bq9toYGQNo6u41slHwfJW67lBSN3DbW7w9IU0u7TBhXQbZHvj9Q5ocAAgiMEYGOq/bor70RWXNfLY4Mvi6eRYBjjHzEWCYCCCCAQKELfPvDSpk++2r55vuVxlIP3Gt7ueDsY8Vht8Vc+pvvfiyLb3gg8p4n77xENlpvjWHnB3tCsjKP2sLGe5a6BaXLFxwWxChy28XjtMYMfsS7bi6OT6x0i9YMGTo0o+am5c/IDXc9aRyqqiiV6xedKVtutn7caepzP/UP18iNl50lO2yzZdzzOQEBBBBAAIHRCLQv2aM3cyOcsZGlr8XnvjiaaebsXDI4ckbPjRFAAAEEzCJw8rlXSkmxRy6dM01q6xrk0FMWygVnHSP77DY56hLeeOcfctrca2XaUVNkv91/K5XlpeJyOYdlfmj2RlO7X3yB/GmlGu+ZaEBgXLlrUFAm3BZWMztibV+Jd91cHHc5rFJZMrxt7EeffClTZ1wq9y6bK1tssp4sveMJef61d+XVh68escXs5199Z7yv09tFgCMXD5R7IoAAAmNAoH3xXuHeKVn9Wjr7BVPoEuAwxWNikggggAACuRJoaeuQyfucJvddP0+22nxDYxqXXnev1NY1yrJLzxg2Lf3r/4EnzpeNN1hLLp978ojT9gWCpsp4CC+mtMguErIYW2t0lBc7jKJmzXEKkObqGY5033FlTnE6BmfiXHXzI/LZf76R268813hrXX2z7HTwmfLYbQtl0w3Xjnq5VQ3Nctj0hXL2yYfKwqvvkSsv+D0ZHPn4wJkTAgggYHKB1sv2NjI4jBaxWosj1FuLI9OvS//wnCnkCHCY4jExSQQQQACBXAl89fUPsu9x8+SNx6+V8dUVxjTufeyP8vTLbxu/8A4djc1tst3+M2Xn324lge5u6ej0yTa/2ExOOGIvcbv6a3f0hEKyqtknukXFjGNSlUdqm7xis1plXLlT6pp9Rqtbsw2jrW2FS6yW/q0q51x0k1SWl8i8M46OLOcnOx4XMyvD2+WX4864TLb79U9lxgkHyNZ7TifAYbYPAvNFAAEETCLQeuk+OanBUTaPAIdJPiJMEwEEEEAAgdgC4e0K7zx7g5SXFhsnPvLsG3Lz8qfl9UevGfbGz778Rg6edqEcMmVHmbz15tLa1iGLb3hQ9t7lN7LgnOOM8zW44e3qlpbObtPSF7ns4nRYjABHlz8oHV3mXYtmoHhctkiQQ7ckbbz+WjJr+qGR56NBC31++hwHDg3qaEBEh2ZtWK0WAhym/VQzcQQQQCD/BVou3lcTN3ozN4wMDiORI8rX9B4vO/+Z/MfRNrkhlWEggAACCCCAQFSBcAbHm09cJ+Oqyo1zRsrgCAc43npqmVGcUscTL/xZLlv2gLz/wk19P4yEpN1r3oBAGKrYbRfNiu0ogLWUeOyRTikasNBnN/f0qZHPRKwMjvD2lYOn7CDFHrdx/j2Pviw7Tv6Z7Lvbb2X3HbfmvywEEEAAAQTSJtCycL/B1+rbnRLzBmk6Xn7h08NuoRmMTc2tUjOhesQaVWlbfAIXIsCRABKnIIAAAgiMXYFoNTguvma51NU3Ra3BET7/wRvny0/7um488syfjLoM/3r9LgNS/+LS3le/wsyyxR6txSGmzt5Qf92eol1g9G8+moGhNTg+/+pbuXXJOcbjGakGhxYUve/xVwY9xutuf1ym/G4bmbLrNsa2FQYCCCCAAALpEmi+cP9YKRsZ/X7Fgt7OYuExc9518vrbHxkv9Y8C+++x3aDMx6Hr1WzW5Y8ObjWrtc20xlk6BwGOdGpyLQQQQACBghQ46ZwlUlZSLJfOOWlYF5W29k45/qzFcuIRe8meO//aWP/02VcZ9SiuvWiG1De2yrkX3SSTJlYbr4PBHunw9YjVEpJWE29R0YwHl8MmwZ4e8QdC0ukzb0aKtr4NBkNGm1ubzSr9XVTmyRabrifX3f6YvPDae5EuKnc/8pK89taHRpeVaIMaHAX5fwZYFAIIIJAXAk0XHGjsRwlvT+mtL5r515UXDw5wXH/nk7LbjlvLWqtPkPf+/qnRPe6hmy4w/t2MNi6//gH57sc6Oe/UIyKHXS6H1IyvSqsrAY60cnIxBBBAAIFCFPjftytk+uyr5fsVq4zl7b/HtrJg1nHicNilpbVDJu97mpx/5tFyxP67GMf1vDMvuF50u4qOX2+1qVwxf7pUVZRJY5tf/N09MrHSLfUt5iwyqlkOEypcUt/iNwI5EypdUtvYZcpH77RbRQMcWiTVYbNIVanT2Mt8/V1Pys3Le/cbF3nccuuSWZEuOktufMiow/LBizcT4DDlU2fSCCCAgHkFGucdFKPmRkYTOKTyksdHRNv5kLPk8P12lpOnahHU4UMDHM2t7XE7zKX6ZAhwpCrI+xFAAAEExozAylVNUlLskeKi3loL8YZubbDbbUbqpm5/8AV6jACHDrfTJkUuW+R1vGvl0/GKYofuTJGWvrawpUUO469HbSasxTGu3GXUEPH6gwaxBjhcDqvxl7Eun18am/Jrb3E+fQ6YCwIIIIBA9gUa5x6c/Zvqv4+LHot532++Xyl7TZ0ds9uYvlEDHH988wP5zc83k8ryUtl525/LL366UdrXQoAj7aRcEAEEEEAAgeECGuBY2dQlAzupVpc6pd0XFF/fL9dmcLPbrFJd1pvxMLBOeU2lW+pazNUqVgNMWntDM2nCw2oRmVDpHtQ21gzPhTkigAACCIwNgfo5h4hFLBKS0KCvRlGsKN8Pn5fq8erLH4kK3NHZJVNnXCIlxUVy97VzjK2e0cazf3xHvv6+VlxOh3zy+f+MrZ5XLzhVdt/xV2l9cAQ40srJxRBAAAEEEBguoG1hO7u6h9XcsBtbIlxS12ye7R0a3PD6e4z1DBzaZtXtsElTe2+GSr4PzdCYWOGKbBkaON+yIrsR+NDiowwEEEAAAQTySaD+vMMiwY3+eYV7xfZ+pz+oET4j9ePjrhge4NAuKmfMXyq1dY2yfOlcqSgvSZhqzqJbpbmlTW5ePCvh9yRyIgGORJQ4BwEEEEAAgRQENNNhRYwaFWVFDtEAiBnaxnqcNiktshvZG9FGdZnL6A6jW3Hyfai71hJpjhGQmVTljrSNzfe1MD8EEEAAgbEjUHfOYZGW8+FCoxqP1581el8P/RquzZHa8fFLHhqE3NreKaefv1S8Xp/ccsWsUQU39ELX3vaY/P2fX8Qs2J3sEyXAkawc70MAAQQQQCABAS3CqbUqwjUeor1ltWqP/NjgTeBquTtFf3iaUOGW5nYNYPTWqxg6HHaraH2OVQO2fORuxrHvbLNaZHy5a8QtNRrMKS/uDYIwEEAAAQQQyBeBullH9G1GCW866Z9Z7yaV/u+HX4fPSOX4hKsejNyo0+uTw6cvlO5gUK5ZOMOoT6bDarXKpAlVEq3D3DW3Pir77jZZ1lqjxmjFfvyZi+WkI/eWU46OXpQ0WW8CHMnK8T4EEEAAAQQSEAh098T9hb/YbRfdrhIu2pnAZbN+iraF1QBGU1+R1FgT0KBAdzAkHUO2sGR9wiPcUAuJaiebeFkz4ytc4oixlzif1sNcEEAAAQTGjkDtWUf2194IZ2yEa29k8PXEa+6PIGvRde2aMnRoUfW3nloWtcPcYacsNGpvhId2pJt/1jHidjnT+vAIcKSVk4shgAACCCDQL6BbTxpafBII6t9MRh7adrWxLSDdwfzb3hHOeNDMjODAKqlRlqR/Oaqp9siKPM1I0Q4pFSVaJLVLG7+MOLRtrG67IYsj3qeX4wgggAAC2RJYccZUI0cjvB0lnLOR6deTrusPcCS7Vs3saGppk/HVleJxpzewEZ4TAY5knw7vQwABBBBAYAQB3QPbFeiJm/EQvoTLYZMSj00aWvOvSGdlqVOCwZC0dgYSeuaa7aEFOhM9P6GLpukkDSS1dnZLV4Kdawa2jU3TFLgMAggggAACSQv8OHNqjFobsWpspOf7k5bem/Scs/lGAhzZ1OZeCCCAAAJjRkADHLWNXcY+2USHBhK6fMER63Ukeq10nee0W0XnNbQtbLzrT6xwS32bzwiM5MvQzihaW6OhNXqR1Gjz1Noj2gJX/zLGQAABBBBAINcCP8w4JidTWP365Tm572hvSoBjtGKcjwACCCCAQBwBoytKZ7e0j7IOhW4FGVfukpVN+dM2VufT4e0eddDF7bRJkctmtGHNh6EBCs3e0AyZ0W4D0oyUcFZKPqyFOSCAAAIIjF2B7089tr+QaKRrinZR0W4pfV1UwoVG03h89RvuMQU6AQ5TPCYmiQACCCBgJgHtnFKbZJBC27BKyCJt3sS2g2TSRQMUmvVQn2RXFN3e0ekLJrwdJJNr0eKnmoPR3JGcq2ZxUIsjk0+IayOAAAIIJCLw3e+P62uTYvSGHdA2Jdw/JRLdSOvxNW++O5Hp5fwcAhw5fwRMAAEEEECgkAQ0uNHc7jfqbyQ7JlW5pbbJZ/Syz9XQvwJNNAqf+o2OI8kM7QxTVeoyCnrmcthtVqkucxrdbPT5JDPcTm2B6yTIkQwe70EAAQQQSJvAtycf319gVLdPhmLX2JA0Hl/zljvTtoZMXogARyZ1uTYCCCCAwJgT8HcHpb4ltW0ZRS67OB0WaW5PLtsgHehlRQ7jl3kN1qQy9DrGlh1vdyqXSem92gnF6w9K5yi3DA296fhyl9Eql4EAAggggECuBL6ZdmJObr32bXfk5L6jvSkBjtGKcT4CCCCAAAIxBPQXed3O0Z2Gwpr6y7RupwgkmT2RykMKt4WtSyHjYeD9V6v2yI85ahurbWF1e4oWSU11aEbKONrGpsrI+xFAAAEEUhD4+sSTBmxLCW9HyfzXdW6/PYVZZ++tBDiyZ82dEEAAAQQKWEC3k3h9waRrPAyl0e4lZcWOpOtfpEKttTN0W0q6si6K3XbR4EBLkvUvkl2LZuZqoEjv60thy9DA+1eUOIxOLHRVSfap8D4EEEAAgVQE/nfCtL4aHAOuorsvBzb7ysDrde+6LZVpZ+29BDiyRs2NEEAAAQQKWUADHCsa01trQn+Z9gdC0unL3vYOzXioKNG2sF1G7bJ0jfEVLmluC0ggmFw9j2TmoZ1PXI7RtYVN5D5aI4UARyJSnIMAAgggkG6B/x53shHNCElILP39VDL+er27b0n3UjJyPQIcGWHloggggAACY0lAC1dq15OOrmBal23V1qaVLqlNc+BkpElqK9XWzu60dz7RwEmJxyENralvFUkEWeuHTCh3SX0SbWHjXb/YbZNST2+NEgYCCCCAAALZFPjqmOkDbpeBVI0YqSDrL785m8tM+l4EOJKm440IIIAAAgj0CgR7QrIyybaw8QxLixxGhfS2LBTp1Jawuv0iU0GIylKndPmCRsHPTI+KYi1uKtLamZlCrRMr3aK1ShgIIIAAAghkU+DLqdP7uqhIX5OU3i4q0hfr0IxSfW10kDWarKTn+Ab33pTNZSZ9LwIcSdPxRgQQQAABBMRoO9rU7k9bjYdopjWVbklXwc9Yz0yzEbReRUMGMh7C99SAwLhyV8aCQeH7aP0SDaZoYdFMtdrVjJTKEtrG8n8DEEAAAQSyK/DlUaeGYxkxbzw0r2Poickc3/D+G7O70CTvRoAjSTjehgACCCCAgAr4AkEjKJDJ4XHZxO2wGYGUTA3NeNChnVsyOUo9duNPSm0ZyqzQuWsQpdOXelvYeA7VZU6jxgcDAQQQQACBbAl8fsRpRu2NcA2ObH3d6MHrs7XElO5DgCMlPt6MAAIIIDCWBbQt7Kpmn7FFJdOjuswl7d70dQMZOF+7zSrjynszHjQjJdOjpsotdU0+Ub90D91iU+yxZ6X7jNFOt8IlWiuFgQACCCCAQDYEPj98Zu+2k3CQw9iOkvnXmzxMgCMbz5d7IIAAAgggkBMB/eXc29UtLZ3Z6XDisFmlotRhBFTSPTR40uUPSkdXdtZS5LKL02GR5vb0ZotonGFChVua2vxGm9tsjPIiu3jcdoIc2cDmHggggAAC8tkhM/uKa/TX2OgttpHZ15s+stQU+mRwmOIxMUkEEEAAgXwTyERb2HhrLC92SHcwlNZAhNaS0Otq9kY2h24jae0IpDUQoQVZ7TaLEeDI5qBtbDa1uRcCCCAwtgU+PfiMnABs9th1ObnvaG9KgGO0YpyPAAIIIDDmBXQbh3bn0DoP2Ry6EaKm2iMrGrxpua3+wUcLi7Z0ZGbry0iT1EKgZcWOtG0l0e0i2uJWAzXZ2DI0cG1FLpuUFdE2Ni0fSi6CAAIIIDCiwCcHntnXJSXcLSU7X3/y+DWmeDIEOEzxmJgkAggggEA+CXQHe7Ke8RBef4mndztEOtqf6rW0SGam2sLGe2YVJQ7xB0LS6Ut9a4x2TdHslkwWLx1pPRpc0VomDAQQQAABBDIp8K8Dzs7k5WNee4snr87JfUd7UwIcoxXjfAQQQACBMS2g2RsNbX4JZKnGQzRsrTPR2OYzfqFPdmhb2AnlLqnPYFvYeHOzWCxSU+mSFY1d8U4d8Xh/W9guyUDd0oTmpnOoKqVtbEJYnIQAAgggkLTAx/vNykkGx0+fujLpOWfzjQQ4sqnNvRBAAAEETC2gdTd8gR5pzHKNh6FobqdNdFtEKvPQtrDaMCUdmSCpPNRSj0PEopkXyWdxaD2PDm+3eP3Z3TI0dN0a4NCaJhq4YSCAAAIIIJAJgX/se64Y0fyB/9aEC4yGb5iB4z97dkkmlpP2axLgSDspF0QAAQQQKFQBDXDUNuUuS2Cgq/4yrTVAtPvJaEd/xoPPaC2X6zGx0m3U4kimdkaR224Ee/T9uWZ4W2sAACAASURBVB5Wi4iuhQBHrp8E90cAAQQKV+CjKecZi9N/vfvD6fq/Bv97nu7jWz232BSoBDhM8ZiYJAIIIIBArgW0LaxmCbR5k880SOcatFtIVakW1Rz99g7NeNDgSGeW2sLGW7fHaRO3yzbq7icaSNDaF9lsCxtvLWVFdtGgi9ZJYSCAAAIIIJBugQ/3nmP8ccIiFgnJCAVG03z8Fy8Q4Ej3s+R6CCCAAAII5ExAAxy1KdaKSPfktXOHzqt9FEEXDSYUe+x5kfEw0KO6zCnt3qD4AolnpBidSywizR2BdNOmdD3axqbEx5sRQAABBEYQ+NsecyLbU4y8jQHbUTL5+pcvXmaK50IGhykeE5NEAAEEEMilgBYW1V+ik9kOkul5T6r2SG2Dd0hiavS7alKBFijNp4yH8Ey1A0lVqSPh7jTaFlZb3Na1+ESfTz4NDSKVF9M2Np+eCXNBAAEECkXgg93n5mQpW7+8KCf3He1NCXCMVozzEUAAAQTGnIB2TFmVBzUeosEXu+2i21VaEshiKC1yGOdqgCMfhwYFtDNMRwJbZ7QGib+7Z1TZK9lcswZfHHbaxmbTnHshgAACY0Hgr7+bl5MuKr/64yWm4CXAYYrHxCQRQAABBHIloNkB9a2ptWTN9NzHV7ikuS0ggWBPzFtpxoPWq6hrTq6YZ6bXEL7+atUe+bHBO+LttFOJBkM06JQHNVKjztVhs0h1uYtaHNn64HAfBBBAYIwIvLfr/Jys9DevXpyT+472pgQ4RivG+QgggAACY0ZA97XqtpSm9vyq8TD0Aegv/CUehzS0xu4kUlnqNLIj2jrzey0lnt4CnSO1r9VAjWasaMvefB5q7qZtbD4/IuaGAAIImE7gnZ0vyEkGxzavLTSFFQEOUzwmJokAAgggMJKA3x+QppZ2mTCuIq0tOjXAsSLPCovGcqgscUpXIChe3/Ainf1tYfOjxW28T7PWCWlsi541ox1KtMbFSMGceNfP1nEt9lZTNXLbWM0QqmtoknFV5WK32RKeWkNTq3FudWVZwu/hRAQQQAAB8wu8vdMCrSzaG+SILCfcVaXvGxk4/ts/EeAw/6eHFSCAAAII5LWABiBuWv6M3HDXk8Y8qypK5fpFZ8qWm60fd95vvvuxnPqHa+TGy86SHbbZctj5RneSzm5pT6AeRNybZeEEq25BKXdJbdPwtrHaFlZb3Hr9iXcoycKUY97C5bRJicsmDUNqhegatbZFQ6tfukfYjpPLuQ+9d4nbLiVF0dvG6mfwnItukk5v7zO7cNZxcug+O8acvgZD7njweVn+6MvS2NwmRR63fPDizfm0XOaCAAIIIJBhgb/sECXQYLRPGeHGaTi+7RsXDruBt8svTc2tUjOhWvTf6HwYZHDkw1NgDggggAACSQl89MmXMnXGpXLvsrmyxSbrydI7npDnX3tXXn346hH/of38q++M9+kvljEDHD2hqMGCpCaapTeVeuxG67iB21A046HIZcu7trDxSLSIaKcvOKhzTUWxw/j5LZGCqvGun83jNZXuYZ9H/aFw+wNOlxknHCBHHbirvPHOP+SM+cvk5QeXyBqTxked3lU3PyJPvfSWTD9mP9lz51+LPxCQmvFV2VwK90IAAQQQyLHAW9tfbGRwiKXvi7ZIy8Lr7d66YNDKZ867Tl5/+yPje/oHpv332E5mTT80xzoiBDhy/giYAAIIIIBAsgL6C99n//lGbr/yXOMSdfXNstPBZ8pjty2UTTdcO+plVzU0y2HTF8rZJx8qC6++R6684PfDMjj0L+VN7f68r/EQbYG6JaKuySeagaLpq1qvIh/bwsZ75jabRcaVuWRlX0aKtpGtLnMaRVI1c8dMQ+twVJQ4BwU5whlEH/3xNnE6HcZy9po62wh2HHXg74YtTz+3Ox50plwy+0Q5YM/tzLR85ooAAgggkEaBN397cd/2lL5tKZHtKJl9vf1fzh+0iuvvfFJ223FrWWv1CfLe3z+V0+ZeKw/ddIFssel6aVzt6C9FgGP0ZrwDAQQQQCBPBDS9v7K8ROadcXRkRj/Z8biYWRn6V/PjzrhMtvv1T42/nG+95/SoAQ5/ICj1rfnZSjUefZHLLk6HRZrbA1JW5BDNGG1OoIVsvOvm4rjO39gq5O2W6jKXscWm0yRbhoZ6jSt3itPeX2PjkWffkLsfflFeuG9x5FT9a9g6a06K+hew1976UE6fv1QO329n+eK/34vL5ZB9d5ss++7221w8Gu6JAAIIIJAjgTcmX5qTO+/4zrwR77vzIWcZ/0adPHWfnMwvfFMCHDnl5+YIIIAAAqkInHzulbLx+msN+oVQgxYLzjlO9t7lN4MurVkZGhDRoVkbulc0WoBDf6FeleetVOOZGTU3urqlvMghdS0+0bWbdUyq8khzu19Ki+xG9oZZh91qkXEV/W1jb3/geXnpT+8b2UbhoZ/PkiKP8fkdOu5/4lVZtPQ+IzC38Xpryuf//U70r2dXzJ8+7LNuViPmjQACCCAQX+D13yzKSReVnd79Q8zJffP9SiMLMda23/irSt8ZBDjSZ8mVEEAAAQSyLKC/EOq+z7mnT43cOVYGR3j7ysFTdpBij9s4/55HX5YdJ//M+Cv47jtubWx9CARD4jNJMc5Y3DarRTxuu2gmij/PW6nG+8g47FZxOWzi9XdLMGjeQI2u0+20id1mMX4wHW0GhwY4Hn76dXnmnkURsjmLbpWuLr9ce9GMeIwcRwABBBAoEIHXfn15Tlayy1/nRL1vR2eXTJ1xiZQUF8nd184Rm82ak/mFb0qAI6f83BwBBBBAIBUBrcHx+Vffyq1LzjEuM1INDi0oet/jrwy63XW3Py5TfreNTNl1G2PbihHg6O4xZe2NgQvT+hUep118gaCxHjMPp8MqTg1wdHVL0MSZKOEAhwZsdIRrcPzjldvF4bAb39v9iHPlmEN2i1qDI3L+q3eIo2+riwb4vF0+uWHRmWZ+xMwdAQQQQGAUAq9sfXlfBodRV7y3vuigr30tZId9P3xecsd3fX/2sFnq1t8z5i+V2rpGWb50rlSUl4xiJZk5lQBHZly5KgIIIIBAFgT6u6jMM4paXXf7Y/LCa+9Fuqh88I//k8U3PChXXXiqrL3GxGEzGrhFRbdxtHYGpMTjkMY2n3SbOFtAC4u2dXZLRYlDVjQObxubhUeTlluEW98263Nx2aW+1bxbVJx2q1SWOqXdG5BSj0O6fH7Zes9TZPZpR8iRUbqotLV3yvFnLZYTj9jL6JjS2t4puxxythx7yO7y+2P3k08+/58ceerFRv2ZIw/YJS3eXAQBBBBAIP8F/vjLK4yOYgObsmbj9e5/O28Qjv67dPr5S8Xr9cktV8zKi+CGTpAAR/5/hpkhAggggEAMAc24uP6uJ+Xm5c8YZxR53HLrklmy1eYbGq//9M5HMmPudfLEHRfLxuuvOWKAQ7c/rGzuMrZDlHhs0mDWIqNuu3icOn+f8Yu0WEJGsMOMQzuPhANPlSVO6QoExesLmnEpYtRF8XYbhVInVrpFtxFpez0tLBoe5595tByxf2+woqW1Qybve5oM/N67f/u3nD5/mdHeWIcGNmbPOFLstv7ipabEYdIIIIAAAgkLvPTzJf0pG0aYI2aqRl8YJD3H9/h7b7asjk6vTw6fvlC6g0G5ZuEMKSn2GN+3Wq0yaUJu25cT4Ej4o8SJCCCAAAL5KqB/DW9sapWaCdWDWnEmOl/9JbqxzS/+vu0cVaVO6fQFpctktTg042F8ucsIznQHe7em6C/T9S0+023v0IwHfQ4r+9rChrM5avvaxib6bPPhvCK3XYpcNuM56HA5rKIBG11TMNgjtasaZUJ1RWSrykhz1h8mV65qMroHaUCPgQACCCAwtgRe2OqqKPtSwrGMWMGM1I/v9Y9ZEWj9d0i7pgwdWhftraeW5fSBEODIKT83RwABBBDItYBmgWhgY2DGhv51Xf/ivtJkv0xXFDsMzoFtYTWbw+2ySVObudreqr+2hNVAU3iUeuzGX63aOgO5/tgkfH8tKKpbhtQ/HEDTN1eXadtYq7GPmoEAAggggECiAs/99KreGhyRmEVfTY0Mv97747MTnWJOzyPAkVN+bo4AAgggkGsBbQtb19wlPUNqcZYV2aUnZDFqJphh2G1W45fmVVHawur3271Bo+ioGYYGZYo99kjGw8A511S5pa7JJ/rczDDKihxitQwOOum8jYyUAW1jzbAW5ogAAgggkHuBZ7e4pncSfbtTIjPK8Ot9/jU8YyP3GsNnQIAjH58Kc0IAAQQQyIqA/pKsWQKtMWpUTKrySG2T16hQnu+jusxl1HfQ9QwdGvyoKnVIXXP+F+mMlfEQXpPHZRe3wyJN7fkfeFL3cWVOqYsSdNL1lBfZjXa+VrI48v0/L+aHAAII5I3A0z+5tq+LSrgbSna+7vvJGXljMNJECHCY4jExSQQQQACBTAjo9pSRuoxo7QSnzTJoy0cm5pHqNd1Om2jGyUgBjPJih9EZpiNKACTV+6fz/ZrxoG1uR9pSo9tXWjsCg7Z8pHMO6bqWBp00a6bdG7vI66QqN9tU0gXOdRBAAIExIPDUZkt7C4uKblMJiSWSypHZ1/t/SoBjDHy8WCICCCCAgFkFtLBoS2cgblcOLdqpNS0CfQVI8229+sf/CRVuaW73iy8wZJ/NkMmuVu2RHxu8+baEyHy09ol66zabYE/stBmH3Spab0TPy9ehhUQ1qKRzHCkDyOOySbluY9F9LAwEEEAAAQTiCDy+ydLewLj+4xLlq/7xJhPHD/xspimeDRkcpnhMTBIBBBBAIN0C2mUkkS0bTodVyjwOqW/Nz1+mSzx2o1ildoGJN/Rc3Q7RmqdFOitLnUYgaaSMh/AaNcDhD/ZuMcrHofU1WjoCcYNOOnc9V7ezMBBAAAEEEIgn8NjG10c9ZWgJjqEnpXr84M9nxJtaXhwnwJEXj4FJIIAAAghkU0CzNxrafBLoTqy4hrb07AoE42Z7ZHMNeq9w69R4GQ8D56XZHo1tPmO7Sj4NDdJogEMLviZS80T/aFVT6ZEVjfmXkVLstotuG2pIMCimGSnVpb1tYxkIIIAAAgiMJPDIhjdESdywSG/mRqzEjtSPH/LFqaZ4MAQ4TPGYmCQCCCCAQLoE9AcA3cqRSMZD+J7hQEJtnrWNrShxigZrRpOR4XLapMRlk4YEMj7SZZ7IdbSuRoe32yiUmugo9ThELCFpi1EkNtHrpPO8cHeU+ha/aJZQoqOq1Cm6rYW2sYmKcR4CCCAwNgUe3uDGcAmO/q9hikjv2AFdVgbGzlM4fth/CHCMzU8cq0YAAQQQyGsBDXBooCKRLIGBCyn12I29rm15sr1DMx70l+KVzVrjYXTZGPq+Tl9QukYRTMjkQ9Virh6nVRpa42+zGTqPiZVuo53sSDU7Mjn3odfWrTP6NHR7ymhGb0YKBUdHY8a5CCCAwFgUeHC9m4zCouECo9n6evh/p5uCmwwOUzwmJokAAgggkA4BbQurWQJtI3S1GOk+NVVuqWvyiV4n10MzHrT+hAYqRju0mKe+f2UeZKSE28JqcGM0GQ/hNetWkCKXbVQZOaP1SvR8raNRrW1hkwg66T00iFbcVycl0XtyHgIIIIDA2BJ4YJ1benuoDCiqkY3XR319iimgCXCY4jExSQQQQACBdAhoYKK2sSvpS2nHC7fDJk3to880SPqmUd7ocdqMX4Q1cyHZoW1le0IWafeOLtMg2fvFep+2hdXSE9qpJtmhQYV2b9BoyZrLofPw+ntSKnyqQTQtBMtAAAEEEEAgmsB9a92qHWKHb1OJtf0kTd+f+s3JpnggBDhM8ZiYJAIIIIBAqgJaq6K5wy9d/sTrIkS757gyl7R6A+KP05I11fnGen8446GpzS/+FFvXTqrySG2Td9TbddK1Ns14GKcZDy0+o5ZIskOvU1XqSKgrTrL3iPc+DTqVFtlTnoNmpOg2FwqOxhPnOAIIIDA2BZaveVtOFn7Md9Nyct/R3pQAx2jFOB8BBBBAwJQC2n5Uu42kOrTjhf4Cmo5rJTMXzXiw2SyiAY5Uh3b7sNsso64Xkep9w++vLnMZdUA60tDqtbzYYXSGSce1Rrs+TbjQ7jTN7doWNvUskvHlLtHPGQMBBBBAAIGhAnevfrtRkLq3a0r2vh77/YmmeBgEOEzxmJgkAggggEAqApodUN+avtaoGuDwB0MpbUVIZj1aO2NChcvIEkhXUU39ZVq3h2gAKJtDO4ZoUELXkq6xWrVHfmzIftvYEo/dCEikI+ikFhp00kwhsjjS9cngOggggEDhCNy12p0D9qeE1xXeh5K518f/SICjcD5FrAQBBBBAwLQC+hcObT2qf11P1+jteOGRFY3Z/WW6stRpZCmks5OL02GVMo/DCABlc2igRjuNaMvedI1cZKSEWwhrRk+6gk7qUVniEN2uQtvYdH06uA4CCCBQGAJ31NyZ1cyNcKbICSuONwUgGRymeExMEgEEEEAgWQH9h3lFCoVFY923xKPFMUPS2tmd7NRG9T6XwyYVJZrxMPoWt/FuVFnilK5AULxJdGSJd+1oxzUQob+8N2QgqKKBk8a2QFIdWZJZS0WJ06gf0pqB9sGTqmgbm8wz4T0IIIBAIQvcNvHuvgyO8CpjVRxN7/FpKwlwFPLnirUhgAACCJhAQLumtHd2S3saajxEW+7ESrfRySSdf7mPxaq/uLd1dhvZKOke4SyE2iy0jTXuVeGS+pbk2sLGW7sGgko8GjxJvUZJvHs57Vrc1Ckrk2wLG+/6JW67lBTZ6aoSD4rjCCCAwBgSuGX8XX09YvuaqWjr+r7uW0aoI0OvT6k7zhTKZHCY4jExSQQQQACBZAQ08LAyg7+0axZCkcsmjWko+DnS+orcduM+qbSFjedX6rEbPyClc/tLtHtq/RLdKazbUzI1NOjQ6QsaBUwzOcaVu4w6LHqvTI2aSje1ODKFy3URQAABEwrcNF4zOHSEMzfCi8js69+vIsBhwo8LU0YAAQQQKBQB3TbQ1O5Pa42HaDbVZU5p9wbT0j0j2vXT2RY23rOtqXJLXZNPNPMlE0PbuaqXFhY1/sKUoaHFWDX4kMnglraFLfbYMxp0Uh4txqpbiCg4mqEPC5dFAAEETCZwQ/U9RmwjkqjRV180069Pqz/WFFJkcJjiMTFJBBBAAIHRCvgDQanPwjYF/aW9qjS93UAGrlXbwlotYnQ6yfTwuGzidtiMwFAmhgY3vP6erHSfKSuyS0/IIu3e9LtlM+ikz2FcmVOcDlsmHgnXRAABBBAwmcCy6uX9XVQyHdUYcP2ZDQQ4TPZRYboIIIAAAoUioBkIq9LYSjWei7Y71e4mHWmu9aHBE/3ltq7FZxSyzMbQ9qSt3oD409jdROetGQ+lRfa0toWN5zGpyiO1TV7jr1zpHBp0stksaWsLG29umpEyvsJFLY54UBxHAAEExoDAtZX39HVR6S29EY5B9H8NZeT4GY3HmEKXDA5TPCYmiQACCCCQqIAGN7QbSCZrPESby2rVHvmxIb1tY6vLXMbWl3Zvdjq16LocdqtonQxte5quoT+ATahwG616dT3ZGlq7xGmzpDX7xQg2lLsMn2wUlw1b6TPRDBvaxmbr08N9EEAAgfwUuLpCMzg0uGExtntaxCIhCQc1+iP66T5+djMBjvz8RDArBBBAAIGCFshUW9h4aNr61G6zpC2worUXNDNEf5FOdwZCvLXoL9P+YChtW0lKPHYjcNKU4WKs0dalwQjd3hPo7om37ISOV5Y6jWtlM+gUnhhtYxN6RJyEAAIIFLTAleX3xsjciJXRkZ7vz2o+2hSuZHCY4jExSQQQQACBRAR0G0drZyCjXS1Gmoe2P21sC0h3MPVfpvVamoXiS/NWkUQcNeOiptIjKxpTz0jJVcZDeJ1Oh1XKPA6pb009I0Vb0FaUaL2VrqwHnXQ92knHqMmiRVkYCCCAAAJjUuCKsvv6a3AYfcnC3VMy+/W8VgIcY/IDx6IRQAABBHInEAz2yMrm1H+RTXYF+gtwiccmDSkWN9VsEG1B25CGX8qTXUuJR4ubasAote0xmvEQDPYGnnI1tAtJVyBobF1KZWjQqa2zW7wZbj870hwnVriN+h8MBBBAAIGxKXB5qQY4ekdvDY5wkKM/UyMTx+e0TTUFOBkcpnhMTBIBBBBAIJ6AZm80tvnFn6atCPHuF+t4VanTyCDpSvKXYP3rvP4iXd/iT0smSLLr0PdNrHQbbVCTrTXhtFtFAxyZbgsbb41Wi0UmVLqktrEr3qkxj2s9D4/TmnLwKukJ9L1RTfUzRhZHqpK8HwEEEDCnwKKS+3OSwTG3nQCHOT8xzBoBBBBAwHQC+tcL3cqhAY5cD92SMa7cJSubkvtlWutf6N9i4hVJ3bfmnv6sVBEprnbKg/8+wlj+O6/UyqVHv2j8KccS0tJjItWTimX5R4cax++75Z9yxUV/7qXqK/Cx7mbj5elXDze+ddEF78r9d7zfe/3ek2TrX64l9z11oPHqymlvyFvPfSMS6jvBEpLtpqwt59y2o3H8jP2fl4/++qNR9kznoLc4eNrmcvpF2xjHp+3wuPzvi2axRDJrQzJ94fZy0CkbGceP2OoRaVzRHimaphe48N69ZfLvanqP/+RBaW1QX4vx1ys9/lzt8ZFHf+Q6D0hnV8C4vk7RErLKq20nGOe1ebvlmLUekYBfj1t6lxASeXDlkZH3z655QnqCPZGkXxGbLO8+wghu6Paj2RMe72PrXYDOYXHdQZH3zxr/pIgEI4nDFptVrqzttdNx0MT7JGTpMSan77U7bfLwt/33nzf+KREJb3MKiavYLhd8vV/k/Q1vNciav6mWihpP5Hv8DwQQQACBsSFwSbEGOPq7p4T/sYl0dO1jiNlBNsnj53ccZQpgMjhM8ZiYJAIIIIDASALaOaWuqUuy1Ek17sMoK7JLT8gi7d7RbcvQtrDV2ha2WQuLxu5tus9qy43AxcChYYxnVxxnfGvvSff0BhcGDH31fN/xn652fW9gYNDxkPzzh5nGdzZe/bphx/Vy//fDGcbx/Sbd07fnd/AVnl5xrPGN7Ve7rT82Ej4lJPLmimnGq11rbh/eDSQk8krticbx3SbdYVSFHzws8vKK3iDGlEl3Dbu/Biqe//E4efyWL+TeC94ddn2L1SrveE+SS3//V3n1jn8PW5/NaZV7vz1cbtv/Tfnynfphz9hdZpeL/rOfLPrVS9L8dcew45Vrlskf/v47mbv+0+JrG76tZ91fTpQZL2wrh691vwT8g2u06LPe8fBN5PTrfiXnT3xaQqEhW2lCIZlyyRayzSkbyeLxz0j5am45+6+/k4rVi+J+FjkBAQQQQKCwBC4qeiAnGRwXdBLgKKxPEqtBAAEEEMhLAQ1udHZ1p1wrIt2Lm1Tlkdom76iKUWpww+vvidu9ZJ+ae4YHIERktTXL5Ob3D5C9a+6OevxXe6whF9y1q/x0tWVR240e//tfypnn/0Y2XuPaYQEGjae89u5JssZaxbJvzfLhAZKQyDO1x8j333bIkb9+IOrxP6+YJjdd8p48ccO/h3Hr9V+tPVFm7vG8fPHxyuGPIyTycu0JMnXTB6U5Sp0VDRI8X3u8HLLu/dLtHV5rQ4Nff2w+Xg4cf7+Eomxj0vtrFse54x+LaqON+JbUHSjnjXtMJFqRz56QXFF/sMya8ETfD55DltATkqvqD5YDJi4X3TIzbFhEHl9xtMzT7A8jtWXwsLussvC7/eXycU8btlMW/VQ22HairLttdbo/ulwPAQQQQCCPBS509/4bG87QyNbXBd7+TMM85tE/AGW7+Vw+czA3BBBAAAGzCeSqLWw8J63Z4LRZjBaliQyP0yalRXYjeyPeIMAx3CiRAMfTK4+Ro9Z4qCACHPoZuaL1IHGVOOJ9XDiOAAIIIFBAAhe4HzSyPC3GFtDsfb3YR4CjgD5GLAUBBBBAIB8FtLCo1qrIZVeLkVzGl7uMAEcgTuFT/UvMhAq3NLdrW9j4nT7yeYuK1iD5bc2teblF5Ykfp8qd538sr9yWxBaVUrtc9FV+bFExiob8/y1HWx+9jmyx3xqy5YFr5ON/nswJAQQQQCADAvOcD+Ykg+MSX2+dr6FDfxbTQIvNZs3Aakd/STI4Rm/GOxBAAAEE8kRAAwerWuJnPORquk6HVco8DqmP0+61xGMXh90qTaMokprtIqO//tU68vTLhxgBpZGKjGrXlON3e1L+9k5+FRl9cuXRkY/BsWs/In7f6IqMLll1QOT9uS4yunjcU6JbZrTOyjl/213W/EVVrj7i3BcBBBBAIMsCf3A8lJMaHJcFhgc4NLCx4Kq7DYGF5/QX+45GsviGB2X5oy8POrTV5hvKfdfPS6sgAY60cnIxBBBAAIFsCehfDBpafRIIxi7Gma25jHSfyhKndAWC4vVFz8zQjAfN9NBATbLtWLO1Tm1f29gWiNm+1uWwSUWJQ+qau0ZVeyRb8w/fRzNmaio9sqLRG/PWxW67uJ024zOWz8Nht0h1qYu2sfn8kJgbAgggkEaB2XYNcPSOcC2ObLxe3N3baS08Xn7jfbnk2nulsblNDp6yQ9wAx+XXPyDf/Vgn553aHyhxuRxSM/7/sXedAVEdbffsLh2xUhZU7D1qNGrU2LtiQZAmithrNLEnscUWjVGjxooIUqQLCNixxNiwJGrsGhUVdsGOIAjs/TJzt9/r+77ms2Fm/uju3Jk7c2Z22Tn3ec55syQ9Izje4GZjXTEEGAIMAYaAEIGc53koKi5GuTI2/xUecl32w6coX9YG5mav1hZ4eO0Z0tMewqEnbxtKyvyqiXiRS9wreAFHKaRYlO2qrR9bcTuKigrBaXxBJVJsVnpo64fKI1FMclnV1qKkfbDSS1s/yjEaxKaFtJdISM6rDBsVA7T1AxzC1LatxBoV9MAZnTGICkralzNHN9NgDveZrQAAIABJREFUTWYBtSY1k5kgMGMASMRDcTGHjmU20ycyVCwMgKW1KSJv6hTLe8mDwKkHR57clypngejLfD4ssYWdOWQH7xSnHn8FeWkknOV/jMRtPI9fvj/JW5qq66tWLYOgY/z8f5xzHCGBp/kfSvQdDp82d0JYPD+/9dPSsD/0Km+rqvajq9vKAYsSutL6BYOP4Ozev/ScTTh80VdnGzu5fRLSrzxR98z/IPOc9ik8pzSk781okoQHGXnq/vn5j17XHM0HVKP1vg0j8SA775W2sb71opDzOJ+3daW2sECignd0IaVjjUC8yC+kk+OvkeDPRxMglXBUnHaQcxSKXhZpbWNJ+4Mvh+GB2hbW0ykMhFDjp86DFKscpO3fRx5BbV1521kOUokU4Zm6H3A9nYL4e1NwOUhkJki576dtP8IhBuCIswq/t0xMTLH+vs5WdmPFBKg4YltLJgeYWUox7IbONvbSngw06lIR9vYW2j6N//M6n0PSNu9FPgoLi1GmtPUr+2QVDAGGAEOAIfDuEZgmi3ovERzLig0JjrwXBXj2PBcrN8XAwtzsfyI4njx7jiXfjnqroDGC463CyzpnCDAEGAL/XgTIAWnGwo04cPR3CkKj+jWwZuFE2JYvIwpKQHgyfg6I1dZ179Accyf7ix6wCnIKsaRKAgpzizEuox9Oh9/B9q9O84dP/SKRYrHSFaHf/IHDgdcE1YR82KjwwBLXw7h8PFMwLnNLM2y67YbZLXZDeeeZoL58pVJYcqYX/GtGIfe5UEy0dlNbLNrZA8MrxaKwUGgd2m5gTcwKboOWlpuEtrAcB7/vW8N9dG30dAiGRGoUqcJx2KkYRsfU3jGAJz8MCodfM0bTdzo5EfJEUI0DmSPom59UJK4qxvUcLtyfSN8cIA8TNueAOPUh39VB6KpCmJp4JU8yiLYnxIuCJwlG2EcJ1o7MJlDpSeu7OW4RanpAZxvbl7rGGE6AU0mxQzkYYRvPY+33xzS8l3YehIC68XwSFg45ggOR1wXzk5nLEHbHC9/12o1rZ4W2sdalTBF8wwtffpaIh/eFtrEOzjZYmdYHbjW3IT9XGAXyyeeV8GNCV4yWx4A4AekX8rL98NoY/MOn2FAxQeDKQq5u92NTNPCtAl+HSFiXNUHEDU/YlDUXzON1P4fK7MdY+HMITpy9TPuqW9MZ3070Rb1aVYR7iL3DEGAIMAQYAu8cgSlSQnCoOXe9u1MO/i2+Xq7SPfTRn/T8lSEoLi7+nwiOvYdPoWXT+vShV6c2TfFZo9pvHD9GcLxxSFmHDAGGAEOAIUAQ2LwtBTFJhxC65jtYWphh7MyVqObsiAXT+UO5cYlJPoTKTvZoXL8mDWEcPnkphvu4wN+rh8GlV3Zm4s5RJX5ddpl6pI1X9Mf86juQ/1xIIJCD4g/ZbhjjGCOa/qFSAYHZnvCTR9Cn74LCAVuzvDHCPlrUGZQ8ld+U5YkB9qGQiFiHkof+hAQYZBcJqYj2lpTjEP10ELqW3UJCTgTFzMIEMbd8QaI3RE74sClrgajLPmjruEnUFrZOIzsE7O6Pjo4BotanHuM+wdhZLUUJDoLd7uPDqC2su0OYiO0rhzi1roU4wQHEK/2QFHQFW2cS8slweiRvl7RfN/Q3nN2ZIYr95ixPDGsRjft3nwuXhti+qm1jc568FKnnsEPhj3bVAlH4Ukg+EVLh3IMJcKsQJiSX1L8ciW0smbuYKyyn4hCbNRje9uGi6SEk4iMyyxc9KfkikkalJqiG20WL7g2SurQh0wPrnbaLrp2JtQwjrvWFj3043XuDvmmM+i3s0bq3swEWr/s5nL5gA8gTtrWLv6L9fr98K7IfPsaGpVPYFxtDgCHAEGAIfAAIfE0JDg2dYfgvibKk0X5voX6lyjCCQwPF/0pwJO09htv3FDRC98+rt5B65CxWzBuH7h1avFFUGcHxRuFknTEEGAIMAYaABoEBI+eCRGGM9O1N3yK5mpPnrcOfB4NED2zGyM3+cQvuZ2Zjy8oZBlXPMvKwtGoi/95HQHAEZ/mgn8PWD5rg0Kbf6K8Ex+HnU26UAPlPBEfCmmsIW5j2jwmOL3uk4No5pSiBsVcxHIPqReCfEhwnM8ZioCNvtye8AVCSCA4y/vj7A1HO3tJgKq/7ORw0YRGqVHLAopl8dE/8riNYs2U7DsSsZF9uDAGGAEOAIfABIDBRGqmjMLRWsfQnkc46VkNxvMH6VUYpKq9LcBhDN3PxJjx5mvPGCXRGcHwAm5QNgSHAEGAIfIwINO85BgtnDKckBymXrt2Gx6h5OJa0FmVs/nNef2FRMbr7TIVL51aYMoZPUyDlSkoGTgfdxOUd9+hrkpZQIlJUKsaisEg8RWXEymZwdQr5oFNU3OVhoravcVmDIJNK0duWRCkY7eK3nKLCQYq9mf70pv80ReXo3dEI+PoUDkQIU1SkZjKEp5eMFBVOQvQ7gPZuVdFzSB207KWzjX3dz+GB387iy1mr0bltU/Tv2RbL1kVimHcvKiDHCkOAIcAQYAi8fwQmSNUuKjrhLJ7OeMuvf1GJ28T+rxEcxsiRtOQz568hdM23bxRURnC8UThZZwwBhgBDgCFAECBPxD/pOBTrfvga7Vs1pqDcvH0fff2/w/6o5XB0qPAfgZr7UxB2pp5ESugS2NuW1V771yElNndN5SNAOGC8Qici+qGKjGoG7+cQKSoyqqnv57i1RImMfvKFHKv29KS+99P6p+Lk7pslSmT0xH1en4QUMZFREr2hKR+6yKiPfBu1jCUCuKsPuqBxW1589598Du8rHmDk1GWoXb0yjp76ExbmpghaORM1q1VkX24MAYYAQ4Ah8AEgME4aobNP0WajkN9FGpJD/19tKMf/u36dUQRHcbEKKpUKC1eFoqioGPOm+EMmk9G0TSJsPfRrkmrcCz07fU5RI2Kkfbu1hnMlOa7eTMfQr5ZixEAXjB7c542iygiONwon64whwBBgCDAENAiQJ8ckzL1b+2b0rf81gmNdcALWBicgcsNcNKzLu2hoDmt5+UXEyMSgTKmeCKdG5TEloa0A/DOJmdj01QnUb2uPSSFfCOoPhtxC4JzTaOHijIlr+T/A+iVh7RXEL/0TbXyrYuQP/Dz0S9jS84gJuAiPkQ0waEYjQf2ab07jYPgNeM74FN7j69J6S3MZjXogc/l53AmkpaRj+Pxm6Oinm6umo4l+u3D8+H3M+qkD+vWrKeh/smsKrpx/jJ1/6Rw99C8a3S0Z927kIOUv8acuk9rvxlNFLoKvuotu3C8/34nc5y+w5aJ4vX/TeJp6Enymv2j7YQ3iYF3KEmtO9hKt968ThzJya6w6bKizornYpXoEKtW0wca9fJqTcRlUPQ41GpXB9wldBHWJiTewcOohtGpVEatDegrqY0MuIWD+abTp7ozZazvAxsqU2t9q7Hz3rr2C3Uuv4nPfGvD64RPRtU9efxG9x4qv/Y5v/sS58DtoN+MTtB8vFOjcMP4kzqZkwGf+p6JrH+x3CteOKOD+czN81s9RdO1vnn+MRKO1J3ohlhYm1L2HlNf9HHqN/h7tW3+KcUP60R+oc38KxpGT53E8eS1MZDLRdWBvMgQYAgwBhsC7Q2CMLOJVEhtv9f0NRhEc0TsO4vsV5OGMrhCdNbde7fD0WS5a9x2PWV8Nho9rZ3oB+ftCtDc0xbVHG8z+2o86sLzJwgiON4km64shwBBgCDAEtAiQ3P8eHVtQdp6U/6bBQUQZl2+IQnTSIWxdNRP1a1fV9qW4nIMbhxS4lJoNnxA+5WVkqSioiJiWJjWC4+AyswH6z+KJhkGleW0FjbsGEd4Kf6Z7Kt+3dKhAbnzHs8G6P7w2RsKaHBCfoyMSOpUJNHD+IPc6+HS4tn3n0ob1pCL16TBYmpvARCZBRxNSr7dhOGDHM946dOOKP7Bs4SG1UBivNcIR14+Hk2j9D5OOIyn4vG5uHJHwkOC3pyNpPSE+Th7K0HVPcJCa4MhjXuCVEBe3r2TrIi44DibmpojP5vEZ0TARivSn2sGRuVlYmSBOwdvW9qsZgScPcrXjI9iWLmuBpNs8PgPsI/Eiv8BAa8VWbq0lUvpXCENRYbEefhxqN7XD8oM8EdK23BaoVEUG+H7ewQkrEvi91LtMKG+rql58wnm5+NfCuFWtaH3NCquopa/e5sC0WR0wevKntL5F2Y0GKTWk/aWCCSgqUiH/ZTFG2BDbV93iUEeXHJ24Wo8yQbq1UaO06ymfLkPKN9YxRnsDWJKrsxT2Lr1Nb+HJfyWIfKYjob60idbVk7WDDKuf8+23LDyFoGXntOMnayPlJDj8jNfM2OR3FI26O6FOG0c417PB63wOc/Py0aLXGOp2RNTtSbl49TY8R89DQtBC1KqmS30xmgB7yRBgCDAEGALvCIGR0m06rQ2txoZE+5tH89vnTf+7qVj8YcnrTJsQ54+f5sCuQjkqQP82CiM43gaqrE+GAEOAIcAQALF9jU0+TF1UrCzNMWbGCgMXFSI46iSvgKljeNuxWUsDqaAhcWuoXkX3xNrBrhykEimmmEaBkCAzHrgieclFpK7gbSwNC4eVWR4IGnMWafEkZcK4SLFe6Y45nffh5kWh9SdRHg9TeGNs3XjkPhZae8okQJDCG55Vw1BQwOse6BcLK1NE3fRBf6dQEJcN41K2vBV2ZQ5CV7MgEVtXoEaDspif2gtNK64TWIOSvnr0qYfFGzqhh1xInpDI1Ak/tEafoXXRQ75FaJvKcdittpX1cQgXCr1ywDZ1Woa3SD0hMSLVBEdvEVtWkjKUpOBtYb1pyoTRynBApLr/gQ7hQltYjhf1JKW7yPgJyUPGvz/oCjbPPCvqGhOhGIhvxxzAriTh3iBre/b+OIzqHI+/Lj8SrA0Z77m8cRjrtB3PHrwQ1kskWKF0h2+NGBSK2L7KLEwQcdsbi+U7gGLh3rCuYIFJV3qI2sKSm1X+pBzmpHbFN3bxoq4rn7hVxcANTeFCHXWEjj9jFrekaz/RPgYmpjKEPvOGqZnstT+H3X2moZqzHEtnjYGVhTm1bj547Hfs2LqYRXCw73WGAEOAIfABIDBcxpPkmuwU+sJYguMt1AeqdA+JPgAYXjkERnB8yKvDxsYQYAgwBEowAuRp8NT56/HriXN0Fp/UqYY1iyZpNTX6D5tFCY8V88bzh1qfabiXSaIKDEvQl3Nw9/BjHPnlOn06MS/HHePs46AqELeF/Tl7ACZQW1gR8FTA+mwP+MrJE3qRwnEIVw7EYPsIUacXQiKEZnmjr3yraL2KkyBJMRj9HEJED+DkB8iex0PhVs4oekQ7FAnCFT5o4vSLaP+mZiY4eWs0ussDRevLlLWktrE9HYjtrPAQXLOxPdbsdoGPA3n6I5x/857O+DqoDcQIDjJ2r1nN0KxfRYxpESNCkHBYn+aBK6l3ETjzrKhrSqTSFyuH/oZTu9IFNyfYEoKD2MJm3M0V1qs47FEOg3/1KBTkFYvWE1vW5pXWoUjEFYXsnT8yJqCzI8FOOHdS/9uD0RhbJgoSEcteQrCszPaAp32oKLaEfCO2sYttSdqO8AZkb8x60A+vsoUlLsWbFZ74xo7YwgrHR7JDFmS6vZLgsLAxxa70IRhuE0nb9/6qLpp0d0LNNhVe63N4+fodrA9JpPZ9VpYWaNa4Dk1XaVivegn+NmJDZwgwBBgCHw8CQ6XqhwSimhuv0uL4/78fVMwIjo9nF7GZMAQYAgwBhsA/RuBpTi4KC4tgW77MP+oj+3oOFtVJoW3J3/KVxV4YVysWj2/ni51S6SH0q+pxKMgVYTjUBIdfpQgUC/kR+rwjXOENP0KAkBOnUSGH4NAsH/SVixMYKhWQpPSDqz2xfRU5pUokSMgcDF+5cYoCfyMzSxmCbnnhU6e1os3L21pg/7nhryQ4ajV2oASGWAQH6d9rfD34z2oJXpTSeHLAj6f6UdtXbxEChMydEBSkiEVwkPpkBZ+mIRoBoo7guJeei+nNE4UECAASgbF+4QkkrhWJzuGA3YqhmNFjH9L/EBJhJGAmSjkQXRoH4uED4d4gETV/ZE5Az2pbUShCjqk4DgcyR2CyfRyR6xSuvQr4+cEAeDgYpS5prlRJEJ3li8W2CYK50b0rAb7LcsVI+2jReplUgg2ZHvjGLk6UvLIoZYI5f/WFizxYtL1D5TJIue4DTxPd+NbecIVDNRs6wtf9HBKCkojGlSn9nx2P/tGHmjViCDAEGAIMgX+MwBBZ+D9u+/9puLWY/w3woRcWwfGhrxAbH0OAIcAQ+BcjcD1Vif3LLuPqXgVFgagRLHzuRp+Qj7DeJnhSLpFJsSLTDQ/TczGrWYqg3tLGFCtuuOLKkUwsGHDQsJ4DbJ1LY9UpFySsuYa4BUZpEByHOp/b47ukzlg9KQ2pUZeN2nPo7FUPE1e1wIw+qbiSds/goEoIgGFzm6LfuIaY1DwFD4jGhZEGx+zYjqjb1hEd6gbgWc5Lw5UnGh0n/CkB0bNSMDjjEBWawsFrgJAUD43IpKYTcn9Nioq3fThVOdcvpD5CTWCQeokxQaOOsDAzkaJrhS2C9iSCYVf2UJpGRCJEjBkUQjCQCAtSxFJkSDtNvViKChnfHk2KjZz8uDMcv8REgm33fEAIlD4thSSAtY0ZfrsyEmePZGK6106juQPyaqUQfswLR9ZeQ9w8onGhp8HBcajWUo5JSW2xcVIa9kdeFdR38a6D0ataILTPEdw9/lCwtp3n1sfnX9bGd81TkHUn16iew5S47qjbtiwW1kxG3jPh2k850x0VnK3Rm6690ZcCB/yWM5IiMsgqQkuONenphD6T6qNRV6FI6b/4a4VNnSHAEGAIlGgEBsmIdTv1zhL+q9HkeAv1oYzgKNH7hg2eIcAQYAgwBD4ABC4mZyCgz690JDJTGaZk8m4a8vIWCPr6LPatvkSfjJPn7eZmMiy9p3Pz2DopDSci7vCBGBxgYWWGn2/3085q2eAj+GPfPbXiOBHJtMT6K7r283sdwI3TWbS9hAMqVLTGyt91Vmbj2qbg3vWH2v4q1aqAdUd4EUxSRjaJQ3bmc2rdSTqo39wRPyR109YTnY9nT15o7/9pV2dMC9U5wXxRazPy8gogIQKjkKCXRx0sWqVzC+lbNRgFBcVqsUspPMc2wrA5vDAkKb0qBUNVTJDhqADp8HlfwH10bW39QKdtAD0ok2ukmBjYES178/aipAx0jASnIjKu5O5SRCh5cTHbMubIKyhG57JbAIk6SoaTYv/jobAwleHxc/5w7uMQAQ4qOj6JVIptmTqRzhPJCqwefhAAaS8BZMC2DF3oa9zGa9g07yj9eUbqpTIJdt7TiXhGzD+LxLVXeIpDwsHEwgyhtz20Y/9u0n7sjLmqTUq2sjLH0eu8CCcpswfvx/HU23zvnASly1ti+0Xd/df1OYjrJ3VrS9Z+1u86J5ZJbVOQcf2x1nLPqVY5rNJb+zVNUpFz9xkdO7lHxRa28N/ZRnv/yXWTkPMojxJkhLhp2N0Jk/TWfl7VFBTkaTRgOHzuUwuuq3QuPX2rhqG4oFC9cjJ4jG+IGStaIetJASWYJjnGadd+VnJnNOnJLF614LP/MAQYAgyBEo7AQFkYnYGBBsc7eL2tWNyx7UODk0VwfGgrwsbDEGAIMAQYAhQBkjKQ/aQAxUZinQvrp6BSo/L4KrkdnjwvNEDrerICu6f9jsptHOAaoDvsay46En4HuxacR+PuDvBa1UKA9M6N17Bz+SW08K4Cv/lNBPVJyy9gX8ANdB1ZE32mNBTUr55zHAfibmDwxMZwH80fSE1kUtiWMaOHz6Vf/orj++9iyLdN0c+Xt40tbWVK5/r8RREWjTyECyeUGP1DM3TsXUPQ/3yvg7hx4SFCLukcOfQvmtFnF+7/9RxhF3WHff36EV2349GjfGw/I55HO7l9EnKfq7DxjI4I0m+/oP0e5OWp8MMpoe0quW7CFzsoZ/HL8b6iu3hqoxSUcjDFvH06okf/wrEN4lGpemkaJSNWZjdIhm31MjSSQqz41Y9FzYYVMCeqo6D6RPJNbJx2Dg3alMfUgA4UdxLF8kRNyOwNv4LNi8+ieZfKmLaqLRzLW0Lx+AVNiyLlwMZrOLD8Opp5V4Pr/Poie+MGfgu4jDYj66HPFKGl76E5l/B75F20nFIfrUZXFrQ/Nuk80g/fQYtpjVDdV2grmzryLO6fUKLVD01QS4+IIh1VKG2OeS6HcPecEj9ecjXom6S+2JU1F0T0sK8ZhgBDgCHAECiZCHjLQt+Li0pEESM4SuaOYaNmCDAEGAIMgfeOgKrwOIoL/kRBwUE8QyAdz0y77fRfnS0s0HJoTfT7kScSfrJLpE/DtdahHNB+bj2aFkDKl3axRtagHNZk6YgAgbAoB4Rk6aIOhtgT8Ua9tAgOCM7iHWBI6eQYIEiJOZAxgh4+ifXo5+XXG1iLksiOA5l8SolTBUs0MV2na88HLiAlk49aCFtyEdt/PmNg60riKuKVvK0tIUaOJ9/WjoXgIJNIsSOTdzUZ1T0Jl85n6PXPwUQqxaH7vK3s2ObxUN7N0dm+coCZlRkib/HzI8TEM8VzA2wtLE2x5g4f8eJXMwbPc/J1aRccYFPOHFuveNL6kU7RKC7S2brSOdctg4WHe9D6IU6RKC7SWf6SqJFGHRwxXU1UTLaPNbT85Th86loZQwJa0vb9HUL5WAm9zeH21WcYNLMBrXcjrjCEedGzFD76chSynvIRDz0cg7TY8f/h8OujUTAzJQRIIabaxxrZwnJYlqUjmcbYE9FVvS44Duuz+LmT8oOtoeYI2abfPtCRSMHOcUYZNxL433Gjbc+vuYbffrhoYBlMImrGZPLto6afx8GtV3Q3pwE5UmxQ8OM7MOgo6vSuCIdPysK5PUtVMVpo9pIhwBBgCJQ4BDxloe9lzNHF/G+OD72wCI4PfYXY+BgCDAGGwL8QAY4rwAtlA5oe8dT0TxwNSkfy9FNCa1EAS7LckDzmLC7H3RUgRdIjpmb3xdLO+3D/wlMhkhywmriu1E/As4dCYUqpFAjO9MboKttRkG8YLUI6k8lkCMwYgK4Vg1AsEEYArEqbI00xAo2s14PjhKKnzlXLIOiYB3o7htB0DuPSvGNlzNvWGf3l5AAvLG5fNaWHeGIdakC+kEvJITq0B1p3leMLx41C21gARzNG0U7dqOuLwNgVcQo/Wj/KIUqgeUFusEnJEyBucvEfW9sV/I+hYfaRIrawHILUBBIhl8R8ZUOzBuLqPgU2DDwiOr4VWR5q8uesABxyzo9XDMYPA1Nx+kCGyNpLEKcchDGtE3H7lohtLCfB6RejMd4uDrnPhJbBJPpjqcINXzrFooimAhkWUwsZVt9xwxL7ZHAie8PazhITL3XD1ipE1FRYyjcojb47u2K9IyFHhFfU7OuMbhubYrRdlNC1heMwYGkrdBnqjK1VCLEnwfTHAyE1EbOH+Rd+wbApMwQYAgyBEoyAu4z/m00eZrzLf2OLGMFRgrcNGzpDgCHAEGAIvC8EVPkHUZi/F8X5MfSU/sT0T8yvl4IXD4WHTPIkfPUzTyyyT0BRvoh1KAdMf9APk17ljMFxWJPtgcEOEUZP6PnZE1eUsGxvDLGPhkTkkEmiMLZmeaKj02ZRAoJwGscejsIXtkKCQYNvasaIVzpjEMohOdMfbvYhoq4sMkspYm750vZi1qJly5oj7LIPvpBvErU+rdfIDgG7+8PdQdy2ts+ERvCf1Zg6f4jwH/jhtAteAJjYfLuILSxohEnUwnPYs0YvwkA9cfLDjBAcc3vsw1+/PxASFBwQluWD2fVSkPuQ3MWwUEed7AHwqBaO4hdijjkctmf5wd0xlJcZEXQAxCkHo4dDEJEgEVargIMPh2Ni2Wih4Cq9WoJlWW4Yax8rSkCQvbEha4AgekNzI2Ib+92DvgiqHCe6NgTvIbfdsc4xXtRVRWZugskKVwyyEQq6kntYlzfD8suuWoLj06E1UbN7JdR0qfS+PtrsvgwBhgBDgCHwBhBwMwmh6ZPk78S7/De+mH/o8aEXFsHxoa8QGx9DgCHAEPiXIVBceBkFD9VinhyHJ2Z/Yn2Pw0g/qxN91EJC0kSKB2KWQxzyHgh9X8khevoDV0ypnCBqDUrqCcExxD4CnAhDoLGF9XeIVotxGh+y1QSHfLPoIZWTcDh4fyQ6O20WXUUSBbDv3nC40EO2MEbDwsYUcdd8+RQMkRAOe+dS2JDWXzyCA0CLHpUwJ6gLvnDcJGhPfhR9tbgdPIbWFY/g4DisOuVOXVteRXBsUqdhuIkQJKR/QnAQR5tpzZJFCBCe4CAESPKaS0KCQU1wrOqxD3fOCqNvyNoQS+AxLeKRlf5ctD25/6DqUXiRZ+RKQi2HOWxX+qkdaURsYTkJ9ij8Mc2OEBgilsEqDj89GIDR9rGQipFfkGCDkhAcxDZW2J4QZjOzXBFcOU6UYJGayeB33RXrHcVtZ83tTPFtujv6mYSI7r3KTcrhu91dtQQHAWj4yd6wq1/2X/aNwqbLEGAIMAQ+LgT6yba+08gNTaRIQhEjOD6uncRmwxBgCDAEGAJvHQHVyzN4mfMjVIVEb4LPinhicoH+9xuiwWF0TpTIgDVPvJB1+znWNNgleNJtWsYCX93ojitHnmCt234jnQSgfNXSmHeq23+1hSXWoMcjbgmsP1v5VKPWoOP77MKl0/cNNT44YMzsz+E1riF8W0ch81aO4Jy7LMoFTds6wqPuNuQ9FR7CN570oASDe6UwcEWGh3CSvhOvTiHpI98KQqboF0IwpCh4DY8v5AGQSI3qVcBRhTpFxT5UcEgm7bcrB4PYwg4pT/RHjMgdFRCQzetM9BdJcSE/iHZkD6EisUPtIkVsZyXYoiZIBtlHCPpXSYBwBe/c8rWRfgp9kwNWZPM6E/3lIYIIHGIbG3dvELWNndgiTlBvXcoCITc8qG3sN57pMrY4AAAgAElEQVS7DOs5QF65LIJP9cevv1zDju/PC2xha7R0wNiktiBuPccj7gjWvpVPFQxR28beO/5IsHc6qfVhtrfei2f3cgzqCfYu4Z1h37YsAusm4+UzQ/KOrP2IP1xgW9UaA8tsI4q8gs/mBiW/NsFVY6mLDinObRzQZlYjOH/h8NY/y+wGDAGGAEOAIfB2EOhjsvXtdPxfek0q4nW9PvTCIjg+9BVi42MIMAQYAv8SBMiBuLhgJwoeT+LTQWQmeCL9Qzv7nfMv4rc1V6FSH+RNzcyw4B4f6eFQzgJbh5zChbC/1NkIHMxKmeKr2zrb1g2D03Bpzx1ttoJNeQssvqKzff1vtrDftN2LzKuPtbaxjnXK4YcjOjcQzxaReHDvudpWFfj0MzlWJOn6d2uwDU8f5fLWoIR06FwVC0J1tq/utcLwIofofPDu9t29amLiKp1biGfVSBTmv1TLMUjRe3x9A1vYvpVCUVxcpLWNHTqvpYEtbBunTTSWlUSqSDgpFgR0NHBqGeAYCpJSQw7PUkgRq+TV0oktbO6LIgyqEAkUq+hBn4hcblQaOrm4y8O1OiMSiRQpj/xgZS7Do5yXILawAcN/hYrYxnIS2keg+gBO7kHcayLmnOWx4wCpTIatmTqRTuJgkjLrAjhqSyuBiUyCHzPdtXtjy/yzSF5LokBUdH1MLcwQfVsnELt6UhoOR13VxvJaWJgh/LZOIJbYxqbtS1djD5SuYI5oA9vYo/jrZCa9H6EKyhjZxs5ruxfKq0/5VBVOAoc6ZTBPb2/wtrEkyoRIw0rg2KKCgW1s5KdJePGYWALze6N618poH6hz+dlcKwWFxDFIvffredWEV3Bz6sxDPjfjK8Wj+GWhmuSSoMf4Bug/hxdYJSW0eiI4FbGVlcAttB1q96ssmvbyL/mqYdNkCDAEGAIlGoFeMpKWqjGJ1WlxaCalibhQ+9AbiHSTa/5pfQojOEr0vmGDZwgwBBgCDIF3jADH5UP5mDN4GJ38WSIKSGSDVIrqfaugyU/NDEa1pPouFOS8pBaYbSfWQYdZdQzqV1XZiaI83j2jzezaWkcVzUVDnKPwskAFmUyCCZs6oKWR/ea3TokoLlSR2+MHJe8Yol/85ZHU4pXcP1jBH6hJxEM5GzPsCL2Dn0enQlUEmJhLEJ7ORyNoStjG89i0MA1ckQpmpiZITR9Gq2ysTOgh+ee5xxH6yx8oLuZgZmWC1JtDDdqvn5aG1NBr9NBuUcoUYTd1B3py4U8jD+FY0j0Q1sKGEEBqRxNNJ9O9duPMkfv094+tkyWijKxjZ/RJxbW0DHBSCRycbATWsd923IVblx7T7irVLoNlR3RkEnlvdovdyL6TQ8mSqp+Wx/Q9htatX32ShOfZ+ZTM+qSrIyaFGlq/zqibhDwi/CqRolm/ilrHFM34/WvEIo9YvEok6Di4BsYuM7T9nVhlO9VlkUiBnpPqw3fBp5SceJLLi8X6OkdBVaACZBIMntsUvUbzbjtafJwSwRWqaPuBga3QY3BVresKucZPb+1D1Guv336RQxIVcZGaAt9kGNruEsLnl1GHgGIOMnMptqbryBbSx6E11/Drgst07WRWMnx3x9B298Siazi56gqIzoepjQnG/2Vo23towmnc3nGXEhoWZc3gc76XdmgkE6qChSlMyT5jhSHAEGAIMARKHAI9TYIpGU4Ic43I1Lt4vbuIjwr90AuL4PjQV4iNjyHAEGAI/AsQKFLtRpHqKvKxHnlPf6czjq1FREZ1hTzdNy9jhr6nXemb39snGNZzHCo2qoCRqe3o+8tsE41sXTk4t5LDM+lzWj/QIdxQG4Hj0N67Fk05IWWGsfYCx6HnnEbooLadHUSFSQ1HGKocSCMeti65iJDvTxrVAtEKX/rewklHsCvmkkF78uPkaMZoWj/ZbTdOHSdpD/q2tBx+zeTrJ7RIQsadx4ZpEwA0riV+tWOQ8zTPSPuBpLTw4aU9q4WgsMDQFYakRaSqbWvdKoZBRRRWDYoUCZl8VIevPFLg+kKiOsLVB/0xDjEC0VWpRIq1Cj7qYqRDtKHuJ7GlNZdi3V0+KmQCsV01hBbW5Uyx5Bq/9l7ycMHa21cpg1/S+IiZMVQUVdcDeVpV54uKmJLYhtrCehPbWKP6jnprP9Vo7Ul7t/mfove0+nj8/CUGOWwzcJUhaxeu5Amsk2uuYe/3lwTpULMe8GMn6U6/Rl43WBvS/zYlvze29DmCuyceGKas/I3WvCzeNjbk8wN48Nczo7XnMDmL7z+8cQpePiaOQAa+tRiazmMf90kiWkypj4qtHFCJpaoY7XH2kiHAEGAIfPgIdDMJUsd68lGBNPrxHfy7hxEcH/7mYCNkCDAEGAIMgQ8DARX3BDmFTcGpOOTlXsJf4Xdwdl6ayOA4DLjuibgxZ/HndpJSICxzs1wR2PowHl8Xt4Wd+qAvRtTcjrznQltYcFJsU3rjm4rxUBUKnTlIaseS7P4Y7BQBCE1bQDRBduf5o6P5FqHtKQAiHBmR7o02jgEATbcwLDZlLLDr8hC0ddok6sriXLUcwo55wF0eImLbCrRxrYGvN7RGf4etosKWY5e3RzffKuhCRU+NRTU47M8cQQfkKhdpz3FIUBMkAynBILSV3aYmcIwJBtIn+QGm0YUYLubK8nckyGalJ46E30H018K1J+1/yfLEyjHHcCLhlgA7QjIQAmlB6/3IuMlHlhgUjsP6LE+69rkia0/WVrP2ha9Y+y0F3nApFQzVK9Y+NMMHC+0SRQVpZWZSfHO/LwY5RKpTbYzWvpQFNtxww/f220XXtnxNG0w83gXL7RJF90Ytt8rovaEpthBXFhFR0/Y/fIbqvlUQWZ2IpgLj73hRwpAVhgBDgCHAEChZCHQ2CVL/nVFHcGjsVLQRHbr0FRrh8YbqU4v4SNMPvbAIjg99hdj4GAIMAYbAR45AkWo/Xqp2oFCVTJ/q5+VcRGKrBBQ+MIwwoDBwwIAbHljouAPFxUKCgDwJX5bjgXml4yEhIQmCQy5ACA5vhwhx5wsOiFAOxHTbWHFrUA5Ymu2OwfaRotagJLUk+rEv+pbfStNWBLdXAdFZvvhCvkG0f/IM5mjGKLQVcT0hfRGd0EOZo+AuDxXdFWaWUkTcIq4rIaIES5lyVgi+PABdHANF6+s1Ko81u/ujHxHtFHFtcR3fGF38amJ680QxfgM/nuqH0yE3sGfNNeHc/xbu3JDlgUU99uHW72IEBLA5yxMz6yUg96Fw7cly/kIsfatF4eULoWMO2RxRikEYax8t7nqivj9ZezHLX6LTGaUciKm2saKONtSS+LEHPMtve6VlcHiWNxbQyCHxvUeiOHxJ9IcItmTvkCiQeXbEFla4vOTp3I85A7CglLiri+xvvZOJd3u/kuCwLGcO73MuiKgeS/uv51kNtfpWQc3elT/ybxg2PYYAQ4Ah8HEh0MEk8L24qBwsZATHx7WT2GwYAgwBhgBD4K0gUKQ6g9wiD56/eAMRHBuLfbCgzu73FsERkuEDL5r+IoSLRXDwwqElNYJjWXZ/+DlFvJ8Ijlo2WHSpN6abRr2RCA6yDj6pPeH4me1b+VyzThkCDAGGAEPg7SDQznSzWoND1z+vwfF2Xx8p5KM8P/TCIjg+9BVi42MIMAQYAh8xAsWqS8grng4Vd4mmMEBq/v/W4Pj6WCcaPTHbijypNtSweNsaHNuyfaktasKaa4hYdMpg5TQpFOTN/6bBQWxnz59Ofy8aHOamUrjYh7xxDQ6ZRIoN2R4oKla9Fw2O6p87YnoSL2T6TzQ4+qj1V8iOolEYej8l34UGx6oX3lRw9pdP9uDBrf+fBkfhCz5CxqFJBXRZ8Tn9lxWGAEOAIcAQKBkItDYlaazvTntDo/FxtHBkiQCIERwlYpnYIBkCDAGGwMeHAEknKSzeifziL8FJiTVpB+Q8W2cw0ddxUWkxpia6z69P29uXtcCjnAIsr5TyTlxUZFIJ4p4OxrM8XWoFccpYNfrAa7uoaAAIXHL6vbio2Jc1x9PcQnzVY98bdVGZfaALSlnK8PDZSzrFd+2i0numzjaV3P91XVQ+1XPYKWVpAreyRIiVd9B52y4q3993pc48GlvYQ3Mu4dyGG//IRYXM/fDwNCgO3qUEmktoW5qmIqbb8fF967AZMQQYAgyBko9AS9NNepPQxG4Y/6u55M3Vnyjkhc4/9MIIjg99hdj4GAIMAYbAR4oAxxVC8ajIwE3DKnA0JC9yaDSHtGZzPO8x2WD2i2ukIP9ZERVpbDmkOlyWNTaoX1RlBwryiDWoFN1n1EHryXUN6mdVTEDRSxU4qQyu8+uhlZE1qKtzKIoKOaqPMXlja3TsXcOgvb88htqyEhGDYAWfVqOxhSWHTzencGr7amouQ5SRLeyJ5JtYMuoEJJwKJqZSxKTzrhmaErHmAjYuPSmwhbWxMqX3XDTtCOIDL0Oi4mBhY4qd1/wM2q+YcBSHY29BIlGhVDkzhF0ytI1dMPgI/tiXTrVJSttZYcufvCuHpizqk4pLadn0qZBDJQssP2NobTqhexKu/5FN9SkqVi6DLWmG7ae1TcG9a7ywa7X65bD4oKF16aBGsXianUdtgJu0t8fCqB4G9/+2bhJyHhZSbZSmIraw3vUjkfv4JdUhaT+gBib/8oVB+/HVtyMvt4gGVvQYVQujl7eg99KQTt1rhOJlXiGkMhVGzPgcPl82NGjv7RyF4oIiKhQ7eVNngWVwT+dgqAo5EDJr531/LYlWVMzrbQyoGIbiIg4yEwli7/NuM5pCyK4tw3+DCiqYyEywIcMQu7iN57F+4RkUFxXD1FSKvWrLYE374yuvIn7JRbr2ZlamWGBkG3v6u3O4su0vEOkPM2spPC4art2pcSeQvv8+ta01KWeBfqd4txlSSESKvY0ZZGYygzGzFwwBhgBDgCHwYSLQzHQDT0qrf4+QB0bv4vWpl4zg+DB3BBsVQ4AhwBBgCLx3BFS5v0KVexx4Foqscnwqh+VqHwNxRfJ3W2pRCrmjAmj9bPt4w/xSjoNdtbKYmNZJXb9d7Qmvnh4HVGtti6GJfFrCdHtSr1c4Dk0H1oLXqkb0zd7yIEPrTnAY9G0z7UHYj9rCGma4blX6UFvY3BdF6FU+2ABXcuzV2LYmrLmA4MVnDdMa/j7oJyp4kmLZpCNIir4kuP8RtW3s+G47cPGCUpCycjCTDxf1bxiHx9m5ggRcTf++VaOQ/6LAyJpUgu1K/iDu5xQNVbGxNYgUYUovWt+jYjA4Y9tYFbBHyQuOidrGSiUIz+CtU3s7bhU4i5hamCL+Fk/yTLSPNdyTHGBVzhJLrrnQ9/vIg43mDpS3K4XgC7z16TAq+qpvCwtU+9QOc/d1Bvnh14m6xugKea+XZ11MW8XvDQ+HMENbVo7DoFmfw1VtCdxNvsVwb4LDrw9HwepvYc9HOS+p64zx3tBY8u5ecw0xC/4wag8EKnk9ErL2u2KuCLKnD2Twa7up3xFcP2a09gB+zOLnvqPTbjy9lSuw1R10W13fLAH5TwsFuh0e13mCLrpuAj77sg4qtbBDtR5McNRwI7JXDAGGAEPgw0Ogqdn69zKosy/Hvpf7vu5NWQTH6yLGrmcIMAQYAgyB/zcCXGEmCm+1g4rj8Mj2Au3Pag1/GNYvKnDI/zKS2sKe235HUE8iPRZkuWFN6/3IvpHzyvrva6cg70mBoJ488V6S7Qb3GuEo0Esv0VzISYCUDH8Mk0ejmBO6tkhlUiTlDkYHy0BeQ8SoyMxMEZ3ujf6OoaL11mXNEX7ZC+0qbiYKq4L2GlvYjkYHdM2FHfpWx9wNndDPkdjGCsv4n3hbWHeHUDFXWGxXDqaNiKaE4QGdfzAUnsWvSXc5cV0RqqbuyeQJjv9mG+siDxKmQHAckhVDaXsBwaGeyuqsAdgbfge/TD0ksrZAUuYQrB9zDKfi7wrrOSAoywtDW8fgzm0Ry2CJFAfuD4N/zSjkPhdz7JEgRumL3s5bUVgo4gvLSXAqdzQ62GwRkj+ErpBJsf3+IIxwIOSNcG0tLMzwyx1XdKKONsK9U0FeCrG/+2CaXYyobaxzMwdM2NkGYVXFXVUaDK2LJnMaIKZWtGj7z+a1oLax29SuKqOvuKOU3Ep0H7E3GQIMAYYAQ+DDQaCx2TqtIaxmVNqADkMDWe2g30T9HwXjPhwQ/sNIGMFRIpaJDZIhwBBgCHw8CKhyD6P4yTZwuQfon+EHFS7AImQipE+zhZPkOORNjMSCygkoLBAeAskhfEF2f8y1TxAlEEj9yuceGGsdAynJbTAqpP7HbDf0lgeLup4QV5cU5VAMsY8Qtx5VAZGPB8KlQvArbWG3Zw1GP4etorawJIVih8IP7eSbAKnIGksk+PX+SHRw3CxuHSqV4MC94ejrEAKJSHtLGxkir/nCjdSLEBR2zqWwIa0/BtkT61IhgfFZr8rw+L4JhrWIElZzgP93zWFXyhRbZp4VJVCWneqHLXOPI233PVHsUxT+mN8iGQ9u54vWr8keAO/a4cjLEbGFVQE7lEMw0jEGxcbRJWRncRyCsrzRsWIAJISpMl57FXBQMQLu9uGv3BuxykHoKg985doeeDAcLrbEElhk6xKx2awhGG4XLbo2ZO23ZHmio3yzaD0n4XDm8TiMtia2tiI3kEnwY6YbQqsaiemqhyKzMoXPxb6IqRkjurfNbE3R77grtY0lv5SJDkfjoXVQtbPjx/Nlw2bCEGAIMAQ+QgQ+MVtrOCvyJ0LEnVzHbryZ+j9fji8RaDKCo0QsExskQ4AhwBD4eBBQ5f6Govv8k/t3EcGxudgXYyrEvrUIjqAMTwyQh33cERyOW0Q34LuI4Ngy/ywS1vNRPvqFRMwkZfq/1wiOPYqhcHMKe2sRHEdu+cPPNOydRHAQbD12dIVzO/nH82XDZsIQYAgwBD5CBOqZraHEt0Z74139e6lgQolAkxEcJWKZ2CAZAgwBhsDHgQD38hYK748CCm/TCUml5m9Vg6NqS1t8ua8jTGQSjLaOeuMaHKHZA6mTBinu8lCjA/ib0+AY1Tke1y49eCsaHBZmMnjaRrx7DQ5LU6SkD8bLItVb0eCo3LA85qd2pWvyNjQ49mYO167329Dg+CNnPMVmWZeD+OvE29XgKC7kI2TK1ymDvlvbo0LdMh/HFw6bBUOAIcAQ+AgRqGO+mgZs6Kxi+QCOt/36WsHEEoEmIzhKxDKxQTIEGAIMgZKPAHnCUPwsAcXZ0yHlOKjM2uJhKUNb2DfmovK3vkK7yTXRWW0NalfGHE9yCzHDYfsbcVEhLisxT3zw/IVh6oR7xW1v3EVFs/Kr5xx/4y4qJPOBWOo+ef4Sc3rse6cuKj/G9UJpa1M8eMpro7xpFxWv+U0MPjRv2kVFv3NrCxP0tN2K4kLVG3FROZw5AmVLEVvYfKqFkrrkIvasuEodcN60iwqZx4FBR5F9TAGVRIIeAa1Rf0BVZhtb8r9y2QwYAgyBjxSBGuardBEcGs0NjamK9rU6wuMN1t/In1QiEGUER4lYJjZIhgBDgCHwcSCQ8fCFdiL3khU4NOEYiJAoOcXJJCbwve2qrT++8S4OzTqrzSuVmsowI7O3tv7g/Is4sua6up6DzMIE393T2V9GTTqP0xHX6Z928lTDvJQJFvyls89cNfgIzu3JoPoDROPRurwZVl/pr+1/aq/duHJWqX1t61gKwb+7w9xUSg+f7p9E4Pb1x+r0AQ5Va5XDuiO69v5N4qDMfKpOi5WgTlNHrNqps0YdUTceT5/kqh+7SNCiqzOmhfKuHqRMqBqHF3nEEpejGhLtfKphyKoWKGVpQjUhWtgHoLDgJa+dwQFeYz/DuDlNte2HOUajkDijUPkGCXzmN0UvPVvcrk6BUBFhU5q7K8GsgI4GtrjdHQPV0pi8Le6+DF3EAunRQx7OtyeROBIpYhSGtre+DlFqcU0OUqkUoZk621pimxo4/DdwUNFDu0Rigk1K3vWDlLiN17B1XhokIOKeEkhlEsTf4wVRSYmffxGH1lzW6oIQi9MtT71ALFtz8gqpM8mOmEv82pC1LWWG3df9te1nD96PtH3p6uddQOkK5oi+OFBbP7bXDvz5R6Y2NcSxUmlEp+nGP4lY4l5/TMfOSSSoVKsctl1ww5OcQhQWqzC+SRIeZD6j+4qsX82mtlikt/ZBDXbjxaN8Ajsk4ODcuSJ6h7bQ3t+H6I4QO2T1CDp7VcdEteMLuSikRjyK1cKnEokUjYfXoYKimhJdOw4qal9LBiDFpzMaoq7e2ifXI8KjJMmHfDak+HRZO1TqrUtNkZe1oJizwhBgCDAEGAIfHgLVLH421Nww1uB4S69vFXz14YEhMiJGcJSIZWKDZAgwBBgCJRsB1cNU4NExcIptUNYndqlAiHOcQFyRK+bgd3cArf/BNkEgfEmOY99m96X1823jBfVSEylmZfbFw/RcLP1st0Bc0aq0Oebd6I0rRzKxzP2wYXsOkFcphUWnXBCx5gLCF50xeIpNIlAaNHdA0BFXzB2eipTwa0btOfTwqkUPopP77MKlU5mClBK/75pT29mxzVPwMP2JkTUp8E1sJzRt64iJNROQm2Pk+sJx+PF0H1RwtkbnSoECYU3ypP+w2jbWTx5BSQv9QupDs/hDeid5gED0lHAVBxQjaH1nKqxptOdUHPYp+Xp3hzCB6CjpP05tO0tcWQQXqHSuLCNEhDdJ+81ZvHVqX2K7aiSsSciEBMUQWv8VcRYxqpfJpFihcMPdO7kY2DJc8IGxKm2J3VcG4+yRTHzjuUtgKSyvXBbBp/rTtV+/+LjAcrdhs8pYm9QTqyel4XDkVcHe6ORbD3M2f4Hx7XfiWlqmwLbWZ1Zzajsb1novnt7KMxo+h15RHVG1bVkMrBeJXBHHn7UnB6CSszWCa2wHigzV5Ah2Q9N5giiqRqxAa46src8t/nOVVIeInhqp0ak49L7K743ttaLRcHRdOLVyRK2+ziX7i4eNniHAEGAIfIQIVDZfwf8NIl/+elocb/t1ev7XJQJNRnCUiGVig2QIMAQYAiUbAS7vL3CnSXQFB0WDM7gclI7T806JuDtwGHx7AGKHpuF6MnmCbljI3/JvH/TDmhZ78fhWnmj93AeumFN9B/JFrD9J+2XZ7tR5QyXivEFIgcAsT/SRbxV1niA/Ho7ljUYLq42QiFh7ki53K4eiuzxI1FmDRJLszPSHh5zYsorYylqaIOKWF3XegIjri3V5c6y+7Ir28k2iriy1GtkiYHd/DLaPFHVdcfmyHrxmNUZnx82irichJ33oIbqLPFCUwNiv4KM4BjiECfHhAOI6QooowUFsZ5U+lHya2SxF9P6E4AheeA7xa88J1pZInSQp/PBjj33IOCu0fSUE1KpsD/RpHIKn2UJXFtL+t8xR6FNtKwrzhbatUHHYrRyGDo6boBJ1RZHgiGKkKLlDBsupJDiQNxRdrYIgFXG0IZEWEZk+WOuUYKgFo56pTCrF2Ix+6G0X/ApHHBPqiBNUWUgMki5sKtnA/Wg3RKpdUYwBdOwiR/uNbZBcN1JIPv29NrWmNEGdkbURR2xlJcDgU/1Rtnrpkv3Fw0bPEGAIMAQ+QgQqWixXz0oTqmH8r2bSb7b+fv6UEoEmIzhKxDKxQTIEGAIMgZKLAPf0NLg764AnJ9UERyziPruEvIfi1qB+d9yxrHIyivJJeoI4wTHfPkHUEo0QGITgmGYbK0oAkEPwhlwfDCgVDqkIQUFsYbdke6OPPITPWzEqhMDY82AoutoGih5CySF5p3IYusu3iFqLkkM2cd4Y4EDuL7KmKiA6yxfD7UUOoSRd4e90iM0KT7SnERjC9iQVhNjGDrYXtxY1szbF5r/c0ckxQFRjgaRiLIl1wdAW5P7C/tv2qIIm7Sph68zTogTHoFktcOtsFk7vuitszAGrT/XFjwMO4tEdcXKKEBzEFvZFjnDtCbmUqBiCyY7boSoWEhRk7VdlD0C7igH8Uy2RvXMkcxS6y4NFySnCN+1WDEVbiq2I354K+FUx6tUEBwfEZw+Gh12oKLZk75C1XSdPELcEVgHf5nignY24JbBKJUGS0g/BzsTWVbg45K0ht91fSXBITU3gecVVnOD4O2LK3NYcXY+4agkO545OaPplQ1Ruz1xVSu63Lxs5Q4Ah8DEiILf4SZseq84z1WpyaF4b/6txXfn/1Ge+YATHx7if2JwYAgwBhgBD4DUQ4DgF8PAiuEu88jY5lmY1OE3/H1IlVnAQJASE3x0+lH6xbaLwHMdx+OaBK1KX3MTR5SLWoX9rIsx90B/bxpzFH9tvCUZKOIutxb4Y1yQJd/58JKyXSLFZ4QHfBtF49kinF6K5kIiL7rjvh75Vw1BUUChob2plgsSbg+HiFEwtcI1L2XKWiLjkDS+HCHAS4SG9eoNyWJLaC8McokUjPJr1r4yxG1qjg1OACIHAYfzidvAYWlec4OCAEE2KiqP4ITo1g09B6UoiPIwYDjKb/WrnEHd5mID/IHoOcQpeJ8OXpMgYF3UEB3l7pD0fJaBfyNpvzvKib/WjETTGFwCJCj8cDUpH9PSToiTCz1kD8P2YA0jdcUN4ew4gBMf4zvG4eemJsJ6QV8qh6N04FM+yRdYewOGMUfCtEYOCXKP0IQCmFiaIuO0N34qRKCbaJ0alVFkrbL7SH+srJojxL3CoVx7jznbD5xabRNe+db9amLGhNYKd40TJp8/nNUe9oc6IqBFjmH6jVtvwuelBR5RcL1K4thzQ5wqPfWxt4jbEY987ohOqdassXEv2DkOAIcAQYAi8NwTsLJe9Fw2O7Pxp723Or3NjFsHxOmixaxkCDAGGAEPgtRDgChTgfh8IvFRSQUNYOENZI572EV59u9Zilb7BcXBoXAHddnSkLxfb74CEPPbWHHQ5DvX6O8M1gBfSXGi3QyeSqW7/xdRG6DyzBq2fbredp1T0Dso/ZmaTqpoAACAASURBVLnDytwEZqYSuFuHGc2FQ6BSJyTZm+pA6F/CIUU5VDvmXvIgIw0NDrsUw7QNejhuMThokgP8br16T5rmoXcDToJoJS90uXvNNcQs/F3bF+VKJBJsUfIaFSum/YodYVf0sAGNWDl4nycofvQ6iAuHFNr7k/ZSExm2ZnjA0kwG3y9icevKQ+34ydhMTE2xN50X4vRvHoV793L02nMwtTTDrlt+tH5I3WjkPiYCp+ohcoCVjTlCbvCH6KFVYlGQ/1JLQpDhl7O3wtrzvMjraDlJESK5w3x7Ul+juT3m7emEgkIVXJ3CoVIV65YeHBq1c8bCKH5vfKVdW839ObTwr42ByxrTN9qTNBMeMm3/475pRfVPSOnhGKy+qwZiDrszdWvX1omQDLpC8CPkiKYQS2ANCaB5L1bBp+eQ4kU1SnQ9kPlF6YmwGqepEBHZWbmeePGyGHn5RWqCR4ct6Sshk8f+zJKLuLD+ivZeGiFS/zu8BsfRcSeQvueu3viIiKsEXjd44vCYx0E8+jNLf3aQyGRw+ZNfu91dU/D8znPa3qayNdx29EBp51J617P/MgQYAgwBhsD7RKC8xVJ1xIZaZ5yKdRPXlLf7+uGL6e9z2v/zvRnB8T9DxS5kCDAEGAIMgddBgEQwkMOa1Z8uUMEKWdVFnuqTJ8atUmBVwRq9kjuIdr+2wR6Urm6FwUk6hxH9C5fX3wv7htYYHPWFoP0fyQokTvsdVduUw5CAltp62zLmeJZbiNSttxCz4Cw+616ROpQYF+LmEbv6DHr6NMCYhU3pfPRLyPILSN5yAb2HNYTfFP7wrF82zfkde+OuwGfiZ3DXc7HQXLNxUhpO7bkPz9lN0c23irD9yBO4+FsWfJa1QEs9lwvNhdO9duPm1QeI+0N3uNbvZFGfVCj/eobVF3l3F40t7OOcl3hZpMLYrtvx6FE+os7oHET0249sH4eC5yqEnOEPv8ZlUssd9K1VJ3jhV+My5bNEmJQyx9LDOvcY/WumNkpBeQdTfLuvG0xlUpS1MUW2nsCmf4MYOFQvj6VJnQV9y6QSfFsvBU6flMFYkbU/mHwTP39zAo1bVsT8AOHe2ht+BZsXn0XzLpUxTc+hRHOjsI3nEbn6HLq518TE+a0E949efgEpAZfhMrIePI3WnpBoQbPPYE/INQyY0tjAvUbT0cFJ53F7fwZafFsPTf2roYy1KbL05v7TyEP444QSE35ohpa9edJOv1Br10tP4HXWRRT7A+5H8Cz9KVxP6ZyH9C/81W0virML0fGIePt9PXeDe6mCx/G+sLTgnXtYYQgwBBgCDIH3j0AZy6VahzhdrCjvGPc2Xz99MfP9T/5/GAEjOP4HkNglDAGGAEOAIfD6CHBF+ch8qvtTm3vsJhRLEtXWohJIZBLUTJis7fjKxms4vvAib14pAWQmMvjr2br+Pv8izmy8zkeCANQWdthNnS1swqTzOBNxk9aRP/FmVuaYdVt3eAsanIZL9Mk2KRysK1hg7mXd4W9FrwO4fvqB5vEHylW0weLfe8LCTIbSVibo0zAS6cQaVG2u6VyrHAL1bGG/bbILD+/n8NodnARVm9nim52dtPMbWzceT568UNvCcmhqZAvbo1Yw8p6TqAd+Br096hocvNtUDURB4UutavrA0Y3w9ZwvYG1hAhOZBC3LBaCouEhrGztuXlsDUqWvQdqMFFMC2hjYwg50jASnIqa9vHVohNLHYNGHOcaAI9oXEv6KYCWf0qApxDYWattYIhCibxtLyIbZIw9CIlGBRIvIJBKa7qEphEjaMO+oOomJ2MJKseeeztaV1IfOSQMHEtUhgcREgsNPh1OS5vmLIqybfxSh6/+kYyPwm5mb4tBtna3t1klpOBRxS10vgZmVCTbc1tnSkr1xfs8drS2rZXkLLL6i21vf9dqNG2cfgOMkdH1sHUtj7e+6+sVt9yLrqk741L5OGaw434eSaGSMa5qk4tndZ9rUkIotbOG/sw2/VyXA5LrJePIwl74gbjENuzthkp5lcHC9FBQ9L+DHx3Go714LrVc10uKX0igehS8LebtlSFBjRAPUn6azjd31STRUXDHde1JIUH9mU1Txq61tT+qhKuZXXipF8yXtUEGPUHMoZQaZuez1vwRYC4YAQ4AhwBBgCLxjBBjB8Y4BZ7djCDAEGAL/BgS4e6ngMn8DdzsFyk6H6ZSv91ku1A5QcaiVPJXWB1beLuLcIcHwu3z0QUAlknJi+BRZYiLDiNu8LezPn+0R6DJYlzbFDGoL+wSBbqmGGSEcYF/NBtPSutGUkIQFfwisP6u3dMTyI10xfeh+7N4mtAbt5lWbkhA/9jmCmyczBO37z26CHl/WxqTmKchOfyqwHp0a25HawvauG4qcZ0LR1fATA6mrSctKG9XEkOHuSbs/lr7RpeIWgbAmCVVNVWtm9JYHi7qWpCh4EsHbPlwoysoBEeqUmaFUM8PImlQlQXA2nzLj8QpXlRi1q0ob6vpiOHYimnlUMZK+2U0eKNDcIBks+9UpPf3st4qIxnJIVA6hIbmtHdcL2pOUnaP3RtO9Ma1ZkqDewsYc62640r2xwW2/YG9UqFoas091Q8Kaa4hYaOT4w3Go08IR85M6I2pSGo5vSxes7ReDqmLcli+wot1+pB/XpQPRCf/t6NJlbn18/mVtfNciBcrbhNzQw4fjMDWuO+q2LYuQhsl4+eSlAXhkzgOPdYe1szUS68eAiNsaXgD0u8qvTUq9CNG17XWJT8faWV8oSEv619RHVI9FQ78aqOVSBdV6VPw3fH2xOTIEGAIMAYZACUaAERwlePHY0BkCDAGGwIeKAPf4ClSpfvTQrez0K5Cei2sTNgiNOTgOtZKm4sTCc7i0iY++0C/koDX8rhsS+h5G9lmhKCjpf+R9Nyyul4L8h4aHQM1Bcn52f3xXOQGFBeKuLMQ2diw9wAtD8FWcBLH5vmhquUHUWYOk4RDr1FH20aKuKCQSZaPCEz7UFlakmEiw7Z4P2lFXE2G9dSkz7Lw2BM2c1ommCFSqWhrbj/pS21d9zQdNT+26V8GcoC5woc4hxuACvt99RnUpvB22idrC/nSqHyVY/KntrGEHJBIjWC1aSmxjBZqgatvYe+m58P48XLSe2LauX3gC8WsvCSfPcdirGI6lQ/fj+K4M4d5QAYlZfnBrEQ7FvRzR+uOKMRhTPQ4vcw1Ti+jFKgm2ZHtSVxYamSJSVmYNgIc8jEY9CPam2hVlom2sqC0sEQEJzvfBNIsYccthCTD7QX8MqxAl6qpiaibD+rvu2FwpXtTRx7y8OQafc0FiHaFgKxlruYbl0C6mK3bWF3fEqTGsHupMaYxdDYjoqHBvtNvdhxIoGtvZwb/1ht0n5T7Urxw2LoYAQ4AhwBBgCFAEGMHBNgJDgCHAEGAI/E8IEFHIrIePYVu+DExkrw5X5x7+CdW5FcCjP+mTauXnwfhryj4UZwgPoaS+VtIURDZOQd5joTMFqR921w2bq+4AVyRuHUoIjtl28aIEASFIFmT3x3TbWIgxELxtrDd8S5EDvLg1aMAjL3S0E3cdIbay+5TDMdouWtS2ldx/Y5YnfEQIBHrGVnGIzPJFW8cAUYKEJIwcyRiF5k7rRedHzt1p98ais1zcttbU3AS7bg1BbyqIKjykly1rjrDLPvB2IASEsN75UztM39QaU5slix7Se3xZF8RvJOUXoaMNWbuVp/rj+1F7ceV8tughmgh3etWLwGOSumN8xuaAfYph8KgWjsIX4uRUotJPNHqDdEWwP545Bv4O0ZDqZSVrb8Nx2JLljUmvIig4DiuzPeAl32YkSMr3QMgtEqHylR0hMEQIEACrsz2woMKr9+ZPLzzgbi0kf+j4SVST0hObSeSSCPlF9u7Ie+6vJDhMLGRw+cOdRmiIjU9WyhTdT/L1YmtvXqkUPg/oiKQOu+j9K7ayR5u5TVCxpf1//L4oKi7+j98P/9OXDbuIIcAQYAgwBBgC/xABRnD8Q+BYM4YAQ4Ah8G9C4PDxc5g6fz3yXvBpFHOn+MOzj1C4kctXgsv6HVzaHB4eQnCoU1Su9Vku5vyJ2jt4X/UtxP5S4B3KExyXg9Lx26zTIgc1cshzQ9yYszi3/Y5gSYg7xffZrljZeR8yLxANBMPCcVKEFPlgiGMcch7mCeqlMmBthgdcaoSiME/EFtbUBCnpfhhHXEFEbGGtbMyw4oYrfOSRkFBfD8PiUL0sVh7rhXaOgVSfwrg07VARK7f1eiXBMeTL5hg/sxm6OAWKzA1YEOKC1l3lcHEMFotBQHLmUNpOjOAgB+xIBS8+6u9ArEOFJUitwzFAxFWEtNc4i7Rx2ihwHSF7Q+NM0lW+RTTCgxAcSUFXsHlmmsgZnUOCYggCl5xG4Greeli/EKWQ4xljsXzgb7iYel+4NyBFoNIDP7Tej6wbQttYElaxMssNw2rGIPe5SHSQTIao+96Y6pSAoiJhhAhxnVl2py8WOSQKU0gA2NhZYVFmX/Q2I44sQnLN+ZNymJPaFZsrE9chYX0dl6pou6EpEutEiVjqcmj0fStU83bGzgZE3Fe4er0uvjpFhdyv50Veg4WkqGj4G5egtqjSWg4LBwuR3QCk389CT9/p2Bf5E5zktqLXsDcZAgwBhgBDgCHwNhFgBMfbRJf1zRBgCDAEPgIEXuS/RLv+EzFhWH/4unXBoWN/YNLsNdgTsQyVHO0MD5Uvn0G1qz9QmEOPZFLLClC0JNoZwE3XldT6U3PYIgdQK2d7VPqFt7/cWjURRaoinTXp37obFds5oEcY744SWDkRKmobq7klh3o+NdBGbQ06xy6eF8jUPk3n0Gn2J+jwJS+mSG1jjaI0iG0sERG1MpfB09LwSTqNvsj2pKKYpHSTbzGyheUjDDRltH2U4ZNwDtiQxesgkGIcxUHIl3A9Ic92TgE611W1GOShTN72de2S0whek2Zg+0oO4KcyRtP6RSMP4UDyDd39iWWcTIp994bBysIE47sk4tKZLB3JQKzkZBIk3R9C2xONkKy7OpFMMmdzKxNsvcULiX7VKAVPFM91JANx/LU0w/o7vD6KX80Y5OUU6Dv6omw5M2y+ws+/vXMgVIVqAVTyBsehRm1bBB/mhT67OwVRgVP9GzTvUAnL43oh/2Ux+juG0mgXXaAEhzZ9qmCq2h2ltdNGuk56jsIYMakZhs9sRvsf5hCltc/TrMcWPZHUr+3iDPYG2Uc/Z+mcY7yIgKpeIfeKVuuLUPzsY4wIHMP2C21JFIeebSzH4edCb+rKk1dQjOEO0QYUBLkyQG0JfH7NNaQtJQKq/ADIvaWQYvg9HvsL353DX3FXtaOjnztOir5XeVvYU8MPIvuEQkdy/B3VJJPK0F1tC3u83248vvFEz/GXg6mJDF3P8WuX2CoFeco8On7LCuYYcrIvrGyFBIfPuAU4f4lPM2MEh8F2YS8YAgwBhgBD4B0iwAiOdwg2uxVDgCHAECiJCJDojXHfrMTvewNgZmZKp9Br0AxKdvi6ddVOiUQw5L4ogvUhD6hkpshqFiI63XT/QJiUMYHTKv5wbVwiPt2DsjWs0DNO3BY2rHEKbOuWRY9X2MLunfY7nNs4wDugqaDv0+F3kPR/7d13eBXV1sfxXxJ670Wlg1QpvqCCF0GQqlTpXRFEQEC6IE0ExVCkeEEpSpWO9I54EURQqdIEFS4toXcIhLx3z+GEJOdEiCQkmfnOH7fknJnZ67NGn2fW2XuvwbtVqEoONQzThSJ9qkS6eiNYK8ft14oR+/RSy9xqNNh7W9hvp+xR7Ujaws7pv0PbZx9V9W6FVCGStrA7V59QnUjawvZvs1G7tp5Ql49fCNfhxB1Ip4aLdfDAZa3e1dyrXdcaK3Xq+AXN3tn03gu/jzKlSaxzl4N0J/iuOldarnMBNzRjt+vlN+LRq9wqXb96S2N/qeX18w/KrdKdq3f1yS/VvX7+oLaxdf9vltKlS6JJa+t6Pb9R4Vl6IndajVxaTX5+PsqQMrECLrpmDSXw81WLgnOVKXdafbLEs22s+c5rxaYrd4GMGjPHsy3t1mWn9U2Pbcr7r0x6N0zLYPdAzLOxcPBuFauSWQ29tAxeYVoGj9il8o3yqsWHJTzGv2bEYW2cuF/l2xRU5W55w32eNJGfVvbfpx3T/tIL5tl4N6eSJ02gs5fuL8synV52rQ5QnX5FVdZLy+D1bX5V4NYAlf24hJ7y0jL4h9abdWXvGVX7qbZX25+arNe145dV4T+uwkjEY2vDNbpx9rZeXu+9beyKat9J126o0c81raJZxLaxgWcv6nTgOZlCBwUOr8T8EQEEEEDgMQhQ4HgMyNwCAQQQiM8Cc5du1NdzVmrFDNN33XW823e0cmbLqm7t7s9QCDp/TXuHrlGW910vl793Wa4Lv7jbsrp+fs7WqKiydCht/e+11Vbpyh+X702qMFMKfPRs3+Kh7SuXllmqa4E3Q9u6mikhZSa8pGyVsljnj8278l53ifu/jHc7WzN0jHXzztIta2mB69rmJ/Dlp+4XVWpkn67bQWbGiPncnOajlafekHkZNS+f1VNMVbDZfNLM4PAxP/D7akaYGRc1sk5TsFytN83nfvLT0lOu2SjmMBtv3jXLTqzWomZGhZ/mn2ga+nmlrGZZiWkp6/pTAvMSfMy1ZMQcZbN+YfbBdHWdVYiSJE+o9Yfvtz5tnsm9OaQrvtSpk2jcodpKljiBdq07pf7117ga5lrDD1HGJ1JpzL3WpuZlffqA7VbbU3cAOQqk07DvXbmb1n+HVn25P/RcM8SCpTOp/7eugtbwNhu1eYlZEuS2D9GLNe/PqOhbe60O/BhgXdvH3N0nRLXaFgktDJhCyakDl+6F7wKoN/hZVb9XFGpRYq4CTl11ne9jYgjR8Pm19PwrWaxZD/UKf6Or58y+HW4gH606fd+uc86FunnDtE11xefj46cJAfeLOn2eXKw7QWZZiSt55lvDztxvGzsoyxIFBwffWzpiPvfVwDP3iz79Mn1rtV29l3r5+vhpcOD9wsLAjIt111qS5PqGn5+fxlyvZxXRgu4Eq3MGsxzLFbf5zwSJfDXixP2iz9w8813tkO/xJkzip7p7w3ye1zXjw4Rn/jtx6kSq+bPr/oE/nNaejmstc+v0ECn5Eyn1wgpXYePotEM6/NlP1nNt/WMR4qMUOVPpuUWu+A6M2KHj0/e6MhfiagmcpmgGlZrueja2t9+qql+UUeI0iUOfVff/CDhzQRXqv0eBw0OGPyCAAAIIPC4BChyPS5r7IIAAAvFUYNKs5Vr13TbNnzgoNAKzH0eKZEk1sLurzejZLYd1avkeBa7br4Ir3nO9CL00wcueGiEqtamd9fnCp+d66ewRojqHXMsiZlsvcRHawspXDQ67XkSHZ1jicb75dtczNbXgi0OaMmCzx+aJPj6+Wnqyhfw7b9KGOb977F2QMJGvfrr8tjq+uFIHfj7lkbGUKZJowuG6av1/83T65DWPzzNnS6Up2+qqWZ7ZunHNc8+OAi9k0ZBvK6lq9qkKNks2whzmJb5Kw/xW29my2SZ6dvYIkXoML6daTQuoZea5Comwp4c5f3qga9+EJplnKyTCnh5h99RolGWm554YCtE3p10FmCbWkowI+zaESLPutY2tk3mq130fFgW4CkivZ57u2XVF0oLTzazPW2ee4/lPQ4g0OdCV+ypmTxKP3LsKUOaolnWKx/hCfHy06mQrbfjikGb32+Fxf18/P40/+bqWvr9TmyYd8QjPL6GvPj5RR9Nqf68jWzw79iROmUh9jryq4c+t0oW/PPdrSZstpbr/UklD8yzXzSuee3Zkey6j+v5QUS1TzLEKa+GTL5Vukt2aOTL36YUKsZZyhXs4VKxncRV4+2nNz7vAM7chIWpw2FVs3FBihqs4EuEGFXe4im8bSkz3umlphV9ds4LWFZ/hNTev7HLlzuz5ka9uLuWtm0s5q2YP910KHJ50/AUBBBBA4PEKUOB4vN7cDQEEEIh3Ag8zg+Pm6Us6tWyP9atwhmaldftSkAIX7Pa6MeUTb5ZUwJbTuvDLOa8vUgU6FdYfc4/oxinX0oSwh3ltK9K5sLaNO6I71720/vxfa9EyvQpo9me7dfeO56adpgjQtEcJzRy+08tLoOvX7jZ9S2rGkJ3e8xQSotd7FtVM/52RdLaQmvUorjn+u71uDGlOatijqKb6/+q1K4opKTTv/qwm+//s9XPzS3+LTs9q4ad7vX6eNHUiVW37tOb7e+lqYvY0yZdapWtnj/Tzgs9lVOFyWazPvW0qWqltfqVKnUiz/Xd59WnUo5guXwrSqi8PeP28QY+i+u370zq87azX3NfqWUQrph/S+QDP4pGZidK8RwnNG7dHt256y72xL6EVI/cpONhLR5wQqUbPwlo7fL/XTT/NGZV7FtKGT/d7b+krH73cs4DWD9vvve3r/zZNrdiroDZ8esDrpqFm/NX7FdGij8w/F967rlTrWUh7R//m9f6+CXxUsEMh7Rv9m9f7+yXzU/63CujP8bu8fp4wQ1I9Ve9p/TnBe+5SFc2s9GWy6I/x5tn1PLI1KaCEqRPp4Ni91ocFmuZTiieTU+CId/9GZ8AIIICAvQUocNg7v0SHAAIIPLKAew+OnWsnKWHCBNb1qjTuoRb1K4fbg+ORb8QFEEAgXgswgyNep4/BI4AAArYQoMBhizQSBAIIIBBzAtdv3FKpam+rV4fGavKALioxNwqujAACcVng9p1ga5PRqk16Wvv1mDaxphsLBwIIIIAAAo9TgALH49TmXggggEA8FdiweYe1saj7+KBLczWu7b2TRTwNkWEjgMAjCJSq1k7Xb9xfVpYuTUpt+nbsI1yRUxFAAAEEEIi6AAWOqJtxBgIIIOBIAdNR5PSZ88qUPk3oUhVHQhA0AggggAACCCCAQJwUoMARJ9PCoBBAAAEEEEAAAQQQQAABBBBAICoCFDiiosV3EUAAAQQ8BExnkuC7d5XAL/6stz97/pKSJ0uqpEkSPVRGzfdTJE+qJIkf7vsPddFo+NLduyEKPHdBGdKljpL/uQuXrbunT5sqGkYRPZcICrqtC5euKlOGNB4tXqPnDo/vKlGJxeTw/MXL1qyo1CnDdyV5fCOO+p2uXL2uO8HBSps6ZdRP5gwEEEAAAQRiSIACRwzBclkEEEDAKQJL12zRqInztGHeqDgf8rETAWrXa6SOHg+wxlq3+kvq37VlpJshbt6+V+O+WqTjJwN189ZtlS5ZSEN7t7GKHbF9mO423T8cH7rvwYBurdSgRvlIh2VepCd/s1zT5q3W+YtXlCxpEm1fOSG2w5ApkI2ftkSff7XIGovZu2Hc0C4qVijPA8fm7vDz74/fU7nSxR74/Zj+QlRj+fHn39Sp39jQHJYqXkDd32moIvlzxfRQ//H1zT4bvT76QmZfHnMULZRHYz/qZBXZOBBAAAEEEIhtAQocsZ0B7o8AAgjEUwFTLGjTfbiOnzqjzBnTxosCR9sew63ixJDebayODw3eHqT+77VQjcplPLJgfp0uVrG1Or5ZR+2a19SNm7dUr80A1XutnN5sVD1Ws3bjZpBeqtPJGlvTh+xsM2LCXH27apPatailahWeV9Dt28qSMV2sxmFuvmPv72rWcYimj+2jZwrk1pjJC7V8/Y9aN2ekfH19Ih3fwSP/tc4zL9xxpcAR1Vi2/rpPZ85e1Euli+nmzSB9OGqqTCFq/CfvxXpeIhvApFnLNW/pRk0f29eaAfVO71HKlT2rBvd8M86OmYEhgAACCDhHgAKHc3JNpAgggEC0CpgCgFm6seGHHZo0a1mcL3BcunJNZWp00IxxfVWiSD7LYsjo6TodeF5jh3T2sHG3x/2oV2vVqVbW+rzPxxPl5+cX6y9z7pkLO9ZMVKJECa2xVW/Wyyp2NK1bySOWM+cuqvzrXRQ2lmh9GB7hYqbwsv/wUU0a3sO6SuDZi3q5XhfNnzhIBfPl8HplE0/DdoPUtW0DDRo5VcP7vxMnZnD8k1jCBmhmQ/Ue+qV2rZ8cpSVHj8Af5VNNka9K+VJq0/Q169zVG7ep68B/a+93X8X7pUVRxuAEBBBAAIE4J0CBI86lhAEhgAAC8Utg5Yaf5D9+dpwvcBz564RqtuqrjQs+U8b0aSzk6fPXaPHqzdbLtLdj5BdzNfmbFXqjUTXrZfuTsTP1pX/3SF+8H1fm5i7dqK/nrNSKGcNCb2na+ObMllXd2jXwGMb6Tb+qU78xalSrgg79cVyJEydUzcplVLPyi49ryJHexyyzSZs6hfp2bh76ncLlW0U6K8PMXmnV+WOVfb6oNYPFtCeNKwWOqMYSEcUUNw7/eSLS5zHWkyVZ3qZQZooc5th36C/VbztQW5Z+Hq/2EIkLlowBAQQQQCD6BShwRL8pV0QAAQQcJRBfChzu5QNhX8RMoWDCtMWRFmfMEoIeH4639hnYuGWnXixVRP7934n1FzmzTGDVd9vCvQibl+sUyZJqYPdWHs/fzIXrNHTMDKsgkD93Nh38478aN2WRPu3XTq9WfCFWn1ezbCh/nuzhCjPmJdrEEXFsZvmGidMcpqhhlrDEpQJHVGKJiO6evWFmspQuWThWcxLZzc0eI0VefiNc8cldOFw3Z4SyZk4fJ8fNoBBAAAEEnCNAgcM5uSZSBBBAIEYE4kuBw/0i9v3C0aEbIv7dDA73kpYpo3rp+RIFZfYc6dhntPLmekojB7aPEcuHvWhUZ3CYAsecxRu0ZOrQ0FuY2QJm34fPPuz4sLeNke+ZgoXZWLRPp2ah149sBod7+YrZByV50iTW96fOW63yZYpbs1HcswpiZKAPcdGoxBL2cmYzW1McGdC1pRrUfPkh7hR7XzEFpSG931LlciWtQTCDI/ZywZ0RQAABBDwFKHDwVCCAAAIIPJJAfClweNuDY/CoaQo8e8HrHhybftqjdr1GaPPicUqTSKvmeQAAC99JREFUOoVlZDqQjJ2yKNa7j7j34Ni5dpLVXtQcVRr3UIv6lb3uwRH6/XWTQzvGmJdxs3Hq50O7PFL+H/Vks2/FwSPHrKU/5vi7PTjMhqIzFqwNd8vRkxbotUql9dorpa1lK7F5RCUW9zjde1jExf1RvFmaPTiqvvyc3mryqvUxe3DE5hPHvRFAAAEEIgpQ4OCZQAABBBD4RwJmuvqdO8HWUgnTJnb1LH/5+PrE2c0RTZBvdfdXqhTJrV+gI3ZRuXL1ut54b5haN65udRk5cfqsKjfqrvYta6ltsxq6cStI7XuPUsoUyWK9y4V7A9ReHRqriZcuKhFjuXz1uirW76qW9avonZa1tPfgn2rSfrC170WTOhX/Uf6j66T7nUf66pmCuTV60nytWL81tIvK9p0HNOzzbzRiQHvleCqzx23j0hKVB8Xy9dxVMvuhmI4x5jD7v5iNa3t3bKIK/3o2NDazJ4lp4xsXj4kzl2n+su+tLirJkia22i7TRSUuZooxIYAAAs4UoMDhzLwTNQIIIPDIAmYzxFpv9A13HdNu9ZM+bR/52jF1gT+PnbJeyExrW3PUrvovDezWypoFcenyNZWp2UEfdGmuxrVdL/3m1+np89fKtCQ1h5mW/27runGiveqGzTtkNhZ1H2HH7S2WH3/+TZ36jbXaqprDFDZ6dWwS6wUpUygb99UiTZi2xBqXebH/0r9baKeb77bssJYGLZw8WPnzZPN4NOJSgeNBsfj/e7bM8qLtKydYcXw4apq1dCjiEZdnc1y7ftPaB+U/W3dZwy6SP5c1AypTBtfGvRwIIIAAAgjEpgAFjtjU594IIIAAArEiEHDmglIkT6rkyR7uV3LTljRVyuRKfK8la6wM2stNg4Pv6vSZ88qUPk3oUpW/G5tp7Wtij4szBG7eCtL5C5eVJVN6a/PQ+HzYKZbI8mCWfN2+fSd0P5v4nC/GjgACCCBgHwEKHPbJJZEggAACDyVg9mMIDg5WwadzKmumdKHnHDsRKDPDoVzpYtbfzHT74yfPyMzK4EAAAQT+qYAp+Oze94f+OHZSt4Ju68ksGayNe81yLw4EEEAAAQSiU4ACR3Rqci0EEEAgHgiYDhXmKPv8M5owrFvoiN2tRH/b+LX1t4HDv9a8ZRvl/v/xIDSGiAACcUzg1z2/6/2hX1rLwjJnTGvN+jh/8Yo1yri8FCeOMTIcBBBAAIGHFKDA8ZBQfA0BBBCwi4ApcOTJ8YSOHD2pqaPfV8li+a3QIhY4zEaWt+/cUeqUye0SOnEggMBjFHB3xCmYL4f8+7WzNiM1h1kmNWbyAmVMn0Zd2tR7jCPiVggggAACdhegwGH3DBMfAgggEEHAFDhM941FKzcpSZLEmvX5B/Lx8fEocJjZG2ZjypEDO2CIAAIIRFlg0MipmrvkO62cOUzZn/TsgGOKqKYTS79PpyhX9izKl+spLV2zRYHnLmr04HcprkZZnBMQQAABBChw8AwggAACDhMwBY4+nZop+5OZrI4inw/tovJlinsUOMwvrN+u+kEb5o1ymBDhIoBAdAjUbNlHT2bN+MC2yvXaDND+349atzT/LvLz89XgHq2VOhWzx6IjD1wDAQQQcJIABQ4nZZtYEUAAAUnuAkfTuq+oWcchunzlmhZN+UizF2/Q0DEzQvfcoMDB44IAAv9UwHTsKVaxtVrUr2LNGPu7wxQ4TKtmU2xNlyblP70l5yGAAAIIICAKHDwECCCAgMMEwhY4zAaAzd8domF935Zp+0iBw2EPA+EiEIMCpaq1U9WXn9Pgnm8+sMDxTMHcGtC1ZQyOhksjgAACCDhBgAKHE7JMjAgggEAYgbAFDvPnDn0+s6aHN3u9kkZMmMsMDp4WBBCIFgEzQ+za9RvWDLG/O8wMDgoc0ULORRBAAAHHC1DgcPwjAAACCDhNIGKB4+CR/6pu637W1HDTvtHdFpYlKk57MogXgegVmDhzmT6bOF+jBnVU5XIlw138ytXr+vPYKRUtlEcUOKLXnashgAACThagwOHk7BM7Agg4UiBigcMg9B76pdW9wBwUOBz5WBA0AtEucCvotuq8+YGOHg9Qh1a19eJzzyg4OFj7fz+mCdMW6/VXy1ltYilwRDs9F0QAAQQcK0CBw7GpJ3AEEHCqgClw9O3cXE3qVAwlOHYiUNWa9gxX4Bg7ZaHVSpYuKk59UogbgUcXuHz1usZOXqBZi9aHu1iFF0uofavaKpgvhxq+PUiF8udkD45H5+YKCCCAgOMFKHA4/hEAAAEEEEAAAQQQiFmBkJAQnTl3SbeCgpQ5Q1olSpQwZm/I1RFAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwpQIHDkWknaAQQQAABBBBAAAEEEEAAAQTsJUCBw175JBoEEEAAAQQQQAABBBBAAAEEHClAgcORaSdoBBBAAAEEEEAAAQQQQAABBOwlQIHDXvkkGgQQQAABBBBAAAEEEEAAAQQcKUCBw5FpJ2gEEEAAAQQQQAABBBBAAAEE7CVAgcNe+SQaBBBAAAEEEEAAAQQQQAABBBwp8P+UAIEem7t61QAAAABJRU5ErkJggg==", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "a": [ + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125 + ], + "b": [ + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625 + ], + "c": [ + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.96875, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.9375, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.90625, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.78125, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.75, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.71875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.6875, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.65625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.625, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.59375, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.5625, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.53125, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.5, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.46875, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.4375, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.40625, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.34375, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.3125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.28125, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.15625, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.21875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.1875, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.09375, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.0625, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.03125, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.875, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0.84375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125, + 0.8125 + ], + "hovertemplate": "Fe=%{a}
Ni=%{b}
Cr=%{c}
b0=%{marker.color}", + "legendgroup": "", + "marker": { + "color": [ + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.1724615929036666, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.185565169188302, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.165646758868946, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1500249460195842, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1607092991489902, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1729492188267987, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1679350761451557, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.1586554722284566, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.168788112476109, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1509382500259275, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1673629721012855, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1488587824668153, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1518747398663336, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.1526252240956298, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.163414371183519, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.1488018328533578, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.143937246462548, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1547212587123314, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1436370412593964, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1506038354211021, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1383658556883427, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1313691509004358, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1294251868167722, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1423899242656068, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1347987109653288, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1541210543204958, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1466902808015909, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.1569812132876078, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.155296189005425, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.1312564831253265, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.134564801710773, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.123038890273623, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1269303223511713, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.1305316709974573, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.147277054375792, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.1466840698546357, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.142005865548438, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1487012180313463, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1388233495484335, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1387496704228857, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1350088102239364, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1343759723070124, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1374507176448811, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1226360405709115, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1209827886724617, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.1313597851118145, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.11897309687827, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1194383421441365, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1631803019039362, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.1643627051619545, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.157466337188453, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1542795798256542, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1640393647193568, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1621264150079547, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1655770246272514, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1548720864036033, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1668201519267027, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1724794735571906, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1631949229848606, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.1662354391598428, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.181955874807424, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1738356116967492, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.1703961041303024, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.213667060799591, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2012069584889697, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.2033959495595579, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1973361346959284, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.1964498071747387, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.19992162893375, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.1998335710319246, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.212309661401235, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2162833930480232, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2334552667289145, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2246205388083213, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2180942302830993, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2029939291596836, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2269571032782969, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2162112620551937, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2156262493681829, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.2151917144521298, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.198762489154807, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.1930620408181274, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2244128741882734, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.2012311834211975, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.203501498040377, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.195620370767271, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1973813385854206, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.1997295010628397, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.2032920288308415, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.196323136751816, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2282611933049863, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.2155742704873467, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1953925650590584, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.1961078456778698, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.202867234146249, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.198850867879512, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.209475670390996, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.1824376781124657, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.197756299822977, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.1969120825202293, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.190768122005528, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.19220090568374, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1919147799797638, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847347777973969, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1847096571719897, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1832332912951438, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1822261061500645, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1819746614140978, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1735020111805128, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.1912352387780116, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.195127232891611, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.175141342966386, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1834576488399862, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.1939729913030752, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.195537804309051, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1981909048638515, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.1939625353423406, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.210517281376605, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.2057657547467706, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1852906743208969, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1861183731753633, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1546246146563157, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1809288334715538, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.1729911221326528, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.16759235470665, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.1570685360209363, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.3642702576864993, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.347560397733413, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.333318277640075, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3212317538342109, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.3067767693937022, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.2893776445633556, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.3057275067382499, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2831545830286528, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2830477838617125, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2696135142211968, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2795164556425018, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2738670459461263, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.2647861621721457, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.261116112526846, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.2531059678377046, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.250747535509908, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.2559454212385956, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.259408808868517, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2497390178452557, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2607535696215975, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2596063983450958, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2593532026486467, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2887146170228958, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2783948257917224, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2612998871824044, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2799138222038597, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2947743372942522, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.2863318577743539, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.300707650072272, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.2958056204018005, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3101357373598246, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3171075950336524, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3305923559441648, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.3240794244062573, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.312215523779735, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.34310574803294, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.284489055902241, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.2993060387441198, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.287594274078963, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2745413838672208, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2626869844259268, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2723130173174868, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2547119577876216, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2499819770510143, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2589394630065538, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2533787439509958, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.2607187750168773, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.254053981855206, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2557129506079987, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.2501073482446396, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.236081875705922, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.2399567646320486, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241194614780921, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.241180424419251, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2403617665247337, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.2444311326190298, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.253410174413906, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.254836843051762, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.2616467547643848, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.279994672281963, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2708813710315627, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.2823396392580433, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.291085931552258, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.3074437447028437, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.294899929330416, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.284471190599814, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3113859363974447, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.3002782030298152, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.269825956191893, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.265862952494137, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.257483528187695, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.263493725838173, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2494163859452496, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.2467936077874666, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.249111644040521, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.2257594977428878, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.242556135786222, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.2282386694513223, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.242219493631237, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2343092005815883, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2314964526802632, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2378059670202055, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2322774165735653, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2334839016856265, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2274422755376906, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2255497079947093, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2274478313722406, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2383260318676277, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2423252169381855, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2426662688111314, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2443221580941435, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2493316768017186, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2583688874456462, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2625917032158538, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2749740387817894, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2843575304346808, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.2717235357159047, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.284720279215088, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.2575448990950746, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.251325546834043, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.253158168574846, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2270995260207898, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2388953529132285, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2446188716171576, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2458755088210915, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2243855447430814, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2323729977497737, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2272128804103775, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2264176700944172, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2283382287934268, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2160860037469003, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2161701048065408, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2255430198215824, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.2183224432218658, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.209365131181323, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2101435269501843, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2074637444514902, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2070641736093815, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2299759302480548, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2179171173236767, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2212908350681382, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2351954763900863, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2341494008855929, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2244824153034213, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.2525219548241204, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.245929799753732, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.2424141666728985, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.260889678231433, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242, + 1.228756443934242 + ], + "coloraxis": "coloraxis", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "showlegend": false, + "subplot": "ternary", + "type": "scatterternary" + } + ], + "layout": { + "autosize": true, + "coloraxis": { + "colorbar": { + "title": { + "text": "b0" + } + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "ternary": { + "aaxis": { + "title": { + "text": "Fe" + } + }, + "baxis": { + "title": { + "text": "Ni" + } + }, + "caxis": { + "title": { + "text": "Cr" + } + }, + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + } + }, + "title": { + "text": "MACE-MP(M)" + } + } + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAFoCAYAAACypkvfAAAAAXNSR0IArs4c6QAAIABJREFUeF7s3QeYFFXWN/B/5+7JiQHU1VXWLGvYNaGI4qqARBdZUUQEURREERAEURBQESSIIhIMYMY1K6KLYo67rtld9VVclTg5dJ75vnOHbib0THXPVIea+d/neZ+xp6qr7v1V78vMmXPPMdXW1taCgwIUoAAFKEABClCAAhSgAAUoQAEKGFjAxACHgZ8ep04BClCAAhSgAAUoQAEKUIACFKCAEmCAgx8EClCAAhSgAAUoQAEKUIACFKAABQwvwACH4R8hF0ABClCAAhSgAAUoQAEKUIACFKAAAxz8DFCAAhSgAAUoQAEKUIACFKAABShgeAEGOAz/CLkAClCAAhSgAAUoQAEKUIACFKAABRjg4GeAAhSgAAUoQAEKUIACFKAABShAAcMLMMBh+EfIBVCAAhSgAAUoQAEKUIACFKAABSjAAAc/AxSgAAUoQAEKUIACFKAABShAAQoYXoABDsM/Qi6AAhSgAAUoQAEKUIACFKAABShAAQY4+BmgAAUoQAEKUIACFKAABShAAQpQwPACDHAY/hFyARSgAAUoQAEKUIACFKAABShAAQowwMHPAAUoQAEKUIACFKAABShAAQpQgAKGF2CAw/CPkAugAAUoQAEKUIACFKAABShAAQpQgAEOfgYoQAEKUIACFKAABShAAQpQgAIUMLwAAxyGf4RcAAUoQAEKUIACFKAABShAAQpQgAIMcMThM1BbW4sdu0vg9wfQKT8HToc9DndJ/CWfeO51VLk9OOf0E7Bvl4I2TeC5Te+iqKQMvU4+Bt0O2KdN1+KbKUABClCAAhSgAAUoQAEKUIAC7TrAseHFLZi96EH1lJ+8bzaOPPT3DZ64BCB6nz8JxaUVOPnPR2LNoqlNPhHvfvwlLp+6SH1/zpRLMbR/r2Y/Nd9+/zPuuOcxfPjpNw3OOfzgA3B+/17of1YPpKc5cf3clXhp8wfNXue8fqdh7vWjNT+dP2z9DQMvmaHOmzZ+OEaef06T99S/1+eb74fFYlbnHN93HKrdnvD5aS4nDvvD/hg++Ez0O/PEJtf5x9v/xDWzlkPmJg5ms6nBdXqfciyWz7+myfvqP4P1y2fiuO4Hq3O+/M+P+NsVc3DUoQfi0RWzwvPSXDRPoAAFKEABClCAAhSgAAUoQAEKRBBo1wGOJ59/A3MWP6SW3bf3iVh005UNCF7e/CGmzr1Xfe/EYw/H/UumNSGaefsaPPvKO+r7x3U/BOuX1wUUGo/6v8ife+ZJ6H74QfB4ffjmu5+xactH6vRVC6fglOOPwnWzV6jvSVAgKzO9ybXkPn899zTND+z3P/6KQZfOVOfl5WTi9Q1LYLNZw+/7bftunHXBlPDrzzavhdViUa9DAY6LzvsL/IEgtu8sxlsffKaOXT36PIwbOTD8vmq3F/1HTkd2Zjo2rJ4Tvkb968h/P//gfHT7/b7h99XU1Kr3bf1lh/reurtm4E9/PCR8/MXX3se0+fepYI4ETjgoQAEKUIACFKAABShAAQpQgAKtFegQAQ7JTpBshVcevQO/26cwbDV07M3ql285FinA4fb48Oc+l0MyMGSbyadffod/PHEnunbOb+C9u7gMvc6ry164+9ZrcEaPYxsc/7+ft6msjUmXn98gwLHxkTuw/7575xPrQwwFOELru33G5Rhwdo/wZRbf9yTWPvZy+HXjAIfTYcPbzy4PH//i2x9xwbg56vWHL92LjHSX+u+71v4d961/AWvvvB4n/emIBtOUQIkMMWycefLm+5/hqhuWIDS/xgEOCYAMv/IWiM9rjy9CTnZGrAQ8nwIUoAAFKEABClCAAhSgAAUooAQ6RIBj8rhhuHPlk7jovLMwY+JFauH/+uK/uPjqWzFl3N+waOUTEQMcm7Z8jOtm34OpV12gAhxzl6xT/z1qWJ8GH59b73oEjzz9GsYM74frrhgW8aMl22EkUyLN5QhncOgV4Lj0gr547pV3kJudiecenA+TyYTKKjfOGDoJZ532J/z3/37BN99thVaAQyYu65V1P3z3TBx71MEoKavAqYOuVltJnrjv5iZrkwDHod1+h8KCHPW+N55aqv5bxuhJC/DTL9tVzY51GzY1yeCQc15/91NcPXMZrhw5CBNGD+H/LClAAQpQgAIUoAAFKEABClCAAq0S6BABDqmt8cATGyH1NN55brkKBEycdRfe/+RrvLT+dpwx9NqIAQ45Z/Pb/8Krjy+CzWpV5x1y0H545v55DbClDobUw3jz6WUoyMvWfBChLSp6BTgkOOB02rFk1QasXHAdep74Rzz6zGbMX7YeT62eg1l33B91gGPGbashBUBD2RaylUbmO/Oai3HhkDObDXBIEGnEhPm47MJzVaaK1CP562U3YcbEEWr7y/2PvxwxwOH1+VUAZb+uBU1cNSF5AgUoQAEKUIACFKAABShAAQpQYI9Ahwlw1NTWqmKhUl9Cimj2vWgarh07FMMGnoEeA8Y3CXCUlVehx8Dx+OMR3fDYilmKa9S1t+Pjf3/boNZEIBjE0WeOUdswPt64MqoPVijAIe+RbSKNhxQjlaKhWiO0RUUCHBcPPVvN9/hjDsOaO6fi7Aum4KAD9lGFU2UrTjQZHDt3l+Lci6er7SbvPne32jJyy5J1kO4pmx5biP26dmo2wCEZH8OvmguZ0+sbFuP2ux/Fq29+gi1/X4qV655vNsAhF5x+6yq88Op74eCT1rp5nAIUoAAFKEABClCAAhSgAAUo0FigwwQ4pHbEoFEzsW1nMfqccQKefvkt9Uu8yWyKGOB4ZuPbuHHBWpWBIIU4ZYQKiY4fNRhXjRqsvidBAcnskDodki0RzQgFOCQbJD2trs5F/XHaSX/E5SMGqPogG1//sMEx2X4y5sJ+qtBn/QCHbO8IbZWRLSsPPL4xXNS0uQCHXHjetNGQIqK/btuNhzZsUsGNKy4egIlj/qruO37GUmx5798NtrfUn1Boi4oEOF576xNce9PdqpuLbEkZe1F/FUSS7UHNZXDItVY89BzueeAZlcEhJhwUoAAFKEABClCAAhSgAAUoQIFYBTpMgEPawMrWC9mCISNUj6OsoipigEPqR0i7V8mA6FKYp94jxUQli0MyGaRgqQQbpLbGMWddprqY1C/Y2dKDiHaLigQWJMDQeHzyyiq4nPYmAY6ff92hMlNkdDtgn3A9juYCHPXbxIbuIQGdCwb1DrdtlVauu4pLVYeWSKN+gEOyWSRzZMeuEnWqvKdzp1zNAEcomPTAkuk44djDYv0M83wKUIACFKAABShAAQpQgAIUoEDHKDIqQQoJcEi9h78Muw7FpRXY+MgC7L9vZ0QKcMgv6L3Pn9Tix0O2rcj2FRn9RkxT2RbvvXCPaqWqNaINcJRXVmPr/7Y3udxRhx2ogiuNMzjkRMmgkEyKW28Yi0HnnKLe21IGx/L5E1U2iARx5P9CbWRDN5UAR2l5pdqiohXgkOOh2h+D+5yK+dMvU2/RyuBggEPrE8PjFKAABShAAQpQgAIUoAAFKKAl0KEyOARDWpfuLCrB+f1PVzaRAhzrn3pV1ZDof9bJOKzb/g0Mv//pVzz7yjtqG0aoTsa0+ffhxdfeV11ApB5GpFFbW4tgTY0KIEQb4NB6eJECHN/9+Atee+ufuGx4P9jtdfU9oq3BEel+V05fgrc++AxfvP4AzGZTk1PqZ3DIwapqj9rq0v8vJ6kAUjQBDmlBK61on147V3Vk4aAABShAAQpQgAIUoAAFKEABCsQq0OECHI2BIgU4QgGBSF1RQudLgdD3X7xHBSx+/Hkb+o+8QV161cIpOOX4oxrc5rftuzH7zgdxybA+6lg8AxyRPgBtCXDMXvSgqj1Sv/1r/Xs0DnBEur9WBofUOpEsjmi70MT6Ief5FKAABShAAQpQgAIUoAAFKND+BRjgaFSDIxSskECEBCsijVD72NDWFzlHimjKL/Iyzux5HI498mD4/AHVvUS2jNQPfoQCHL1PORaZGWlNbnFc90MwtH8vzU9fpAwOvQMcL23+ANfPXYnZU0aFs170DHBIDZMeAyegU342Xn54geaaeQIFKEABClCAAhSgAAUoQAEKUCCSQPsOcLywBXPufBBr77we0kUl0pA6Fyf3v0rV6JCAxepHXsTS1U81qGHR+H2btnyksjCkxezN110SPvzpl9/hjhWP4/Ovf2jwFukMMrT/6RjStyfSXA5MueXeJt1R6r/hvH6nYe71ozU/sT/89CsGjpqJqy4ZhPGXDmn2/FAGx+eb7w8XD5XMi8wMV7PFQ0MXk8Kqvc67BscedTCkU0rjEU0Gx+L7nsTax17G+uUzcVz3gxtcQrYMXXXDknDHFc1F8wQKUIACFKAABShAAQpQgAIUoEAEgXYd4EjWE5duIrItxecLoFNBTlSFR5M112juu2TVBqx59KWI22+ieX9z54jTBeNuUQVapYipdKLhoAAFKEABClCAAhSgAAUoQAEKtEaAAY7WqHWw91S7veg/cjpsViueuX+eykLRY4Q6rsybNkZlt3BQgAIUoAAFKEABClCAAhSgAAVaK8AAR2vlOtj7QltJTjvpaNw1byJsVkubBN79+EtcPnURpN7IQ8tuiNihpU034JspQAEKUIACFKAABShAAQpQoEMJMMDRoR532xYrtUekDezJfzoSXTvnt+liUni1orIaJxx7OPbr2qlN1+KbKUABClCAAhSgAAUoQAEKUIACDHDwM0ABClCAAhSgAAUoQAEKUIACFKCA4QUY4DD8I+QCKEABClCAAvoKSIbdx//+NuJFDz5oP/xun0J9b8irUYACFKAABShAAR0EGODQAZGXoAAFKEABCrQngW++2wppMR5pzJo0EhcM6t2elsu1UIACFKAABSjQTgQY4GgnD5LLoAAFKEABCuglEApwrLhtEnocf1SDy1rMZhaG1gua16EABShAAQpQQFcBBjh05eTFKEABClCAAsYXCAU4Vi2cglMaBThCq3v7wy9w3/rn8emX36li0YP6nIqxF/Vvc5ct4+txBRSgAAUoQAEKJEuAAY5kyfO+FKAABShAgRQVCAU4pl55Af54RLfwLLMz09Dt9/vi7Q8/x7hpizHg7B74S88/4fOvf8Dax17G5HHDMPqCfim6Kk6LAhSgAAUoQIH2LsAAR3t/wlwfBShAAQpQIEaB5mpwnN7jGNxz67UYMvpGdMrPgWR4hMZ1s+/B9z/+iucfujXGu/F0ClCAAhSgAAUooI8AAxz6OPIqFKAABShAgXYjEApwLJx1JU449rDwuux2G1wOO4456zLk5WSic6e88LGtv+xAtduDr7Y82G4cuBAKUIACFKAABYwlwACHsZ4XZ0sBClCAAhSIu0BLNTiqqj04od84nN//dJzZ87hGczGh54nd4z4/3oACFKAABShAAQpEEmCAg58LClCAAhSgAAUaCGgVGe05+Gocf8zhWDz7qgbvq62thclkoiYFKEABClCAAhRIigADHElh500pQAEKUIACqSugFeB49JnNmL9sPcYM76cKjfp8Afz7q+/w5vufNajLkbor5MwoQAEKUIACFGiPAgxwtMenyjVRgAIUoAAF2iAQCnCsWTQVJ//5yCZXCgZr8MjTr2H5/c+ouhuhIQGP664Y1oY7860UoAAFKEABClCg9QIMcLTeju+kAAUoQAEKdGgB2ZKyu7gMtbVAfm4WLBZzh/bg4ilAAQpQgAIUSK4AAxzJ9efdKUABClCAAhSgAAUoQAEKUIACFNBBgAEOHRB5CQpQgAIUoAAFKEABClCAAhSgAAWSK8AAR3L9eXcKUIACFKAABShAAQpQgAIUoAAFdBBggEMHRF6CAhSgAAUoQAEKUIACFKAABShAgeQKMMCRXH/enQIUoAAFKEABClCAAhSgAAUoQAEdBBjg0AGRl6AABShAAQpQgAIUoAAFKEABClAguQIMcCTXn3enAAUoQAEKpKSAtIAN1tTAarFozk9axaanueBy2jXP5QkUoAAFKEABClAgXgIMcMRLltelAAUoQAEKGFjghVffw5LVG/D6hiXNruLnX3dg3LTF2PrLDnXOef1Ow03XXQKbVTsoYmAaTp0CFKAABShAgRQVYIAjRR8Mp0UBClCAAhRIhoAELcZOWYRftu1C5065LQY4Lp+6CBnpLsyfPhbbdxZh2BVzcNOkkRhwdo9kTJ33pAAFKEABClCggwswwNHBPwBcPgUoQAEKUKC+QCAYhGw5ef2dT7Hm0RebDXCUVVShx4DxePjumTj2qIPVJeYvW4/tO4uxfP41RKUABShAAQpQgAIJF2CAI+HkvCEFKEABClAg9QU2vv4hFt77eLMBjh9++hUDR83Elr8vRaf8HLWg9U+9iuc2vYunVs9J/QVyhhSgAAUoQAEKtDsBBjja3SPlgihAAQpQgAJtF9AKcHz65XcYMWE+3nvhHmRnpqsbPvnCFqxc91yL21raPjNegQIUoAAFKEABCkQWYICDnwwKUIACFKAABZoIaAU4Qhkcbz69DAV52er9zODgB4kCFKAABShAgWQKMMCRTH3emwIUoAAFKJCiAs0FOGpqamE2mxCpBsfcJeuwc3cJa3Ck6DPltChAAQpQgALtXYABjvb+hLk+ClCAAhSgQAwCtbW1CASCeOWNj1Sb2E2PLoTJbILVYkFNbS2Ky33Iy7LDbDLhsikLkZWRjvnTL2MXlRiMeSoFKEABClCAAvERYIAjPq68KgUoQAEKUMCQAt//+CsGXTqzwdyl7eutN4yF2xtEWZUf2ek2uBwWbP3fdoybtli1lJUxuM+pmD15FGw2qyHXzklTgAIUoAAFKGBsAQY4jP38OHsKUIACFKBAQgQks2NbsSd8r655TphMJvV6x64SZKS7kJ7mTMhceBMKUIACFKAABSgQSYABDn4uKEABClCAAhRoUUDqbpRX+1HtDYbPS3NYkJVmU/U4OChAAQpQgAIUoEAqCDDAkQpPgXOgAAUoQAEKpLBAMFiDHaXeJjPsnOOAxWJO4ZlzahSgAAUoQAEKdCQBBjg60tPmWilAAQpQgAIxCkj2RnGFD75ATZN32q1m5GXamcURoylPpwAFKEABClAgPgIMcMTHlVelAAUoQAEKGF5A6m54/TUqwNHckACHw2YO1+Mw/KK5AApQgAIUoAAFDCvAAIdhHx0nTgEKUIACFIivgAQ4dpR4UFPb/H2kBEfn3L0FR+M7I16dAhSgAAUoQAEKNC/AAAc/HRSgAAUoQAEKNBGoqa1FtSeA8uqApk5WmhVpTivMe7qqaL6BJ1CAAhSgAAUoQIE4CDDAEQdUXpICFKAABShgdIHGbWG11lO/bazWuTxOAQpQgAIUoAAF4iHAAEc8VHlNClCAAhSggIEFpLBoWZUfbt/etrBay3HZLchOZ9tYLScepwAFKEABClAgfgIMcMTPllemAAUoQAEKGFLAH6jBrrKmbWG1FtMp2wGblW1jtZx4nAIUoAAFKECB+AgwwBEfV16VAhSgAAUoYEgByd4oKvfCH2yhsmgzK7NZTMjPcrBtrCGfPCdNAQpQgAKpIuD2+DD6ugWYcOkQnHL8US1O64tvf8TnX38Ps9mM47ofgkO7/S5VlpGUeTDAkRR23pQCFKAABSiQegJSd8Pjr0FJC21htWadm2mHk21jtZh4nAIUoAAFKNCsQEVlNU7qfxUWzroS/c48sdnzHnziFSy893Hs17UTqt0eFJdW4NYbxmLQOad0WF0GODrso+fCKUABClCAAg0FJMCxvdiD2HM39l7HBKBLHtvG8rNFAQpQgAIUaK1ANAEOCWb0HHw1Rg3rg6lXXaBuNf3WVdj89r/w1jN3weW0t/b2hn4fAxyGfnycPAUoQAEKUEAfAWkLW1kdQKVHuy2s1h0znFZkpLFtrJYTj1OAAhSgAAUiCYQCHGOG98OPP2/DB//6Bnk5mRg3ciCG9O2p3vLMxrdx44K12PTYQpXBIUO2q1wwbg5W3DYJvU4+ukPiMsDRIR87F00BClCAAhRoKCC1N7aXeHRj6ZLrZC0O3TR5IQpQgAIU6EgCoQCHrHlwn1Nx4P5d8egz/8COXSV4dMUsHH1EN6x46Dnc88Az+GrLg2GaqmoPTug3DjdNGom/DerdkcjCa2WAo0M+di6aAhSgAAUosFdAghulVT54fDW6sTjtZuSk2xnk0E2UF6IABShAgY4iEApw3Dx5FIYNOF0tW2psHN93HIYNPAM3X3cJ5i5Zh+dffQ8fb1wZZgkGa/DHM0djwughuHLkoI7C1WCdDHB0yMfORVOAAhSgAAX2CvgCQewu8+lOUpBth91q0f26vCAFKEABClCgPQs0V4Nj6NibkZOdgTWLpmLBPY/hqRffbBDg8PsDOOasy3Dt2KEYe1H/9kzU7NoY4OiQj52LpgAFKEABCtQJSO2N3WVeBFrRFlbL0GoxoSDbAbNJSo9yUIACFKAABSgQjUBLAQ6pxbFq4RSsefQlLFm1AZ9tXgurpe6PCaHCo/OmjQnX6ojmfu3pHAY42tPT5FooQAEKUIACMQhI1xS3N4jSKn8M74rt1JwMG1x2C0wMcsQGx7MpQAEKUKDDCkQKcJSUVeDUQVdj5PnnYNr44XjjvU8xYcYyPHHfzTjq0AOV1Zvvf4arblgSrtPREQEZ4OiIT51rpgAFKEABCgCQAMe2Yv0KizaH2pVtY/l5owAFKEABCkQtEApwDO3fCyP+ehZ2F5XhoQ2v4O0Pv8DzD85Ht9/vC9mO0mPgBPzhwH1x4zUXo6amBtPm36fu8dL62zvsHxYY4Ij6Y8YTKUABClCAAu1HQAqLVrj9qPIE476odKcFmS4bC47GXZo3oAAFKECB9iBQWeXGiedeic6dclXnlNBYPPsqnHP6CeHXX//3J1xx/Z1qa4qMA/brjHtuvVZ1XemogwGOjvrkuW4KUIACFOjQAsGaWuzQsS2sFmbnXCcsZtbi0HLicQpQgAIUoEB9gaKScpRXVGG/fQpha6Zw9/ZdxTCbzCgsyOnweAxwdPiPAAEoQAEKUKCjCUj2RkmlD16/fm1htQwdNjNyM9g2VsuJxylAAQpQgAIUaL0AAxytt+M7KUABClCAAoYU8PqDKCrXvy2sFkZ+lh0OG9vGajnxOAUoQAEKUIACrRNggKN1bnwXBShAAQpQwJAC0hZ2V6kXskUl0UO2qHTKYdvYRLvzfhSgAAUoQIGOIsAAR0d50lwnBShAAQp0eAEJbrg9AZRVB5JmkZ1mhctphZltY5P2DHhjClCAAhSgQHsVYICjvT5ZrosCFKAABSjQSCBRbWG14Nk2VkuIxylAAQpQgAIUaI0AAxytUeN7KEABClCAAgYTkMKi5dV+VHvj3xZWiybNYUFWGtvGajnxOAUoQAEKUIACsQkwwBGbF8+mAAUoQAEKGFIgEKzBzlJvysy9MMcBq8WcMvPhRChAAQpQgAIUML4AAxzGf4ZcAQUoQAEKUKBFAcneKKrwwR9IXFtYrUdit5qRl8m2sVpOPE4BClCAAh1PoNx7EKQUuAkmyPZSKVuViNfZjv8zPDYDHIZ/hFwABShAAQpQoHkB+cHI669BcUXi28JqPRcJcDhsZphYcFSLiscpQAEKUKADCZRXH4S6qEa9jmcJeJ3l+sHwygxwGP4RcgEUoAAFKECBlgMcO0o8SEJXWM3HYjYBnXOdDHBoSvEEClCAAhToSAIVld1Qi9q6DI4Efs3KYAZHR/qcca0UoAAFKEABQwnI1pRqbwDlSWwLqwWWlWZFmsMKs0Q7OChAAQpQgAIUQEV5t6QoZGYxgyMp8LwpBShAAQpQgALaAjW1tdhe7NE+MclndMlzwsxtKkl+Crw9BShAAQqkikBlabc9RTf2bFORvwGoIhx7a3KEXqttLDodz8hlgCNVPgOcBwUoQAEKUMCQApJlsbOoBAV52bBaLFGtYdvOYnQuyG0x60GuW1rlh8eX/LawWoty2S3ITm+5bazP50dJWSUKC3I0t7TI2otLy2GzWZGdma51ex6nAAUoQAEKpJRAZVE3tT2lLqqxt8BovF+n538f0UH+XZWaXpYoup95fX7sKipFmsuJvJzMhLuyBkfCyXlDClCAAhSgQJ3Am+9/him33Itqd12Wxc2TR2HYgNOb5Vm3YRMeefof8AcC8PsDGNK3J667YljE86Vjyq6y1GkLq/XMO2U7YLM2bRsrP1Ddu+553PPAM+oS8sPS3bdei6OPiJy++/4nX2HirOVh0+OPOQxTrvwbjjr0QK0p8DgFKEABClAgJQSqd/1hT/eUUMZGYr6mFzbN4JB/h2ff+aBymTPl0hZ9blywFs9sfDt8znHdD8HyeRORk52B4tIK9Bx8dZP3r118PU467gjd3Bng0I2SF6IABShAAQpEL+D2+HDakImYMHoILjrvL9jy3r9xzazl2PTYQuzXtVOTC331n58w7IrZeGDJdJxw7GH4v5+3YcDIG/DoillNftmXv7TsLvciEKxXfT36qSXlTJvFhPxsR5OtKp9++R1GTJiP9ctnoPthB+GutU/jpc3v4x9PLI6YwfLBv77Grt2lOO3ko+Hx+HDLkocgHvfePikp6+JNKUABClCAArEKVG//Q6xv0eX8tC4NMzg2bfkI85auV8GJof17aQY47lv/Ak49oTsO6fY7bNuxGxeNn4eLh56Ny0cMQFFJufq5Z+WCydh/38LwfAsLcuFy2nWZv1yEAQ7dKHkhClCAAhSgQPQCkr1x1Q1L8Omrq2G329Qb+42YpoIdF513VpMLffjpNxg9aQE2PrIA++/bWR2Xv4Rcf9VwDDi7R/h8+UuLbEspqfRHP5kUOTM3wwan3dJgC8qdK5/EN99vxZpFU9Usd+4uxRlDr8VTq+fg8IMP0Jz5C6++h+m3rsJnm9dGvQVI86I8gQIUoAAFKBBHAfdvf6grsSFdVGpr6zrGJuB12j4NAxzVbi/KK6uwZNUGOB12zQA89p9uAAAgAElEQVRHfRLJNO19/iRcPfo8DBt4RjjA8eK623Dg/l3jpscAR9xoeWEKUIACFKBA8wJPvrAFDz6xES8/vCB80tUzl+H3v+uKyeOabjuRGhRjJi/Et9//jIljzkNltRuvbvkYD901A1kZaQ0CHNsMUFg0kozsNpaCo6Z6BUdlC09udgZmXnNx+C1Hnj4KK26bhF4nH635EZPgxvc//qoCIhwUoAAFKEABIwi4//cHVVBUFRANjQS8du33XUSeW5asQzAYjCrAIT+v3P/4Rrz5wWfolJ+NW6ePRUa6Kxzg6H3KscjOysAhB+2HQX1O1b1WFgMcRviEc44UoAAFKNDuBNY8+hJeeeOjBr94yy/zGWkuzJ4yKuJ6Vz/yIiQjweV04Mv//IjLLjwXV485L5yZIF1TKqsDqPQEDOuV4bQiI80a3qpy+dRFOLTb/g2CPsf3HaeMzj3zpBbXGcrekOyPk/98pGFNOHEKUIACFOhYAp6tB4dLi4ZyN2pRW6/waLhtSvg8PY67DohcZDSWAIdswZ15+xp8+/1WyPaT22Zcjq6FeaiscmPZmqfU9yoqq1WtDimw/sTKm8OZrHo8ZQY49FDkNShAAQpQgAIxCsSawfH2h59j3LTFeP/FFSpj492Pv8S1N92NKeOG4W+Dequ7S4Cjym3c4EaIMN21N8AhQR8pLDpj4oiwcDQZHOIjwZGbr7tEpcZyUIACFKAABYwi4Pnx4L2dX5uEOkIhD/2/Og5sewZHyFi21oydughdOuVh3rQxTeh//Hkb+o+8AY+tmIU/NlM4vDXPiwGO1qjxPRSgAAUoQIE2CoRqcPz7tTWqnamMc4ZPxcjzz45Yg2Pp6qfw+jv/wvMP3Rq+8/gZS5HucuKOWeNUIU35acjoAQ7JwE1zWtVPbWazCVKD4z8//IxVC6eodUdTg0OKol03e4X6gUo6zXBQgAIUoAAFjCTg/eFg9e+gbNkM1+Co9zoU/dD7uOMP+gU4xPvWux5WRdFDdbTqP4Oqag9O6DcO9y+ZhhOPPVy3x8MAh26UvBAFKEABClAgegEp3HV83yswbfxwXBihi4qkb146aQHGDO+Hvr1PxMubP8TUufdi5YLrVIXy//22C30vuh5Tr7wAo/7WBz5/EL5ADWpqTah0G6/AaEguK80GswmwWk2wWy3Y20VlJroffpBKb3158wfhLiof//tbLLjnMdx581U4YL/OeG7Tu5hx22pMn3Ahep96XPiBSB2PNJcz+gfEMylAAQpQgAJJEvD9V7aohLahhCYR/9f2Q/7bYMXBYA1qamowb9l6BAJBzJ48ChaLRf0BovHPKbIFZdXDL6g/LOy3TyG+/u9PuGzyQrWd9oqLB0D+sOPxenHSn46EzWrB0tV/V9tU/vHknbrW4WCAI0kfWt6WAhSgAAUo8Pq7n0IKi4bGjddejOGDz1Qvy8qr0GPgeIS+Jxka9z38PJ7d+I5q15aZ4cLAs0/B+EuHwGIxY1epF8H/f07XPBe2l7gb1CUzirTVYkZBlh07y7zqx7pOOQ719e4HnsHKdc+rZUiQYtXCyTj2KPnhD3jjvU8xYcYyPL12Lg7t9jvIPuEnnnu9yZKZzWGUTwHnSQEKUIAC/m8P2ZO5EcrgSMxX++ENMziefP4NzFn8UIMHMvf60Tiv32lNfk6RjIxLrrkN33y3NXz+4D6n4qbrLoHDbsNrb32CGbetQbXbo47L9tOFs67ESX86QtcHzgCHrpy8GAUoQAEKUCA2AfnryPZdxSjMzwlvVdG6wm/bd6NLYb76C4qkrrq9QZRW1WVtyPYOu8UUfq11rVQ6np/lgNcfROWeOiI56Ta4HHVtYz1eH4pLysPrTqV5cy4UoAAFKEABPQX8Xx2i5+WivpbtyIYZHFG/sd6JEugoKilDQV4O0lyOBpcIBIMoKi5X3yssyGnQNa0194r0HgY49JLkdShAAQpQgAJJEJAAR+O2sJ2yHSrA4Q/UJGFGrbulw2ZGdroNu8q8DbJP9sl3te6CfBcFKEABClDAoAKBL0IBjr01OOqWEt/X1u5tD3Akm5wBjmQ/Ad6fAhSgAAUo0EoB2bZSXu1HtTfY4Ap2mxlZLht2l3tbeeXEv60wx4GyKj+8/oZBmTSnRa1FslU4KEABClCAAh1BIPDvQ/YWGA11UQkVHI3ja8vR/zE8LwMchn+EXAAFKEABCnRUgWCwFjtK6/ayNh65GXZ4/EG1fSXVh2yrcdktKGomINM51wkLAxyp/hg5PwpQgAIU0Emg5l+Hoha1MEnGRr2vocKjjb8fet3W45bjmMGh0yPkZShAAQpQgAIUiEVAsjeKK3yqc0qkIRkPhdkObC+JHACJ5V7xPFfmKVtqisp9CAQjr0UyUvIy7MziiOeD4LUpQAEKUCBlBGo+OTTyXGr3NFdpbqZtPG7+MzM4UuZDwIlQgAIUoAAFOoqA1N2QwIYEBVoamS4rYDKhojp128ZKIVEZoSKpza0nP8sOu9Ucl4JkHeVzw3VSgAIUoIAxBGo+OgyqIFVoW4rJlJDX5hMZ4DDGJ4SzpAAFKEABCrQjgZraWuws9aAmihqiXfKc2Fnihbwn1Ya0hZXAhRQWlYyUlobZDBTmOGGWH/I4KEABClCAAu1YoOb9w+KbqoHIqR7mk78xvCprcBj+EXIBFKAABSjQkQQkUFHtCaC8OhDVsqXNqtNmQUlly9keUV1M55OkLazbF1TriWZkpVlVG1wGOaLR4jkUoAAFKGBUgZp3j2hYgyNcYLRhTY5wLQ6djltOYYDDqJ8ZzpsCFKAABShgSIFIbWG1FlKQ5UC52w9fow4lWu+L53Gn3QIJWOwsja3TS9c8J7epxPPB8NoUoAAFKJB0gZq3j1RzaJxnEe/X5p5fJX3tbZ0AMzjaKsj3U4ACFKAABRIkINs4yqr9MXdGsVnNkFoXshUkFYbsMpHtJqWVviZtYbXmJxkp2WlsG6vlxOMUoAAFKGBcgZo3jwqV4ID8YcNUrxbH3teqRIeuxy2nM8Bh3E8NZ04BClCAAhQwmIB0GYk14yG0RAlw+IJ121uSPTJcVlUwVLrAtGYU5jgg9Ts4KEABClCAAu1RIPh697rgRWhxdfVG4/7afMYXhudkBofhHyEXQAEKUIACHUFAsjeKKrzwB1pXLFR+MOqS68K2YndSuULtayWbJKhRWLS5iUpGSn4m28Ym9UHy5hSgAAUoEDeBms1/bCEzo7mMjrZ/3/IXBjji9lB5YQpQgAIUoAAF6gQkHdXrr2l1xkPIMcNlg9lUG3WB0nj452TYVceU8ja2rs3LtMNhY9vYeDwjXpMCFKAABZIrEHz16KRMwHL2Z0m5r543ZQaHnpq8FgUoQAEKUCAOAhLg2F7iUftx2zo65zqxuw3ZE225v2xLkcDEjlKvCtq0ZdRlpLDgaFsM+V4KUIACFEhNgeArx6iJSWP02nqlRkM1N+qO6H/c0uffqQkSw6wY4IgBi6dSgAIUoAAFEi0gbWGr3AFUuPWpnSHdS9IcljZng7TGoSDboWqAVHuDrXl7k/dkuqxId7FtrC6YvAgFKEABCqSMQPDlY5MyF0u/T5NyXz1vygCHnpq8FgUoQAEKUEBnAQlwbC/26HrV/Cw7Kt1BeP36BBqimZzLblHBCMke0XN0yXPCLH/S4qAABShAAQq0E4Hgi8eFa3CEEzgk87EuhUN9DXVT0fO4ZQADHO3kI8RlUIACFKAABVJPQGpVlFb54PHV6Do5q8WEvEwHdpbqGzhpbpLS3k46n5RU+OAL6LsWyUiRDjFSvJSDAhSgAAUo0B4Egs/9KbT/JKFfLQP/aXg+ZnAY/hFyARSgAAUo0F4F/IEaSLeReIzsdBsCwVpUJaBtbFaaDRaLSQU44jE6ZTsgnVU4KEABClCAAu1BIPjsn0OJGvW6qYQSOELdUvR/bR3yieH5GOAw/CPkAihAAQpQoD0KSPbG7nKvCkLEa+yT78JvRfFtG2sxmyABiLa0hdVav2SkFGQ5mMWhBcXjFKAABShgCIHA34/fU0a0brryk0D9PMV4vbb89WND+LQ0SQY4DP8IuQAKUIACFGhvArKv1u0LorTSH9elpTutkOBAWVX87pObaYdkolTqVCS1OZDcDBtku4psh+GgAAUoQAEKGFkguOEE1T3FBNPeEhsJeG09nwEOI39uOHcKUIACFKBASgpIgGObzoVFm1uo1MYorvAjENS3Nobcz2GzICfDpmp9tLErbFTPqWse28ZGBcWTKEABClAgpQUCT5y4p0Xs3hIcoQnXtY5tWppDj+PWv32Y0i7RTI4ZHNEo8RwKUIACFKBAggSka0pldQCVCaiNEQpCZLgsKCrXvz6GBE8qqgMqGyURI8NpRUYa28Ymwpr3oAAFKECB+AkEHzspOTU4LvwgfotK0JUZ4EgQNG9DAQpQgAIUiEYgWFOLHSWJ6W4Smk9eph3V3iA8OgYi0pxWpDksureF1TLskutkLQ4tJB6nAAUoQIGUFgg8fHLz3VNCM49DKof1ovdT2iWayTHAEY0Sz6EABShAAQokQEAKi5ZU+uD1679dpKXpSyHQgmyHboGVeLaF1XoMDpsZuRl2Bjm0oHicAhSgAAVSViCwvkeDfShSXkpt9WwmqKHXcevI91LWJNqJMcARrRTPowAFKEABCsRZwOcPYncctopEM+3MNCtQa0KFu+0FR6UtrNkElMaxeGlLayrIssNus0SzbJ5DAQpQgAIUSDmBwIOnJGVO1lHvJuW+et6UAQ49NXktClCAAhSgQCsFpPbGrlIvZItKskbXPBe2l7jbVBDUajFDAgw7y7yQjJRkDNWaNscBMzuqJIOf96QABShAgTYKBO4/ta6QqMkEKTweTtyI82vb6HfaOPPkv50BjuQ/A86AAhSgAAU6uIAEN9zeYFzbtUZDLHUz7FZTm9rT5mc54PUH494WVms9Oek2OB0WBjm0oHicAhSgAAVSTsC3pqdqEVu3TyW0WyX+r22XvRXRQv5gIYEWi8WsaeX1+bGrqBRpLifycjI1z9f7BAY49Bbl9ShAAQpQgAIxCiSyLazW1DplO9TWEn8g9jogUv8iO92GXWXeNmWBaM0x2uNsGxutFM+jAAUoQIFUEvCt7lVXdCNUXCNBX+2XNw1wyM8os+98UPHMmXJpi0w3LliLZza+HT7nuO6HYPm8icjJzkgYLwMcCaPmjShAAQpQgAJNBeSvIuXVftXFJBWG3WpGVrqtVd1PpC1sWZU/4UVSm3OTLi6qHogUBOGgAAUoQAEKGETAu/L05ruoNNc9RYfvO67Y0kBo05aPMG/pehSXVmBo/16aAY771r+AU0/ojkO6/Q7bduzGRePn4eKhZ+PyEQMSJs8AR8KoeSMKUIACFKBAU4FgsAY7Sr0pRZObYYPHL9tmAlHPK91phdNuQVF5aq2lc44TFgsDHFE/SJ5IAQpQgAJJF/De27uu9kao5kaCvjqveqPB2qvdXpRXVmHJqg1wOuyaAY76b/b7A+h9/iRcPfo8DBt4RsJMGeBIGDVvRAEKUIACFGgoINkbxRU++FqxHSSellKcszDXge3FnqhuIxkSkr2xu8yHQDD2rS1R3aSVJ0lGSm6mHVJ4lIMCFKAABShgBAHP3b3rtqfUlRrdu10lNPnQ9hWdjzvHb47Ic8uSdQgGg1EFOHw+P+5/fCPe/OAzdMrPxq3TxyIj3ZUwdgY4EkbNG1GAAhSgAAX2CshfZrz+GhXgSMWRmWZTP1BVuLWzOKSgp/wIJttTUnHkZdoh9UHkL2EcFKAABShAgVQXcC//S4MaHKFMjuZqcuh13DWx7QEOt8eHmbevwbffb0VhQS5um3E5uhbmJYycAY6EUfNGFKAABShAgb0C0jllZ4kHSeqkGtWj6JLr1Gz3Km1h86UtbKkUFk1OW1itxUjyRmGukx1VtKB4nAIUoAAFUkKgetlZ4Xns7Z1S9614vk675rWI648lgyN0AfmZYOzURejSKQ/zpo1JmCsDHAmj5o0oQAEKUIACdQIS3Kj2BFBerZ0dkUwzl8MCp82Cksrms0wkuOH21aj1pPLISrNC2uDK9hsOClCAAhSgQCoLVC85B7WoVa1iw7U4EvA6fdKrugU45EK33vUw/u/nbVizaGrCuBngSBg1b0QBClCAAkYTkH2kJWWVKCzIiXp7g9TV2FlUgnSXE5kZaRGXnEptYbWeSUGWA+VuP3z+prU1XHYLMtOsKnvDCCOatrG7i8uQnuaCy2k3wpI4RwpQgAIUaIcCVXeesydXI7S4PbU4wmuNz+v0ya800JRC6DU1NZi3bD0CgSBmTx4Fi8WiupNVVFbj0kkLMGZ4P/TtfSIqq9xY9fALGNK3J/bbpxBf//cnXDZ5IS678FxccTG7qLTDjymXRAEKUIACRhGQAMS9657HPQ88o6acl5OJu2+9Fkcf0a3ZJcg/9PPvehgvvPqeOuec04/H4tnjm5wvARCpVeH2pUZbWK1nYrOaITU2dpU1DGJIIkRhjhOlldIW1hhrkYBMdnrktrE//7oD46YtxtZfdiiS8/qdhpuuuwQ2q6VFIgmCjZm8EG6PF0+tnqPFyeMUoAAFKEABTYGqhX33ZnCEMjcS8DVjasMAx5PPv4E5ix9qMN+5149W/0aWlVehx8DxuPHaizF88JmoqvbgkmtuwzffbQ2fP7jPqerfUofdprlmvU5gBodekrwOBShAAQq0G4FPv/wOIybMx/rlM9D9sINw19qn8dLm9/GPJxarv1o0HhK0GHbFbFjMZowe3hc9Tzxa/SVDMj8aD3+wBrsMkvEQmrsEBQLBWlTV24aS4bJCgh8lKVoktbkPo3R7kbohjcflUxepKu/zp4/F9p1FGHbFHNw0aSQGnN2j2c+1BMJuXLAWz77yDg4/+AAGONrN/wfgQihAAQokV6BiQb9wrY16vVRCPVPi9jVj2sttXrgEOopKylCQl4M0l6PN14v1AgxwxCrG8ylAAQpQoN0L3LnySXzz/dbwntGdu0txxtBr1S+w8ots4/H6u5/i6pnL8PLDC3DAfp2b9ZFASFG5F/5gahbjbG7ikq3RJdeFbcVudYq0XO2U7VBZHcFUrpIaYUE2qwn5mY4Ggaqyiir0GDAeD989E8cedbB61/xl67F9ZzGWz7+m2ee5+pEX8fLmD9D/rB7Y+PqHDHC0+//PwAVSgAIUSIxAxW3961rEmvbU4AiFO+L8OvOGlxKzwDjehQGOOOLy0hSgAAUoYEyBKbfci9zsDMy85uLwAo48fRRW3DYJvU4+usmiFtzzGJ568U30OeMEfP/Tr6rv+5jh5zbY0iJ/7ff4awyX8RBarGRsSIHO8mo/cjPtCAZr1X8bcTRuG/vDT79i4KiZ2PL3peiUX5d1s/6pV/HcpnebDVq8+uYnmLvkIWxYPQdvvf8ZnnxhCwMcRvwwcM4UoAAFUlCgfL4EOOpnjMan5sbepdddP2vmCymoEduUGOCIzYtnU4ACFKBABxCQ7QqHdtsfk8cNC6/2+L7jMHvKKJx75klNBCbOugv/+f5/GPW3PuhckItX3vgIL23+AC+uuw0H7t9VnS8Bju3FHpVWatTROdeJsmo/stNsKd0WVsu3LiPFGS4cG9qS9N4L9yA7M129XQIWK9c9h9c3LGlyuS++/RGjJy3A/UumofthB0L2KDPAoaXO4xSgAAUoEK1A+byBe7un1CVyQDqxN/xaq/4da/r90HmxH8+e9Xy0U0zZ8xjgSNlHw4lRgAIUoECyBCSDQwqLzpg4IjyFljI4JMCxb5dOmDZ+uDpfqo6f/tdrcOUlg3HhkDNVW1i/vwa+QNNOJMlaY2vuK7UrnHYzPL4aBILGXovdaobNZlZZKaEMjjefXoaCvGxF01IGx9wl6/D+P7/C6Scfo879+rut+Oo/P+H8/r1w5SWDmu2e0xpzvocCFKAABTqeQNmcQXsXHSrC0RyDjsezb37O8NgMcBj+EXIBFKAABSigt4DU4PjPDz9j1cIp6tJaNTjk/O9+/B9WLpgcDnCc1P8qjL90MEYN66P+CuMP1Bqm20hznlJU1GFrHwEOWYesR/76FakGhwQxdu4uiViD4+0PP29QJf6zr3/A51//gIuHno0Rfz0LaS6n3h9JXo8CFKAABTqQQOnsIZFSNppL5dDt+zlznjW8MgMchn+EXAAFKEABCugtsLeLykx0P/wgLFvzlComGeqi8uCTr2Dz2/9SXVZkyC+4F141VwVETjjmMDy76R3MXvSgqskgW11Kq3zIzXBge4lbpZIacUggoHOOQ21RyXTJFhWPEZeh5iyZKAXZdtWuV7bbSGecy6YsRFZGOuZPv6xJFxVpAXzppAUYM7wf+vY+scm6uUXFsB8FTpwCFKBASgqUzBoS3n5SV19073aTeL7OueXplPSIZVIMcMSixXMpQAEKUKBDCEjGxd0PPIOV6+r2ospf5FctnBzusLFwxeOq5sLHG1eGPR54fCMWrXwi/HretDEY0rcn/IEa1W0kzWmF3WpCaaUxC3NmpdlgsZhUkVT5b9l2U+kOGPLzkJ/lgMcXVG1vpRuMZHL8+PM2jJu2GL9s26XWNLjPqZg9eRRsNivKyqvQY+B43HjtxRg++EwGOAz51DlpClCAAsYRKLnxry3U1tAtYaNJbY+8+X83DlIzM2WAw/CPkAugAAUoQIF4CXi8PhSXlKNLYX6DtqLN3U/O31VUqs63WS0qCLC7zIvAnraw8st0aZVfBT2MNCK1hd0n34XfiuraxhppyNaU7PS6IqkyrBYTCrL2to3dsasEGekupKdxm4mRnivnSgEKUKA9CRTPGJqU5eTd+lRS7qvnTRng0FOT16IABShAAQrsEZAsELcv2CBjQwpbZqXbVNDDSEPawkpQpn7GRrrTqoIDss3DKEOqz0uQSebs9e8NMuVk2OCyW8JdVYyyHs6TAhSgAAXap0DR9GGoRS1MMIW/QvVh2/s6Hsfzb99geFAGOAz/CLkAClCAAhRIRQEJcGwrblqnQn6Z9vlrUe01xvYOh80CmbPU3GhcP6RTjgOlFX74DdJRJcNlhaynqLxpgKlr3t62san4eeKcKEABClCg4wjsun6YCm7sHaEesXXfCQU39D5esGDvVlujajPAYdQnx3lTgAIUoEDKCtTU1KLC7UeVJ9hkjtKWtDDXge0Rgh+puKDCHAcqqgMqG6XxkGBBhksCBr5UnHqDOUkh0cJsB3aX+yK2uM1wylrqCo5yUIACFKAABZIpsGvqBaoDmxT4lj8uSAbi3teh7+t/vHARAxzJfO68NwUoQAEKUCAlBYI1tdhR0nyXkcw0m6qIXpHiRTqlMKrLbm4xgCHbVzzeYMQASCo9nJx0KYwKlFc3v6Wmc64TUm+EgwIUoAAFKJBMgR2Th9c1S1GbUvaO0OvGX0NntPV44Z2PJXPZutybGRy6MPIiFKAABShAgToByd4oqfQ1qPEQyaZLrhM7y7zq/FQc8lcjyd6Q7IxAC1tQJCBQkO1oMaCT7PVJ7RMJxEhhUfkLWHNDCpDmZtiZxZHsB8b7U4ACFOjgAjsmXVS3DUVlcNSrxRHn112WPGp4eQY4DP8IuQAKUIACFEglAa8/GNWWDZfDAqfNooIhqTik04j81Ui6vmiNTJdV5c9WtJAdoXWNeB6XAEy1N4hqj3bdk/wsu6rTwUEBClCAAhRIlsC2ay4KBzfqcjj2Bjvi+brL0oeTtWTd7ssAh26UvBAFKEABCnR0AWkLu6vUC9miEs2Q9qTlbj989Tp6RPO+eJ9jtZhRkF2X8RBthokU6dxe0nKGRLznHen60h0l3WWNunONaomb44DUSuGgAAUoQAEKJENg28SLW6i50bgGh36v91nOAEcynjfvSQEKUIACFEg5AQluuD0BlFVrZwmEJm+zmiG1IXalWNvY/CwHPL4gqqLIeAitJc1hhd1matAWN9kPSWIUhTlOlFT44AvsbQurNS/JXpEMGwY5tKR4nAIUoAAF4iHw64SR8bis5jX3vXud5jmpfgIzOFL9CXF+FKAABShgCIHm2sJqTV5+mQ4Ea2MKJmhdsy3HpQ6FzEmyN2IdshWkvMofUzAh1nvEcr60hZUgkgQ4Yh1sGxurGM+nAAUoQAG9BH696pK6AqOhmhuqi0q916ECpDof32/FQ3otIWnXYYAjafS8MQUoQAEKtBcB2cYh3TmkzkOsQzZCdMl3YVuRO9a36n6+ZDx0ynagrMqvWSQ10s2lmGdWui3q7SC6L6DeBdVWk2yHyo6JdstQ/fmkOSzISmPb2Hg+I16bAhSgAAUiC/xv3KhQb9hQyY261yrsEY5u7Il61HvdxuO/u/cBwz8SBjgM/wi5AApQgAIUSLaAdBlpTcZDaN6SaSDbIVpqYZqINco8pMBmUXns2Ruh+eVk2ODz16LaG/1WnXisTbqmSGZMWwqfds5xwGIxx2N6vCYFKEABClCgWYH/XTG6ruuXBDWki0o4U2NPV5U9r/U+vv8qBjj4saQABShAAQp0aAHJ3iiOscZDJLDOuU7sLvciGIyuQKne6GazCYXZDuzWaAurdV8J1BTmOrC92KN1atyO720L61Epva0dcp28TLaNba0f30cBClCAAq0T2Dp2TOve2MZ3HbB6bRuvkPy3M4Mj+c+AM6AABShAAYMKyF9XvP4aFeBo63DaLZBtEXpcqzVzkWKn0vxFjyySzDSb+otThTs5WRxSC6TKHYDbF/uWocZ2EuCQuiTy1zMOClCAAhSgQCIEfrrssrrdKKFdKQn6+vu1axKxvLjegwGOuPLy4hSgAAUo0J4FJMCxo8SjAgN6DPllWup4SAeTRI69GQ/6tXlVGSmtrH/RlrVLkCjNGX1bWK17mU2ArIUBDi0pHqcABShAAb0Efrx0bF1wIzRCwY44vz7w/tV6LSFp12GAI2n0vDEFKEABChhZQLamSJ2J8hjawmqt18L5f64AACAASURBVGoxIS/TgZ2lid3eIRkPElipjqEtrNZaXHYLnA5LqzqYaF27ueMShJC6GXpsGap/j6w0qwqasG1sa58M30cBClCAArEI/N+oK1CLWpjqpXAk4nW3B1fFMs2UPJcBjpR8LJwUBShAAQqkukBNbW1c6kxI5w65dmWCtndIICLdpV/GQ/3nlp/lUOvw+hOTkRLqelJa2fYtQ40/f2wbm+r/i+T8KEABCrQfgR9GjtuzmASlbuy5W7d1Kw2PyACH4R8hF0ABClCAAokWkOwNaaWqR42HSHPfJ9+F3xLQNlbKShTmOFWWhS9QozujzWJGTqYNu0pb35Ul2kmF2sLuLPNCno/eQwJB2elsG6u3K69HAQpQgAJNBb6/+EpVJLuuiUpdF5VQTY7Q63gc/8PD9xr+cTDAYfhHyAVQgAIUoECiBfyBGuwqi98v7elOK2S7igRR4jmkGKjcRwIc8RoSFJB2rVU6bn+JNFepXyJBmnhmvnTKdsBmZdvYeH1WeF0KUIACFKgT+O9FVzUowdHYpXFeh17HD35kRcRHIH84kMBKNK3T3R4fSkrL0aUwH9KhLdGDAY5Ei/N+FKAABShgaAHZPlJU5oU/zu1cO+U4UFrhhz+of2aFPADJeCjMkXofXgTjkPFQ/yHHOyNFupzkZNhV7ZK2tIXV+mDaLCbItptk/MCmNTcepwAFKECB9iPw3+ETwjU4QrU3EvH10MfuaYIogY3Zdz6ovj9nyqUtIl89cxlef/dTdU5eTiYG9+mJyeOGqdfFpRXoOfjqJu9fu/h6nHTcEbo9PAY4dKPkhShAAQpQoL0LyD/y0uGkpDK+mRXi6LBZkOGyoqg8PpkiuZl2BIO1urSF1Xrusg4p0KlHC9pI95JAjRR7TUT3GXFzsm2s1iPncQpQgAIUaIPAt3+boAqMqqCGyVS3TSUBrw99YnmDWW/a8hHmLV2vghND+/fSDHDcff8zOPv047H/voX44J9fY/yMpXj83pvQ/fCDUFRSjtOGTMTKBZPV8dAoLMiFy2lvg1bDtzLAoRslL0QBClCAAu1dQH7A2F7sUdtgEzHkl2mPN6h7rY94tIXV8pBaH8UVXrVdRc8h3U2kPka8AkGN5yrJtl3y2DZWz2fIa1GAAhSgQEOBb4ZNVDU3QjU46v4j/q8P33BXg4lUu70or6zCklUb4HTYNQMcjZ9j7/Mn4YJBvXH5iAHhAMeL627Dgft3jdsjZ4AjbrS8MAUoQAEKtCcB1dmkOoDKONeSqG8m20ikheuOEn3bxso1q9wB3QMnLT1vp92CNIdFtXDVa8hWEamLUVTuQyBOW3kizTXDaUVGGtvG6vUceR0KUIACFGgo8PXQa5JCcsRTyyLe95Yl6xAMBmMKcGz9ZQf6jZiGFbdNQq+Tjw4HOHqfciyyszJwyEH7YVCfU5Gdma7rWhng0JWTF6MABShAgfYqIAW2tuscaIjGKtNlVX+yqajWZ1uMBBkk62F3HIukNrcuKQRa7Q3qtpUkJ92mblUa52KskdbTJdfJWhzRfIB5DgUoQAEKxCzw1V8nhbun7O2aUm+7Smjbis5fj3p6qS4BjqpqD0ZMmIeM9DQ8uHS6Kk5aWeXGsjVPQbakVFRW45mNb6MgLxtPrLwZdnvdv+d6DAY49FDkNShAAQpQoF0LSHCjtNIHjz8+BT+18LrmObG9xKt+2GnLkH28nXMcKosiHm1hteZmsZhQkOnAjtK2Z6RYLWbkZ9lVN5t4tIXVWovTbkZOup1BDi0oHqcABShAgZgFvhhyXczv0eMN3Z9Z3OYAh3RRuWbWXdi+sxjr7pqBnOyMiNf88edt6D/yBjy2Yhb+eEQ3PaavrsEAh26UvBAFKEABCrRXAV8giN1l+m2tiNUpzWGF3WZCaRuLm2al2dQv5BKsSdaQOajtPu5Am6Yg3UzcviCqE7hlqPGEC7LtsFstbVoH30wBClCAAhRoLPD54ClJyeA4+rk72xTgKK+sxsQb74Lb7cV9d0xuNrghN5EsjxP6jcP9S6bhxGMP1+1DwACHbpS8EAUoQAEKtEcB+WV8VwJaqWrZSd2M8ip/qzMvpJ6H1KvYmaSMh/rr65rvwvYid6uLtUo9j6w0q2pxm8xhlYyUbIfqEMNBAQpQgAIU0Evg3wOm1FUUDY1QgdHw6z3f0Pn40c8vbLCEYLAGNTU1mLdsPQKBIGZPHgWLxaL+WCLbTC6dtABjhvdD394nQgqSXjBuDgLBIJbMmYCMdJe6ltlsRtfCPLz5/mfweL046U9Hwma1YOnqv6ttKv948k5d63AwwKHXp5DXoQAFKECBdicgW0Lc3mBSajw0xpTOJ1nptlbXzpD6F7Itpa2ZE3o85HSnFRIcKGtF7Qz5eU86skgWijdJW4bqG+Rk2FQXF9n+w0EBClCAAhTQQ+DT/terPwLs/ZdF/qvhNtV4HD/2xTsaTP/J59/AnMUPNfje3OtH47x+p6GsvAo9Bo7HjddejOGDz8SOXSWQrimNR15OJt5+djlee+sTzLhtDardddtU5fsLZ12Jk/50hB5k4WswwKErJy9GAQpQgALtTeC3InfKLEl+mfb5a1HtjW17h8NmRk6GHTtLPWhjGQ/dLCSbRIqD+gOx1TXJcFkhwR49u7G0dVFSI4UBjrYq8v0UoAAFKBAS+Ge/aTDBhFq0UFg0DsePe+n2uD4Eye4oKi5X9ygsyInLv50McMT1EfLiFKAABShgVAEpXFnu9qPaE0yZJcgv0V1yHdhWHFuRzsIcB8qrA7p1L9EDRIIuGS4bisqj32YiKbGF2Q5VWDRY07aCq3qsIXSNdKcFma66+iYcFKAABShAgbYKfNL3BnUJlbchf5nYkyUY79d/3nhbW6ee9PczwJH0R8AJUIACFKBAKgrIL9A7ktAWVssiM80mP+2gIsoindISVrZQxBJI0JqDXsdzM+zw+INqG1A0Q9rCSlyjXKeWudHcM9pzOuc6IXVOOChAAQpQgAJtFfj4nBltvUSr3n/8pltb9b5UehMDHKn0NDgXClCAAhRICQHJ3iiu9MGXAjUeIoHIL9O7o8hikIwC2QpSVO5DIBjbVpBEPIhQRsb2KAJJsi0lN1O22bS9XW481iYZKRKwYRZHPHR5TQpQgAIdS+Cjs29MSheVE1+bb3hoBjgM/wi5AApQgAIU0FNAUkGlGKcEBVJ1SEaG02FBSUXLc5SMBxlS6yJVR6bLqlJvKzSyMqRbibSErY4y2yMZ683PssNhY9vYZNjznhSgAAXak8AHf5mVlOWc9I+5SbmvnjdlgENPTV6LAhSgAAUMLyBtYaUYZ03qJTw0sM3PcqiOKF5/5O0dVosZ8gu31KuQjJRUHl3ynNhZ4oXYRxoS0El3WVvdQSZRa1eteHPYNjZR3rwPBShAgfYq8P6ZNyclg6PH67cYnpQBDsM/Qi6AAhSgQMcU2F1chvQ0F1xOu24A8gu2ZAlIQc5UHzaLGTmZNuwqjVykUwIgbl9QrSfVR5rDCrvNhNLKppkmobawkq0imTWpPrLTrHA5rTC30Da2orIaUkk+Nzsz6uX4/QHsLCpFp7xs2O11mTkcFKAABSjQPgXePf1m1WFkb9i/dk9XlT3rrd3TXSW8fH2O93hjtuFBGeAw/CPkAihAAQp0LIGff92BcdMWY+svO9TCpRf7TdddApu15a0BPp8fYyYvhNvjxVOr50REk+0psXYoSaZ+droNgWAtqhoFMZx2C7LSrKpehVGGbEEpr/I3CWJIUVWrxaS5HSeV1tlc29hqtwfT5t2H19/9VE33j0d0w/J5E1GQl93s9H/8eRtuWvgA/vXFf9U5syaNxAWDeqfScjkXClCAAhTQWeCdXo1+TlHtU1q4iU7HT33zZp1XkvjLMcCReHPekQIUoAAF2iBw+dRFyEh3Yf70sdi+swjDrpiDmyaNxICzezR7VQlc3LhgLZ595R0cfvABEQMcso2jrNofdUePNixB17fuk+/Cb0Xu8DVDGQ+llT54U7RIaiQAm9UMqRkiW2pCQ235SMG2sFoPMM0hAaambWPXPPoSNrywBeuXz1SZR1dOX4ID9++KudePjnjJHbtK0Pv8Sejb+0RcOORMHH7w7+HxemPK/NCaK49TgAIUoEDqCbzd8xbVI7auQ2zoP+L/uudbN6UeRowzYoAjRjCeTgEKUIACyRMoq6hCjwHj8fDdM3HsUQericxfth7bdxZj+fxrmp3Y6kdexMubP0D/s3pg4+sfRgxwSJcRI2U8hBab4arbDhFqnSqvpeNIsUYB0uQ9xebvnJNhg89fi2pv3bYa6ZriD9SoWiNGG4U5DkgdlPpj6Nibcc7px2PsRf3Vtzdt+QjXzV6BL994oO4H2EbjjnsewwuvvYc3/r4UVguLlxrtM8D5UoACFGitwFunzkMt9mw7CW9Hif/rXu8kp7hpa50ivY8BDj01eS0KUIACFIirwA8//YqBo2Ziy9+XolN+jrrX+qdexXOb3m1228mrb36CuUsewobVc/DW+5/hyRe2NDlXsjeKKnzql2kjjsIcJ4orpEgnUGjAjIeQufyO3yXXhW3FbhWkqWsL61F/wTLakPnnZTZsG3t833GYN22MCnLI+Pq/P+H8y2fjvRfuQXZmepMlDrxkBlxOB7p2zse2HUUq+2jcJQPRpVOe0Tg4XwpQgAIUiEFgS4/ktGs9/b2ZMcwyNU9lgCM1nwtnRQEKUIACEQQ+/fI7jJgwv8EvhBKwWLnuOby+YUmTd3zx7Y8YPWkB7l8yDd0POxBPPv9GkwCHbF+RrRxGzHgILVhqbsi2CAlwSLAmlM1hxA9RpssGmGpVu9Uqd0AVSjXqkACHw2auKxRXW4ujzrgUK26bhF4nH62WFArY/eOJO1UQo/E48vRROPHYwzGkb0/Y7VasfuQlSB2P5x6YD5vNalQWzpsCFKAABTQE3jj5tqR0Uen9wQzDPxsGOAz/CLkAClCAAh1HIPQL4ZtPLwsXZmwpg2PuknV4/59f4fSTj1FIX3+3FV/95yec378XrrxkEDIz0tQPEEbcAtH4qaft6dxR5fEbMuOh/npkm40Ea4zQAaal//XJphNpbxvafiIZHPOnX4aze/257vOokcEhAY675k7EmT2PU+dLwdH+I2/A02vn4tBuv+s4/8PnSilAAQp0MIHNJ96elBWf+eH0pNxXz5sywKGnJq9FAQpQgAJxFYhUg0OCGDt3l0SswfH2h5/jm++2huf02dc/4POvf8DFQ8/GiL+eBafToaqSS80HI26DqI9dF+CA4YM1sk0l3WlDqGVvXD9Qcb642WyCy2FRnzH5b6nB0eeME3DZheeqO2vV4JDzzz3zJFx6QV91fijA9/jKm1VGEgcFKEABCrRPgX+csGBPgdFQYdH6X/e0iFUFSPU9ftbH0wwPygCH4R8hF0ABClCgYwlcNmUhsjLS1V/CI3VRkaKN+3TJx5Rxf2sC03iLivwSXV4VgN1mQmml37CQLrtFZQr4/DUqMGDkjBTVfcQEWCwmVLqD8PqNu0UlP8uhtthIy14pBCvFbp968U3VRSXN5VDtjut3UXnwyVew+e1/Yf3yuhTh+x9/GQ88vhES0JDOQUvu24DN7/wTrz5+p+rCwkEBClCAAu1TYNOf75AmKuEhpagS8frsT643PCgDHIZ/hFwABShAgY4lIGn68ovhL9t2qYUP7nMqZk8eFa5JMGT0jeqXxsWzx7cY4JBaFaVVfnh8QRRkO1Be5YfPgEVGQ21hSyp8av5d813YXuSWpAHDDek6UpBlx84yrwoI5GXaDNnZRuClLooENqQzjwSgstNtcHu8mHLLvXjrg8/Usznq0ANV5lFhQV3B3IUrHlc1Yj7euFK99vn8mHH7GtX5R0bnTrlYOmcC/nhEN8M9W06YAhSgAAWiF3jlT4vqUjNUWKPZVA3dj/f519ToJ5miZzLAkaIPhtOiAAUoQIGWBXbsKlF/1U5Pc7aKSjqm7CrzqvfarGbkpNvCr1t1wSS9KTPNBqvFBAlwyEh3WtXrsirjZaRIxoNkbIQyUCQoEAjWospjrDaxoaBTaaVPFbCV0SnboT5nMmSrld8fCNeR0frolFdWo6rKjS6FeRHbyWq9n8cpQAEKUMBYAi8fs6jR/pNQLKO5YIc+x/t9OtlYUBFmywCH4R8hF0ABClCAArEKSPbG7nKv+uU5NHIybPAFag1V2NJiNqEwx6GyBIJSlXPPkF+mJTvFSG1vpduIBDQk6FS/Hso++S78VuSO9REn9XwpkiptYut35pGgU0GWQ9Xi4KAABShAAQq0JPDS0YtVJqbK36jdU3MjAa/7f3ad4R8MAxyGf4RcAAUoQAEKxCIgPyjItpSSRjU35K/uXXJd2FZsnF+mczPtKkhTUd0wW8NuMyPLZVNBHKMMCdRI1kko4yE0b6ktYjWZUNZojam6LglgFGY7VKCmftBJ5pubYVNbV0JdVVJ1DZwXBShAAQokV+CF7kvCu1PCM9mzWyWerwd8Pim5C9fh7gxw6IDIS1CAAhSggHEEJMCxrdgTccKZLhtgkoBB6m+JkAwBCXDsLPVE7ACTm2GHxx+E25v6RTplW4384l/UTECmMMeJ4oqGGTep+onLybBDMoTKIwRk5GfTLnlOBjhS9eFxXhSgAAVSROD5o5btzdwIZXAk4Ougr65NEYHWT4MBjtbb8Z0UoAAFKGAwAdVhpDqAyhZqOnTOdWJ3hL++p9pSpTBqlTugunREGqFMgu0lkYM5qbIeNc8cB3aX+RAI1tWraDwcNgsyXBIAqaszkqpDgk55mXbsKJVtNpHLvGY4rcjY01UlVdfBeVGAAhSgQHIFnj1imdqQUotamEKFRhPwevDXE5O7cB3uzgCHDoi8BAUoQAEKGENA/rKu9Qu/ZBKkOSwN6iek2urSnFY1RwnEtDQyXVZVpKzxFpZUWo8Ud5VQgFZRVAkcVHuDantRqg4JOlV7AmqeLY0uuU7W4kjVh8h5UYACFEgBgacPX17XRUX2zzb6GqrJEY/j533LAEcKPH5OgQIUoAAFKKAtIMGNknpdLVp6R36WHZXuoOrokWpD6jdIxkOoLazW/GRLxM4SLyR7JdWGtIUVaymS2lzGQ2jOUlBVAgg7UjQjRVrBSr0QraCTrEcKqsoWIhYcTbVPJOdDAQpQIDUEnjr07iYTaVyCo/EJehz/638mpAZAG2bBDI424PGtFKAABShgHAGfP4jdUW5xkF+88zJt6hfvVBtZaTZIIw7pkhLNcDmscNpMTYqqRvPeeJ8jbWFli41kPUQzstKsqKk1odId3dqjuaYe58QadJJ7FmTZYbdZ9Lg9r0EBClCAAu1MYMMh9zRK0DDtqcnRXGKHPseHfTfe8JIMcBj+EXIBFKAABSigJSDZC7satVLVeo+0LJUOJVVR/vKtdT09jkvgRX4x3lnmVYUsox2S+VBe5YcvELnGRbTX0fM82QokAYtYg0hd81zYXuKOWFhVz/nFci0JOlksJpVVE+2QjJROOQ6YJf2YgwIUoAAFKFBP4IluK/Z2Uan/z0S4d2yoZ+yer6H3tvH4376/yvDPgQEOwz9CLoACFKAABVoSkOCGxxuMOuOh/rX2yXfht6LUaRsrGQ+ybabSHV3GQ2gtNqsZUutCWpemwpDf6aUzSmmltIWNbRuQ1B+xW0ytep7xWLsKVDTTFlbrfvJMXA62jdVy4nEKUIACHU3g8YNWhguMhgqNJuLr8P+70vDUDHAY/hFyARSgAAUo0JJAS21hteSkpoLVZEJZhJafWu/V+7jUbZCsEglStKacRk6GDb5AbdTbQfSef/3rZbiskKBLLBkP9d8vAQXZouNPgYwUadUr84g16BRajwTROChAAQpQgAL1BR75/X2qvqiqwr3nSyJeX/jjFREfhGSNys9TFotZ80G5PT6UlJajS2F+UmpNMcCh+Yh4AgUoQAEKGFVA/kEur/ZrdrVoaX2SaVBc4VXbVZI5pLCodBrx+lu3zUR+MOqS68K24uRmpITa10qgJhjDNpv69nabGVkuG3aXJzcjRdrXSuBoZ6mnVUEnWZN0w1F1VaSwCgcFKEABClAAwMMHrKoLboSCHAn6OuLny5v4S2Bj9p0Pqu/PmXJpi8/n6pnL8Pq7n6pz8nIyMbhPT0weNyyhz5QBjoRy82YUoAAFKJBIgWCwFjtKPW26pfwSm+GyoCjKAqVtulkzb053WiE1K4ra+At9pssGmGpRUR3bFhc915STYVf1QyTw1JYhXUg8/iDcGi1Z23IPrfdK0EkspVBqW0bnHKeq4cFBAQpQgAIUEIF1v1udFIiR/xvb4L6btnyEeUvXo7i0AkP799IMcNx9/zM4+/Tjsf++hfjgn19j/IylePzem9D98IMSth4GOBJGzRtRgAIUoEAiBSQ7INpWqlrzysu0qywQTxt/kdW6T6TjKuMhx4HdZT4Egq3L3qh/3c65TtXKtLXZE61ZQ+g9dqsZsqUjmrawWvcJZYJsT1LbWKkF4rKbdQl8SUZKHtvGaj1yHqcABSjQYQQe2m/tnq4poe4oifk66tfLGhhXu70or6zCklUb4HTYNQMcjR9Q7/Mn4YJBvXH5iAEJe3YMcCSMmjeiAAUoQIFECUg6pWzlKI6hq0VLc5NCktKJZEcSfpmWQpQyom0Lq2UsmSCyLUIvG6371T8uhlXutmc8hK6Z6bJCNilXtDEbJJY1yLmhtrCS1aNH0EmumS9tY61mdW0OClCAAhTo2AIP7LO2mfYoIZfQ/hV9X1/62+iI8LcsWYdgMBhTgGPrLzvQb8Q0rLhtEnqdfHTCHigDHAmj5o0oQAEKUCBRAtI5ZWeJB60s8RBxmtLStKbWhEp327ZWxGIgbWHlF1+pVxFLW1ite8g1K93BmDuYaF23peMuuwVStFWyR/QcXfKc2FnihTzzRA1VM8OkX9BJ5m0213WWYdvYRD1F3ocCFKBA6grc3/WBpGRwjNmuT4CjqtqDERPmISM9DQ8unR5VcVK9ngYDHHpJ8joUoAAFKJASAvKLbrUngPI41JnomufC9hJ3qwtKxgokgQi3r0b3zicSOMnLlOKY+gYbmltfKONBry1D9e8jbVadNgtKKn2x8rbqfLEryLJjp85BJ5mMBNFk6wuDHK16NHwTBShAgXYjsLrzA/XW0lyF0dAp+h0fu2NURMNYMjiki8o1s+7C9p3FWHfXDORkZyT0uTDAkVBu3owCFKAABeIt0Ja2sFpzk18+7RaTbttFWrqfZDxkplnjFoSQlrPSGabKE/+Co5LxIEU0W9sWVuu5FGQ5UO72w9fKDjNa169/PD/LoTJfWtsWVuteXfOc3KaihcTjFKAABdq5wH2FdV1LVOhCMhT3bF+M9+srdrYtwFFeWY2JN94Ft9uL++6YnPDghjKrVWIcFKAABShAAeMLyDYOaaXa1q4WLUl0ynaoAIc/0PaCn83dR36Oke0KpZW+VreFjeZp7pPvwm9F8W0bK/VLxKwtbWG11mKzmiG1SuQe8RwOmxkSGJL7xOunJ8lIyWbb2Hg+Rl6bAhSgQMoL3NtJAhyhzIzQdOP/+spdlzSwCQZrUFNTg3nL1iMQCGL25FGwWCyqtXlFZTUunbQAY4b3Q9/eJ0IKkl4wbg4CwSCWzJmAjHSXupbZbEbXwryEmTPAkTBq3ogCFKAABeItIAUf473tQjpeZLls2N3Glq0tWWS4rKrgZLwLgUpNDKvJhLI4FumUrikSDIpXxkPIUQIcvmDd9qR4DelmIwE0KWAbzyH3ka0wHBSgAAUo0DEF7il4SAXSVeLGnnqiiXg9oahhgOPJ59/AnMUPNXgIc68fjfP6nYay8ir0GDgeN157MYYPPhM7dpVAuqY0Hnk5mXj72eUJe5AMcCSMmjeiAAUoQIF4Ckj2RlGFF/5A/BMTczPs8PiDcHuDui8p1P40nhkP9SctmSLFFV61XUXv4bBZkJMhtT48cct4CM1ZfgjskuvCtuL4ZKSkO62QDjRFcQxshdYiGSn5mXb1FzIOClCAAhToeALL8yWoYJL9KQmNclxdNNLw2AxwGP4RcgEUoAAFKKB3W1gt0VAQYnsc2sbmZNhVx5TyOGZV1F+fBCEyXPKLu/5FOiUToaJav7awWs8lwyXdTcRO3ywO9bxzHNhdpl9bWK215GXaIVti2DZWS4rHKUABCrQ/gWV568KxjVCMY+/XWvVvQ9Pv18VC5Gei1h6/toQBjvb3aeKKKEABClDAcALyj7kEG+JVFyESSKbLqn6SqNAxECHbUuQX2x2lUuNB/4yK5h6s3LPaG4THp19GihRkddnNcQmctPQB7ZzrVK1ogzr2CJbtL/I0ZHtKokZdRgoLjibKm/ehAAUokEoCi/8fe1cBH8XRR9+exYUQg0BwCO7u7pAAxaEEL8Xd3d0tWIHggSBBghRrcZcQ3BNihLjd7deZvdzlbjdfCyRA2pn+fg13/53ZmTdzyc3b/7xnu1VLUvDgwIFHKmmh/24gkBgZGx/2sduPBMMX9YVlcHwRbKwSQ4AhwBBgCPwoCBBb2Nj4FETHZ+xT+38yPmc7U4R8TATpQ0YUexsTqiFByIZvWYgQKLn3hwzKSEm1hSVZIUQX5VsWcozE3ESeYfolRAuD2PUSbZdvSToRzAiJRnRSmG3st1xB7F4MAYYAQ+D7I7DIdtv/ydBIzdTI+J8jPzGC4/vPPusBQ4AhwBBgCPynESDHOTLjqMg/AZU4Xpgq5fgY8/XHO4gtLNnMkuyD71GszRXQ8Bxi4r8+S4E4jRD1COI28z0KISRi4tXUzvVrC2krPkmTqeKl/6+PhERjBMfXziKrzxBgCDAEshYC8623pXFRSaM0mqo4mkk/R0d1zVpASfSWZXBk+SlkA2AIMAQYAv9dBAi5ERmbhISkb5slkBZxe2sTRMUnI+krnDVSMx4+RichKRPtZ/9upeSwM0Pwx/ivi67lKwAAIABJREFUOupDMh7sbYSMBzI/36Mo5BzsrEyouOnXFEI6WZkrMt2Z5//1kWSkkCMyTHD0a2aS1WUIMAQYAlkLgblW22mHUzU1BMtYfcZG6mgyOj42mhEcWWulsN4yBBgCDAGGwL8KAWI/StxGvmchjhdkA/o1/bA2V0Iu50AIju9ZiG6GSs59VeZFdmsTquURm4l2rf8EIxtzJVK0x5f+yfXG15AvjcRhJjKG2MJ+fSbIl/QhtY6DjQnIOmOFIcAQYAgwBP4bCMy2JATHt8vcSPWiHR/TJcsDzDI4svwUsgEwBBgCDIH/JgIkOyAsKnPsTT8XUUJwJKn5/3uMoXWDXQh8FEzFwugXCR4YMbke+v1SGmQD61ZwLYLfRwq3psb3wKrNLVC/YQH6b/fi2xBFNDJIVU6QHDvzvo+uq5ULrkNMQhI4qgci1L//bpAuXsF1HVLUSaSykNgqA26/HaiLe7hshUZNZMxIkAenkeHgB72aeuMcm+k9U7NiiazZiSBPXf1mTpvBy2hVOj5OroDfO319d6ft4DiNkB3C8ZCrlPB53Vl/f6dtAKcR6nOAqakSO17q430c92hvTSzzAAsbEyx97E7r3zoZjLndTgsybDTMIVtOcxx83Rnvw+NxdN1j7Jt0U1ufIxDAxc0GM881ofWXT74EH6/7Auw8lXJD+Wo5sdnfg5JO6/tcxuWDr4R5EyYIVVrnQV+vKvRVL/f9uHE1SHjSRmsDnXqVx+jpVWm8awMfPH0YIsw8J8zOr5Oro2u/UjTevewehATFCLMmNIJJ25qiWkNnGh/1kx8mL6+LIiWy6/Bi/2AIMAQYAgyBfy8CMy2803eI1Q47XQfZr4hPimMEx793VbGRMQQYAgwBhsAPiwARe4xPUtOn6z9CERwvzBAUEZ9ud9xyLdPSDmkv4RH8aTRIJoqL3UKRJSjPcwh8N5hWqJdzg0TbMpx53xMb1t3FkhlnteSJ/jKOk+PemwGYMOQUjux9lMqb6C5QyOW4/voXjGx2HE9ufRC1b2Ztgl2BHdG9/F6EvI8RxR1zWmLrjZ/Qrsh2xEWJ56JY2RxYeLQJ2rtuR7LxMSKeR92ORTF4WSW0ybkd0BgdM+J59J5eFc36FUZfp33gIY57hXSgfero5J3K6ej6SIiGI5E9QI6rtLXYLoqTCzd9EOrXzrFejD2Ai8F9qRtLT8fdIuwICbFRe/8yLitF2BOW4tY7gUCq6rJGRzqldpB8Mb38vj992TTHJlGcvH9MSyCRuZ+xph7KVsmBgsXsfoQlz/rAEGAIMAQYApmIwHRz7++SwTE5Tv9gIROHl6lNswyOTIWXNc4QYAgwBBgCmYEAITiCIr5OXyGj+2VppoSM4xEVJ3ZzmTvzHH5be1t0S7LJ/Rg3BjVr/ob7N4PFcQ2PwPdD4VF6Kz6Fio+v8Brg9+DeKF9oFRLjxTokvIbHg/eDUSbXSn3yQZq7EE7hbtBAtHTaCplMQi+D53AwuDsaOW+SFLok7jH+wT3R1HkLOCF1w6CQ9o9/8IS7E7G7EyNOxDN9grrBI5243EyOvS+6gGRvSLBDsLZTYVGAOzo4b5cgGIA8ZWyx+XIbNFf9JiIwSG8aD3JDh4mlpQkOHvC+0hm5XC3Q03GXBPnEY1NIR7x9HYsWVcj4DcdH5vb2+1+xd/MjLJpwViLO4/L7XzDd8xQuHX8juTaOB3uia6U9eP82CkqVDDfC+kNlIs/opcvaYwgwBBgCDIEfDIGpZju+i4vKtARGcPxgS4F1hyHAEGAIMAT+7QiQoynR8cmITfi+ughSODtlM6UuKOSpf9ry/wiOV6HD0bzJDkZwSBAgGUFwLD3dCp2zeX83gmPTintYP+ePryY4yHryHFIG1ernQc3Grv/2jzkbH0OAIcAQ+E8jMMlkB/27RR7ofMuf0xM6ZXncWQZHlp9CNgCGAEOAIfDfQoCQBx+IFsUPWIjjhbmJHBESYqHpHVEJeDuUjqSIy9If7oiKuY0Jdj76B0dU3LwR90mcYfK9j6jsDhbU4MkRE6kMkL87onJOq3HyIxxRSV3upwJ/Rq681j/g6mddYggwBBgCDIGMQmCiyc7vksExK4kRHBk1h6wdhgBDgCHAEGAI/C0CJHvjY0wSEr/CkvVvb/KVF2S3ViEmXi1y3pASGR01tR569hGEJutU3PLDiYxeSe6LkI+JIEdR0hMZJbawZMzlVWt+OJHRNbc8KLbHvR5jz4TPExktUzknlvk2p/W/t8hoWoHZ2s3yYcC4iihdWRAgZYUhwBBgCDAE/n0IjFPu/C4aHHOSO2Z5MFkGR5afQjYAhgBDgCHw30GA2HWGR31fK9W/Q5ts+O2slAiJTN++1sZCSRMKImN/DJHU9MZkZiKHqVJOSaX0CiE34pM0/9dB5u8w+xZxK3MFtTAhx5ukCkkBdrQ1oa4pSSliPZNv0cd/eg97axVUSqbF8U/xYtcxBBgCDIGshsAYxS7aZWqslebUa2a/npfCCI6stlZYfxkCDAGGAEMgkxEgWRYh4R9hb2cD4tLxd+VTdCwSE5PhaG/7fy8NeRmDhR7nMfRUXXodsQZd0eWs3n2CA7UGXXSrJY2fWfcYhybd1X4zELw5nQraYtyfDWjcd/JDnF77QCu+yVGRzLwVsmP40Xo0PqvPWVw88lz3xYJ8qajQwBUztgn1p7ufRMClEPpvagzKAY26FUTPBZVACIx2FffgyeNQbYqp8O2k94hq6Dm6NOxtVKhbYCuC332im25BoJPD6OX10aRdPnrtyMK+iPmUqOsfeW9tSHsdRp3z7kBcQjK1VaXWo7wMBz5008U9XfYgOUWtExcl13h/0KeednfeBQ1RKdXasnKQY5vWVYQ0MszJBxqNRmeMKgOHpaHtdO33dt4H8KR9enPIZBzWB+n7N5DUJ3GKDQ/5X5keK97r609y8AWoM4pgW6syV2Lyqxa69mc4HBLa154tMbFUYfTLZrr4ACI8mmrcSm1jVViotY29tu8F1g24pl9PHI/sOc2x9VV7BH+Mx4mFT3Fy3m2dpSwZQu5idphyvTEiY5KwY9QdnP/tsWA7q7X1LVzNCcN9a9M2fbpdxcNj79I4n/Ao6ZEH7l7laHxLs4t4dzUsFVr6s+KAwmg8vRiNL6p2CiFPtXNP3uCA1jNKoGq/wjQ+puRRRIZEg7joaE2F8Yt3LZTV2sZ6NzwPz73VYV/AUj9Go3997ueQVA8KiYCTfTY6l6wwBBgCDAGGwPdDYJScEBypfwG+3c8FasFdLCsXlsGRlWeP9Z0hwBBgCPxgCJy7dAcjp69BXLygkTFlRA+0b1lHspdhEZ/QffBsvHor2JMWyJMTfbq0QMtG1UTX3z8XjJc3IrB95E0sDm1L4z2dyAbXyLmDF5wtSBnquFdsvclDt0kf5LhX5LxBWlsRImzCm+TYJOnMkWrd2Ylak4o3gjuDBQXyWjnWS+g+8HgQM5geX6mYba1YFoIHzgT1pvX7UWtSw/bJqzUf2sPf+xVWDyfOHIZx0n/f4O7YNu42TmwMEN2fuJZsDe6I6e7n8PjSexHOKjMTbHrZBoubncGr6xGiuLm1CnOetsLY8kcR/lZsG+ucxxozrjbBYBdfqFPEmRKVOubBz8sqYaLTQXCEXElTiJBa85kVUbVfbsx09DV4YkUv44Gmy8qiQpc8+MXJB5yEbexqLQHUh64Nw0La3xHVBSoFh97mu0TYkydki8PbgRADv5C1I7HHX/PhJ9roTPsD4rnneUwME47EzLT3lbSVnRDmTuNjHHwk5o7HvBBhbfeTcI0h3Vn7QSCQFtgfgvvSsshV2g4F6tiLxvo5n0NSeeveE/DefwrJKSlITk6BR9OaGN5PT1aJbsDeYAgwBBgCDIFMRWCEbLeOJE+9kfZ5hO6+mfF6sYYRHJk6saxxhgBDgCHAEMg6CMQnJKGWx2AM7OmBLm0a4OyftzFk0gqc2LkAuXI4iAYSEhYJ3+MX0KpxdViYmWLbPn9s3n0c5w8sh5mpyuD6lCQ1upqR86iARXZTzAhoDk8J604SL1DWDhOON8QQh32S1qR1BheC+8TSGCQV/ysbYsqNpsjuaoEmzpskRD8BYt1JrEFHVfQVbXLJJnnXh87UGnT5+PNi5wwNEJgwCL09/HD5xEsRJqT+70G9ManSEYS+ihNPPi9kcXTN743YOLGLDDFvOfihO7rn2Ali0WpciG2sd2hndHHeSTM/RHGeg3dIRwy23wdOJrH2NMCysHbo7bhHElvS/w0h7THAYa9kfY7nsTKkPSY6HJC2jTXhMO2NO6ZLEQQATOyVGB3QnBIQUraz2fOYYcbVFun2r2yznJiyvz5+VhF1esPxkb63mFwSdQYVRn+J9kl81vVmdG3MkOgfiU8Kc0f461isKXdS0jWFECDHZ97B2eXPpMDH3NC2mNXkJF7f+ii5NtaHtMeqov6IDxMIxIXJP0EmN5yoz/0cPgh8ifb9pmLzkrGoVNYNz18HoWX3cdixehJKFyuQdX4BsZ4yBBgCDIF/EQLDZNIZHEJeYfoZHV8bX8IIjn/RKmJDYQgwBBgCDIGvQoA8NR4wbglu+XtBpVLStpp1HUPJji5tGv5t22+DQtG40yhsWzEe5UoKqfqk3DjyFtcPvcHvG4VN4Y9CcIyseFByk0wIjp0r7mH17EuSBMfV8P4Y0dX/hyY4Btnvg0yC4CBJF8u/AcFBCASpDApTKxlGPW/1VQTH0G21MDibmCAhBIXH/Iqo7ukqSXCQR2kzfzCCo2q/AnBrkgMlW7voPi+f+zm8cisAPYfNwzHveXB1caLt1HQfhNEDOklmU/3tB5ldwBBgCDAEGAJfjcAQ2S4hg0NnFSucuNW91uawZnR8uYZpcHz15LEGGAIMAYYAQ+DfgcCew2exZfcxHN0+TzegQROWIW/uHBjR/+/T3Q8cu4CJ8zbigu8K2Nla6dp4dfcjxpT1E16TYwRZ/IjK+ff96FDq5tzwwx5RWdTwLF7fCRMtTAs7M8x+1BzjKhxD2JtoUTyjjqjMcjwk6IOkLTzQcUsVFGrh/MVHVDaECKm3Ix3JERej5nlgoXZtZYUjKqkZKKPvN4FzMRvdYD73c5iUlIxeIxbg0dPXGNyrDWLi4uF/9hp+Wz4e1pbm/45fTmwUDAGGAEMgiyEwULZTqzCa2nHKbqQ5mZs5r1eqGcGRxZYK6y5DgCHAEGAIZBYCG3b44fjvV7HPa5ruFkSPw9LcDFNH9vi/t33y4i06D5iJn39qTI+4pJZnNyKwbfg1BFwIoX/YLWxNMfOxYN35I4uMkv71qO2D50/CDURG+4yqjm7DStD+d6q4J8uJjO5M6YpPsclURLWlyfYsJzI6TytA679ILDKao6gdRpwTBGx/dJHRFQWPISEyiaYpF6jjiJbzS8O1oh3t+5d8Dr28j+Cw/58wMzXB/cAX6N25OQb1avOPRIIz6/cJa5chwBBgCPyXERhAREZpyoYuVSM1hcPoZ8bGV2v0YuRZFX8mMppVZ471myHAEGAI/GAIfO6T49TuvwsOQ7dBs1CxjBtmj+1D3TZIIaKQag2P+ERDrYnf3K/gw91wjH6ud9RIC8XKRmcR+jQW054LRIhxWVL7NCKCEzEjULr+4sonkRCTgvEPmkrXL3uCvj/sVmPJ+Ozix2BqqcDwK8KxHCLsaW6mQHKKBolJaowochA2zpaYfK6+ZP0p+f3gUNACA/2lxVkn5j8I11J26OtbU1T/xsEg+Ay9jsI1ndFja0VR/PetL+A7+TbKNc+Jn1dVFsXPrXqF4/Nuo2qXAmg1RyBi0pZjCx7j9KqHqP9rMTQdpT9GlHqN/7j7uOL9CrXGlEDtX/OI6u/69Rbu+71D8+nFUbW74BaTtvh0v4aXF8LRbGlpFG2dQxTf734BIQ8j0P9xa0ns1jc6i5CnsZiYztzPrX0akcExmBvYGiZKOZQKGeISU6iwKCmba55EckwK+t6SnvtV2rn/NZ25H1P8MFSWppihnXvjTm4pcxSW9iZod0p67r1K+MIuny3aHpae+71lfGBbwhENtxvOPbHzlcuIGw+Hz/0cXrhyF/3HLMalI6tpxsYf1+5j6OSVGNm/PTq0FhyFWGEIMAQYAgyBb4tAf5rBkUpefLufa9WM4Pi2M83uxhBgCDAEGAI/LAKpZ/9vn9wApVJB+0k0Nbr/1ChdDY6nL97Bc9hc1KtRDpOGdTd4YhwbmoCNFf3g+bAVbctvyE1c2fBSp80gnEWVYXqM4Eyx3v0CHp0K1uleEIKEk8mxKEpwpphf+STePojU62L8JRqpVMqw8KMQn1HkKD69i9NrP/A8TM0VmBkiZJTMcvFDYmSCXliU52HpYILRLwVr07H2vkiJT9YLk/KAfX5zjH/QHGYmCnQy8YY6RZOm/zwKVnTAhN8F29mRVvuh4VN09cn4SrXJqyMqhlvuo6alurMVPI+GY93QbGIpWn+w5T4Aal3/qCNMtP5oUE/L3eDTKIuStrZE67/IDLUirjJpC48laer3sdptECfte0Xr1dbHWxBnkDT1eR6zYvW2sEOsiLNJmgt4Dsti9PGpFvvTzA1PcZgc04Y2+OfMu/hzySO9q432HPLwcKH+zu7XcMuHrA1t+wQ8mRzzo4X6s+qewqtrYWniAKfgsCOpC2LiU7CmnB+insfqq4OHQqXC8GBhbc3PewSxoYkG7ZvbmmLMO4FE6++4D4lxZO6E8ZO1Z+dijkWBAhGzOpcPkpPU+qkD4FAkGzpfEEiwlU576JEcQThOqJ+/ngta7BaIjC25dgFcmiM7PFCwixtqzBNsaU/U2ovmfu4wczLH534Ol3rtw5mLN3Hot9m6yft1/FIq/Dt/Un+DFcFeMAQYAgwBhsC3QaCvfCf9W6DX2OC+yWsvjeAEl5ULy+DIyrPH+s4QYAgwBH4gBOLiE1GxaT+M+bUTOku4qFy7/QjzVu3EoikDkCeXEwKfvUGbXpPQvH4Vmg4v06pampuZIO5BHF6cD8H5mXdRyD0vqi8rh/n2RNTT2PoCqLegDMp7umKK4wEJXQUe00KFTe4EiTgVjgwVCIxpjr5iNHkeU7RxYs0pJdwwKkzYxE6TtAblsTy5I+IS1ehjpT1Pm+YuhGRYHiJYj051INaj4i5MDfHAjc2vcXDMDVGQkAwzQjzg0/8mbu4Xu7JwPEfHN6/+Sby790lUn4MMy0LaYG4xP8SFJYlvznGY/sEd4/IcQlK82PZVoZJh3lsPzHM+BF4ttmUxy26CIY+aYJLDQfBpN+jaOzmXzI6Bp2thscMRwNj29a+jIoXb5kKLteWwLpd4bkkTNWeUR1FPV0nXFcJxTNbaso5wJOSPEX3D81gb3REmChnmWO+WmFug/3thbSy0PyjpmDMqTCDfBks69vBYpp3bza77JS2DPV8J5NqWPOL+kYPWPV61w4vNr3FjziVJS+N2j9vjydhLeH3iGcqMrgiHijlgXcr2sz6HR09fwagZa7B23nDUqFQSb96HommX0Rj1S0f06NDkB/oNw7rCEGAIMAT+Owj0ku/QJXDQURtLbmj/qun+8mZQfIOaERz/nVXGRsoQYAgwBBgCf4vAmT9ugQiLppaJQ7uhk7uQjv/7n7cwcPwy7N84A0UK5MaxM1dANDqMS/tWdTDasxOW5CabPkCukqPbk9aQJBj+erpubm+KXwMapUsQuJazQ8/jtTHRgWwyxQxCjcH50WRiaUx18JV0RRl0Q3jKvrHcaXF1HiCbXEJAHBl1U9IadFVKR8z1OI07fsFi/HhgWWg7rKjkj/CXsZLxqaEemJ3/EBJixLawZBM/I9QDk3Lsh0Ycpl+IZoW2wUCHfZBJkCfk6dCK0J8wyX4/OIkLyMkNQpAMp3ExgcFrOCwOa4O5lACQ6D4PjAtrjQnp2MJS69VQDyySIq9IcwpgeFArrMt5QNJ2VmUuR4/HrdK1lbXNZ45BVxthuINRdom2q8WbO2G0T33MsNwlOffVxxVHqUGFsVCC3CLY9bzZAI9Oh2PP6Kui8ZOxLQ9th8sz7yDAS2wLS+I9X7fB0VbnECIh6ErOXvd43Q4Hq/oiJVyCfALQ7kl7nKu8G8mJAvnU8eHPUFqq8DmfQ3I8Z932Q/A9dhERkdGwsjRDq0bV8aunB5QK+d9+5tkFDAGGAEOAIZDxCHjKd6SjuUGERlPZjIz/uVnTJeMH841bZBkc3xhwdjuGAEOAIfBvR0Ct1iA4NAKO2W11R1U+Z8xPjrzFA5+XeLj3Fa1m7mAKz/utMMWSbFLFu2jn8jbodrw2pqSzia6iJTAmSmRIkO8Iw280QnZXC0qQSGWITAnVHlNIJ4OEEBzhr2Oxqpy/mEAhG/hPbfH+WRSmlz8mmSVACI7tnlfx1O+dCCbSv2mEAKjkj0+SBAiP6aFtMD3/ISTGpEgyDLNC22JEbl8kJ4rj9BhLSDtMcfQVjr8YFV7DY0ZYG4yw30fERMTta3gsCmuHudTWVSLO8Rgb4o4Jjr7gJNqXm3CY9sYdi6WyY/7KnLC0N0XfgEZYl2u/KIOBdMaxnB3cD9XGdHuJufvrWFPFIW5oMtENIxz2SWZgtJ1fEXX65MUKkuEhkR3002VhbaRHcKRm7wyh7RvCk0pwxL6OxZ4aJyTiPHq+bksJkEdeTyWx7fGmHU79dBKf7nyUiAM/v+sM/2q7ER8RT+P52hSEa6M8cG2WH1/yOXwfHAZnx+yQSc3153yI2bUMAYYAQ4Ah8FUI/Cz3/qr6X1r5NzUjOL4UO1aPIcAQYAgwBBgCkgi8uxqK3+r562I/XWiMQmXtMUy1GzDeo2szKMjFUkc8UgkCEp8glaXA85ipPcJCjphA0DfVFVJ/6v8hOMhT/NH/54gKqT9Fe0xisMNeEYFCnFCXhwk6EpIEDb2/cExiskQGikwux9QggWBZXF68iTazVmHi0xZ4dCESq9qcMtLIAOzyWmPqtUY4u+IxTk9/IIrnrWKPnodrwnfUfVzYEmi4SeeB6j0Ko82CktjW8gLeXYoQxetOKYrKgwpjSUV/hL3Ua1zQAfFA7/11kbemLVYVPIHET4lG4AM/36xPCYYNeQ9Bk2KcosKj71vh+NEMQl5JMAyTwgTsJAkaHliktYVdm1Oc3UPm7hftEZUFEuQWmXs9wbFXTKCkmVvJIyoawPON0P8tJFvJmFTQ8CAEByk+hYl+iVFRcPg1qBte3o3AH618dONvetgd9qUd2G8XhgBDgCHAEMjCCHSTe9MHD0SbyeAnp9XiMH4/9fVXxreru2Zh1ISuswyOLD+FbAAMAYYAQ+Dfg0DU2zjs63AOQbcj6J/qwh6FUG1ZKViaKagbyXS7g0hKSBG2shxQYVAB1J1cXAfAjBwH6ZNrunvm5Wg8sxyq9suti0928oWaiHaRLw28HG03V0aZFs66+DTHg1QLguQyyHgZJocaunUsdDgEDdn5at1RRoYKGgypZbrDQYAX6stlMkpuECcYUm4fCcZmz4vkL6/QeY7Dsg+CBgMpl9a9wYmJNwGObOQ56iYzKUh//6PTH+Dyiie0PmlBoVJgytuWuvq+Q+7i2s4nuo2u0twEU1/qnWTWdruKhyde6fIorOxMMfuRvv76Zhfx9nqIrn42F2sMu1UfJkoZbC1VGFniEIICo3VngnMUscKCey0REZ2MFLUGa8ueRuSbGIo9QThPpezofLSGrn9z3Y4jOiJO+5pDscYu6LKtki6+Mu8JJMakkhw8inXJh6bLBAFVUjYVOIzkBIHhkoND8X6FUDXN3M8mc59M5p4Dz3FoaDT3o5x8qYgrxZ7n0G1zNd3ck/W0xoXMnZriw0GO/u/Fc09IDVJIpo/x3A+hBJQwd0TbZGmIQF6Q8vZIME4O+FN4QW7GyeD5UsgMIuXRuse4MucBeI2wduUKJbo919//4YIHeLT+AUWWjE2pUKLHmw5Qq3lExSXjwdSrCPIlBBSH7KUdUGddA1jktNS1z/7BEGAIMAQYAlkLgc7y7YYaHMaaG5n02psRHFlrobDeMgQYAgwBhsCPiwDZPCYka/Ax2lBv4FqvPxAZGIou9zsiIjoRKUZilhc6X0DUi09ofklwMzEup9r4IzE0Gc0vSNvG+jb4HUmxKWh/SdDaMC5+9Y/Tt5qflhZc9K9/FJxKhobH9PFsVird5nNjKX+onFTodlKw/iREjWM2EwRHJNDXW8ucgHUBc7j7iG1fSXx7aT/Yu9miye7qor49ORKMM6PuIXeN7GjmJThqpC3PvV/h6oK7cK2dhxJFxoVsrG+sfoICrfOhyvRikvFbK5+gYNv8qDi1qCgesPYZnm4OQN4ebij5S0FR/ObYq3hz+gNKDi2F/F3EtrF/DLiMkOshqDi5EnKlIZpSG7o24DIi7oSg+Lh04tq10fCinixI24ljbS8g8lkcOt1uTI9dONqYICwqiRIypJxv4w91aDLqXmiuI9EIYZBaLrU+DnVCImqckLalvdb2EL20oo8h0ZVaX2ptpO3fyZp+MHFQotb+RuKFB+BC/QNQuVqj8mZDW1mVQgayxk7V9oJFXgfkX2q4Nu2sVJSYkjrSJXkj9iZDgCHAEGAI/FAIdFJs/yauKcYuLbvU3SRxIHpN5HsaefjyT8rnXv9P2vyn17AMjn+KFLuOIcAQYAgwBDIVgZS4ZPhW3oJqZ4X0yGdLH+DBuvtprDV5yCBDiwDB+pRsft+cfp3WNRUKToZWgUJa/9mffkf47VADW1m5nIPHI8G1ZFc1f8S8jklzsoGH3FQOzyfCZvlgxcOIi4jXW3eCh4mVCm1uC/HDpQ9QZ5FU6QXydN3UyRIel1rSzecEs31QJ+ttX4komEMxG3Q5VxdW5koszr4PPC888SeF5Abkqe6oIzK8ch8UnuinWo+CR/FOBVBjQWl6/UKHI+BIfZ03KVBjihs9EkLKptxGzh1E1FJ7JILGXfXHGlLv3+u1PutgQy7D+iR5oY/2SAgyjWmNAAAgAElEQVS5fk8Bciwj7ZLg0f6p3pZ2V8E9BroZJHGl/TMBe4o/qZ/GFpVkTXR8Ltw/0OsxAhbeMjgyQxxhWgUK7d+bcAcv9j/StUVzRjgOrR4KtrXHO/yBN3+QbJTUwkPOyTE0vB3NeDjX+jiiH6d1leEhV8nQ43V3hEUl4lwdX8SFpBF95XmoLExQ54qwtq7U3YGEmESDtaGytkDV00L/DpXYh5RkYvsqFNI/c1dLNDkpkGyH3PaCfPnTze1fYrPZSObF3ro07l9mh6GpDM8jR8MCKLm4Co3fqLMOdGmkwT9Hp/Jw6V9BwK+NF2oc6QellUkaDNg/GQIMAYYAQyCrINBevu27dHWPBMFBiI2pi7bQ/kwb6fm3/UrveiJkXdN9kKj+xsWjUaWc+CHL394onQsYwfGlyLF6DAGGAEOAIZBhCASdeYWQa+/xaP0t2Fd2RdEV9XHIbbekbmWZGdWRu10u7C9M4mJlR4/HwiZ3H4kbW4MS54nHwiZ0AyEAjAvRhdBu4oUNuGEhm/xOz4VN+v5CxFrUWFiTR98P3REbn4LZNtKiqENDhGwAKeFM8qWg37s2CNj8GucnXhdrdgDo99YDR/rfRKDPWwn8OYwIbYlDzc4j7H6YOM7J0POVO3aX9kPsRyPNC3r0Qg7PV62xteQRJEVK2cYCvV+3wb6i+6BJFouSKs3l8LjbBrsL7afHPYyLbb5saHyyAXbn9wFPj+oYFpeazqi5pQYOuhHshSyLtCVP49wos6waDhYlcyuenJJTqyFfR1d4uUg55vDo+64tfQJ1xG2X5Ny1e9YF5iZy7My7WXLtNL4n2Oedr7BZUrS09vUeNH6gyG6xJgh4eAQKa5PERWuT50HWbsjJYNwacVosqsoDje51RuiGm3i17Zp4bnmgwvl+eD/zOCIuPEG+nlVgUzInHGuKM2skFg57iyHAEGAIMAR+IATaKbZ9lwwOH3V3AxROnL2KmUu3UZetdi1q/y3B8f+uD/8YhVoeg7F23gi4ujjq7uNonw1mpqoMQ58RHBkGJWuIIcAQYAgwBL4UgbjgGByuvpVWJxu/Gld74LDkJhRQWCjR9HobHCDCixLGHWZ5zdHkRAv4FJKOu9TNiSrrasA4QyG17yX6FUCViaWxMz8RBTXeRAMtzzajb56o7yfpitI3pBt8Rt3BreWBIjjI5npYqDt8iTXozQjJOCE4tpX2Q7yENSihBAjBsST3EWgSxAQAIWBGhrXCprw+gEbKt1XI4tiYi9iuigkGaHj0fNsWXjn3g5NwCCWcRK+3bbC34D5J1xUydz89bYfdBcXkEBks0ebo+LSdFluJ/pH4s7bwLbxL0rZWYapA89ttcdCN2LqK6yvsTdDsgns6BAfgoHVdkSY4gEK93VB1akXszLNZ0lGn+lGBnLrRxjh7RZjKWtd64O6iO3i2Xjz3JEXH43F7nP/pJCLuil1RyNyR+O819yH5k5hcIvEm97vgev0N4JOlHXMqnO+Pe01Xg9N6Btc+PgAm9kyL40t/L7F6DAGGAEPgeyHgId9Kv4NkoiOsZPv7UwwJjrj4RETFxGLJ+r0wNVH9LcHx/65PJTiObJ2DfK45Mg1aRnBkGrSsYYYAQ4AhwBD4Jwi8//0Vnu96iHenXtDL5eYqVDvbJV2Cw8rVEi3Ot8a23DskCY4cdQQCQ5Lg4IFy46sgn6crNuTykXwK3/nPxrBwtUiX4Oioy+AQEyg0w+NFRwQ9j8bW8kauJWSDzwPDQltTa9C7a5+LCQ4N0O+9x98SIKuK+iMhTNDwMCg8MCKsFbYW8kVKopgAIR3o+aZtugQIcXUhBIYXIUAkMixIvM+7Ntidf58kQaInOPZpD90Ydo+QJu0Df0qX4FBYqtDuTiscLCKVYQFY5bFAvRMtaJyTsDK1LWGHWnsbwivnAZEjDulJyf75KXklSXDwQF3/FrDJZwm/ot5i11ieR+P7gn3euYpbRNwaOYZS+5oniC3siQZ+EvWBNo/bC8dvFtyWJMfcH7fHrcEXEXr2tcTa4PHT8x643GoL4oKImKt48iuc648Aj7VQa3VEHOsVRm730sheLd8/+SiyaxgCDAGGAEPgB0HAXbH1u2RwHFT/LInA9CVboVar/5bgSK0sdX0qwVGvelnYWFuicP5caN2kBmysLDIUdUZwZCicrDGGAEOAIcAQ+FwEgv94g3PdD2ur8Si3rwMlGI4U2wue7KjTFJJz0CqgA3JkN8Pq7L9JOYPSTSQp+wrtEWdgaIC2Wp0Ir1z7JTI0OPR+K1iLSh1RIe931OpI+BCNCWOtLR5o80S4/1LiqGKUZEB0E4ZrbWXX5SRZFIZoEU6hzzvh/uuJBoZRAzKFHL1fCrawW8qdFrVvamOCX582RsiFSBzpfEZk22qb2xJt/myEuyse4/qCe4btE52HSo5o6lMTT9Y/x7kZt0Rxl8pCnIiHPt33SjTVxTrkR4lZ5XGkjj9i33wyuD8hAOptbgTHmrbYX+YIkqINCRpC/rQ625TO/bGKvkiKNraN5dHgZEvd2tBIrI3WAcIREC+XA2ICgZAzWtvXw0XI3BllsGh4tAjsSOufLO4N3ohA4TRAwwepR1S2SBIUtVKPqEhkF5Hupq4NX4k4ab+1du2cKEkIFsPFQ153e+2JkE+JuFpjjfiIjRyocKYfJVie996oq19hXUfYlXf93I8lu54hwBBgCDAEviMCLRW/fZe7H07JPIIjJjYeyzbsAzmSEh0ThwPHLsDezga7106BSqXMsPEygiPDoGQNMQQYAgwBhsDnIhD/IRa/dz2I6Gcfqf2lS7OCKDBV7ybiV2ovNEmCECdxwcjnWRzFRhWHhakCCjmHra67oFGriesnyH617MQyyNNdENkkZX9hH2ggWINyvAyVl9QwcOvY6LqfijUSHoHUJ9kLaQvVitBqQRDrzw7P9bauQvvkqIaGeK4DMhnaPWkviEcCIA4nRz2vQcNpxSY5GYZ+0Nuy3l73Btem3wQPQSiUKJP3eqV367g0nYisPoFgXAooTRXo+Uxf/9iQu3joTbJehI2wiaUJBr5srOu+f6+reHPyjfCa52CRXYmOt/X1D3tcRMiNEGqZS7pvm8Mcba82pe4bNhZKbKx7GsHXQrS2toBlDnN0utpU1/6xxv6IfkpIDGLJy8GqoA26X26JyNhkJKdoqEhrwkdCYgjGq861nVF7o35ufUocRHKc/ihG4fZ5UG6u3jbWr6wPkuOISKtgO+vqns8wXmovUtKsjQLatZHawY15DkJD3FJ4Ik4rR/XJ5eCWxjL4SNE9WvlP0roMZRbUMlgbp0rsonNHjhVxnAyN7nUyWBsXKmw1WBs1rxum9fpq1wbRGpFDhtaBeoFVYht7c8RFqAnrwfGQyRRoHaBfW6+2PsbjBdfpKSPBVZZDh2c/IylFg5j4FLz3uong7dd0a0OmVKL8qV66/r1dfAqRxwPoa4uC2VFueXuYOVl97seTXc8QYAgwBBgC3wmB5pTgEP5+Cn+H9KS3/nXGx/0ykeAwhvLF6yC06D4OO1dPQqliBTIMaUZwZBiUrCGGAEOAIcAQ+BwE+KhExKvkdEOcWiJ++wOh+64DxApWZYIivr8YNPl64Xl88H1MN9RyGwUq+3vSzXRqeTX1LEJOP6VfCUxsVCh9xHDTGTj0OMKvBNNdo2l2S5Q7LLhipBbivPLpbiglWyzzWKHBCUP7zfMt/RH7XNDOsC5ig+r7hQ0/seUkm8/jtXyQ8D4WPCeDdXkHkb3niWqHkRQeR7+wONTPgSqra9IsEudsZgiKiMfpyj5IjkohXrJwapofZRcKrhip5Wj5/UiKSYFMJkPhrgXgNqGsQfxkuf2CswvHo+SwcsjdR0/2kAsPldwHdSLAyXlUWFBTZM16pPgeqg1KshvKzK8tip8qvQu8hqcb7gZ3hGyHtMW/7A5whE9SKtDwpt5RhVwTvecu3m6+CI1GDU6uQLGjhnP7xusxHi6/CU7DgbNQouFVQ7Lp9qxbePbbM0pImZir0OquoTVrwPjreHX4OYiOiDKbAo3+bAeHvzJaQj8lQq3hcWvABQSdDaLaIaYO5qh/Tk/2kP49HHgMUbeIcKsMJs7mqOHXjZJon7Tr887PhxD/RBButciTDSV3Cpk2qeVu+11ICIqiGjJWxZzhts6w/ZseO5ASGkvJFOsKLihiZO36uNNaaKLIZ4GHbY3CcB6nX3uEdAr0WI3keMHVx6ZRMTgMMrSW/dB7LtQJyZDJeFg1rw6LDnprWVtLJcwSU8BZm4rmjL3BEGAIMAQYAj8eAk0U5CgkITWEhxwClZH5r499Q4IjNi4BlZr1x6YlY1C5rNiK/ktnhREcX4ocq8cQYAgwBBgCX43AhVrTUeDAKNrOm5F7EBPwzsA9gjylKHp0GI2TDWT8u2jRsYcqF/vS+I3m25DyKU6U2l/pghC/XGsrtW1NW0hWR7XLgvPFQTcfrW1rmis4Du5aW9mjJfYCWvFG3RUyOXXGsLVUwTvXJpGuJ6fg0PCm8OSfHItI6xxCvqwoTORofqcdLM0U2J1vu5HrKg+ljRkaXhZsaQ+4EdtVfSFZF1Z5rXUkjF9RoluRJg4eDmUcUXmHsNE9UNjI9YUH8rTJq8uKOGSke0GIALcR5VBES5L4l/I2OLJC7p/qKkLIiYAVxNkjzRMmAI3vCkc6SEbBxxMPjeYWKOkv2MVd8TyNiGskm8TwWEaT+wKJcqzeccS8jjI4lkHwa/9EyIo4W9MXCRHx4vjzboiOS8aJ0vuQlKQ2aJ08DWv+UGs5XGsj1DSVJy3AMrR8MACR0cm4WMlLNLck46fyJSFr4mrN9YZ1tY40Fc9r4zW8tF9R9ZfJVXJUONOTvhHQbJmovsLKDIV2C2s3sPkSw7nleZjnsoXrOqH+uy7TRE/3zIvnR7bx3Wj8Q88pKLN/Dji5hHKs6M7sDYYAQ4AhwBD43gg0VmyhhDz5u/gtf/qnGNrAqtUaaDQazFy2DSkpakwd0QNyuZxm1ZJjJp7D5qFXp2ZoWq8yhez/XX/u0h0kJCaiSvniUCrkWOrlQ4+pnNqzKEN1OBjB8b1XL7s/Q4AhwBD4DyIQfi4AH2+9RND+a5BbmiHvtoF41HypJBKmuWyRd10PXKnuJSkqmr9zBTgMKIsrNdZL2soWGV4LNh5u+KPKJrFmB3jU0G5SpXQRSIfcA4VNMCEQJFxp4Rn0M6LjUnCwyDaJ/vFodFcQpjxIbG+NRkg26a0fdUDQgVe4NeGSaPzkS03zh51wZchNBJ14KsaHF/p3sflRfHoRJa7P82gR0Al+lQ4h6ZNYlJQQPO6P28Gv5F6ok8WipIQEaBnQHidL7pS0deV4Dg3vdcLJUjslXVVkKhkaXO+IB41WStZXWKngtq8fjhffKWHbCljmsUYNv2bYSxxxJCxzXJsVQOVl5dKtX2ZmVTi758FhKVtZAC20mh2Xa3hJYA/UudKfkk9HSqyWXJtV/xQIjCs110vObeVUco2sTeMrCEHyRx98Ov4I75efkGifkHtDEbL4BD6eeSi5NtyODEfo6FVIfh8uGXfZPgXhg+dCHRUHh1Y1YFU0P6xrlPwP/sZhQ2YIMAQYAlkLgfqKTdq/e7zw95E8VdBlcKRmcmh/ZmD8tBHBsefQ75i22FAPZMbonmjTrBY+RcWiWqtfMXFoN3RyFx6m/L/rT56/jvFzNiAuXvg+YmdrhQWTfkGV8sUydHIYwZGhcLLGGAIMAYYAQ+CfIBD3Jhw3uqzSXsqjwIHReESeUktsYom+RtEjQ3Gl+nrJTbDczAQVTnZPl+BQWJuinF93SYKDdMC8iBPKbmmO9AiO/H2LoMBPBXGu8WFJYck2F9vizpaHePXbA0mCofG9LtQaNPKetC1s68COOFnTF8nhEq4oGh7NHnXCwTI+4BOIFom4uD9qjyNFd0rappK0geYBHenYCI6iogE8nrTHwcISopvkYp5Dq8D2OFlqhygDgYRJkw3vdsbJEjvAGwuukjjPo+G9LrjfeIVk30m8uP9gHC9umH2SejEheJre74S9xHZWov8yExna3m+bLsFhks0UdS+4S7umkGNGWteVS9W9JMmxHJ1KolCH8jjbUrDrS1vId83Suzsi7PA9fNh1V2LugcoX++JB3wOIeSgcbTGoD6DKxT541Hkd+EiJuf/ri2KxY0PxxGMZ1FRrRFyKHBmGoC7T6JEqqQ7k9J6C0O4TwcuEySnqNRYmztkl22JvMgQYAgwBhsCPg0Bd5abv4qJyNkWv55QZaKSo1QiPEB7IONrbSn93+cobM4LjKwFk1RkCDAGGAEPg8xCIvPkSb7ZfQOR1rS3sV2ZwFOxaAXmHV8Kpcqu+SwZH68edkaLWwL+klG0ty+D4nhkcpWdURQ6PL8/gqHqxD+R/6Y1crLJBcpFndgZHlXOj8GzmEYSf/voMDjIAq/JF4OheG1ZlCn3eh5ZdzRBgCDAEGALfFIGayg2Gx1KNHgGl5nOkdiqjXp9P7v1Nx5kZN2MER2agytpkCDAEGAIMAUkE+OB4RDx9jYfjd+viGaHB4WxniqNVvZD8HTQ4mt0XdCBOldzxxRocpL5fsV3fTYPD3sYEm5yJ7W5aDY2v1+Do+LwHPsYkfTcNjqZaDY8v1eCo8of2CErVjd9Fg6PmycEIiUxEQNPFX6fB0WOS7ohMvsk9YVMx48Tc2K86hgBDgCHAEMh4BKoriXbTt9fg+DNZ0H7KyoURHFl59ljfGQIMAYZAFkOApNrf6rwKCR8iIVcqkWfvUIMRfI6LisxajvLHBIFQcxMFVEoOd0ae/GYuKtmLZ0OVfU10trCkHxcbH/xsF5W0AHwPFxUzlRwWZgqEfUpERruoZLc2QUx8MhKTNd/GReXIc+rAQ1xU6l80tPT9XBeVsj6GtrAPPA8jOjCUTte3cFEpPqc1EpLUiE0QhHGft18L9Re6qJD6Yb2mgVfzUDnZoPDqUZCrlFnstwfrLkOAIcAQ+O8gUEWZKl6dnvZGKhYZG7/MCI7/ziJjI2UIMAQYAgyBr0NAExGBeDMrfIrTO5nwfucR43ccGl4DhUoBi2UzDW4SufF3fPS7LvijWaiQb/sQg3j40qOIuXCfPt1WWpghr/cQateaWt5M8UPUpefU1lRha4nCuwRCRBcfsweJD99RAUyFvTXybTJMzXzaex/iXgqbWpM8diiysQP9N9m4k83n9XbbEfeWnCXlYVHEHm7rDDfVV5rsQ0JoHNUGs6uaG6VW1TW4/4X6e6D5mAAeMuRslAuF59ah8ZzZzfA+PB5/1NkOPk5N9TOcWxZFoYmVDOr/WXMn1PGJVGOhQM9icOlvaCt7s9EmaJJTIONlcBlQCU7tSxnUf9hyNZCUAk7OwXViM1hUM/Shv157I3i1BjKFDOXPis/lXq/jBU0KD5mCQ4WzfQzajv3zGd7NPgoeGnAqGQrvFxxTUkuoz1VEbLxEopCplCJLYEp27b4uJOVKxENX+CPm1H1oyBMuCxUK7RpMbWFDPiVS0il46nFEXH4KXsNBaWOKwnsN+x813xvJAYHQaDioslnDZukIw7U3xQuJL4IATgO5sz1clw6lJFpkjGBrHDJyHVLeCOKesjz2cJ5v+NTrRc/fkBQUSTM/LIvlQO6FRra542aC/xhDx6cq7gbTQT/r7k9sYcMGTYEmJpGuLctqpSHvYWjLmzhqIlISEyAHB9Pa1YC2hra1stmDoElMJK63QMO2QLXGuvZtzBUwS4mCzIrpcRhMOnvBEGAIMAR+EAQqqtYJwqIcp9Pi+BavryX3/0EQ+PJusAyOL8eO1WQIMAQYAgyBz0BAk5SE570HwnyJYImZ4u2DmAvEWjRt4WG7dh594/Wvm5AcFCayRiWCpKS86bEMKVGG1qDk/Xw+Y2g80GMtkuOEzWjaUuKEsNF+5r4CarVhnJzQKHRoOI3fbbiWWqOlLTKOQ6XzA2FtrsCxMssFUfM0hdimlftd2Oj+Xpa4qhhewCnkqHNVcFX5vTxRJU/r68pDZWuO6md+goWpAkdLEuFLwyMjFi42qHCgDa1/ruIWY+hgU8YJZTY0pe9fr73W8MgJD+RoXAy5xtek8ftNlomcPRz7VIFDW4FEkbI+TbXcJXFj1xqCBRHVJCXG5yrebvpDdGLYzU+w/A1bfAoh/g9Exy6KHxcyeohlcPTD94b944GixwSC63W/TUgKDheNr6z/WMTEp+BJ2/VIpOSAYUmd+4jeM5CSYjT3kMFhy1Shf57TkKIxmjtehuIHZyEqNhkv2s6ChjNcG5xMhlw7xtH6gU2XiY60yOVKFD48gMaj+o8VucpwZkpYL55JTwmF9x5rKLzGA/JsVrCeP17Ad9BwkTCbMldOqEYLJA0/pY9RfR7IWxDwFD4bpku6INu0PeDkChFG7A2GAEOAIcAQ+P4IlFOt+S6duJn0y3e5b0belBEcGYkma4shwBBgCDAEJBGIu3MP0dduIubCn1CamUMxazY+/TKOPpUwLqqcTjCfPAzPPOZLiobaVi8FuxFN8LztPCljDeT9pQm4BqVxr/EKcZwHSvgLBMfjFoa6BsLOkEfhI8Im8XZ94vJi6E5Butvk1nBExiThYtU14v7xPCqcF55+nCm3VWwdygP1bnWn8d/LbxWNnZy3rXfjZ7xYcRNvtomdOUiFWld74E6v44i8GyzGmudR+7on7rfbhoSwOIm5kNFMi0ce62jmh3EhhEqxY4Nwo+5GqP/yuxfFIUPFC71xo7YX1EYEALmW4+SoeL4XAlssFZE/JK6wNkPBnf0Q0HS5pK2suasD8q7rjIdNl0oqq1sVdkGupe3wpPVCybVh37YqbLtVx/3GyyUdeVIJjg8/T5aoz8Nxyww65ODuUyUdc1x3TIe1hRI3m+o1LfQY8ci9ayJ9GdB0maTrS9GjAkET+csYKb8g2KyZD+6PO4j4bZfk5yjb+jngf9uKuBt3xGuHByxXLAJWTAXC30uuLW6qFyzW9YEmPg6q8g2gKloByiKGWUGSN2ZvMgQYAgwBhsA3RaCMarWBe1mqE6yRQayuTxkVv5MkEPFZuTCCIyvPHus7Q4AhwBDIIggkvnyNt1Nm0d4Sa1DTJcsQ2W+MpO0ryai3XjsXLzzmS1qbcgoF8u0Zjhdt5krWV9pZIJfXQNxvtEJyk6kq4ojCyzsgsMViyU2yeaV8yPZzIzzu8ZvYGhRA4V/qIFopw5vF5yQJlKLbu+L1wksIvijeZJJvK3VvdceVFgcQFxQtnj2eR92bP+PPOt5Ikcg+IaxBrWueOF9lC3gJ51BCwNS53gPX66yVttz9S8y04tl+eNh4mbS1KIDixwfjSg2SPSImn6ABKv3RF1eJZa+ELSzPc6h8sQ8CCEEhEQevgdvR4fT+UvVl0MDt2DA8bLZUlF1CwZLJUPTIIDx1Xyi58nlzOQrtGIZ7jVZIzq3SxRJFNnkipMckSXxMyxaFdaf6CB61WpIgcG5fHypLWzxbc0iyf7mX98HbddcQfempRP94FD06FDGT5kEdJrYMJhWyrZuPyEGToY5PklgbQDavOYgfMgIS3JJwTGr5YmB6f8Ao84g2RhbHNC+YLe4MyATizvrXJZA758kiv0VYNxkCDAGGwH8HgRIq8pBFW1JZjfSGn4Hx+0m/ZnmQGcGR5aeQDYAhwBBgCPzYCCQ8fY6wnXuR+PQ57WhmZ3AUGNAEFi3L48+aSzIlg6PiuYHUFvZarXX/2gwOqq2hFhMcJMOj4vk+X5zBobQ2Q4F/kMFBCBIphsKyYkHkntY83QyO7G2rIlsmZnA4b51KM0tedZghQXB8fQZHnq1LEH3yOsK2ZH4GB/ksKvIUg3nDLpDnYa4qP/ZvUdY7hgBD4L+GQDGTlTrtDZLtSv72fIufAUmGellZEXdGcGTFWWN9ZggwBBgCWQQBPjISMQGPEbJ2I+0x+eP8LTQ4nLKZ4nydpZmiwVHqlHA+9UaddZmmwUHaP1dxc6ZpcBBb2LNV539zDY5q58cgIjop0zQ4Ch0cSecmszQ4nLZOpu2/6zAnUzQ4Cm1eSG1hw3uPyXQNjlR5F4sOI6DMVRycrW0W+a3CuskQYAgwBP79CBQ2WU7/RgtWsYLW+rd4HZjICI5//+piI2QIMAQYAgyBL0aAV6vxavAYaKKjIVfIoVywyKCtjHRRkVuYItdvg2n7xPrU1ESOu8MPZJiLikV+exT0am+gGxLQdVemuKikgpQZLirmpgqYm8ipLazORUXGwXVS5ruo2FmpEJeopg40GeKicvo+NOTJloUK+XcYfinLaBcV+3kDDdZuxJj1SHgZRt/LCBeVXBP7UmzitLawUUOngY/LHBcV0meL5T2g0aQAlrawHbmOCY5+8W85VpEhwBBgCGQ8AgVNiZB5GnKD05qqpJIdqRkdutcZE3+WaOhWl/Ejy/wWWQZH5mPM7sAQYAgwBP6TCGjePUV88Ct8yltNP/4lQ8HFRFNtDKLXIC9UGuqO+o1p8rixUCfHa59W8DCtUgVo11lXP34EiSfSOHkCbd6gAdCyuS4e2X8i1MQmljirQQabrq0gr6sXUQzuOp1a0pJUTxlksBzQFhbViunqf+g+jcZpbQ5w2iq4apCMB7L5fN52CrUlpZtacHD2JloO+vK2wxyotU9biONKrl2CqwYpxDb11TTBNpUMgJPJUeyoftMcvecu3m0+Q6L0mY1MqUCRQwI2OexMEbDsDML3EVtVYqwKKExMkHePQOiQQp1JTt0DRzxlOUBmokCRA/r2Q2btR9S1p7o0V5WVOVy3pYlP3IKEJ+9AhU84HvLs1nBZrZ+bt79sQvy7CO1TJMDMxQ651vTU3f9d73VIjPiki1sWcIHjAsExhvav3wIkxsbTb2Ck/xZli8BmpN76lLjepMQnCQQSB9g2Ko5cwxvo6ge2XgVNcrJWG0SGHG0qovDIegjV2sKGdJ+NZE2Kdm1wcPypIbN1yqkAACAASURBVOStqujqR/SZqHXF4UDcbuwGdAbK6uf+Y+8JWm0LnmpUZPcSNGNSS7jnZO3aIGEZcnnPoiTax2hBLyN+yEiDtWO2LA2Zd+s6knduBTn1QzRoZAoFlHOX6No2u3QOMYf2UeFWsq4JGSibKbgN0eK/H7hwEmrt3MuUKmDyCn19/9XQPLyoPZJFbHXNkDBggy5udWEWZG8u09dEWoU3t8AnD/0xGKeIs+ByFofMwtVgzOwFQ4AhwBBgCHwfBPKZLNXf2FhjIxNfv0gU3MyycmEER1aePdZ3hgBDgCHwAyOgiY1C5JweSKjdHijXGlg5EbKPQSJtBZMugxGfrxTUk8ciJS7eYESESjAdPQFwdBTEFQ00xYVLLZYtpj8/9pogsuYkm+nsG2fTeFAX4oxh6IpC4jm8BRIjqOsUcFrxRX0neOTbNRMWZgrcbTFB0lkjp7dwbOFVh9kizQ+ymc29ZwKN32+8TOQMQuLFTghPSx42I5ohhv0jcSK6aW6iwJ0mc0T1ZXI58vsMQ+zrWLzu7yVaDTIrFYrsHgDcCMLTGdsNhk+wNXGyQe61famta/juk6IjMaZurnCa1g1hq0/h4/HbhvjxPLI1KQP7AQ3wYcwexDx5adh7HnDsWgeWbSshfORqJASHisaXc3xnoFhBBLb1QgohP4xmP+/63rBwtUBAixXgjFRVCRFS/swomvHwvts0gZgxqp9z+xT6TkTPCeCNRU/TrI2/i4d6EncUcftuPguoLW1E/yGitUXmznyFsDYTR+mJqNQuynhAuXA5nZOkMUTUzah9DQflfIHE0EwSnHkMCwfZjDVASAhMvYeK1obGxAqJv6yFWchdmJ4i9rJGa8sqByJarofFy92weLAe8o4nwKmsJO7D3mIIMAQYAgyBb42Aq+kSbUqGXnuDnotNo8WRGa9fJw7/1kPN8PsxgiPDIWUNMgQYAgwBhkDSo+tIun0OyQ/+oPvOhCHe4Gb0lnS20CgUwNi1SBwpnRYps7SCcupMxAwZJulcocrlCuWooQjvNV5SmNKiZW2Ytm6EoC7TRHtIcrY15+IBlEAJ7ia2BiXfJcocmUuf0r/sIGEdCiDn9sl0k/lq4AYJ0VHAdc94SkC86LtR0taWuJa8neGH6EtPRAuHbOKLHRuG5/3XQxMcJV5YPI+CB0ch4KeVQGyKZLzosWF40X4xNMlStiscCviOxKuOc2hmgXEh98+zZwKetFooiS35clXo0Mh0HW9Ie/n3j0ZQ1+kS1BTAqRTIsWk8HhBbV2P+AIDcygJue3shgLiqSMTN3HIgz6IOeE/nVnyBZZNKsO7aBOG9BZIpbSFzn92jCbjmtaTjPA/7OUPp2gglriui5nnk3DobtlZKvOz2q+j+BDtLQnCEhCBx/gyJ/vEwWbACnP9hJJ05IfFLg4dy7ipgzTxo3r+Q/KUim7EWqrX9IU+QcOQBj/ihO2C7tx24ZLElMMkkiuzsB4djDcGRrKZ8jSDLWw9crlrsFxhDgCHAEGAIfGcEXExJFqCxKWx6qRvpmsfq1DtSVTyEn6lF3P67BEZwfOepZ7dnCDAEGAIMgR8RgeRXDxGzgTz1Fh5AJAzzBjezt+QGX0MsLSdvSp/gIM4rC5elS3CQoxxmC+dLblLJ/TlTM9itnChJcJC4zCE7nMa1R9DIVZIEim3VokiyskHM8auSm2SbTk0RfeEekl98kJwK1xW9ETjWDynvpW1hi58YgoBWq4CUZHF9ngchKJ63XgSNlG0rgIK+I/Go6RJJ21eyiS92dBieecyXtEUlTeb3HYU37WelUx/Is3s8nrRaJElAkO9JhQ6NwPM2pH1xIe3nOzAaQV2mS1v+8kAO78npEhxkwRQ/NhiPmqdJ1U1zG56TU9vY912nSY5PZq6C8/qx6ZJfcitz2I7rg/DxpH0xQaLK7wLTCmXxcaef5NowaVEdVh9DEHf3juT4LSaOQfLG9dBEhEisHcBi0QokTB4OJIgJCIKtct5KaCYRUVsJy15y1GXmOpgs6wqZBDlFbhg/1Bs23i1AjkuJO8DjY5cjcDhaXzdyWZP1kDmU+BF/pbA+MQQYAgyB/xQCzpTgEKRFyc9UF5X0SI+MigcnCGLdWbmwDI6sPHus7wwBhgBD4AdEQB38ArE+K6AOfkl7x5nZIK7fashn9Ra5jtALnHJB02cqkkcOlTyCoqpYHlyH7ogZPEyUhk828JZt2wO1qqazieWRx3s+3eAFtiFP8cXHDHJs1x5R6T5VkoBx2T6NaiO87zpdEm2awUGOqLSfLT4BAx55dgvZAw8aL5N8yl8i9YhKU4ksBS3BEeV/CyGrT0vcn0dB31F4v+g4Pp1+JLGJlaHoscEIHr4dsS+CRHFyIiff/lF413cp1J/iRHG5TAaXnWPxrN0KaJIFrYm0hVMoUdBnMF60XQieapcYFoWFoPPxoesMqk1iXEzzO8Fuej8ENF4pciUh12arURg5JzbBo2ZLJDM0cvatDevWZfGuyzTR2iCLLae3cERFMoODB+w3CjobfxcP8ZwoSXA4bJ5B68cMHi6O84DFCkGHI3EU0TIxPh4FOK9bixQ1j4hBfSXHp5y7Erh2BpqDe8TVeR7ymetgcXwlNI8uSawNDvFDt8P2+BBwEYJFc9pC5j6802HkONMO6oSPQsjODfIqo8Fld5Noj73FEGAIMAQYAt8KAQfTBfpbZaLmBr1JmvZDE0Z9qyFm2n0YwZFp0LKGGQIMAYbAfw8BPiwISa8eIM53NR082dImDPXWAcHN6GWk88CBn6jVjjh9AglH/dLEeSrmqFwgPL1P3rMPiX/8qdsmkofWcg4w02pwRC3bhOR7z3T3IuSHnGySN8yGo60pAvsvQfybkDQkBA9OpoTzVoGACB26COoIcgxE2IiS9hVmpnBYP1aI95+P5JgEg0lVWZjBfp3wZeB9twVITkoy2OiqnGzhvHwAjT9suhI8yVbR7nMJNuaFXJB/RVsaf9xsOdREZ0L7tJ3E7Wq6wXlcExp/2noheI4IdGr7ByC7R1XY/VydxkmWAxXo1PVfON5CiqOtCa7UnUkFTFMLwafggdG616/bzxZtol13E+0GoRhncZA7FT44QheXyuIgx1NSizFBREZR4tAshEcJ2QsPmiw36B04GYofE0ROI377AyF7rhnEZbwMhY8Kx5o+rt6LuD8CDAgmsnactwlZRJEzvZDy4qUuTmCSKeSwWyeQVtHjFyAx5GOauePByVWwWyeQX58GzkZiTLxBfaWlKbKtFNZO/JixUMenmXueh0k2OyimC/dXjx+K5GRBHJYUunZdnJFr+nSERCZAPXYgJdHSDkBZpDjgKVgS85P7aclB/dqUV6wBtO5K4+bLulCBVH37PBJqdxC0b8g62tnKwP2HNEayN1KLg1893edOVm0iOPsy4GxypsGb/ZMhwBBgCDAEviUC2c3mp0psCG4qVHtD+DORma8jEvR/t7/leDPyXozgyEg0WVsMAYYAQ+A/jgD5oxt+ZBuU938HyrVEbIWmYkQObwKe3gUatAdKpnFYSb1y20bwz56Da+0BlK0gqp+8Zg0079/DZIbw9Ny4xC7YBM37UFgtGaMLmajksDSRIzw6CWETN4KPiYTDUv3mPG0bEWPWgEtOhtvm0XTzaZz9HzpiDb3cYZGw+TQuHwauBlQqOC3uLRl/1mUj5PYWyLtM7yCS9sInXTbANIc1ci9sL1n/dfdVMMnvBKep7cRj//MZgpeegUXZ3DpihNjCEttcQiQkHH+EEO9TMK/qRsVBjUv0ocuIPHwFVlVKwbZXXXH7O67hw7EbcGpaHhadK4rikRt/R/SFh7BtUxNWrUqJ2994BIlXA2DZqT5M65RDNisVEhLViE8S9EGC5xzHp1tvkGtoPVhUKyDGdtphxD56j/w7+0li83H2NiS9D4XTSukzxJ+mrQaiomGzSL820jYUM3EpkKyG5TzptfFpnEDC2MwRi4YSEu3tsCngTBVQjpF+ApYyYwoUtpbAoFHUmSc2PkU3dtKuZtZEyLLbA/3TUbGfPQrIkQvwFOvVWAReB39+A2S5CyOmiXj8Fk9OQXF/AziXyoisJBBfaYvF8/0we7kdSXmbw6LCr+KMGEnE2ZsMAYYAQ4AhkBkI2JjNpaS7PvdReMCR2a8j46X/PmbGGDOrTUZwZBayrF2GAEOAIfAfQ0Dz8Qk0b+8jJKeQcUA3gju6QRMfK+RykMfLrhUQ3UAv+Gi1qQv45ESBROAATdF6iK8lZDyQYrK051+Pv5OoQwYn46Gu2BTJNfXWo5jeH3wKTzMbqAFKg85AjTq6+qYLPaEmWRPU+ZODqu1gRBcop4snjRoKDfHuJLasMg6qhYI1Z+rmM6zPCGrNSYocMlisMtSaiBowFhraeR4yyGG9Zo6u7dg/H+LjygP0cT35TyaXwWW7fuzqk5cRtv0ErU9tYeUKOG7W287GbjuDqGN/UutRcoVCoYDzNsF21jmbKZ4u8kHkqRvCFx6i12CqhNNmIduEFGILG3crUJd7KrO2gusmQ1vYpGdvdF+WTJxs4bhUbwsbv2QFUp69ona+5ImRLJsNLGYIGQmkxE5ZgcR3xBVHmF4TlxywmKavHzdqGpJjYwVbUo6HSZkSMO37s65+1PCJ0MQl07ETBC1rVoaii5DNQgqxDE5JjNf2j4OqemW49PZESCRZLzyih06AJlGwjSVza9mktoFlcPzwUdBo1PT+5H8m7VpDnmZtfOozEWpyrIbUhxy2RraxSaMGabMiCML6taHr4NS+abQxOJjO3ghzEzkitLaxsul9tCMjmUYcUibpXW6snt0Ef2QRiKMxAU8u5xA7WJ/pZPHwGHB2C3iN8HWWkykQM0Aft763EYq7B8FreOocJJeZIKLzPl3XbAPnQPn8pPCxI0/75OYIbaTP2LB7PgzysEuQ8QL6cpUtgsoe19V35H0hsygNmZneRlcXZP9gCDAEGAIMAYbAD4wAIzh+4MlhXWMIMAQYAlkJAT4mGMm7f0J8mV6IzdsBlj4DIPsUbDAEstdMaTEV8Y6lYLnlZyDRUPeBbLZiu64GLByhWtIdMpJ3n7bwPBJGbhfemdJP2plj2joaVs7vBg6G3qBks5s45jcaTxg2mLAeBs2TeLbVq+hG9UWXwZK2sFarhXOxkf3HiDQ3yHbReo1AgrztTDJMxNafuXYJJIeUawvHc3DaJuhGvO00XeIpugwuOybA7FM4nvRfLb6/uQlybhgNPHyKl5P3GtyfYGtmnx3OxBbW7yo+bj9hcJyG6pkUzots07qBP30eMfsPG3afaEoUyQfZ4AFI2eiDqEvXRbax1lUrQNGrLRKnkCMfIQZxQkrYDOpHbWFjhk6DWjT3gO20EdS1JGHcWPCJhseBCIljP3US4myyI3rgGLq5N1gahFBbLWCfMHg4NCJbWHKUQ7BtjehDiCCjC/j/tXcfUFJUaf/Hf92TE8PAMIICillew+p/0T/uYgAFUUBBRBAkCJIFyYiEGRlyjoKgIEgQMLIEUQQMCMbVVdc1rKgoMDADk3P3+97qyV0EEZ1u+dY5e8461VV17+fe5px6+t7ncavaUk+AKmfoAJt8LG6FTPeUbdU4kzOjwrfTLVWbuVxZuYXKG9PVJueGW66xT1tjGjazg1dS1+JkvOauEfPv97reBLmy+q+xHhrzXKsKDzfdceroAy9Lmd+rxlsPeeUEcQdH6HCTjQrL3Kuoz01Z2TK3sPZL1dShq15SRM4yhR2bpaBL35Ej6Bzv5/AXBBBAAAEEfFiAAIcPDw5NQwABBPxFwLV/r1xfvij3T7utah/Jd7+uKs+0sW2+2+lUetcNilxstlh4V3coDAxVdveVCp3xoO31edFxcvWYYeUlsMsK6rj8OqlDLwVP6WL7Ehrc+F5lNGilnMEmgFH++eYls96U8UoJq6rknkNs7x+1wBPgSO1j9ql6tz/6ySlWadCfHl3s/ZLpdqvOmjFKe26rsrbt8e6fW6q5Ml7J8U8r5+tfbPrv1nmrx+qX3rPkTsuwvf68NWP00wNTVZjnnfTTXHDBhpHa3z7R3s7t1nlrxyiz3zBrZUDFw+GSIhdOsw8QFOWWqL50otL7DrcPPjkdipo/RWl9zHmbBwSFKnpugrIHmy0Y3ucDwyIVNCHRsrcrDOKod66ihj2qrIGDbfsXdPtNCrrrHqX0eMx77E3Z2AmDrABL7lDvpKAmBhA6vShPSPzDtgGMgMSlis1O1eHJg7yThro9AY6Y/+xSzuanbNtnqp4Eb5qmoO8/8rI3Aais/s8r+tUecqbZVWVx61injar2+l0KLMi2nTtJzXcodu/fFeDwLhls7p90/R5VP3yVnC6nHJG3yRlzn5xR3luV/OXfJdqJAAIIIHD2CRDgOPvGnB4jgAACpyyQnpGlgsJCxURHnfAa1/73VfiaJ2+BeRE8cs82VXmmte1LqtwupXV/WZGL2tpWjjB3yOi14bgBjkKHQ/mDV8g91r7yhIKC5Bg9X0FTO9tWvnBHVlVBvznKHjTQ/iW43oUKaNdB6fFTbdsX2riJ1c+sN3bYvkRGJwzVgYUbVfi1d9USs5ek9poxOvzIFBWm2r+E1lyRoAOdJ8pVYP8SWnv1WO3vmCiHXWlQt2QCHPvampUINgGEkgDHeHt70761Y5Te35SJsy8tGrVgulJ6jDpOgMST1DW97zDbAIZZdRG9aJrt6heDadZURD05pWhs7NpvVj/MUlpf+yRojoBARc2beNwAhzsiXBETEpXycGny1LKDGFSvtqJ6tFXuFHsf562NFRQq6e3NNsElt9RvggI2L5H7p+9tzzvin1Hooj5yZaXaBqeyB61S6JOdFFBYcPwAx3OtKq49Kfns0U6vKm5zY/uhd7uVdOcOnfP+Dd6rV4rucOj69xSbdLXMSiJzBJz/rJwRDU/83Xe5rS1DAQEVl8yc8j8zfBABBBBAAIEzJkCA44xRciMEEEDgzyOQlZ2jEYmL9ea7n1idurr+RZqXOECx1aK9X7xSf1LBtuFS2n7rnDs0WkfuWK+qy++Vq+IWE/NqFXuxjrWaqqjF7UpyFJS9qaPO/1P6nSMVMr2TbaLDgGbdlHllY9sAh3nRcj7xlHW7wKldvF8ETa6KcasUGODQwV59bEuLhs+eZ7U7re9Qm7K0UpWiFRzHzCqCCkEA8yt41aItKj91SLQtG1tntSfPxoEH423P11qRoPxtn+jQ8o02ARrPCo6Uea8o+73PvMbCbH84d9VoHXpsmbK/OWRzXjp//Ugl9ZytvHTvFSCmP+eteVxZg0erMM9T3aTc2AQEKnLOJKX1Ha2CfO8VIgEhwYqeH6+MvsPLVWwpvkdgzViFjx2u9D4jbUsCh159iUL69FDOoEdN2hWvI+zvDaU29yutr0niWbHsqlthHdoo6KaGyhw42MZWiphdvEXF5DLxfkC1JROtZ+YO9U4iagJvxVtU3ON62t7fEe+Ze47xPbx3sJjtT9NWKK/ApYJJ7WxX9+QMWq2IfR9Y+Tkqts5oZ/dfq6jPnlPgZ+u8bMxXLfXBVxXzr0QF7X/T9h+jpOZvKu6LLnJkfu09tnLr4PV7VCO5kVRgqglJCr5QgXUWyBHinfDV+q7/X5AtfsZy66MJQ7vZPpM/IoAAAggg8EcKEOD4I7V5FgIIIOAnAktXb9L6jTu1ct7jCgsNVp+Rs1Svbi2NH/5QuR64jn0v988fyrXHs3TfvGQlt95W8pnIp9uUT3PhkNK6vVhyPmLxfaUvcibZptOh9J4md4QUuHeDAt55uVxZVPMCnzN4heclct3TKvz8/dLSncW/Sxfl4Ahd+YQKD3xber1JuOh0KG/YctWIDlHS8FHKTUkp7Y9VOjRIwVOnW3/LGpmggvSM0tKb5n0vLFSh0z3VW9IHjJYrL79MbU4pqGo1hU/2ZCA/2HmyCvILyrxHuxVUp5bOmeKprnKoc3xRgKf0VTb8yktUZbgnieqBDokqNOsgSmp/SlGN/6IqD7e0zv/S8Qm5TBLKMuejOzVTVIvrrbK47zcx9y/bPbfqbfAkKTXHT+0rBGDcUu21pUlE0/oP9XoJj5rv2Z5jjpSHKwQJTA6KpZ4AgTnMNpSyb+mmmVFFOTLM+fI5TNxWwst6a2brSGqu3KZk8KYt5Vpvxj50RmnJ4Oyd75ect1YQyKlIsz3IJCh98knlf/VNueeb9QWhRQGOjPGzlftjUrmyraZsbMwiz9iaaicFqSml/TdlXYODFTjJMzc0baCUkVW6CsaspomMloZ5zgdN6aNCMzeKDtO+wGq1FDN6mg6n5ip09oOSKQlcBshd80LltPc8P3JhB68cI46Lry+pjlJ91d1WgtSSksFuqfCadkq/2lM2Nm7rrbL2GJUpSXy4eWnQo+YHDctVBzLtS7qhdMtU9UPXlAQHnTXHyRneSI7QumXGQ3pt5/tKnL1SKcfS1bbFzQQ4yunwHwgggAAClSVAgKOy5HkuAggg4MMCbR8ep2a3NNDDHVtYrTQvM4PjF+rzHcvKrWowL0aZb81W8A/blH1FJ2Ve6J13I+ythQre/54KGnRR5iXepUkjt86UK/lLORp1Vmbdm7xUgjZMVVDyPmX1WmgvtszkvEiRRnhebiseYc+NkzstVTl9PS/H5ggOcqpKWJCOpOUqf8ZEuXMLVGfaRNuysNnxnpfWsHizbcP7yHh8khQapsgx9qU9f+k7V8HVIhSb2N32+pT+M+U4t6piRpUPHhV/2Ky2cNatodjRZarHFJ00lVqyV25VyBXnK2qApwJJZFigggKdOpqep5ydHytpxW6F//UCxfb1jGXZw5SFzdz4rlWytWpH71wLha/vVO7rOxR+w1+ke82WowrHlreVuu1tRTdtJDVv5HW6YNULyvvn5wpv21K6obR6TfEHM5c+J32zTxHt20jX1lfVyCDl5buVlevZohGwdpmy//OdglvdY18yeM4zyj24X5GTxtrauuYuVH5SkkIS423Pp05cKCUfv2ysmRtBpi2j7O+vBUUBoX6JXvc3QbRjkwbLFRCiwl7xiqsaotTMfOWWWfkSuqSfHGGxyu6UYNu+sGd7KzgmTqmtnrA9H7vhQeXFXqC0W7xLJkckvaWwL2fLVeUapVznSVxb9ohI3qgqPy5QdszNOnZBaeCr+DMRWasVlrFQeeEtFVF3nNdqpqzsXKVlZGrWU+sVGhJMgMN2hPgjAggggMAfLUCA448W53kIIICAHwg0aN5biSO6W0EOc3z59T7d1zNeuzcuUHRUhPU3V8puKfkNHaxmtgt4jpo7b5LLlBU1axPMionAAB26qTRXRdym20wKDqu0p7W8IDBESc1L8xlUW9NSLlPWteiXZ0dwiI62LV3xEbXsntJf1R1uOUIjlNreUz7TLO13vDnRkz+geFVDeIzS2z/tOf/hFrl2P+spOWs93CHF1lFWx6nWy2fay8+qcO9m60XOaru5x/lXKO9+T+lVE4gp/G5v6YoR86v+RTeU/Koe/Pxkub7/ynN/U5rTrAi5vpnymrS3rs+fMU0Fv/xcVDbV4xXW+p6Ssrb58U8o79jR0vNutyL69JAuv9Jz/ahRyssyeTs86TnN/SPmeII2ZsXGz70HKD/XbCvx/K5v/hc6qzSoc6zPaLms3A4OK3+HwylVXTy5ZOyO9hotd6EpSetZNeJ0O1V16YSS89mPDPWUNS0qCxvolMLmFa1osKrSDJKpuOsZe1PW1qmQGTNKrjfbUgqL84a4pcDgIEXOKw0MmG0p5vCsOnErMCREtRfPLQk65Y4oKkFbNDghoWFSQlHZ3q8+l+u5eR4ZMy+MfXRVaVhR0OvDLdLmF4pvbnXBWbO2FXgwR/D2tXJ/uLXE1Zo+9S4vHftXFirv292eeWvZOxR88Y3KuNtT0tiMvePnLzytL5paathCkc26KDktV+EbhstxeF+RRRHgzd2UWb+59bfqWzrLkWkSh1r6lnFOo/HKjPN8/2I3tZE7z7OaqJgwuU3pSqla7zVVoau4JK/DWjV18MZ3SuzP/aahCgtyPSWFzRAGSAcvLU1kGpt2rVyFhVb/rPNOh5KrlG6BiomermBnIwU4S0swF9/8iVkrVPh/17JFpYSb/4MAAgggUIkCBDgqEZ9HI4AAAr4oYFZlXHlrNy2cNEg3N7zGauJ3+35Wq66P643nZ6jWOdU9L3mZ/5X7w1Zyh9bVoYtfUK23W8hVkO7VpcKqf9GRa+cobmtzqaB02b7ng27l1rtbqf8zQDFrW3r2uJQ5zOtWfoNB1sqP6BWtVTGxg/l0WteXrCuOV7Ul7SFPgCR0Tns5K1ZNMS+6w9crNDhAaaPbe2dlcEt5RWVlwxfa5E0wlS36evIhBE32Lg1qLAse8+QoyB4y0DbpafG2i6yBpvKG94wInz3L+mPWwEe9EoM65VTo7BkKfW+XUta/6HV/h8Op0BkzZVZSpO/8wPv6oCBFL3hC2ZMXK/u7H7we7gwLU9W5Y5QXP0l5R5K9zgfHVldw/GPKHTFKhbneSVPDzr9QjkGPKLPfKCtZbcUjotH1Cux4r3KHDJbbRL4qjH21+9oou+HNyh85wMr3UP68FDKlqGzr2D5yVTxvtq0kekoGK6GHdz4Vc7txS6zTgZO7VqwYbIUa8ovGPmRmJ++cGmbuDvYE10JmeOeLMb2JGPu8cgtccs4yK5u8c4ZkFM2d2A3NbJK+OnTkXs82neovNfUeW7l1uPU2mZUYkV+ZQFWF+zucOnTjW4pOnqaww6a8bPnzTkeAfrnsfcVmdZc77wPvsQ8M0+HIvYqMaC6380dFBm5XgLOe1+cIcHh/Z/kLAggggEDlCRDgqDx7nowAAgj4rIBZwTFhZA81vfmvVhu9VnBkfi13xr+lnJ+tIEVGXC9F7HumpPpCxRfRzHrdFPG1edH3foM3v1hnXdpZoZ+tsi396XIGKvd/7lfIJ2ttzys4Ujn185AFGQAAFGtJREFUW1jn7Y6C6DoqvPBvCtpjcnt4Pz/04quVWeMyOd5+wb5s7bVNpYgIBX2wzjZAkdfgPikzUwEfm1/UK97frcJGreX6+iu5vrerrCEF3tFcrnf3qDDtmE3z3Qpq3lz527dLZXI6lH7Qc77gta2lP+1XuIu5f+6r220TupqxC211u7JfeeO4VVFC775Nef947TiVOaTgFs1UsGWLfdlXk9T1zjuUu9HOxtPQkJa3q2Br2XwbpR0wASlnszvk2rZJbpu6sI7AIDlvvV16c6N9WdqoGKnB3+XY+Yr93Kt7qXTh5Qp4xxMkK3eYvBbXecY+cLeZG95HwY33WmMf+OlrtmNX+Ld7FZnynXK//dj2fF6Ddgr5YZcCMn+0vX9W/QcV+u2LcuZn2p+/4kFF7l8pufJsz2fU7a7Iw6YkbfngkOfDbmXE9lZ4jv3WL3NFdmhfBQXPt+a9Q3UV4LxMAY765Z5FgMNn/xmnYQgggMBZKUCA46wcdjqNAAIInFjA5OC449br1eOBu6wPHi8HB44IIHB2CxDgOLvHn94jgAACviZAgMPXRoT2IIAAAj4gsGTVP7ThH7usKirhYSHqPWKmbRUVH2gqTUAAgUoQKCx0WflyEuesVEFBoeKHdFVAQICcJgEIBwIIIIAAApUkQICjkuB5LAIIIODLAplZORr6xJN6a8+nVjOvvKye5k0YqLjYqr7cbNqGAAJ/kMC6V3coYeaz5Z5myki3udO7EtIf1CQegwACCCCAgEmkXiErFygIIIAAAggUCaSmZyo/v0Cx1aIxQQABBBBAAAEEEEDApwUIcPj08NA4BBBAAAEEEEAAAQQQQAABBBA4FQECHKeixGcQQAABBMoJmJKfTofTb/bb5+Xl62hqhrXFxmFTjaPi8Jr+Jaek6ZwaMT438ukZWVbJ1ZjoqFNum1mFk5R8TDWqRSs4OOiUr/u9P3gkJVUR4WEKCw3+vR/1u9//1/QlOydPR4+lqWZcdb/5DrlcbiUlH7VWcwUGBPzunjwAAQQQQACB0xEgwHE6alyDAAIInMUC5uXs/l7x6tmppVrc3tCnJcwuzCdXvKoFyzxlQKtVjdL8iY/qmvoX2bbbBA4mzV2lbbs+sM5HRYarf7c2urPJDZXez6zsHI1IXKw33/3EasvV9S/SvMQBJ9w+9P2PBzR22jJ9/K+vrWvGDOqs9nc3rvS+/PjzIStx7Q/7D1ltMXkbxg7uoqDAE784m0BV9yHTlJ2Tqw1LEiq9H6YBv7Yvjzw+p2QMzXy8545GGtK7nU/05XiN2PXep1ZOHjMHzTFuSFe1a3mLT7eZxiGAAAIInJ0CBDjOznGn1wgggMBpCUxf9LyWrd1iXTvl8V4+H+D45PNv1Kn/BK2cN0pXXX6h5j79ojZtf09vPD/T9pdzUzlmyoI1em3NNCsY8tKWtzVx7irtenG2wsNCT8vsTF20dPUmrd+406psY1Y89Bk564SVbQ4dPqrG9w1S88Y36IHWTXTFJRcoJzf3V638OFNtr3ifnsOmKzIiTBNGPqyDSclq1ytBYwd1VsumNx73kSZYNXrK03p56zu64pLzfSbA8Wv7Mv+Zl9T0lgaqe16c9nz0pfqNmq21T47VVVdc+Htx/6b7moDmTa0HqP9DrdWxzW3aufufGjhmnvUdqV2rxm+6NxcjgAACCCBwpgUIcJxpUe6HAAII/IkFjqVmKCcvTw/0Ha/BPdv5fIBjxqJ1+ve3P2jp9GHWqCQdOaZb2z5qvRybl+SKx8LlL+uV197Vq89OVEhwkPXrfPOOI7Rt7XSdVzO2Uke27cPj1OyWBnq4YwurHa/tfF+D4xfq8x3LbLfdTF2wRhtf360dL8z2qS0FJnHtjS376bn5j+vaKy+x+jJhzkodTEqxKvUc7zClizdv36MWt9+oLW/u9YkAx+n2pWwfTRDKrKoxK6J88TCrN/o+NkufbFtSsr3pzk4jrGBHxza3+2KTaRMCCCCAwFksQIDjLB58uo4AAgicrkCzDsP0yENtfD7AYZbVx0RH6vGBD5Z09X9u6aqFkwbp5obXeHXfBDQ69ku0tn2YF84tO/ZaKzcmj+p5ulRn7LoGzXsrcUR3K8hhji+/3qf7esZr98YFio6K8HpOqy6jFBYaolrnVNeBQ8lWQKd3l1aqWaPaGWvT6dzou30/q1XXx7XzhdmqUd1Tdnjlhm1WYOl420627fpQ42c9q/VLEvTWe59q3cadPhHgOJ2+lDUzW3RMsOB48/F0fM/0NcZ6+fNbtPm5KSW3NttsLqhTy+e31pxpC+6HAAIIIOD7AgQ4fH+MaCECCCDgcwL+EuAw2wcuu6huuRcxEyiIH9pVdzX5/16uZjn+iAmLlJWdq//+8IvMNo+54weoSaPrKnUMzPaMK2/tVu5FuPjl+o3nZ1hBjIqHCeTccO0Vat28kYKDA7Vk1SYrh8IryyYoKCiw0vpTvG2obGDGvEQvWvGK3lw/y6td//rqez00aIqemTVCV11eT+te3eEzAY5f25eyncvMylGn/omKjAjX8tkjFRDgrLQxOdGDzdaorTveLxdQMoHDyPAw63vEgQACCCCAgC8JEODwpdGgLQgggICfCPhLgMO8iJlcGqMGdCqRPdEKjllPrdenX36nZ2aOkAkqrFj/mkzekZeXJeqSerUrdXRMYGbCyB5qevNfrXacbAWH6WfZ4IxJONqi82N68enxuuyiOpXWl+LAzK4X55QkSD3RCo7xs1bovY++0C0N/+Lp9zc/6Iv/7NN9LW5Wny53W4lgK+v4tX0pbqcJpA0cM9falrNi7ihVjY6srC6c9Lms4DgpER9AAAEEEPAhAQIcPjQYNAUBBBDwFwF/CXCYHBz/+e5HPTVtqEV7shwc9/dK0HVXX6oR/TpYnzelMa9q3M1KgHl/JVcfMTk47rj1evV44C6rbSfLwWE+b1apdGvf3Pp88cv42kXjrJUQlXXY5a0wQYykI0dtc3C8vfcz/fubH0qaawJQn335nR5s21Sd7r29UpO//tq+mE6kZWRpwOi5ys7O1eKpQ3w6uGHaW5yD45+vLy1Z+WO+/53va0oOjsr6EvFcBBBAAIHjChDgYHIggAACCJyygCmj6na5rZUAvTu3UovbGlbqdoeTNby0isrjVpWKOUs3WIkqi6uoLF+3Vdvf/tiqsmKOhJnP6o23PtSqBWNU59waev2tjzRo3HyfSDJqkmyaKi+mikp4WIhVZrVe3VoaP/whq+0V+/LM2s1WxRsT0DAVS2YtXq/t73ykbWtnWFVYKvPoMXSaqkRGWCtS7KqomOSp59asrqG97/dqpi9tUTGNO1Ff0jOy1G3QFHXvcKdVzcZsfWrfO0HmezQrob81LuZwOp2qFVe5uVGONx9Mmxs072UF/R6gikplfm14NgIIIIDAKQgQ4DgFJD6CAAIIIOARMC+eZuVA2eMfKyZZL9q+eJhtJvOXvaRFK161mmcShj41bUhJ9Y5pC9da+Rw+2LLIOm+qxMxeskGbtu+x/vv82ueoa7s7fCKZqsnZYLbcvLXnU6ttV15Wz1rxEBfrSdRZsS95efkaNXmpVXHEHOfUiNHshP66uv5FlT5UZruMCdDsP3DYass9d/xd8UO6lgTLWj802ppTM+P7ebXV1wIcJ+pLalqmbmzVT6MffVAd7mli5XQxVVMqHmYb1dsvz6v0cTleA9589xOZxKLFR3F/fLbBNAwBBBBA4KwVIMBx1g49HUcAAQTOHoGc3DylHE1TzbjqcjodJ+24+YX9SEpqpVccsWuo2RaRn19Qkr/iZJ0xWyIyM7NVM66abTnZk13/e543L/xmFUNEeOjv+Zg/5N5/pr7YgRUWunTwcIriqlf16VVbf8hg8xAEEEAAAZ8VIMDhs0NDwxBAAIEzI/Djz0n69vv9CgkJ1t8aXFnupmZ/vfmlvO55cdbyebM648rL61V6Qs0z03PuggAClSVgSi6b3Cn7DxyxSjVffnFd1b/0gspqDs9FAAEEEDhLBAhwnCUDTTcRQODsFVj14huaOPc5C2D1wjG6pswWBVNpw1QY6djmNh04lKzb7h+i4f06qMt9zc5eMHqOAAKnLWAqxMx9+gWrApE5zDavH/Yfsv7/Reefq/VLEhQSHHTa9+dCBBBAAAEETiRAgIP5gQACCPzJBYoDHOZFIy42RstnjyzpcdkAh6kYkpaeqbCwEF5A/uRzgu4h8HsJzFy8Tk+v2axhfdqrU9vbFRgQYCVV3bn7n0qYsVxbV0/7U2xJ+r38uC8CCCCAwG8TIMDx2/y4GgEEEPB5geIAx5zxj2jgmHlWydTirSplAxwmT0WPIdPUp8vdXltZfL6TNBABBCpd4JeDR3R7+6Fqc+dNJdV9yjbKrO4IDQnSZ//+r5UUN2FYN6uqkSn92/hv1+mB1k0qvQ80AAEEEEDAvwUIcPj3+NF6BBBA4KQCxQGOz3csU/veT6jQ5dK6xfFWss2yAY7icpCTR/VUy6Y3nvS+fAABBBAoK2BKLg8YM1drnxxrlWU+3vH23s+sKjrmMNtWrrj0fF1T/2ICHEwnBBBAAIHfLECA4zcTcgMEEEDAtwWKAxxf7FyuPR9/qe6Dp1rlN5vd0oAAh28PHa1DwK8EzNYUs0XlnVfmKSY66qQBjkmjHlarpn/zqz7SWAQQQAAB3xYgwOHb40PrEEAAgd8sUDbAYW7WY+g0maXkrz47Udc06V6SZJQVHL+ZmhsgcFYLrH5puybMWalta6frvJqxJw1wvLFupmrFVTurzeg8AggggMCZFSDAcWY9uRsCCCDgcwIVAxyf/+d73d8rwdojP2bqMwQ4fG7EaBAC/inw3odfWAHU+RMH6tYbryXA4Z/DSKsRQAABvxYgwOHXw0fjEUAAgZMLVAxwmCsGxy/QB//8SinH0glwnJyQTyCAwCkIpKZn6rZ2Q1S7VqzWPZWgoMCAclft/eTfuu6qS7Xnoy+sHBys4DgFVD6CAAIIIPCrBAhw/CouPowAAgj4n4BdgOO/Px5Qy86PWZ0ZNaCTOra5TWxR8b+xpcUI+JrAxm27NXLiU7rikvPVt8vdOrdmrH76JUmv7/pQm7bv0fubF+njf31NgMPXBo72IIAAAn8SAQIcf5KBpBsIIIDA8QTsAhzms+OmL9OGf+wqCXCYEo5/vaOnqKLCXEIAgd8i8O4Hn2vK/NX67odfSm5Tu1YN3XvXTXqow50yW1nMCo7t62eqZg1ycPwWa65FAAEEECgvQICDGYEAAggggAACCCBwxgVM0PRw8lFFhIepekyVM35/bogAAggggEBFAQIczAkEEEAAAQQQQAABBBBAAAEEEPB7AQIcfj+EdAABBBBAAAEEEEAAAQQQQAABBAhwMAcQQAABBBBAAAEEEEAAAQQQQMDvBQhw+P0Q0gEEEEAAAQQQQAABBBBAAAEEECDAwRxAAAEEEEAAAQQQQAABBBBAAAG/FyDA4fdDSAcQQAABBBBAAAEEEEAAAQQQQIAAB3MAAQQQQAABBBBAAAEEEEAAAQT8XoAAh98PIR1AAAEEEEAAAQQQQAABBBBAAAECHMwBBBBAAAEEEEAAAQQQQAABBBDwewECHH4/hHQAAQQQQAABBBBAAAEEEEAAAQQIcDAHEEAAAQQQQAABBBBAAAEEEEDA7wUIcPj9ENIBBBBAAAEEEEAAAQQQQAABBBAgwMEcQAABBBBAAAEEEEAAAQQQQAABvxcgwOH3Q0gHEEAAAQQQQAABBBBAAAEEEECAAAdzAAEEEEAAAQQQQAABBBBAAAEE/F6AAIffDyEdQAABBBBAAAEEEEAAAQQQQAABAhzMAQQQQAABBBBAAAEEEEAAAQQQ8HsBAhx+P4R0AAEEEEAAAQQQQAABBBBAAAEECHAwBxBAAAEEEEAAAQQQQAABBBBAwO8FCHD4/RDSAQQQQAABBBBAAAEEEEAAAQQQIMDBHEAAAQQQQAABBBBAAAEEEEAAAb8XIMDh90NIBxBAAAEEEEAAAQQQQAABBBBAgAAHcwABBBBAAAEEEEAAAQQQQAABBPxegACH3w8hHUAAAQQQQAABBBBAAAEEEEAAAQIczAEEEEAAAQQQQAABBBBAAAEEEPB7AQIcfj+EdAABBBBAAAEEEEAAAQQQQAABBAhwMAcQQAABBBBAAAEEEEAAAQQQQMDvBQhw+P0Q0gEEEEAAAQQQQAABBBBAAAEEECDAwRxAAAEEEEAAAQQQQAABBBBAAAG/FyDA4fdDSAcQQAABBBBAAAEEEEAAAQQQQIAAB3MAAQQQQAABBBBAAAEEEEAAAQT8XoAAh98PIR1AAAEEEEAAAQQQQAABBBBAAAECHMwBBBBAAAEEEEAAAQQQQAABBBDwewECHH4/hHQAAQQQQAABBBBAAAEEEEAAAQQIcDAHEEAAAQQQQAABBBBAAAEEEEDA7wUIcPj9ENIBBBBAAAEEEEAAAQQQQAABBBAgwMEcQAABBBBAAAEEEEAAAQQQQAABvxcgwOH3Q0gHEEAAAQQQQAABBBBAAAEEEECAAAdzAAEEEEAAAQQQQAABBBBAAAEE/F6AAIffDyEdQAABBBBAAAEEEEAAAQQQQAABAhzMAQQQQAABBBBAAAEEEEAAAQQQ8HsBAhx+P4R0AAEEEEAAAQQQQAABBBBAAAEECHAwBxBAAAEEEEAAAQQQQAABBBBAwO8FCHD4/RDSAQQQQAABBBBAAAEEEEAAAQQQIMDBHEAAAQQQQAABBBBAAAEEEEAAAb8XIMDh90NIBxBAAAEEEEAAAQQQQAABBBBAgAAHcwABBBBAAAEEEEAAAQQQQAABBPxegACH3w8hHUAAAQQQQAABBBBAAAEEEEAAAQIczAEEEEAAAQQQQAABBBBAAAEEEPB7AQIcfj+EdAABBBBAAAEEEEAAAQQQQAABBAhwMAcQQAABBBBAAAEEEEAAAQQQQMDvBQhw+P0Q0gEEEEAAAQQQQAABBBBAAAEEEPhfphj1WmEA+f8AAAAASUVORK5CYII=", + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.express as px\n", + "\n", + "for i, method in enumerate(methods):\n", + " filtered_data = data[data['method'] == method]\n", + " filtered_data = filtered_data.drop_duplicates(subset=['method', 'formula', 'volume'], keep='last')\n", + " \n", + " fig = px.scatter_ternary(\n", + " filtered_data, a=\"Fe\", b=\"Ni\", c=\"Cr\", color=\"b0\", \n", + " )\n", + " \n", + " fig.update_layout(title=method)\n", + " fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/benchmarks/eos_bulk/CHGNet.parquet b/benchmarks/eos_bulk/CHGNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..43dad7c081ddbc284dc6e6b2c2852465debfa320 --- /dev/null +++ b/benchmarks/eos_bulk/CHGNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:68871d694e93a3c3e7e272b9cbd87d3757e3bc689f30f3189db232d76e629c07 +size 429910 diff --git a/benchmarks/eos_bulk/CHGNet_processed.parquet b/benchmarks/eos_bulk/CHGNet_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..a942f3448c1013017ba0bb8a7aa85fa23f9345cd --- /dev/null +++ b/benchmarks/eos_bulk/CHGNet_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bfde7530e6b0d2df5a30e1b7e3ec124fb2a86f6da8e35d2548d37d10a1eff1b1 +size 387425 diff --git a/benchmarks/eos_bulk/M3GNet.parquet b/benchmarks/eos_bulk/M3GNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..0ce0cb0cd28f9e7203404427fe68d6b04edb859c --- /dev/null +++ b/benchmarks/eos_bulk/M3GNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:53dde465b5e10edd677f131f8a531e3dfc36303dd7ec7b9df0060c19847494d9 +size 427419 diff --git a/benchmarks/eos_bulk/M3GNet_processed.parquet b/benchmarks/eos_bulk/M3GNet_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..d1b291c5a1b157174c53acde829d6da0b08de8a0 --- /dev/null +++ b/benchmarks/eos_bulk/M3GNet_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eb43a3c74f3340100b1adb21b3f2d075451e1ffe88ac6d6662741bc4a0576eb8 +size 397450 diff --git a/benchmarks/eos_bulk/MACE-MP(M).parquet b/benchmarks/eos_bulk/MACE-MP(M).parquet new file mode 100644 index 0000000000000000000000000000000000000000..7287426ae925a64ec1400a9f641848be301ada49 --- /dev/null +++ b/benchmarks/eos_bulk/MACE-MP(M).parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ff9769eeb83042129767aeff975eb04dee8efae12e96fbd46cd3039eeda26705 +size 427896 diff --git a/benchmarks/eos_bulk/MACE-MP(M)_processed.parquet b/benchmarks/eos_bulk/MACE-MP(M)_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..e681cec5643003bfea9db29799c19cab5f26b9a5 --- /dev/null +++ b/benchmarks/eos_bulk/MACE-MP(M)_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7e5507cdc5fe558b5d3fe2ea8f1dd577ac444e82c5347b5fbe738a4f855dffcb +size 397379 diff --git a/benchmarks/eos_bulk/MACE-MPA.parquet b/benchmarks/eos_bulk/MACE-MPA.parquet new file mode 100644 index 0000000000000000000000000000000000000000..ae18b9d947a17edb51ce0fecd2e6cc066d74d0a5 --- /dev/null +++ b/benchmarks/eos_bulk/MACE-MPA.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:53fcd188baddd4d5e797c5aa3de1b4368db711ebd29b7877cfe224856ba9d171 +size 428888 diff --git a/benchmarks/eos_bulk/MACE-MPA_processed.parquet b/benchmarks/eos_bulk/MACE-MPA_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..9ba5d9f8195023b64e40ac524adb6806ae4e32f0 --- /dev/null +++ b/benchmarks/eos_bulk/MACE-MPA_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0f3032d5a156febdd9580fa3d86cb1a84236374bcac6ccb22d18a948767db502 +size 394748 diff --git a/benchmarks/eos_bulk/MatterSim.parquet b/benchmarks/eos_bulk/MatterSim.parquet new file mode 100644 index 0000000000000000000000000000000000000000..1ac19b614e60ddafbd3a5e0ed2599ac3e7daf401 --- /dev/null +++ b/benchmarks/eos_bulk/MatterSim.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e6717650b97782de6f90e4473075410fe4540279eb39338d2234d3c9399079b3 +size 389586 diff --git a/benchmarks/eos_bulk/MatterSim_processed.parquet b/benchmarks/eos_bulk/MatterSim_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..5c7c372a85d6f4bef844bd6dbe68bf4692ee9344 --- /dev/null +++ b/benchmarks/eos_bulk/MatterSim_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fb1f10a60495f5e88ea8cf737fd7b47d1c471fda422374ee519d14f531c732f8 +size 290191 diff --git a/benchmarks/eos_bulk/ORBv2.parquet b/benchmarks/eos_bulk/ORBv2.parquet new file mode 100644 index 0000000000000000000000000000000000000000..2cd571ac07630e9883eb0c9e0d854ed646a18d9b --- /dev/null +++ b/benchmarks/eos_bulk/ORBv2.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ae13c9af1ae7fafe2a42ed4c47e2ba0f036abfa64a87ca517b92d89c62fcbfd9 +size 427105 diff --git a/benchmarks/eos_bulk/ORBv2_processed.parquet b/benchmarks/eos_bulk/ORBv2_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..82bb16f1d7a7ea63f852f9d6f1657e75abc9784f --- /dev/null +++ b/benchmarks/eos_bulk/ORBv2_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7eb0a3060b8a2d3541b8fb1083176c88aae0a8be0008e84d5770998b01742216 +size 402554 diff --git a/benchmarks/eos_bulk/SevenNet.parquet b/benchmarks/eos_bulk/SevenNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..5a3bb7cc25bd7752f35f3fbad0154d411b270b97 --- /dev/null +++ b/benchmarks/eos_bulk/SevenNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:64be88ec2632cdabf79daa01acb2cf2ef19fef0557813df5502c4f71ec566f4e +size 428341 diff --git a/benchmarks/eos_bulk/SevenNet_processed.parquet b/benchmarks/eos_bulk/SevenNet_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..0d4a9920f62dd4340134b6a0ab95e77c03b6e181 --- /dev/null +++ b/benchmarks/eos_bulk/SevenNet_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9f484928f5086e8d1411a198ac69bfe44313597909b72c8676e9131cce1660f1 +size 398295 diff --git a/benchmarks/eos_bulk/analyze.py b/benchmarks/eos_bulk/analyze.py new file mode 100644 index 0000000000000000000000000000000000000000..accaee8ca28547e6d06cb8f0c6ae830d93eaa614 --- /dev/null +++ b/benchmarks/eos_bulk/analyze.py @@ -0,0 +1,223 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +from ase.db import connect +from scipy import stats + +from mlip_arena.models import REGISTRY, MLIPEnum + +DATA_DIR = Path(__file__).parent.absolute() + + +def load_wbm_structures(): + """ + Load the WBM structures from a ASE DB file. + """ + with connect(DATA_DIR.parent / "wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + +def gather_results(): + for model in MLIPEnum: + if "eos_bulk" not in REGISTRY[model.name].get("gpu-tasks", []): + continue + + if (DATA_DIR / f"{model.name}.parquet").exists(): + continue + + all_data = [] + + for atoms in load_wbm_structures(): + fpath = Path(model.name) / f"{atoms.info['key_value_pairs']['wbm_id']}.pkl" + if not fpath.exists(): + continue + + all_data.append(pd.read_pickle(fpath)) + + df = pd.concat(all_data, ignore_index=True) + df.to_parquet(DATA_DIR / f"{model.name}.parquet") + + +def summarize(): + summary_table = pd.DataFrame( + columns=[ + "model", + "energy-diff-flip-times", + "tortuosity", + "spearman-compression-energy", + "spearman-compression-derivative", + "spearman-tension-energy", + "missing", + ] + ) + + + for model in MLIPEnum: + fpath = DATA_DIR / f"{model.name}.parquet" + if not fpath.exists(): + continue + df_raw_results = pd.read_parquet(fpath) + + df_analyzed = pd.DataFrame( + columns=[ + "model", + "structure", + "formula", + "volume-ratio", + "energy-delta-per-atom", + "energy-diff-flip-times", + "energy-delta-per-volume-b0", + "tortuosity", + "spearman-compression-energy", + "spearman-compression-derivative", + "spearman-tension-energy", + "missing", + ] + ) + + for wbm_struct in load_wbm_structures(): + structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"] + + try: + results = df_raw_results.loc[df_raw_results["id"] == structure_id] + b0 = results["b0"].values[0] + # vol0 = results["v0"].values[0] + results = results["eos"].values[0] + es = np.array(results["energies"]) + vols = np.array(results["volumes"]) + + indices = np.argsort(vols) + vols = vols[indices] + es = es[indices] + + imine = len(es) // 2 + # min_center_val = np.min(es[imid - 1 : imid + 2]) + # imine = np.where(es == min_center_val)[0][0] + emin = es[imine] + vol0 = vols[imine] + + interpolated_volumes = [ + (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1) + ] + ediff = np.diff(es) + ediff_sign = np.sign(ediff) + mask = ediff_sign != 0 + ediff = ediff[mask] + ediff_sign = ediff_sign[mask] + ediff_flip = np.diff(ediff_sign) != 0 + + etv = np.sum(np.abs(np.diff(es))) + + data = { + "model": model.name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": False, + "volume-ratio": vols / vol0, + "energy-delta-per-atom": (es - emin) / len(wbm_struct), + "energy-diff-flip-times": np.sum(ediff_flip).astype(int), + "energy-delta-per-volume-b0": (es - emin) / (b0*vol0), + "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)), + "spearman-compression-energy": stats.spearmanr( + vols[:imine], es[:imine] + ).statistic, + "spearman-compression-derivative": stats.spearmanr( + interpolated_volumes[:imine], ediff[:imine] + ).statistic, + "spearman-tension-energy": stats.spearmanr( + vols[imine:], es[imine:] + ).statistic, + } + + except Exception as e: + print(e) + data = { + "model": model.name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": True, + "volume-ratio": None, + "energy-delta-per-atom": None, + "energy-delta-per-volume-b0": None, + "energy-diff-flip-times": None, + "tortuosity": None, + "spearman-compression-energy": None, + "spearman-compression-derivative": None, + "spearman-tension-energy": None, + } + + df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True) + + df_analyzed.to_parquet(DATA_DIR / f"{model.name}_processed.parquet") + # json_fpath = DATA_DIR / f"EV_scan_analyzed_{model.name}.json" + + # df_analyzed.to_json(json_fpath, orient="records") + + valid_results = df_analyzed[df_analyzed["missing"] == False] + + analysis_summary = { + "model": model.name, + "energy-diff-flip-times": valid_results["energy-diff-flip-times"].mean(), + "energy-diff-flip-times-std": valid_results["energy-diff-flip-times"].std(), + "tortuosity": valid_results["tortuosity"].mean(), + "tortuosity-std": valid_results["tortuosity"].std(), + "spearman-compression-energy": valid_results[ + "spearman-compression-energy" + ].mean(), + "spearman-compression-energy-std": valid_results["spearman-compression-energy"].std(), + "spearman-compression-derivative": valid_results[ + "spearman-compression-derivative" + ].mean(), + "spearman-compression-derivative-std": valid_results[ + "spearman-compression-derivative" + ].std(), + "spearman-tension-energy": valid_results["spearman-tension-energy"].mean(), + "spearman-tension-energy-std": valid_results["spearman-tension-energy"].std(), + "missing": len(df_analyzed[df_analyzed["missing"] == True]), + } + summary_table = pd.concat( + [summary_table, pd.DataFrame([analysis_summary])], ignore_index=True + ) + + + flip_rank = ( + (summary_table["energy-diff-flip-times"] - 1) + .abs() + .rank(ascending=True, method="min") + ) + tortuosity_rank = summary_table["tortuosity"].rank(ascending=True, method="min") + spearman_compression_energy_rank = summary_table["spearman-compression-energy"].rank( + method="min" + ) + spearman_compression_derivative_rank = summary_table[ + "spearman-compression-derivative" + ].rank(ascending=False, method="min") + spearman_tension_energy_rank = summary_table["spearman-tension-energy"].rank( + ascending=False, method="min" + ) + missing_rank = summary_table["missing"].rank(ascending=True, method="min") + + rank_aggr = ( + flip_rank + + tortuosity_rank + + spearman_compression_energy_rank + + spearman_compression_derivative_rank + + spearman_tension_energy_rank + + missing_rank + ) + rank = rank_aggr.rank(method="min") + + summary_table.insert(1, "rank", rank.astype(int)) + summary_table.insert(2, "rank-aggregation", rank_aggr.astype(int)) + summary_table = summary_table.sort_values(by="rank", ascending=True) + summary_table = summary_table.reset_index(drop=True) + + summary_table.to_csv(DATA_DIR / "summary.csv", index=False) + summary_table.to_latex(DATA_DIR / "summary.tex", index=False, float_format="%.3f") + + return summary_table + +if __name__ == "__main__": + gather_results() + summarize() diff --git a/benchmarks/eos_bulk/eSEN.parquet b/benchmarks/eos_bulk/eSEN.parquet new file mode 100644 index 0000000000000000000000000000000000000000..0f9ec3b45d27247fb4e0ddfffe9309057413fa1b --- /dev/null +++ b/benchmarks/eos_bulk/eSEN.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4503e17151b7376bbd88dc8c4767747e7290e8eae898e050b0a231a5c447e3e6 +size 427652 diff --git a/benchmarks/eos_bulk/eSEN_processed.parquet b/benchmarks/eos_bulk/eSEN_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..96b954d9ea717afb44fcafc6d734f4ddd9d6efa6 --- /dev/null +++ b/benchmarks/eos_bulk/eSEN_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d7f754d8e18f645c1608e86286245c11611d5af34f3bd0bbc4a5b63b851a0dee +size 393790 diff --git a/benchmarks/eos_bulk/plot.py b/benchmarks/eos_bulk/plot.py new file mode 100644 index 0000000000000000000000000000000000000000..d88e3fc14908b47b31cad61ec86be7b11d0ecb91 --- /dev/null +++ b/benchmarks/eos_bulk/plot.py @@ -0,0 +1,119 @@ +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from ase.db import connect + +from mlip_arena.models import REGISTRY as MODELS + +DATA_DIR = Path(__file__).parent.absolute() + +# Use a qualitative color palette from matplotlib +palette_name = "tab10" # Better for distinguishing multiple lines +color_sequence = plt.get_cmap(palette_name).colors + +valid_models = [ + model + for model, metadata in MODELS.items() + if "eos_bulk" in metadata.get("gpu-tasks", []) +] + +def load_wbm_structures(): + """ + Load the WBM structures from a ASE DB file. + """ + with connect(DATA_DIR.parent / "wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + +# # Collect valid models first +# valid_models = [] +# for model_name in valid_models: +# fpath = DATA_DIR / f"{model_name}_processed.parquet" +# if fpath.exists(): +# df = pd.read_parquet(fpath) +# if len(df) > 0: +# valid_models.append(model) + +# # Ensure we're showing all 8 models +# if len(valid_models) < 8: +# print(f"Warning: Only found {len(valid_models)} valid models instead of 8") + +# Set up the grid layout +n_models = len(valid_models) +n_cols = 4 # Use 4 columns +n_rows = (n_models + n_cols - 1) // n_cols # Ceiling division to get required rows + +# Create figure with enough space for all subplots +fig = plt.figure( + figsize=(6, 1.25 * n_rows), # Wider for better readability + constrained_layout=True, # Better than tight_layout for this case +) + +# Create grid of subplots +axes = [] +for i in range(n_models): + ax = plt.subplot(n_rows, n_cols, i+1) + axes.append(ax) + +SMALL_SIZE = 6 +MEDIUM_SIZE = 8 +LARGE_SIZE = 10 + +# Fill in the subplots with data +for i, model_name in enumerate(valid_models): + fpath = DATA_DIR / f"{model_name}_processed.parquet" + df = pd.read_parquet(fpath) + + ax = axes[i] + valid_structures = [] + + for j, (_, row) in enumerate(df.iterrows()): + structure_id = row["structure"] + formula = row.get("formula", "") + if isinstance(row["volume-ratio"], (list, np.ndarray)) and isinstance( + row["energy-delta-per-volume-b0"], (list, np.ndarray) + ): + vol_strain = row["volume-ratio"] + energy_delta = row["energy-delta-per-volume-b0"] + color = color_sequence[j % len(color_sequence)] + ax.plot( + vol_strain, + energy_delta, + color=color, + linewidth=1, + alpha=0.9, + ) + valid_structures.append(structure_id) + + # Set subplot title + ax.set_title(f"{model_name} ({len(valid_structures)})", fontsize=MEDIUM_SIZE) + + # Only add y-label to leftmost plots (those with index divisible by n_cols) + if i % n_cols == 0: + ax.set_ylabel("$\\frac{\\Delta E}{B V_0}$", fontsize=MEDIUM_SIZE) + else: + ax.set_ylabel("") + + # Only add x-label to bottom row plots + # Check if this plot is in the bottom row + is_bottom_row = (i // n_cols) == (n_rows - 1) or (i >= n_models - n_cols) + if is_bottom_row: + ax.set_xlabel("$V/V_0$", fontsize=MEDIUM_SIZE) + else: + ax.set_xlabel("") + + ax.set_ylim(-0.02, 0.1) # Consistent y-limits + ax.axvline(x=1, linestyle="--", color="gray", alpha=0.7) + ax.tick_params(axis="both", which="major", labelsize=MEDIUM_SIZE) + +# Make sure all subplots share the x and y limits +for ax in axes: + ax.set_xlim(0.8, 1.2) # Adjust these as needed + ax.set_ylim(-0.02, 0.1) + +# Save the figure with all plots +plt.savefig(DATA_DIR / "eos-bulk-grid.png", dpi=300, bbox_inches="tight") +plt.savefig(DATA_DIR / "eos-bulk-grid.pdf", bbox_inches="tight") +# plt.show() \ No newline at end of file diff --git a/benchmarks/eos_bulk/preprocessing.py b/benchmarks/eos_bulk/preprocessing.py new file mode 100644 index 0000000000000000000000000000000000000000..08789185c32c110dd37ce3576bf8779073615069 --- /dev/null +++ b/benchmarks/eos_bulk/preprocessing.py @@ -0,0 +1,12 @@ +import json + +from ase.db import connect +from pymatgen.core import Structure + +with open("wbm_structures.json") as f: + structs = json.load(f) + +with connect("wbm_structures.db") as db: + for id, s in structs.items(): + atoms = Structure.from_dict(s).to_ase_atoms(msonable=False) + db.write(atoms, wbm_id=id) diff --git a/benchmarks/eos_bulk/run.py b/benchmarks/eos_bulk/run.py new file mode 100644 index 0000000000000000000000000000000000000000..bb1ae5f9076ea70c4901e98979efdd02e1614233 --- /dev/null +++ b/benchmarks/eos_bulk/run.py @@ -0,0 +1,170 @@ +# import functools +from pathlib import Path + +import pandas as pd +from ase import Atoms +from ase.db import connect +from dask.distributed import Client +from dask_jobqueue import SLURMCluster +from prefect import flow, task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run +from prefect_dask import DaskTaskRunner + +from mlip_arena.models import REGISTRY, MLIPEnum +from mlip_arena.tasks.utils import get_calculator + + +@task +def load_wbm_structures(): + """ + Load the WBM structures from an ASE database file. + + Reads structures from 'wbm_structures.db' and yields them as ASE Atoms objects + with additional metadata preserved from the database. + + Yields: + ase.Atoms: Individual atomic structures from the WBM database with preserved + metadata in the .info dictionary. + """ + with connect("../wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + + +# def save_result( +# tsk: Task, +# run: TaskRun, +# state: State, +# model_name: str, +# id: str, +# ): +# result = run.state.result() + +# assert isinstance(result, dict) + +# result["method"] = model_name +# result["id"] = id +# result.pop("atoms", None) + +# fpath = Path(f"{model_name}") +# fpath.mkdir(exist_ok=True) + +# fpath = fpath / f"{result['id']}.pkl" + +# df = pd.DataFrame([result]) +# df.to_pickle(fpath) + + +@task( + name="EOS bulk - WBM", + task_run_name=lambda: f"{task_run.task_name}: {task_run.parameters['atoms'].get_chemical_formula()} - {task_run.parameters['model'].name}", + cache_policy=TASK_SOURCE + INPUTS, +) +def eos_bulk(atoms: Atoms, model: MLIPEnum): + + from mlip_arena.tasks.eos import run as EOS + from mlip_arena.tasks.optimize import run as OPT + + calculator = get_calculator( + model + ) # avoid sending entire model over prefect and select freer GPU + + result = OPT.with_options( + refresh_cache=True, + )( + atoms, + calculator, + optimizer="FIRE", + criterion=dict( + fmax=0.1, + ), + ) + result = EOS.with_options( + refresh_cache=True, + # on_completion=[functools.partial( + # save_result, + # model_name=model.name, + # id=atoms.info["key_value_pairs"]["wbm_id"], + # )], + )( + atoms=result["atoms"], + calculator=calculator, + optimizer="FIRE", + npoints=21, + max_abs_strain=0.2, + concurrent=False + ) + + result["method"] = model.name + result["id"] = atoms.info["key_value_pairs"]["wbm_id"] + result.pop("atoms", None) + + fpath = Path(f"{model.name}") + fpath.mkdir(exist_ok=True) + + fpath = fpath / f"{result['id']}.pkl" + + df = pd.DataFrame([result]) + df.to_pickle(fpath) + + return df + + +@flow +def submit_tasks(): + futures = [] + for atoms in load_wbm_structures(): + model = MLIPEnum["eSEN"] + # for model in MLIPEnum: + if "eos_bulk" not in REGISTRY[model.name].get("gpu-tasks", []): + continue + try: + result = eos_bulk.with_options( + refresh_cache=True + ).submit(atoms, model) + futures.append(result) + except Exception: + # print(f"Failed to submit task for {model.name}: {e}") + continue + return [f.result(raise_on_failure=False) for f in futures] + + +if __name__ == "__main__": + nodes_per_alloc = 1 + gpus_per_alloc = 1 + ntasks = 1 + + cluster_kwargs = dict( + cores=1, + memory="64 GB", + shebang="#!/bin/bash", + account="m3828", + walltime="00:30:00", + job_mem="0", + job_script_prologue=[ + "source ~/.bashrc", + "module load python", + "module load cudatoolkit/12.4", + "source activate /pscratch/sd/c/cyrusyc/.conda/dev", + ], + job_directives_skip=["-n", "--cpus-per-task", "-J"], + job_extra_directives=[ + "-J eos_bulk", + "-q regular", + f"-N {nodes_per_alloc}", + "-C gpu", + f"-G {gpus_per_alloc}", + # "--exclusive", + ], + ) + + cluster = SLURMCluster(**cluster_kwargs) + print(cluster.job_script()) + cluster.adapt(minimum_jobs=50, maximum_jobs=50) + client = Client(cluster) + + submit_tasks.with_options( + task_runner=DaskTaskRunner(address=client.scheduler.address), + log_prints=True, + )() diff --git a/benchmarks/eos_bulk/summary.csv b/benchmarks/eos_bulk/summary.csv new file mode 100644 index 0000000000000000000000000000000000000000..ff414cbbb09846d4b25c43ca839d719527fcabe8 --- /dev/null +++ b/benchmarks/eos_bulk/summary.csv @@ -0,0 +1,9 @@ +model,rank,rank-aggregation,energy-diff-flip-times,tortuosity,spearman-compression-energy,spearman-compression-derivative,spearman-tension-energy,missing,energy-diff-flip-times-std,tortuosity-std,spearman-compression-energy-std,spearman-compression-derivative-std,spearman-tension-energy-std +MACE-MPA,1,7,1.0370741482965933,1.005455197941088,-0.9993684338373716,0.9963320580555048,0.993186372745491,2,0.28260902337559207,0.05365793240575371,0.01247051827833709,0.03852356148675327,0.07744103059608153 +eSEN,2,15,1.042211055276382,1.0082267858369258,-0.9993299832495811,0.9968570123343992,0.9920968478757424,5,0.31435657463218236,0.09009343693321628,0.012254373724862471,0.03683033142639347,0.07346152527758068 +MACE-MP(M),3,20,1.042211055276382,1.008986842539345,-0.999329983249581,0.9941160347190496,0.9915857612939804,5,0.3448779209525529,0.1291612188691875,0.011378760248143813,0.059100297945675236,0.0879944289437058 +MatterSim,4,22,1.045135406218656,1.0060900449752808,-0.99734962463147,0.9927904926901917,0.9880977115916667,3,0.376211439097473,0.055231139063835144,0.03888149868978045,0.07797796889169765,0.11523169167576831 +CHGNet,5,27,1.1053159478435306,1.014753469076796,-0.9964985866690981,0.9929971733381963,0.9866417434120545,3,0.5395426308257233,0.12255069852201543,0.051058628207987275,0.05245296840977506,0.11650035215147045 +SevenNet,6,32,1.1093279839518555,1.0186969977862483,-0.9981277164827815,0.9889121911188109,0.9859580417030127,3,0.5552625647497746,0.2749956370938698,0.025627387238441334,0.07657439969351316,0.11715556163493943 +M3GNet,7,38,1.1748743718592964,1.0175007963267957,-0.9963209989340641,0.9897426526572255,0.9801690217498693,5,0.6755070078112404,0.1488462321310986,0.05166730302469224,0.06468954475570607,0.1332400556108672 +ORBv2,8,48,1.3162134944612287,1.0374718753890275,-0.9918459519667977,0.9701425127407,0.9637462235649547,7,0.8699212994733451,0.2149179445701606,0.08208261674781654,0.1315974423719716,0.19758814985102582 diff --git a/benchmarks/eos_bulk/summary.tex b/benchmarks/eos_bulk/summary.tex new file mode 100644 index 0000000000000000000000000000000000000000..708918a4b061a9590625eeff08bc9283d17278b7 --- /dev/null +++ b/benchmarks/eos_bulk/summary.tex @@ -0,0 +1,14 @@ +\begin{tabular}{lrrrrrrrlrrrrr} +\toprule +model & rank & rank-aggregation & energy-diff-flip-times & tortuosity & spearman-compression-energy & spearman-compression-derivative & spearman-tension-energy & missing & energy-diff-flip-times-std & tortuosity-std & spearman-compression-energy-std & spearman-compression-derivative-std & spearman-tension-energy-std \\ +\midrule +MACE-MPA & 1 & 7 & 1.037 & 1.005 & -0.999 & 0.996 & 0.993 & 2 & 0.283 & 0.054 & 0.012 & 0.039 & 0.077 \\ +eSEN & 2 & 15 & 1.042 & 1.008 & -0.999 & 0.997 & 0.992 & 5 & 0.314 & 0.090 & 0.012 & 0.037 & 0.073 \\ +MACE-MP(M) & 3 & 20 & 1.042 & 1.009 & -0.999 & 0.994 & 0.992 & 5 & 0.345 & 0.129 & 0.011 & 0.059 & 0.088 \\ +MatterSim & 4 & 22 & 1.045 & 1.006 & -0.997 & 0.993 & 0.988 & 3 & 0.376 & 0.055 & 0.039 & 0.078 & 0.115 \\ +CHGNet & 5 & 27 & 1.105 & 1.015 & -0.996 & 0.993 & 0.987 & 3 & 0.540 & 0.123 & 0.051 & 0.052 & 0.117 \\ +SevenNet & 6 & 32 & 1.109 & 1.019 & -0.998 & 0.989 & 0.986 & 3 & 0.555 & 0.275 & 0.026 & 0.077 & 0.117 \\ +M3GNet & 7 & 38 & 1.175 & 1.018 & -0.996 & 0.990 & 0.980 & 5 & 0.676 & 0.149 & 0.052 & 0.065 & 0.133 \\ +ORBv2 & 8 & 48 & 1.316 & 1.037 & -0.992 & 0.970 & 0.964 & 7 & 0.870 & 0.215 & 0.082 & 0.132 & 0.198 \\ +\bottomrule +\end{tabular} diff --git a/benchmarks/force_equivariance/run.py b/benchmarks/force_equivariance/run.py new file mode 100644 index 0000000000000000000000000000000000000000..247aa6dce766d0adfa9101f732705c813882aeaa --- /dev/null +++ b/benchmarks/force_equivariance/run.py @@ -0,0 +1,307 @@ +""" +Define equivariance testing task. +""" + +from __future__ import annotations + +from collections.abc import Sequence +from pathlib import Path + +import numpy as np +from ase import Atoms +from prefect import task +from scipy.spatial.transform import Rotation as R +from tqdm import tqdm + + +def generate_random_unit_vector(): + """Generate a random unit vector.""" + vec = np.random.normal(0, 1, 3) + return vec / np.linalg.norm(vec) + + +def rotate_molecule_arbitrary( + atoms: Atoms, angle: float, axis: np.ndarray +) -> tuple[Atoms, np.ndarray]: + """Rotate molecule around arbitrary axis.""" + rotated_atoms = atoms.copy() + positions = rotated_atoms.get_positions() + rot = R.from_rotvec(np.radians(angle) * axis) + rotation_mat = rot.as_matrix() + rotated_positions = rot.apply(positions) + rotated_atoms.set_positions(rotated_positions) + cell = atoms.get_cell() + rotated_cell = rot.apply(cell) + rotated_atoms.set_cell(rotated_cell) + return rotated_atoms, rotation_mat + + +def compare_forces( + original_forces: np.ndarray, + rotated_forces: np.ndarray, + rotation_mat: np.ndarray, + zero_threshold: float = 1e-10, +) -> tuple[float, np.ndarray, np.ndarray, np.ndarray]: + """ + Compare forces before and after rotation, with handling of 0 force case. + + Args: + original_forces: Forces before rotation (N x 3 array) + rotated_forces: Forces after rotation (N x 3 array) + rotation_mat: 3 x 3 rotation matrix + zero_threshold: Threshold below which forces are considered zero + + Returns: + tuple containing: + - mae: Mean absolute error between forces + - cosine_similarity: Cosine similarity between force vectors + """ + rotated_original_forces = np.dot(original_forces, rotation_mat.T) + force_diff = rotated_original_forces - rotated_forces + mae = np.mean(np.abs(force_diff)) + + original_magnitudes = np.linalg.norm(rotated_original_forces, axis=1) + rotated_magnitudes = np.linalg.norm(rotated_forces, axis=1) + + zero_original = original_magnitudes < zero_threshold + zero_rotated = rotated_magnitudes < zero_threshold + both_zero = zero_original & zero_rotated + either_zero = zero_original | zero_rotated + one_zero = either_zero & ~both_zero + + cosine_similarity = np.zeros(len(original_forces)) + + valid_forces = ~either_zero + if np.any(valid_forces): + norms_product = np.linalg.norm( + rotated_original_forces[valid_forces], axis=1 + ) * np.linalg.norm(rotated_forces[valid_forces], axis=1) + dot_products = np.sum( + rotated_original_forces[valid_forces] * rotated_forces[valid_forces], axis=1 + ) + cosine_similarity[valid_forces] = dot_products / norms_product + + # If both forces are 0, cosine similarity should be 1. If one is 0, we take the conservative -1. + cosine_similarity[both_zero] = 1.0 + cosine_similarity[one_zero] = -1.0 + + return mae, cosine_similarity + + +def save_molecule_results( + aggregate_results: dict, idx_list: np.ndarray, save_path: str | Path +) -> None: + """ + Save all molecule results from equivariance testing to .npy files. + Save the index list of the atoms for further analysis. + + Args: + aggregate_results: Dictionary containing the aggregated results from run() + idx_list: List of the indices of the atoms in the original dataset + save_path: Path to save the .npy files + """ + save_path = Path(save_path) + save_path.parent.mkdir(parents=True, exist_ok=True) + + all_molecule_results = aggregate_results["molecule_results"] + rotation_angles = list(all_molecule_results[0]["results_by_angle"].keys()) + + num_molecules = len(all_molecule_results) + num_angles = len(rotation_angles) + num_random_axes = len( + all_molecule_results[0]["results_by_angle"][rotation_angles[0]]["maes"] + ) + num_atoms = len( + all_molecule_results[0]["results_by_angle"][rotation_angles[0]][ + "cosine_similarities" + ][0] + ) + + maes = np.zeros((num_molecules, num_angles, num_random_axes)) + cosine_similarities = np.zeros((num_molecules, num_angles, num_random_axes)) + + for mol_idx, molecule in enumerate(all_molecule_results): + for angle_idx, angle in enumerate(rotation_angles): + angle_results = molecule["results_by_angle"][angle] + maes[mol_idx, angle_idx, :] = angle_results["maes"] + cosine_similarities[mol_idx, angle_idx, :] = np.mean( + angle_results["cosine_similarities"], axis=-1 + ) + + np.save(save_path.with_name(f"{save_path.stem}_maes.npy"), maes) + np.save( + save_path.with_name(f"{save_path.stem}_cosine_similarities.npy"), + cosine_similarities, + ) + np.save(save_path.with_name(f"{save_path.stem}_idx_list.npy"), idx_list) + + +@task( + name="Equivariance testing", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, +) +def run( + atoms_list: Sequence[Atoms], + idx_list: np.ndarray, + calculator: BaseCalculator, + save_path: str | Path | None = None, + rotation_angles: list[float] | np.ndarray = None, + num_random_axes: int = 100, + threshold: float = 1e-3, + seed: int | None = None, +) -> dict: + """ + Test equivariance of force predictions under rotations for multiple structures. + + Args: + atoms_list: List of input atomic structures + idx_list: List of the indices of the atoms in the original dataset + calculator: Calculator to use + num_rotations: Number of random rotations to test + rotation_angle: Angle of rotation in degrees + threshold: Threshold for considering forces equivariant + seed: Random seed + + Returns: + Dictionary containing test results + """ + if seed is not None: + np.random.seed(seed) + + if rotation_angles is None: + rotation_angles = np.arange(30, 361, 30) + rotation_angles = np.array(rotation_angles) + + all_results = [] + + cross_molecule_cosine_sims = {angle: [] for angle in rotation_angles} + cross_molecule_mae = {angle: [] for angle in rotation_angles} + + rotation_axes = [generate_random_unit_vector() for _ in range(num_random_axes)] + + total_tests = len(atoms_list) * len(rotation_angles) * num_random_axes + pbar = tqdm(total=total_tests, desc="Testing rotations") + + for atom_idx, atoms in enumerate(atoms_list): + atoms = atoms.copy() + atoms.calc = calculator + original_forces = atoms.get_forces() + + results_by_angle = { + angle: { + "mae": [], + "cosine_similarities": [], + "passed_tests": 0, + "passed_mae": 0, + "passed_cosine_similarity": 0, + } + for angle in rotation_angles + } + # Test each angle with multiple random axes + for angle in rotation_angles: + for axis in rotation_axes: + rotated_atoms, rotation_mat = rotate_molecule_arbitrary( + atoms, angle, axis + ) + rotated_atoms.calc = calculator + rotated_forces = rotated_atoms.get_forces() + mae, cosine_similarity = compare_forces( + original_forces, rotated_forces, rotation_mat + ) + results_by_angle[angle]["mae"].append(mae) + results_by_angle[angle]["cosine_similarities"].append(cosine_similarity) + + cross_molecule_cosine_sims[angle].append( + float(np.mean(cosine_similarity)) + ) + cross_molecule_mae[angle].append(float(np.mean(mae))) + + mae_check = mae < threshold + cosine_check = all(cosine_similarity > (1 - threshold)) + results_by_angle[angle]["passed_tests"] += int( + mae_check and cosine_check + ) + results_by_angle[angle]["passed_mae"] += int(mae_check) + results_by_angle[angle]["passed_cosine_similarity"] += int(cosine_check) + + pbar.update(1) + # Compute summary statistics + for angle in rotation_angles: + results = results_by_angle[angle] + results["mean_cosine_similarity"] = float( + np.mean(results["cosine_similarities"]) + ) + results["avg_mae"] = float(np.mean(results["mae"])) + results["equivariant_ratio"] = results["passed_tests"] / num_random_axes + results["mae_passed_ratio"] = results["passed_mae"] / num_random_axes + results["cosine_passed_ratio"] = ( + results["passed_cosine_similarity"] / num_random_axes + ) + results["passed"] = results["passed_tests"] == num_random_axes + results["passed_mae"] = results["passed_mae"] == num_random_axes + results["passed_cosine_similarity"] = ( + results["passed_cosine_similarity"] == num_random_axes + ) + results["maes"] = [float(x) for x in results["mae"]] + results["cosine_similarities"] = [ + [float(y) for y in x] for x in results["cosine_similarities"] + ] + + molecule_results = { + "mol_idx": idx_list[atom_idx], + "results_by_angle": results_by_angle, + "all_passed": all( + results_by_angle[angle]["passed"] for angle in rotation_angles + ), + "avg_cosine_similarity_by_molecule": float( + np.mean( + [ + results_by_angle[angle]["mean_cosine_similarity"] + for angle in rotation_angles + ] + ) + ), + "avg_mae_by_molecule": float( + np.mean( + [results_by_angle[angle]["avg_mae"] for angle in rotation_angles] + ) + ), + "overall_equivariant_ratio": float( + np.mean( + [ + results_by_angle[angle]["equivariant_ratio"] + for angle in rotation_angles + ] + ) + ), + } + + all_results.append(molecule_results) + + pbar.close() + + aggregate_results = { + "num_molecules": len(atoms_list), + "all_molecules_passed": all(result["all_passed"] for result in all_results), + "average_equivariant_ratio": float( + np.mean([result["overall_equivariant_ratio"] for result in all_results]) + ), + "average_cosine_similarity_by_angle": { + angle: float(np.mean(sims)) + for angle, sims in cross_molecule_cosine_sims.items() + }, + "average_mae_by_angle": { + angle: float(np.mean(diffs)) for angle, diffs in cross_molecule_mae.items() + }, + "molecule_results": all_results, + } + + if save_path: + save_molecule_results(aggregate_results, idx_list, save_path) + np.save( + str(save_path.with_name(f"{save_path.stem}_molecule_results.npy")), + all_results, + ) + + return aggregate_results diff --git a/benchmarks/mof/classification/M3GNet.pkl b/benchmarks/mof/classification/M3GNet.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e487b4ad1ecae8574a76621fe9a878cc545ff0af --- /dev/null +++ b/benchmarks/mof/classification/M3GNet.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6f3e954dba20470846a14796b21dceeac03c02db8613527d441f387063697efe +size 218426 diff --git a/benchmarks/mof/classification/MACE-MP(M).pkl b/benchmarks/mof/classification/MACE-MP(M).pkl new file mode 100644 index 0000000000000000000000000000000000000000..550d35c31c694ae17fa185a3acbe19d9d041f3ec --- /dev/null +++ b/benchmarks/mof/classification/MACE-MP(M).pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2d0967389772b92764ecc9a521d83fefff9f99ac365bbd8ba643bec32313ce57 +size 197302 diff --git a/benchmarks/mof/classification/MACE-MPA.pkl b/benchmarks/mof/classification/MACE-MPA.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a848a5324eb3d9d3623d0bbd46d409f0deb2cefd --- /dev/null +++ b/benchmarks/mof/classification/MACE-MPA.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2d8ca57b95e2089ea86e28b3866bc3118e0893832a0be94ca9399002440ea4e3 +size 299928 diff --git a/benchmarks/mof/classification/MatterSim.pkl b/benchmarks/mof/classification/MatterSim.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ecb06b552cfa6e3b467561176b520d25c8fa1867 --- /dev/null +++ b/benchmarks/mof/classification/MatterSim.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e7466643aedc9c6ea0b2a34fa9227fa99eeb28c67818de077b7b5edd8d49bf47 +size 298511 diff --git a/benchmarks/mof/classification/ORBv2.pkl b/benchmarks/mof/classification/ORBv2.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8c0b927957a1763e33039d1c59a393f923552117 --- /dev/null +++ b/benchmarks/mof/classification/ORBv2.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:69c635f37e99782d0d0f2eb413f57285df0ed4666e390a2171f4d4b2b2febf36 +size 248466 diff --git a/benchmarks/mof/classification/SevenNet.pkl b/benchmarks/mof/classification/SevenNet.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d3efe3a636798a9484198768921c78bb33f19610 --- /dev/null +++ b/benchmarks/mof/classification/SevenNet.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f8285152e645f30facb7c53298075fd6b7483149944c98bf52f46bb1c3e62b67 +size 249418 diff --git a/benchmarks/mof/classification/analysis.ipynb b/benchmarks/mof/classification/analysis.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..9e67b3ae920832e91f1f3e3140a1e7c94e00172c --- /dev/null +++ b/benchmarks/mof/classification/analysis.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pandas as pd\n", + "import plotly.colors as pcolors\n", + "import seaborn as sns\n", + "from matplotlib import pyplot as plt\n", + "\n", + "from mlip_arena.models import MLIPEnum\n", + "\n", + "mlip_methods = [\n", + " model.name\n", + " for model in MLIPEnum\n", + "]\n", + "\n", + "all_attributes = dir(pcolors.qualitative)\n", + "color_palettes = {\n", + " attr: getattr(pcolors.qualitative, attr)\n", + " for attr in all_attributes\n", + " if isinstance(getattr(pcolors.qualitative, attr), list)\n", + "}\n", + "color_palettes.pop(\"__all__\", None)\n", + "\n", + "palette_names = list(color_palettes.keys())\n", + "palette_colors = list(color_palettes.values())\n", + "palette_name = \"Plotly\"\n", + "color_sequence = color_palettes[palette_name] # type: ignore\n", + "\n", + "method_color_mapping = {\n", + " method: color_sequence[i % len(color_sequence)]\n", + " for i, method in enumerate(mlip_methods)\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import numpy as np\n", + "\n", + "from mlip_arena.models import MLIPEnum\n", + "\n", + "# Color mapping by class\n", + "color_mapping = {\n", + " \"DAC\": \"#e41a1c\",\n", + " \"Flue Gas\": \"#377eb8\",\n", + " \"General\": \"#4daf4a\"\n", + "}\n", + "\n", + "# Decision boundary thresholds\n", + "thresholds = {\n", + " \"General\": (None, 35),\n", + " \"Flue Gas\": (35, 50),\n", + " \"DAC\": (50, 100)\n", + "}\n", + "\n", + "# Collect data from all models\n", + "all_data = []\n", + "margins = []\n", + "\n", + "for model in MLIPEnum:\n", + " fpath = Path(f\"{model.name}.pkl\")\n", + " if not fpath.exists():\n", + " continue\n", + "\n", + " df = pd.read_pickle(fpath)\n", + " df = df.drop_duplicates(subset=[\"model\", \"name\", \"class\"], keep=\"last\")\n", + " df_exploded = df.explode([\"henry_coefficient\", \"averaged_interaction_energy\", \"heat_of_adsorption\"])\n", + " df_group = df_exploded.groupby([\"model\", \"name\", \"class\"])[[\"henry_coefficient\", \"averaged_interaction_energy\", \"heat_of_adsorption\"]].mean().reset_index()\n", + "\n", + " df_group[\"model_name\"] = model.name\n", + " df_group[\"neg_heat\"] = -df_group[\"heat_of_adsorption\"] # negate for log scale\n", + " df_group = df_group[df_group[\"neg_heat\"] > 0] # remove invalid values\n", + "\n", + " df_group = df_group[df_group[\"name\"] != \"MIL-96-Al\"]\n", + "\n", + " all_data.append(df_group)\n", + "\n", + " # Compute misclassification margin\n", + " def point_misclassified(row):\n", + " val = row[\"neg_heat\"]\n", + " lower, upper = thresholds[row[\"class\"]]\n", + " return (lower is not None and val < lower) or (upper is not None and val >= upper)\n", + "\n", + " misclassified = df_group[df_group.apply(point_misclassified, axis=1)]\n", + "\n", + " def distance_to_boundary(row):\n", + " val = row[\"neg_heat\"]\n", + " lower, upper = thresholds[row[\"class\"]]\n", + " distances = []\n", + " if lower is not None:\n", + " distances.append(abs(val - lower))\n", + " if upper is not None:\n", + " distances.append(abs(val - upper))\n", + " return min(distances)\n", + "\n", + " if not misclassified.empty:\n", + " num_misclassified = len(misclassified) + (18 - len(df_group))\n", + " margin = misclassified.apply(distance_to_boundary, axis=1).mean()\n", + " else:\n", + " num_misclassified = 0\n", + " margin = 0.0\n", + "\n", + " margins.append((model.name, margin, num_misclassified))\n", + "\n", + "\n", + "# Combine all into one DataFrame\n", + "combined_df = pd.concat(all_data, ignore_index=True)\n", + "margins_df = pd.DataFrame(margins, columns=[\"model_name\", \"misclassification_margin\", \"num_misclassified\"])\n", + "\n", + "# --- Plotting ---\n", + "\n", + "with plt.style.context(\"default\"):\n", + "\n", + " LARGE_SIZE = 10\n", + " MEDIUM_SIZE = 8\n", + " SMALL_SIZE = 6\n", + "\n", + " plt.rcParams.update({\n", + " \"font.size\": SMALL_SIZE,\n", + " \"axes.titlesize\": MEDIUM_SIZE,\n", + " \"axes.labelsize\": MEDIUM_SIZE,\n", + " \"xtick.labelsize\": SMALL_SIZE,\n", + " \"ytick.labelsize\": SMALL_SIZE,\n", + " \"legend.fontsize\": SMALL_SIZE,\n", + " \"figure.titlesize\": LARGE_SIZE,\n", + " })\n", + "\n", + " fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 4), sharex=False, gridspec_kw={\"height_ratios\": [3, 1.5]})\n", + "\n", + " # --- Main Stripplot ---\n", + " sns.stripplot(\n", + " data=combined_df,\n", + " x=\"neg_heat\",\n", + " y=\"model_name\",\n", + " hue=\"class\",\n", + " size=2,\n", + " palette=color_mapping,\n", + " dodge=True,\n", + " jitter=0.1,\n", + " alpha=1,\n", + " ax=ax1,\n", + " )\n", + "\n", + " xmin, xmax = ax1.get_xlim()\n", + "\n", + " ax1.axvspan(xmin, 35, color=color_mapping[\"General\"], alpha=0.1, label=\"General\")\n", + " ax1.axvspan(35, 50, color=color_mapping[\"Flue Gas\"], alpha=0.1, label=\"Flue Gas\")\n", + " ax1.axvspan(50, 100, color=color_mapping[\"DAC\"], alpha=0.1, label=\"DAC\")\n", + "\n", + " ax1.axvline(x=35, linestyle=\"--\", color=\"gray\", label=\"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 35 kJ/mol\")\n", + " ax1.axvline(x=50, linestyle=\"--\", color=\"gray\", label=\"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 50 kJ/mol\")\n", + " ax1.axvline(x=100, linestyle=\"--\", color=\"gray\", label=\"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 100 kJ/mol\")\n", + "\n", + " ax1.set_xscale(\"log\")\n", + " ax1.set_xlabel(\"Heat of $\\\\mathregular{CO_2}$ Adsorption $Q_\\\\text{st}$ [kJ/mol]\")\n", + " ax1.set_ylabel(\"\")\n", + " ax1.set_xlim(xmin, xmax)\n", + "\n", + " yticks = ax1.get_yticks()\n", + " yticks = np.array(yticks)\n", + " yticks = yticks[np.isfinite(yticks)] # Remove any NaNs\n", + "\n", + " # Draw horizontal lines between models (skip the last one)\n", + " for y in yticks[:-1] + np.diff(yticks) / 2:\n", + " ax1.axhline(y=y, color=\"gray\", linestyle=\":\", linewidth=0.7, alpha=0.5, zorder=0)\n", + "\n", + " handles, labels = ax1.get_legend_handles_labels()\n", + " legend_dict = dict(zip(labels, handles, strict=False))\n", + "\n", + " desired_order = [\n", + " \"General\", \"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 35 kJ/mol\", \"Flue Gas\",\n", + " \"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 50 kJ/mol\", \"DAC\", \"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 100 kJ/mol\"\n", + " ]\n", + "\n", + " ordered_handles = [legend_dict[label] for label in desired_order if label in legend_dict]\n", + "\n", + " ax1.legend(\n", + " ordered_handles,\n", + " desired_order,\n", + " loc=\"lower center\",\n", + " bbox_to_anchor=(0.5, 1),\n", + " ncol=3,\n", + " frameon=True\n", + " )\n", + "\n", + "\n", + " ax1.spines[\"top\"].set_visible(False)\n", + " ax1.spines[\"right\"].set_visible(False)\n", + "\n", + " # --- Misclassification Margin Barplot ---\n", + "\n", + " # Sort by error margin\n", + " margins_df_sorted = margins_df.sort_values(by=\"misclassification_margin\", ascending=True)\n", + "\n", + " # Extract color values in order\n", + " bar_colors = [method_color_mapping[m] for m in margins_df_sorted[\"model_name\"]]\n", + "\n", + " sns.scatterplot(\n", + " data=margins_df_sorted,\n", + " x=\"num_misclassified\",\n", + " y=\"misclassification_margin\",\n", + " hue=\"model_name\",\n", + " palette=bar_colors,\n", + " ax=ax2\n", + " )\n", + "\n", + " for _, row in margins_df_sorted.iterrows():\n", + " x = row[\"num_misclassified\"]\n", + " y = row[\"misclassification_margin\"]\n", + " model = row[\"model_name\"]\n", + " color = bar_colors[margins_df_sorted[\"model_name\"].tolist().index(model)]\n", + "\n", + " ax2.text(\n", + " x+0.1,\n", + " y,\n", + " f\"{y:.2f}\",\n", + " fontsize=SMALL_SIZE,\n", + " ha=\"left\",\n", + " va=\"bottom\",\n", + " color=color,\n", + " alpha=0.9\n", + " )\n", + "\n", + " ax2.set_ylabel(\"Misclass. margin [kJ/mol]\")\n", + " ax2.set_xlabel(\"Missing + misclass. count\")\n", + " ax2.spines[\"top\"].set_visible(False)\n", + " ax2.spines[\"right\"].set_visible(False)\n", + " # ax2.set_xticklabels(margins_df_sorted[\"model_name\"], rotation=45)\n", + " ax2.set_yscale(\"log\")\n", + "\n", + " handles, labels = ax2.get_legend_handles_labels()\n", + " legend_dict = dict(zip(labels, handles, strict=False))\n", + " ax2.legend(\n", + " legend_dict.values(),\n", + " legend_dict.keys(),\n", + " loc=\"upper left\",\n", + " bbox_to_anchor=(0, 1),\n", + " ncol=3,\n", + " frameon=True\n", + " )\n", + "\n", + " plt.tight_layout()\n", + " plt.savefig(\"mof-misclassification_margin.pdf\", bbox_inches=\"tight\")\n", + " plt.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/benchmarks/mof/classification/classification.py b/benchmarks/mof/classification/classification.py new file mode 100644 index 0000000000000000000000000000000000000000..edf0fae3bd8b2e8c4ae9eb6701cc931cd4a3ff7f --- /dev/null +++ b/benchmarks/mof/classification/classification.py @@ -0,0 +1,152 @@ +import functools +import itertools +from pathlib import Path + +import pandas as pd +from ase import Atoms +from ase.build import molecule +from dask.distributed import Client +from dask_jobqueue import SLURMCluster +from prefect import Task, flow, task +from prefect.client.schemas.objects import TaskRun +from prefect.states import State +from prefect_dask import DaskTaskRunner +from tqdm.auto import tqdm + +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.mof.flow import widom_insertion +from mlip_arena.tasks.utils import get_calculator + + +def load_row_from_df(fpath: str): + df = pd.read_pickle(fpath) + + for _, row in df.iterrows(): + yield row + + +def save_result( + tsk: Task, + run: TaskRun, + state: State, + row: pd.DataFrame, + model_name: str, + gas: Atoms, + fpath: str, +): + result = run.state.result() + + assert isinstance(result, dict) + + copied = row.copy() + copied["model"] = model_name + copied["gas"] = gas + + for k, v in result.items(): + copied[k] = v + + fpath = Path(f"{model_name}.pkl") + + if fpath.exists(): + df = pd.read_pickle(fpath) + df = pd.concat([df, pd.DataFrame([copied])], ignore_index=True) + else: + df = pd.DataFrame([copied]) + + df.drop_duplicates(subset=["name", "model"], keep="last", inplace=True) + df.to_pickle(fpath) + + +# Orchestrate your awesome dask workflow runner + +nodes_per_alloc = 1 +gpus_per_alloc = 1 +ntasks = 1 + +cluster_kwargs = dict( + cores=4, + memory="64 GB", + shebang="#!/bin/bash", + account="m3828", + walltime="04:00:00", + job_mem="0", + job_script_prologue=[ + "source ~/.bashrc", + "module load python", + "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena", + ], + job_directives_skip=["-n", "--cpus-per-task", "-J"], + job_extra_directives=[ + "-J mof", + "-q regular", + f"-N {nodes_per_alloc}", + "-C gpu", + f"-G {gpus_per_alloc}", + # "--exclusive", + ], +) + +cluster = SLURMCluster(**cluster_kwargs) +print(cluster.job_script()) +cluster.adapt(minimum_jobs=10, maximum_jobs=20) +client = Client(cluster) + + +@task +def run_one(model, row, gas): + return widom_insertion.with_options( + refresh_cache=False, + on_completion=[functools.partial( + save_result, + row=row, + model_name=model.name, + gas=gas, + fpath=f"{model.name}.pkl" + )] + )( + structure=row["structure"], + gas=gas, + calculator=get_calculator( + model, + dispersion=True + ), + criterion=dict(fmax=0.05, steps=50), + init_structure_optimize_loops = 10, + ) + + +@flow +def run_all(): + futures = [] + gas = molecule("CO2") + + for model, row in tqdm(itertools.product(MLIPEnum, load_row_from_df("input.pkl"))): + + if model.name not in ["MACE-MPA", "MatterSim", "SevenNet", "M3GNet", "ORBv2"]: + continue + + fpath = Path(f"{model.name}.pkl") + + if fpath.exists(): + df = pd.read_pickle(fpath) + if row['name'] in df['name'].values: + continue + + try: + print(model, row['name']) + future = run_one.submit( + model, + row, + gas, + ) + futures.append(future) + except Exception: + continue + + return [f.result(raise_on_failure=False) for f in futures] + +# run_all() +run_all.with_options( + task_runner=DaskTaskRunner(address=client.scheduler.address), + log_prints=True, +)() diff --git a/benchmarks/mof/classification/input.pkl b/benchmarks/mof/classification/input.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c64343235f1e28f359437e099c8251d65eaa7208 --- /dev/null +++ b/benchmarks/mof/classification/input.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f66941e6898e0b0dbef120b2b17bd6828a1cf4db6aad94e1fd83aaa8b21acd84 +size 286336 diff --git a/benchmarks/mof/classification/mof-misclassification_margin.pdf b/benchmarks/mof/classification/mof-misclassification_margin.pdf new file mode 100644 index 0000000000000000000000000000000000000000..31cd95c7feb20efb342a2cc87826424769acd225 --- /dev/null +++ b/benchmarks/mof/classification/mof-misclassification_margin.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77b1c766a04fc365be40bff75e656d9d6bb9d39e10c282ef7e2e36ea97248138 +size 31870 diff --git a/benchmarks/mof/golddac.ipynb b/benchmarks/mof/golddac.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..9f1002f615478673aa3a5721b9e1f35d6b31c33c --- /dev/null +++ b/benchmarks/mof/golddac.ipynb @@ -0,0 +1,527 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare input structures\n", + "\n", + "We first start by preparing the input ASE database. In the subfolder `golddac/test.xyz` there are a 312 total of MOF + gas configurations for 26 MOFs. The original `GoldDAC` dataset can be found at https://github.com/hspark1212/DAC-SIM/tree/main/assets/GoldDAC." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from dotenv import load_dotenv\n", + "\n", + "load_dotenv()\n", + "\n", + "from ase.io import read\n", + "\n", + "atoms_list = read(\"golddac/test.xyz\", index=\":\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "26\n" + ] + } + ], + "source": [ + "# Collect by MOF name\n", + "from collections import defaultdict\n", + "\n", + "mof_dict = defaultdict(list)\n", + "\n", + "for atoms in atoms_list:\n", + " mof_name = atoms.info[\"group\"]\n", + " mof_dict[mof_name].append(atoms)\n", + "print(len(mof_dict))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Demo Interaction (Adsorption) energy between MOF and gas molecules (CO2, H2O)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No module named 'deepmd'\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2025-01-10 16:24:46.439\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmlip_arena.tasks.utils\u001b[0m:\u001b[36mget_calculator\u001b[0m:\u001b[36m30\u001b[0m - \u001b[1mUsing device: cuda:0\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MLIPEnum.MACE-MP(M)\n", + "Selected GPU cuda:0 with 40339.31 MB free memory from 1 GPUs\n", + "Selected GPU cuda:0 with 40339.31 MB free memory from 1 GPUs\n", + "Default dtype float32 does not match model dtype float64, converting models to float32.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[32m2025-01-10 16:24:46.593\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmlip_arena.tasks.utils\u001b[0m:\u001b[36mget_calculator\u001b[0m:\u001b[36m42\u001b[0m - \u001b[1mUsing calculator: \u001b[0m\n", + "\u001b[32m2025-01-10 16:24:46.640\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmlip_arena.tasks.utils\u001b[0m:\u001b[36mget_calculator\u001b[0m:\u001b[36m54\u001b[0m - \u001b[1mUsing dispersion: \u001b[0m\n" + ] + } + ], + "source": [ + "from mlip_arena.models import MLIPEnum\n", + "from mlip_arena.tasks.utils import get_calculator\n", + "from ase import units\n", + "\n", + "for model in MLIPEnum:\n", + " print(model)\n", + " break\n", + "calc = get_calculator(\n", + " calculator_name=model,\n", + " calculator_kwargs=None,\n", + " dispersion=True,\n", + " dispersion_kwargs=dict(damping='bj', xc='pbe', cutoff=40.0 * units.Bohr),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/26 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHbCAYAAAD8lMpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACesElEQVR4nOzdd3xUVf7/8dedSSN1QieNThAISVikKKCIDbCLZXWtu3bUn+5+batr2V3bNldAV6yrrqgoYgMsYEGlKQmE3klooaX3zMzvj8mEBAKZSSZzk8z7+XjkMZN777nzOYPmzmfuOZ9jOJ1OJyIiIiIiInJcFrMDEBERERERae2UOImIiIiIiDRCiZOIiIiIiEgjlDiJiIiIiIg0QomTiIiIiIhII5Q4iYiIiIiINEKJk4iIiIiISCOUOImIiIiIiDRCiZOIiIiIiEgjlDiJiIiIiIg0QomTiIiIiIhII5Q4SZuya9cukpOTeeCBB8wORUREApyuSSKBJcjsAETcXnzxRZ577jkA5s+fT58+fXx27uTk5Hq/WywWoqOjGThwIJdffjmTJ0/22Wud6PUtFgtff/018fHxDR43adIktm7dCsDrr7/OKaeccswxWVlZvPPOOyxfvpwDBw4QFBREfHw8Y8aM4frrr6dbt24njOF4nnrqKS655BJvuuW1rVu38s4777Bs2TL27t1LRUUFNpuNQYMGcdZZZ3HBBRcQGhp6TLum9llEpKl0TWq/1yT3a2/cuPG4x5xxxhns3r2bhQsXkpCQ0OTX0vWrfVHiJK2C0+nkgw8+wDAMnE4ns2fP5v777/f560ydOhWA6upqtm/fztdff83SpUtZs2ZNi7xeXUFBQVRXVzNnzhzuvPPOY/b/8ssvbN26tfa4ozmdTv7+97/zyiuvEBQUxCmnnMK5555LVVUVGRkZvPbaa8yaNYunn36ac88997hxuN+Do5100klN75wHpk+fzowZM3A4HKSlpXHxxRcTERHBwYMH+fnnn3n44YeZNWsWc+bMqW3jqz6LiHhD16T2f01qabp+tVNOkVbg+++/dw4YMMD58MMPO0ePHu0cNWqUs6Ki4pjjcnJynAMGDHDef//9Xp1/wIABzgEDBhyz/aeffnImJyc7Bw4c6Ny1a1eT4/fk9ceOHeu8+OKLnaeffrrTbrcfc8wDDzzgHDx4sPN3v/udc8CAAc4ff/yx3v5p06Y5BwwY4Bw/frxz06ZNx7RfsGCBMyUlxXnSSSc5f/rppwZjaOg98IcXXnjBOWDAAOdpp53mzMzMbPCY7777znnNNdfU29bcPouINIWuSe37muTJa48fP945YMAAZ05OTpNeQ9ev9klznKRVmD17NgCXXXYZ559/PocPH+brr79u8dcdPXo0ffr0weFwkJWVxdatW0lOTubaa689bpvzzz+fwYMHc+DAAaD+GPetW7dy1113MWrUKAYOHMiyZcvqtZ0yZQp79uzhxx9/rLe9uLiYBQsWcMYZZ9CpU6djXjMnJ4cXX3yR4OBgXnzxRfr373/MMeeccw4PPvggdrudxx57DIfD0ZS3xOd27drFjBkzCA4OZubMmaSmpjZ43Lhx43jllVdqf2/LfRaRtk3XpPZ7TfIHvT/tlxInMd3BgwdZtGgRffv2ZejQobVjmt9//32/vL7T6ax93rdvX0aOHMmyZcvYvn37Mcf+8ssvbNq0iQkTJtClS5d6+3bu3MkVV1zB3r17ueCCC5gyZQoRERH1jjn//PPp0KFD7UXZ7dNPP6W0tJQpU6Y0GOOcOXOorq5mwoQJJxwXftlll9GlSxd27NjB8uXLG+27P8yZM4eqqirOPvtsBgwYcMJjQ0JC6rVrq30WkbZL16T2fU3yB70/7ZfmOInp3B+sL7roIsA1aXPQoEEsXbqUnJwcEhMTW+y1ly5dyo4dOzAMgyFDhgBw1VVXsWzZMt5///1jxpi/9957AFxxxRXHnGvlypXccsst3Hvvvcd9vaioKM455xw+//xzDh8+TMeOHQHXt5txcXGMGTOGefPmHdPul19+AeDUU089YX+CgoIYOXIkn332GStXrmTUqFHHHDNt2rRjtsXHx7fYJNyff/4ZcH2T6g1f9llExFO6JrXva1Jjr+1WWFjY5PPq+tV+KXESUzlrJt1arVYuvPDC2u2XXHIJf/nLX5g9e/YJ/+h7y/1H0j0Rd+HChTgcDq6//vraqjlnnnkmXbt25aOPPuKee+6pvQtSUFDAggULSEpKarCyUOfOnY87ybWuyy67jLlz5/Lxxx9zww03sH79etauXcvUqVOxWBq+CXzw4EEAunfv3uj53cfs37+/wf3Tp08/ZtuIESNa7CLljt3bykG+7LOIiCd0TWr/16TGXtsXdP1qv5Q4iamWLl1KdnY2Y8eOrffB+rzzzuOZZ55hzpw53HXXXQQFnfg/1Ya+Nbr44ouPKSHq/iNpGAbR0dEMGzaMKVOm1LtABgUFcfnllzN9+nS+/PJLzjvvPAA++ugjKioquPzyyzEM45jXGzhwYL2hZsczfPhwevfuzQcffMANN9zA+++/j8Vi4dJLLz1uG/fQjYZe92juY4537InKrzbG0/e5Lm9ib2q7hvr80ksv8eWXX7J9+3ZCQkJIS0vj3nvvbXS4oIgELl2T2v81ydPXdpcjP5on1xZfvj/SuihxElO5hxkc/c1SbGwsZ5xxBl988QXffPMNZ5111gnPc7xvrI7+4+npH+jLL7+c//znP7z33nu1F6n333+f4ODg415MOnfu7NG5wTUh929/+xtLlizhs88+45RTTiEuLu64x3fp0oVt27axb9++Rs/tPubo8e6+4On7XFfXrl09jr2u5vZ5+fLlXHXVVaSkpOB0Onn++ee54YYb+Pzzz7HZbF7FIiKBQdek9n9Nai5Pri2t5f0R31PiJKapW6Xonnvu4Z577mnwuPfee6/Ri1RzvrFqSLdu3TjjjDP48ssv2bZtG4cOHWLr1q1Mnjy5dgz40bz5tujiiy/mueee44EHHqCwsPC4E3DdfvWrX7Fs2TJ++uknLrvssuMeZ7fba6smDRs2zON4PNWU9/lXv/oVS5cuZenSpSeMvaF2zenzq6++Wu+4Z599luHDh7Ny5UrOOOMML3shIu2drkmBcU1qLk+uLa3l/RHfU1U9Mc1HH31EVVUVgwcPZsqUKQ3+xMbG8uOPPzZ4u7ylXXXVVYDrW713330XaHgCblN06tSJ008/nX379hEbG8uECRNOePwll1yC1Wrlq6++YsuWLcc97sMPP2T//v307t2bESNG+CTW5rrkkksIDg7miy++OGHsAJWVlfXa+bLPJSUlOBwOoqOjve+EiLR7uiYFxjXJ1xq6tuj9ab90x0lM4y5/+thjjzF06NAGj+nYsSMzZ87kgw8+4O677/ZneIwePZrevXvz0UcfUVpaSu/evRk5cqTPzn///fdz0UUX0bVr10bHoScmJnLLLbfwwgsvcOutt/Kf//yHfv361Tvm66+/5q9//StWq5VHH330uJN6/S0hIYGpU6fyr3/9i5tvvpl///vfpKSkHHPc999/zyuvvMKbb74J+L7Pf/3rXznppJNIT0/3bQdFpF3QNSkwrkm+1tC1Re9P+6XESUzhXpNiwIABx71Agavaz8svv8yHH37oUXUgX7vyyit56qmnap/7UmJioldlbe+8807Kysp4/fXXufDCCxkzZgz9+vWjurqajIwMVq1aRVhYGP/4xz+8Lv3d0m699Vaqq6uZMWMGU6ZMIT09nSFDhhAREcHBgwf5+eef2bFjR235XTdf9fmZZ57hl19+YdasWVit1pburoi0MbomBdY1yVdOdG3R+9M+KXESU7gXEmxszktSUhIjRoxg2bJlfPfdd36viHbxxRfzzDPPEBwcXLumh1ksFgsPPPAAkyZN4n//+x8rVqxgyZIlWK1W4uPjufHGG7nuuus8Kn9qhqlTpzJx4kTeeecdli1bxpw5c6isrMRmszFw4EB+97vf1askBb7p81NPPcXnn3/Of//73xZdf0VE2i5dk7zX1q9JzdXYtSXQ35/2ynDWXaJaROpZsmQJ119/PRdeeCHPPvus2eGIl/7yl78wb9483nrrLfr27Wt2OCIizaJrUuuga0vg0h0nkRN45ZVXAPjNb35jciTirccee4xPPvmEGTNmEB0dzYEDBwAIDw8nIiLC5OhERLyna5L5dG0JbLrjJHKUDRs2sHDhQtauXcvChQuZMGECL7zwgtlhiZeSk5Mb3D516lTuvPNOP0cjItI0uia1Lrq2BDbdcRI5yrp163j++eeJjIxk0qRJPProo2aHJE1gxvoeIiK+pmtS66JrS2DTHScREREREZFGqGi8iIiIiIhII5Q4iYiIiIiINCIg5zg5HA6qq6uxWCwYhmF2OCIiAcPpdOJwOAgKCsJi0Xd3brouiYiYx9Nrk+mJU3FxMS+88AIbNmxg3bp15OXlHVOZxG638+abb/LDDz+wefNmCgoKiIuLY8KECdx8881ER0d79ZrV1dVkZWX5uisiIuKhlJQUQkJCzA6j1dB1SUTEfI1dm0xPnPLz83n//fcZOHAgZ555JrNnzz7mmPLycqZNm8Z5553HZZddRmxsLOvWrePFF1/km2++4cMPPyQsLMzj13RnkikpKVitVq9jttvtZGVlNbl9W6f+q//qv/rf3L+futtUn65LzaP+q//qf+D2H/x3bTI9cYqPj2fFihUYhsHhw4cbTJzCwsJYuHAhsbGxtdtGjhxJjx49uPvuu/niiy+48MILPX5N9zAIq9XarP/Amtu+rVP/1X/1X/1vKg1Hq0/XJd9Q/9V/9T9w+w8tf20yPXHy5OJptVrrJU1uQ4cOBWDfvn0+j0tERMQT69atY/r06axevZqioiJ69OjBeeedx29/+1s6dOhgdngiIuIjpidOzbF06VIA+vXr16T2dru9We2a2r6tU//V/7qPgUb9b17/29v7tmXLFq688kp69+7NQw89RGxsLD///DMvvPACa9eu5cUXXzQ7RBER8ZE2mzjl5ubyj3/8gyFDhjB+/PgmnaO5E3EDfSKv+q/+BzL1P7D77/bpp59SUVHBtGnTSEpKAmD06NEcOHCA9957j4KCAmJiYkyOUkREfKFNJk75+fncdNNNOJ1OnnvuuSZPMtYk3KZR/9V/9V/9b+7fz/YiODgYgMjIyHrbo6KisFgstftFRKTta3OJU0FBATfeeCO5ubn897//JTExscnn0iTc5lH/1X/1X/0PdBdddBH//e9/eeyxx/i///s/YmNjWbFiBe+99x5XX3014eHhZocoIiI+0qYSp4KCAm644QZ27drFG2+8wcCBA80OSUREAlhCQgLvvvsuU6dO5cwzz6zdfs011/DHP/7R6/Np7m3TqP/qf93HQBPo/Qf/zb9tM4mTO2nKycnhtddeY9CgQWaHJCIiAW7Xrl3cdtttdOrUieeff56OHTuyatUqXnzxRUpLS3nyySe9Op/m3jaP+q/+B7JA7z+0/HvQKhKn7777jrKyMkpKSgBXlaIFCxYAcNppp2EYBr/97W9Zt24dDz30EHa7nczMzNr2HTt2rJ2UKyIi4i//+Mc/KC4uZu7cubXD8k4++WRiY2N56KGHuOiiixgxYoTH59Pc26ZR/9V/9T9w+w/+m3/bKhKnxx9/nN27d9f+vmDBgtrEaeHChcCRDPKvf/3rMe0vvvhinn76aT9EKiIicsT69evp27fvMXOZUlJSANi8ebNXiZPm3jaP+q/+q/+B239o+fegVSROixYtavSYjRs3+iESERERz3Xt2pXNmzdTUlJCRERE7Xb3qIhu3bqZFJmIiPhaq0icRERE2qLrrruOO+64gxtvvJHrrruO2NhYVq1axUsvvUS/fv0YN26c2SGKiIiPKHESERFpogkTJvDGG2/w8ssv8+STT1JUVET37t258sorufnmmwkJCTE7RBER8RElTiIiIs0watQoRo0aZXYYIiLSwixmB9DWbMot4vrXV7DpUKXZoYiIiABgZH1A3+UPQXmh2aGIiLRbSpy89NOWgyzecohPNpWYHYqIiAgAxprZ2HKXYqz/2OxQRETaLSVOXhrYIxqATYeqTI5ERETExdlloOvJ3lXmBiIi0o4pcfLS0IQYLAYcKnOwt6Dc7HBERESgRyoAxt5Mc+MQEWnHlDh5KTwkiIHdowBYlZNvbjAiIiKAs0e660nuGqjWHFwRkZagxKkJ0hJtAGQocRIRkdYgthfVwZEY9ko4sN7saERE2iUlTk3gTpwycwrMDURERATAMCiNGeB6vifD3FhERNopJU5NkJ4YA0DW7gKq7A6ToxEREYFSmxInEZGWpMSpCXp1iiAy2KCi2sH6vVozQ0REzFdSe8cp09Q4RETaKyVOTWCxGPTvFAxARna+ucGIiIgApbZk15PctVBdYW4wIiLtkBKnJhrQKQSAjOw8kyMRERGByg7dcXaIBUcV7F9ndjgiIu2OEqcmGtCx5o6TKuuJiEhrYBi16zlpnpOIiO8pcWqi/jWJ085DpRwq1pAIERExX+16TkqcRER8TolTE0WEWOjXJQKATN11EhGRVsDZI831RAUiRER8TolTM9QuhKsCESIi0hq4E6f966Cq3NRQRETaGyVOzVCbOOWoQISIiLQCMQkQ3gkc1a7qeiIi4jNKnJohPckGQGZ2PnaH09xgREREDAPiauY57dU8JxERX1Li1Az9u0YSEWKlpNLO5v1FZocjIiJyZLieCkSIiPiUEqdmsFoMUjXPSUREWhP3HScViBAR8SklTs3kHq6nhXBFRMQsr/6wnbsWHCC3sBzi0lwb96+HqjJT4xIRaU+UODVTemIsoDtOIiJinuXb89hdZOfLdbkQHQ8RXcBph31rzA5NRKTdUOLUTGk1d5w27y+moKzK3GBERCQgDY6LBmDVroKjCkRkmheUiEg7o8SpmTpHhpLUMRyA1bvyzQ1GREQC0tCEGABW5RS4NqhAhIiIzylx8gH3PKeVO/NNjUNERAKTO3HadrDENfqhtkCEEicREV9R4uQDw5Jq5jlpIVwRETFBx4gQukVYAcjaVXAkcTqwASpLTYxMRKT9UOLkA0cq6+XjdGohXBER8b9+HYMBWLUrH6J7QGQ3cDpgX5a5gYmItBNKnHxgYPdoQoMsFJRVsf1gidnhiIhIABpQkzhl5uS7Nmi4noiITylx8oGQIAsp8a7x5SpLLiIiZuhXJ3FyOp2qrCci4mNKnHykdrie5jmJiIgJescGY7UYHCiqYG9BuSrriYj4mBInH0lP0kK4IiJinlCrwcBuUQCsysmHuDTXjgMboaLYtLhERNoLJU4+4r7jtGFfEaWV1eYGIyIiASk10TVsPHNXPkR1h6gegFMFIkREfECJk4/0iOlA9+gw7A4nq3cVmB2OiIj4wQMPPEBycvJxfzIzM/0aT2rtQrj5rg0qECEi4jNBZgfQngzraWNe1j4ysvMZ1aeT2eGIiEgLu/3227nyyiuP2X7rrbcSEhJCSkqKX+NxL4SbtasAu8OJNS4dNs5TgQgRER9Q4uRD6YmxNYmTCkSIiASCpKQkkpKS6m1bvnw5eXl53HbbbVitVr/G07dLJBEhVkoq7WzZX0yyCkSIiPiMhur50JHKeloIV0QkUH3wwQcYhsGll17q99e2WgxS6g7XcxeIOLgZKor8Ho+ISHuiO04+NCQ+hqCaUrC788tIiA03OyQREfGjoqIivvjiC0aPHk1iYqLX7e12e5Ne193ObreTmhDD0m2HycjO49Jhg7FEx2MU7sa+OxN6ntKk87d2dfsfiNR/9b/uYyBq7nvgaTslTj4UFmxlUFw0q3cVkJGdr8RJRCTAfPbZZ5SXlzNlypQmtc/Kal71u6ysLKKrygFYunkvmZlV9AnvRWzhbvb8/Dn789r3dam5719bp/6r/4Gupd8DJU4+lp5oq02czk+NMzscERHxow8++ACbzcZZZ53VpPYpKSlNmhdlt9vJysoiJSWFbr2r+NuSb8kutJM8KIXwotNh34/EG/uJS0trUlytXd3++3teWWug/qv/gdx/aP574G7fGCVOPpaeFMt/l+wkI0cFIkREAsmGDRtYs2YN1157LSEhIU06h9VqbdYHH6vVSnxsMF2jQtlfVMGG3GKGJwwDwLJvFbTzD1XNff/aOvVf/Q/k/kPLvwcqDuFjw5JiAVi7u5CK6sAdayoiEmg++OADAC677DJT4zAMg9REGwCZOfnQo2Ytp0NboFzrDIqINJUSJx9L7NiBThEhVNodrN1TaHY4IiLiB5WVlXz66acMHTqUAQMGmB0OaTWJ06pdBRDRCWJqSqbvXWVeUCIibZwSJx8zDONIWfLsfFNjERER//j666/Jz883/W6TW1rtHaeaYeNxqa7HPZmmxCMi0h6YnjgVFxfz7LPPcuONNzJq1CiSk5OZNm1ag8euXbuW66+/nvT0dIYPH87UqVPJycnxc8SNS68ZrqeFcEVEAsMHH3xAeHg4kyZNMjsUgNq1nHIOl3GouALiaobraSFcEZEmMz1xys/P5/3336eyspIzzzzzuMdt3bqVa665hqqqKp577jmefPJJduzYwVVXXcXhw4f9GHHj0mu+6dMdJxGRwPDaa6+RkZFBZGSk2aEAEB0WTN8uEQCs3lVwJHHam2leUCIibZzpVfXi4+NZsWIFhmFw+PBhZs+e3eBxzz//PCEhIbz00ku1F6bBgwdzzjnn8Oqrr/J///d//gz7hIYm2jAM2J1fxv7CcrpGh5kdkoiIBJjURBtbD5SQmZPP+FPTXBsPb4OyPOgQa2psIiJtkel3nAzDwDCMEx5TXV3Nt99+y9lnn13v27z4+HhGjhzJ119/3dJheiUyNIjkblEAZOTkmxuMiIgEpPTaAhH5EN4RbD1dO1QgQkSkSUxPnDyRnZ1NeXk5ycnJx+wbMGAAO3fupKKiwoTIjs9dIGKl5jmJiIgJ3CXJV+Xk43Q668xzyjQtJhGRtsz0oXqeyM/PB8Bmsx2zz2az4XQ6KSgooGvXrl6d125v2jpL7nYnap+WEMOs5Tlk7Mxr8uu0Vp70vz1T/9X/uo+Bprn9D9T3zQwDu0cTYrWQV1pF9uFSesalwbq5KhAhItJEbSJxcjvRkL7Ghvs1JCsrqznhnLB9WEk14CoF+8vKDKwW7+Nr7Zr7/rV16r/6H8gCvf9tQUiQhUFx0WTm5JOZk09PVdYTEWmWNpE4ue805eUdO+wtPz8fwzCIjo72+rwpKSlYrVav29ntdrKysk7YfqjDycPfLaSovJqw7n0ZHOd9fK2VJ/1vz9R/9V/9b3r/3e3FP9ISbWTm5LMqp4ALz6xZyyl/J5Qeds17EhERj7WJxCkpKYmwsDA2bdp0zL5NmzbRs2dPQkNDvT6v1Wpt1gefE7W3Wl0XrMWbD7JqdyFDE9tfBaPmvn9tnfqv/qv/gdv/tqLeQrgdBkFsb8jb7ipL3vcMU2MTEWlr2kRxiKCgIMaPH89XX31FcXFx7fY9e/awbNkyzjrrLBOjOz4thCsiImZyF4hYs6eQKrtDC+GKiDRDq7jj9N1331FWVkZJSQkAW7ZsYcGCBQCcdtppdOjQgTvvvJMpU6Zw6623ctNNN1FZWcnzzz9PbGwsN954o5nhH5e7sl6mFsIVERET9OoUTnRYEIXl1WzcV8SQuHRYO0eV9UREmqBVJE6PP/44u3fvrv19wYIFtYnTwoULSUhIoG/fvrz11lv8/e9/5+6778ZqtTJq1ChmzJhBx46tc5y2ew2NbQdLyCupJDYixNyAREQkoBiGQWrNsPHMnHyGxKW5dihxEhHxWqtInBYtWuTRcUOGDOGNN95o2WB8yBYeQp8uEWxzr9w+0Lty6SIiIs2V7p5vm5PPb9JqCkQUZEPJIYjoZG5wIiJtSJuY49SWpSdqnpOIiJgntbZARD6ExUDHvq4dezXPSUTEG0qcWph7nlNGTr6pcYiISGAammADYMuBYorKq1QgQkSkiZQ4tbC6BSIcDqe5wYiISMDpEhVKvK0DTidk7S6okzhlmhqXiEhbo8SphSV3i6JDsJWiimq2HihuvIGIiIiPuddzWpVTACoQISLSJEqcWliQ1cLQhBgAMlSWXERETHAkccqH7kMBAwp3QfEBM8MSEWlTlDj5Qe1CuDkqECEiIv5Xv0BENHTu79qxN9OskERE2hwlTn7gnue0cme+qXGIiEhgGhIfjcWAfYXl7Csohx5prh0qECEi4jElTn7gTpw27S9yVTQSERHxo/CQIAZ0iwJg1a58VdYTEWkCJU5+0DUqjIRYV0Wj1bsKzA5HREQCUL15TqqsJyLiNSVOflI7z0kL4YqIiAnS6s5z6p4CGFC0B4pyzQxLRKTNUOLkJ+k1FyxV1hMRETO4C0Ss3lWAIzgCuiS7dqhAhIiIR4Ka0mjz5s2sXLmS3NxcysvLiY2NpV+/fpx88slERkb6OsZ2wT3PKSMnH6fTiWEY5gYkIiIBpX/XSDoEWymuqGbbwWL69UiDAxtc85wGnGN2eCIirZ7HiVNBQQHvvfce7733Hnv27MHpdB57sqAgxo0bxzXXXMPo0aN9GmhbNygumhCrhcMllWQfLqVnpwizQxIRkQASZLWQEh/D8h2HycwpoF9cOqx+VwUiREQ85FHi9OabbzJjxgwAJk2axIgRIxg8eDAdO3YkNDSUgoICcnJyyMzMZOHChdx4442ccsop/OlPf6Jnz54t2oG2IjTIyuD4aDKy88nIzlfiJCIifpea6EqcVuXkM2WYCkSIiHjDo8Tprbfe4sEHH2Ty5MkEBwcfs79z58507tyZ9PR0brjhBrKzs3nxxReZP38+t956q8+DbquGJcWSkZ3Pyuw8LkqPNzscEREJMGmJscB2V4GIScPAsEDxPijcC9E9zA5PRKRV8yhxmj9/PkFBnk+HSkpK4qmnnsJutzc5sPaodp6TCkSIiIgJUhNjAFi/t5ByI5SwLgNh/zrXcD0lTiIiJ+RRVb3Nmzc36eRWq7VJ7dord0ny9XsLKatUUikiIv4Vb+tA58gQqh1O1u0tPLKekyrriYg0yqPE6eKLL+aSSy7hnXfeoaioqKVjarfiYsLoGhVKtcPJmj1aCFdERPzLMAxSE2xAzUK4PdJcO1QgQkSkUR4lTrfccguHDx/miSeeYMyYMfzhD39g6dKlLR1bu2MYRp3heloIV0RE/M+9EO6qnPwjd5z2ZEAD1XJFROQIjxKne+65h2+++YaZM2cyfvx4vvzyS2644QYmTJjACy+8wN69e1s6znbDPVxP85xERNqPn3/+mZtuuomTTz6ZoUOHcvbZZ9dWo21t3AvhZubkQ/chYFih5AAU7jE1LhGR1s7jig+GYTBu3DjGjRtHYWEhn3zyCXPmzOH5559nxowZjBo1issuu4wJEyY0WHlPXNJrLlhKnERE2odPP/2U++67j4kTJ/LMM88QHh5OTk4Oubm5ZofWoKEJrgIROw6Vkl9lxdb1JMhd47rrFKOKryIix+N5qbw6oqOj+c1vfsNvfvMbNmzYwIcffshnn33GPffcg81mY8mSJb6Os91ISYjBajHYV1jO3oIyesR0MDskERFpotzcXP70pz9xxRVX8Nhjj9VuHzVqlHlBNcIWHkLvzhFsP1jCql0FnBaX5kqc9mbCSeeZHZ6ISKvl0VC9Exk4cCAXXHABZ5xxBgD5+fnNPWW7Fh4SxEk9ogBYuTPf3GBERKRZZs+eTWlpKTfddJPZoXglteaukwpEiIh4rsmJ0+HDh3njjTc4//zzufzyy/n4448ZP358qx3T3ZqkJ7rnOalAhIhIW7ZixQpsNhvbtm3jwgsvZNCgQYwePZo//elPFBcXmx3ecaXVnecUN8y1UQUiREROyKuheg6Hg++//54PP/yQb7/9lqqqKnr16sW9997LxRdfTOfOnVsqznYlPcnGW0t3kpGTb3YoIiLSDLm5uZSVlXH33Xdzyy23kJaWRlZWFtOmTWPz5s288847GIbh8fmaunC8u52n7VPiowFX4lTdeTRWSxBG6SHsedkQk9CkGMzkbf/bG/Vf/a/7GIia+x542s6jxGn79u18+OGHfPzxxxw8eJCwsDDOO+88Lr30UoYPH96kAAOZu7Je1u4CKqsdhAQ1e8SkiIiYwOl0UlFRwdSpU7n55psBGDlyJMHBwTz55JMsWbKEU045xePzZWVlNSseT9tX2p0EGXC4pJKvlq/ltMhehBduYcdPc8jvMa5ZMZipue9fW6f+q/+BrqXfA48Sp4kTJwIwdOhQ7rzzTiZPnkxERESLBtae9eoUji08mPzSKtbvLawtDSsiIm2LzWYDYMyYMfW2jxs3jieffJK1a9d6lTilpKRgtVq9jsNut5OVleVV+5OW/UTW7kKqouMJ6zsaMrbQO7QAZ1qa169vtqb0vz1R/9X/QO4/NP89cLdvjEeJ03XXXceUKVPo37+/14HIsQzDID3RxjcbD5CRnafESUSkjUpOTiYzM/OY7c6auUIWi3cjCqxWa7M++HjTPi0xlqzdhWTtLuSC+GGQ8RaWfaugDX/wau7719ap/+p/IPcfWv498Ogv+oMPPthg0rRt2zZ++eUXSktLfR5Ye1e7EK7mOYmItFlnn302AN9//3297e7fU1NT/R6Tp+oViKhbWU8FIkREGtSkdZzmzp3LP//5Tw4cOADABx98wODBg7n77rs59dRTufzyy30aZHuUnmQDYKUq64mItFljxoyprSjrcDhIS0tjzZo1TJ8+nfHjx7fqecDu0Q5Zuwuo7pxOkCUYyvIgfyfE9jI1NhGR1sjrqgTz58/ngQceYNCgQTzyyCO1wxEABg8ezPz5830aYHuVmmjDMCDncBkHiirMDkdERJroueee47rrruP999/npptuYtasWVx//fU8//zzZod2Qn06RxAVGkR5lYNNh6qg22DXjj2ZpsYlItJaeZ04zZw5k0suuYT//Oc/XHHFFfX29enThy1btvgsuPYsOiyY/l0jgZphEiIi0iaFhYXxhz/8gW+//Za1a9fyzTffcO+99xISEmJ2aCdksRgMTaxZCHdXPsSluXZoIVwRkQZ5nTht3bqVyZMnN7jPZrORn5/f3JgChhbCFRERM6Um2ABYlZMPcemujXszzQpHRKRV8zpx6tChA0VFRQ3uy83NJSYmptlBBQr3PKeM7HxT4xARkcCkAhEiIp7zOnFKT0/nf//7X725TW5z5sxhxIgRPgksELgr663alY/doYuUiIj4lztx2pRbRIltAFhDoLwA8rabG5iISCvkdeJ0xx13kJmZyZQpU3jrrbcwDIMvv/ySW2+9lZ9//plbb721JeJsl/p1jSQyNIjSSjubchu+iyciItJSukaH0SMmDIcT1uwrg25DXDtUIEJE5BheJ04pKSm8/PLLlJaW8vTTT+N0OnnppZfYvn07M2fOZMCAAS0RZ7tktRik1kzM1XA9ERExQ+08JxWIEBE5oSat4zRq1Cjmz59PdnY2Bw8eJDY2lt69e/s6toAwLCmWH7ccYmV2HleNTDI7HBERCTCpiTYWrN3nmud0Uk2BCCVOIiLHaFLi5JaUlERSUoB92D+0FWPhn+nQeRKQ1uzTHSkQocp6IiLif+55TqtyCmCCu7LeanA4wOL1wBQRkXbLo7+I8+bN8/rEubm5/PLLL163a/W2LsKy7iPiNr7uk9Ol1ZQk33qghILSKp+cU0RExFMpCTEYBuzOL2N/WC+whkKFCkSIiBzNo8TpiSee4MILL2T27NkUFxef8Ng1a9bw+OOPc84557BhwwafBNmqJI0CIPrAL1BV1uzTdYwIoVencAAyd+U3+3wiIiLeiAwNql2QffWeUuie4tqh4XoiIvV4NFTvq6++Ytq0afz1r3/liSeeYNCgQQwaNIhOnToREhJCQUEBOTk5ZGZmcuDAAfr378+0adMYO3ZsS8fvf92G4IxJwFKwC/v27+GkSc0+ZXpSLDsOlZKRncdpA7r4IEgRERHPpSbY2JRbzKpd+ZwZlw67f3YlTilTzA5NRKTV8ChxioqK4qGHHuKOO+5gzpw5fPfdd8ydO5eysiN3XBITExk7diznn38+o0aNarGATWcYOAdMxFjxMsam+T5KnGx8lLFblfVERMQUaUk2Zv+yy1UgYliaa6NKkouI1ONVcYiYmBhuuOEGbrjhBgCKioooLy/HZrMRHBzcIgG2Rs4B58KKlzE2f+GTybPpNfOcMnPycTicWCyGL8IUERHxSG1J8px8HJPSXOP4965SgQgRkTqa9dcwKiqKLl26BFTSBEDPU7EHhWMU5/pkDPjAHlGEBVsoKKti28ESHwQoIiLiueTuUYQGWSgsr2aHJQGCOkBlERzeanZoIiKthr5GagprCAVdTnY93+h9xcGjBVstDI23ASpLLiIi/hdstTAk3rUg+6o9xSoQISLSgDaVOK1bt47bb7+dMWPGkJqayrnnnsv06dPrzbXyl4Lup7iebJzvk/PVrueUk++T84mIiHjjyHC9AohzL4SbaVo8IiKtTbMWwPWnLVu2cOWVV9K7d28eeughYmNj+fnnn3nhhRdYu3YtL774ol/jKeg6Eqdhxdi/FvJ2QGyvZp3vyEK4+c0NTURExGtpSTb4seYLvFPTXBt1x0lEpFabSZw+/fRTKioqmDZtGklJSQCMHj2aAwcO8N5771FQUEBMTIzf4rGHRLvWdNr5I2xcAKNubdb50pNcBSI27iukpKKaiNA2808jIiLtQFrNHaf1ewqp7DaUEKgpEGEHi9XM0EREWoU2M1TPXYAiMjKy3vaoqCgsFospBSqcA851PdnU/OF63aLDiIsJw+GE1bsKmn0+ERERbyR27EBseDCVdgfrK3tAcDhUlcChLWaHJiLSKnh9W+PPf/4zV199NX369GmJeI7roosu4r///S+PPfYY//d//0dsbCwrVqzgvffe4+qrryY8PNzrc9rt9ibF4m5X3fcsQr56BOeOH3CU5EFYdJPO55aWaGNPwT5W7jzMiF62Zp2rJbn739T3r61T/9X/uo+Bprn9D9T3rS0wDIPURBvfbjzAqj1FpHYfCjlLXcP1uiSbHZ6IiOm8Tpzmzp3LO++8w6hRo7j66quZMGEChtHy6w4lJCTw7rvvMnXqVM4888za7ddccw1//OMfm3TOrKysZsWUtbuUQZE96VC8k50LXyUvfnyzztfF6ipF/u2anYyKKWzWufyhue9fW6f+q/+BLND7316lJrgSp8zsfK6NSz+SOKVeaXZoIiKm8zpxWrx4MR999BGzZs1i6tSp9OjRg1//+tdMmTKFjh07tkSMAOzatYvbbruNTp068fzzz9OxY0dWrVrFiy++SGlpKU8++aTX50xJScFq9X7ctt1uJysri5SUFIIOXQQ//ZtelevpmXaP1+eqy9Exj/+uWsa2Aiepqal+SUibom7/m/L+tXXqv/qv/je9/+720jql1RQqytyVD2eqsp6ISF1eJ07h4eFcffXVXH311SxZsoT//e9//Pvf/2b69OlMmjSJq6++mpSUFJ8H+o9//IPi4mLmzp1bOyzv5JNPJjY2loceeoiLLrqIESNGeHVOq9XarA8+VqsVy8BJ8NO/sWz5CnCAtelzrVISYgm2GhwqqWRvYSWJHb0ffuhPzX3/2jr1X/1X/wO3/+2VuyT5tgMlFHUcQhTAvtUqECEiQjOLQ4wePZrp06ezcOFC0tPT+fjjj7n88su57LLLWLRoka9iBGD9+vX07dv3mLlM7iRt8+bNPn09jyWcDOGdoLwAspc061RhwVYGxbkqA67UQrgiIuJnHSNCSKr50m5VaWcIiYSqUji4yeTIRETM16zEqby8nNmzZ3PrrbeybNky+vbtyx133IHdbueOO+5gxowZvoqTrl27smXLFkpKSuptz8zMBKBbt24+ey2vWKzgrq7ng8Vw0xNtgNZzEhERc6TWXIdW7SmCHqmujVrPSUSkaYlTdnY2Tz31FOPGjePRRx+le/fuvPbaa3z22WdMnTqVOXPmcNNNN/H222/7LNDrrruOvLw8brzxRubNm8eSJUv4z3/+w1NPPUW/fv0YN26cz17La8kTXY8b54HT2axT1S6Em5PfvJhERESaIDXBNfIhIzsfeqS5NipxEhHxfo7T7373O3766Sc6dOjAJZdcwjXXXFO7IG1d48ePZ+bMmT4JEmDChAm88cYbvPzyyzz55JMUFRXRvXt3rrzySm6++WZCQkJ89lpe6zMerKGQtwMObISuA5t8qmE1C+Gu21NAeZWdsGCNKRcREf9xf4GXmZOPMz0NA1QgQkSEJiROOTk5PPjgg1xyySVEREQc97j+/fvz5ptvNiu4o40aNYpRo0b59Jw+ERoJfU6DzV+67jo1I3FKiO1A58gQDhZXsnZPIb/qGevDQEVERE5scFwMVovBweIK9keeRDdwFYiwV4PV648NIiLthtdD9b744guuueaaEyZNAJGRkV5XuWvTaofrNW+ek2EYpCW6kqUMFYgQERE/Cwu2MrB7FAAriztCSBRUl8OBDSZHJiJirmYVh5A63AUidq2A4v3NOtWwnjZABSJERMQc7gIRmbsLIS7NtXFvplnhiIi0Cl7fcz/jjDOOuzCrxWIhKiqKlJQUrr32Wvr27dvsANuM6DjXJNq9mbDpCxh2TZNPla47TiIiYqK0RBvvLMsmMzsfeqXCjsWuAhHpvzE7NBER03h9x2nEiBE4nU5yc3OJj48nNTWVuLg4cnNzsdvt9OjRg6+++opLL7008FaHT57kemzmcL2hCTFYDNhTUM6+gnIfBCYiIuK5tJo7Tlm7C3D0SHdtVGU9EQlwXidOY8aMISQkhK+++oo333yTf/7zn7z11lt8+eWXhISEcOaZZ/LFF1/Qq1cvpk2b1hIxt17ueU5bF0FVWZNPExEaRHL3aAAyc3TXSUSktVq2bBnJyckN/rjXGWyL+naJJCLESmmlnR2hA1wb960Be5W5gYmImMjrxOk///kPd955Jz169Ki3PS4ujjvuuIOZM2cSFRXF9ddf36YvGk3SPQWiE6C6DLZ916xT1a7npHlOIiKt3r333st7771X76d///5mh9VkVotBSs16Tj8X2CA0BuwVsH+9uYGJiJjI68Rp586dREZGNrgvOjqa3bt3AxAfH09ZWdPvurRJhnHkrtOm5g3XS68ZJqHESUSk9evZsydpaWn1fhqrPtvauQtEZOwqgLhU10YViBCRAOZ14hQXF8dHH33U4L4PP/yw9k5Ufn4+MTExzYuuLaotS74AHI4mnya9ZiHc1bvzqbI3/TwiIiJN4f4Cb1VOPsRpnpOIiNdV9X7729/ypz/9iSuvvJJzzz2Xzp07c/DgQRYsWMCqVat44oknANe47yFDhvg84Fav1xjXmhfF+2BvBsT/qkmn6dM5gpgOwRSUVbFhb1HtkAkREWl9nnjiCe69917CwsJIT0/ntttuY/jw4V6fx263N+n13e2a2r4hQ+Jcc2035hZRPnYIYYBzdwYOH76Gr7RE/9sS9V/9r/sYiJr7HnjazuvE6fLLL8fpdDJt2jSefvrp2u2dO3fm8ccf57LLLgPg1ltvJSQkxNvTt31BodBvAqyb66qu18TEyWIxSEu08d2mA2Tk5ClxEhFphaKiorj22msZOXIkNpuNnTt38uqrr3Lttdfy0ksvMXbsWK/O19xqtL6sZut0OokNs5BX7uCLnCAuBJy5a1i1cgVOS7DPXseXAq6a71HUf/U/0LX0e+BV4mS328nOzmbixIlcfvnlbNu2jfz8fGw2G3369Km3vlPnzp19HmybkTzxSOJ0xsNNPk16Uk3ilJ3PtaN9F56IiPjGoEGDGDRoUO3vw4cP56yzzuL888/nb3/7m9eJU0pKClar1es47HY7WVlZTW5/PL9au5Kv1+9nv20ozjAblvJ8UnuEQI9Un72GL7RU/9sK9V/9D+T+Q/PfA3f7xniVODmdTiZPnsyLL77IaaedFlgL3Hqj/9lgWCB3DeTthNieTTqNe56TFsIVEWk7oqOjOf3003n33XcpLy8nLCzM47ZWq7VZH3ya2/5o6UmxfL1+P6t2F2LEpcG2b7HuWwUJw3z2Gr7k6/63Neq/+h/I/YeWfw+8Kg4RFBRE586dcTqdLRVP+xDeEZJqbhFtWtDk06Ql2ADYcaiUwyWVPghMRET8wX2drDsSoy1yL4S7alf+kQIRqqwnIgHK66p6kydPZu7cuS0QSjtTW11vXpNPERMeTN8urnK2WghXRKRtKCgo4Ntvv+Wkk04iNDTU7HCaxT2/NudwGUWxNQWfVFlPRAKU18UhBg4cyLx587j22ms5++yz6dKlyzHfqJ199tk+C7DNSp4EXz4MO36A8gIIa1pxh/SkWLYeKCEjO58zBnbzcZAiItIcv//97+nRowdDhgwhNjaWnTt38tprr3Ho0KF6BZTaqugw1xd4Ww+UsMbZh9EAueugusJVDElEJIB4nTjdf//9AOTm5rJ8+fJj9huGwfr1WlmcTn2h8wA4uAm2LIQhlzTpNOlJNj74ZZcWwhURaYWSk5OZN28e7777LqWlpcTExPCrX/2KZ599lqFDh5odnk+kJtrYeqCEpYcjGN2hI5Qdhty1EN865zmJiLQUrxOnN998syXiaJ+SJ7oSp43zm5w4DaspEJGZk4/d4cRqadvj5UVE2pObb76Zm2++2ewwWlRaoo05K3eTuasA4tJg6yLXcD0lTiISYLxOnEaMGNEScbRPyZPgx3/D5i/AXgVW79e9GNAtivAQK8UV1WzZX0xy96gWCFRERKRhdQtEOE9Jx9i6SAUiRCQgeV0cwq2oqIjFixfzySefUFBQ4MuY2o+EkyG8k2uOU/bSJp3CajFIramup7LkIiLibwO7RxNitZBfWsWB6Jo1q1QgQkQCUJMSpxkzZjB27Fhuuukm7r//fnbt2gXAddddx8yZM30aYJtmsUL/c1zPN85v8mnSk2wAmuckIiJ+FxJkYVBcNACZ1TXrEu5fD1XlJkYlIuJ/XidO//vf/5gxYwZTpkzhpZdeqrem0/jx4/n22299GV/bV7cseRPXv6pdCFclyUVExATu4XpLD4ZDeGdwVLsKRIiIBJAmJU7XX389Dz/8MGPGjKm3r2fPnuzcudNnwbULfc8AawjkbYcDG5t0CvcFa/P+YgrLq3wYnIiISONSE11LamTuyncViADYs9K0eEREzOB14pSTk8PYsWMb3BcREUFhYWGzg2pXQiOh92mu501cDLdLVCiJHTvgdMLqHM0nExER/0pLdI18WLOnEHv3NNfGPZmmxSMiYgavE6eoqCgOHjzY4L7du3fTqVOnZgfV7riH621a0ORTuMuSq0CEiIj4W69O4USHBVFZ7WBXh4GujaqsJyIBxuvEafTo0bzyyiuUlpbWbjMMg+rqambNmnXM8D0BBpzresxZDsUHmnSK9JrheiuVOImIiJ8ZhkFqzXXol6ok18b966Gy9PiNRETaGa8Tp7vuuos9e/YwefJknn76aQzD4O233+ayyy5j586d3H777S0RZ9sWEw890gCna02nJjhSICK/XkEOERERf3DPt/1pfyhEdAWnHXLXmBuUiIgfeZ049ezZk1mzZtGnTx9mzZqF0+nk448/JjY2lnfeeYe4uLiWiLPtq62u17Sy5Cf1iCYkyLWOxo5D+oZPRET868hCuAUQl+7aqHlOIhJAgprSqF+/frz66qtUVlaSl5dHTEwMYWFhvo6tfUmeCN8+BVsXQVUZBHfwqnlIkIWU+Bh+2ZlHRnYevTtHtFCgIiIixxpasxj7lgPFVKSkELr5Cy2EKyIBpUkL4LqFhITQrVs3JU2e6D4UouOhqhS2f9+kU7jnOWkhXBER8bcuUaHE21wVXrcFD3BtVIEIEQkgTbrjtGvXLubPn8+ePXsoL6+/crhhGDz55JM+Ca5dMQzXXacVr7jKkg84x+tTuOY5bddCuCIiYoq0RBu788tYXtGTkwAObIDKEgjRKAgRaf+8Tpy+/fZbpk6disPhoGPHjoSEhNTbbxiGz4Jrd2oTpwUw2QEW7274pSfZAFi/t4iySjsdQqwtEKSIiEjDUhNj+DxrLz/tD+K6yO5QvA/2ZUHSKLNDExFpcV4nTv/6178YNmwY//rXv7Rmk7d6jYWQSNeFZm8mxA/zqnmcrQPdo8PYV1jO6l35jOyj919ERPzHvRDuqpwC6JUOm+a7CkQocRKRAOD1HKedO3dy0003KWlqiqBQ6DfB9byJ1fXcd50ycvJ9E5OIiIiHhsRHYzFgX2E5RZ1SXBtVIEJEAoTXiVNcXFy9xW/FS8mTXI/NTZy0EK6IiPhZeEgQA7pFAbDJ2te1UYmTiAQIrxOnW265hddee42ysrKWiKf96382GBbIzYL8bK+buxfCXZmthXBFRMT/3Os5LS1NdG04uAkqis0LSETET7ye45SVlcWhQ4c466yzGDlyJLGxsccc8/DDD/skuHYpvCMkjoLsn1xFIkbe7FXzIXExBFkMDhRVsKegnHibd+tBiYiINEdqoo13V+TwY66VO6LioGgP7FsNPU8xOzQRkRbldeL09ttv1z7//PPPj9lvGIYSp8YkT6xJnOZ5nTh1CLFyUo9osnYXkJGdp8RJRET8yn3HafWuApwD0zA27nEN11PiJCLtnNeJ04YNG1oijsCSPAm+egR2/ADlBRAW41Xz9CRbTeKUz3lD41ooSBERkWP17xpJh2ArxRXVHI4ZTCfmuSrriYi0c17PcRIf6NwPOvUHRxVsWeh1cxWIEBERswRZLaTEu77wW48KRIhI4PAocVqxYgUlJSWNHnf48GE++OCDZgcVEJInuh43LfC66bCaAhFrdhdSUW33ZVQiIiKNSk10JU6LS+JdGw5tgfJCEyMSEWl5HiVO1157LVu3bq393eFwMGTIENatW1fvuJycHB555BHfRtheucuSb/oC7NVeNU3qGE7HiBAq7Q7W7dGFSkRE/Cu1Zp7TT/ssEJMIOF0FIkRE2jGPEqejy147nU6qq6tVDrs5EkdAh45Qng85S71qahgG6TUXrYzsfJ+HJiIiciLuAhHr9xZi757q2qjheiLSzmmOk1ksVhhwjut5ExbDrZ3nlJPvu5hEREQ8EG/rQOfIEKodTvZFnuTaqAIRItLOKXEyk3ue04bPwcu7d+6FcFUgQkRE/M0wDFITbACscfZ2bdQdJxFp55Q4manvGWANgbztrpXXvTA0IQbDgF15ZewvKm+hAEVERBrmnuf0bVFNgYjDW11LbIiItFMer+O0bds2rFYrAHa7vXbb0ce0tJ9//pmXXnqJzMxMKioq6N69OxdeeCF33HFHi7+2z4VGQe9xsOVr12K4XZI9bhoVFsyArlFszC0iMzufswd3b8FARURE6nPPc1qyxwm2JMjPhr2rXNc1EZF2yOPE6cEHHzxm23333Vfvd6fTiWEYzY/qOD799FPuu+8+Jk6cyDPPPEN4eDg5OTnk5ua22Gu2uOSJNYnTfBhzj1dNh/W0sTG3iJVKnERExM+GJrhKku84VErl0KGE5Ge7huspcRKRdsqjxOmpp55q6TgalZuby5/+9CeuuOIKHnvssdrto0aNMi8oXxgwET7/PeQsh5KDENHZ46bpibHMWp6jeU4iIuJ3tvAQeneOYPvBEnZ1GEgfPtM8JxFp1zxKnC6++OKWjqNRs2fPprS0lJtuusnsUHwrJh56pLqGN2z6AtKv9ripu7Le6l0FVNsdBFk1ZU1ExGyzZ8/m4YcfJjw8nIyM9p1IpCbEsP1gCavsvekDqqwnIu1am/mkvWLFCmw2G9u2bePCCy9k0KBBjB49mj/96U8UFxebHV7zuBfD3TjPq2Z9u0QSFRpEWZWdjblFLRCYiIh4Izc3l2eeeYauXbuaHYpfuAtELCro4dqQtx3KNApCRNonj+c4mS03N5eysjLuvvtubrnlFtLS0sjKymLatGls3ryZd955x+v5Ve4iF95yt2tq+2P0Oxvrt0/h3LoIR0UJBIV53DQ1MYYfthxi5Y7DDOwW6Zt4GuHz/rcx6r/6X/cx0DS3/+39fXv00UcZPnw4NpuNL774wuxwWpy7QMRPexw4Y3th5O1wjaDoc7qZYYmItIg2kzg5nU4qKiqYOnUqN998MwAjR44kODiYJ598kiVLlnDKKad4dc6srKxmxdTc9rWcTlLCOhNSfpBtC9+gsJvn87a6B7tKkS9ctY1BoYd9E4+HfNb/Nkr9V/8DWaD3vyEff/wxy5cvZ968eTz33HNmh+MXJ/WIJthqcKikkrI+QwnP2+Ga56TESUTaoTaTONlsNgDGjBlTb/u4ceN48sknWbt2rdeJU0pKSm2JdW/Y7XaysrKa3L4hxt4L4JfX6Fu9CWfarR63y+twgA/W/0J2iZW0tDSfxNKYluh/W6L+q//qf9P7727f3hw6dIgnn3yS3//+93Tv3vQqp61mJISHgi0wsHsUWbsL2RHSj0GAc/dKHH6OQ3eC1f+6j4Em0PsP/hsN0WYSp+TkZDIzM4/Z7nQ6AbBYvJ+uZbVam/XBp7nt6xk4GX55DcvmL8AwwMP+/KpnRwC2HSyhqMKOLTzEN/F4wKf9b4PUf/Vf/Q/c/h/t8ccfp3fv3lx11VXNOk+rGQnhhfiwarKAhQdsDAIqd65gTQPXa39oj0m5N9R/9T/QtfR74FXiVF5ezvXXX89dd93l9d2d5jr77LN57733+P777xk0aFDt9u+//x6A1NRUv8bjc73HQkgkFO2FvZkQP8yjZrERIfTpHMG2gyVk5OQzPjkwJiSLiLQWX3zxBYsWLWLu3LnNXsuwNY2E8NQZjt0s2JrFCudJAISW7iVtQBKEd/RbDLoTrP6r/4Hbf/DfaAivEqewsDA2bdpkyj/KmDFjGD9+PDNmzMDhcJCWlsaaNWuYPn0648ePZ/jw4X6PyaeCQqHvGbD+E9i0wOPECSAtyeZKnLKVOImI+FNJSQlPPPEE11xzDV27dqWwsBCAqqoqAAoLCwkKCiI8PNyj87WqkRAeGlYz8mH5PjvOLn0wDm/Dmrsa+k3waxygO6Hqv/ofyP2Hln8PvB7flp6ezurVq1silkY999xzXHfddbz//vvcdNNNzJo1i+uvv57nn3/elHh8rollydOTYgG0EK6IiJ/l5eVx8OBBXnvtNU4++eTan88++4zS0lJOPvlk/vCHP5gdZovq0zmCqNAgyqscFMYOcW3cm2lqTCIiLcHrOU73338/t99+O126dOGss84iIiKiJeJqUFhYGH/4wx/a70Wo/9lgWGBfFuTngC3Ro2bpNeVgM3PycTicWCzNGyoiIiKe6dKlC2+++eYx22fOnMmKFSt4+eWXiY2NNSEy/7FYDIYmxvDjlkNsC+5POrgq64mItDNeJ05XXHEFVVVVPPjggzz44IOEhYXVG9NtGAa//PKLT4MMGBGdIHEkZC9xDdcbcZNHzQZ2jyIs2EJReTXbDhbTr2tUCwcqIiIAoaGhjBw58pjtH330EVartcF97VFqgo0ftxxieXnPmsQp0+SIRER8z+vE6Zxzzmn25Fc5geSJrsRp4zyPE6cgq4WhCTaWbz/Myux8JU4iIuJXqTUjH77I68YtAAU5UHIQIjqbGZaIiE95nTg9/fTTLRGHuCVPgq/+BNsXQ3khhEV71Cw9yZU4ZWTnc/lwz4b4iYhIy3j66acD6npZO2R8vx1Hj75YDm913XXqf6apcYmI+JL3ix9Jy+rcHzr1A0cVbF3ocbNhKhAhIiIm6RodRo+YMBxOOBwz2LVxr+Y5iUj70uQFcDdt2sTWrVupqKg4Zt9FF13UnJgkeSL8NA02zofBF3vUxP1t36bcIoorqokMbTNrG4uISDuQmmBjb8E+Nlv70Rk0z0lE2h2vP12XlZVx2223sXTpUgzDwOl0AtSb96TEqZmSJ7kSp81fgr0arI3/M3WNDiPe1oHd+WWszsnnlH4aVy4iIv6Tmmhjwdp9LClPZDSosp6ItDteD9V74YUX2L17N2+//TZOp5Pp06fz+uuvc9ZZZ9GzZ08++uijlogzsCSMgA4doSwPcpZ53Cw9yQZARk5+y8QlIiJyHKmJMQDMP9ANMKBwNxTvNzcoEREf8jpxWrhwITfddBPp6ekA9OjRg9GjR/P8888zePBg3nnnHZ8HGXCsQTDgHNdzLxbD1UK4IiJilqEJNgwDNhdAdcf+ro0arici7YjXidPu3bvp06cPVqsVwzAoKyur3Xf++eezcKHnBQ3kBAac63rcOA9qhkM2pvaOU3Z+7RBKERERf4gMDaJ/10gADkQNdG3UcD0RaUe8TpyioqIoLS0FoFOnTuzcubN2X3V1de0+aaZ+E8AaAoe3wcHNHjUZHBdNiNXCoZJKcg6XNd5ARETEh1ITbACsN/q5NuzNNC0WERFf8zpxSk5OZseOHQCMHDmSl156iZ9//pnVq1czY8YMBg4c6OsYA1NoFPQa63ru4XC90CArg+Jc6z5l5Gi4noiI+Jd7IdwfSxNcG3THSUTaEa8Tp0svvZSSkhIA/t//+3+UlZVxzTXXcMUVV7Bnzx4eeOABnwcZsJInuh43zve4iXs9p5U7lTiJiIh/pdUkTp/t74zTsEDRXijaZ25QIiI+4nU58kmTJtU+T0xM5IsvvqgtTZ6eno7NZvNlfIEteSLM+4Orsl7JQYhovMR4epINflRlPRER8b/k7lGEBlnILQ+iKq4/IYc3ugpEJJ9rdmgiIs3m9R2no4WHh3PGGWcwfvx4JU2+FpMA3YcCTteaTh5wF4hYt6eQ8ip7y8UmIiJylGCrhSHxrrLk+yKSXRs1XE9E2olmJ07SwpJr7vB5OM8p3taBLlGhVDucrNld0IKBiYiIHMtdIGKNs49rgwpEiEg74dFQvYEDB2IYhkcnNAyDdevWNSsoqSN5Inz3NGxZBFXlEBx2wsMNwyA90caX63LJyM5neK+OfgpURETkyEK43xYnMglcd5ycTvDwc4SISGvlUeJ0xx13eJw4iY/1SIWoOCjaAzsWQ/+zGm2SnhTrSpxUWU9ERPwsPdFVpGjBgc48E2LBKM51FYmIjjM5MhGR5vEocbrzzjtbOg45HsNwTar9+TXXcD2PEicb4FoIV0RExJ8SO3YgNjyYvFIotw2gQ94GV4EIJU4i0sZpjlNbUDvPab5ruEMjhibEYLUY7C0oZ2+BFsIVERH/MQyjdj2n3eEqECEi7YfX5cjnzp3b6DEXXXRRE0KR4+o1FoIjXEMd9mZCXPoJDw8PCWJg9yjW7ikkIzufHikd/BOniIgIrgIR3248wKrq3vQDJU4i0i54nTgdb4HbunOglDj5WHAY9DsD1n/quuvUSOIEruF6rsQpj0kpPfwQpIiIiIt7IdyFRXFcCq4v/VQgQkTaOK8Tp4ULFx6zLS8vj4ULFzJv3jz+9a9/+SQwOUrypCOJ0/iHGj08PTGWt5dma56TiIj4nXuo3sLDXXGGB2GUHIDC3a71CUVE2iivE6f4+PgGtw0ZMoTq6mrefPNNnn76aZ8EJ3X0PxsMC+xbDQW7Gr34uAtEZO0uoLLaQUiQprOJiIh/dIwIIaljONmHoSSmP5F5613D9ZQ4iUgb5tNP06NHj2bRokW+PKW4RXSGxJGu5xvnN3p4784RxHQIpqLawYZ9hS0cnIiISH3uu047Qwe4NuzJNC0WERFf8GnitHv3biwW3dloMQPOdT16kDgZhqGy5CIiYprUBNdCuBlVvVwbVCBCRNo4r4fqrVix4phtlZWVbNy4kZdeeonRo0f7JDBpQPIk+PpR2P49lBdCWPQJD09PjOXbjQfIyM7julN6+SdGERERjhSI+DI/jt+ACkSISJvndeJ0zTXX1KugB+CsWVvolFNO4ZFHHvFNZHKszv2hY184vBW2LoLBF53w8GE9bQCs1B0nERHxsyHxrjUFl5Z0xxkejFF6CApywJZkdmgiIk3ideL05ptvHrMtNDSU+Ph4Onfu7JOg5DgMA5InwpLpruF6jSROqYk2DAOyD5dysLiCzpGh/olTREQCXliwtXZNwcLo/sTkr3MN11PiJCJtlNeJ04gRI1oiDvFU8iRX4rT5C7BXg/X4/4TRYcH06xLJ5v3FZGbnc+agbn4MVEREAl1qomtNwW3B/UlnnatAxKALzQ5LRKRJvK7ksH37dpYvX97gvuXLl7Njx47mxiQnkjgSOsRCWR7savjfoa7aAhE5eS0cmIiISH1pCTYAVlT2dG1QgQgRacO8TpyefvrpBhfBBfjmm2+0hlNLswZB/3NczzfOa/Tw9KRYQJX1RETE/9Jqvrz7Mq+Ha8OeDFeBCBGRNsjrxCkrK4uTTz65wX0nn3wya9asaXZQ0ojkia5HD8qSu+84rcrJx+7QxUpERPynb5dIIkKsrK6Mw2EJgfJ8yN9pdlgiIk3ideJUVFREeHh4g/vCwsIoKChodlDSiL5ngCUYDm2Bg5tPeGj/rlFEhFgpqbSzeX+RnwIUEREBq8UgJSGGSoLJj+rv2qjheiLSRnmdOHXr1o3Vq1c3uG/16tV06dKl2UFJI8KiofdY1/NGhutZLUbt6u0arici4lvr16/n5ptv5vTTT2fo0KGMGDGCK664go8//tjs0FoN9zVos7Wfa4MSJxFpo7xOnM4880xmzpzJ0qVL621ftmwZL7/8MmeddZbPgpMTSJ7kevRguN6wmnlOK3eqQISIiC8VFhbSvXt37rnnHmbOnMkzzzxDfHw89913Hy+88ILZ4bUK7gIRS8trypDvyTQtFhGR5vC6HPkdd9zBDz/8wA033ECvXr3o3r07+/btY8eOHfTr148777yzJeKUow04F+b9AXKWQclBiDj+GlpHKuvl+yc2EZEAMXLkSEaOHFlv2/jx49m1axfvv/8+t99+u0mRtR7uAhFfF/Tg7mBgb6arQIRhmBmWiIjXvL7jFBUVxXvvvcfUqVOJiYlhz549xMTEcOedd/Luu+8SGRnZEnHK0WyJ0D0FnA7Y/OUJD02rGSaxZX8xBWVVfghORCSwxcbGYrVazQ6jVegeHUbXqFA22BNqCkQUQN52s8MSEfGa13ecACIiIrjjjju44447fB2PeCN5EuzLcg3XS7vquId1igylZ6dwdh4qZVVOPuMGaB6aiIgvORwOHA4HhYWFzJ8/nx9++IFHHnnE7LBaBcNwzbX9al0FByMH0LVwjWueU8c+ZocmIuKVJiVO4Kqul5mZSV5eHqeddhoxMTG+jEs8kTwRvnsGtiyEqnIIDjvuoemJNnYeKiUjW4mTiIivPfbYY7z33nsABAcH88c//pErr7zS6/PY7fYmvb67XVPbt7Sh8dF8tS6XDUYfurIGx+6VOE+6yGfnb+39b2nqv/pf9zEQNfc98LRdkxKnGTNm8PLLL1NeXo5hGHzwwQfExMRw3XXXceqpp3LzzTc35bTirR5pENUDivbCjh+g/5nHPTQ9KZa5mXvIyFGBCBERX7v11lu57LLLOHz4MIsWLeLPf/4zZWVl/Pa3v/XqPFlZWc2Ko7ntW0pERQUA3xXGMQ4o3vQDmztn+vx1Wmv//UX9V/8DXUu/B14nTv/73/+YMWMGV111FWPHjuWWW26p3Td+/Hi+/PJLJU7+YhiuIhG/vO4qS37CxMkGuEqSO51ODE3KFRHxmbi4OOLi4gA47bTTAPjnP//JxRdfTMeOHT0+T0pKSpPmRtntdrKysprcvqX1La/iie8X8mN5LwiFqOKtpKUOBcPrqdYNau39b2nqv/ofyP2H5r8H7vaNaVLidP3113Pfffcdc1urZ8+e7NypFcH9KnlSTeI0Hyb/47hVik7qEU1okIWCsiq2HyyhTxcV8RARaSlDhw7l3XffJScnx6vEyWq1NuuDT3PbtxRbhJW+XSLYfCAeuzUUa0UR1vyd0LmfT1+ntfbfX9R/9T+Q+w8t/x54/VVPTk4OY8eObXBfREQEhYWFzQ5KvNB7HASHQ9Ee2LvquIcFWy0MTXDNQ1uphXBFRFrUsmXLsFgsJCYmmh1Kq5GaaMOOldzwAa4NezNNjUdExFtNKkd+8ODBBvft3r2bTp06NTso8UJwGPQ9w/W8kcVw02sWws3I1jwnERFfeOSRR3jmmWeYN28ey5cv54svvuCee+7h448/5oYbbvDqblN7514aY62zpprengzzghERaQKvh+qNHj2aV155hQkTJhAaGgq4So1WV1cza9YsxowZ4/MgpRHJk2DDZ655TuMfPO5h6TUXrQzdcRIR8Ym0tDTmzJnDRx99RFFREeHh4QwcOJBnn32WCy+80OzwWpXUBBsAi0viOQuUOIlIm+N14nTXXXcxZcoUJk+ezJlnnolhGLz99tusX7+ePXv28Nxzz7VAmHJCA84BDNi3Ggp2Q0x8g4e57zht2FdIaWU14SFNrkYvIiLApZdeyqWXXmp2GG3CST2iCbFaWFreE0JxDS93OMDimwIRIiItzeu/Vj179mTWrFn06dOHWbNm4XQ6+fjjj4mNjeWdd96prSrkD7NnzyY5OZn09HS/vWarFNEZEke6nm86/nC97jFh9IgJw+GE1bsK/BSciIgIhARZGBQXzVZnHNXWMKgshkNbzA5LRMRjTbrl0K9fP1599VUqKyvJy8sjJiaGsLDjL77aEnJzc3nmmWfo2rUrxcXFfn3tVil5IuQsdc1zOvl3xz0sPcnG3qx9ZGTnM6qP5qOJiIj/pCXayMzJZ09Yf5JKslwFIroMMDssERGPNOv+eEhICN26dfN70gTw6KOPMnz4cE499VS/v3arlDzR9bj9e6goOu5h6YkqECEiIuZITXRVd13t6O3aoHlOItKGeHTHae7cuV6d9KKLLmpCKJ77+OOPWb58OfPmzdOcKrfOA6BjHzi8DbYugkENT0oe1tMGuEqSayFcERHxJ3eBiO+LEzjPihInEWlTPEqcHnjgAY9PaBhGiyZOhw4d4sknn+T3v/893bt3b9a5jl7A19t2TW3fUowB52JZ+gKODfNwJp/X4DEDu0USbDU4WFxB9qFiEmLDvX6d1tp/f1H/1f+6j4Gmuf0P1PdNXHp3jiA6LIiVFb3ACuxdDQ47WAJ70U4RaRs8SpwWLlzY0nF47PHHH6d3795cddVVzT5XVlaWqe19LdLoTzLgWD+PVYm/HPdC1DM6iC15VcxdvIoxSR2a/Hqtrf/+pv6r/4Es0PsvTWMYBqmJNn7cHEeVtQPBVSVwcDN0HWh2aCIijfIocYqPb7i8tb998cUXLFq0iLlz5/pkiFlKSgpWq/ffctntdrKysprcvsU4huDMeJyg8nzSOldC0ugGDztl1zq2LMkmz2ojLe0kr1+m1fbfT9R/9V/9b3r/3e0lcKUl2li8+SA5of3pU7raNVxPiZOItAFNXsinuLiYzMxM8vPziY2NJTU1lcjISF/GVk9JSQlPPPEE11xzDV27dqWwsBCAqqoqAAoLCwkKCiI83POhZ1artVkffJrb3uesVteaTqvfw7r5C+jd8GLEv+rZkTeXZJOZU9C++u9n6r/6r/4Hbv+l6dzznDKqe9GH1a7Kemm/NjUmERFPNClxevXVV5k+fTrl5eW1BQbCwsK46667uOGGG3wdIwB5eXkcPHiQ1157jddee+2Y/SeffDITJkzghRdeaJHXbzOSJ8Lq91xlyc/+c4OHuCvrrdtTSEW1ndAgffgRERH/SE20AbC4JIFLg1GBCBFpM7xOnObOncvf/vY3xo0bx8UXX0zXrl3Zv38/c+fO5dlnnyU2NrZFikN06dKFN99885jtM2fOZMWKFbz88svExsb6/HXbnL4TwBIMhza7xo137n/MIYkdO9ApIoRDJZWs3VPIsCS9byIi4h9dokKJt3Ugq6CmJPne1WCvBmuTB8GIiPiF13+l3njjDc477zz+/ve/19s+ceJE/vCHP/Df//63RRKn0NBQRo4cecz2jz76CKvV2uC+gBQWDb3GwLZvXHedGkicDMMgPSmWr9fnkpGdr8RJRET8Ki3Rxrz8HlRawwmpLoWDm6DbILPDEhE5Ia8XwN22bRsXXHBBg/suuOACtm7d2uygpJmSJ7keN84/7iHpSTYAVmohXBER8bPUxBicWNgR3M+1QcP1RKQN8DpxCgsLo6CgoMF9BQUFhIWFNTsobzz99NNkZOgPbj3J57oec5ZCyaEGD3EnTpnZ+f6JSUREpIa7QMTPlT1dG/ZmmhaLiIinvE6cfvWrXzF9+nRyc3PrbT9w4AAzZsxg+PDhPgtOmsiWBN1SwOmAzV82eMjQBBsWA3bnl5FbWO7nAEVEJJClJMRgMWBpeU3ipDtOItIGeD3H6d577+XKK6/k7LPPZvTo0XTp0oUDBw6wdOlSgoKCmD59ekvEKd5Kngi5WbBxXoNlXiNDgxjQLYoN+4rIyM7n3CHdTQhSREQCUXiI6xqUlVtTIGJflgpEiEir5/Udp/79+/PBBx8wYcIEsrKymDNnDllZWUyYMIHZs2fTr1+/lohTvJU80fW4dRFUVzR4SHpNUYiMHM1zEhER/0pLtLHD2Y0KawRUl8OBDWaHJCJyQk36aqd3797885//9HUs4ks90iCqBxTthR2Lod+ZxxySnmRj1vJsMjTPSURE/Cw10ca7K3LYYu3HYPsq13C97kPMDktE5Li8vuMkbYTFAgNqikQcp7resJoCEat35VNtd/gpMBERkSMFIpZXJLk2aJ6TiLRyTbrjtG7dOj799FP27NlDRUX9YWCGYfDiiy/6JDhppuSJ8MvrrsRp0t/BMOrt7tM5kuiwIArLq9mwr4gh8TEmBSoiIoFmQLdIOgRb+aWqFzeEoMp6ItLqeZ04zZ07lwcffBCLxULHjh0JDg6ut9846sO5mKj3OAgOh8LdsG819Eitt9tiMUhLiuX7TQfIyM5T4iQiIn4TZLWQEh/D6p19XBv2rYHqSggKMTcwEZHj8DpxevHFFznttNN45plniInRB+1WLbgD9D0DNnzmuut0VOIEkJ5oq0mc8rlmtAkxiohIwEpNjGH5jq6UWSPpYC+GA+sbvFaJiLQGXs9x2r9/P9dee62SprbCXV1v47wGd7sXws3IyfdPPCIiIjVSE22AwUZLX9eGPZkmRiMicmJeJ04nnXTSMYvfSivW/xzAgL2roGD3MbvTEm0AbD9YQl5JpX9jExGRgOYuELFMC+GKSBvgdeJ03333MXPmTDZs0HoLbUJkF0gc4Xq+acExu23hIfTpEgFApu46iYiIHyXEdqBzZAir7L1cG1QgQkRaMa/nOKWlpXH22Wdz8cUX06VLl2OG7BmGwSeffOKzAMUHkidCzjLXPKeTf3vM7vTEWLYdKCEjO4/xA7uaEKCIiAQiwzBITbCxemPdAhEVEBRqbmAiIg3w+o7TzJkzeemll4iNjSUuLg6bzVbvR3OfWqHkSa7H7d9BRfExu4f1tAGa5yQiIv6Xmmhjl7MLJZYocFTB/nVmhyQi0iCv7zi9+eabXHrppTzxxBNYrdaWiEl8rfMAiO0Nedth6yIYdEG93emJsQBkZufjcDixWFRSXkRE/MNdIGIdfTiZVa4CEXHpJkclInIsr+84lZSUcN555ylpaksM48hdp43zj9k9oFsk4SFWiiqq2XLg2DtSIiIiLSU1wTVSZXmlCkSISOvmdeI0bNgwtm7d2hKxSEtylyXftAAc9nq7gqwWhtZcuDKy8/wdmYiIBDBbeAi9O0eQ5aiZ56TESURaKa8Tpz/+8Y+8++67fP3111RWqnx1m5E0CsJsUHYYcpYfszs9yTVcLyM7379xiYhIwEtNiCHL0dv1y/71UFVubkAiIg3weo7TpZdeSnV1NXfeeSeGYRAWFlZvv2EY/PLLLz4LUHzEGgz9z4as912L4fYcXW93es16TkqcRETE31ITbczN7EyRJYYoRwHsXwvxvzI7LBGRerxOnM455xwMQ8UD2qTkiTWJ03w4+8/1dqUl2QDYtL+IovIqosKCTQhQRKRtWbJkCZ988gkZGRns27ePqKgohgwZwh133MGQIUPMDq/NcBeIyHL05hQyXcP1lDiJSCvjVeJkt9u55ZZb6Nixo8qOt0X9JoAlGA5thoNboHO/2l1do8JIiO3ArrwyVu8q4NR+nU0MVESkbZg1axb5+flce+219OvXj8OHD/P6669zxRVX8MorrzB69OjGTyIM6hFNsNXgl+penBKU6aqsJyLSyng1x8npdDJ58mQyMzNbKBxpUWEx0GuM6/mmY6vrDaud56QCESIinnj00Ud58803ueqqqxgxYgTnnnsur732GjabjZdeesns8NqMsGArJ/WIPjLPSYmTiLRCXiVOQUFBdO7cGafT2VLxSEtzV9droCx5es1wvZWa5yQi4pFOnTodsy0iIoK+ffuyd+9eEyJqu1ITbEcq6x1YD1Vl5gYkInIUr+c4TZ48mblz53L66ae3QDjS4gacC/Pvg+wlUHoYwjvW7kqvc8fJ6XRqLpuISBMUFRWxbt06Ro0a5XVbu93e+EEnaNfU9q1BSnw0b9GRfIsNmyMf+97VED/co7btof/Nof6r/3UfA1Fz3wNP23mdOA0cOJB58+Zx7bXXcvbZZ9OlS5djPmCfffbZ3p5W/CW2J3QbArlrYPOXkHpl7a5BPaIJCbKQV1rFzkOl9OocYWKgIiJt0+OPP05ZWRm33nqr122zsrKa9drNbW+m0OJqwGBVdU9Os+Sze/lnHOjt3ceUttx/X1D/1f9A19LvgdeJ0/333w9Abm4uy5cfux6QYRisX7+++ZFJy0me6EqcNs6rlziFBFkYEhfNyux8MnLylDiJiHjpueee49NPP+WRRx5pUlW9lJQUrFar1+3sdjtZWVlNbt8aDHU4+eO3C8m09+E0yyoSrAeJT0vzqG176H9zqP/qfyD3H5r/HrjbN8brxOnNN9/0OhhpZZInwvd/gy0LoboCgkJrd6UnxboSp+x8Lk5PMDFIEZG2Zfr06bz44ovcc889/OY3v2nSOaxWa7M++DS3vZmsVkhNjCFrm2uek2XvKtdGr87RdvvvC+q/+h/I/YeWfw+8TpxGjBjREnGIP/VIh8juULwPdiyGfmfW7nIXiNBCuCIinps+fTrTpk3jzjvvbNIQPXFJTbDx4ZaaynoH1kNlKYSEmxuUiEgNr6rq1VVUVMTixYv55JNPKCgo8GVM0tIsFkg+1/V844J6u9wlydfvLaSsMnAnGYqIeGrGjBlMmzaN2267jalTp5odTpuWmmgjl1gOG7HgdLiGlYuItBJNSpxmzJjB2LFjuemmm7j//vvZtWsXANdddx0zZ870aYDSQpInuR43zoc65eV7xITRLTqUaoeTrN1KiEVETuS1117j+eefZ+zYsZx++ulkZmbW+xHvpCXaAIOM6l6uDXsyTIxGRKQ+r4fq/e9//2PGjBlcddVVjB07lltuuaV23/jx4/nyyy+5+eabfRqktIDe4yCoAxTugn1Z0GMo4CrukZ4Yy4K1+8jIzmNE746NnEhEJHB98803ACxevJjFixcfs3/jxo3+DqlN6xYdRo+YMLJKejOBDCVOItKqNClxuv7667nvvvuOqXnes2dPdu7c6bPgpAUFd4C+Z8DGz113nWoSJ3DNc3IlTvnmxSci0ga89dZbZofQ7qQm2Fi9vmYh3D2ZpsYiIlKX10P1cnJyGDt2bIP7IiIiKCwsbHZQ4ifJE12PG+fV2+xeCHdlzUK4IiIi/pKaaCPLUVMg4uBGqCwxNyARkRpeJ05RUVEcPHiwwX27d++mU6dOzQ5K/GTAOYABezOhYHft5pT4GKwWg/1FFewtKDctPBERCTypiTEcIJYDdHQViNinRT1FpHXwOnEaPXo0r7zyCqWlpbXbDMOgurqaWbNmMWbMGJ8GKC0osisknOx6vulIdb0OIVZO6hEFqCy5iIj4V0p8DIYBmfaau06a5yQirYTXidNdd93Fnj17mDx5Mk8//TSGYfD2229z2WWXsXPnTm6//faWiFNaSu1wvfn1NqcnuobrZWTn+TsiEREJYFFhwfTvGnlkuJ4SJxFpJbxOnHr27MmsWbPo06cPs2bNwul08vHHHxMbG8s777xDXFxcS8QpLcVdlnz791BRXLt5WE8bABk5+f6PSUREAlpqgo3VTnfilGlqLCIibl5X1QPo168fr776KpWVleTl5RETE0NYWJivYxN/6JIMsb0hbzts+wZOOh84cscpa3cBldUOQoKavFayiIiIV1ITbTz3S01lvYOboKIIQqPMDUpEAp7Xn4YffPBBcnJyAAgJCaFbt261SdPu3bt58MEHfRuhtCzDaHC4Xs9O4cSGB1NZ7WDdXlVKFBER/0lLtHGQGPbRCXDC3tVmhyQi4n3i9NFHH5GX1/C8l7y8PObOndvcmMTf3InTpgXgcK3NZRhGbVlyzXMSERF/Su4eRWiQhVXuAhF7M02NR0QEmpA4nUhBQQEhISG+PKX4Q9JoCIuB0kOwa0Xt5vREG6DKeiIi4l/BVgtD4mNY7XAvhKsCESJiPo/mOK1YsYJly5bV/j579my+//77esdUVFSwcOFC+vbt69sIpeVZg6H/2ZA127UYbtIo4MhCuBk5uuMkIiL+lZpgY02OKuuJSOvhUeK0bNkypk+fDriGcM2ePbvB4+Li4vjTn/7ku+jEf5In1iRO8+GsJwAYmuhaSyPncBkHiiroEhVqcpAiIhIoUhNjmPtjTeJ0aAuUF0JYtLlBiUhA8yhx+t3vfsfVV1+N0+nklFNO4dVXX2XQoEH1jgkJCSEiIqJFghQ/6HcmWIJc1YsObYVOfYmuWUtjU24xmTn5nDWom9lRiohIgEhLtHGYaHY5O5NgHIS9q6D3WLPDEpEA5tEcp7CwMGJjY+nYsSMLFy7k5JNPJjY2tt6PkqY2LiwGeo1xPa9TXW+YCkSIiIgJkjq6qrvWLoSrAhEiYjKvi0PEx8erAER75V4Mt07ilJ5kA2ClEicREfEjwzBITbSRpQIRItJKeL0AblVVFS+//DKfffYZe/bsoaKiot5+wzBYt26dzwJ0W7JkCZ988gkZGRns27ePqKgohgwZwh133MGQIUN8/noBacC5MP8+yF4CpYchvGNtgYjVuwqotjsIsmohXBER8Y/UBBu/bFbiJCKtg9eJ0z//+U/eeOMNxo0bx5lnnum3u0+zZs0iPz+fa6+9ln79+nH48GFef/11rrjiCl555RVGjx7tlzjatdie0HUw7F8Lm7+C1Cvo1yWSqNAgiiqq2ZRbzKA4TcwVERH/SEu08V9HL9cvh7dBWT50sJkYkYgEMq8Tp/nz53PHHXcwderUlojnuB599FE6depUb9vYsWM5++yzeemll5Q4+UryRFfitHEepF6BxeIaKvHDloNk5OQpcRIREb8ZmhBDPlFkO7qQZDngKhDR5zSzwxKRAOX1uKuCggKGDx/eErGc0NFJE0BERAR9+/Zl7969fo+n3XLPc9qyEKpdwzDd85y0EK6IiPhTp8hQkjqGk+XUek4iYj6v7zidfPLJbNiwgVGjRrVEPF4pKipi3bp1TY7Fbrc3q11T27dq3YdiieyGUZyLfdv30PcMUuNdd5kysvOw2+3tu/8eUP/V/7qPgaa5/Q/U902aLjXRRtaaPky2LldlPRExldeJ08MPP8ztt99OXFwcp59+uqkV9h5//HHKysq49dZbm9Q+KyurWa/f3PatVVLH4XQp/pxDP71FTlFHgiocAGw9UMIPy1cSGeK6Udle++8p9V/9D2SB3n/xn9SEGBZlqUCEiJjP68TpwgsvpLq6mrvvvhvDMAgLC6u33zAMfvnlF58FeDzPPfccn376KY888kiTq+qlpKRgtVq9bme328nKympy+1Yv/DeQ/Tld8n6hU2oqGAa9fvyeHYdKsdsSSenbsX33vxHt/t+/Eeq/+t+c/rvbi3gqLdHG8+4CEXk7aqu+ioj4m9eJ0znnnINhGC0Ri8emT5/Oiy++yD333MNvfvObJp/HarU264NPc9u3Wv3GQ1AHjIJdWA+uh+4pDEuKZcehUlbtKuS0AV2Adtx/D6n/6r/6H7j9F/8ZHBdDiSWKHY5u9LLkugpE9B1vdlgiEoC8TpyefvrplojDY9OnT2fatGnceeedTR6iJ40I7uC6KG2c51oMt3sK6Uk25mTsJiMn3+zoREQkgHQIsTKwexRZB3rTi1zXcD0lTiJigja1mumMGTOYNm0at912m9/LoQec5Imux43zAGoXws3MzsPhcJoVlYiIBKDURBtZjprKeioQISIm8eiO09q1a7066eDBg5sUzIm89tprPP/884wdO5bTTz+dzMzMevvT0tJ8/poBbcC5gOH6Zq9wD8nduxMWbKGwvJrth0rMjk5ERAJIWoKNj1aoQISImMujxOnSSy/1aF6T0+nEMAzWr1/f7MCO9s033wCwePFiFi9efMz+jRs3+vw1A1pkV0gYDrtWwKYFBA+/kaHxNpbvOExGTj792tS9ShERactSE2382X3HKT9bBSJExBQeJU5PPfVUS8fRqLfeesvsEAJP8kRX4rRxPgy/kfQkV+KUmV1Av15mByciIoGiX9dIHCFRbHN0p49ln+uuU78JZoclIgHGo8Tp4osvbuk4pDVKngQLn4Bt30FlyZF5Tjn5TOkVYXJwIiISKKwWg5SEGLJy+tAHJU4iYg4NuJLj6zIQYnuBvQK2fkN6kg2AjblFlFU5TA1NREQCS70CEZrnJCImUOIkx2cYrrtOABvn0y06jHhbBxxO2JJXZW5sIiISUNISbGQ5agpE7F1lbjAiEpCUOMmJDTjX9bhpATjspNXcdVqdW2leTCIirUhxcTHPPvssN954I6NGjSI5OZlp06aZHVa7k5poY62zJw6nAQU5UHzA7JBEJMAocZIT63kKhMZA6UHY9TOn9u0MwJwNJTzx2Xoqqu0mBygiYq78/Hzef/99KisrOfPMM80Op93qERNGeFQs253dXRu0npOI+JkSJzkxazD0P8v1fOM8Lh+ewPWn9ATgv0t2cvGMn9iyv9jEAEVEzBUfH8+KFSt4++23uffee80Op90yDIPURBurne71nDJNjUdEAo8SJ2lc8kTX48b5BFktPDL5JB481UbH8GDW7S3k/Gk/8P6KHJxOp7lxioiYwDAMj9Y6lOZLS6wzz0kFIkTEz5Q4SeP6nQmWIDi4EQ5tBWB4XBif3Xkqp/TtRFmVnfs+XM2dszIoLFfRCBERaRmpCXUq62monoj4mUfrOEmA62CDnqfC9u9ci+GOvA2AbtFhvPXbkbz0/Vb+8eUmPlu9l8ycfJ7/dTrDatZ8EhERz9ntTZs36m7X1PZtxeAekax19sLhNLAU7sZesAciuwVM/49H/Vf/6z4Goua+B562U+Iknkme5EqcNi2oTZzAtSjh7af3Y1SfTtw1K4NdeWVc9p8l3HvWAG47rS8Wi4aviIh4Kisry9T2bUFsVARbKuIYYOxm248fUdhtVO2+QOj/iaj/6n+ga+n3QImTeCb5XFhwP+z8Ccryjtk9LCmWeXeP5aE5WXy2ei9/+2IjP209yD8vT6NbdJgJAYuItD0pKSlYrVav29ntdrKysprcvi0ZsWU1WWt6M4Dd9O1QiDMtLaD63xD1X/0P5P5D898Dd/vGKHESz8T2gq6DYP86jC1fA/2POSQ6LJhpv05n3IAuPPrxWn7ccoiJ/17M3y8byhkDu/k9ZBGRtsZqtTbrg09z27cF6UmxZK3uw6XWH7DsXQV1+hsI/T8R9V/9D+T+Q8u/ByoOIZ5zV9fbNP+4hxiGweXDE/nsrjEM6hHN4ZJKbnzjZx7/dK3WfBIRkWarWyDCqcp6IuJHSpzEc8mTADC2fI3hOHH1vL5dIvnojlO44dReALz+4w4unvETWw9ozScRaX++++47FixYwDfffAPAli1bWLBgAQsWLKCsrMzk6NqXgT2i2GLpjd1pYBTvg8K9ZockIgFCQ/XEc3HDIKIrRsl+Ig+tAk4+4eGhQVYePX8wY/p15v8+WM26vYWc9/wPPH7hYC77VYLWPRGRduPxxx9n9+7dtb+7kyaAhQsXkpCQYFZo7U5okJXecV3ZnJvAQCPHVZa839lmhyUiAUB3nMRzFourSAQQv/4VyNvpUbMJJ3Vj/t1jj6z59MFq7no3U2s+iUi7sWjRIjZu3Njgj5Im30tLtLHGWbOek4briYifKHES74y4BWdoFBEFm7DMHAur3vOomXvNp/vOTcZqMfh01R4m/XsxK7OPrdAnIiJyIqmJMax2L4S7J9PUWEQkcChxEu90H4Lj5sUUxw7BqCyGj26GD38H5QWNNnWv+TT71tEkxHaoXfNpxjdbcDicfgheRETaA1eBiD5ATYEIp64hItLylDiJ92xJbDzlXzhOewAMK2TNhv+MgeylHjV3r/l03tAe2B1O/vbFRq55bRm5heUtHLiIiLQHvTpFsCu0L9VOC0bJfihSgQgRaXlKnKRpLFac4+6DGxeArSfkZ8PrE+Gbp8Be3Whz95pPz04ZSodga+2aT4s25PoheBERacssFoOBiV3Z7KyZP7Y309R4RCQwKHGS5kkcAbf+AEOvBKcDvnsa3pgEeTsabao1n0REpKnSEm2srhmuZ6hAhIj4gRInab6waLjkJbj0VQiNhpxl8J+xsPp9j5przScREfFWaoKNrJrKesa+VSZHIyKBQImT+E7KFNfdp8RRUFEIc26CD2/yqHCEe82nV68bTseIkNo1n97/OQenJv2KiMhRUhNtZNVU1nPuyVSBCBFpcUqcxLdie8L1n8PpD9UUjni/pnDEMo+aa80nERHxRJeoUAqjk6lyWrGUHiS4bL/ZIYlIO6fESXzPGgSn339U4YhzPS4coTWfRETEE4OSurKppkBERMEmk6MRkfZOiZO0nNrCEVccVThiZ6NNteaTiIg0xrUQrqtARHi+EicRaVlKnKRlhUXDJTPhklfqFI4YA6tne9Rcaz6JiMjxpCbYWFNTICK8YKPJ0YhIe6fESfxj6GVw62JIHFlTOOJ3MOdmjwpHaM0nERFpyJD4GNY4XXecOuRvUoEIEWlRSpzEf2J7wfXz4PQHwbDA6vc8LhyhNZ9ERORoEaFBOLoMotJpJaSqEApyzA5JRNoxJU7iX9YgOP0BuGEB2JJqCkdMhG+f9qhwhNZ8EhGRugYndWGjMxEAy/u/gQ3zdOdJRFqEEicxR9JIV+GIlMvBaYdvn4I3JntUOEJrPomIiFtqoo1/Vl9GKR0wctfAu7+Gl8fDpi+VQImITylxEvOExcClL8MlL0NIFOQs9apwhNZ8EhGR1AQb3zjSmVD9b+yn/D8IjoA9GfDOZfDKmbDlayVQIuITSpzEfEMvh9t+aKBwRGGjTRta82ny84vJ0JpPIiIBYUC3SDoEW9lbHcmS3nfA/1sNp9wFQR1g98/w9qXw2jmw7VslUCLSLEqcpHU4XuGInOWNNj16zaecw641n174Vms+iYi0d0FWC0MTogH4zasrOGfmOqZZr2XntUth1B0QFOZaCuPNC11Dwnf8YHLEItJWKXGS1uOYwhE74bVz4dtnPCocUXfNp2qHk2cXuNZ82q81n0RE2rU/TjqJX/UIJdhqsDG3iH98tYnTXljL5E0T+e/JH1OU+luwhsLOH13J0xvnwc4lZoctIm2MEidpfY4pHPGkx4UjGlrz6dx/L+abDfv9ELiIiJhhcFw0D42JZdmDZ/DslKGMG9AFq8Vg7Z5CHv3mECnLJnBDzMusTbgCpzUEdiyG18+FNy/yaGSDiAgocZLWyl044uKZ9QtHZH3QaNOG1ny64Y0VPPHpOq35JCLSjsV0COby4Ym8eeMIVvzxTJ68OIVT+nbCYsA3e4KYvOVCTi35O192mITdCIJt38CrZ7nmQe36xezwRaSVU+IkrVvqFa7CEQkjXIUjPvwtzLnFo8IRR6/59NqP27Xmk4hIgOgYEcJVI5N456ZRLH1oAk9cOJgRvTqy1+jMzXm/4bTyf/CufTx2LK7Ke6+cAf+73FWRT0SkAUqcpPWL7QU3zIfTHqgpHPGux4UjtOaTiIh0jQrj2tG9eP/W0Sx5YAKPnDeILon9eaDqJsZX/IPZ1eOwOw3Y/AXMPJ2qt6+EvavNDltEWhklTtI2WINg/IOuBCqmTuGI754FR+PD7xpa8+lurfkkIhJwuseE8dsxvfno9lP54f7xXH3uabzZ7X4mVP6dD+1jsDsNgrfMh5fGsuulKRRnrzI7ZBFpJZQ4SduSNMo1dC/lMlfhiG/+6iockZ/daNOj13z6RGs+iYgEtITYcG45rS+f3jmGN37/a/ad8W9uiZ7Bx/ZTcDgNEvZ+ReRr41jxtwtZ9P13lFQ0XuFVRNovJU7S9oTFwKWvHCkckb0EXvSscITWfBIRkYb06hzBHeP78crvr2bwnbN5e9gsvg0aA8DJJd9y+sILWfTXC3js9Y+Yl7WXskoVGxIJNEqcpO1KvQJuXVxTOKLAq8IRWvNJRESOp1/XSK69cCKn/fEztl/2JZs6jsdiODnf8iOP7LiBsvd/x8V/eYu7ZmXw5dp9qtgqEiCUOEnb1rF3TeGI+48UjnhpLOSsaLSp1nwSEZETMQyD3oNHMuCuuThv/o7CnmdhNZxcav2Bz4x7GLP2Uf789jyG//lr7n0/k2827Key2mF22CLSQpQ4SdtnDYLxD8H181yFI/J2wGvneFQ4Qms+iYiIJ4y4NKJv+ABu+gZn/3MIMhxcHvQd34T+gYfsL7JsZSY3vLGCk//6Nfd/sJrFmw9QbVcSJdKetKnEqaSkhL/+9a+MGTOGlJQULrzwQj7//HOzw5LWoudo19C9IVO8LhyhNZ9ERMQj8cMwrn4ffrcQ+k4gCDu/DvqG7zr8nr93eIPwsn2893MO17y6nJFPLuSPH2WxZOsh7JpHK9LmtanE6c4772Tu3LlMnTqVl19+mZSUFO69914+/fRTs0OT1qKDrcmFI7Tmk4iIeCxhOFwzB278EvqcTpCzminOL/kx/PfMiv+A5PAiDpVU8r9l2fz65aWMfmohj32ylp93HFYxIpE2qs0kTt999x0//vgjjz76KFdeeSWjRo3iL3/5C6eeeirPPvssdruGVUkNw6hTOOLkI4UjProVKooaba41n0TEGxoNEeCSRsK1H7uGi/cai8VRyehDc1hg3MUPqV/y29QwosOC2F9UwRs/7WDKf5Yw5plF/OWzdWTm5OuLOZE2pM0kTl999RXh4eGce+659bZfcskl7N+/n1WrtECdHKVjb7hhwZHCEatmwX/GwK6fG22qNZ9ExFMaDSEA9DoVrv8MrvsUkkZj2CtI2PgGj2y9ioyR3/HWlb24JD2eyNAg9hSU88oP27loxo+M+9s3PD1/A2t2FyiJEmnlgswOwFObN2+mb9++BAXVDzk5Obl2/7Bhw8wITVozd+GIPuNhzk2uwhGvng2nPwhj7wWL9fhNa9Z8GtWnE3fNyqhd8+meM/vTN9jO3oJygqxWLAZggMUwsBgGBq7nrm2uAhSWmv3U7DNqfjdw3SAzavaJSNviHg3xj3/8g/POOw+AUaNGsWfPHp599lkmTZqE1Xr8vzPSDvUeB73GwrZv4ZsnYddyrMtmMDb4dcaOuInye6fy3S4Hn63ey8L1ueQcLuM/323lP99tpU/nCCYP7cF5Q+NI7h5ldk9E5ChtJnHKz88nISHhmO0xMTG1+73V1OF97naBOjywTfY/YQTc/D3GvD9gWfshfPMXnFsX4rjoJYg59r+rulLjo/ls6in8ce5aPs/ax9++3OTa8fm3Pg3RnVy5Eyl3AmbUScDqbqv7u2t/zbZ6SdmRfXW3GUaddrjPV//c7n31zg0YQHFxMRG/LAfA/f2o64tSJ+4vTJ0125w1R7ieHznYWdvmyHF123Kcts6j2tbddrxzHTnWecJzOd2xNdC27jnt9mrCvviGIKsFq8UgyGI08Hhkn+W4xxgE1TnOanVtsxpHHWN1ne9457Ae53UbfKyJ2WpQ/5zWo8/p2mc5KrFv7v//bervhgdONBri97//PatWrdKXeoHIMKDveOhzOmxZCN8+Cbt/gR//TdjyVzhn5C2cc+GdlF06lEUb9vPZ6j0s2rCfbQdLmLZoC9MWbaF/10jOGxrHeak96Nsl0uweiQhtKHGCE38r35Rv7LOyspoTTrPbt3Vtsv+9b6djcH+S1jyPNXsJzhdGkz30XvLixzfa9IZkJ71Co3lnTTEllQ4cAE7qPzaDwwmO2k/4bWC4xv7DZkdgrvIKsyPwG2tN8m41DIIscNHACKAN/v/fAnw9GkJf6DVNq+5/n/HQ+3TY8hWWb5/C2LcKfvgnzuUzCR15K+eOvJ1zB6dRXFHNog37+Xz1Pr7ffIDN+4v519eb+NfXmzipexSTh3ZnckoPkjqGH/MSrbr/fqD+B3b/wX9f6rWZxMlmszV4V6mgoAA4cufJGykpKU0aQmG328nKympy+7auzfc/PR3GXI7zo5sJ2v0zfVb+GUf1FpznPg2hJx4akZ4Od19w/P47a+5WOGruZDicx25zOp212x1OjmxzHNvGibM2oXI6j9whqU2y6uxz1JwP6m+re566r+2sdxzgrPNa9fpSf1u13cGunBwSExOxWl3TJN1fXNQOPaTmd+PINmqOcD+vvfvl3lNzLEefq/b4+m1poO3x4sB97jrbj46DRs7l7qfdbmfT5s306dsPJwbVDid2h7Pm0YHd7jxq25FHe+3vjmO2H32eaocTh4Njjq1tY69/rN3hxO6sOcbe8DlPHNPxk3W70/VThRPskF1Q3ey/n+2Fr0dD6Au95mnd/e8Kw/9JTO5PxG18g/DCrRiL/071khfZ32cKuX0uJSk4kttSLFyb3IXleyr4MaeM1bmVrN9XxPp9Rfz9y830jQ3i1MQOnJIYRpfw+v8Ptu7+tzz1v3303+l0UmmH8moH5XYnFdVOymt+Kuw1j+5tNfstBpzbL7zF34M2kzgNGDCAzz77jOrq6nrf7G3a5Bo21b9/f6/PabVam/XBv7nt27o23f/OfeHGBa5Fchf/HcvqWZCz1FXKPGG4R6do0/1vBrvdTqblIGlpCQHb/6oDwaQmxrar/ruT6nqJWr0ksGa73c7h7E0B+99/Q3w5GkJf6DVN2+p/OpxzG/YNn2P57mmCDqwnbtN/6ZE9F+eoqThH3AyhUZwK3APklVby5dpcPs/ax5Jth9iaV83WvCLeXF3EsCQbk1O6c/ZJXdi/c3Mb6b/vta1/f98zo/9Op5PKagelVXZKK+yUVtkpq7RTWllNaaWd0sqa36uObCtzb6/X5sjx7n1lVfZ6w/E9FR5s4eEpo1r0S702kzideeaZvP/++3z55ZdMmjSpdvtHH31E165dSU1NNTE6aZOswXDGH13j0OfcDHnbXYUjxj8IY05cOEKkvTEM97ynE/93b7fbyc9RMRM3X4+G0Bd6zdN2+m+FIRfBoAtg3Vz49mmMgxsxvv0rLHsBTrkLRtwMoZF0jurAVaN6cdWoXhwsrmD+mn18tmoPy3ccZmV2Piuz8/nLvA30iw2mW8ZKLBZLzfBa1/xKi+EqduT6f7ymWJHFVczIahhYLEeKG7mOo2a7UTsX9rjt67Std5zlSFGkeuetPeeR4+vFaRzVvk6cddtbLdSJxwCng4Oldg4UVxEU5Kg3suB4RZvqzxk+9vi2WLipof/+K6sdNQlMNSUVdZIbd/JSWe1KZNzJS0V1g0mQK/GppqTyyD5/LEcWFmwhPCSI8BAr4SFWOoQEER5sJSL0yPMOIVZiw4MZGl7Q4n8D2kzidNppp3Hqqafy2GOPUVxcTFJSEp9//jmLFy/mb3/7Wxv5QymtUs9T4NYf4PN7Yc2HsOgvsGURXDITbIlmRycirVhLjIaQAGKxwJBLYNCFsPYj+PYpOLQFFj4OS6bDqf8PTv4dhLjmNXWODOWaUT25ZlRPcgvLmZe1l89W7+WXnXlsPlzF5sOHzO2P2XxctAmOTbRqky+MevvqFVY6phhT/ePB9U9f7xx1honXL9xU89p1jqf2mCP7i4uLsf7wU50kyJX0nGgYtq+EBFkID7ESERJEB3eCE+x6DA91JTfupCcixFpzTFDNtvrtwuvuC7ZisdQkrw4HVJdBZQlUFtc8HvmxO2FVSecW72ubSZwApk2bxr/+9S+ef/558vPz6dOnD//85z+ZPHmy2aFJW9fBBpe+Cv3Ognl/gOyf4MVT4fx/wZBLzY5ORFopjYYQn7BYIWUKDLoI1nwA3z7tGgXx1SPw0zQY8/9g+I0Q3KG2SbfoMG44tTc3nNqbnEPFfLQ4k/jEnoCB3enE6XRid7jnv7rm0dpr5rjaHUfmtDpq5kc6nOBwuI6118xxtTuOtHU4qXPeo4+nznGu13U6Gzivo+a8zqPO636do4537/PkXNV2B4Zh1JvP6wvuOcAurb1wU9Vx9wRbDToEW4kIrZOkBLueR4Ra6RBc967OCZKZOs/dyU2Qtc6ysE4nVFdAVelRCU4eVJbWT3wKSqCqbgJU9/ij2leVnLDnVqDL4NvhVyN99F42rE0lThERETz88MM8/PDDZoci7ZFhQNqvXavAf3gT7P4ZPrgRNn8Nk55ttHCEiAQejYYQn7IGQeqVMGQKrH4PvnsG8nfCFw/Bj8+71h8cdh0Eh9VrFmfrwKmJHUhLiwvI/+bsdjuZmZmkpaU1WLSpfkEmd7GlYwsn0cC24x3v3nZ04Sdqj6k53lH/HCc6vm5Bp4aOr3/OOgWeHHa2bd/BoAF9iQwLqZPgHElygusmN7VvXLUrOamqm9Dk13les734qASm8uhkp7T+784Wru4XEgnB4RAS4XoeEoEzvBMFXUcQ17Kv3LYSJxG/6NinpnDEM7D4H7DqHche4rojlfArs6MT8ZzTCfYq1/CG6gqoqnlsyu9V5VBdjsVeSXT0KUCa2b1rNTQaQnzOGgTpV8PQyyHzHfj+b1CQA/Pvgx+eq0mgroWgULMjbfXc8zeP1FZtBRwOcFS5/j47qlwJTO3v1XW2H/17zXHU/O6wg70KR3UFu6q2k3CwI5a6SVBV6Ynv5NhbeFmNoLCa5CYCgiOOPK9JdggJr/Pcw+OCOrjGLR79ltrtVGRmtmx/UOIk0jBrMJzxMPQ9o07hiLNchSNG3212dNLWeJTAuBITd4LSvN/d5y8HZ3NXGKvPALp2yQVu9el52zKNhpAWYw2GX10Hqb+GjLdcX+YV7nYNKf/hORj3e0j7DRgBcJfJ4QB75ZGEojaZqISqCsIKt8FeA3A0nnh4mrDUbvMgmfHotWq2+fjvsgVIAljT1BMEHZWoHJ3AuPeFN3JcnUQnOML1BUA70/56JOJLDRSOsGxZRJfo4RjVK8FqdV2wDItrjLphqf9Tu63OPoulgW11jzOOOlfd8xsNbKvT7rivaa27mJK5HA7XbXyH/ajHE21vaJ+jgWN9td1Rf3+d54a9iqTcPRg7I8Fe7vmdm9YwNj4o7MhPcN3nHVzfXAfVPJ7gd4c1hJ2V8Qw2uy8igSQoBE7+LaT/Bla+WZNA7YLP7oHF/8IY+3twnnTiczidrr9j7mTDXn38RKT2Q//RxzXSpsF97p/KI4lF7fPKOglHZcPt3Oc/QbJhBdffpO98+ab7mSUILMGuZNkSVPMY7Eo+avfVPebI705LEPlFJcR0iccSGulFolOzLyjE7N63GUqcRBpzVOEII/snkvip6d/smKnBJO/oZO3ESZ7FsDCorBTLTyFeJB91Hts4C9CluSc5XgLTjITmyO/HOW9QqE+SZ6fdTpUfhkOISAOCQmHETa4E6pc34Id/QUE2ls/uZmhoLJYlnWqGcB0nEWkNX+D4jOFKIKwhOC1BVDsMgkLDMGqTiuAGko2jE5KjjztxgnLsOU50ziAPXq/Osc34++yw29lWM8eLAJzj5k9KnEQ8UadwhOOH5yjYux1bTDSG01lzR6ImSahNIBz1f+reuXA66txFObqd8zjnqrPv6HN5c8vf6U5ijl95p9G3AugAUNzkUzTyAjWJmqXu3byjttU+NrTd0sBxx9t+nPPWJpLHnsOBhX0H8+ie0AtLSLj3CY2PEhgRCWDBHWDUba5CET+/hvPH5wguOQAVed6dx7DWJh+uD/khdZKBmud1k4Ta5yF1PvjXPLeGHEkIap830L7RfUHHieno444kCA67ndXHKQ4h4ktKnES80bEPzsn/qv1mp1X8ga4t9+Nl8lYvWTt6W51krd657Nirq9i6bRt9+ydjtQb7MIlx39Vq3UmF025nb2Ym3fTNnoiYLSQcTpmKI/1atiz+gH79B2ANDjtB8nFUItLAJHsROT4lTiJtnXvZcyz45X9pu52iQhv0TFPiICLSGoREUNwpFZLS9HdZpAXpqwYREREREZFGKHESERERERFphBInERERERGRRihxEhERERERaYQSJxERERERkUYocRIREREREWmEEicREREREZFGKHESERERERFphBInERERERGRRihxEhERERERaYQSJxERERERkUYocRIREREREWmEEicREREREZFGKHESERERERFpRJDZAZjB6XQCYLfbm9Te3a6p7ds69V/9r/sYaNT/5vXf3c79d1hcdF1qHvVf/a/7GGgCvf/gv2uT4QzAq1dlZSVZWVlmhyEiErBSUlIICQkxO4xWQ9clERHzNXZtCsjEyeFwUF1djcViwTAMs8MREQkYTqcTh8NBUFAQFotGi7vpuiQiYh5Pr00BmTiJiIiIiIh4Q1/3iYiIiIiINEKJk4iIiIiISCOUOImIiIiIiDRCiZOIiIiIiEgjlDiJiIiIiIg0QomTiIiIiIhII5Q4iYiIiIiINEKJ01HmzJlDcnJy7c+gQYMYM2YM99xzDzt27Kh37M8//8wf//hHLrnkEoYMGUJycjK7du0yJ3Af8bT/drud119/nd/+9reMGzeO1NRUJk6cyN///ncKCwvN60ALOfp9Ofpn2bJlZofYZAsWLCA5OZl58+Yds++CCy4gOTmZxYsXH7PvzDPP5OKLLwbgm2++4b777uP888/n/7d370FRnWccx78LmAhouIiI46UGdJHLFlFh8UK9xHuwYL11pgNURSUGakUdY9I0YL3GOjZgEQlW0ToORtFRYzRBk9FOZTFYqfVKvFVJooiiInI//YPZUzeAoMCi8HxmGMf3vMt53rNnz2/es+8uXl5euLu7N3vdTaWx4y8qKmLjxo2EhoYyZMgQfH19mThxIsnJyZSWlppjCI3SFM//+vXrCQkJwd/fH51Ox1tvvcWHH35IXl5es9ffVkg2STbVprVmk+SS5NLLmktWjXp0K7Zq1SpcXV0pLS3l9OnTJCUlYTAY+OKLL7CzswMgMzOTkydP4uHhga2tLVlZWS1cddOpb/wlJSUkJCQQFBTE1KlTcXBw4Pz582zcuJGvv/6aPXv20L59+5YeRpMzHpef6t27dwtU0zT8/f3RaDRkZmYyYcIEtb2wsJDLly9jY2ODwWAgMDBQ3fbjjz9y8+ZNZsyYAcBXX31FTk4OHh4etGvXjnPnzpl9HC+qseP//vvvSU1NJTg4mN/+9rfY2NiQnZ3Nhg0b+Oc//8mWLVvQaDQtMbQGaYrn/+HDh7z99tu4ublha2vLd999x8aNGzl27BgHDx7EwcHB7ONqrSSbJJtq09qySXJJcullzSWZONWhT58+6HQ6APR6PZWVlSQkJJCRkcHkyZMBmDdvHlFRUQBs3ry5VYVTfeNv3749R48eNTnx9Ho9Xbt2Zf78+Rw5coTg4OCWKr/ZPH1cWgtHR0f69OlT4/w9deoUVlZWTJ48ucZdy8zMTKD6OQdYvnw5FhbVb2AvW7bslQqoxo6/e/fuHDt2DBsbG3X7oEGDsLa25uOPPyY7O5uBAwc2/0BeUFM8/x999JHJduNxmTNnDkePHmXKlCnNOIK2RbJJsqk2rS2bJJckl17WXJKleg1kvCAVFBSobcYXZFvw0/FbWlrWOlv/+c9/DlTP/MWrQ6/Xc+3aNe7cuaO2GQwGvL29GTZsGOfOnaOoqEjdlpWVhaWlpXrhfdVfC40Zv42NjUk4Gb1Kr4XGPv+1cXR0BMDKSu7PNSfJJsmm1kpySXLpZcylV/usMiPj+vBevXq1bCEtpKHjN874X9XlAfWpqqqioqLC5KeysrKly2q0gIAAAJO7OwaDAX9/f/r3749GoyE7O9tkm6enJx07djR7rc2hOcb/Kr0Wmmr8FRUVlJSUcP78eVauXEmvXr0YPXq0eQbRRkk2STZB68wmySXJJXj5ckkmTnUwXoQeP37MiRMn2LhxI35+fowcObKlSzOLFxn/7du3WbduHd7e3owYMcKM1ZrPtGnT8PLyMvlpDcsj/Pz8sLCwUC9Q9+/fJzc3Fz8/P2xtbfH09FQvuD/88AO3bt1S3w5vDZp6/BcvXiQlJYXRo0fTt29fs4yhMZpi/Pn5+Xh5eeHj48OkSZOorKxk27Zt2Nramn08rZlkk2RTbVpjNkkuSS69jLkkayjqMG3aNJP/u7m5kZiY2GaWnTzv+AsLC5k9ezaKovCXv/zllX+LvC5r1qzBzc3NpO1l/oBlQ9nZ2dG3b191zfCpU6ewtLSkf//+QPUFzHiBMvZpTQHVlOO/desWkZGRuLi4sHz5cjNU33hNMX4HBwd2795NWVkZV69eJSUlhbCwMLZv346zs7MZR9O6STZJNtWmNWaT5JLk0suYS63zCtIE1qxZw+7du0lNTWX69OlcuXKFmJiYli7LbJ5n/A8ePGDmzJncvn2bv/3tb/To0cPM1ZqPm5sbOp3O5Mfb27uly2oSer2e69evc/v2bQwGA15eXupdGX9/fy5cuMCjR48wGAxYWVkxYMCAFq64aTXF+PPy8ggLC8PS0pLU1FTs7e3NPIoX19jxW1lZodPpGDBgAFOnTiU1NZVbt26RnJzcEsNptSSbJJtq01qzSXJJcullyyWZONXBeBEKCAhg2bJlTJ06lRMnTnD48OGWLs0sGjr+Bw8eMGPGDG7dusWWLVteibd/Re2Md2qysrLIysrCz89P3Wa8GJ06dQqDwYBOp2t1S7AaO/68vDxCQ0MB2LZtGy4uLmaqvGk09fPv4uKCs7Nzjb8xJBpHskmyqS2RXJJcgpcrl2Ti1ECLFy/Gzs6O+Ph4qqqqWrocs6tt/MZgunnzJps3b8bT07OFqxSN4efnh6WlJUeOHCE3Nxd/f391W8eOHfHw8GDfvn3k5eW1quUQRo0Z//fff09oaChVVVWkpqbSrVs3c5ffaE39/N+4cYMff/yRn/3sZ81Zdpsn2STZ1JpJLkkuvWy51DYWRTcBOzs75syZw9q1azlw4ADBwcHcu3dP/dDa5cuXATh+/DiOjo44OjqaPMGvup+Of+zYscyaNYvz58/z/vvvU1lZyZkzZ9T+jo6O9OzZs+UKbia5ubm1flNRz5491a+5fFV16NABT09PMjIysLCwqPGWt5+fH6mpqUDNdcR5eXmcPXsWgP/+978A6h3gbt26vRIfUn7R8RcUFBAWFkZ+fj4rVqygoKDA5KuhXVxcXom7fC86/osXL7Jq1SrGjh1Ljx49sLCw4PLly2zduhV7e3tmzpxp1nG0NZJNkk3QerNJckly6WXLJZk4PYfQ0FB27NhBYmIiQUFB5ObmMn/+fJM+cXFxQPXay+3bt7dEmc3m6fH7+vqqF6QVK1bU6Dtp0iRWr15t7hKb3dKlS2ttX758OVOnTjVzNU1Pr9dz9uxZPDw86NChg8k2Pz8/tm7dSrt27fD19TXZZjAYahwb42vjVToXXmT83333HTdv3gSq737/VFRUFNHR0c1beBN5kfE7OTnh7OzMli1byM/Pp6KiAhcXF4YPH05kZCRdu3Y19zDaHMkmyabWnE2SS5JLL1MuaRRFUV740UIIIYQQQgjRBshnnIQQQgghhBCiHjJxEkIIIYQQQoh6yMRJCCGEEEIIIeohEychhBBCCCGEqIdMnIQQQgghhBCiHjJxEkIIIYQQQoh6yMRJCCGEEEIIIeohEychhBBCCCGEqIdMnIRZpKen4+7urv54enoydOhQFixYwPXr11u6PACSkpLIyMio0W4wGHB3d8dgMLRAVdWOHTtGZGQkgwcPxtvbG39/f8LDw9m/fz/l5eUtVtdP1Xas3nvvPUaOHNms+719+zYJCQlcuHChWfcjhGhdJJsaR7Lp2SSbWh+rli5AtC2rVq3C1dWV0tJSTp8+TVJSEgaDgS+++AI7O7sWrW3Tpk2MHTuWUaNGmbR7eXmRlpZG7969zV6Toii8//77pKenM2zYMN577z26du3Ko0ePMBgMxMXFcf/+fcLDw81eW0PNmzePsLCwZt3HnTt32LBhA926dcPDw6NZ9yWEaH0km56PZFPDSDa1PjJxEmbVp08fdDodAHq9nsrKShISEsjIyGDy5MktXF3tOnToQL9+/Vpk3ykpKaSnpxMdHU1UVJTJtpEjRxIREcGNGzfMWlNJSQnt27dvcP+ePXs2YzVCCNF4kk3PR7JJtFWyVE+0KGNQFRQUmLSfPXuWyMhI/P390el0hISEcOjQIZM+9+7dIzY2lgkTJuDr68ugQYMICwvj22+/rbGfsrIyNmzYwPjx49HpdOj1ekJDQzl9+jQA7u7uFBcXs3fvXnXJRmhoKFD3coijR48yffp0fHx88PX1ZcaMGfzrX/8y6ZOQkIC7uzu5ubnExMQwYMAABg8ezNKlS3n06NEzj015eTkpKSm4urry7rvv1tqnc+fODBw4UP1/YWEhsbGxBAYG4u3tzVtvvcX69espKyszeVxpaSnr1q1j5MiReHt7ExgYSFxcHA8fPjTpN3LkSObOncuXX35JSEgIOp2ODRs2AHDlyhVmzZqFj48Per2eP/7xjzx+/LhGjbUth3B3d2fZsmXs27eP8ePH4+Pjwy9/+Uu+/vprk343btxg6dKljBkzBh8fHwIDA4mMjOTSpUtqH4PBwJQpUwBYunSp+vwlJCSofRpyPgkhhJFkU90kmySb2jJ5x0m0qFu3bgHQq1cvtS0zM5OIiAh8fHyIjY2lY8eOHDp0iAULFlBSUsKvfvUroPpCDBAVFYWTkxPFxcV89dVXhIaGsnXrVvR6PQAVFRVERESQnZ1NWFgYAQEBVFZWkpOTww8//ABAWloa4eHh6PV65s2bB1TfzavLgQMHWLRoEUOHDmXdunWUlZWRkpKi7vvpwACIjo5mwoQJTJkyhcuXL7Nu3TqgenlIXf7zn/9QWFjI1KlT0Wg09R7L0tJSwsLCuHnzJtHR0bi7u/Ptt9+SnJzMhQsXSE5OBqqXWMybN4/MzEzmzJnDwIEDuXTpEgkJCZw5c4a0tDRee+019feeO3eOK1eu8M4779C9e3esra25e/cuoaGhWFlZ8dFHH9GpUycOHDjAn/70p3rrNPrmm284e/Ysv/vd77CxsSElJYWoqCgOHz5Mjx49gOplDvb29ixcuBBHR0cePHjA3r17mTZtGnv37sXV1RUvLy9WrVrF0qVLeeeddxg+fDgALi4uQMPPJyGEMJJskmySbBK1UoQwgz179iharVY5c+aMUl5erhQVFSnHjx9XhgwZovzmN79RysvL1b7jxo1TQkJCTNoURVHmzp2rDBkyRKmsrKx1HxUVFUp5ebkSHh6uvPvuu2r73r17Fa1Wq+zateuZNfbr109ZsmRJjfbMzExFq9UqmZmZiqIoSmVlpTJ06FAlKCjIpJaioiJl0KBByvTp09W2+Ph4RavVKp9++qnJ74yNjVV0Op1SVVVVZz2ff/65otVqlZ07dz6zbqOdO3cqWq1WOXTokEl7cnKyotVqlX/84x+KoijK8ePHa63JuL+0tDS1bcSIEYqHh4dy9epVk75r165V3N3dlQsXLpi0z5gxw+RYKYqiLFmyRBkxYoRJP61WqwwePFh59OiR2pafn6/07dtX2bRpU51jrKioUMrKypQxY8YoK1euVNv//e9/K1qtVtmzZ0+Nx7zo+SSEaP0kmySbnibZJOojS/WEWU2bNg0vLy/69+9PREQEb7zxBomJiVhZVb/5eePGDa5evcrEiROB6jtyxp9f/OIX5Ofnc+3aNfX37dy5k0mTJqHT6fD09MTLy4uTJ09y5coVtc+JEyd4/fXXm2yd+rVr17hz5w7BwcFYWPz/JWRra8uYMWPIycnhyZMnJo+pbTlAaWlpjWUgjZGZmYmNjQ3jxo0zaTfetTp58qTa7+l2o/Hjx2NjY6P2e7rWN99806TNYDDQp08f+vbta9IeFBTU4Hr1er3JnVMnJyc6depEXl6e2lZRUUFSUhITJkzA29sbT09PvL29uX79uslzXJfnPZ+EEG2TZFM1ySbJJvFsslRPmNWaNWtwc3Pj8ePHHDp0iLS0NGJiYkhJSQHg7t27ar81a9bU+jvu378PwJYtW1i9ejW//vWvmT9/Pg4ODlhYWPDJJ59w9epVtf+9e/dwdnY2CZLGMO6/c+fONbY5OztTVVXFw4cPsba2Vtvt7e1N+hmXG5SUlNS5n65duwL/XzJSn8LCQpycnGosnejUqRNWVlbq8pHCwkKsrKxwdHQ06afRaHByclL7GdU2zsLCQrp3716j3cnJqUG1Qs1jAtXHpbS0VP3/6tWr2bFjB7Nnz8bPzw87Ozs0Gg1/+MMfTPrV5XnOJyFE2yXZVE2ySbJJPJtMnIRZubm5qR+6DQgIoKqqis8++4zDhw8zbtw4HBwcAJg7dy6jR4+u9XcY7zDt378ff39/4uLiTLb/9EOgjo6OZGdnU1VV1SQBZawxPz+/xrY7d+5gYWHBG2+80ej9eHt7Y29vz9GjR1m4cGG9a8nt7e3JyclBURSTvgUFBVRUVKh129vbU1FRwb1790wCSlEU7t69qz4/RrXt197eXr3wP622tsbYv38/ISEhxMTEmLTfv3+/Qcf4ec4nIUTbJdnUcJJNkk1tmSzVEy1q8eLF2NnZER8fT1VVFa6urvTq1YuLFy+i0+lq/TG+ha7RaEw+KApw8eJFzpw5Y9IWGBhIaWkp6enpz6zltddee+ZdNqM333yTLl26cPDgQRRFUduLi4v58ssv6devn8kdvRfVrl07IiIiuHr1Kn/9619r7VNQUEB2djYAgwYNori4uMYfSty3b5+6/el/9+/fb9LvyJEjFBcXq9ufRa/Xk5uby8WLF03aDx48WP/AnoNGo6Fdu3Ymbd988w23b982aavrLunznE9CCGEk2VQ3ySbJprZM3nESLcrOzo45c+awdu1aDhw4QHBwMHFxccyePZtZs2YxadIkunTpwoMHD7hy5Qrnzp0jPj4egOHDh5OYmEh8fDx+fn5cu3aNxMREunfvTmVlpbqPoKAg0tPTiY2N5dq1a+j1ehRFIScnBzc3N95++20AtFotWVlZHDt2jM6dO2Nra4urq2uNmi0sLFi8eDGLFi1i7ty5TJ8+nbKyMjZv3szDhw9ZuHBhkx0fYzglJCRw9uxZgoKC1D8yeOrUKXbt2kV0dDQDBgwgJCSEHTt2sGTJEvLy8tBqtWRnZ7Np0yaGDRvG4MGDARgyZAhDhw7lz3/+M0VFRfTv359Lly4RHx+Pp6cnwcHB9dYVHh7Onj17mDNnDr///e/Vby56ehlKUxg+fLj6DUXu7u6cO3eOzZs3q99KZNSzZ0/at2/PgQMHcHNzw8bGBmdnZ7p06dLg80kIIYwkm55Nskmyqa2SiZNocaGhoezYsYPExESCgoIICAjgs88+IykpiZUrV/Lw4UPs7e1xc3Nj/Pjx6uMiIyN58uQJu3fvJiUlhd69exMbG0tGRgZZWVlqPysrKz799FM2bdrE559/TmpqKra2tvTt25fAwEC13wcffEBcXBwxMTE8efIEf39/tm/fXmvNEydOxNramuTkZBYsWIClpSU+Pj5s27aN/v37N9mx0Wg0rFq1ilGjRrFr1y71eBjrX7RokfpB2tdff51t27axfv16UlJSuH//Pl26dGHmzJkmf6BQo9GQmJhIQkIC6enpJCUlYW9vT3BwMDExMTXulNamc+fO/P3vf2fFihXExsZibW3NqFGj+PDDD9WvzG0KH3zwAVZWViQnJ1NcXIynpycJCQl88sknJv2sra1ZuXIlGzZsYNasWZSXlxMVFUV0dHSDzychhHiaZFPdJJskm9oqjfL0+7lCCCGEEEIIIWqQzzgJIYQQQgghRD1k4iSEEEIIIYQQ9ZCJkxBCCCGEEELUQyZOQgghhBBCCFEPmTgJIYQQQgghRD1k4iSEEEIIIYQQ9ZCJkxBCCCGEEELUQyZOQgghhBBCCFEPmTgJIYQQQgghRD1k4iSEEEIIIYQQ9ZCJkxBCCCGEEELU43/SNlv3Jm8HaAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACj2UlEQVR4nOzdd3hc1bX38e+ZUe9dskYuci+Suy2bYkJoAQcIAUICgQAJwQntkuQmQJI3IffexIQUAjYEhx7AARswJWCKA4FQXLEt9yLhIlmyeq8z8/5xZsaSJVkaSaORNL/P88xzRqdpbRl0tGbvvbbhdDqdiIiIiIiIBBiLvwMQERERERHxByVDIiIiIiISkJQMiYiIiIhIQFIyJCIiIiIiAUnJkIiIiIiIBCQlQyIiIiIiEpCUDImIiIiISEBSMiQiIiIiIgFJyZCIiIiIiAQkJUMiIiIiIhKQgvwdgEhnJk2a1GFfcHAwKSkpzJs3j+9///uMGzeu02v27t3b6X6LxcJ7772HzWbr9HtedNFFHDx4EIAnn3yS0047rct4goODiYqKIj09nalTp/KVr3yF0047DYul888Xuovt5P0D6eDBgzz//POsX7+eY8eO0dTURFxcHFOnTuW8887jkksuITQ0tMN1ubm5PP/882zYsIGSkhKCgoKw2WycccYZXH/99aSmpvqhNSIivqHnku/15Ht/+ctfpqCggHXr1pGRkdGr76Pnl7SlZEgGtVtvvdXzvqamhu3bt7NmzRreeecdnn/+eaZMmdKj+wQFBdHa2srLL7/Mbbfd1uH45s2bOXjwoOe87uKx2+3U1NSwf/9+1qxZw6pVq5g+fTp/+MMfGD16tJet9J9ly5axfPlyHA4HM2fO5LLLLiMyMpLS0lI2bdrEL37xC1auXMnLL7/sucbpdPKHP/yBxx57jKCgIE477TS+8pWv0NLSwueff84TTzzBypUrWbp0KV/5ylf82DoRkf6n59LQpeeXdEbJkAxqnT0g/ud//odnn32Wp59+mqVLl/boPomJiSQlJfHyyy9zyy23dPikbPXq1QQHB7Nw4UI+/PBDr+IpLS3lf/7nf1i7di033HADq1evJiEhoUdx+dMjjzzCQw89xIgRI/jLX/7CjBkzOpzz4Ycf8thjj7Xbt3z5ch577DFsNhuPPvooEyZMaHf87bff5r//+7/50Y9+RGxsLAsXLvRpO0REBpKeS0OXnl/SGc0ZkiHn9NNPB6C8vNyr66644goKCwv5+OOP2+2vra1l7dq1fPnLXyYxMdHreJKSkvjzn//M/PnzKSgo4NFHH/X6HgPt6NGjLF++nODgYFasWNFpIgSwaNGidsnQkSNHeOSRRwgODuaRRx7p8CABuOCCC7j77rux2+38+te/xuFw+KwdIiKDgZ5Lg5+eX9IVJUMy5HzyyScATJ8+3avrLr74YsLDw1m1alW7/a+//jr19fVcccUVvY7JYrHwwx/+0HO/we7ll1+mpaWF888/n4kTJ57y3JCQkHbXtba2cs4553Q6ft7tyiuvJDk5mS+++IINGzb0W9wiIoORnkuDn55f0hUNk5NB7aGHHvK8r62tJTc3ly1btnDOOedwww03eHWv6OhoLrjgAv75z39SXl7uGTKwatUq0tPTOeOMM3jzzTd7HeucOXMICgqirKyMo0eP9npi50DYtGkTgNdDADZv3gyc+BS0K0FBQeTk5PDGG2+wZcsWFixY0LtARUQGGT2XfK/tz/hk1dXVvbqnnl/SFSVDMqgtW7asw77x48dzwQUXEBkZ6fX9rrzyStasWcOrr77KDTfcwO7du9m5cye33nprlxV3eiokJITY2FjKysooLy8f1A+d0tJSAK8r5rivS0tL6/Zc9znHjx/3MjoRkcFLzyXf6+xn3Fd6fklXlAzJoNa2vGZ9fT0HDhzgD3/4Az/96U/Jy8vjzjvv9Op+c+fOJTMzk9WrV3PDDTfw4osvYrFYuPzyy/s79AHR2adnl112WbcPPKfTCYBhGF59P2+uc5/T9txHH32Ud955h/z8fEJCQpg5cyY/+tGPuh2qJyIyWOi5dGq9fS611ZPS2m315NnS1+eXDF9KhmTIiIiIYPr06SxbtoyzzjqLxx57jG9+85uMGDHCq/tcccUV3H///Xz66ae88cYbnHbaaaSnp/c5vubmZqqqqgCIj4/v8/16orNPz+bPn9/tQyclJYW8vDyKioq8+n7Jyck9vs59TnJysmffhg0buPrqq8nOzsbpdPLggw9yww038M9//pO4uDivYhER8Tc9lzrq7XOpL3rybOnr80uGLxVQkCEnJiaGzMxMWltb2blzp9fXX3bZZQQHB3PXXXdRXV3dpwmqbW3atInW1laSkpIYOXJkv9yzO3v37u3wysnJ6fa6OXPmAPDZZ5959f3c17knC3fFbrezfv16AGbPnu3Z//jjj3P55ZczceJEJk2axO9//3vKy8vZsmWLV3GIiAwmei6d0NvnUl/05NnS1+eXDF9KhmRIcn/S5e729kZiYiJf+tKXKCoqIj4+nnPOOafP8TgcDh555BEAvvrVr/b5fr729a9/neDgYN5++20OHDhwynObm5vbXWe1Wnn33XdPed1LL73E8ePHyczMZP78+V2eV1dXh8PhICYmxvtGiIgMInouDR6dPVv6+/klw4eSIRly3nvvPY4ePUpwcDCzZs3q1T1+9rOfsXz5clasWNGudHRvlJWVceedd7JhwwbS09O5+eab+3S/gZCRkcGtt95KS0sL3//+98nNze30vA8//JDvfe97nq9HjhzJzTffTEtLC0uWLOn0gfLee+/xf//3f1itVn71q1+dcgLw//3f/zFlypRe/zuKiAwGei4NLp09W/r7+SXDh+YMyaDWdiJmfX09Bw8e9KzEfeedd5KUlNSr+44cObJXQwbc8TgcDmpqati/fz+bN2+mpaWF6dOn84c//KFXq3zfddddXR771a9+RXh4uNf37M6SJUtobW1l+fLlXHHFFcyaNYusrCwiIyMpLS1l06ZNfPHFF2RlZbW77rbbbqOhoYEnn3ySSy+9lDPOOIPx48fT2trK559/zrZt2wgLC+OPf/zjKUt333fffWzevJmVK1ditVr7vX0iIr6g55Lvnkv94VTPlv56fsnwomRIBrW2EzGtVisJCQmcffbZfPvb3+52rQBfxhMcHExkZCQ2m42vfe1rnH/++Zxxxhm9/hTplVde6fLYPffc47OHzq233sqFF17I888/z/r163n55Zdpbm4mLi6OyZMn873vfY9LL7203TUWi4W77rqLiy66iOeee46NGzfy6aefYrVasdls3HjjjXznO985ZfnS3/3ud/zzn//k6aefHrBx7CIi/UHPJd8+l/qiu2dLfzy/ZPgxnL0Z3Coi0kv/+7//y5tvvsnf//53xo0b5+9wRERkGNCzRXpLPUMiMmB+/etf89prr7F8+XJiYmIoKSkBzPK0vVmsUERERM8W6Qv1DInIgJk0aVKn+2+99VZuu+22AY5GRESGAz1bpC+UDImIiIiISEBSzUAREREREQlISoZERERERCQgKRkSEREREZGApGRIREREREQC0rApre1wOGhtbcVisWAYhr/DEREJGE6nE4fDQVBQUK8XeByu9GwSEfGPnj6bhk0y1NraSm5urr/DEBEJWNnZ2YSEhPg7jEFFzyYREf/q7tk0bJIhd8aXnZ2N1Wr1+nq73U5ubm6vrx/q1H61X+1X+/v6+1O9Qh3p2dQ3ar/ar/ar/b5+Ng2bZMg9/MBqtfbpP5i+Xj/Uqf1qv9qv9veWhoF1pGdT/1D71X61X+3vre6eTfoYT0REREREApKSIRERERERCUhKhkREREREJCApGRIRERERkYCkZEhERERERAKSkiEREREREQlISoZERERERCQgKRkSEREREZGApGRIREREREQCkpIhEREREREJSEqGREREREQkIAX5OwAREZGeqq2t5eGHH2bPnj3s2rWLiooKbr31Vm677bZ2502aNKnLe2RmZrJ27dpTfp9rr72WDRs2dNh/xhln8Pjjj/cueBERGXSUDImIyJBRWVnJiy++yOTJkzn33HNZtWpVp+e98MILHfZt27aN3/72t5x33nk9+l4jR47kD3/4Q7t90dHR3gctIiKDlpIhwOl08tOXcglprmXmTH9HIyIiXbHZbGzcuBHDMCgvL+8yGZrZyS/zF154AcMwuOKKK3r0vcLCwjq9z4CpKsDy+h3EJHwZ8GMcIiLDmOYMATVNrby0pYAXdtRS39zq73BERKQLhmFgGIbX19XW1rJ27VrmzZvH6NGjfRCZDxxZj3HgXdIOPO/vSEREhi31DAExYcGkRIdyvKaJPUU1zMsM9XdIIiLSj958803q6+u58sore3zN4cOHmT9/PrW1taSnp7N48WJ+8IMfEBYW5vX3t9vtXl9D/DisQHh1HvbWwPygzv1z69XPbxhQ+9X+tttA09f29/Q6JUMu09JjOL63hJ2F1czLTPJ3OCIi0o9Wr15NTEwMF1xwQY/Onz17NhdeeCFjx46lqamJDz/8kMcee4zNmzfzzDPPYLF4N7AiNzfX65gNRwszjSCCWuvI3fAezRFpXt9juOjNz284UfvV/kDm6/YrGXKZlh7D+65kSEREho/9+/ezbds2rrnmGkJDe9bzf+edd7b7+qyzzsJms3Hfffexbt26HhdhcMvOzsZqtXp1DQCbJkPxDibHtWCZOtP764c4u91Obm5u739+Q5zar/ar/b1vv/v67igZcpk6IgaAXYU1fo5ERET60+rVqwG8GiLXmUsuuYT77ruPrVu3ep0MWa3WXj3MHanZULwDa8lOLNaveX39cNHbn99wofar/Wq/79qvAgouWelmMrTveA1NrYE5NlNEZLhpbm7m1VdfZdq0aUyZMqVf7untELk+ScsCwCjaMXDfU0QkgCgZckmPCyMqxKDF7mR/ca2/wxERkX7wr3/9i4qKih6X0z6VV155BYAZM2b0+V495UzNNt8cVzIkIuILGibnYhgGY+OC2X68mR0FVWTZYv0dkoiIdOLf//43DQ0N1NXVAXDgwAHWrl0LmHN7wsPDPeeuXr2asLAwLr744i7vN3XqVObNm8fTTz8NwKZNm3jkkUc477zzGDlypKeAwosvvsiCBQv48pe/7MPWnSTV1TNUeRgaKiE8buC+t4hIAFAy1EZmvCsZKqzydygiItKFe++9l4KCAs/Xa9eu9SRD69atIyMjA4Bjx47x8ccfc8kllxAdHd3l/ex2Ow6Hw/N1cnIyVquVhx9+mIqKCgzDYPTo0dx+++3ceOONAztMLjyOpvAUQhuOQ/EOGHPGwH1vEZEAoGSojbFx5o9DFeVERAavf/3rXz06b8SIEezevbvb8/bu3dvu69GjR7NixYpexeYLDTHjzWSoKFfJkIhIP9OcoTbGxgcDsPtYNa12Rzdni4iI+F597HjzjYooiIj0OyVDbaRFWYkMsdLY4iCvtM7f4YiIiNAQM858U7Tdv4GIiAxDSobasBgGU10ltncUaN6QiIj4X707GSrZA63N/g1GRGSYUTJ0Evfiq5o3JCIig0FzRBrO0GiwN0PpPn+HIyIyrCgZOsk09QyJiMhgYlg8JbYp1rwhEZH+pGToJFmuZGhXYTUOh9PP0YiIiLRZfLUo17+BiIgMM0qGTjIuOZLQIAs1Ta0cLq/3dzgiIiKQOs3cqoiCiEi/UjJ0kiCrhclp5uJ8WnxVREQGA2dam54hp0YtiIj0FyVDnZhmiwVUREFERAaJ5MlgWKGhAqoL/R2NiMiwoWSoE1npZjKkIgoiIjIoBIVB8iTzveYNiYj0GyVDnciynSiv7dRwBBERGQzcFeWUDImI9BslQ52YmBpNkMWgvK6ZY1WN/g5HREQEPPOGVERBRKS/DIpkaNeuXfzwhz/kjDPOYMaMGXzlK19h2bJlNDQ0+CWesGAr41OiAM0bEhGRQcKdDGmtIRGRfuP3ZOjAgQN885vfpKCggHvuuYe//vWvLF68mIcffpgf/ehHfosry6Z5QyIiMoi4k6HyPGiq8W8sIiLDRJC/A3j99ddpamrioYceYtSoUQAsXLiQkpISXnjhBaqqqoiNjR3wuLLSY1i9GXaqvLaIiAwGkUkQPQJqjkHxThi1wN8RiYgMeX7vGQoODgYgKiqq3f7o6GgsFovn+EA70TOkYXIiIjJItF1vSERE+szvPUNf+9rXePrpp/n1r3/Nf//3fxMfH8/GjRt54YUXuOaaa4iIiPDqfna7vVdxuK9zbyemRGIYUFTdSHFVPUlRob2671BxcvsDjdqv9rfdBpq+tj9Qf25+kZYN+99RMiQi0k/8ngxlZGTwj3/8g1tvvZVzzz3Xs//aa6/l5z//udf3y83t2wOi7fUjoqwU1th5/T9bmZU2vJMht77+/IY6tV/tD2SB3v4hQeW1RUT6ld+ToaNHj/KDH/yAxMREHnzwQRISEti2bRuPPPII9fX1/Pa3v/XqftnZ2VitVq/jsNvt5Obmtrt+zt5tFG4/RmN4EjNnjvP6nkNJZ+0PJGq/2q/297797utlAKRNN7fHd4G9Fax+f4yLiAxpfv8t+sc//pHa2lrWrFnjGRI3b9484uPjueeee/ja177G/Pnze3w/q9Xapz9m2l6fnRHL69uPsetYTcD8gdTXn99Qp/ar/Wp/4LZ/SEjIhOBIaKmD8oOQPMnfEYmIDGl+L6Cwe/duxo0b12FuUHa2OUl0//79/ggLgGnpKqIgIiKDiMUKqdPM9xoqJyLSZ35PhlJSUjhw4AB1dXXt9m/duhWA1NRUP0RlmpYeA8Dh8nqqGlr8FoeIiIhHmnve0Hb/xiEiMgz4PRn6zne+Q0VFBTfeeCNvvvkmn376KX/961/53e9+x/jx41m0aJHfYouLCCEjPhyAXYXqHRIRkUFA5bVFRPqN35Ohc845h6eeeoqoqCh++9vfsmTJEl555RW++c1v8uyzzxISEuLX+LJcQ+W0+KqIiAwK7iIKRTv8G4eIyDDg9wIKAAsWLGDBgsG5knaWLYa1O4vYUaBkSEREBoGUqWBYoO441BRDtP+Gk4uIDHV+7xka7KZ5eoY0TE5ERAaBkAhIcC33oKFyIiJ9omSoG9NsZhGFgyW11De3+jkaERER2swbUhEFEZG+UDLUjZToMFKiQ3E4YfexGn+HIyIiciIZKta8IRGRvlAy1ANZNhVREBGRQcRTREHD5ERE+kLJUA+41xtSEQURERkU3GsNle6H5rpTnysiIl1SMtQDKqIgIiKDSlQqRCYDTji+29/RiIgMWUqGeiDLVURhX3ENTa12P0cjIiIBzzC0+KqISD9QMgTgdGK8fBPpe57o9LAtLpy4iGBa7E72F9cOcHAiIiKdUDIkItJnSoYAmmqw7HyJtP3PQVPHoXCGYZDlGiqneUMiIjIopCoZEhHpKyVDAGExOGNHYuCEwq2dnuIuoqB5QyIiMih4ymvvBIfDv7GIiAxRSoZcnOmzATAKt3R6fJqrvPYOldcWEfGb2tpafv/733PjjTeyYMECJk2axEMPPdThvLvuuotJkyZ1eH3lK1/p8ff65JNPuOqqq5gxYwY5OTncddddlJWV9Wdz+iZxPASFQUsdVOT7OxoRkSEpyN8BDBq2ObD7VYyCzZ0eznL1DO0+Vk2r3UGQVXmkiMhAq6ys5MUXX2Ty5Mmce+65rFq1qstzw8LCePrppzvs64kNGzZw0003cdZZZ/Hwww9TVlbGH/7wB66//npeeuklQkJC+tSOfmENgpSpULgFirZD4jh/RyQiMuQoGXJx2uaYb7roGRqTGElkiJW6Zjt5pXVMTI0ewOhERATAZrOxceNGDMOgvLz8lMmQxWJh5syZvfo+v//97xkzZgwPPvggQUHmozIjI4NvfetbrF69mquvvrpX9+13aVmuZCgXpl3m72hERIYcdW+4pU3HaVgwao5BVUGHwxaLwVQtvioi4leGYWAYhk+/R3FxMbm5uVx66aWeRAhg9uzZjBkzhvfee8+n398radPNbdEO/8YhIjJEKRlyC4mkITrTfN/FUDktvioiMnQ0NjZy+umnM2XKFBYtWsRvfvMbKisru71u3759AEyaNKnDsUmTJnmODwoqry0i0icaJtdGXdwUIqoPQsEmmHpJh+NZNpXXFhEZCiZPnszkyZOZMGECYM4Bevrpp/n0009ZvXo1kZGRXV7rTphiY2M7HIuLi+tRQnUyu713C3a7r+vy+qTJWAFqCrFXF0NkUq++z2DVbfuHObVf7W+7DTR9bX9Pr1My1EZd/GSSD78BBZ3PG8qymcPkdhVW43A4sVh8O1RDRER65/rrr2/39emnn87UqVO5/fbbWbVqVYfjnelqOF5vhunl5vat5+ZU10+LSCesvpCDn7xKTfKcPn2fwaqvP7+hTu1X+wOZr9uvZKiNurgp5pvCz8FhB4u13fHxyVGEBlmoaWrlcHk9Y5K6/mRRREQGl/POO4+IiAi2bt16yvPi4uIAOu0Bqqys7LTHqDvZ2dlYrdbuTzyJ3W4nNzf3lNdb9s+BPYWMj2rA2cuCEYNVT9o/nKn9ar/a3/v2u6/vjpKhNhqjR+EMicJoroWSvZA6td3xIKuFyWnRbDtaxc7CaiVDIiJDjNPpxGI59XTZiRMnArB3717OOuusdsf27dvnOe4Nq9Xapz9mTnn9iBmw53Usx3fCMP2Dqa8/v6FO7Vf71X7ftV8FFNoyrDBipvm+YFOnp2jxVRGRoWnt2rU0NDQwY8aMU56XmprK9OnTef3119uNOd+6dSv5+fmcd955vg7VO2lZ5lZFFEREvKaeoZM402djHPqPWVFu9nUdjmelq4iCiIg//fvf/6ahoYG6ujoADhw4wNq1awE466yzKC8v58c//jGLFy9m1KhRGIbBxo0befrpp5kwYQJXXnllu/tNnTqVefPmtVug9Sc/+Qk33ngjd9xxB1dffTVlZWX88Y9/ZOLEiVx++eUD19iecFeUK9kLLY0Q3LOFZUVERMlQB57FV492Xl7bXURhZ2E1TqfT5+tdiIhIe/feey8FBSfWg1u7dq0nGVq3bh3R0dEkJSXx5JNPUlZWht1ux2azce2117JkyRIiIiLa3c9ut+NwONrty8nJYcWKFTz44IMsWbKE8PBwvvSlL/HTn/6UkJAQ3zfSGzE2CI+Hhgoo2QPpM/0dkYjIkKFk6GS22eb2+C5oroOQ9vOCJqZGY7UYlNc1c6yqkfS4cD8EKSISuP71r391e86yZct6fL+9e/d2uv/000/n9NNP7/F9/MYwzN6h/A/NoXJKhkREekxzhk4WY4PoEeC0w7FtHQ6HBVuZkBIFaPFVEREZJFK1+KqISG8oGeqMe6hcQVdD5TRvSEREBpE0JUMiIr2hZKgznnlDnVeUy0p3zxtSMiQiIoOAOxkq3gFOp39jEREZQpQMdcbTM7Sl08Oe8toFGiYnIiKDQNJEsIZAUzVUHvJ3NCIiQ4aSoc6kzwIMqDoMtcc7HJ4yIgbDgKLqRkprmwY+PhERkbaCQiB5kvleQ+VERHpMyVBnwmJOPFQ6mTcUFRpEZpJZZU5FFEREZFBIm25ulQyJiPSYkqGu2Oaa2y7nDamIgoiIDCKeIgo7/BuHiMgQ0qt1hvbv38+WLVsoLi6msbGR+Ph4xo8fz7x584iKiurvGP3DNhu2PnuKinIxvLatUEUURERkcFBFORERr/U4GaqqquKFF17ghRdeoLCwEGcn1WqCgoJYtGgR1157LQsXLuzXQAdchqtnqGALOBxgad+JNi1dRRRERGQQSZ1mbqsOQ0MFhMf7Nx4RkSGgR8nQM888w/LlywG46KKLmD9/PtOmTSMhIYHQ0FCqqqo4cuQIW7duZd26ddx4442cdtpp/L//9/8YPXq0TxvgMylTISgMmqqg/CAkTWh3eJqrvPbh8nqqGlqIDQ/2R5QiIiKm8HiIHWUmQ8U7YcwZ/o5IRGTQ61Ey9Pe//527776bxYsXExzc8Y/+pKQkkpKSmDVrFjfccAOHDx/mkUce4a233mLJkiX9HvSAsAbDiJlw5DNz3tBJyVBcRAgZ8eEcrWhgV2E1C8cl+idOERERt7RsMxkqylUyJCLSAz1Kht566y2Cgno+vWjUqFH87ne/w2639zqwQcE2x0yGCjbDzG91OJyVHsvRigZ2FlYpGRIREf9Ly4a9/9S8IRGRHupRNbn9+/f36uZWq7VX1w0aGe7FVzuvKOceKqeKciIiMiikZZnbou3+jUNEZIjoUTJ02WWX8fWvf53nn3+empoaX8c0eNhcyVDRDmhp7HA4y2YWUdBaQyIiMii4K8qV7IXWZv/GIiIyBPQoGbr55pspLy/nN7/5DWeccQY/+clP+Oyzz3wdm//FjYaIJHC0dDrkYJrN7Bk6WFJLfXPrQEcnIiLDWGOLnb9/dojjdV48X+JGQ2gM2JuhdJ/vghMRGSZ6lAzdeeedvP/++6xYsYKzzz6bd955hxtuuIFzzjmHhx9+mGPHjvk6Tv8wjBO9Q50MlUuJDiMlOhSHE3YfC6AeMxER8bn39xzn16/v5vHPvXi+GAakuofKad6QiEh3epQMARiGwaJFi3jggQf4z3/+w89//nNiY2N58MEHOffcc/nud7/L2rVraWlp8WW8A8+z3lBXi6+6h8pp3pCIiPSfkQkRAOwsaabV7uj5hVp8VUSkx3qcDLUVExPDt7/9bV5++WXWrFnD1Vdfza5du7jzzjtZtGhRf8foX7bZ5vaoiiiIiMjAmTIihuiwIBpanezyZvSBOxkqVjIkItKdXiVDbU2ePJlLLrmEL3/5ywBUVlb29ZaDS7orGarIh/ryDoenpauIgoiI9D+rxWDu6HgANn7R8fnTpbY9Q06nDyITERk+ep0MlZeX89RTT3HxxRfzjW98g1dffZWzzz6b5cuX92d8/heRAAnjzPedDJXLchVR2FdcQ1PrEF9XSUREBpX5mQkAbMiv6PlFyZPBsEJDBVQX+CgyEZHhoecrqQIOh4MPP/yQl156iQ8++ICWlhbGjBnDj370Iy677DKSkpJ8Fad/ZcyF8oNmMjThvHaHbHHhxEUEU1nfwv7iWs8cIhERkb7KGePqGTpUgcPhxGIxur8oOAySJ8HxXWbvUGyGj6MUERm6epQM5efn89JLL/Hqq69SWlpKWFgYX/3qV7n88suZO3eur2P0P9sc2P5Cp/OGDMNgWnoMHx8oY0dBlZIhERHpN9PSYwgLMqhqaGFPUQ1TXfNUu5WW7UqGdsCkC30bpIjIENajZOjCC81fpNOnT+e2225j8eLFREZG+jSwQcXWpqKc02mWLm0jKz2Wjw+Uad6QiIj0qyCrhcmJwWwtbmZ9fpl3ydD2F6Bou28DFBEZ4nqUDH3nO9/hiiuuYMKECb6OZ3BKywJrCDSUm4UUEsa2OzzN1Ru0Q+W1RUSkn01LDjGTobxybjg9s2cXaa0hEZEe6VEBhbvvvrvTRCgvL4/NmzdTX1/f74ENKkGhJ6rzFGzpcDjL9Und7mPV3q0FISIi0o2pySEAbPiiHGdPq8O5n1kV+dCoUQsiIl3pVTW5NWvWsGjRIhYvXsy3v/1t8vPzAbjjjjt48cUX+zXAQcM2x9x2Mm9oTGIkkSFWGlsc5JXWDXBgIiIynI1LCCYs2EJ5XTP7j9f27KLIJIhON98f3+W74EREhjivk6G33nqLu+66i6lTp/LLX/6y3adU06ZN46233urXAAeNtvOGTmKxGJ5x3Ds1VE5ERPpRsMVg1sg4ANbn93K9IRER6ZTXydCKFSv4+te/zl//+leuuuqqdsfGjh3LgQMH+i24QcXdM3RsG7Q2dzjsXnx1R4GGI4iISP/Kca03tD6vrOcXpbnnDamIgohIV7xOhg4ePMjixYs7PRYXF0dlZWVfYxqcEsdBWBzYm+D4zg6H3SW1dxSoZ0hERPqXe/HV9fm9mDekniERkS55nQyFh4dTU1PT6bHi4mJiY4fpOjuGccp5Q1k2c5jcrsJqHI4ePqhERER6YGZGLCFBFkpqmsjv6dzUtOnm9vhusLf6LjgRkSHM62Ro1qxZPPfcc51+MvXyyy8zf/78fglsUHInQ51UlBuXHEVIkIWaplYOlw/z6noiIjKgQoOtzPR23lB8JgRHQmsjlA3TIewiIn3kdTJ0yy23sHXrVq644gr+/ve/YxgG77zzDkuWLGHTpk0sWbLEF3EODhnuIgode4aCrRampEUDaPFVERHpd17PG7JYIHWa+V5D5UREOuV1MpSdnc3f/vY36uvrWbp0KU6nk0cffZT8/HxWrFjBxIkTfRHn4ODuGSrdB40d5wZp8VUREfGVnMxEoJfzhoqVDImIdCaoNxctWLCAt956i8OHD1NaWkp8fDyZmT1cFXsoi0yCuNFQecgcKjfu7HaHs9JVREFERHxj9ug4giwGx6oaOVrRwMiEiO4vUhEFEZFT6tWiq26jRo1i9uzZgZEIuXnmDXVcb2iaZ62h6p5/aiciItIDESFBTM8wP3T7rKdD5dxFFI5tBz2XREQ66FEy9Oabb3p94+LiYjZv7pgwDHkZXS++OiktGqvFoLyumaLqxgEOTERk+KutreX3v/89N954IwsWLGDSpEk89NBD7c6x2+08+eSTfPe732XRokXMmDGDCy+8kD/84Q9UV/dsTue1117LpEmTOry++93v+qJZPZYz9sRQuR5JmQKGBepLobbYh5GJiAxNPUqGfvOb33DppZeyatUqamtrT3nujh07uPfee7ngggvYs2dPvwQ5qLQtr33Sp2xhwVYmpEQBWnxVRMQXKisrefHFF2lububcc8/t9JzGxkYeeughbDYb99xzDytWrOAb3/gGL774It/61rdobOzZh1UjR47khRdeaPe65557+rM5XvMUUcjvYc9QSAQkjjffF+3wUVQiIkNXj+YMvfvuuzz00EP83//9H7/5zW+YOnUqU6dOJTExkZCQEKqqqjhy5Ahbt26lpKSECRMm8NBDD3HmmWf6Ov6BN2IGGFaoOw5VRyFuZLvDWbZY9hTVsKOgivOmpvopSBGR4clms7Fx40YMw6C8vJxVq1Z1OCcsLIx169YRHx/v2ZeTk8OIESO44447ePvtt7n00ku7/V5hYWHMnDmzP8Pvs7ljErAYcKS8gcLKBtLjwru/KC3bLPxTtB0mdJ5AiogEqh4lQ9HR0dxzzz3ccsstvPzyy/z73/9mzZo1NDQ0eM4ZOXIkZ555JhdffDELFizwWcB+Fxxuliot2m4OlTs5GUqPYfVm2KmKciIi/c4wjG7PsVqt7RIht+nTzfkzRUVF/R7XQIkKDSLLFsv2o1Wszy/jslkZ3V+Ulg07XlIRBRGRTnhVTS42NpYbbriBG264AYCamhoaGxuJi4sjODjYJwEOShlzXcnQJpj2tXaHPOW1NUxORGRQ+eyzzwAYP358j84/fPgw8+fPp7a2lvT0dBYvXswPfvADwsLCfBlmt3IyE8xkKK+8Z8lQqirKiYh0pVeltd2io6OJjo7ur1iGDtsc2PSEWV77JFNGxGAYUFTdSGltE0lRoX4IUERE2iouLuaPf/wjWVlZnH322d2eP3v2bC688ELGjh1LU1MTH374IY899hibN2/mmWeewWLxrhir3W7vVdzu69peP290PH/7KJ/1+WU9u2/KVKyAs+wAjoZqCInsVSz+0Fn7A4nar/a33Qaavra/p9f1KRnqT5s2beLRRx9l69atNDU1kZaWxqWXXsott9zi79A6srkqyhV+DvZWsJ74MUaFBpGZFEleSR07C6s5a2Kyn4IUEREwiy7cdNNNOJ1OHnjggR4lMnfeeWe7r8866yxsNhv33Xcf69at47zzzvMqhtzcvvXKtL0+rNmBAeSX1vP+p5uJD7d2e/300HiCmyrY9/Fr1MdP6VMs/tDXn99Qp/ar/YHM1+0fFMnQ66+/zk9/+lMuvPBC7rvvPiIiIjhy5AjFxYO0DGjSBAiJhuYaKNkDaVntDmelx5JXUseOgiolQyIiflRVVcWNN95IcXExTz/9NCNHjuz+oi5ccskl3HfffWzdutXrZCg7Oxurtfuk5WR2u53c3NwO10/Z8DG7jtVQF5nO2dNHdHsfy86ZkPc+k2KacA6yohCn0lX7A4Xar/ar/b1vv/v67vg9GSouLub//b//x1VXXcWvf/1rz/5BXYTBYgXbLMj/0Jw3dFIyNC09hte2FaqIgoiIH1VVVXHDDTdw9OhRnnrqKSZPntwv9/V2iByYRR368sfMydfnjE1k17EaNh6q4NKezBsaMR3y3sdyfAcMwT+q+vrzG+rUfrVf7fdd+73/jd7PVq1aRX19PTfddJO/Q/GOe72hThZfzXIVUdhZqCIKIiL+4E6Ejhw5wuOPP87UqVP7fM9XXnkFgBkzZvT5Xn2Vk+lafDWvh4uvppmV9LTWkIhIe37vGdq4cSNxcXHk5eXxwx/+kP379xMbG8t5553HT3/6U6KiovwdYufc84aOdkyGpqXHAHCorJ6qhhZiwwOo0p6IiI/9+9//pqGhgbq6OgAOHDjA2rVrAXNuj2EYfPe732XXrl3cc8892O12tm7d6rk+ISGBUaNGeb6eOnUq8+bN4+mnnwbMOayPPPII5513HiNHjvQUUHjxxRdZsGABX/7ylweusV2Y71p8df/xWspqm0jsrlhPmquiXPFOcNjNEQ4iIuJ9MvQ///M/XHPNNYwdO7ZfAiguLqahoYE77riDm2++mZkzZ5Kbm8tDDz3E/v37ef7553u0roRbf1bsOaURM83qPCW7cTRUQciJpC061EpGfDhHKxrYcbSCBWMTexXTQFLFErW/7TbQqP0DU7Gnv9x7770UFBR4vl67dq0nGVq3bh1wYsLt//3f/3W4/rLLLmPp0qWer+12Ow6Hw/N1cnIyVquVhx9+mIqKCgzDYPTo0dx+++3ceOONvRom198SIkOYmBrFvuJaNuSXc2F2N/OGEsZBUBi01EF5PiT1rLy4iMhw53UytGbNGp5//nkWLFjANddcwznnnONVsnIyp9NJU1MTt956K9///vcBc6Xw4OBgfvvb3/Lpp59y2mmn9fh+/VmxpzvZYcmENJZw4MOXqE1qP2zCFuHgaAW8s2kPYdVDp4ypKpao/YFM7R8a7f/Xv/7V7Tl79+7t8f1OPnf06NGsWLHC67gGWk5mIvuKa1nfk2TIGgQpU6Fwi7lOnpIhERGgF8nQRx99xCuvvMLKlSu59dZbGTFiBN/61re44oorSEhI8DqAuLg4AM4444x2+xctWsRvf/tbdu7c6VUy1N8Ve07Fsj8H9rzBhIiqDtV5Tqs4yPqC/VQSxcyZ/h9f3h1VLFH71X6139cVe6R/5YxN4O+fHWJ9fk/nDWWbyVDxDsj6um+DExEZIrxOhiIiIrjmmmu45ppr+PTTT3nuuef4y1/+wrJly7jooou45ppryM7O7vH9Jk2a1G4st5vT6QS8r9rT3xV7TiljHux5A0vhlg7VeaZnxAGw61jNkPrjShVL1H61X+2XocE9b2hPUTVV9S3ERnQzP9U9b6hIiauIiFufBj4vXLiQZcuWsW7dOmbNmsWrr77KN77xDa688soeDWMAOP/88wH48MMP2+13fz0YqvZ0yVNRbkuHQ9NsZhGFgyW11De3DmRUIiISAFKiwxibHInTCRu+6EHvkJIhEZEO+pQMNTY2smrVKpYsWcL69esZN24ct9xyC3a7nVtuuYXly5d3e48zzjiDs88+m+XLl/Pwww/zySefsGLFCv70pz9x9tlnM3fu3L6E6Fvps8CwQPVRqClqdyglOoyU6FAcTth9rMZPAYqIyHB2osR2Wfcnp04ztzXHoK7Uh1GJiAwdvUqGDh8+zO9+9zsWLVrEr371K9LS0njiiSd44403uPXWW3n55Ze56aabePbZZ3t0vwceeIDvfOc7vPjii9x0002sXLmS66+/ngcffLA34Q2c0ChIdi3i18l6Q+4S21p8VUREfGHBWHOoXI/mDYVGQ4KrEqx6h0REgF7MGfre977HJ598Qnh4OF//+te59tpr263X4Hb22Wf3uBpPWFgYP/nJT/jJT37ibTj+Z5sDx3fB0U0weXG7Q1m2WN7fW8LOAi2+KiIi/c89b2hnYRXVjS3EhPVg3lB5npkMjTt7ACIUERncvO4ZOnLkCHfffTcffvghP//5zztNhAAmTJjAM8880+cABz3PvKHOeoZiAdihniEREfGBEbHhjEqIwOGEzV9UdH9BquYNiYi05XXP0Ntvv92j86Kiopg/f77XAQ05Ga45TYWfg8MBbarfZbmKKOwrrqGp1U5okKo0iYhI/8rJTOBweT3r88s5e3LKqU92F1Eo3uH7wEREhgD/L6M91CVPgeAIaKqGsv3tDtniwokND6bF7mR/ca2fAhQRkeEsZ6yriEJ+D4oouJOhkr3Q0ujDqEREhgave4a+/OUvYxhGp8csFgvR0dFkZ2dz3XXXMW7cuD4HOOhZg2DETDj8iTlvKHmS55BhGGTZYvj4QBk7CqrIssX6L04RERmWclzzhnKPVlHf3EpEyCke7THpEJ4ADeVQstusiioiEsC87hmaP38+TqeT4uJibDYbM2bMID09neLiYux2OyNGjODdd9/l8ssvD5wVyW2zzW0n84ayXPOGdhaqiIKIiPS/kQkR2OLCaXU42Xyom3lDhgFpWeZ7zRsSEfE+GTrjjDMICQnh3Xff5ZlnnuFPf/oTf//733nnnXcICQnh3HPP5e2332bMmDE89NBDvoh58HHPGyrY1OHQNJuKKIiIiG+5e4fW5/Vk8dXp5rZI84ZERLxOhv76179y2223MWLEiHb709PTueWWW1ixYgXR0dFcf/31bN26tb/iHNzcFeWKd0JLQ7tDWa61hnYfq6bV7hjoyEREJAC4S2x7NW9IPUMiIt4nQ4cOHSIqKqrTYzExMRQUFABgs9loaGjo9LxhJ3YkRKaAoxWObW93aExiJJEhVhpbHOSV1vkpQBERGc7cRRS2HamiscV+6pPbJkMOfUgnIoHN62QoPT2dV155pdNjL730kqfHqLKyktjYACkYYBhdrjdksRhMdfUO7dRQORER8YExiRGkRIfSbHfw+eHKU5+cNBGsIdBcA5WHBiQ+EZHByutk6Lvf/S5r167lm9/8Jk899RRvvPEGTz31FN/85jd59913+d73vgfA+vXrycrK6veAB60MdzLUybwh9+KrBSqiICIi/c8wjJ6X2LYGQ/Jk873WGxKRAOd1ae1vfOMbOJ1OHnroIZYuXerZn5SUxL333suVV14JwJIlSwgJCem/SAe7LnqGAE9J7R0F6hkSERHfyMlM4PVthT0volC03RwqN+Vi3wcnIjJIeZUM2e12Dh8+zIUXXsg3vvEN8vLyqKysJC4ujrFjx7ZbfygpKanfgx3U0l3ltSu+gLpSiDzR/mmuYXK7CqtxOJxYLJ2v0yQiItJbC8aaRRS2HK6gqdVOaJC165NVXltEBPBymJzT6WTx4sV8/vnnGIbBuHHjmDNnDuPGjetyIdaAER4HiRPM9wVb2h0anxJFSJCFmqZWDpfXD3xsIiIy7I1LjiIpKoSmVgfbj3YzEkEV5UREAC+ToaCgIJKSknA6nb6KZ2jrYr2hYKuFKWnRgBZfFRER3zAM40SJ7bxu5g2lunqGqo5AQzcLtYqIDGNeF1BYvHgxa9as8UEow8Ap5g1p8VUREfG1+WPc6w11M28oPA7iRpnvtfiqiAQwrwsoTJ48mTfffJPrrruO888/n+Tk5A5D5M4///x+C3BIaZsMOZ1myW2XrHQVURAREd9yV5TbfKiCFruDYOspPvNMzYbKw+ZQucwzByhCEZHBxetk6Gc/+xkAxcXFbNiwocNxwzDYvXt33yMbilKzwBpqDjkoz4PEcZ5D0zxrDVXjdDo1x0pERPrdpNRo4iKCqaxvYUdBFbNGxXd9clo27P2n5g2JSEDzOhl65plnfBHH8BAUAiOmw9GNZu9Qm2RoUlo0VotBeV0zRdWNjIgN92OgIiIyHFksBvPGJPDurmLW55d3nwwBFCsZEpHA5XUyNH/+fF/EMXzY5pxIhqZ/w7M7LNjKhJQo9hTVsKOgWsmQiIj4RE6mKxnKK2PJWeO6PtGdDB3fA63N5gd6IiIBxusCCm41NTV89NFHvPbaa1RVaR6Mh81VUe7opg6HtPiqiIj42gLXvKFNX1Rgd5yi+mvcKAiNBUcLlO4doOhERAaXXiVDy5cv58wzz+Smm27iZz/7GUePHgXgO9/5DitWrOjXAIccm2vx1aLt5idtbZyYN6RkSEREfGPKiBiiQ4OoaWpl16mWczAMLb4qIgHP62ToueeeY/ny5VxxxRU8+uij7dYcOvvss/nggw/6M76hJ2EshMeDvbnDOOwTPUNaa0hERHzDajGYO8acK7Q+v5v1hjyLr6q8togEpl4lQ9dffz2/+MUvOOOMM9odGz16NIcOHeq34IYkw2hTYntLu0NTRsRgGFBU3UhpbZMfghMRkUDgLrHd7XpDnmRou48jEhEZnLxOho4cOcKZZ3a+HkFkZCTV1er16GreUFRoEJlJkYBZYltERMQXcjLNxVc3flGO41TzhlLbDJNznuI8EZFhyutkKDo6mtLS0k6PFRQUkJiY2Oeghry2i6+eRIuvioiIr2XZYokIsVJZ38Le4pquT0yeDJYgaKyE6oIBi09EZLDwOhlauHAhjz32GPX19Z59hmHQ2trKypUrOwydC0juZKhsv7kAaxsqoiAiIr4WbLUwZ7Rr3lDeKeYNBYdB0iTzvYooiEgA8joZuv322yksLGTx4sUsXboUwzB49tlnufLKKzl06BA//OEPfRHn0BKZCPFjzPeFn7c75C6ioGFyIiLiSwu8njekZEhEAo/XydDo0aNZuXIlY8eOZeXKlTidTl599VXi4+N5/vnnSU9P90WcQ49n3lD7oXLunqFDZfVUNbQMdFQiIhIg3POGNuSXt6v82oGnvLaKKIhI4AnqzUXjx4/n8ccfp7m5mYqKCmJjYwkLC+vv2IY22xzYsbrDvKG4iBAy4sM5WtHArsJqFo7THCsREel/2RmxhAZZKKtr5sDxWiakRnd+ospri0gA69Wiq24hISGkpqYqEepMhqtnqGBThwo9mjckIiK+FhpkZfYo93pDpxgql+pKhiryoVFDuEUksPSqZ+jo0aO89dZbFBYW0tjY2O6YYRj89re/7ZfghrS0bLNCT10JVB6G+NGeQ1npsby9s1jzhkREvFRbW8vDDz/Mnj172LVrFxUVFdx6663cdtttHc7duXMn999/P9u2bcNqtbJgwQJ+9rOfMXLkyB59r08++YS//OUv7Nmzh7CwMM4++2z++7//e0hVTc0Zm8CneWWszy/n2wtGd35SZCLE2MxqcsU7YfTCgQ1SRMSPvE6GPvjgA2699VYcDgcJCQmEhIS0O24YRr8FN6QFh5vrNxzbag6Va5sM2VReW0SkNyorK3nxxReZPHky5557LqtWrer0vIMHD3LttdcyZcoUHnjgAZqamnjwwQe5+uqrefXVV0lISDjl99mwYQM33XQTZ511Fg8//DBlZWX84Q9/4Prrr+ell17q8OwbrHIyE4H9rM8rw+l0dv2MTs0yk6GiXCVDIhJQvE6G/vznPzN79mz+/Oc/D6lPx/zCNudEMpT1dc/uaTZzmNzBklrqm1uJCOlVB52ISMCx2Wxs3LgRwzAoLy/vMhl68MEHCQkJ4dFHHyUqKgqAadOmccEFF/D444/z3//936f8Pr///e8ZM2YMDz74IEFB5u/ojIwMvvWtb7F69Wquvvrq/m2Yj8waFUeI1cLxmia+KKv3LPzdQVo27H8bilVRTkQCi9dzhg4dOsRNN92kRKgnPPOG2hdRSIkOIzk6FIcTdh87xWJ4IiLSjmEY3Y5AaG1t5YMPPuD888/3JEJgJlI5OTm89957p7y+uLiY3NxcLr30Uk8iBDB79mzGjBnT7fWDSViwlZkj44Bu1htSeW0RCVBed0mkp6e3W3BVTsFdXrtwK9hbwBrsOZSVHsP7e0vYWVjlWRhPRET67vDhwzQ2NjJp0qQOxyZOnMjHH39MU1MToaGhnV6/b98+gE6vnzRpElu2bPE6Jrvd7vU1ba/r7fUA88bEs+GLcj7LK+PKObbOT0qZhhVwFu/C0dJkznkdBPqj/UOZ2q/2t90Gmr62v6fXef3b7uabb+aJJ55g0aJFhIeHex1YQEkcD6Gx0FQFx3fDiOmeQ1m2WDMZKlARBRGR/lRZWQlAXFxch2NxcXE4nU6qqqpISUk55fWxsbGdXu8+7o3c3L71uPTl+kRHEwD/2VvE55/bO+9ZczqYaQ3Ham9gz8ev0xid2evv5wt9/fkNdWq/2h/IfN1+r5Oh3NxcysrKOO+888jJySE+vmOvxi9+8Yt+CW7Is1jANgvyPjBLbLdJhqalu4ooqLy2iIhPnGo4XU+K/XR1Tm8KBWVnZ2O1Wr2+zm63k5ub2+vrASY2t/Lb/6yjtMFB0uhJjEyI6PQ8y9ZsOLqBKXF2nNkze/W9+lt/tH8oU/vVfrW/9+13X98dr5OhZ5991vP+n//8Z4fjhmEoGWrLNseVDG2GuTd6dme5iijsK66hqdVOaFDg/UcuIuIL7h6hioqKDscqKysxDIOYmJhur++sB6iysrLTHqPuWK3WPv0x05fro8OtZGfE8vnhSjYdrmJMcheLr46YDkc3YDm+A6xX9TpWX+jrz2+oU/vVfrXfd+33Ohnas2ePL+IYvtzzho62L6JgiwsnNjyYqoYW9hfXespti4hI34waNYqwsDDP3J+29u3bx+jRo7ucLwTmvCKAvXv3ctZZZ3W43n18KMnJTOTzw5WszyvjijkZnZ+UmmVuVURBRAKI19XkxEu2Oea2ZA80nagcZxiGp3dop4bKiYj0m6CgIM4++2zeffddamtrPfsLCwtZv34955133imvT01NZfr06bz++uvtJuBu3bqV/Pz8bq8fjHLGmusqrc8v7/qkNNdQ7qJccDoHICoREf/rUTK0ceNG6urquj2vvLyc1atX9zmoYSU6FWJHAk4o/LzdoSz3vCEVURAR6bF///vfrF27lvfffx+AAwcOsHbtWtauXUtDQwMAt912Gw0NDSxZsoR///vfvPvuu9x8883Ex8dz4403trvf1KlT+c53vtNu309+8hPy8vK44447+OSTT3j99df5r//6LyZOnMjll18+MA3tR3NHx2Mx4HB5PceqGjo/KWUKGBaoL4Xa4oENUETET3qUDF133XUcPHjQ87XD4SArK4tdu3a1O+/IkSP88pe/7N8IhwPbbHN70npD02wqoiAi4q17772XO+64g3vuuQeAtWvXcscdd3DHHXdQVmaupTNu3Dj+/ve/ExQUxB133MFdd93FqFGjeO6550hISGh3P7vdjsPhaLcvJyeHFStWUFJSwpIlS/jf//1fcnJyeOqppwgJCRmYhvaj6LBgz3Ds9Xld9A6FREDiBPO9hsqJSIDo0Zwh50nd5U6nk9bW1g77pQu2ubDrVTi6qd3uaenmMLndx6pptTsIsmrUoohId/71r3/16LysrCyeeuqpbs/bu3dvp/tPP/10Tj/9dG9CG9RyMhPYfrSK9fllfG1WF+sNpWVB6V4o2g4Tht5wQBERb+mv74HgnjdU0H6hvszESCJDrDS2OMgr7X4YooiISG/Nz0wETtEzBJCWbW6LdgxARCIi/qdkaCCkzzTHYdcUQnWhZ7fFYjA1XUUURETE9+aPScAwIK+0juM1jZ2f5EmGNExORAKDkqGBEBIJKVPN9yfPG1IRBRERGQCxEcFMTjM/gNvQVVU5d0W5sgPQrBELIjL89Xidoby8PM+CR+5So3l5eR3OkS7Y5kDxDnPe0JSLPbvdE1p3FKhnSEREfCsnM4Hdx6pZn1fOV6endzwhKgUiU6DuOBTvgpHzBj5IEZEB1ONk6O677+6w76c//Wm7r51OJ4Zh9D2q4cg2B7Y83UnPkPkp3a7CahwOJxaLfn4iIuIbC8Ym8NQnX7A+v6zrk9Ky4eA6KM5VMiQiw16PkqHf/e53vo5j+MuYa24LPweHHSxmL9v4lChCgizUNLVypKKe0YmRfgxSRESGM3cRhX3FtZTXNZMQ2UmZcHcypHlDIhIAepQMXXbZZb6OY/hLngzBkdBcC6X7zMXtgGCrhSlp0Ww7WsWOgmolQyIi4jMJkSFMTI1iX3EtG/LL+ErWiI4nqYiCiAQQFVAYKBYrpM8y35+83pAWXxURkQEyP9NcdPazrkpsu5Oh4p3mSAYRkWFMydBAss02t13MG1IRBRER8bUc11C5LivKJY6HoHBoqYfy/AGMTERk4CkZGkjueUMF7XuGslzltXcWVuN0Ogc6KhERCSA5Y82eod1F1VTVt3Q8wWKFVNdyEEXbBzAyEZGBp2RoINnmmNviXdBc79k9KS0aq8WgvK6ZououFsITERHpBynRYYxNisTphI1fdDNUTvOGRGSYUzI0kGJsEJUGTjsc2+bZHRZsZUJKFKDFV0VExPfcvUNdlthOzTK3SoZEZJjzKhlqbGzkm9/8Jp988omv4hneDONE79BJ84a0+KqIiAwU97yh9V3NG0qbbm6LdwxQRCIi/uFVMhQWFsa+ffuwWq2+imf4y3AnQydVlHMVUdipinIiIuJj7opyOwqqqGnsZN5Q6lTAgJpjUFsysMGJiAwgr4fJzZo1i+3bNaGy17rpGdpZqGFyIiLiW+lx4YxMCMfhhE2HKjqeEBoNCWPN98UaKiciw5fXydDPfvYzXnjhBdasWUNdXZ0vYhre0mcBBlQebvdp25QRMRgGHKtqpLS2yX/xiYhIQOi2xHaa5g2JyPDndTJ01VVXUVRUxN13383cuXOZNWsWs2fP9rzmzJnjiziHj7BYSJpovm/TOxQVGkRmUiSg3iEREfG9HNdQufV5XRRR8FSU07whERm+gry94IILLsAwDF/EEjgy5kLpXnPe0KSveHZPS48lr6SOHQVVnDUx2Y8BiojIcLdgrNkztP1oFfXNrUSEnPQngbuIgnqGRGQY8zoZWrp0qS/iCCy22bD1uY7zhtJjeH1boYooiIiIz2XEh5MeG0ZhVSNbDlVyxoSk9ie4y2uX7oOWBggOH/ggRUR8TOsM+YNtrrkt2AwOh2e3iiiIiMhAMQyDnLHuEtudDJWLSYfwBHNtvOO7Bzg6EZGB4XXPkNu+ffs4ePAgTU0dJ/t/7Wtf60tMw1/qNAgKg8YqKM+DpPHAifLah8rqqWpoITY82J9RiojIMJeTmcArnxewPq+TIgqGYc4byv+3ud6QbfbABygi4mNeJ0MNDQ384Ac/4LPPPsMwDJxOJ0C7eURKhrphDYYRM+DIenPekCsZiosIwRYXTkFlA7sKq1k4LtHPgYqIyHDm7hnaeqSSxhY7YcEnrSPoToY0b0hEhimvh8k9/PDDFBQU8Oyzz+J0Olm2bBlPPvkk5513HqNHj+aVV17pU0CrVq1i0qRJzJo1q0/3GfS6XG9Ii6+KiMjAGJMYQXJ0KM12B58frux4gqeinJIhERmevE6G1q1bx0033eRJVkaMGMHChQt58MEHmTZtGs8//3yvgykuLua+++4jJSWl1/cYMtzJ0NFN7XZnpWvekIiIDAzDMDwltjtdb6htee02c1xFRIYLr5OhgoICxo4di9VqxTAMGhoaPMcuvvhi1q1b1+tgfvWrXzF37lxOP/30Xt9jyHAnQ0W50Hpi3pW7iMKOAvUMiYiI752yiELSRLCGQHMNVB4a4MhERHzP62QoOjqa+vp6ABITEzl06MQvx9bWVs8xb7366qts2LCBX//61726fsiJHwMRieBoaTf8YJprmNzBklrqm1v9FJyIiASKBa6eoS2HK2huPan3xxoMKVPM9xoqJyLDkNcFFCZNmsQXX3zBokWLyMnJ4dFHH2X06NGEhISwfPlyJk+e7HUQZWVl/Pa3v+XHP/4xaWlpXl/flt1u79N1vb2+NyzpszEOvIvjyEacI8xhh4kRwSRHhVJS28TOgkpmj4ofkFj80f7BRO1X+9tuA01f2x+oP7fhYnxKFImRIZTVNbP9aCVzxyS0PyE1G45tM5OhqZf4J0gRER/xOhm6/PLLPb1B//Vf/8XVV1/NtddeC0BMTAwrVqzwOoh7772XzMxMrr76aq+vPVlubt8+uerr9d4YYbWRDlTseI8vQuZ79o+MgpJaeHvDLizlkQMWDwxs+wcjtV/tD2SB3v5AZRgG8zMTeGtHEevzyzsmQ+55Q8U7Bj44EREf8zoZuuiiizzvR44cydtvv+0psz1r1izi4uK8ut/bb7/Nv/71L9asWdOuPHdvZWdnY7Vauz/xJHa7ndzc3F5f3ytRpbD3KRIa8ombOdOze2HJfrYUHaTaEsvMmVkDEopf2j+IqP1qv9rf+/a7r5ehK8eVDH2WV8YtZ49vf1AV5URkGOv1oqtuERERfPnLX+7VtXV1dfzmN7/h2muvJSUlhepqs4JaS0sLANXV1QQFBREREdHje1qt1j79MdPX670ych4ARvlBrE1VEGF+GpedEQfAzmPVA/6H2YC2fxBS+9V+tT9w2x/I5meaRRQ2H6qgxe4g2NpmSnGa60O5qiNQX+55VomIDAdeF1DoTxUVFZSWlvLEE08wb948z+uNN96gvr6eefPm8ZOf/MSfIfpWRAIkjDXfF27x7J6WbhZR2FdcQ1OrxuKLiIhvTU6LJjY8mPpme8elHcJiIW6U+V5D5URkmOlRz9DkyZN7PITNMAx27drVo3OTk5N55plnOuxfsWIFGzdu5G9/+xvx8QNTQMBvbHOhPA+Obobx5wKQER9ObHgwVQ0t7C+u9ZTbFhER8QWLxWDemATe213M+rwyZo6Ma39C2nSoPGyuN5S5yC8xioj4Qo+SoVtuuaVf5vOcLDQ0lJycnA77X3nlFaxWa6fHhh3bHMh9EQo2e3YZhkGWLYaPD5Sxs7BKyZCIiPjcgrGuZCi/nJvPGtf+YFo27HlD84ZEZNjpUTJ02223+TqOwJUx19wWbAKnE1xJZ1Z6LB8fKGNHQTVXzfNjfCIiEhByXPOGNuaXY3c4sVrafAiqIgoiMkz5dc5QV5YuXcrnn3/u7zAGRmoWWIKhvqzd6t7TXL1BOwqr/BWZiIgEkKnpMUSHBlHT1MruYyfNG0p1FVEo2QOtzQMfnIiIj3hdTW7NmjXdnvO1r32tF6EEqOAw8xO3wi1wdBPEjwFOFFHYfayaVruDIOugzFtFRAalu+66i1deeaXL4y+88AIz2yxp0NbLL7/M3Xff3emx//znPyQnJ/dHiIOO1WIwd0w87+8t4bO8svZDtONGQWgsNFVB6d4TPUUiIkOc18nQXXfd1en+tnOKlAx5yTbHTIYKtkD2FQBkJkYSGWKlrtlOXmkdE1Oj/RykiMjQ8cMf/pBvfvObHfYvWbKEkJAQsrO7/2P+d7/7HWPHjm23z9u19Iaa+ZmJvL+3hPX55XzvzDZtNwwzATr0H3OonJIhERkmvE6G1q1b12FfRUUF69at48033+TPf/5zvwQWUDLmwsa/mfOGXCwWg6npMWz8ooKdhVVKhkREvDBq1ChGjRrVbt+GDRuoqKjgBz/4QY/WU5owYUKPkqbhJGesuYbQxi/KcTicWE6eN+ROhkREhgmvkyGbzdbpvqysLFpbW3nmmWdYunRpvwQXMGxzzO2xbWBvAWswANPSY9n4RQU7Cqq5bJYf4xMRGQZWr16NYRhcfvnl/g5l0Mq2xRIRYqWyvoV9x2uYnBZz4qB78VUlQyIyjPTrRJSFCxfyr3/9qz9vGRgSxpmL2rU2QvFOz273vKEdBSqiICLSFzU1Nbz99tssXLiQkSNH9uiaJUuWMGXKFObPn8+tt97Kvn37fByl/wVbLcwZba7vtz6vvP3BthXlnM4BjkxExDe87hk6lYKCAiwWTfT3msUC6bMh731zvaH0mQCeyau7Cqs7DlcQEZEee+ONN2hsbOSKK67o9tykpCSWLFnCzJkziYqKYt++faxYsYKrrrqKlStXMnnyZK+/v91u703Ynut6e31vzBsdz0f7S/ksr5Rv57RJHBMmYLEEYTRWYq84DLEZPo/FH+0fTNR+tb/tNtD0tf09vc7rZGjjxo0d9jU3N7N3714effRRFi5c6O0tBcx5Q+5kaN53ARifEkVIkIWaplaOVNQzOjHSz0GKiAxNq1evJi4ujvPOO6/bcxctWsSiRYs8X8+bN4+zzjqLiy++mL/85S888sgjXn//3Ny+DS3r6/XeSLCbpbM/2V/C559/3q5A0pSoUURU55H/6atUpZ0+YDENZPsHI7Vf7Q9kvm6/18nQtdde2+4XI4DT1V1+2mmn8ctf/rJ/Igs07nlDBZs9u4KtFqakRbPtaBU7CqqVDImI9MKePXvYsWMH1113HSEhIb26R0ZGBnPmzGHbtm29uj47O7tHRRtOZrfbyc3N7fX1vTGl1cH/fPQeVU0Oom0TGJ8S5TlmfDEPcvMYG1GHs4vS5P3JH+0fTNR+tV/t73373dd3x+tk6JlnnumwLzQ0FJvNRlJSkre3Ezd3MlSyFxqrIcycLzQ1PdZMhgqrWDx9hB8DFBEZmlavXg3AlVde2af7OJ3OXg8Ft1qtffpjpq/XeyPCamX2qHg+zStj46FKJo1os97QiOmQ+wKW4zthAP84G8j2D0Zqv9qv9vuu/V4nQ/Pnz/dFHBKVArGjoOowFH4OY88CIMumIgoiIr3V3NzM66+/zvTp05k4cWKv73PkyBG2bNnCaaed1o/RDV7zMxP4NK+MDfnlfHvB6BMH2hZREBEZBrz+iCs/P58NGzZ0emzDhg188cUXfY0pcGW4h8qdWG8oK/1EEQWnqveIiHjlvffeo7KyssteoXvuuYepU6dSUFDg2Xf99dezbNky3nvvPT799FOefvpprr76agzD4I477hio0P3Kvd7Q+vyy9s8edzJU8YU5ikFEZIjzumdo6dKljBkzptMeovfff5/8/Hz++te/9ktwAcc2B3a+AgVbPLsmpUVjtRiU1TVTVN3IiNhwPwYoIjK0rF69moiICC666KJOjzscDux2e7s/+CdOnMhbb73FE088QVNTEwkJCSxYsIAf/vCHZGZmDlTofjV7VDwhVgvF1U0cKqtnTJJrzmpEAsTYoLrAXApitIomicjQ5nUylJub2+UnbPPmzeP111/vc1AByzbX3B7dZK7hYBiEBVuZkBLFnqIadhRUKxkSEfHCE088ccrjS5cu7bBQ+D333OPLkIaEsGArM0aaC3+vzy87kQyB2TtUXWAOlVMyJCJDnNfD5GpqaoiIiOj0WFhYGFVVmtvSayNmgGGF2iKoLvTsnuYaKqd5QyIiMlByMhOBUy2+un2AIxIR6X9eJ0Opqals3975L8Dt27eTnJzc56ACVkgEpE4137edN+QqorCzUMmQiIgMjBPzhk5KhlKzzK2KKIjIMOB1MnTuueeyYsUKPvvss3b7169fz9/+9rceLWgnp9DJekNZNrNnaGehJquKiMjAmDM6niCLQUFlA0fK608ccPcMHd8N9lb/BCci0k+8njN0yy238J///IcbbriBMWPGkJaWRlFREV988QXjx4/ntttu80WcgcM2FzY/BUdPJENTRsRgGHCsqpHS2iaSokL9F5+IiASEiJAgsmyxbD1SyYb8ckYmuIbIx2dCSBQ010LZfkiZ4t9ARUT6wOueoejoaF544QVuvfVWYmNjKSwsJDY2lttuu41//OMfREVFdX8T6VqGq4hC4efgsAMQFRpEZqI5eVW9QyIiMlDaltj2sFg0VE5Ehg2ve4YAIiMjueWWW7jlllv6Ox5JmnjiE7eSPZA6DYBptljySuvYUVDFWRM1L0tERHxvQWYij/47r+O8obQsOPKZWURh+jf8E5yISD/wumfIraamho8++ojXXntNFeT6k8UK6bPM923nDaWbRRR2qWdIREQGyNwx8VgMOFRWT1FV44kDnopyO/wTmIhIP+lVMrR8+XLOPPNMbrrpJn72s59x9OhRAL7zne+wYsWKfg0wILmLKBxtW1HOVV5bFeVERGSARIcFe5Z3aDdUzpMM5Zrr4omIDFFeJ0PPPfccy5cv54orruDRRx9tt2r32WefzQcffNCf8QUm97yhgi2eXdNcPUOHyuqpamjxR1QiIhKAcjLNeUOftV1vKGUqGBaoL4WaIj9FJiLSd71Khq6//np+8YtfcMYZZ7Q7Nnr0aA4dOtRvwQUsd8/Q8Z3QXAdAXEQItrhwQEPlRERk4OSMdS2+2rZnKDgcEieY71VEQUSGMK+ToSNHjnDmmWd2eiwyMpLqav2h3mcx6RCdDk4HFG717NbiqyIiMtDmjYnHMCCvpI7jNZ3MGypWMiQiQ1evSmuXlpZ2eqygoIDExMQ+ByWAbba5bVdEQYuviojIwIqLCGFSajQAG/MrThxoO29IRGSI8joZWrhwIY899hj19SdWozYMg9bWVlauXNlh6Jz0kmfeUCdFFArUMyQiIgNnQWdD5ZQMicgw4HUydPvtt1NYWMjixYtZunQphmHw7LPPcuWVV3Lo0CF++MMf+iLOwOOeN9RJEYWDJbXUN7f6IyoREQlA7iIK69sWUXAnQ2UHPfNbRUSGGq+TodGjR7Ny5UrGjh3LypUrcTqdvPrqq8THx/P888+Tnp7uizgDT/oswICqI1BTDEBKTBjJ0aE4nLD7WI1/4xMRkYAx35UM7S2uobyu2dwZlQJRqYATinf5LzgRkT4I6s1F48eP5/HHH6e5uZmKigpiY2MJCwvr79gCW2g0JE+Gkt3mvKHJFwHm4qvv7y1hV2EVc0bH+zlIEREJBIlRoUxIiWL/8Vo25Jfzlaw080BaNhwohqLtMHKef4MUEemFXi266hYSEkJqaqoSIV/JcA+V62zekIooiIjIwMkZ6xoqp3lDIjKM9KhnaM2aNV7d9Gtf+1ovQpEObHPg82fbVZRzrwS+Q+W1RURkAOVkJvLsZ4fbzxtKzTK3SoZEZIjqUTJ011139fiGhmEoGeovNndFuS3gcIDF4imisK+4hqZWO6FBVj8GKCIigcJdRGF3UTVVDS3EhgdD2nTz4PFd4LCDRc8kERlaepQMrVu3ztdxSGdSpkJQODRVQ9kBSJ5IRnw4seHBVDW0sL+41jNsTkRExJdSYsLITIokv7SOTV+Uc86UVEgcZz6nWuqhPA+SJvg7TBERr/QoGbLZbL6OQzpjDYL0mXD4U3PeUPJEDMMgyxbDxwfK2FlYpWRIREQGTE5mAvmldazPdyVDFiukTjWHcxdtVzIkIkNOrwso1NbW8p///Ic33niDjz/+mNra2v6MS9w86w2dmDeUla4iCiIiMvA8RRTyOiuisMMPEYmI9E2vSms//vjjLFu2jMbGRpxOJ4ZhEBYWxu23384NN9zQ3zEGNncydPRERbmprnlDKqIgIiIDKSczEYAdhdXUNrUSFRqkinIiMqR5nQytWbOG+++/n0WLFnHZZZeRkpLC8ePHWbNmDb///e+Jj49XAYX+5E6GindASyMEh3mGxu0+Vo3d4cRqMfwYoIiIBIr0uHBGJoRzpLyBTV+U86VJKSeKKCgZEpEhyOthck899RRf/epXWbFiBRdeeCFz5szhwgsv5NFHH2Xx4sU8/fTTvogzcMWNgshkcLSa47GBzMRIIkOsNLY4yCvR8EQRERk47t6h9fmuEtspUwEDaougtsR/gYmI9ILXyVBeXh6XXHJJp8cuueQSDh482OegpA3D6DBvyGIxNFRORET8Yr6rxPYGdzIUGgUJY833xeodEpGhxetkKCwsjKqqzv8Ar6qqIiwsrM9ByUnc6w21mTc0TUUURETEDxa4eoa2H62kodlu7tS8IREZorxOhubMmcOyZcsoLi5ut7+kpITly5czd+7cfgtOXGyzzW2binLuxVd3FKhnSEREBs7IhHBGxIbRYney5XCFuVPJkIgMUV4XUPjRj37EN7/5Tc4//3wWLlxIcnIyJSUlfPbZZwQFBbFs2TJfxBnY3MlQRT7UlUFkoqeIwq7CahwOJxYVURARkQFgGAY5mQms2VrI+rwyTh+fpGRIRIYsr3uGJkyYwOrVqznnnHPIzc3l5ZdfJjc3l3POOYdVq1Yxfvx4X8QZ2MLjIdH1cy3cAsD4lChCgizUNLVypKLej8GJiEigyRlrDpX7zD1vyJ0Mle6HlgY/RSUi4r1erTOUmZnJn/70p/6ORU7FNhfKDpjzhiacR7DVwpS0aLYdrWJHQTWjEyP9HaGIiASIHFcRha1HKmlssRMWPQIiEqG+DI7vPjGiQURkkPO6Z0j85KSKcgBT3UUUVFFOREQGUGZSJMnRoTS3Oth6pNKsfKqhciIyBPWqZ2jXrl28/vrrFBYW0tTU1O6YYRg88sgj/RKctJHRJhlyOsEwyLKpiIKIiAw8wzCYn5nAP7cfY0N+OQvGJkJqFuR9oGRIRIYUr5OhNWvWcPfdd2OxWEhISCA4OLjdccPQRH6fSM0Cawg0lJuFFBLGkpV+ooiC0+nUz15ERAbMAlcytD6/DJgAadPNA8U7/BqXiIg3vE6GHnnkEc466yzuu+8+YmNjfRGTdCYo1HzQFGyCo5shYSyT0qKxWgzK6popqm5kRGy4v6MUEZEA4S6isPlQBc2tDkI8w+R2gMMBFo3EF5HBz+vfVMePH+e6665TIuQPJ80bCgu2MiElCtDiqyIiba1fv55JkyZ1+tq6dWu315eVlXHXXXeRk5PDjBkzuOqqq/j00099H/gQMiElioTIEBpbHOQWVELSBLCGQnMNVH7h7/BERHrE656hKVOmdFhwVQZIxlzY8KjZO+QyLT2WPUU17Cio4rypqX4MTkRk8PnRj35ETk5Ou30TJkw45TXNzc1cf/31VFdX8/Of/5zExESee+45vve97/Hkk08yf/58X4Y8ZBiGwfwxCazdWcRneeXMGZ0AKZPh2DZz3lDCWH+HKCLSLa97hn7605+yYsUK9uzZ44t45FTcPUPHtkNrM4CniMJOVZQTEelg9OjRzJw5s90rMvLUSxGsWrWKffv28cADD3DJJZdw+umn8+CDDzJmzBjuv//+AYp8aMgZa5bYXn/yekNFmjckIkOD1z1DM2fO5Pzzz+eyyy4jOTm5w3A5wzB47bXX+i1AaSNhLITFQWOlOUHVNpssm/nz31moYXIiIv3hvffeIzMzk1mzZnn2BQUFcckll/CnP/2J4uJiUlPVEw+Qk+maN/RFOa12B0HuIgqqKCciQ4TXPUMrVqzg0UcfJT4+nvT0dOLi4tq9NJfIhwyjw7yhKSNiMAw4VtVIaW3TKS4WEQk8v/nNb5g6dSqzZ8/mu9/9Lps2ber2mv379zNp0qQO+9379u/f3+9xDlWT06KJCQuirtnOjsJqrTUkIkOO1z1DzzzzDJdffjm/+c1vsFqtvohJTiVjLhxc50qGbiIqNIjMxEjySuvYWVjNWROT/R2hiIjfRUdHc91115GTk0NcXByHDh3i8ccf57rrruPRRx/lzDPP7PLaysrKTj/Yc++rrKz0Oh673e71NW2v6+31A2HemHjW7Snhs4OlZM+bghWg+ij22lIIj+/TvYdC+31J7Vf7224DTV/b39PrvE6G6urq+OpXv6pEyF9O6hkCmGaLJa+0jh0FVUqGRESAqVOnMnXqVM/Xc+fO5bzzzuPiiy/m/vvvP2UyBKdeM683a7rl5vatp6Sv1/tSRkgjAO9u+4J50VVkRYwgtP4YBz5eQ23SrG6u7pnB3P6BoPar/YHM1+33OhmaPXs2Bw8eZOHChb6IR7rjToZK90FDJYTHkZUew+vbCtmleUMiIl2KiYnhS1/6Ev/4xz9obGwkLCys0/Pi4uI67f2pqjIL1fRmOHh2dnavPkS02+3k5ub2+vqBYEmq4untn7Kvwk729BkE75sDe99gQlQDzpkz+3TvodB+X1L71X61v/ftd1/fHa+ToZ///OfcfvvtpKWlsWjRIkJCQrwOTvogMgniRkPlISj8HMad7SmisEMV5URETsnpdAKn7t2ZOHEi+/bt67Dfva+70tydsVqtffpjpq/X+1J2RhxRoUHUNLay73gdWSOmw943sBzfCf0U82Bu/0BQ+9V+td937fc6Gbr88stpbW3ltttuwzCMDp+sGYbB5s2bu7ha+kXGXDMZKtgE485mWrpZXvtQWT1VDS3Ehgf7OUARkcGnqqqKDz74gClTphAaGtrleeeeey733nsv27ZtY8aMGQC0trby2muvMWPGDFWSO0mQ1cLcMfF8sLeE9fnlZKVlmQdUXltEhgCvk6ELLrigV+OlpR/Z5sCOl6BgCwBxESHY4sIpqGxgV2E1C8cl+jlAERH/+vGPf8yIESPIysoiPj6eQ4cO8cQTT1BWVsbSpUs9591zzz2sWbOGd999F5vNBsAVV1zB888/zx133MGPf/xjEhMTef7558nPz+fJJ5/0V5MGtZzMRDMZyivju1muinIle8w18YI0gkREBi+vkiG73c7NN99MQkKCSmj7k22uuT26CZxOMAyybDEUVDaws7BKyZCIBLxJkybx5ptv8o9//IP6+npiY2OZM2cOv//975k+fbrnPIfDgd1u9wyfAwgJCeGpp57i/vvv53//939paGhgypQp/O1vf2P+/Pn+aM6g5158dcMX5TiiZ2MJi4XGKjMhGjG9m6tFRPzHq2TI6XSyePFiHnnkEc466yxfxSTdGTEdLEFQdxyqjkLcSLLSY3l7Z7EWXxURAb7//e/z/e9/v9vzli5d2q6nyC0pKYn77rvPF6ENS9m2WMKDrVTWt7C/pI5Jqdlw6D/mekNKhkRkEPNq0dWgoCCSkpLafYImfhAcDqnTzPcF5gKCniIKBSqiICIiAyvYamHOaHNNofX5ZScWXy3WvCERGdy8SoYAFi9ezJo1a3wQinjlpPWG3EUUDpbUUt/c6q+oREQkQOVkmkPl1ueVn0iGigJ7fRQRGfy8LqAwefJk3nzzTa677jrOP/98kpOTOxRUOP/88/stQOmCbS5segKOmslQSkwYydGhlNQ0sftYjecTOhERkYGQM9acr7o+vwznl7MwAIq2e+a2iogMRl4nQz/72c8AKC4uZsOGDR2OG4bB7t27e3y/Tz/9lNdee43PP/+coqIioqOjycrK4pZbbiErK8vb8AKHu2fo2Fawt4I1iKz0GN7fW8KuwiolQyIiMqBmjIwlNMhCaW0zB8lgvCXILKJQdQTiRvk7PBGRTnmdDD3zzDP9GsDKlSuprKzkuuuuY/z48ZSXl/Pkk09y1VVX8dhjj7Fw4cJ+/X7DRtJECImG5hoo2Q1p2WTZYnl/bwk7ClREQUREBlZokJVZo+L4LK+c9YdrGZ882ZwzVLRDyZCIDFpeJ0P9XVb0V7/6FYmJ7UtBn3nmmZx//vk8+uijSoa6YrGAbRbkf2jOG0rL9swb2lGoIgoiIjLwcjITzWQor5xr0rJdyVAuTL7I36GJiHTK6wIKbjU1NXz00Ue89tprVFX1/o/vkxMhgMjISMaNG8exY8d6fd+A0Ha9IWBaullRbl9xDc2tDn9FJSIiAcpdRGFDfjnOVNdQ96LtfoxIROTUepUMLV++nDPPPJObbrqJn/3sZxw9ehSA73znO6xYsaLPQdXU1LBr1y4mTJjQ53sNa56KclsAyIgPJzY8mBa7k33FNX4MTEREAtGsUfEEWw2Kqhs5HuF6hquinIgMYl4Pk3vuuedYvnw5V199NWeeeSY333yz59jZZ5/NO++806OF7k7l3nvvpaGhgSVLlnh9rd1u79X3dF/X2+v9YsQsrICzZDeOhioIiWJaegyfHCwj92glU9KienyrIdn+fqT2q/1tt4Gmr+0P1J+bdBQeYmVGRhybDlXwaV06XwOoPGQWUgiL9XN0IiId9SoZuv766/npT3/a4QE4evRoDh061KeAHnjgAV5//XV++ctf9qqaXG5u3z6B6uv1Ay07LJmQxhIOfPgStUkzSLI2APDv7XlMDCr1+n5Drf39Te1X+wNZoLdf+kfO2AQ2HargwwI7X4vJgOqjULwTRp/m79BERDrwOhk6cuQIZ555ZqfHIiMjqa7ufSWzZcuW8cgjj3DnnXfy7W9/u1f3yM7Oxmq1en2d3W4nNze319f7i2X/AtjzOhMiqnDOnMlho5DX9m2nuDmYmTNn9vg+Q7X9/UXtV/vV/t633329CJhFFJa/f9BcfHVUtpkMFeUqGRKRQcnrZCg6OprS0s57HAoKCjotiNATy5Yt46GHHuK2227r1fA4N6vV2qc/Zvp6/YDLmAt7XsdSuAWsVqaPNNcX2l1UA4YFq8W7he6GXPv7mdqv9qv9gdt+6R9zRsdjtRgUVDZQPX0SMbylIgoiMmh5XUBh4cKFPPbYY9TX13v2GYZBa2srK1eu5IwzzvA6iOXLl/PQQw/xgx/8gFtvvdXr6wNahquiXMFmADITI4kMsdLY4iCvpNaPgYmISCCKDA0i22bOD9ppH23uLNrhx4hERLrmdc/Q7bffzhVXXMHixYs599xzMQyDZ599lt27d1NYWMgDDzzg1f2eeOIJHnzwQc4880y+9KUvsXXr1nbHvRnqFZBGzATDAtUFUH0MS8wIpqbHsPGLCnYUVjEhNdrfEYqISIDJGZvA1iOVfFg9goUAx3eDvQWswf4OTUSkHa97hkaPHs3KlSsZO3YsK1euxOl08uqrrxIfH8/zzz9Penq6V/d7//33Afjoo4+46qqrOrykG6FRkDzFfO/qHXKvN7SjoPfzt0RERHrLvd7Q2oIQCIkGexOU7vdzVCIiHXndMwQwfvx4Hn/8cZqbm6moqCA2NpawsLBeBfD3v/+9V9dJGxlz4PhOMxma8lWmpccAsKOg94vhioiI9NbcMQlYDMgvb6R57BRCCjdA8Q5Inerv0ERE2vG6Z+juu+/myJEjAISEhJCamupJhAoKCrj77rv7N0Lpnmfx1U0AZLnGau8qrMbhcPorKhERCVAxYcFMdX0wdzR0vLlTRRREZBDyOhl65ZVXqKio6PRYRUUFa9as6WtM4i2bu4jC5+BwMD4lipAgCzVNrRypqD/1tSIiIj6Qk2lWl93aMtLcUaTy6yIy+HidDJ1KVVUVISEh/XlL6YnkyRAcAc01ULqPYKuFyWlm4QTNGxIREX9wzxt6tzzZ3FGUC06NVhCRwaVHc4Y2btzI+vXrPV+vWrWKDz/8sN05TU1NrFu3jnHjxvVvhNI9axCkz4JDH5vzhlImMy09lu1Hq9hRWMXi6SP8HaGIiASY+ZkJGAb8qzwJZ7gFo74MaoogRs8kERk8epQMrV+/nmXLlgHmmkKrVq3q9Lz09HT+3//7f/0XnfScbbYrGdoEs64hy6YiCiIi4j9xESFMSo1mT1ENtVFjia45YPYOKRkSkUGkR8nQ9773Pa655hqcTiennXYajz/+OFOntq8IExISQmRkpE+ClB6wtV98NSv9RBEFp9OJYRj+ikxERAJUTmYCe4pqyA/KZDoHzCIKE8/3d1giIh49SobCwsI8FePWrVtHcnKy5gYNNu6KcsU7oaWBSWnRWC0GZXXNFFU3MiI23L/xiYhIwMkZm8jTnx5iQ4ON6aAiCiIy6HhdQMFmsykRGoxiMyAqFRytcGw7YcFWJqREASqiICIi/jHfVUTh39Vp5o7iHX6MRkSkI68XXW1paeFvf/sbb7zxBoWFhTQ1NbU7bhgGu3bt6rcApYcMw+wd2vumOW9oVA7T0mPZU1TDjoIqzpua6u8IRUQkwCRFhTI+JYrdx0ebO8oOQlMthEb5NzARERevk6E//elPPPXUUyxatIhzzz1XvUSDiScZcs0bssXw0hbYWaieIRER8Y+czASeO15LTXAS0S2lcHwXjJzv77BERIBeJENvvfUWt9xyC7feeqsv4pG+cM8bOroJgCybWURhZ6EqyomIiH/kjE3kufWH2cto5lJqFlFQMiQig4TXc4aqqqqYO3euL2KRvrLNNreVh6CulCkjYjAMOFbVSGlt06mvFRER8QH34qsbGmzmjiLNGxKRwcPrZGjevHns2bPHF7FIX4XFQtJE833BZqJCg8hMNMuda6iciIj4Q2pMGGMSI9jlcM0bUkU5ERlEvE6GfvGLX7B69WreeecdmpubfRGT9MVJ6w1Ncw2V0+KrIiLiLzmZiexyupKh4p3gsPs3IBERF6/nDF166aW0trZyxx13YBiGZ/0hN8Mw2Lx5c78FKF6yzYZtz5+YN5Qew+vbCtmlniEREfGTnLEJrNqURhOhhLY2mFXlkif6OywREe+ToQsuuADDMHwRi/SHjDY9Q04n09JdPUMqoiAiIn6SMzYRBxZ2OUYyy3IAinOVDInIoOB1MrR06VJfxCH9JWUaWEOhsRLK85iWPhKAQ2X1VDW0EBse7N/4REQk4NjiwsmID2dXzWgzGSrKhazL/R2WiIj3c4ZkkAsKgREzzPdHNxEfGYItLhxAQ+VERMRv2s0bUhEFERkketQztHPnTq9uOm3atF4FI/3ENgeObjCHys24iixbDAWVDewsrGLhuER/RyciIgEoZ2wC//h8lPmFkiERGSR6lAxdfvnlPZon5HQ6MQyD3bt39zkw6YOMubAeKHAXUYjl7Z3FKq8tIiJ+k5OZwK+do3A4DSy1xVB7HKJS/B2WiAS4HiVDv/vd73wdh/Qn9+KrRbnQ2sQ0Wwyg8toiEjg+/fRTXnvtNT7//HOKioqIjo4mKyuLW265haysrFNe+/LLL3P33Xd3euw///kPycnJvgh52BuVEEFMTBz5jWmMM46Zz6jx5/g7LBEJcD1Khi677DJfxyH9KT4TwhOgoRyKdpCVbg5bPFhSS31zKxEhXtfNEBEZUlauXEllZSXXXXcd48ePp7y8nCeffJKrrrqKxx57jIULF3Z7j9/97neMHTu23b64uDgfRTz8GYZBztgEdu8czTiUDInI4KC/iocjwzDnDR14Fwo2k5Ixh+ToUEpqmth9rIY5o+P9HaGIiE/96le/IjGx/RzJM888k/PPP59HH320R8nQhAkTyM7O9lWIASknM5FduaP4qvUzKN7h73BERFRNbtjyrDd0YvFVgF1ab0hEAsDJiRBAZGQk48aN49ixY36ISMAsouCuKOc4tt3P0YiIqGdo+LLNMbcFmwGYlh7L+3tL2FGgIgoiEphqamrYtWsXCxYs6NH5S5Ysoby8nOjoaObPn8/tt9/OxIm9WyjUbrf36breXj/YjI4Poyh8AtjBKNuPvbEWgsO7PH+4td9bar/a33YbaPra/p5ep2RouHInQ2UHoKGCLHcRBfUMiUiAuvfee2loaGDJkiWnPC8pKYklS5Ywc+ZMoqKi2LdvHytWrOCqq65i5cqVTJ482evvnZvbt1LSfb1+MEmIS6S0NIYkqtn38avUx3X/8xxO7e8NtV/tD2S+br+SoeEqIsEspFCRDwVbmJZujo/fV1xDc6uDkCCNkBSRwPHAAw/w+uuv88tf/rLbanKLFi1i0aJFnq/nzZvHWWedxcUXX8xf/vIXHnnkEa+/f3Z2Nlar1evr7HY7ubm5vb5+MLqg8TC7147iTOsOJsU245w5s8tzh2P7vaH2q/1qf+/b776+O0qGhrOMua5kaDMZ475MbHgwVQ0t7CuuIcsW6+/oREQGxLJly3jkkUe48847+fa3v92re2RkZDBnzhy2bdvWq+utVmuf/pjp6/WDyYJxSXzgHM2Z7MBZtKNH7RpO7e8NtV/tV/t91351DwxnbeYNGYbhGSq3U0PlRCRALFu2jIceeojbbrut2+Fx3XE6nVgsemz21YSUKA4FjwOg4fBW/wYjIgFPv9WHM5urotzRTeB0Mi3d7A1SEQURCQTLly/noYce4gc/+AG33nprn+515MgRtmzZwowZM/opusBlsRiEZJg/x5CyXeBw+DkiEQlkGiY3nKVlgyUY6kuh8jDT0lVEQUQCwxNPPMGDDz7ImWeeyZe+9CW2bt3a7vhM1zyVe+65hzVr1vDuu+9is9kAuP7665k7dy6TJ08mMjKSffv28dhjj2EYBnfccccAt2R4Gj1hBk2Hgwm110PlF5AwtttrRER8QcnQcBYcBmlZUPg5FGwiy3YBALuPVWN3OLFaDD8HKCLiG++//z4AH330ER999FGH43v37gXA4XBgt9txOp2eYxMnTuStt97iiSeeoKmpiYSEBBYsWMAPf/hDMjMzB6YBw9z88SnsfS+D6UY+9sLtWJUMiYifKBka7mxzXMnQFjKnfp3IECt1zXbySmqZkBrt7+hERHzi73//e4/OW7p0KUuXLm2375577vFFSNLG5LQYXrVkMp18Sg9sIjXra/4OSUQClOYMDXdt5g1ZLAZTRmionIiI+JfVYtCYMAWAxiO9q9AnItIflAwNd+6Kcse2gb3FU1JbRRRERMSfosbMMreVu/0ciYgEMiVDw13ieAiNhdYGOL7rRBGFAvUMiYiI/2ROywEg0V6CvbbMz9GISKBSMjTcWSxgMz99o2Czp2doV2E1DofzFBeKiIj4zpQxGRxxpgJwZPd6P0cjIoFKyVAg8Mwb2sz4lChCgizUNLVypKLev3GJiEjACrJaKI4YD0Dxvk1+jkZEApWSoUDgnjdUsJlgq4XJaWYVOc0bEhERf3KkZpnbY9v9HImIBColQ4HAnQyV7IHGaqalu4ooqKKciIj4UcI4c+RCYu0+Dd0WEb9QMhQIolMhdiTghGNbybKZRRR2FqpnSERE/GfUVLOIQqbzKAeLVERBRAaekqFA4e4dOrqJLFfP0M6CqnarrouIiAykkIRR1BlRBBt29uZu9Hc4IhKAlAwFijbzhialRWO1GJTVNVNU3ejfuEREJHAZBhUxkwCoyPvcz8GISCBSMhQoMlwV5Qo2ExZsZUJKFKAiCiIi4l/W9Onm9vgOjVYQkQGnZChQjJgBhhVqjkF14YkiClp8VURE/ChxvPlh3Vh7HnmldX6ORkQCjZKhQBESCSlTzfdHN6mIgoiIDAohrp6hKcYh1h9UEQURGVhKhgKJbba5Ldjs6RnaqfLaIiLiT8mTsRtBxBr17Nu/y9/RiEiAUTIUSNrMG5qabvYMHatqpLS2yY9BiYhIQAsKoTFuAgB1h7Zq3pCIDCglQ4HEXVGu8HOigg3GJkUCGionIiL+FZoxE4D0hv0cKW/wbzAiElCUDAWS5MkQHAnNtVCyl2k2DZUTERH/C0rPBmCK5TCf5WvekIgMHCVDgcRihfRZ5vuCzWS5hsrtVHltERHxpzQzGZpqfMH6vHI/ByMigUTJUKDJcC++uulEeW31DImIiD+lZgEwylLCzrzDfg5GRAKJkqFA4543VLCZaa6eoUNl9VQ3tPgxKBERCWgRCThiMgCIqdpLQaXmDYnIwFAyFGhsropyxbuID27FFhcOwK5jGionIiL+Y0k7MW9ofZ7mDYnIwFAyFGhi0iEqDZx2OLbNs/jqrmM1fg5MREQCmmfe0CHNGxKRAaNkKNAYRpv1hja1WXxVPUMiIuJH7mTI8gUbvlAyJCIDQ8lQILLNNrcFmz09Q0qGRETEr9LMIgoTjaMcKa3ieHWjnwMSkUCgZCgQuecNHd1Mlqtn6GBJLU2tWvVbRET8JG4MhEQTarQy1jjGZ/nqHRIR31MyFIjSZwEGVB0mxVJNcnQoDiccqlJFORER8ROLxdM7ZM4bUhEFEfE9JUOBKCwGkieZ79ssvppX0erHoEREJOB55g0dYr16hkRkACgZClTuoXIFmz1FFPIq1TMkIiJ+lOruGfqCA8drKa1t8nNAIjLcKRkKVO4iCkc3eYoo7C1t5lhVI06n5g6JiIgfuHqGsoKOAE42flHh33hEZNgL8ncA4ifu8tqFW8j6ajQAR2vsnPH7D0iJDmXGyDhmjoxjRkYc2RmxxIYH+zFYEREJCClTwLAS56wmlQo2fFHOpRn+DkpEhjMlQ4EqZSoEhUFjFRmOY/z4vAm8vDGfw9V2jtc08e6uYt7dVew5fWxSJDNGxjEjI5YZI+OYMiKGsGCrHxsgIiLDTnA4JE2Ekt1MtRxiQ/5oLs2I9HdUIjKMKRkKVNZgGDETjnwGBZv54Zeu5LS4GiZNzWZPcS1bj1Sy/WgV245WcqisnrzSOvJK63jl8wIAgq0Gk9NimDEylhkZZi/S2OQorBbDv+0SEZGhLS3LTIaMQ3xQXENNc7i/IxKRYWxQJEN1dXU88MADvPXWW1RVVTF27Fi+//3vs3jxYn+HNrzZ5pjJ0NFNkHUlAOEhVuaOSWDumATPaRV1zWw7Wsm2I1WubSVldc3kFlSRW1DFsxwGICo0iCxbjDnELiOOGSPjGBEbhmEoQRIRkR5Ky4bcVcwLL8BZC7tLmjnT3zGJyLA1KJKh2267jdzcXH784x8zZswY3njjDX70ox/hcDi4+OKL/R3e8JUxx9wWbD7lafGRIXxpUgpfmpQCgNPppKCywZMcbT1SyY6CKmqbWvksr5zP8k6UQ02ODmVGxonhdTMy4oiN0PwjERHpgruIguUQAG8eqGfUjiJmj0lgRKx6iUSkf/k9Gfr3v//Nxx9/zB//+Ee++tWvArBgwQIKCwv5/e9/z0UXXYTVqrkpPmFzJUNFudDa2OPLDMMgIz6CjPgIFk8fAYDd4eTA8Vq2Halkq6v3aE9RDSU1Tby3u5j3dp+Yf5SZFOlJjqZnxDEtXfOPRETEJdVMhhKbC4igkdzjcMvKrQCkxYQxa1Sc6xVPVnos4SF6fohI7/k9GXr33XeJiIjgK1/5Srv9X//61/nxj3/Mtm3bmD17tp+iG+biRkNEEtSXQvEO+vKfg9ViMCktmklp0Xxj3kgAGlvs7Cysaje87ouyevJL68gvrWPN1kIAgiwGk0dEmz1Irip24zT/aMhzOp3YHU7sTicOB7Q6HDgcYHfv9xxz0ur62tH22EnHHa6v2x43z3fd2/Xecz/XtW3v1fFa89Vqd1BSUs0HpfuJCA0mPNhCeIiVsGAr4cFWwkM634YFWwkNsmgo6CDVlyHYZWVl3H///bz//vs0NjYyefJk/uu//ouFCxcOQOQBLioZotIwaov463mhPHswnKMNQewpqqGoupG3dhTx1o4iwHz2TBkRzayR8Z4EaUxihP6fFJEe83sytH//fsaNG0dQUPtQJk2a5DnuTTJkt9t7FYf7ut5eP1RZbLMx9r+D88hGCFvYr+0PtsDMjFhmZsQCowCoqDfnGm07Ys432nqkirK6ZnYUVLOjoJrn1pvzjyJDrGTZYpjuHmKXEevT+UfD/d/f6XRS09hKaW0TpbXNlNY2U1LbdOLrmkaKy6sJW/8ZDuiQgHi+9iQ4YLe3STicHZMMx1BcrmrfQa8vMQw8iVF4sOXE+7bJVLDFs6/DuafYF+G6R1iQhSCr75aF6+t//4P1/5veDsFubm7m+uuvp7q6mp///OckJiby3HPP8b3vfY8nn3yS+fPnD2ArAlRaNhwo4oyoY0TOmc3MmTNpbHW6nhuVfH64gi2HKympafI8P/7+mTmsLi4imJkj4zwJ0oyRcVoeQkS65PdkqLKykoyMjosIxMbGeo57Izc3t0/x9PX6oSbNYsMGVO16H2YvHJD2xwBnJsCZCVacWfGUNjg4UN7C/vIWDpS3cLCihbpmO+vzK1iff2LBvbhQC+MSgpmQEMx41ys6pH//QBxK//5Op5O6FieVjQ6qmhxUNtqpbHS0+dpBVaODyiY7VY0OWhw9uWuzr8P2sBpgMcBiGG3em19bLJ0dM7AY7usMz/lWS/uv2x1rt9/8FNnS6fc1cDidNNuhye6kqdVJk91Jc5v3TXYnzW3et7p+nk4n1DfbqW/2bUIQZIFQq0Go1SAkyPC8Dw0yCGnzPtRqEGLF876z881zjHbnRAQbQ+q//+70ZQj2qlWr2LdvH//4xz+YNWsWADk5OVx66aXcf//9rFq1asDaEbDSsuHAu1Cc61kkPDI0iAVjE1kwNhEwfwcWVjWy9bCZHH1+pJLcgioq61v4YG8JH+wt8dxuXHIks0a5eo9GxjMxNcqnHzCISO/ZHU7qm1upbWjG4fT9J6t+T4aAU37a721PQHZ2dq/mGNntdnJzc3t9/ZAVXQZ7nySh/iBf0PufX1+d1+a93eHkYEmtq7S3+dpbVENlk4PNx5rYfKzJc+7oxAhmZMQy3RbL9IzYXs8/Giz//k6nk6qGFlfvTZOnB6eszdfubVltE812735JRIUGkRQVQlJUaLttQmQwlccLyRw9mqAgq5lEWAyCLObWakCQxYLFQifHDKwW18s4cb7VajG3HY6Z28GkN//+rXYHja0OGlvsNDTbaWix09jioMH1dWOLua/Bc9xxYp/nuMN13cnXnDjX/RxodUCrw0yAfSEp3MI7PzqL2IhQr691//wGk74MwX7vvffIzMz0JEIAQUFBXHLJJfzpT3+iuLiY1NRUn8Yf8FxFFIyiXLB1fophGNjiwrHFhXvmrza3Oth9rNrTe/T5EXN5iIMldRwsqWP15qMARIRYybbFtkmQ4kiJCRuQpokMJ06nk6ZWB3VNrdQ326ltajUTmSY79U2trq/t1DW3UtfUSl2TvfNz2xxvaDnx4eKM1BBennWKAPqB35OhuLi4Tnt/qqqqgBM9RD1ltVr79MdsX68fcjLmAmBU5GNtrh4U7bdaYUp6HFPS47jKNRqlscXOrmPVbDtizj3adrSK/NI6DpXVc6isnte2HQPM+UeT0qLbLRA7ISW6x/OPfNF+p9NJZX0LpbVNrqFpzZTUuIao1ZwYqlZS00RZXRMtXiY40WFBJEeFmolNtJngJEeFkhQd2i7pSY4O7TJRtNvtbN1awczp6X7/9/cnb/79rVYroSHg3W8o77gfMo3tkip38mQmUvXNrW0SsvbJlTsZa2xun5i1T8ocNNsdGAZYLP7//7+/9GUI9v79+5kzZ06H/W2vVTLkY65kiOO7wdnzXteQIIv5+39kHN85bQwAZbVNbD1S6UqQzG1tUyvr88tZn3+i+qktLpyZrsRo1qh4FfeRYcnucFLX3Ep9U9tkxPzaTFjMZMWTvDTbPUlKfYd95nu7j8bFWy0GaVG+/3/Q78nQxIkTeeONN2htbW330Nq3bx8AEyZM8FdogSEiARLGQflBIiv3AIv8HVGnwoKtzB4Vz+xR8Z59lfXNbD9axfajlWw9Yo4jL61tYmdhNTsLq3l+vXleRIiVLFssM12lvWeMjMUWF96n+UcOh5PKhhZPQlNS2+RKcNw9N+arpMbs1Wn18hdFTFiQJ5lJdiU0yZ7kxp3omEmOHtbDl2EY5pyhYCtxPvw+Tc0tbN++jegwvz8S+k1fhmBXVlZ2+kFcb4dvg+azei12NJbgCIyWekJrC7DbZ/b6VnHhQXxpYhJfmpgEnBh94H5ubD1Syb7jtRRUNlBQ2cA/t5sfrgVbDaakxTBzVCyzXMV9Rsb37dnhrUD693c4nJTVNVNU3UhRVSPF1U0UVTVQWFzD2mN7CLJaMDzDnw3zAxzPsGqjzRDpE8esljbnuY4brv3u9+2HV7c/r7N7d33/E9/bvH/HY573FsPzva2G0SEOd4wOu50mu5PjVQ002p3tEpETvS3uJKX917Vt9rf9urFnY+Z7xT3XNTI0iEjX1vzaSmRIEBGubduvo9rtD2p3fZDhZMeOHT6fz+r3J9+5557Liy++yDvvvMNFF13k2f/KK6+QkpLCjBkz/BhdgMiY2yYZGjriIkJYNDGZRROTAfNT9GNVjZ7y3tuPmIlSXbOdDfnlbGjzCWBiZIhn3aMZI2PJSo/G4TR/EVfUt3oSGU9vTk1zuwSnvM77BCc2PPjE0LRoM8lJjm47XM3cnxgZogRHBlSQ1YJlGFbf6ssQ7P4cvg2az9obk6LGEFWxi4jqAz5p/8QgmJgJ38iMoqElggMVLewva2FfeQv7ylqoanKwvaCK7QVVPPOpWdwnJtTChIRgJiYGM9E1dzUi2Pdzj4b6v3+T3UlFg52yBgflbbblDXbK6s33FY0OuhwYsbduQOMdfIq7P8VLVgPCgwzCggzCgi0n3gcZ7d8HW9rtO3HMQnjwiX2hQeYw+K7ZXa+T5ia3ul510Ij5Kj/pSl//9+/3ZOiss87i9NNP59e//jW1tbWMGjWKf/7zn3z00Ufcf//9w2bIxqBmmwPbXyCyYre/I+kTwzBIjwsnPS6cC7NPrH+UV1LL1iOVbDtayfajVew+Vk1ZXTP/2nOcf+057rneYoDD6d0vnLiI4JPm35gJTnKbIWtJUaEkRoUQGqT/lkUGSl+GYPf38G3QfNbeMApzYPMuYo+vZ+Ts87DE2iA83izh6ANti6Y7nU6OVjTwuWtY9tYjlewsrKb6pLmrhgHjk6NcPUexzBwVx/h+XBpisP/7O53mKIni6iaOVTVSXG2+iqqbXL07Zg9PZUNLt/ey4CDNqGRSRB0TI6oZE1JNurWSlsZ6giLjabWE0myE0EwozYb5vskIpcW1bSKEZtq8N0JodgbhwMDhqnTqcILD6cTpem9v89593NmmIqqz3TW0q5ZqHmt7Tft7tzvm7Px+3ogIadu7Yu3Qi+L+Ouqk/RFtemIiQ91fBxFiNQZ9Cfq+/vff0/msfk+GAB566CH+/Oc/8+CDD1JZWcnYsWP505/+1KO1IKQf2Mx5QzHHN8AD0yA6DaLSICrF9T71xL7oVIhMgaAQPwfdM1aLwYTUaCakRnPl3BPrH+12zz86WsW2I5XkldZ5SkHHexKc9sPRPEmOK9FJjAwlJEjViEQGo74MwZ44caLnvLb6Mnxb81l7YcR0ABKPvguPvWvus4aYz6PoESdt09t/HRrd56RpTHI0Y5KjuWz2iWfHrmPVZvU6V4GGoxUN7D9ey/7jtbzoKs4QFRrE9IxYT+W6maPiSIryvjBJW/7492+xOzheYw5VK6pqosid6FS5Xq6vm1q7H3YVRT2jgquYElnL2LAaRgdXMcJSQZKjjNjWUiKajhPcUILhdJidBzUn3aC6t60wIDgcgsJOve3JOT29Rw//u2ufNJ1Itjz7HE5aWu3s3bWDnDmzCA4eFH+y+4Wv//sfFD/ZyMhIfvGLX/CLX/zC36EEprRsnEmTMEr3Qs0x89Wd8ISTEqVU1/tUV9Lk2hca5fv4vRQWbHVVEDox/6iitpGNW7ezaP4swkK0HoXIUNeXIdjnnnsu9957L9u2bfOc19raymuvvcaMGTNUPGGgTLsMR96HNB7dRnhLJUZDOdibofKw+TqV4Mj2yVHMiE4SqBHmH7A91Nnc1eM1Zmlvd3GGbUfN4gyfHCzjk4NlnvNGJUSYax+5FoadOiLGrx+m1TS2eBIadw+O+725NQv6dNd7YcVOGpVMjKhhQngtmaHVZFgrSaWcBEcZ0c0lhDUWY2lxDXNzj4PqimEx/4Zw/Xs5olIpKasgOS4Ki70JWhqgtbHNthFaG8xtS/2JY7gDd5r7W+qhoe8/tx4JCutRAmUEh2ENCscaHAZB4eDZnkis7NZQUioPYzlcZ34IbVjBEgQW9zaozded7XO9N1zHB3lPkL8MimRI/CwoBMfN/2Hn+n8xbXQi1vpSqCmC2uKTtsfN944WaCg3X8d3nfreIVFmD5O7V6nt1tPzlGYWcvDj/6Qx4cEkhlsJ1roTgcfp7PjyFz2o+k1Ph2Dfc889rFmzhnfffRebzazhfMUVV/D8889zxx138OMf/5jExESef/558vPzefLJJ/3ZrMASHo/z8sfZvXUrM2fOxOpsNZ9FNUWuD+662DZVQ0sdlB80X6cSFtuxV+nkbVRql6MhUqLDOH9aGudPSwPModn7imtcVesq+PxwJfuP13K4vJ7D5fW8tq0QMKveZaXHMNO1MOysUXF9Luzj/v5lteaQtXY9OW22xVWN1HW7LpqTaBrIsFYwKaKW8eE1jHL15iQ7y4ltLSWy6TjBjaVmb44DqHO9uhIaY/5MY0ac+JnHpLffF5Vi/tHujsJu5+jWrSTNnGmWmu0Jp9NMmjskTt1t2yRWrQ3m/p6e62g98f1bG81XY2XP4j0FKzAR4LM+38pkdJdEnXTcsHSdYFlOkZgZp7jnqRK3k6/DQlCT7z9UVzIkJouVlvBkSJ956l84Dgc0VEBtUZsEqQhqittva49Dc635Kq+F8rxuvn9w+56lDkP0XNvIZLCq56aD1mbz4d/sftW2eX/yq80x1zWWplom11Rg2RSB+YmaOylwnviArd2+k7bQ9TFnm0/onF3cp8fXOzu/j9fXt7kO84EzB+CNvv0zDFVWYFrkSJj6CYTH+DucftOTIdgOhwO73Y6zTRIcEhLCU089xf3338///u//0tDQwJQpU/jb3/7G/Pnz/dEUAQgKhfjR5utUmmpdH+J1kTBVF5rb1gZorDJfJd3MmY1MPnXCFJ0OkUlYLVamjIhhyogYrs4ZBUBVQ4tZ9bTN8LqK+ha2HK5ky+FK+Nj8FsnRoebcI9fwuukZsYQFnUiOGprtnffktEl8jtc0dVvmOIhWRlDF2LAqJkXUkhlSZfbmWCpJsJcS3VJKWEMx1tZ684IW16srhvXEz8Kd1Hh64kacSHgGaqSIYZj/rQT1bWiiV+ytJyVSnWzb9lz1KBlrxNnSQENdNeGhwRgOu5l0OexmuXlHa5vXSV93xWkHux3sTV2fM4hYgQkx4yFng0+/j5Ih8Y7FApGJ5it12qnP9TyQitokSsUde5ways3epuqj5uuUDIhI7GaInmsbEtFvze43Dof5C7HThKW2i2Pu9/WdX9NcZ/78+sAAIgEq+6GNMiRZW2pP/RAdgnoyBHvp0qUsXbq0w/6kpCTuu+8+X4YnvhIaZb4Sx3V9jtNpJkHd9TLVFJm/X+tKzFfRKSZjG9YTz6U2yVJsdBpnxozgzKwRsHAczrA4DpU38PmRCk+CtKuwmpKaJt7ZVcw7u8xCPhYDJqRE0dDQSNUb66jqtgiBkxjqGWFx9+ZUMzq4inRLBUnOCuJaS4lsPk5wQymG+8Ogetery59l7InE5uReHPf+yOR2vTkByRoE1mhzrlo/ctjtJ3pGvZkz43CclCx1lkR1llB1kWT1+bqTj7d2EmObc5zmPZ32Fkpj53e17nK/UTIkvtOTBxKYvRp1x9v0LhW1SZra9DjVHTf/J6kvNV/FO7r5/jE9GKKXalYnOpnTCa1NruSks8TkFL0t7ZKak3tiTvXU6QfWEAiJNMfLh7R9Rbm2EW3en9hvt4aRf7iAzLHjXL9wDdeQLcPMlDxfc9KxzrbdnUM/3afNcJI+3sfucJCbu4Ps7Cys/fpQ98GQOx8M47M77OTuyWdGmC+XkBUZRAwDwuPMV8rkrs9zOMwP7LrrZao7bv4BV1Novk71ra0hjIlOY0z0CC6LToNxI2jJTuVIayy7ayPZXB7Gh8esHKg22FtcC5i9OelUMjq4ikmRNWSGVDMyqJJUo4JERynRLWWENRZjbXVNjGmlYxGCtixBJ3pu2g1Xa7tNM58TMvRYLGAJAYZGsauuOOx2SrZuVTIkASAoBGIzzNepOBxQX+ZKlE4emndSj1NLvTluvOn/t3fnQU3e+R/A3wlBOVQiIuLPYy1oIkcWL4gX9ah3sWC9dmYHXG9qYV1R11q3W3A91zpuwUWkuIqu42gVHbVWW4+O7qwExdVlPVHRFVoVUS6RI+H5/cHmqZGACCERnvdrJuP4fb5Jvt8nyfOez/N8E4qA/Nt1P65da8jbuMNXD8h/0P98BeYN/ur5m5O9UpTUVrzUVdi8crN3bviv/BkMKKy4DKj61H9ddktiMMDQ2qX6qqNE5y/Y5dp6FERvH7kccHarvnloau9n0FdfOarzKtNP1Rlm5kcg7AF4/u9mXMRZ1dYJZa3cgPJiOOoLfr6a87ofIXBQvnIV59UrO/8HOLlVz42IWAxRMyKXA206Vt/gV3s/QQDKi80vyTP5MYiH1d9/MpRDVvgADrU9nsKxzqsqsHcyU6S0+V9/M+32TtW/FMMvyxMRtQx2iurCo13nuvvpy3/OodquMhU/BMoLIa8shVPlS7+aJ7c3LXBevYpjLHrexiXiRG8xFkPU8shkgEO76pvba/4eyP+CyVD4I27fvIaePn1g59DO9IqL1NdCExGRZShaA8ru1be6VDwHih/CUPQTbmbnQD1gOOzauPNqDlETYDFE0mYMprZdUPLEHujsL81lUkRE9PZo5Vz9fVtlD7x4evl/P1LAQoioKfCTRUREREREksRiiIiIiIiIJInFEBERERERSRKLISIiIiIikiQWQ0REREREJEkshoiIiIiISJJYDBERERERkSSxGCIiIiIiIkliMURERERERJLEYoiIiIiIiCSJxRAREREREUkSiyEiIiIiIpIkFkNERERERCRJLIaIiIiIiEiSFLYegKUIggAAMBgMDbq/8X4NvX9zx/lz/i//KzWcf+Pmb7yf8ThMP2M2NQ7nz/m//K/UcP7WySaZ0ELSq6KiApmZmbYeBhGRZGk0GrRq1crWw3irMJuIiGzrddnUYoqhqqoq6PV6yOVyyGQyWw+HiEgyBEFAVVUVFAoF5HKuvn4Zs4mIyDbqm00tphgiIiIiIiJ6EzyFR0REREREksRiiIiIiIiIJInFEBERERERSRKLISIiIiIikiQWQ0REREREJEkshoiIiIiISJJYDBERERERkSRJohhKTU2FWq0Wbz4+Phg6dCgWLVqEe/fumfS9ePEiVqxYgQ8//BB+fn5Qq9XIycmxzcAtpL7zNxgM2L59O2bPno13330X/v7+GD9+PL744gsUFRXZbgJN5NX98upNp9PZeogNdvz4cajVahw7dqzGtg8++ABqtRrnzp2rsW3UqFGYNGkSAODMmTP4/e9/j4kTJ8LX1xdqtbrJx20pjZ1/SUkJtmzZgrCwMAwZMgR9+/bFxIkTkZSUhPLycmtMoVEs8fpv2rQJoaGhCAwMhEajwXvvvYfPPvsMubm5TT5+qWA2MZvMYTYxm17FbGrabFI0+J7N0Nq1a+Hp6Yny8nJcunQJiYmJ0Ol0+Pbbb+Hi4gIASEtLw/nz5+Ht7Q1nZ2ekp6fbeNSW87r5l5WVIT4+HsHBwZg6dSrat2+Pa9euYcuWLThz5gwOHDgABwcHW0/D4oz75VU9e/a0wWgsIzAwEDKZDGlpaZgwYYLYXlBQgFu3bsHJyQk6nQ5BQUHitocPH+LBgweYOXMmAOD777/HlStX4O3tDXt7e1y9etXq82ioxs7/xx9/REpKCkJCQvCb3/wGTk5OyMjIwObNm/HPf/4T27dvh0wms8XU6sUSr39RURHef/99eHl5wdnZGbdv38aWLVtw+vRpHD16FO3bt7f6vFoqZhOzyRxmUzVmE7OpqbNJUsVQr169oNFoAABarRYGgwHx8fE4efIkJk+eDABYsGABIiMjAQDbtm1rUYHzuvk7ODjg1KlTJm8krVaLzp07Y+HChThx4gRCQkJsNfwm8/J+aSlcXV3Rq1evGu/fCxcuQKFQYPLkyTXOLqalpQGofs0BYNWqVZDLqy8er1y5slkFTmPn37VrV5w+fRpOTk7i9kGDBsHR0RF//vOfkZGRgQEDBjT9RBrIEq//559/brLduF/mzZuHU6dOYcqUKU04A2lhNjGbzGE2VWM2MZuAps0mSSyTq43xIJOfny+2GT9gUvDq/O3s7MxW1L/85S8BVFfn1HxotVpkZ2fj8ePHYptOp4Ofnx+GDRuGq1evoqSkRNyWnp4OOzs78UDa3D8LjZm/k5OTSdgYNafPQmNff3NcXV0BAAqFpM6jWR2zidnUkjGbmE1vWzY173dUIxnXW/fo0cO2A7GR+s7fWJU350vzdamqqoJerze5GQwGWw+r0QYOHAgAJmdgdDodAgMD0a9fP8hkMmRkZJhs8/HxQdu2ba0+1qbQFPNvTp8FS81fr9ejrKwM165dw5o1a9CjRw+MHj3aOpOQKGYTswlgNr28jdnEbGrKbJJUMWQ8sDx//hznzp3Dli1bEBAQgJEjR9p6aFbRkPk/evQIGzduhJ+fH0aMGGHF0VrPtGnT4Ovra3JrCUsTAgICIJfLxQPOs2fPkJWVhYCAADg7O8PHx0c8gP7000/IyckRL0O3BJae/40bN5CcnIzRo0ejd+/eVplDY1hi/nl5efD19YW/vz8mTZoEg8GAnTt3wtnZ2erzacmYTcwmc5hNzCZmk3WySVJrHaZNm2byfy8vLyQkJEhmycebzr+goABz586FIAj4y1/+0uwvTddm/fr18PLyMml7m7+AWF8uLi7o3bu3uP72woULsLOzQ79+/QBUH5CMBxxjn5YUOJacf05ODiIiIuDh4YFVq1ZZYfSNZ4n5t2/fHvv370dFRQXu3r2L5ORkhIeHY9euXXB3d7fibFo2ZhOzyRxmE7OJ2WSdbGqZR5BarF+/Hvv370dKSgqmT5+OO3fuIDo62tbDspo3mX9hYSFmzZqFR48e4W9/+xu6detm5dFaj5eXFzQajcnNz8/P1sOyCK1Wi3v37uHRo0fQ6XTw9fUVz5wEBgbi+vXrKC4uhk6ng0KhQP/+/W08YsuyxPxzc3MRHh4OOzs7pKSkQKlUWnkWDdfY+SsUCmg0GvTv3x9Tp05FSkoKcnJykJSUZIvptFjMJmaTOcwmZhOzyTrZJKliyHhgGThwIFauXImpU6fi3LlzOH78uK2HZhX1nX9hYSFmzpyJnJwcbN++vVlcdiXzjGdT0tPTkZ6ejoCAAHGb8eBy4cIF6HQ6aDSaFrf8qbHzz83NRVhYGABg586d8PDwsNLILcPSr7+Hhwfc3d1r/A0cahxmE7NJaphNzCbg7ckmSRVDr1q6dClcXFwQFxeHqqoqWw/H6szN3xg2Dx48wLZt2+Dj42PjUVJjBAQEwM7ODidOnEBWVhYCAwPFbW3btoW3tzcOHTqE3NzcFrUMwagx8//xxx8RFhaGqqoqpKSkoEuXLtYefqNZ+vW/f/8+Hj58iF/84hdNOWzJYzYxm1o6ZhOz6W3KJmksSK6Fi4sL5s2bhw0bNuDIkSMICQnB06dPxS913bp1CwBw9uxZuLq6wtXV1eQFa+5enf/YsWMxe/ZsXLt2DZ9++ikMBgMuX74s9nd1dUX37t1tN+AmkpWVZfYXerp37y7+XGNz1aZNG/j4+ODkyZOQy+U1LjUHBAQgJSUFQM01ubm5ucjMzAQA/Pe//wUA8Uxtly5dmsUXeRs6//z8fISHhyMvLw+rV69Gfn6+yc8ce3h4NIszcQ2d/40bN7B27VqMHTsW3bp1g1wux61bt7Bjxw4olUrMmjXLqvOQGmYTswlgNjGbmE2AdbJJ0sUQAISFhWH37t1ISEhAcHAwsrKysHDhQpM+sbGxAKrXMe7atcsWw2wyL8+/b9++4gFm9erVNfpOmjQJ69ats/YQm9zy5cvNtq9atQpTp0618mgsT6vVIjMzE97e3mjTpo3JtoCAAOzYsQP29vbo27evyTadTldj3xg/G83pvdCQ+d++fRsPHjwAUH2W+lWRkZGIiopq2oFbSEPm7+bmBnd3d2zfvh15eXnQ6/Xw8PDA8OHDERERgc6dO1t7GpLDbGI2MZuYTcwm62STTBAEoVGzISIiIiIiaoYk/Z0hIiIiIiKSLhZDREREREQkSSyGiIiIiIhIklgMERERERGRJLEYIiIiIiIiSWIxREREREREksRiiIiIiIiIJInFEBERERERSRKLIWqw1NRUqNVq8ebj44OhQ4di0aJFuHfvnq2HBwBITEzEyZMna7TrdDqo1WrodDobjKra6dOnERERgcGDB8PPzw+BgYGYMWMGDh8+jMrKSpuN61Xm9tUnn3yCkSNHNunzPnr0CPHx8bh+/XqTPg8RtSzMpsZhNtWN2dTyKGw9AGr+1q5dC09PT5SXl+PSpUtITEyETqfDt99+CxcXF5uObevWrRg7dixGjRpl0u7r64u9e/eiZ8+eVh+TIAj49NNPkZqaimHDhuGTTz5B586dUVxcDJ1Oh9jYWDx79gwzZsyw+tjqa8GCBQgPD2/S53j8+DE2b96MLl26wNvbu0mfi4haHmbTm2E21Q+zqeVhMUSN1qtXL2g0GgCAVquFwWBAfHw8Tp48icmTJ9t4dOa1adMGffr0sclzJycnIzU1FVFRUYiMjDTZNnLkSMyZMwf379+36pjKysrg4OBQ7/7du3dvwtEQETUes+nNMJtIqrhMjizOGD75+fkm7ZmZmYiIiEBgYCA0Gg1CQ0Nx7Ngxkz5Pnz5FTEwMJkyYgL59+2LQoEEIDw/HxYsXazxPRUUFNm/ejPHjx0Oj0UCr1SIsLAyXLl0CAKjVapSWluLgwYPicomwsDAAtS9FOHXqFKZPnw5/f3/07dsXM2fOxL/+9S+TPvHx8VCr1cjKykJ0dDT69++PwYMHY/ny5SguLq5z31RWViI5ORmenp74+OOPzfbp2LEjBgwYIP6/oKAAMTExCAoKgp+fH9577z1s2rQJFRUVJvcrLy/Hxo0bMXLkSPj5+SEoKAixsbEoKioy6Tdy5EjMnz8f3333HUJDQ6HRaLB582YAwJ07dzB79mz4+/tDq9Xij3/8I54/f15jjOaWIqjVaqxcuRKHDh3C+PHj4e/vjw8++ABnzpwx6Xf//n0sX74cY8aMgb+/P4KCghAREYGbN2+KfXQ6HaZMmQIAWL58ufj6xcfHi33q834iIjJiNtWO2cRskjJeGSKLy8nJAQD06NFDbEtLS8OcOXPg7++PmJgYtG3bFseOHcOiRYtQVlaGDz/8EED1wRUAIiMj4ebmhtLSUnz//fcICwvDjh07oNVqAQB6vR5z5sxBRkYGwsPDMXDgQBgMBly5cgU//fQTAGDv3r2YMWMGtFotFixYAKD6rFttjhw5giVLlmDo0KHYuHEjKioqkJycLD73yyEAAFFRUZgwYQKmTJmCW7duYePGjQCql2bU5j//+Q8KCgowdepUyGSy1+7L8vJyhIeH48GDB4iKioJarcbFixeRlJSE69evIykpCUD18oYFCxYgLS0N8+bNw4ABA3Dz5k3Ex8fj8uXL2Lt3L1q1aiU+7tWrV3Hnzh189NFH6Nq1KxwdHfHkyROEhYVBoVDg888/R4cOHXDkyBH86U9/eu04jX744QdkZmbit7/9LZycnJCcnIzIyEgcP34c3bp1A1C9xECpVGLx4sVwdXVFYWEhDh48iGnTpuHgwYPw9PSEr68v1q5di+XLl+Ojjz7C8OHDAQAeHh4A6v9+IiIyYjYxm5hNZJZA1EAHDhwQVCqVcPnyZaGyslIoKSkRzp49KwwZMkT49a9/LVRWVop9x40bJ4SGhpq0CYIgzJ8/XxgyZIhgMBjMPoderxcqKyuFGTNmCB9//LHYfvDgQUGlUgn79u2rc4x9+vQRli1bVqM9LS1NUKlUQlpamiAIgmAwGIShQ4cKwcHBJmMpKSkRBg0aJEyfPl1si4uLE1QqlfDVV1+ZPGZMTIyg0WiEqqqqWsfzzTffCCqVStizZ0+d4zbas2ePoFKphGPHjpm0JyUlCSqVSvjHP/4hCIIgnD171uyYjM+3d+9esW3EiBGCt7e3cPfuXZO+GzZsENRqtXD9+nWT9pkzZ5rsK0EQhGXLlgkjRoww6adSqYTBgwcLxcXFYlteXp7Qu3dvYevWrbXOUa/XCxUVFcKYMWOENWvWiO3//ve/BZVKJRw4cKDGfRr6fiKilo/ZxGx6GbOJXofL5KjRpk2bBl9fX/Tr1w9z5sxBu3btkJCQAIWi+sLj/fv3cffuXUycOBFA9Zkz4+3dd99FXl4esrOzxcfbs2cPJk2aBI1GAx8fH/j6+uL8+fO4c+eO2OfcuXNo3bq1xdZ9Z2dn4/HjxwgJCYFc/vPHwtnZGWPGjMGVK1fw4sULk/uYuxRfXl5eYwlGY6SlpcHJyQnjxo0zaTeeXTp//rzY7+V2o/Hjx8PJyUns9/JY33nnHZM2nU6HXr16oXfv3ibtwcHB9R6vVqs1OcPp5uaGDh06IDc3V2zT6/VITEzEhAkT4OfnBx8fH/j5+eHevXsmr3Ft3vT9RETSxGyqxmxiNlHduEyOGm39+vXw8vLC8+fPcezYMezduxfR0dFITk4GADx58kTst379erOP8ezZMwDA9u3bsW7dOvzqV7/CwoUL0b59e8jlcnz55Ze4e/eu2P/p06dwd3c3CYfGMD5/x44da2xzd3dHVVUVioqK4OjoKLYrlUqTfsZL/WVlZbU+T+fOnQH8vFzjdQoKCuDm5lZj2UKHDh2gUCjEpRsFBQVQKBRwdXU16SeTyeDm5ib2MzI3z4KCAnTt2rVGu5ubW73GCtTcJ0D1fikvLxf/v27dOuzevRtz585FQEAAXFxcIJPJ8Ic//MGkX23e5P1ERNLFbKrGbGI2Ud1YDFGjeXl5iV9MHThwIKqqqvD111/j+PHjGDduHNq3bw8AmD9/PkaPHm32MYxngg4fPozAwEDExsaabH/1i5Kurq7IyMhAVVWVRULHOMa8vLwa2x4/fgy5XI527do1+nn8/PygVCpx6tQpLF68+LVrs5VKJa5cuQJBEEz65ufnQ6/Xi+NWKpXQ6/V4+vSpSegIgoAnT56Ir4+RuedVKpXiwfxl5toa4/DhwwgNDUV0dLRJ+7Nnz+q1j9/k/URE0sVsqj9mE7NJyrhMjixu6dKlcHFxQVxcHKqqquDp6YkePXrgxo0b0Gg0Zm/Gy9cymczky5QAcOPGDVy+fNmkLSgoCOXl5UhNTa1zLK1atarzbJjRO++8g06dOuHo0aMQBEFsLy0txXfffYc+ffqYnHlrKHt7e8yZMwd3797FX//6V7N98vPzkZGRAQAYNGgQSktLa/xxvkOHDonbX/738OHDJv1OnDiB0tJScXtdtFotsrKycOPGDZP2o0ePvn5ib0Amk8He3t6k7YcffsCjR49M2mo7m/km7yciIiNmU+2YTcwmKeOVIbI4FxcXzJs3Dxs2bMCRI0cQEhKC2NhYzJ07F7Nnz8akSZPQqVMnFBYW4s6dO7h69Sri4uIAAMOHD0dCQgLi4uIQEBCA7OxsJCQkoGvXrjAYDOJzBAcHIzU1FTExMcjOzoZWq4UgCLhy5Qq8vLzw/vvvAwBUKhXS09Nx+vRpdOzYEc7OzvD09KwxZrlcjqVLl2LJkiWYP38+pk+fjoqKCmzbtg1FRUVYvHixxfaPMXDi4+ORmZmJ4OBg8Q/bXbhwAfv27UNUVBT69++P0NBQ7N69G8uWLUNubi5UKhUyMjKwdetWDBs2DIMHDwYADBkyBEOHDsUXX3yBkpIS9OvXDzdv3kRcXBx8fHwQEhLy2nHNmDEDBw4cwLx58/C73/1O/MWel5eAWMLw4cPFX+ZRq9W4evUqtm3bJv4aj1H37t3h4OCAI0eOwMvLC05OTnB3d0enTp3q/X4iIjJiNtWN2cRskioWQ9QkwsLCsHv3biQkJCA4OBgDBw7E119/jcTERKxZswZFRUVQKpXw8vLC+PHjxftFRETgxYsX2L9/P5KTk9GzZ0/ExMTg5MmTSE9PF/spFAp89dVX2Lp1K7755hukpKTA2dkZvXv3RlBQkNhvxYoViI2NRXR0NF68eIHAwEDs2rXL7JgnTpwIR0dHJCUlYdGiRbCzs4O/vz927tyJfv36WWzfyGQyrF27FqNGjcK+ffvE/WEc/5IlS8Qvm7Zu3Ro7d+7Epk2bkJycjGfPnqFTp06YNWuWyR/Fk8lkSEhIQHx8PFJTU5GYmAilUomQkBBER0fXOKNpTseOHfH3v/8dq1evRkxMDBwdHTFq1Ch89tln4s+/WsKKFSugUCiQlJSE0tJS+Pj4ID4+Hl9++aVJP0dHR6xZswabN2/G7NmzUVlZicjISERFRdX7/URE9DJmU+2YTcwmqZIJL193JSIiIiIikgh+Z4iIiIiIiCSJxRAREREREUkSiyEiIiIiIpIkFkNERERERCRJLIaIiIiIiEiSWAwREREREZEksRgiIiIiIiJJYjFERERERESSxGKIiIiIiIgkicUQERERERFJEoshIiIiIiKSpP8H0WhBngxasIoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4B0lEQVR4nOzdeXxU1d0/8M+dmUz2ZLKTlSSQhUA2gYQtQRRXBKpi8bGtxcpjUUGs9qeC+qh97CNK6wZIRSu4ACotIqhQAZVFNoFsyBKWhGyQhCQz2ZdZfn9MJiQmJHNnT+bzfr3ymnDnnpvvGdvcfO8553sEnU6nAxEREREREdmExN4BEBERERERORMmYURERERERDbEJIyIiIiIiMiGmIQRERERERHZEJMwIiIiIiIiG2ISRkREREREZENMwoiIiIiIiGyISRgREREREZENMQkjIiIiIiKyISZhRERERERENiSzdwBE9pCQkNDj3y4uLvDy8kJYWBiSkpJw6623YtKkSZBIej+nMLQ9c+ZMn9caiK+vL1QqFZYsWYJ58+b1eU5+fj7+67/+CyEhIdi6dSu8vLy63isoKMCGDRtw5MgRVFdXQyaTITw8HFOmTMG8efMQEhLS41onTpzA3XffjdTUVHz++ee9fta2bdvw5z//GQDwww8/IDQ0tMf7zc3NyMjIgIuLC44cOQIXFxdR/RXr/Pnz2LBhAw4fPoxLly6hra0NCoUCSUlJuOmmmzBr1iy4urr2aif2cyEichS8J13lKPekX36ufbnhhhtQXl6O3bt3IyIiwqSfw3uX82ISRk5t4cKFAACNRoOGhgacPXsWW7ZswaZNm5CSkoK//e1vGD58uFHX6O7DDz9EQ0MD7r//fvj4+PR4b9q0aViwYAH+/ve/Y+LEib1umC0tLfh//+//QavV4rXXXuu62el0Ovztb3/D+++/D5lMhkmTJuHWW29FR0cHcnJy8MEHH2Djxo1YtmwZbr311q7rJSUlwdfXFydOnEBjY2OPmycAHDp0CIIgQKfT4dChQ7jzzjt7vH/06FF0dHRgwoQJVk/AVq5ciVWrVkGr1SItLQ133nknPD09ceXKFRw9ehTPPfccNm7ciM2bN3e1MfVzISJyNLwnOdY9yZp47yLoiJxQfHy8Lj4+vs/3qqurdY899pguPj5eN23aNF1NTY3RbQ2mTZumi4+P15WWlvb5/t69e3UJCQm6O+64Q9fW1tbjvf/5n//RxcfH615//fUex1esWNEVU2FhYa9r7tixQ5ecnKwbNWqU7sCBAz3ee/TRR3Xx8fG63bt392p3ww036B544AHduHHjdE899VSv91999VVdfHy87v333++3z+Z65513dPHx8bqpU6fqcnNz+zxnz549ut/97nc9jpnzuRAROQLek65ylHuSJT7X/vDeRVwTRvQLgYGBeOONN5CRkYHy8nK8++67Fv8ZWVlZ+O1vf4vCwkL8/e9/7zq+Z88efPrppxg9enSPp5mlpaVYvXo1XFxcsHr1asTFxfW65i233IIlS5ZAo9HgxRdfhFar7Xpv4sSJAPRPGLsrKytDWVkZJkyYgHHjxvV6v3sbwzWsoaysDKtWrYKLiwvWrFmD1NTUPs/Lzs7G+++/3/Vvcz8XIiJHx3tST7a4J1kb710EsDAHUZ8kEgkeeeQRAPr56dbw//7f/8PIkSPx4Ycf4uDBg6itrcXSpUvh7u6Ov/3tbz2mWWzevBlqtRo33nhjv/P977nnHgQFBaG4uBhHjhzpOj5hwgQAwMGDB3ucb/j3hAkTkJmZicuXL6OoqKjrfZVKhVOnTkGhUCAxMdEi/e7L5s2b0dHRgZtvvhnx8fH9niuXy3u0M+dzISIaDHhP0rPVPcnaeO8igGvCiK5p7NixkMlkqKmpQVlZmcmLbq/F1dUVf/vb33DPPffg6aefRkJCAq5cuYIXXngBsbGxPc49duwYAGDy5Mn9XlMmkyEzMxNfffUVjh8/3nWjGzFiBIKDg3H27FnU1tbC398fgP6JopeXF0aPHt2V3Bw6dAgxMTEAgCNHjkCr1SIzM7PPBeGWcvToUQDin2ya+7kQEQ0WvCfZ7p7U3YoVK675Xn19vUnX5L2LAI6EEV2TXC6Hr68vAKC2ttYqP2PUqFFYvHgxKisrsXfvXlx//fW47777ep135coVAMCwYcMGvKbhnKqqqh7HMzMzuxY6Gxw+fBjjxo2DVCpFQkICFApFj/dtNe3D0D+xVaAs8bkQEQ0GvCfZZyriypUrr/nV0NBg0jV57yKAI2FEdvfggw/iww8/RHV1NZ566qk+z9HpdAAAQRAGvJ7hnF+eO3HiRGzbtg2HDh3C7bffjvPnz6O6uhqZmZld52dkZODw4cPQ6XQQBKHrhmfs07e+nhjeeeedAz6xFdM/U9v98nN599138e2336KoqAhyuRxpaWl44oknBpwOSUQ0lPGe1JMxJeq7M+beYonPjwY/JmFE19De3g6VSgUA8PPzs9rPkUgkXdMu+tr/CgCCgoJw4cIFXL58ecDrGc4JCgrqcfyXC6G7z703yMjIwLfffoszZ84gICAA586dw7Bhw7qmggxk5cqVvY5lZGQMeMMLDg42un/dmfO5HDlyBPfddx+Sk5Oh0+nw9ttv44EHHsDXX38NhUIhKg4iImvjPcl29yRzGHNvscTnR4MfpyMSXcPRo0ehVqsRGBiIyMhIu8YyduxYAMCBAwf6PU+j0eDw4cMAgOuuu67He2FhYYiKisLFixdx6dIlHDp0CL6+vj0WNxueQB46dMikaR9nzpzp9WW4pjH966sSljHtTPlc/vnPf+Luu+9GfHw8EhIS8Nprr6G2thbHjx8XFQMRkS3wnmS7e5I5jLm3WOLzo8GPSRhRH7RaLVavXg0AuOOOO+wcDXDXXXdBKpVi586dOHfu3DXP+/e//42qqirExMQgIyOj1/uGm9eBAwfw008/Yfz48T0WN8fFxcHf37/HDc8WC4HvuusuuLi44D//+U+//QP0T4O7t7PE5wIATU1N0Gq1vTYyJSKyN96TbHtPsqS+7i2WvHfR4MUkjOgXampq8Kc//QlHjhxBWFgY/vjHP9o7JERGRuKPf/wjOjo6sGDBgj5/ae/atQt//etfIZVK8cILL/RZOcpw81q3bh2USmWvJ4KGOfhHjhzpmhpiiwXQERERWLhwITo6OvDQQw+hoKCgz/P27t2L+fPnd/3bUp8LAPz1r3/FqFGjkJ6ebplOERFZAO9Jtr8nWVJf9xZL3rto8OKaMHJqhkW7Wq0WDQ0NOHv2LI4dO4aOjg6kpKTgb3/7W1fpXHtbtGgRWlpasHbtWsyePRtTpkzByJEjoVarkZOTg7y8PLi5ueHvf//7NW9SEyZMgCAIKCwsBIA+p2VkZmZix44daGpqQmxsrOiKhaZasGAB1Go1Vq1ahTlz5iA9PR1jxoyBp6cnrly5gqNHj6K4uBhjxozp0c4Sn8urr76KY8eOYePGjZBKpbboLhFRL7wnOc49yRL6u7dY4vOjwY1JGDk1w6JdFxcXeHp6Ijw8HL/61a9w8803Y8qUKQ715EkikeCZZ57B7bffjvXr1+Onn37CwYMHIZVKER4ejj/84Q/4/e9/32/JW39/f8THx+PMmTPw8/PrsxJg95ugrad9LFy4ELfddhs2bNiAw4cPY/PmzWhvb+/amHP+/PmYPXt2jzbmfi6vvPIKvv76a3z44Yd2X2dBRM6N9yTHuieZY6B7iyU+PxrcBJ2hTiYRkZN5+eWX8c033+Djjz/GiBEj7B0OERENAby3kDE4EkZETunFF1/E1q1bsWrVKvj4+KC6uhoA4OHhAU9PTztHR0REgxHvLWQsjoQRkVNKSEjo8/jChQuxaNEiG0dDRERDAe8tZCwmYURERERERDbkOCs8iYiIiIiInACTMCIiIiIiIhtiEkZERERERGRDTMKIiIiIiIhsiCXqzaTVaqFWqyGRSCAIgr3DISJyGjqdDlqtFjKZzKE2sXUEvDcREdmHsfcmJmFmUqvVKCgosHcYREROKzk5GXK53N5hOBTem4iI7GugexOTMDMZMtzk5GRIpVLR7TUaDQoKCkxuP9ix/+w/+8/+m/v7k6NgvfHeZB72n/1n/9l/a9+bmISZyTDNQyqVmvU/VHPbD3bsP/vP/rP/puJ0u954b7IM9p/9Z//Zf1MNdG/i40MiIiIiIiIbYhJGRERERERkQ0zCiIiIiIiIbIhJGBERERERkQ0xCSMiIiIiIrIhJmFEREREREQ2xCSMiIiIiIjIhpiEERERERER2RCTMCIiIiIiIhtiEkZERERERGRDTMKIiIiIiIhsiEkYERERERGRDTEJIyIiIiIisiEmYXbU1KbGoxtysOtCs71DISIiAgCculSPeWt/wrnaDnuHQkQ0ZDEJs6OLNc3Y8XMlNpxohE6ns3c4RERE2He2GvvO1eCrs032DoWIaMhiEmZHsUGekEkEqNq0uKRqtXc4RERESBzmAwA4W8ORMCIia2ESZkduLlLEh3gBAPLLVHaOhoiICEiNVAAALjdpUNPUbt9giIiGKCZhdpYc7gsAKChnEkZERPbn6+6CkUGeAIC8UqV9gyEiGqKYhNlZSoQ+Ccsvr7dzJERERHqG0bAcJmFERFbBJMzOUrqNhGm1LM5BRET2lxapvzfllXKWBhGRNTAJs7O4EC/IJUBDqxrFNaxERURE9pfeORKWV6aEhg8IiYgsjkmYnblIJYjxcwHA4hxEROQY4oK94CYV0NimwfnqRnuHQ0Q05DAJcwAjOpOwvDKlfQMhIiICIJNKMMJff2/KKamzczREREMPkzAHMNKfI2FERORY4jrvTbkszkFEZHFMwhyAIQn7uUIFtUZr52iIiIiA+ADDSJjSvoEQEQ1BTMIcQKiXFF6uMrR2aFFYybn3RERkf/GdDwjPVDagsU1t52iIiIYWJmEOQCIIGBPuAwDI57owIiJyAH7uUoQr3KDTAfmckkhEZFFMwhyEYb+w/HKuCyMiIsfATZuJiKyDSZiDSInoTMI4EkZERA7CsF8Y14UREVkWkzAHYRgJO32pAa0dGjtHQ0REBKRF6u9NuaV10Om4aTMRkaUwCXMQYQo3BHjKodbqcOpSvb3DISIiwuhQH7hIBVxpbEdZXYu9wyEiGjKYhDkIQRC6TUnkujAiIrI/VxcpkkL1haO4LoyIyHIGbRJ26tQpPPTQQ7j++uuRkpKCjIwMzJ07F19++eWAbTdv3oyEhIQ+v6qrq20Qfd9SIhQAgDyuCyMiIgeRHuUHAMgpqbNzJEREQ4fM3gGYqr6+HsOGDcOMGTMQEhKClpYWbNu2DU899RTKy8vxyCOPDHiNV155BbGxsT2OKRQKK0U8sNRIjoQREZFjSY9SYN0BFucgIrKkQZuEZWZmIjMzs8exadOmoaysDJ9//rlRSVhcXBySk5OtFaJoyeEKAMD56kY0tqnh5Tpo//MQETmlU6dO4Y033kBhYSFqa2vh5uaGmJgY3HfffZg9e/aA7WtqarB8+XJ8//33aG1tRWJiIh5//HFMnDjRBtH3LT1SPxJ2sqIebWoNXGVSu8VCRDRUDLm/8v38/FBTU2PvMEwS5O2KMF83VKhaUVCmwsQRAfYOiYiIRDBnlkZ7ezvmzZuH+vp6PPvsswgICMD69esxf/58rF27FhkZGTbsyVWR/u7w95SjtqkdJyvqu6YnEhGR6QZ9EqbVaqHValFfX4/t27dj//79eP75541qu2DBAtTW1sLb2xsZGRl47LHHEB8fb+WI+5cSoUCF6jIKypVMwoiIBhlzZmls2rQJhYWF+PTTT5Gent51vdmzZ2P58uXYtGmTVWO/FkEQkB6pwO7TVcgpUTIJIyKygEGfhL344ov47LPPAAAuLi549tlnce+99/bbJjAwEAsWLEBaWhq8vLxQWFiINWvWYO7cudi4cSMSExNFx6HRmLa3l6Gd4TU53Ac7fr6M3FKlydccTH7Zf2fD/rP/3V+djbn9H0yfmzGzNHbt2oWYmJiuBAwAZDIZZs2ahddffx2VlZUICQmxdqh9So/qTMJYIZGIyCIGfRK2YMEC3HPPPaitrcV3332H//3f/0VLSwsefPDBa7bJzs5GdnZ217/Hjx+PqVOnYubMmXjrrbewevVq0XEUFBSYFP8v23u0tgEAjl6oRm5urlnXHEzM/fwGO/af/XdmQ7H/pszSOHv2LMaOHdvreEJCQtf7YpMwSz0gNGyhklNSN6iSX1PxAQn73/3V2bD/tnlAOOiTsLCwMISFhQEApk6dCgB4/fXXceedd8Lf39/o60RERGDs2LHIy8szKY7k5GRIpeIXK2s0GhQUFHS1j23pwEt7d6OqSYOouCT4e8pNimew+GX/nQ37z/6z/6b339DeEZkyS0OpVMLX17fXccMxpVIpOg5LPSAUOrQQAJTVteCHQ8egcHOO/7066v++bIX9Z/+dmbX7P+iTsF9KSUnBp59+itLSUlFJGADodDpIJKZtnSaVSs36I8rQ3s9LithAT1y40oSfLzXg+oRgk685mJj7+Q127D/7z/4Prf6bMksD0K+/MuW9a7HUA0IAGHlgP85WNULtG4m0UUP73sQHJOw/+8/+W/sB4ZBLwg4fPgyJRILIyEhR7UpLS3H8+HFMmjTJSpEZLyXCFxeuNCG/TOU0SRgR0VBiyiwNhULR52iXSqXfO7KvUbKBWOoBIQBcF+WHs1WNyCtT4ZYxoSZfczAZig8IxGD/2X/233r9H7RJ2PPPPw8vLy8kJycjMDAQdXV12LFjB7755hs8+OCDXTe5pUuXYsuWLdi5cyfCw8MBAPPmzcO4ceOQmJgIT09PFBYW4v3334cgCFi8eLE9uwVAXyFxS24F8suU9g6FiIgswJhZGvHx8SgsLOx13HAsLi7OqjEOJD1Kgc+OlnLTZiIiCxi0SVhaWho2b96ML774Ag0NDfDw8EBiYiJee+21HhtiarVaaDQa6HS6rmPx8fHYvn07PvjgA7S1tcHf3x8TJkzAI488gpiYGHt0pwfDAui8MhV0Op1JU1CIiMhxGDNLY/r06XjppZeQl5eH1NRUAIBarcbWrVuRmppqt8qIBmlRCgBAfpkSGq0OUgnvTUREphq0Sdjdd9+Nu+++e8Dzli1bhmXLlvU4tnTpUmuFZRGjw3whlQiobmjD5fpWhPq62zskIiIygjmzNObMmYMNGzZg8eLFePLJJxEQEIANGzagqKgIa9eutWe3AABxwd7wlEvR1K7B2aoGJA7zsXdIRESD1qBNwoYyd7kUccFeOH25AXmlKiZhRESDhDmzNORyOdatW4fly5fj5ZdfRktLC0aNGoX33nsPGRkZ9uhOD1KJgNRIBQ6cr0FOiZJJGBGRGZiEOajUCAVOX25AQbkSt44ZZu9wiIjICObM0gCAwMBAvPrqq9YIzSLSowxJWB3+KyPK3uEQEQ1aptVjJ6tLidSvC8svU9k5EiIiIr30SD8AYHEOIiIzMQlzUKkRCgD6JKz7dBUiIiJ7MRTnOFfdiPrWDvsGQ0Q0iDEJc1AJw7whl0mgaunAxZpme4dDRESEQC9XRPq7Q6cD8ks5U4OIyFRMwhyUi1SCpFD9ouc87hdGREQO4uqUxDo7R0JENHgxCXNgqRFcF0ZERI4lvXNKYk6p0q5xEBENZkzCHFhK17owpV3jICIiMkiLVAAAckuVXLNMRGQiJmEOLKVzJOxEeT3UGq2doyEiIgKSwnwgl0pQ29SOklquWSYiMgWTMAcWG+QFT7kULR0anKtutHc4REREcJVJMTpcv2aZpeqJiEzDJMyBSSUCxoRzXRgRETkWFucgIjIPkzAHl9o5957rwoiIyFEY9gvLZXEOIiKTMAlzcCmskEhERA4mvfMB4c8V9Wjt0Ng3GCKiQYhJmINL7ayQeOpSPdrUvNEREZH9Rfi5I9DLFWqtDj9X8CEhEZFYTMIcXISfO/w8XNCh0eH0pQZ7h0NERARBEK7uF8biHEREojEJc3CCIHC/MCIicjiG/cK4aTMRkXhMwgaB1M51YXlcF0ZERA7CMBKWy5EwIiLRmIQNAskcCSMiIgeTEqGARADKlS2orG+1dzhERIMKk7BBwDASdq6qEU1tajtHQ0REBHi5yhAf4g2A68KIiMRiEjYIBPu4YZiPG7Q64EQ5pyQSEZFjSOd+YUREJmESNkgY9gsrYBJGREQOIj3SDwCQU1Jn50iIiAYXJmGDRGpnFSoW5yAiIkdhGAnLL1NBrdHaNxgiokGESdggYRgJY3EOIiJyFCOCvODtKkNLhwZnKrmXJRGRsZiEDRIp4QoAwMWaZiib2+0bDBEREQCJREAa14UREYnGJGyQ8PVwQXSABwD9tA8iIiJH0LVpMyskEhEZjUnYIJLC/cKIiMjBGNaFsTgHEZHxmIQNIoZ1YSzOQUREjiKts0Li+eomqJo77BwNEdHgwCRsEOFIGBERORp/T3nXdPk83p+IiIzCJGwQGRPuA4kAVNa3obK+1d7hEBERAeC6MCIisZiEDSIechnigr0BsDgHERE5jvSozk2bS7kujIjIGIM2CTt16hQeeughXH/99UhJSUFGRgbmzp2LL7/80qj2NTU1eOaZZ5CZmYnU1FTMnTsXBw8etHLU5uN+YURE5GjSu5Wp1+l09g2GiGgQkNk7AFPV19dj2LBhmDFjBkJCQtDS0oJt27bhqaeeQnl5OR555JFrtm1vb8e8efNQX1+PZ599FgEBAVi/fj3mz5+PtWvXIiMjw4Y9ESclUoFNx8pYnIOIiBxG4jAfuMokUDZ3oLimGTGBnvYOiYjIoQ3aJCwzMxOZmZk9jk2bNg1lZWX4/PPP+03CNm3ahMLCQnz66adIT0/vut7s2bOxfPlybNq0yaqxmyO120iYTqeDIAh2joiIiJydXCbBmHBfHLtYh5ySOiZhREQDGLTTEa/Fz88PUqm033N27dqFmJiYrgQMAGQyGWbNmoX8/HxUVlZaO0yTJQ7zgVyqf9pYWtti73CIiIgAAOkszkFEZDSTRsLOnj2L48ePo7KyEq2trfDz88PIkSMxfvx4eHl5WTrGfmm1Wmi1WtTX12P79u3Yv38/nn/++X7bnD17FmPHju11PCEhoev9kJAQq8RrLrlMglGh3sgrUyGvTImozrLARERE9qQvzlHE4hxEREYwOglTqVT47LPP8Nlnn6GioqLPhbcymQzZ2dn43e9+h4kTJ1o00Gt58cUX8dlnnwEAXFxc8Oyzz+Lee+/tt41SqYSvr2+v44ZjSqVSdBwajUZ0m+7txLRPDvdFXpkKuaV1uH2MYyaLxjKl/0MJ+8/+d391Nub23xE/t4MHD2Lr1q3IycnB5cuX4e3tjTFjxuDRRx/FmDFj+m27efNmLFmypM/39u/fj6CgIGuEbDGG4hynLjWgpV0Dd3n/s1KIiJyZUUnYRx99hFWrVgEAbr/9dmRkZGD06NHw9/eHq6srVCoVSktLkZubi927d+MPf/gDJk2ahP/5n//B8OHDrdqBBQsW4J577kFtbS2+++47/O///i9aWlrw4IMP9tuuv7VUpqyzKigoEN3G1Pa+mmYAwMHT5cgNHRr7hZn7+Q127D/778yGUv83btwIpVKJ+++/HyNHjkRtbS3Wrl2LuXPn4v333zfqAeUrr7yC2NjYHscUCoWVIracUF83BHu7oqqhDScqVBgf7W/vkIiIHJZRSdjHH3+MJUuWYMaMGXBxcen1fmBgIAIDA5Geno4HHngAJSUlWL16NbZv344FCxZYPOjuwsLCEBYWBgCYOnUqAOD111/HnXfeCX//vm8ACoWiz9EulUpfcbCvUbKBJCcnD7gWrS8ajQYFBQWi2ruHNmDV0R9RXK9FckoqpJLBW5zDlP4PJew/+8/+m95/Q3tH8sILLyAgIKDHsaysLNx888149913jUrC4uLikJycbK0QrUYQBKRHKfCfnyuRU1LHJIyIqB9GJWHbt2+HTGb88rGoqCi88sordpkqkpKSgk8//RSlpaXXTMLi4+NRWFjY67jhWFxcnOifK5VKzfojSkz7hGG+8JBL0dyuQXFtC+JDvE3+uY7C3M9vsGP/2X/2f2j0/5cJGAB4enpixIgRuHTpkh0isq30KL/OJExp71CIiByaUZnV2bNnMWrUKNEXt8dN9fDhw5BIJIiMjLzmOdOnT8dLL72EvLw8pKamAgDUajW2bt2K1NRUhy3KYSCVCBgT5osjxbXIL1MNiSSMiGioamhowMmTJzFhwgSjzl+wYAFqa2vh7e2NjIwMPPbYY4iPjzfpZ9tyvTIApIb7AABySuoccs2esbhek/3v/ups2H/brFc2Kgm78847kZSUhDlz5mDmzJnw9rb/H/3PP/88vLy8kJycjMDAQNTV1WHHjh345ptv8OCDD3aNgi1duhRbtmzBzp07ER4eDgCYM2cONmzYgMWLF+PJJ59EQEAANmzYgKKiIqxdu9ae3TJaSoQhCVNiztgIe4dDRETX8NJLL6GlpWXA6fmBgYFYsGAB0tLS4OXlhcLCQqxZswZz587Fxo0bkZiYKPpn23K9MgBo1VpIBOByfRt2HziGAI/BPcLpaNNdbY39Z/+dmbX7b1QS9sc//hFffvkl/vKXv+DVV1/FTTfdhDlz5hj9VM8a0tLSsHnzZnzxxRdoaGiAh4cHEhMT8dprr2H27Nld52m1Wmg0mh7VHOVyOdatW4fly5fj5ZdfRktLC0aNGoX33nsPGRkZ9uiOaCmd+7HklansGwgREV3Tm2++iW3btuH5558fsDpidnY2srOzu/49fvx4TJ06FTNnzsRbb72F1atXi/75tlyvbJB46EecvNSADp9wpI0ZJvpnOwKu12T/2X/239rrlY1Kwv70pz/h8ccfx759+7B582Z8++23+PrrrxEWFoa7774bd955J0JDQ0UHaY67774bd99994DnLVu2DMuWLet1PDAwEK+++qo1QrOJ1Ah98ZBTFfVoV2shlw25fbeJiAa1lStXYvXq1fjTn/6E3/72tyZdIyIiAmPHjkVeXp5J7W25XtkgPcoPJy81IK+8HjNSw03+2Y5gKK1XNAX7z/6z/9brv9F/uQuCgOzsbLz55pvYv38/nn32Wfj6+uLtt9/G9OnT8eCDD2LHjh3o6OiwWrB0VZS/BxQeLmjXaHHmcoO9wyEiom5WrlyJFStWYNGiRWZXCdbpdJBIBs+DNv2mzfp1YURE1DeTfqv7+Pjgt7/9LTZv3owtW7bgvvvuw8mTJ/GnP/2px1QKsh5BEJAcrh8NyytT2jcYIiLqsmrVKqxYsQIPP/wwFi5caNa1SktLcfz48a4iUoOBYdPmgnIVOjRa+wZDROSgjK87fw2JiYmYNWsWmpubsXnz5j733yLrSInwxb6zV5BfpgRg3U2xiYhoYB988AHefvttZGVl4frrr0dubm6P99PS0gD0XTRq3rx5GDduHBITE+Hp6YnCwkK8//77EAQBixcvtnFPTBcT4AkfNxnqW9U4c7kBY8LF771JRDTUmZyE1dbWYuvWrfj3v/+Nc+fOQSqVYtq0aZgzZ44l46N+pEQoAAD5LM5BROQQvv/+ewDAvn37sG/fvl7vnzlzBkDfRaPi4+Oxfft2fPDBB2hra4O/vz8mTJiARx55BDExMbbpgAVIJALSovywt7AaOSV1TMKIiPogKgnTarXYu3cv/v3vf+OHH35AR0cHoqOj8cQTT+DOO+9EYGCgteKkPqR2JmGFlQ1oblfDQ272wCYREZnh448/Nuq8vopGLV261Boh2UV6pKIzCVPidxPtHQ0RkeMx6q/2oqIi/Pvf/8aXX36JK1euwM3NDXfccQfuvvtujBs3ztox0jUM83VDsLcrqhracLKiHuOi/e0dEhERUde6sNxSpV3jICJyVEYlYbfddhsAICUlBYsWLcKMGTPg6elp1cDIOCkRCuw6VYm8MhWTMCIicghpnXtZXrjShLqmdvh5yu0bEBGRgzEqCfv973+POXPmIC4uztrxkEipEb7YdaqyszgHERGR/Sk85IgN9MSFK03ILVNiWkKwvUMiInIoRpWoX7JkSZ8J2IULF3Ds2DE0NzdbPDAyTkrn00YW5yAiIkeS1jklMadEadc4iIgckUn7hG3ZsgXZ2dmYMWMGfvvb36KoqAgAsHjxYnz++ecWDZD6l9JZdaroShNULdwom4iIHINh02auCyMi6k10ErZ9+3Y888wzSEpKwvPPP9+jvO7o0aOxfft2iwZI/fPzlCPK3wMAUMDRMCIichDpnTM1ckvqoNXq+j+ZiMjJiE7C1qxZg7vuugv/+Mc/MHfu3B7vxcbG4ty5cxYLjoyTEqEfDcvjujAiInIQCcO84eYiQX2rGheuNNk7HCIihyI6CTt//jxmzJjR53sKhQJKpdLcmEgkQxLG4hxEROQoXKQSpIQrAAA5JXX2DYaIyMGITsLc3d3R0NDQ53uVlZXw9fU1OygSJ6Vz02YW5yAiIkfC/cKIiPomOglLT0/H+vXre6wFM9i8eTMyMjIsEhgZb0y4LwQBuKRqRVVDq73DISKiwayuGMJXj8O1qdzsSxn2C2OFRCKinkQnYY8++ihyc3MxZ84cfPzxxxAEAd9++y0WLFiAo0ePYsGCBdaIk/rh5SrDyCAvACzOQUREZjq1DZKcjxBa+LHZlzJUSDx9uR7N7Wqzr0dENFSITsKSk5Px3nvvobm5GcuWLYNOp8O7776LoqIirFmzBvHx8daIkwZgmJKYxySMiIjMETIaAOB9JRfoY9aLGMN83RDq6watjlPmiYi6k5nSaMKECdi+fTtKSkpw5coV+Pn5ISYmxtKxDX2tKkg+/Q1C3EcBaWlmXSo10hf/Pl7G4hxERGSeyAnQSVwgb62CRnkRCBxh1uXSoxS4VHAZuaVKTIgNsFCQRESDm0mbNRtERUXhuuuuYwJmqvpLEIr3IfTsJ4DWvGka3Ytz9LVej4iIyChyDyB8LABAKN5n9uWurgtjhUQiIgOjkrBvvvlG9IUrKytx7Ngx0e2cSmAcdG6+kKqbgUt5Zl1qVKg3XKQCapvaUVbXYqEAiYjIGemGT9Z/c/FHs69lWBd2vETJh4RERJ2MSsL+8pe/YPbs2di0aRMaGxv7PffEiRN46aWXcMstt+D06dMWCXLIkkiBKP2Nztynja4yKRKH+QDgvHsiIjKPLjoLQOe9yczEaUyYL2QSAdUNbahQsYIvERFg5JqwnTt3YsWKFfjrX/+Kv/zlL0hKSkJSUhICAgIgl8uhUqlQWlqK3NxcVFdXIy4uDitWrEBWVpa14x/0dDFZEAq/0d/osp8061rJEb4oKFchv0yJGSmhFoqQiIicTsR4aCUukDRcAmovAAGmrwtzl0sxKtQHBeUq5JTUIVzhbsFAiYgGJ6OSMG9vbyxduhSPPvooNm/ejD179mDLli1oabk67S0yMhJZWVmYOXMmJkyYYLWAhxrD00aUHgbU7YBMbvK1UiN8seEwkMfiHEREZA4XdzQpRsG7Nh8o3mdWEgbo14UVlKuQW6LEHSlhFgqSiGjwElUd0dfXFw888AAeeOABAEBDQwNaW1uhUCjg4uJilQCHvKBR6JAr4NKuBMqPAcMnmnwpQ3GOE+X10Gp1kEgEy8RIREROpyEwTZ+EFe0Dxs4z61rpUQp8fOgickqVFomNiGiwM6s6ore3N4KCgpiAmUMQ0BCYpv++aK9Zl4oL9oKbiwSNbWpcuNJkfmxEROS0GgLS9N8U7zd7XZihOEdBuQrtaq2ZkRERDX5mJWFkGVdvdOYV55BJJRgT5gsA3C+MiIjM0uSXBJ3UFWi8DNScM+ta0QEeUHi4oF2txalL9RaKkIho8GIS5gAaAtP135QeBjrMKy/ffb8wIiIiU+mkciBivP4fZj4kFAQB6Z37heVySiIREZMwR9DmGQGddyigaQdKj5h1rdRI/UgYi3MQEZG5uvYLK7LEps36KYnctJmIiEmYYxCEq1USzVwXZhgJO1lRjw4N590TEZHpuu5NFlkXpgAAFucgIgKTMMcRPUX/amYSFh3gAW83GdrUWpy53GCBwIiIyGmFjwVkbkBTFXCl0KxLpXZOR7xY04yaxjYLBEdENHiJTsL+93//FxcuXLBGLKIcPHgQS5Yswa233oq0tDRkZWXh4YcfxokTJwZsu3nzZiQkJPT5VV1dbYPoe9NFZ+u/qTgOtJmePAmCgJQIQ3EOrgsjIiIzyFyByAz992auC/N1d8HIYC8AnDJPRCQ6CduyZQtmzJiBBx54ALt27YLOzOkJptq4cSPKy8tx//33Y82aNXj22WdRW1uLuXPn4uDBg0Zd45VXXsFnn33W40uhUFg38GtRROm/tGqg5JBZl7panENpflxEROTcDA8JLbIuTAEAyClRmn0tIqLBTNRmzQCwb98+fPHFF9i4cSMWLlyI0NBQ/Nd//RfmzJkDf39/a8TYpxdeeAEBAQE9jmVlZeHmm2/Gu+++i4kTB970OC4uDsnJydYKUbyYbCDnE/2UxLibTL5MaoShOAdHwoiIyEyG6fKGdWGCYPKl0qMU+NexMiZhROT0RI+EeXh44De/+Q2++uorrF27FqNHj8Zbb72F66+/Hs888wwKCgqsEWcvv0zAAMDT0xMjRozApUuXbBKDxXU9bbRMcY7Cyga0tGvMDIqIiJxa+FhA5g40XwGqT5t1qfTOCol5pUpotfaZSUNE5AhEj4R1N3HiREycOBGXL1/G008/jS+//BJffvklxowZg4cffhg33HCDpeI0SkNDA06ePIkJEyYYdf6CBQtQW1sLb29vZGRk4LHHHkN8fLxJP1ujMS3ZMbTTaDRA1CRIAegu50PbWAO4K0y6ZrCXCwK95LjS2I4T5XW4LsrPpOvYQo/+OyH2n/3v/upszO2/s35uNieTA1GZwIUf9KNhwaNMvlR8iBc85FI0tKlxvroRcSHelouTiGgQMSsJa21txbZt27B+/XqcPn0aI0eOxK233orvvvsOjz76KBYuXIhHH33UUrEO6KWXXkJLSwsWLFjQ73mBgYFYsGAB0tLS4OXlhcLCQqxZswZz587Fxo0bkZiYKPpnmzsCaGg/2jMSbk2lKNqzHqphk02+3nBvAVcage2HT0JS62lWbLZgqxFUR8X+s//OzNn7PyhEZ+mTsKK9QMZ/m3wZmVSC5HBfHC6qRU6JkkkYETktk5KwkpISrF+/Hl988QUaGxuRnZ2Np556CpMmTQIALFy4EK+//jo++eQTmyVhb775JrZt24bnn38eY8aM6ffc7OxsZGdnd/17/PjxmDp1KmbOnIm33noLq1evFv3zk5OTIZVKRbfTaDQoKCjoai9UTAeOrUWsUAZdWpro6xlk1Z7DsUvnUAtvpKWlmHwda/tl/50N+8/+s/+m99/Qnmyg+35hWi0gMX2Hm/QoP30SVlqHX4+PtFCARESDi+gkbP78+Thw4ADc3d1x11134Xe/+x2ioqJ6nTdt2jSsWbPGIkEOZOXKlVi9ejX+9Kc/4be//a1J14iIiMDYsWORl5dnUnupVGrWH1Fd7WOnAsfWQlK8HzDjeqmdUxDzy1WD4o87cz+/wY79Z//Z/6HR/4MHD2Lr1q3IycnB5cuX4e3tjTFjxuDRRx8d8AEhANTU1GD58uX4/vvv0draisTERDz++ONGFZuyqvDrABcPoKUWqD4FhIw2+VJdmzazOAcROTHRSVhpaSmWLFmCu+66C56e157mFhcXh48++sis4IyxcuVKrFixAosWLRpwGuJAdDodJGY83bMIw9PGqp+BpiuAZ6BJl0ntLM5xoboJ9a0d8HFzsVCARER0LRs3boRSqcT999+PkSNHora2FmvXrsXcuXPx/vvv95tMtbe3Y968eaivr8ezzz6LgIAArF+/HvPnz8fatWuRkZFhw578gtQFiJoAnP9OX6renCSss0x9YWUDGtvU8HI1a2UEEdGgJPo333/+8x+jzvPy8rL6DWPVqlVYsWIFHn74YSxcuNCsa5WWluL48eNdUyrtxjMQCB6tT8KK9wGj7zTpMv6eckT4uaOsrgUnylSYNNK0ZI6IiIxnzvYpmzZtQmFhIT799FOkp6cDADIzMzF79mwsX74cmzZtsmrsA4rO0idhxfuACaY/9Az2cUO4wh3lyhbklykxaQTvT0TkfOw87GO6Dz74AG+//TaysrJw/fXXIzc3t8eXwdKlS5GUlITy8vKuY/PmzcPKlSuxa9cuHDx4EB9++CHuu+8+CIKAxYsX26E3vxDTORpm5saYKdwvjIjIpszZPmXXrl2IiYnpSsAAQCaTYdasWcjPz0dlZaXF4xXFMFPj4o/6dWFmSOOURCJycqJHwm644QYI19ioUSKRwNvbG8nJybj//vsxYsQIswO8lu+//x6AfvPofft6JytnzpwBAGi1Wmg0Guh0V/cjiY+Px/bt2/HBBx+gra0N/v7+mDBhAh555BHExMRYLWajxWQDh/9hkf3Cvim4jPwypWXiIiIi0YzdPuXs2bMYO3Zsr+MJCQld74eEhFglRqOEpQFyL6ClTj9bY1iyyZdKj1Tg6/xLTMKIyGmJTsIyMjJw5MgRVFVV4brrrkNgYCCqq6uRk5OD4OBghIaGYufOnfjyyy/x8ccfIznZ9F/S/fn444+NOm/ZsmVYtmxZj2NLly61RkiWM3wSAAGoOQvUXwJ8Qk26jGEkLJ8jYUREdmPs9ilKpRK+vr69jhuOKZVK0T/bIntYdpFAEpkJ4fxuaC/sgS4oyaRrA0BqhA8AILe0Dmq1+poPd+2Fe/ix/91fnQ37b5s9LEUnYVOmTEFubi527tyJ0NCryUFFRQX+8Ic/YPr06Vi2bBl+97vfYcWKFTarkDikuPsBoanApVz93PuUX5t0meRwXwgCUK5swZXGNgR6uVo2TiIi6peY7VMA9JuMmJKoWGoPS4MQ+QhEYDfq877BeVfTKzaqNTrIBOBKYzt2HjiGYE/HLM7h7FsgsP/svzOzdv9F/9b7xz/+gUWLFvVIwAAgLCwMjz76KN555x3ceeedmDdvHv7v//7PYoE6nZgsfRJWtMfkJMzbzQWxgZ44X92EgjIVpiUGWzZGIiK6JrHbpygUij5Hu1Qq/WyGvkbJBmKpPSy7BGuBU2vgqzqBtJRkQGL61gJJhw8iv1yFNu9wpKWYNuPDWriHH/vP/rP/1t7DUnQSdvHiRXh5efX5no+PT1cBjPDwcLS0tIi9PBnETAUOrDC7OEdqhALnq5uQV6ZkEkZEZCOmbJ8SHx+PwsLCXscNx+Li4kTHYbE9LA3C0gG5N4RWFaRXTulnbZjouuF+yC9XIa9MhV+lR5h8HWsaSnvYmYL9Z//Zf+v1X3R1xLCwMHzxxRd9vvfvf/+7a4TsWnPbyUhREwBBCigvAnUXTb4M14UREdmWqdunTJ8+HRcuXEBeXl7XMbVaja1btyI1NdW+RTkMpLLOdcsw+yGhYdPm3FKleTEREQ1CopOwBx98EDt27MC9996LdevW4auvvsK6detw7733YufOnZg/fz4A4PDhw0bNf6drcPUGwjurZBWbfqNL6dwUM79M2aNCJBERWZ4526fMmTMHcXFxWLx4MbZt24YDBw7g8ccfR1FREf785z/boTfXED1F/1q836zLpEf6AQB+Lq9Hm9o5CwAQkfMSPR3x17/+NXQ6HVasWNGj6mBgYCBeeukl3HPPPQCABQsWQC6XWy5SZxSTDZQd0ZeqTx94PUFfkkJ9IJMIuNLYjgpVK8IV7hYOkoiIDMzZPkUul2PdunVYvnw5Xn75ZbS0tGDUqFF47733kJGRYZsOGMOwl+XFA4BWY/K6sEh/d/h7ylHb1I6TFfVIj/KzYJBERI5NVBKm0WhQUlKC2267Db/+9a9x4cIFKJVKKBQKxMbG9qjcFBgYaPFgnU5MFrDvb/opHzodYEJlLDcXKeJDvHHyUj3yS5VMwoiIrMic7VMA/b3z1VdftXRYljUsBXD1BdpUwKU8IPw6ky4jCALSIxXYfboKOSVKJmFE5FRETUfU6XSYMWMGcnJyIAgCRowYgbFjx2LEiBEOt8fHkBCZCUjlQEMFUHPe5MukRurXheVxXRgREZlLIr26LszcKYlcF0ZETkpUEiaTyRAYGMi1Rbbi4g5EdE5BKd5r8mVSIhQA9OvCiIiIzNa1Lszc4hz60a+c0jpzIyIiGlREF+aYMWMGtmzZYoVQqE8x2frXInOSMP1IWEGZClotE2giIjJT17qwg4BGbfJlUiJ8IQhAaW0LqhvaLBQcEZHjE12YIzExEd988w3uv/9+3HzzzQgKCuo1FfHmm2+2WIBOLyYL+AFmrQuLD/GGq0yChjY1imuaEBvU9z5vRERERgkZA7j5Aq2d68Iixpp0GW83F8QFe6GwshG5pUrclOQAZfiJiGxAdBL29NNPAwAqKytx5MiRXu8LgoBTp06ZHxnphY8DZO5A8xWg6hQQkiT6Ei5SCUaH+eB4iRL5ZSomYUREZB6JFBg+BTjztX5KoolJGKAvVV9Y2YickjomYUTkNEQnYR999JE14qBrkcn1Gzdf+F5/ozMhCQP068KOlyiRV6bEr9LDLRwkERE5nehuSdiUx02+THqUAp8dLWVxDiJyKqKTMIfaq8RZxGTrk7CivUDmH026hKFCYj4rJBIRkSUY1oWVHAI0HYDUxaTLpHVWSMwrVUKj1UEqYbVlIhr6RBfmMGhoaMC+ffuwdetWqFT8w96qDMU5ivfpN8Y0gaFC4s8VKqg1WgsFRkRETit4NODuB7Q3AhW5Jl8mLtgbnnIpmto1OFvVYLn4iIgcmElJ2KpVq5CVlYX//u//xtNPP42ysjIAwO9//3usWbPGogESgNA0QO6tXwB9ucCkS8QEeMLbVYbWDi0KKxstGx8RETkfiQQYPln/vRml6qUSAamRCgBATonS/LiIiAYB0UnY+vXrsWrVKsyZMwfvvvtujz3Dpk2bhh9++MGS8REASGVXN8Y0sVS9RCJgTLhhSqLSQoEREZFT6z5TwwxdmzYzCSMiJ2FSEjZv3jw899xzmDJlSo/3hg8fjosXL1osOOrGAje6lM51YXlcF0ZERJZg2LTZsC7MRGmR3LSZiJyL6CSstLQUWVlZfb7n6emJ+vp6s4OiPhiSsIsHTL7RpXauC+NIGBERWUTQKMAjAOhoBsqPm3yZtM7piGerGlHfanoyR0Q0WIhOwry9vXHlypU+3ysvL0dAQIDZQVEfQsaYvQA6JUI/EnbmcgNaO0wr8EFERNSlx7ow06bLA0CQtysi/d2h0wH5pZytQURDn+gkbOLEiXj//ffR3NzcdUwQBKjVamzcuLHXFEWyEInk6rSPoj0mXSJc4Y4ATznUWh1OXeKIJRERWUDXdPn9Zl0mvXNKYi6nJBKRExCdhD322GOoqKjAjBkzsGzZMgiCgE8++QT33HMPLl68iEceecQacRIARJu3LkwQhK7RMO4XRkREFtG1LuwwoG4z+TJprJBIRE5EdBI2fPhwbNy4EbGxsdi4cSN0Oh2+/PJL+Pn5YcOGDQgLC7NGnARcfdpYcsjkG51hv7A8rgsjIiJLCEoEPAIBdYtZ68IMFRJzSpU9Ki8TEQ1FMlMajRw5Ev/85z/R3t6Ouro6+Pr6ws3NzdKx0S8FJQCewUBTFVB2FIieLPoSqZEcCSMiIgsSBP1o2Mkt+pkawyeadJmkMB/IpRLUNrWjpLYZwwM8LRsnEZEDMWmzZgO5XI6QkBAmYLYiCEBMZ2VKE/cLSw5XAADOVzeisU1tocCIiMipGe5NZmyj4iqTYnS4DwAgt1RpgaCIiByXSSNhZWVl2L59OyoqKtDa2trjPUEQ8H//938WCY76EJ0FnPh3541uiejmQd6uCPN1Q4WqFQVlKkwcwWqWRERkJsOa5dIj+unyMleTLpMWqUBOiRI5JUrMTgu3YIBERI5FdBL2ww8/YOHChdBqtfD394dcLu/xviAIFguO+hDT7UbX3gzIPURfIiVCgQrVZeSXKZmEERGR+QLjAK8QoLHS5OnyAJAe5Ye1PxYjp4QVEoloaBOdhL3xxhu47rrr8MYbb3BPMHvwjwV8woH6cqD0MDBimuhLpET6YsfPl7kujIiILMOwLswwU8PUJKyzQuLJS/Vo7dDAzUVqwSCJiByH6DVhFy9exH//938zAbMXQbg6GmbiurBUVkgkIiJLM5SqN2O/sAg/dwR6uaJDo8PPFdzPkoiGLtFJWFhYWI+NmskOos0rzjEmXF8hsayuBbVN7ZaKioiInFn3dWEdrf2few2CIFwtVc8piUQ0hIlOwv74xz/igw8+QEtLizXiMdrBgwexZMkS3HrrrUhLS0NWVhYefvhhnDhxwqj2NTU1eOaZZ5CZmYnU1FTMnTsXBw8etHLUFmKoQlWRA7SKf1Lo6+6C2EB96d98joYREZElBIwAvIYBmjag7CeTL9O1aTMrJBLRECZ6TVhBQQFqampw0003ITMzE35+fr3Oee655ywSXH82btwIpVKJ+++/HyNHjkRtbS3Wrl2LuXPn4v3338fEidfep6S9vR3z5s1DfX09nn32WQQEBGD9+vWYP38+1q5di4yMDKvHbxZFFOAXA9QVASUHgfhbRF8iJcIXF640Ib9MhesTgq0QJBERORXDNioFm/TrwgwPDEUyjITlligtFxsRkYMRnYR98sknXd9//fXXvd4XBMEmSdgLL7zQa11aVlYWbr75Zrz77rv9JmGbNm1CYWEhPv30U6SnpwMAMjMzMXv2bCxfvhybNm2yauwWEZOlT8KK9pqYhCmwJbeCI2FERGQ50VP0SVjRPkB83SgA+vuTRADKlS2oqm9FsA/3IiWioUd0Enb69GlrxCFaX4VBPD09MWLECFy6dKnftrt27UJMTExXAgYAMpkMs2bNwuuvv47KykqEhIRYPGaLipkKHP/I9OIckfp1YXllKuh0Om4tQERE5jOsWS4/avI2Kl6uMsSHeOP05QbklCpxy+hhFg6SiMj+TNqs2VE1NDTg5MmTmDBhQr/nnT17FmPHju11PCEhoet9sUmYRqMRdf4v24luHzkRUgC6ywXQNl4B3HtPC+1PQrAXpBIB1Q1tKK9rRqivfZ40mtz/IYL9Z/+7vzobc/vvrJ+bQ/OPBbzDgIYKoOwIEHu9SZdJj1Lok7ASJmFENDQZlYT99NNPSEpKgqenZ7/n1dbW4rvvvsOcOXMsEpxYL730ElpaWrBgwYJ+z1MqlfD19e113HBMqVSK/tkFBQWi25jbPslrONwbL6L4h0+gDBU/9z7CW4qLKjW27s9FZrh9p3uY+/kNduw/++/MnL3/Q4phXVj+Z/pS9aYmYZF+2HiklBUSiWjIMioJu//++/HZZ58hJSUFAKDVapGSkoLPP/8cSUlJXeeVlpbi+eeft0sS9uabb2Lbtm14/vnnMWbMmAHP72/6nSlT85KTkyGVit9UUqPRoKCgwKT2wqXpwNF/IkYohy4tTfTPzrxwAhePlaHBxR9pafGi21uCOf0fCth/9p/9N73/hvbkYKKn6JOwon0mX8JQnKOgXAW1RguZVHQxZyIih2ZUEqbT6Xr9W61W9zpuLytXrsTq1avxpz/9Cb/97W8HPF+hUPQ52qVSqQCgz1GygUilUrP+iDKpfexU4Og/ISneB5jws1OjFPj8WBkKyuvt/geguZ/fYMf+s//sv/P2f8jpWhd2DGhvAuT9z6Lpy4ggL3i7ytDQpkZhZSOSwnwsHCQRkX0N+kdLK1euxIoVK7Bo0aIBpyEaxMfHo7CwsNdxw7G4uDiLxmg1w6foX6tPAY1VopunRigA6PcKc5SEmoiIBjm/aMA3EtB2AKWHTbqERCIgtWu/ME5JJKKhZ1AnYatWrcKKFSvw8MMPY+HChUa3mz59Oi5cuIC8vLyuY2q1Glu3bkVqaqrjV0Y08AwAQpL13xeLn/aRMMwbcpkE9a1qXKxptnBwRETklARBPyUR0K8LM5FhSmIO9wsjoiFo0CZhH3zwAd5++21kZWXh+uuvR25ubo8vg6VLlyIpKQnl5eVdx+bMmYO4uDgsXrwY27Ztw4EDB/D444+jqKgIf/7zn+3QGzMYNsM0Ye69i1SCpFD9FI887hdGRGS2xsZGvPbaa/jDH/6ACRMmICEhAStWrDCq7ebNm5GQkNDnV3V1tZUjt7Bo0+9NBl2bNpcqzY+HiMjBGF2i/sKFC11z9g1lgS9cuNDrHFv5/vvvAQD79u3Dvn29f8mfOXMGgL6IiEaj6THdTi6XY926dVi+fDlefvlltLS0YNSoUXjvvfeQkZFhmw5YSkw2cOgd0/cLi/BFbqkS+WUqzE4Lt3BwRETORalU4vPPP0diYiKmT5+OTZs2ib7GK6+8gtjY2B7HFAqFhSK0EcNIWMVxoK0RcPUSfYm0SP3WK+eqGqFq6YCvu4slIyQisiujk7AlS5b0OvbUU0/1+LctN/39+OOPjTpv2bJlWLZsWa/jgYGBePXVVy0dlu0NnwQIEqD2PKAqB3zFJVIpEQoAF5HPkTAiIrOFh4fjp59+giAIqK2tNSkJi4uLQ3JyshWisyG/4YAiClCWAKWHgJHTRV/C31OO4QEeuFjTjLxSJbLjg6wQKBGRfRiVhL3yyivWjoNM5eYLhKbpnzYW7wNS7xXVPDVSXwnyRHk9ywATEZnJVg8iB4XoLCB3vX5dmAlJGACkRypwsaYZOSVMwohoaDEqCbvzzjutHQeZIyZbn4QV7RWdhMUEesFTLkVTuwbnqhuROIxlgImI7GnBggWora2Ft7c3MjIy8NhjjyE+3rS9HA3LB0xtZ2p7ABCiJkOSux66or3Qmnid1AhfbMmtwPGSWrNiEcsS/R/M2H/2v/urszG3/8a2M3o6IjmwmCzgxzf1SZhOp69MZSSpRMCYcF8cLqpFfqmKSRgRkZ0EBgZiwYIFSEtLg5eXFwoLC7FmzRrMnTsXGzduRGJiouhrmruZtTntXZr9kAIAFTnIP3oAWpmH6Gt4tHQAAI4V1yAnJ8fmI43Ovhk4+8/+OzNr959J2FAQNRGQyABVKVBXDPjHiGqeGqnA4aJa5JUp8evxkdaJkYiI+pWdnY3s7Oyuf48fPx5Tp07FzJkz8dZbb2H16tWir5mcnGzSRtgajQYFBQUmtzfQHY+GUFeMFEUTMHKS6PZJai2e37MLje1aKCLjERMofuNnU1iq/4MV+8/+s/+m99/QfiBMwoYCuScQPk6/+Ll4n+gkLCVCvy4sv0xljeiIiMhEERERGDt2bI99LcWQSqVm/RFlbntETwHqiiG9+COQcKvo5u5SKZLDfXHsYh3yy+sxMsS2szXM7v8gx/6z/+y/9frPKgxDRUzn01MTStWnRigAAKcv16NN7Zzzf4mIHJVOp4NEMkhv19Gd9yZzNm2OVADgps1ENLQM0t/q1Ev3TZu77YlmjAg/d/h5uKBDo8PpSw1WCI6IiExRWlqK48ePIzU11d6hmMawX9ilXKDVtNkW6VH6/cK4aTMRDSWikrDW1lbce++9OHDggLXiIVNFZABSV6DxMnDlrKimgiB07hcG7hdGRGSmPXv2YMeOHfj+++8BAOfOncOOHTuwY8cOtLS0AACWLl2KpKQklJeXd7WbN28eVq5ciV27duHgwYP48MMPcd9990EQBCxevNgufTGbbzjgHwvotEDJIZMukR6lAACculSPlnbO1iCioUHUmjA3NzcUFhY69fxQh+XiBkRm6NeEFe8FgsSVM06N8MWewmrklanwOyuFSETkDF566aUeyZUhAQOA3bt3IyIiAlqtFhqNBrpuMxfi4+Oxfft2fPDBB2hra4O/vz8mTJiARx55BDEx4tb6OpToLKD2gn66fPwtopuH+roh2NsVVQ1tOFGhwvhofysESURkW6ILc6SnpyM/Px+ZmZnWiIfMETNVn4QV7QXGzxfVlCNhRESW8d133w14zrJly7Bs2bIex5YuXWqtkOwrOgs4/qHJ68IEQUB6lAL/+bkSOSV1TMKIaEgQvSbs6aefxmeffYYtW7agqanJGjGRqQzrwor3A1qtqKaGConnqhrR1Ka2dGREROSsDOvCLucDLUqTLsF1YUQ01IgeCZs7dy46OjqwZMkSLFmyBG5ubj02TxQEAceOHbNokGSksOsAF0+guQaoOgkMG2N002AfNwzzccPl+lacKFchMzbAioESEZHT8AkFAkYCNeeAkoNAwm2iL8EKiUQ01IhOwm655Rab71hPRpLJgagJwPnd+mmJIpIwQD8advlkK/LLmIQREZEFRWfpk7CifSYlYckRvpBKBFxSteKSqgWhvu5WCJKIyHZEJ2G/nMNODiYmW5+EFe0FJjwsqmlqpALfnqxEHteFERGRJUVPAY6t1T8gNIGHXIaEEG+cvFSP3BIlQpOZhBHR4MZ9woYaw6bNxT8CWnGlfA3rwgrKTdvLhYiIqE/RnWuWLxcAzbUmXcJQqp7rwohoKBA9EmZQWFiI8+fPo62trdd7v/rVr8yJicwRmgq4+gJtKuBSHhB+ndFNU8IVAICLNc1QNrdD4SG3UpBERORUvEOAwHjgSqF+XVjiDNGXSI/yw/rDJVwXRkRDgugkrKWlBQ8//DAOHToEQRC69jjpvk6MSZgdSaRA9GTgzDf6KYkikjBfDxdEB3iguKYZ+WUqZMcHWTFQIiJyKtFZ+iSsaJ9JSVhaZ3GO/HIlOjRauEg5mYeIBi/Rv8HeeecdlJeX45NPPoFOp8PKlSuxdu1a3HTTTRg+fDi++OILa8RJYhimfZgw9577hRERkVUYStWbuC4sNtATPm4ytHZoceZygwUDIyKyPdFJ2O7du/Hf//3fSE9PBwCEhoZi4sSJePvttzF69Ghs2LDB4kGSSIZ1YRcPApoOUU0N68LyyrgujIiILMjwgLDyhEnrwiQSAWmd+4XlcF0YEQ1yopOw8vJyxMbGQiqVQhAEtLS0dL03c+ZM7N6926IBkgmCkwB3f6CjCSg/LqppqmG6B0fCiIjIkryCgKBE/ffF+026xNX9wuosFBQRkX2ITsK8vb3R3NwMAAgICMDFixe73lOr1V3vkR1JJEBM5xPHor2imo4O84FEACrr21BZ32qF4IiIyGl1TZc3LQlLM1RIZHEOIhrkRCdhCQkJKC4uBgBkZmbi3XffxdGjR5Gfn49Vq1YhMTHR0jGSKbpudOKSMA+5DHHB3gCAPE73ICIiS4oxfc0yAKR1rlu+cKUJyuZ2CwVFRGR7opOwu+++G01NTQCAxx9/HC0tLfjd736HuXPnoqKiAs8884zFgyQTxEzVv5YcBjrEjWgZ1oXlc10YERFZ0vDO4hxVJ4GmK6Kb+3nKERvoCYD7hRHR4Ca6RP3tt9/e9X1kZCT+85//dJWrT09Ph0KhsGR8ZKrAOMArBGisBMp+uvr00QgpkQpsOlaGPK4LIyIiS/IMAIJHA1U/66ckjv6V6EukRSlw4UoTckqUuD4h2PIxEhHZgNmbbHh4eOCGG27AtGnTmIA5EkG4WiVR5Lqw1M6RsIJyVdc+cERERBbRVarezOIcHAkjokGMOx0OZSbuF5Y4zAdyqQTK5g6U1rYM3ICIiMhYZq4LS+8sU59bUgetlg8KiWhwMmo6YmJiIgRBMOqCgiDg5MmTZgVFFmIYCSs7CrQ3AXJPo5rJZRKMCvVGXpkKeWVKRAV4WDFIIiJyKsMnAxCA6tNAY7W+dL0ICcO84eYiQX2rGkU1TRgR5GWdOImIrMioJOzRRx81OgkjB+IXDfhGAaoSoOQQMPJGo5umRCiQV6ZCfpkSM1PDrBcjERE5Fw9/IGQMUFmgHw0bc5eo5i5SCVLCFThSXIucEiWTMCIalIxKwhYtWmTtOMgaBEE/7SN3vX5dmKgkTL8uLI8VEomIyNKip3QmYftFJ2GAvjiHPgmrw5yxEVYIkIjIurgmbKgzsThHSudeLCfKVdBwzj0REVmSuevCDMU5uGkzEQ1SokvUb9myZcBzfvWrX5kQijiNjY145513cPr0aZw8eRJ1dXVYuHChUaN2mzdvxpIlS/p8b//+/QgKEjc/3aEZinNcygVaVYCbr1HNRgZ7wUMuRXO7BuerGxEf4m29GImIyLkMnwRAAK4UAg2XAe9hopobinOcvlyP5nY1POSi/5whIrIr0b+1rrUZc/c1Y7ZIwpRKJT7//HMkJiZi+vTp2LRpk+hrvPLKK4iNje1xbMiV2fcNB/xHALXngYsHgITbjGomlQgYE+aLI8W1yCtVMgkjIiLLcfcDhiUDl/P1UxKT54hqPszXDaG+brikakVBmQqZsQFWCpSIyDpEJ2G7d+/udayurg67d+/GN998gzfeeMMigQ0kPDwcP/30EwRBQG1trUlJWFxcHJKTk60QnYOJydInYUX7jE7CAP26sCPFtcgvU+GecZFWDJCIiJxOdFZnErZPdBIGAOlRClwquIycUiWTMCIadESvCQsPD+/1NWbMGCxevBg333wzPvroI2vE2YsgCKzYaCxT14V1zrnPL1NaNh4iIqKudWGmbdqc1rUurM5CARER2Y5FJ1FPnDgRjz/+uCUvaVULFixAbW0tvL29kZGRgcceewzx8fEmXUuj0ZjVztT2RomcBCkAVBZA01CtLw9shDGh+imIpy7Vo6WtA3KZ5eu42KT/Doz9Z/+7vzobc/vvrJ/bkBE1ERAkQM05oP4S4BMqqrlhXVhOiRI6nY4PZoloULFoElZeXg6JxPELLgYGBmLBggVIS0uDl5cXCgsLsWbNGsydOxcbN25EYmKi6GsWFBSYFZO57QeS5B0N94ZiFP/wCZRh2Ua10el08JILaGzXYdu+Yxjh52K1+Kzdf0fH/rP/zszZ+++03BXAsBR94aji/UDKPaKajwnzhUwioKqhDZdUrQhTuFslTCIiaxCdhP3000+9jrW3t+PMmTN49913MXHiRIsEZk3Z2dnIzr6aiIwfPx5Tp07FzJkz8dZbb2H16tWir5mcnAypVCq6nUajQUFBgcntjSVcvgn46T3ECGXQpaUZ3S499yfsO1eDNo8QpKVFWTwuW/XfUbH/7D/7b3r/De1pEIvJ6kzC9opOwtzlUowK9UFBuQo5JUomYUQ0qIhOwn73u9/1GvLX6fT7SE2aNAnPP/+8ZSKzsYiICIwdOxZ5eXkmtZdKpWb9EWVu+wHFTgV+eg+S4n2AiJ+TGumHfedqUFBRb9X4rN5/B8f+s//sv/P236lFZwEHVpi1LkyfhNVhRoq46YxERPYkOgnrq/CGq6srwsPDERgYaJGg7EWn0w2K6ZQmGT4Z+j1ZzgANlYB3iFHNkiP0+4rll6msGBwRETklw7qw2guAqly/rYoI6VEKfHzoInJKldaJj4jISkQnYRkZGdaIw+5KS0tx/PhxTJo0yd6hWIeHf7c9WYwvB5waoQAAFFY2cENMIiKyLDcfIDQNqDiuHw1LnSuquaE4x4lyFdrVWqsUkCIisgbRv62Kiopw5MiRPt87cuQIiouLzY3JaHv27MGOHTvw/fffAwDOnTuHHTt2YMeOHWhpaQEALF26FElJSSgvL+9qN2/ePKxcuRK7du3CwYMH8eGHH+K+++6DIAhYvHixzeK3ORNK1Q/zdUOwtyu0OuDninorBUZERE6rq1S9uG1UACA6wAMKDxe0qbU4fZn3KCIaPEQPayxbtgzR0dF9joh9//33KCoqwj/+8Q+LBDeQl156qUdyZUjAAP2m0hEREdBqtdBoNF3r1gAgPj4e27dvxwcffIC2tjb4+/tjwoQJeOSRRxATE2OT2O0iJhs4uFL8fmERCuw6VYm8UiXGRxtX3p6IiMgo0VnAj2+ZtC5MEASkRSrww5lq5JQokdI5e4OIyNGJTsIKCgpwzz19VzAaP348tm3bZnZQxvruu+8GPGfZsmVYtmxZj2NLly61VkiOLWoiIEiBuiJAWQooIo1qlhrhi12nKrkujIiILC9qQue9qVjUvckgPdKvMwmrw+8nRVslRCIiSxM9HbGhoQEeHh59vufm5gaVin+oOyw3HyAsXf998T6jm6VEKgAABeX8b0tE1J/Gxka89tpr+MMf/oAJEyYgISEBK1asMLp9TU0NnnnmGWRmZiI1NRVz587FwYMHrRixA3D1NuneZJAepQAA5LI4BxENIqKTsJCQEOTn5/f5Xn5+PoKCgswOiqzIhHVhKeH6ColFV5qgaumwRlREREOCUqnE559/jvb2dkyfPl1U2/b2dsybNw8HDx7Es88+i3feeQcBAQGYP3/+NddiDxld68LET0lM7XxQWFzTjNqmdgsGRURkPaKTsOnTp2PNmjU4dOhQj+OHDx/Ge++9h5tuusliwZEVGG50RfuAbuvk+uPnKUeUv370s4BTEomIrik8PBw//fQTPvnkEzzxxBOi2m7atAmFhYV48803MWvWLEyePBlvv/02oqOjsXz5citF7CCip+hfi8SPhPm6u2BEkCcAILe0zpJRERFZjegk7NFHH0VYWBgeeOAB3HbbbV2v8+bNQ1hYGBYtWmSNOMlSIicAEhegvky/L4uRUjr3C8srU1opMCKiwU8QBAiCYFLbXbt2ISYmBunp6V3HZDIZZs2ahfz8fFRWVloqTMcTOQGQyABVCVB3UXRzQ6n6nBKlhQMjIrIO0YU5vL298dlnn2HdunXYt28fKioq4Ofnh0WLFuH3v/89PD09rREnWYrcA4gYD5Qc0M+9DxhhVLPUCAW+yr+EfCZhRERWcfbsWYwdO7bX8YSEhK73Q0JCRF1To9GYFIuhnantRZO5QxJ2HYSyI9Be2ANd2m9ENU+N8MG/jgE5JXUWidnm/Xcw7D/73/3V2Zjbf2PbmbTzrqenJx599FE8+uijpjQne4vJ1idhRXuBsfOMapLcORLGColERNahVCrh6+vb67jhmFKpFH3NgoICs2Iyt70YYW5xCMUR1OVsQzFGi2rr0axfr3y8uBbHc3IgMXE08pds2X9HxP6z/87M2v03KQkD9FUSc3NzUVdXh6lTp/Z54yAHFZMF7Fl2dV2YETerMeG+EATgkqoVVQ2tCPZ2s0GgRETOpb+pjKZMc0xOToZUKhXdTqPRoKCgwOT2JvG5Gzi3Hv71P0ORmmrUvclgjEaL537YjeYODbzD4xAX7GVWKHbpvwNh/9l/9t/0/hvaD8SkJGzVqlV477330NraCkEQ8K9//Qu+vr74/e9/j8mTJ+Ohhx4y5bJkKxHjAZkb0FQFVJ8BghMHbOLlKsPIIC+crWpEfqkK05OYhBERWZJCoehztMuw9YspDzulUqlZf0SZ216U4RMBiQuE+nJI60sB/xijm0qlUqRE+OJwUS3yy+qRGGqZB8M27b8DYv/Zf/bfev0XXZhj/fr1WLVqFebMmYN3330Xum4V9qZNm4YffvjBkvGRNchcgchM/fdi9guLUAAA14UREVlBfHw8CgsLex03HIuLi7N1SLYl9wAixum/N2m/sM7iHNwvjIgGAZOSsHnz5uG5557DlClTerw3fPhwXLwovqoR2UHXfmF7jG6SGmmokMh1YUREljZ9+nRcuHABeXl5XcfUajW2bt2K1NRU0UU5BiVDqXoT9gszbNqcU8Iy9UTk+EQnYaWlpcjKyurzPU9PT9TX15sdFNmAIQkr3g9otUY1MYyEFZSreoyAEhHRVXv27MGOHTvw/fffAwDOnTuHHTt2YMeOHWhpaQEALF26FElJSSgvL+9qN2fOHMTFxWHx4sXYtm0bDhw4gMcffxxFRUX485//bJe+2Fy0+L0sDdI7N20urGxAY5vawoEREVmWSSXqr1y50ud75eXlCAgIMDsosoGwdEDuBbTUAZUngNCUAZuMCvWGi1RAbVM7yupaENm5gTMREV310ksv9UiuDAkYAOzevRsRERHQarXQaDQ9HmjJ5XKsW7cOy5cvx8svv4yWlhaMGjUK7733HjIyMmzeD7uIzACkcqChQr+XpZHbqABAsI8bwhXuKFe2IL9MiUkjAq0YKBGReUQnYRMnTsT777+PG2+8Ea6urgD0FZvUajU2btzYa4oiOSipCzB8EnD2W/3ceyOSMFeZFInDfFBQrkJ+mYpJGBFRH7777rsBz1m2bBmWLVvW63hgYCBeffVVa4Q1OLi464tHXfxR1F6WBmlRCpQrW5BbyiSMiByb6OmIjz32GCoqKjBjxgwsW7YMgiDgk08+wT333IOLFy/ikUcesUacZA1d0z72Gt0kpWu/MKUVAiIiIqdnWBdWZEJxjs4piTklSsvFQ0RkBaKTsOHDh2Pjxo2IjY3Fxo0bodPp8OWXX8LPzw8bNmxAWFiYNeIka+haF/YjoDFu/rwhCctjEkZERNZgeEBYvF/8ujBDhcQSJdcuE5FDM2mfsJEjR+Kf//wn2tvbUVdXB19fX7i5cd+oQWdYMuDmC7SqgEt5QMTYAZsYinOcKK+HVquDRCJ+81AiIqJrihgPSF2BxstAzTkg0PjS/KPDfOAiFXClsY1rl4nIoYkeCetOLpcjJCSECdhgJZF2m5JoXKn6uGAvuLlI0NimxoUrjVYMjoiInJKLm75AByB6vzA3FymSQn0AALncL4yIHJhRI2FbtmwRddFf/epXJoRCdhGdBZz+Sn+jy3piwNNlUgnGhPni6MU65JWqMDLY2wZBEhGRU4nO0t+XivYB4/4gqml6lB/yylTIKVFiZiqXSBCRYzIqCXvmmWeMvqAgCEzCBhPDurCSQ4C6HZDJB2ySEqHA0Yt1yC9T4u6xEVYOkIiInE73TZt1OkAwfup7epQC6w4AOaXctJmIHJdRSdju3butHQfZS/AowCMQaL4ClB8Dhk8csElqZGeFxHKVtaMjIiJnFDEOkLkBTVXAlUIgKMHopmmdFRJ/Lq9Hm1oDV5nUSkESEZnOqCQsPDzc2nGQvQgCEJMF/PyFvlS9EUmYoTjHyYp6dGi0cJGatbSQiIioJ5mrfl1Y0V79tEQRSViUvwf8PeWobWrHyYr6roqJRESOxOS/nhsbG7F//3589dVX+PHHH9HYyCINg1ZXOWDjFkBHB3jAx02GNrUWZy43WDEwIiJyWtGd0+VF7hcmCELXfmEszkFEjsqkEvX//Oc/sXLlSrS2tkKn00EQBLi5ueGxxx7DAw88YOkYydpipupfSw8DHS2Ai3u/pwuCgJQIBfafu4L8MhXGhPvaIEgiInIqZq4L2326CjklSjww2UrxERGZQfRI2JYtW7B8+XKMHz8er7/+OtavX4/XX38dGRkZeO2110RXUiQHEDAC8A4FNO1A6RGjmhg2bc7nps1ERGQN4WMBmbt+zXL1aVFN0yI7N21mcQ4iclCik7B169bhjjvuwJo1a3Dbbbdh7NixuO222/Duu+9ixowZ+PDDD60RJ1mTIFytkli016gmhiQsr4zFOYiIyApkciAqU/998X5RTVMifSEIQGltC640tlkhOCIi84hOwi5cuIBZs2b1+d6sWbNw/vx5s4MiOzAkYUauCzMU5yisbEBLu8ZKQRERkVMzrFk28gGhgY+bC+KCvQAAuSVKCwdFRGQ+0UmYm5sbVKq+Rz9UKhXc3NzMDorswHCjKz8GtA1cbCPU1w2BXq7QaHU4eYmjYUREZAVdhaP2A1qtqKbpnJJIRA5MdBI2duxYrFy5EpWVlT2OV1dXY9WqVRg3bpzFgiMb8hsOKIYDWrV+4+YBCIKAVMOUxFImYUREZAXh1wEuHkBLLVB9SlTTtCgFACCHI2FE5IBEV0d84okncO+99+Lmm2/GxIkTERQUhOrqahw6dAgymQwrV660RpxkCzFZQM5F/bSPuJsGPD0lQl99isU5iIjIKqQuQNQE4Px3+lL1IaONbpremYTllSqh0eoglRhfXZGIyNpEj4TFxcXhX//6F2688UYUFBRg8+bNKCgowI033ohNmzZh5MiR1oiTbMFQqt7Y4hyRnRUSyzkSRkREViJyL0uDuGBveMqlaGrX4FwV9zIlIsdi0j5hMTExeP311y0diyiNjY145513cPr0aZw8eRJ1dXVYuHAhFi1aZFT7mpoaLF++HN9//z1aW1uRmJiIxx9/HBMnTrRy5A7McKO7nA+01AHufv2entpZnONCdRPqWzvg4+Zi5QCJiMjpGApHXfxRvy5MYtzzY6lEQGqkAgfO1yCnpA4Jw7ytGCQRkTiiR8IchVKpxOeff4729nZMnz5dVNv29nbMmzcPBw8exLPPPot33nkHAQEBmD9/Po4cMW6frCHJJxQIiAN0WuDigQFP9/eUI8JPv7HzCZaqJyIiawhNBeRe+oeDVT+LaprOdWFE5KBMGgk7efIktm3bhoqKCrS19dx/QxAErF692iLB9Sc8PBw//fQTBEFAbW0tNm3aZHTbTZs2obCwEJ9++inS09MBAJmZmZg9ezaWL18u6lpDTkwWUHNWP/c+ccaAp6dGKFBW14K8MhUmjQy0QYBERORUpC5A1ETg3E79vWlYstFNuWkzETkq0SNhW7Zswd13342PPvoIx48fR2FhYa8vWxAEAYJg2iLbXbt2ISYmpisBAwCZTIZZs2YhPz+/V+VHpyJy0+bkzgqJLM5BRERWEz1F/ypy0+a0SAUA4GxVIxpaOywcFBGR6USPhK1evRpTp07Fq6++Cl9fX2vEZHVnz57F2LFjex1PSEjoej8kJETUNTUa0zYsNrQztb3FRU6CFACqfoamvhLw7H90a0yYfo59XpnSpD44XP9tjP1n/7u/Ohtz+++sn5tTiulcs3xxP6DVABKpUc2CvF0R6e+O0toW5JepMJkzNojIQYhOwqqqqvDCCy8M2gQM0K8n6yt+wzGlUin6mgUFBWbFZG57SxrlHQuPhgso3vMJlGHX93uurkMLAUCFshV7Dh2Dr5txN8ZfcqT+2wP7z/47M2fvPxlhWCog9wZaVUDlCf06MSOlR/qhtLYFOSV1TMKIyGGITsJGjRo1JKbr9TeV0ZRpjsnJyZBKxScgGo0GBQUFJre3BqFyOnBkDWJQBl1a2oDnx/64D+erm6BVRCItMVjUz3LE/tsS+8/+s/+m99/QnpyAVAYMnwSc/Y9+XZiIJCwtUoGteRUszkFEDkV0EvbUU09hyZIlGDVqFBITE60Rk9UpFIo+R7tUKn2FP1NG+aRSqVl/RJnb3qJirweOrIGkeB9gREypEQqcr25CQUUDpo8ONelHOlT/7YD9Z//Zf+ftPxkpeoo+CSveD0xaaHQzQ4XE3FIldDqdyevJiYgsSXQSlpaWhptvvhl33nkngoKCeiUsgiBg69atFgvQGuLj4/ssIGI4FhcXZ+uQHMvwyYAg0VdJrL+kL13fj5QIX2zOKUcBN20mIiJr6VoXdkDUurCkMB/IpRLUNLWjtLYFUQEeVgySiMg4oqsjrlmzBu+++y78/PwQFhYGhULR42swrBWbPn06Lly4gLy8vK5jarUaW7duRWpqquiiHEOOuwIYlqL/vnjfgKendFafyi/TP2UkIiKyuGEpgKsv0KYCLuUNfH4nV5kUo8N9ALBUPRE5DtEjYR999BHuvvtu/OUvf7H79JE9e/agpaUFTU1NAIBz585hx44dAICpU6fC3d0dS5cuxZYtW7Bz506Eh4cDAObMmYMNGzZg8eLFePLJJxEQEIANGzagqKgIa9eutVt/HEpMNnApV1+qPuXX/Z6aFOoDmUTAlcZ2VKhaEa5wt02MRETkPCRS/bqwwu36KYnh1xndNC1SgZwSJXJKlJidFm7FIImIjCM6CWtqasIdd9xh9wQMAF566SWUl5d3/XvHjh1dSdju3bsREREBrVYLjUbTY4RGLpdj3bp1WL58OV5++WW0tLRg1KhReO+995CRkWHzfjikmGzgwNtG7Rfm5iJFwjBv/FxRj/xSJZMwIiKyjpisziRsHzD5MaObpUf5Ye2PxcgpVVovNiIiEUQnYddddx3Onz+PiRMnWiMeUb777rsBz1m2bBmWLVvW63hgYCBeffVVa4Q1NERNACQyQHkRqLsI+A3v9/SUCF/8XFGPvDIVbks2rTgHERFRvwybNl88CGjU+qqJRkjvnDZ/skKF1g4N3Fzs/yCZiJyb6DVhzz77LD799FPs2rUL7e3t1oiJHIGrNxDWOdXDmHVhEQoA+nVhREREVhGSDLgpgPYGUevCIvzcEejlig6NDj9X1FsvPiIiI4keCbv77ruhVquxaNEiCIIANze3Hu8LgoBjx45ZLECyo5hsoOyIfkpi+m/7PTUlQl+QpaBMBa1WB4mEJYCJiMjCJBJ9Bd8zX+sfEEaMNaqZIAhIi1Rg16lK5JTUYexwPysHSkTUP9FJ2C233MI9NpxFTBaw72/6jTF1OqCf/+7xId5wlUnQ0KZGUU0TRgR52TBQIiLH0NTUhDfffBPbt2+HSqVCbGwsHnroIcyYMaPfdps3b8aSJUv6fG///v0ICgqyRriDU0zW1SRsyuNGN0uP0idhuVwXRkQOQFQSptFo8Mc//hH+/v6DohQ9mSkyE5DKgYYKoOY8EDjymqe6SCUYHeaD4yVK5JcpmYQRkVNatGgRCgoK8OSTTyI6OhpfffUVnnjiCWi1WsycOXPA9q+88gpiY2N7HFMoFFaKdpAyrAsrOQRoOgCpi1HNDJs255QorRMXEZEIotaE6XQ6zJgxA7m5uVYKhxyKizsQ0VktsnjgKomGdWF5pdy0mYicz549e/Djjz/ihRdewL333osJEybg5ZdfxuTJk/Haa69Bo9EMeI24uDikpaX1+HJxMS7JcBrBowF3P6C9EajINbpZSoQCEgEoV7agqr7VevERERlBVBImk8kQGBjIDXmdSUy2/tWIUvWpkZ3rwsqZhBGR89m5cyc8PDxw66239jh+1113oaqqCnl5xheSoH4Y1oUBRhWOMvBylSE+xBsAWKqeiOxOdHXEGTNmYMuWLVYIhRxSTJb+1bAurB+GkbCfK1RQa7RWDoyIyLGcPXsWI0aMgEzWc6Z/QkJC1/sDWbBgAUaNGoWMjAwsXLgQhYWFVol10DM8IBSRhAGckkhEjkN0YY7ExER88803uP/++3HzzTcjKCioV6GOm2++2WIBkp2FjwNk7kDzFaDqFBCSdM1TYwI84e0qQ0ObGoWVjUgK87FhoERE9qVUKhEREdHruGENtVKpvGbbwMBALFiwAGlpafDy8kJhYSHWrFmDuXPnYuPGjUhMTDQpJmOmQPbXztT2Vhc5CVIAupJD0La3Gr0uLDXcFxtRipySun775vD9tzL2n/3v/upszO2/se1EJ2FPP/00AKCyshJHjhzp9b4gCDh16pTYy5KjksmB4ROB89/pnzj2k4RJJAKSI3xx4HwN8suUTMKIyOn0Vz24v/eys7ORnZ3d9e/x48dj6tSpmDlzJt566y2sXr3apHgKCgpMamep9laj0yJF7guXdhXO7vkMTf5jjGrm1qwGAOSV1OHY8RxIB9hOxWH7byPsP/vvzKzdf9FJ2EcffWSNOMiRRWfpk7CivUDmH/s91ZCE5ZWpcG+GjeIjInIACoWiz9EulUq/TlZsVeGIiAiMHTvWrLVkycnJkEqlottpNBoUFBSY3N4WJOeygdPbEO9SCV1a/3tZGqRodXjuh91obFPDI3QERoX2/bBwMPTfmth/9p/9N73/hvYDEZ2EZWTwL2unEzNV/1q8H9BqAMm1/weZ2rkuLL9Maf24iIgcSHx8PL766iuo1eoe68IM67ri4uJEX1On00EiEb18u4tUKjXrjyhz21tV7FTg9DZISn4EpE8Z1UQqBdIiFdh/7gryyusxJqL/TZsduv82wP6z/+y/9fpv8m/2hoYG7Nu3D1u3bu16ykdDVGgqIPcGWpXA5f4z+5QI/ZPeM5cb0NrhnHOJicg5TZ8+Hc3Nzfj22297HP/iiy8QHByM1NRUUdcrLS3F8ePHRbdzGtGdhaNKDgPqNqObGYpz5LI4BxHZkeiRMABYtWoV3nvvPbS2tkIQBPzrX/+Cr68vfv/732Py5Ml46KGHLB0n2ZNUBkRPBgp36NeFhaVd89RwhTsCPOWoaWrHyUv1uC6q/6eMRERDxdSpUzF58mS8+OKLaGxsRFRUFL7++mvs27cPy5cv73qiunTpUmzZsgU7d+5EeHg4AGDevHkYN24cEhMT4enpicLCQrz//vsQBAGLFy+2Z7ccV1AC4BkENFUD5cf165eN0FUhkWXqiciORI+ErV+/HqtWrcKcOXPw7rvv9tgzbNq0afjhhx8sGR85CsMTxwH2CxMEoWs0LJ83OCJyMitWrMCsWbPw9ttvY/78+cjLy8Prr7+OWbNmdZ2j1Wqh0Wh63D/j4+Oxfft2PPXUU5g/fz7ef/99TJgwAf/+978RHx9vj644PkEAoqfovxdRqj4tUv9w8FxVI1QtHdaIjIhoQKJHwtavX4958+bhqaee6lWCcfjw4bh48aLFgiMHYtiT5eIBQNPRbznglAgFvj9TjXxu2kxETsbT0xPPPfccnnvuuWues2zZMixbtqzHsaVLl1o7tKEpegrw8xf6JGyqcevC/D3lGB7ggYs1zcgrVSI7PsjKQRIR9SZ6JKy0tBRZWVl9vufp6Yn6+nqzgyIHFDIGcPcD2huBitx+T02N7BwJK2MSRkREVhTd+YCw9Ii4dWGRCgBALmdsEJGdiE7CvL29ceXKlT7fKy8vR0BAgNlBkQOSSK5O+yja0++pKZ0VEs9XN6KxTW3lwIiIyGkFxgFeIYC6FSg7anSz9M71yjklddaKjIioX6KTsIkTJ+L9999Hc3Nz1zFBEKBWq7Fx40ZMmTLFogGSAzE8cRxg7n2glyvCFe7Q6YACjoYREZG1mLgurHtxju5r84iIbEV0EvbYY4+hoqICM2bMwLJlyyAIAj755BPcc889uHjxIh555BFrxEmOwLAurOTQgNM+ksMNUxKVVg6KiIicWlcStt/oJonDfCCXSaBs7kBxTfPADYiILEx0EjZ8+HBs3LgRsbGx2LhxI3Q6Hb788kv4+flhw4YNCAsLs0ac5AiCEgDPYKOmfaRwXRgREdlC93VhHa1GNZHLJF0PC3NLOSWRiGzPpH3CRo4ciX/+859ob29HXV0dfH194ebmZunYyNEIAhCTBZz4t75UffTka56a2rkuLI8jYUREZE0BIwCvYUDjZaDsJ/19ygjpkQocu1iHnBIl7kyPsHKQREQ9iR4JW7JkCUpLSwEAcrkcISEhXQlYeXk5lixZYtkIybHEGLcubEznE8ayuhbUNBpfsYqIiEgUwwNCQOS6MENxDqUVgiIi6p/oJOyLL75AXV3fQ/d1dXXYsmWLuTGRIzNs2lx6BGi/9jx6X3cXxAZ6AgD3CyMiIuvqqt4rYtPmzuIcpy7Vo7VD0//JREQWJjoJ649KpYJcLrfkJcnR+McCPhGAtgMoPdzvqSkRnevCSpmEERGRFRkeEJYf7fcBYXdhvm4I9naFWqvDCT4sJCIbM2pN2E8//YTDh6/+wb1p0ybs3bu3xzltbW3YvXs3RowYYdkIybEYpn3kbdSvCxsx7ZqnpkQosCW3AgXlStvFR0REzsc/FvAJB+rLgbIjQOz1AzYRBAHpUQr85+dK5JQoMS7a3/pxEhF1MioJO3z4MFauXAlA/0tr06ZNfZ4XFhaG//mf/7FcdOSYYrL1SdgAc+9TOysk5pWpoNPpIAiCLaIjIiJnY9gvLP8zfal6I5IwQL8u7D8/VyKHFRKJyMaMSsLmz5+P3/zmN9DpdJg0aRL++c9/Iikpqcc5crkcnp6eVgmSHEzXtI/jQGs94ObT52lJob6QSgRUN7Thcn0rQn3dbRgkERE5legsfRImZl1YpAIAi3MQke0ZlYS5ubl1VUDcvXs3goKCuPbLmSkiAb8YoK4IKDkIxN/S52nuciniQ7xx6lI98kpVTMKIiMh6DMU5yo8B7U2AfOAHwykRvpAIwCVVKy6rWjHMl9vtEJFtiC7MER4ezgSMrpYDLtrb72kp4YZNm5VWDoiIiJyaXzTgG2lU4SgDD7kMicP0szm4aTMR2ZLoJKyjowPvvPMObr/9dqSlpWHUqFE9vn45TdGampqa8Ne//hVTpkxBcnIyZs+eja+//nrAdps3b0ZCQkKfX9XV1TaIfAiImap/HSgJizQkYaw8RUREVmRYFwbo14UZKb2zVD2nJBKRLRk1HbG7119/HevWrUN2djamT59u11GxRYsWoaCgAE8++SSio6Px1Vdf4YknnoBWq8XMmTMHbP/KK68gNja2xzGFQmGlaIcYw43ucgHQXAt49F1VKjVCAUA/EsbiHEREZFXRhuq94taFrT9cwiSMiGxKdBK2fft2PProo1i4cKE14jHanj178OOPP+Lvf/877rjjDgDAhAkTUFFRgddeew233347pFJpv9eIi4tDcnKyLcIderyHAYEJwJUzwMUfgVF9J70Jw7whl0lQ36pGcU0zYgJZvIWIiKzE8ICw4jjQ1gi4eg3YJD3KDwCQX66EWqOFTGrRLVSJiPok+jeNSqXCuHHjrBGLKDt37oSHhwduvfXWHsfvuusuVFVVIS8vz06ROZGudWHXfuLoIpUgKVQ/357rwoiIyKr8hgOKKECrBkoPGdUkNtATPm4ytHZocfpyg5UDJCLSE52EjR8/HqdPn7ZGLKKcPXsWI0aMgEzWczAvISGh6/2BLFiwAKNGjUJGRgYWLlyIwsJCq8Q6ZMVk618HWBeWGsF1YUREZCOGbVSMXBcmkQhI6xwNyylVWikoIqKeRE9HfO655/DII48gLCwM119/vd3WhCmVSkRERPQ67uvr2/X+tQQGBmLBggVIS0uDl5cXCgsLsWbNGsydOxcbN25EYmKi6Hg0Go3oNt3bmdreriInQQoA1aegUV0CvIL7PG1MuH4kLK9U2aufg7r/FsD+s//dX52Nuf131s+NBhCdBeSuF7UuLD1Sgb2F1cgpqcPvJgy3YnBERHqik7DZs2dDrVZj8eLFEASha/8wA0EQcOzYMYsF2J/+ijz09152djays7O7/j1+/HhMnToVM2fOxFtvvYXVq1eLjqWgoEB0G0u2t5dRPiPgUX8eF/esR134tD7PkTeoAQAFZUocO54DqaT3f5vB2n9LYf/Zf2fm7P0nC+taF5YDtDUArt4DNknrrJCYy5EwIrIR0UnYLbfc4hAV7hQKRZ+jXSqVfsqbYUTMWBERERg7dqzJa8mSk5MHLATSF41Gg4KCApPb25tQdTNweDWiUYrhaWl9npOi1WHp97vQ1K6BV9hIJAy7ekMc7P03F/vP/rP/pvff0J6oB0Wkfs+wumKg5BAQd9OATdI6K/leqG6Csrkd3q7O9/9HIrIt0UnYsmXLrBGHaPHx8fjqq6+gVqt7rAszrOuKi4sTfU2dTgeJxLSqSFKp1Kw/osxtbzexU4HDqyEp3gdcI36pFBgT7ovDRbU4UdGApHBFH+cM0v5bCPvP/rP/ztt/soLoLH0SVrTXqCTMz1OO2EBPXLjShNxSJbJGBlg/RiJyaoO2Duv06dPR3NyMb7/9tsfxL774AsHBwUhNTRV1vdLSUhw/flx0O6c3fBIgSIDa84Cq/JqnpUYqAAB5rJBIRETWJrI4B3B1SiL3CyMiWzBqJOznn38WddHRo0ebFIwYU6dOxeTJk/Hiiy+isbERUVFR+Prrr7Fv3z4sX76866nq0qVLsWXLFuzcuRPh4eEAgHnz5mHcuHFITEyEp6cnCgsL8f7770MQBCxevNjqsQ8pbr5AaJp+T5bifUDqvX2elsIKiUREZCuGdWGXcoFWlf5eNYD0SAU2Hy9nhUQisgmjkrC7777bqHVgOp0OgiDg1KlTZgdmjBUrVuCNN97A22+/DaVSidjYWLz++uuYMWNG1zlarRYajQY6na7rWHx8PLZv344PPvgAbW1t8Pf3x4QJE/DII48gJibGJrEPKTHZ+iSs6NpJWGrnfPvTl+vRptbAVcapR0REZCW+4YB/LFB7Qb8uLP6WAZsYNm3OK1VCq9UNcDYRkXmMSsJeeeUVa8dhEk9PTzz33HN47rnnrnnOsmXLeq1jW7p0qbVDcy4xWcCPbwJFewCdDugjYY/wc4efhwvqmjtw6lID0jqnJxIREVlFdJY+CSvaa1QSljDMG24uEqhaOlBc02SDAInImRmVhN15553WjoMGs6iJgEQGqEr1C6H9e48mCoKAlAgF9hRWI79MySSMiIisKzoLOP6h0evCXKQSpIQrcKS4FjmlKowYtKvmiWgw4K8YMp/cEwgfp/+++NqbY6ZyXRgREdmKYV3Y5XygRWlUE+4XRkS2wiSMLCOmc/Pror3XPCWlc11YPiskEhGRtfmEAgEjAZ0WKDloVJN0QyXfUj4sJCLrYhJGlhHTWQ64aJ9+XVgfDBUSz1U1oqlNbavIiIjIWUV3uzcZwVCc43RlA1rVWmtFRUTEJIwsJCIDkLoCjZeBK2f7PCXYxw3DfNyg1QEnyvmUkYiIrMwwJbGfqfLdDfN1Q6ivGzRaHc7X8WEhEVkPkzCyDBc3ICpT/31xf1MSuS6MiIhsxDASdrkAaK41qomhcNTXZ5uQU8Jy9URkHUzCyHKiB14XlmqYb891YUQ0BDU1NeGvf/0rpkyZguTkZMyePRtff/21UW1ramrwzDPPIDMzE6mpqZg7dy4OHjRuLRNdg3cIEBgPQGf0urCJIwIAAIfL2zDn3UPI+L/dePpf+dh5shIt7RorBktEzsSoEvVERonJBr6HvhywVgtIeuf4HAkjoqFs0aJFKCgowJNPPono6Gh89dVXeOKJJ6DVajFz5sxrtmtvb8e8efNQX1+PZ599FgEBAVi/fj3mz5+PtWvXIiMjw4a9GGKis4Arhfp1YYkzBjz9N5nD4esmw+cHziCvSo0rjW347GgpPjtaCleZBFlxgZg+KgQ3jApGsLebDTpAREMRkzCynPDrABdPoLkGqDoJDBvT65SUcAUAoKS2GXVN7fBxk9o4SCIi69izZw9+/PFH/P3vf8cdd9wBAJgwYQIqKirw2muv4fbbb4dU2vfvvE2bNqGwsBCffvop0tPTAQCZmZmYPXs2li9fjk2bNtmsH0NOTBZw9J9GrwuTSgTckRKKCG0lksak4HipCjtPVmLXqUqU1bVg16kq7DpVBUA/dfGmpBBMHxWC+BAvCIJgzZ4Q0RDC6YhkOVIXYPhE/ffXuNn5erggOsADAJDP4hxENITs3LkTHh4euPXWW3scv+uuu1BVVYW8vLxrtt21axdiYmK6EjAAkMlkmDVrFvLz81FZWWm1uIe84Z3FOSpPGL0uzEAuk2DyyEC8OGs09j01DTsez8Kfb47vmlqfW6rE8v+cwS1v7kX28u/x4taf8eO5K+jQsLIiEfWPI2FkWdFZwLld+nVhEx7u85SUCAWKa5pRUKbElBH+Ng6QiMg6zp49ixEjRkAm63lrTUhI6Hr/uuuuu2bbsWPH9jrevW1ISIjomDQa09YwGdqZ2t6huPtDEpQIofo0NBf2AqOuPS3U4Fr9jwvyRNzUWDw8NRZV9a347kw1dp+qwo/na1Ba24J1B4qx7kAxvN1kmBofiBsTg3F9fBB83F2s0jVrGVL//U3A/rP/3V9NbT8QJmFkWYZNm4t/BLQaQNJ76k1KhC+25lUgj+vCiGgIUSqViIiI6HXc19e36/3+2hrOE9u2PwUFBSa1s1R7RxHpmYDg6tOoObYFpW2RRrcbqP+JLkBiihQPJgUiv7IdP1W04dilNqha1fgq/zK+yr8MqQAkBckxLswV40JdMcxr8PzpNVT++5uK/R8a/W/X6NDUrkVjh/61oV2LpnYdGju0+uPtOjR1dL62a9Gi1uH2OA8A1u3/4PlNQINDaCrg6gu0qYBLefp1Yr9gmMaRzwqJRDTE9LcmaKD1Qua0vZbk5ORrrkPrj0ajQUFBgcntHY7rnUDxlwhqPI2AtLQBTzel/xMAPARAq9Uhr0yF3af1a8fOVjWioKodBVXtWJvbgPgQL9yYGIzpo4KREu4LicTx1pENuf/+IrH/jtf/NrUW9S0dULV0QNnS0fW9qqUD9S1qqFoN3xveV3e932bCxuu5l9vxp1mZZv3+HAiTMLIsiRSIngyc+Ua/LqyPJGx0mA8kAlBZ34bK+lY7BElEZHkKhaLPESuVSj/q39dIlyXa9kcqlZr1R5S57R1G5ywNofoUpK11gGegUc1M6b9UCoyLCcC4mAA8fdsoXKxp0hfzOFmJI8W1KKxsRGFlI1bvuYBAL1dMHxWMG0eFYMrIQLjLHeuzHjL//U3E/lu2/+1qbWdi1N6VIKlaOqBq7oCqW9LU6/2WDrR2mLfOUiIAPu4u8DXiy9tNClldidX/+zMJI8uLztInYUV7gcmLe73tIZchLtgbZyobkF+mQpAdQiQisrT4+Hh89dVXUKvVPdaFFRYWAgDi4uL6bWs4rztj2pIRPAOA4NFA1c/6bVRG/8pmP3p4gCcenBKDB6fEQNXcgR8Kq7DzZCX2nKnGlcY2fPpTKT79ieXvaXC4mkhdHXn6ZcKkbO77vZYO89aYCQLg43Y1WVJ4uBiXWHm4wEsuM3rUWaPRIDe31KxYjcEkjCzPsC7s4kFA06GvmvgLKRG++iSsXIUbmYUR0RAwffp0fP755/j2229x++23dx3/4osvEBwcjNTU1H7bvvTSS8jLy+s6T61WY+vWrUhNTTWpKAf9QvQUuyRh3fl6uGB2Wjhmp4WjXa3FkaJa7DpViZ0nK1GuZPl7sh2dTof6FjVqmtpQ19yOmsZ21Da1o7a5HTUNbbhQroL0xHHUt6p7JFPNZm5YLgiAt6sMvh6diZS7HL7u106mFJ3n+bi7wNvV+ERqMGASRpYXnAS4+wMttUD5cSAqs9cpKZEKbDpWhoIyFW4MGlxVo4iI+jJ16lRMnjwZL774IhobGxEVFYWvv/4a+/btw/Lly7umtSxduhRbtmzBzp07ER4eDgCYM2cONmzYgMWLF+PJJ59EQEAANmzYgKKiIqxdu9ae3Ro6YrKAI+8avV+YtcllEkyJC8SUuEC8MDMJpy83YFfnfmR5ZSrkliq7SuBH+rtj+qgQ3DQqBONj/OEi5Q5D1FOHRou6pnbUNLV3vdZe46umqR3K5naotboBrtpyzXe83WQ9kiTD1y+TKUOSdXWq39BKpMzBJIwsTyLR3+xOfqmfkthHEpYaoV/fUFBeD10ay9QT0dCwYsUKvPHGG3j77behVCoRGxuL119/HTNmzOg6R6vVQqPRQKe7+geQXC7HunXrsHz5crz88stoaWnBqFGj8N577yEjI8MeXRl6hk8GIADVp4HGasDLcaZhCIKAUaE+GBXqg0U3xqGyvhW7T1Vh16lK7D93BaW1LVj7YzHW/qgvfz8tIRg3jgrG9QnB8B1k5e9pYDqdDs3tml6JU21TG2qbOjpfe77X0Ko26Wd5ucrg5+kCf09XBHjK4echh5+HDC3KK0iMjYLC07VXouXt5gIpEymzMQkj64jJ1idhxXuBqf+v19uJw3wgl0qgbOlAZZNz7kNBREOPp6cnnnvuOTz33HPXPGfZsmVYtmxZr+OBgYF49dVXrRmec/PwB0LGAJUF+tGwMXfZO6JrCvFxw32ZUbgvMwrN7WrsO3sFu05W4rvTVahpasfWvApszauATCIgI8ZfP0qWFIJIfw97h0590Gp1ULZ09EiiBhqxMqWin0SAPonylMPfU65Pqjpf/fv48vOQw82ld+EJ/ZqoXKSlRTl1YRJrYxJG1hHduS6s5DDQ0Qq49FxgLJdJMCrUG3llKpyr7bBDgERE5HSip3QmYfsdOgnrzkMuwy2jh+GW0cOg0eqQW6rErlOV2HWyEmerGnHgfA0OnK/BX746iYQQb0xPCsb0USFIjVBw2peVtKn1o1Q1je2oa27v8X1NUztqG/VrqwwJlbK5HQPO/OuDq0zSlUj1Tqpc4d85gmVIqnzdOUI1mDAJI+sIjAO8hgGNl4Gyn/TTE38hJUKBvDIVztcxCSMiIhuIyQIOr3aYdWFiSSUCxg73w9jhfnj61kQUX2nSJ2SnKvFTcR3OVDbgTGUDVn1/vqv8/fRRIZjsgOXvHYFWq0ND29XCE/Wt+op+dU3t+PlcI7ZfOo26ZrV+BKu5cySrsR1NJhan8HGTIcDLFX4e3ab/9TNS5SGXsiDLEMYkjKxDEPQ3u4JN+nVhfSZh+nVhh8rb8K9jZbhh1DAEebvaOlIiInIWwycBEIArhUDDZcB7mL0jMkt0oCfmZ8ViflYslM3t+OFMNXae6l3+3s1Fgikjg3BTUjBuSAwZUvfa1g5NV/KkatEnVPWtPUukGzbu7Treqt+bqqFNDV2/I1SN13xHJhG6Eig/Dzn8va5+H+DVmUh1HjdM/WNBFeqOSRhZT0y2Pgm7xhPHCbEBkAhAVZMGT28+AeAEUiN8cUNiCG5IDNZv6sxhdSIishR3P2BYMnA5Xz8lMXmOvSOyGIWHHL9KD8ev0vXl7w8X1XRWW6zqLH+vHzEThAKkRSq61pHFBdu3/H2v0ageSdQvkqeuESt1179NWTv1S64ySY/Kft6uMqCtASMihyHAy7XP6X8+bjKOUpFZmISR9UR3jn6VHQXamwC5Z4+3I/098NWiyVi7KxenlFKcqKhHXpkKeWUqvLGrEMHerpiWEIwbRgVjyshAeLryf65ERGSmmOzOJGzfkErCupPLJMiKC0JWXBBenKXDqUsNXUlYfpkKOSVK5JRYrvy9KaNRhvcGHo0aWPe9p7pv5uvj5tJ5TNaVZPm4Xz3Hx10GHzeXXsUprhamSGRhCrIa/lVL1uMXDfhGAaoSoOQQMPLGXqckhHjj3tHeSEtLw5WmDvxwpgq7T1Vh/7krqGpow2dHS/HZ0VLIpRJkxvrjhsRg3JAYjOEBnr1/HhER0UCipwAHV+pHwpyAIAhICvNBUpgPHrsxDpdVrdh9Wl/Y48fzNX2Wv58aH4jLZa0oVJehsU1jl9Go7omT7y8Tpx7/Hnqb+JJzYBJG1mNYF5a7Xr8urI8krLsQHzfMHR+FueOj0KbW4PCFWnx3ugrfna5CSW0z9p29gn1nr+ClbScxIsizMyELwbhoP86zJiIi40RNBAQJUHMOqL8E+ITaOyKbGubrht9kDsdvMoejqU1f/n73qd7l7/WURl/X0qNRRFah0wHNtUBDBVDf7avr35cgab6CYZGzgbQ0q4bCJIysKyZbn4SJrETlKpMiOz4I2fFBeGFmEs5XN+G70/qbxE/FdThf3YTz1UV4b18RvN1kyI4Pwg0Jwbg+IQgBXkNnwTEREVmYuwIYlgJcytWPhqXcY++I7MbTVYZbxwzDrWMM5e/rsPNkFQ6ev4LWlmaEBiig8OBoFA0SGjXQWPmLpMqQZF0C6sv1D140bf1eRgAgb75s9XCZhJF1GdaFVeQArSrAzVf0JQRBwMhgL4wM9sJD2SOgaunAvrPV+O5UFX4orEZtUzu+zr+Er/MvQRCAtEgFbkwMxrTEYCSF+nDhLBER9RST1ZmE7XXqJKw7ffl7f4wd7t9tTVQa10SRY2hv7kykfjly1S3JaqwEdEZOjfUIBHzCrn55G74PhcZzGErKmuFv3R4xCSMr8w0H/EcAteeBiweAhNvMv6S7C+5ICcMdKWHQaHXIK1Piu1P6aYsnL9V3LTj+27eFCPV1w/UJwbgxMRiTRgbAQ87/yRMROb3oLODACqdZF0bksHQ6oKWuZ4L1i+mBqC8HWpXGXU8iA7xD9V89kqxQwCdcP/3YOxSQ9TNrSqMBynMt0bt+8S9Ssr6YLH0SVrTPIklYd1KJgOui/HBdlB/+fEsCLqla8P3panx3uhL7z13BJVUrNh4pwcYjJZDLJJg0IgA3JAZjWkIwIv09LBoLERENEoZ1YbUXAFW5/oEhEVmWVgM0Vg08PVDdYtz1XDz6GLn6RZLlGQRIBkedgEGdhDU1NeHNN9/E9u3boVKpEBsbi4ceeggzZswYsG1NTQ2WL1+O77//Hq2trUhMTMTjjz+OiRMn2iByJxOTDRxbpy/OYWWhvu64LzMK92VGobVDg4MXavD9aX3FxXJlC344U40fzlQD+BnxIV5de5JdF6WAjMU9iIicg5sPEJoGVBzXj4alzrV3RESDS0drZ2J16dpJVsNlQKcx7nru/ldHqn4xPRA+4foky81XXwFmiBjUSdiiRYtQUFCAJ598EtHR0fjqq6/wxBNPQKvVYubMmdds197ejnnz5qG+vh7PPvssAgICsH79esyfPx9r165FRkaGDXvhBAzrwioL9BVpPKw9y1bPzUWKaQn6Ua+XZulwtqoRu09V4fvTVTh6sRaFlY0orGzEP/ach6+7C6bGB+HGUcGYGh8EhYfcJjESEZGdxGR1JmF7mYQRdddWD7eGIuB8TR+FLjpHsFpqjbuWILnG9MBuSZZ3KODibt0+OaBBm4Tt2bMHP/74I/7+97/jjjvuAABMmDABFRUVeO2113D77bdfczHppk2bUFhYiE8//RTp6ekAgMzMTMyePRvLly/Hpk2bbNYPp+AVDASNAqpP6askJs22eQiCICA+xBvxId54+PoRUDa3Y09hNb47XYU9hdVQNnd0leWVCMB1UX64YZR+T7KEEG8W9yAiGmqis4Af3+K6MHJe6nag5ixQeRKo+ln/WvkzpPVlGG1Me5nbtUetDKNansGAdNCmG1Y1aD+VnTt3wsPDA7feemuP43fddReefPJJ5OXl4brrruuz7a5duxATE9OVgAGATCbDrFmz8Prrr6OyshIhISFWjd/pxGTrk7Ai+yRhv6TwkGN2Wjhmp4VDrdEip1Sp35PsVBXOVDbg6MU6HL1Yh9d2nEG4wh3TEoNwY2IIJo4I4F4mRN1otTo0tqvR0KpGfUvH1de2jp7HWtWob+1+TP99tDewIVVn726QM4qaAAhSoK4YUJYCikh7R0RkHTqdfvSq8mf9V9VJfcJ1pRDQdvTZRO3iDakiAoLvL5KqriQrDHD3G1LTA21t0CZhZ8+exYgRIyCT9exCQkJC1/vXSsLOnj2LsWPH9jrevS2TMAuLyQKOvGuTdWFiyaQSjI/2x/hofzx9ayLK6prxfecm0QfO16Bc2YJPDpXgk0MlcHORYPKIQExL1I+ShSmcb/ichg6dToc2tRb1LR2ob1WjobXba4u6K1HqmTx1+3drBxrb1NCZkUNpNRJotLrBezOiwcvVGwi/Dij7ST9LI+0+e0dEZL5WFVB1qnfC1abq+3y5NxCSBAQnASGjgeAkaAITkXemmFsUWNmgve8plUpERET0Ou7r69v1fn9tDeeJbXstGo2RCw+v0c7U9oNG5ERIIEC4cgYaVQXgpU9yHbH/oT6uuC8jEvdlRKKlvbO4x5lqfHemGpdVrdh9ugq7T1cBABKHeWNaQhCmJQQhLVIBqciNKh2x/7bE/pvXf7VGi4a2bqNQhu87k6SGFvXVEanW3uc1tHagQ2OZUSi5VICXmwt83GTwdpPBu9v3Pm4u8HaTwavb9z5uMnjKJWi6XAQBOpM+A2f93w1ZUPSUziRsP5MwGlw0HcCVs51JVreES1Xa9/kSGRAQ1yvhgiKq92gWf7faxKBNwgD0u05noDU85rTtS0FBgeg2lmw/GIzyGQGP+nO4uOcT1IXf2OM9R+6/P4C7hwN3RfniosoTxy614dilNhTWdOD05QacvtyA1XsuwFsuIH2YK8aFuSItxBWecuOrLTpy/23B2fqv0+mg1gHtah1a1Tp8vf84mjt0aOrQdr7q0Nyu1b92XH3t/l5zhw6tFkqgBAAeLkLnlwSehle5/tXDRYDnL149XAR4yiVdbeSSa/3u1HR+ddOu/9IAcJNJnO6/PzmQ6Cxg/xv6qfJEjqhrKmHPdVv9TSWEd5g+yQpJAoI7XwPj+98bi2xu0CZhCoWizxErlUo/3NrXSJcl2l5LcnKySUO2Go0GBQUFJrcfTITqW4BD5xCtK8XwtDQAg6//6f+/vTuPjqJKGz/+7SV7QkJIApGAWSB7JmxZZFVAZR1ARd5z3h+ggphhQEbQ1wH1HXBQQAZRwgBiFNHX4cAocFiVTQVUgsLAZEBI2DdlT0ICWbq7fn9UdyedjZClm06ezzl1urvqVvW93Z1+8tS9dRsYbr5/o7CE3TnX2HXsCntyrpFfZGD3uSJ2nytCp9XQ7UE/Ho4Kom9UIBGBXlX+g+ps7W9o91P7TSaFIoORolITRaVG82KiyGDkTqmJYvPjO6VG9b7BxJ0SI0UGI8Xm9UXm9UUl5tvSctsqHNvUgJdBebjorL1Lll4onwq9UD42vVBl63zcXfBy1aG9x17chlDf99+yvxB11i5F7SHIOwc3z0LLBx1dI9GcFeWbhxL+p2wY4ZUj6hDDqrj6QFCMOeEy92wFxdhtFmpRP06bhEVGRrJp0yYMBoPNdWHZ2dkAdOzYscZ9LeXKq82+1dHpdPX6J7K++zuF8D6w7+9oz+yBCm11xvYHtvDgya7teLJrO0qNJg6cvan+JtmxK5y4UkDm6Ztknr7JvK+O087fg37RrXkkOoiUMP9Kk3s4Y/sbUlXtVxSFUqMlMTJSVGKy3r9TLsmxSZhKjeZkqPK2ykmS7bFKDCbHtF0Dvh4u+Hi4VJEome+X29bCMtTPoyzZcnHy37hr7p9/4UBu3tC2K5zPVK8LkyRM2IOxFK6fqHzdVt65qstrdBDQsWwYYU1DCYXTcNokrH///qxZs4Zt27YxaNAg6/p169YRFBREYmJijfvOmjWLw4cPW8sZDAY2bNhAYmKiTMrRWNo/ZJ6J6nSTm4nKRaclNbwVqeGtmD4ohnPXb7Pr2GV2Hb/KvpPXOX/jDp/8cIZPfjiDp6uOHh0C6BcdRO+OrSodS1EUTAoYTQomRcFoUjAqCkajemsyPzYYy7art2AwmTCZUMubypaajlO5HBhNJnN5tYfIUP4YprJjmcrdr/hcBpPlObCWK38ck6JQajSRm3cL3d4fKvdCGdQ6OIKrToubixYPFx3uLjrcXbTmW/Oi1+LhqsNdb95mva/Do2JZ8+Pyx/Jw0eHmosNFC0ezDtO5c2dJQoRwlNCe5iRsL3T+f46ujWhKFEX9ba2K121dywZjSdX7+Dxge91W6zgZSthEOW0S1qdPH3r06MHMmTMpKCigffv2bN68mT179jB//nzrPzQzZsxg/fr1bN++nbZt2wLw1FNP8Y9//IMpU6Ywbdo0WrVqxT/+8Q9Onz7NihUrHNmsps29BTzQGS7+3ORnomrfypNneoTxTI8wCosNfH/iGt8cV2dcvJxfzPajl9l+9DIAHnoNyvptNslT81PNuHYzjQbc9Tpz4qOtNsGplDiZ93GrlDjp8HDV4ma9b3vce51gpa6MRqP8Bp0QjhbaC/YsUK8LUxTpWRB1YxlKaLluy5J4FeVWXd7V25xolbtuKyhWhhI2I06bhAGkp6ezcOFCFi1aRG5uLuHh4bz77rsMHjzYWsZkMmE0GlHKzaHs6urKJ598wvz585k9ezZ37twhJiaGDz/8kOTkZEc0pfkI660mYaebdhJWnpebnsfi2vBYXBsUReHIpXz1N8mOXeHwhVzuGBSg9omXVgM6rQatRoNeq0Gr1aDTatBp1Pt68zadttyisZQDnVaLrtwxqipnPa6mmmNoNOpxtFjLld/Hcozyz2FdV+44KAqXzp8jumMEXu4uNj1Fao+TDndXLa46rSQrQojG0S4FtC6Qf0H9zTD/MEfXSNzPjAbzUMIK123l1jCUsFWHyhNl+LYHrXMPJRf149RJmJeXF6+//jqvv/56tWXmzp3L3LlzK60PCAhg3rx5jVk9UZWwXrD3XfX3wurz40JOSqPREN/Wl/i2vrzYryPXbt1h38F/Ex8bi6uL3jYx0mjQ6SxJC9aEqCklI0ajkUPKFTpFBcpwPCGEY7h6Qkg3OPejOkpDkjABZUMJrx23TbiuHa9hKGFw5eu2AiLBxd2+dRdOwamTMOGE2qWWnXG8cQr8Qh1dI4dq6elKsLeedv6ekoQIIYSjhPY0J2F7ocsYR9dGOILJBL/9G07sQHvqWxIvHkJXeqvqsq7e6iyEQbHQOl6GEoo6kSRM2JerJ4QkwbkfzNeFhTq6RkIIIZq70F6we37ZdWGieSi4Cqe+gRM74MROuH0NUH87UQ8oGh2aVh1shxG2jpOhhKJBSBIm7C+st5qEnd4NnUY7ujZCCCGau3bJoHOFW5dklEZTZiyFCz+pCdeJHfDrIdvtrt4Q1gdT+CMcK/QhqsdQdG5eDqmqaPokCRP2F9YbvpsrZxyFEELcH1w81FEaZ7+XURpNTe55OGlOuk59B8X5ttvbJECH/uoSkgx6VxSjkTuHDoFeruUSjUeSMGF/Id3UL7bCK+oFrkIIIYSjhfZSk7DTe2SUhjMrvaO+jyd2qYlXxf8zPPwhoq+adEX0BR/5bVjhGJKECfvTu0H7VDj1LZoze8Glm6NrJIQQorkL7QnfoU7OIaM0nIeiwLUcNeE6uVN9/wxFZds1WrWXs0N/6NAPgjuBVibCEo4nSZhwjNBe5iRsN3SUJEwIIYSDhSSBzg0KflN/B0rcv4ry4fR35mu7dkJehd/o8nlATbg69IfwPuDR0jH1FKIGkoQJxwjrA/xVHTLQ4U+Oro0QQojmzsVdnaDjzB40Z78HXSdH10hYlJs+npO74HwmmAxl23Wu8GD3smu7AqOhCf2mpmiaJAkTjvFAJ3D1RnPnJh75p4Aujq6REEKI5i60lzoxx5k9ENHJ0bVp3gqvqQmXJfEqvGq73T+iLOkK7QGuMouhcC6ShAnH0LmoZ61ytuFz7V/AU46ukRBC1FthYSHvvfceW7duJS8vj/DwcCZMmMDgwYPvuu/atWuZPn16ldv27t1LYGBgQ1dXVBTaE0DtCQuf5ODKNDNGg3n6ePO1XZcOAeWuzXP1VmdX7tAPIvqBf5ijaipEg5AkTDhOaC/I2Ubg2Y1ovvEE/1DwbQd+7cE3RJ3AQwjRdJmMTW4ChMmTJ5OVlcW0adMIDQ1l06ZNTJ06FZPJxNChQ2t1jDlz5hAeHm6zzs/PrxFqKyoxz96rKbyCe8E5oLOja9S02UwfvxuK82y3t04ou7arXQroXR1TTyEagSRhwnE69Iftb+BeeAH2LqiwUQM+bcqSMj9Lcta+7LGLh0OqLYRATZ5Kb0NRnnqRfHG++b55sT7Or/axrqSAaN8oSNwLOuefrey7777j+++/Z8GCBQwZMgSA1NRULl26xDvvvMOgQYPQ1aKdHTt2JCEhobGrK6qid1OvCzu9m7a/fIjG5SL4toUWbaFFMHi3kUSgPkqLzNPH76xm+viWFaaPb+OYegphB5KECcdpHYvx/63n15838YCXEW3eefWsWO45MNyBW7+qy4X9Ve/vFWhOzCyJWvtyj9uBm4992yOEMzGWmpOnvOqTpbslVoqxASpiajIX0G/fvh1PT08GDBhgs/6JJ55g2rRpHD58mC5d5PrX+15EXzi9G7/LP8D2Hypv9wqEFg+oM/C1CDbflr8fDG4tmsznul4URZ1p8sQOdTnzvRrfLTRaaNut7NquBzrJ9PGi2ZAkTDhWWG8u57UguFOnsjPhigK3r0Pu2bKkLM98a3lccku9SLfwKlw8UPWxPVqWS8oeLNebZr718LNXK4VoWIoCJQXV9DLlVtMLVaFs6e2GqYtGB+4twN1X/cfT3bdssT6uuL0FuLXA6OrDseNn6aTRNkxdHCwnJ4eIiAj0etvQGhUVZd1emyQsLS2NGzdu4OPjQ3JyMi+++CKRkZF1qpPRWLdE2bJfXfd3at3Go+g8uJ7zMwFuJWgLfjOfFPwNjbGkLPb8erjaQyiu3uATDD7BKD7B5qTNct+crHkF3rcJR73e/+J8OL0Hzcmd6pJ33maz4hOMEtEXJaIfhD1sG4sV4D74zDXrzz/S/vq2v7b7SRIm7j8aDXgFqEvbrpW3K4r6j2buOdvELO98WeJWlAt3bqpLdYHSrUWFnrR2tkmbp7+cyRQNz2SEkkJ1KcrHM/cYnMqF0oK7DN/Ls+2hUkwNUx8Xr+oTpbslVm4t1BnJ6vp3YjSC5vzdyzmJ3NxcQkJCKq339fW1bq9JQEAAaWlpdOrUCW9vb7Kzs1m+fDmjRo1i1apVREdH33OdsrKy7nmfhtzfabkmQVwSF8qvU0zoS/JwKbqGa9E1XO5cw7XoKi5F18rWFV1DX1qApqQArufA9Ryq++tQNFpK3VpR4h5AqUegemteStwDKfUIoMQ9AEXnuOuja/X+KyY88k/ie+UnWlzZj/fNI2jK9ZKbtC4U+CeQH5REXmAyRT6h6ndGCXD8TGNVvUE028+/mbS/cdsvSZhwPhqN2svl0RKCE6suU5RfoffsrO3j29fUf2Qv/0ddquLiWU2SZh726B0kSVpTZyhRe5wsSVNJYYXHtblf4XG5oTg6IKY+9dPqq0mcfGvsgbJJqHQSBqqSmZnJmDFjalV2/fr1xMSo76Smhu+EmrYB9O7dm969e1sfJyUl0adPH4YOHcr777/P0qVLa1Wf8hISEmp1HVpFRqORrKysOu/v7OrTfmNJoXU4vSb/V7h1qdJ9Ci6jUUy4Fl3Ftegq5P5S7fEUdz/bnjRzz5ri84D5fjB4NOxJw7u2v/AamlPfwsmdaE7tQlNh+njFPxwlop/a2/VgD7xcvfACghusho1LPv/S/vq037L/3Uj0FU2Tewtwj4PWcVVvLymEvAvletMqDHks+E0drnX1mLpURe+uzuJY3XVpPm3u26EmTY6iQOmduidG1W0zlTZenTVaFFdvSjVuuPgEoHGvIXGyJlYVtrl4yImARhIWFsbs2bNrVTY4WP3X0s/Pr8rerrw8dcY3S4/YvQgJCaFr164cPlz90Lea6HS6ev0TVd/9nV2d2u/RQl2CoqovYzRA4RXI/xXyL6qJWf6lslvL/dLbaIpy1dEdV45W26uGzs32mjSf4LLJRCzr6jCpiLX9RgNc/Lns2q6K08e7eJVNH9+hHxr/8Orr6kTk8y/tb8z2SxImmidXLwiMUpeqlBapSVpeVUMez6kB0lCkXnB8/UTVx9C6qLNqVZzV0ZKktWgL90uYUhTzYgIq3jeZpxGveL+mfarbX7E9ltGAR242nL2t9hDVJ2kq/w9BQ9O5qZ8ZV2/zrVctHt/lvt4Nk8lE1qFDdOrUqVkHuvtRUFAQI0eOvKd9IiMj2bRpEwaDwea6sOzsbECd9bAuFEVBq20a180JM53ePJnHA0AVw+7BPPQ+z5yQXVITtlvmpM3Sq5b/qzqyw1gMN8+oS7U05klFqplMpEVbNXlzbwGAy50raP71qfpDyae+q2L6+PgK08fLz8oIcS8kCROiKi7uENBBXapiKFEDYcUJQyzXpeVdVHtRagqKGh3aFsHEmvRofzQHr2qTGKic0JhqSHyoJgmq5r6D6IBYgD0NeFCXuiRJd9mmc2nACoqmqn///qxZs4Zt27YxaNAg6/p169YRFBREYmI1w6drcP78eQ4ePEj37t0bsqrCGWg06qQVHn7QOrb6coZic3JmScwu2SZpll41U6na+1Z4pcZJRXD1Ruvegt/lX7Jd79ESwh8pmz6+hbMMLhTi/iRJmBB1oXcF/zB1qYrRoAa9itelWRO182AqRZN3AQ+AW/asfGPRqNMNa8y3aCrcN2+zrtegoKFU0eLi1RJNnXuWyj128QTpMRAO0qdPH3r06MHMmTMpKCigffv2bN68mT179jB//nyb3s4ZM2awfv16tm/fTtu2bQF45pln6NatG9HR0Xh5eZGdnU1GRgYajYYpU6Y4qlnifqd3g5ah6lIdk0mdddiapF0qS9yswyF/VXu7StSJRRS00LYLmo6PmqeP7yxD7IVoQJKECdEYdHrz0MN28GAVZ7BNJii4jPHGaU4eO0JEhw7odPq7JDBQOZmpKenR3EO5e92nckJVFyajUYbjiSYlPT2dhQsXsmjRInJzcwkPD+fdd99l8ODBNuVMJhNGoxFFKeuJjoyMZOvWrXz88ccUFxfj7+9PamoqEydOJCysmhM+QtSGVgvegepS3YRWAMUFcOs3jLcuk/VbCQnJveW7WYhGIkmYEI6g1apDObyCuHXdDcI6lf1OmhDCaXl5efH666/z+uuv11hu7ty5zJ0712bdjBkzGrNqQtydmze4dYCWYRhvHHJ0bYRo0mTcjhBCCCGEEELYkSRhQgghhBBCCGFHkoQJIYQQQgghhB1JEiaEEEIIIYQQdiRJmBBCCCGEEELYkSRhQgghhBBCCGFHkoQJIYQQQgghhB1JEiaEEEIIIYQQduS0P9ZcWFjIe++9x9atW8nLyyM8PJwJEyYwePDgu+67du1apk+fXuW2vXv3EhgY2NDVFUIIIYQQQgjAiZOwyZMnk5WVxbRp0wgNDWXTpk1MnToVk8nE0KFDa3WMOXPmEB4ebrPOz8+vEWorhBBCCCGEECqnTMK+++47vv/+exYsWMCQIUMASE1N5dKlS7zzzjsMGjQInU531+N07NiRhISExq6uEEIIIYQQQlg55TVh27dvx9PTkwEDBtisf+KJJ7hy5QqHDx92UM2EEEIIIYQQomZO2ROWk5NDREQEer1t9aOioqzbu3TpctfjpKWlcePGDXx8fEhOTubFF18kMjKyTnUyGo312q+u+zs7ab+0v/xtcyPtr1/7m+vrJoQQwvk5ZRKWm5tLSEhIpfW+vr7W7TUJCAggLS2NTp064e3tTXZ2NsuXL2fUqFGsWrWK6Ojoe65TVlbWPe/TkPs7O2m/tL85k/Y37/YLIYRofhyehGVmZjJmzJhalV2/fj0xMTEAaDSaasvVtA2gd+/e9O7d2/o4KSmJPn36MHToUN5//32WLl1aq/oAKIoCQGxsbK2uQ6vIaDRy9OjROu/v7KT90n5pv7S/vt+flu9hUcbymsgojbqR9kv7y982N9L+hhmlcbfY5PAkLCwsjNmzZ9eqbHBwMKDOYFhVb1deXh5Q1iN2L0JCQujates9X09mMpkAOHr06D0/Z3n13d/ZSful/c2ZtL9+7bd8D4syltdERmnUj7Rf2t+cSfvr1/67xSaHJ2FBQUGMHDnynvaJjIxk06ZNGAwGm+vCsrOzAXXWw7pQFAWt9t7mKtHr9SQkJKDVau/aAyeEEKLhKIqCyWSqdH2wkNgkhBCOUtvY5JSRq3///qxZs4Zt27YxaNAg6/p169YRFBREYmLiPR/z/PnzHDx4kO7du9/TflqtFldX13t+PiGEEKKxSGwSQoj7m1MmYX369KFHjx7MnDmTgoIC2rdvz+bNm9mzZw/z58+3ubZgxowZrF+/nu3bt9O2bVsAnnnmGbp160Z0dDReXl5kZ2eTkZGBRqNhypQpjmqWEEIIIYQQohlwyiQMID09nYULF7Jo0SJyc3MJDw/n3XffZfDgwTblTCYTRqPR5uK4yMhItm7dyscff0xxcTH+/v6kpqYyceJEwsLC7N0UIYQQQgghRDOiUWRaKSGEEEIIIYSwm3ubhUIIIYQQQgghRL1IEiaEEEIIIYQQdiRJmBBCCCGEEELYkSRhQgghhBBCCGFHkoQ1orVr1xIVFWVdYmNj6dmzJy+99BJnzpyxKfvzzz/z2muv8cQTTxAfH09UVBQXLlxwTMUbSG3bbzQaWbFiBePGjaN3794kJiYycOBA/va3v5Gfn++4BjSSiq9LxSUzM9PRVayzr776iqioKLZs2VJp2+9//3uioqLYs2dPpW39+/dnxIgRAHzzzTf8z//8D0OHDiUuLo6oqKhGr3dDqW/7CwoKWLp0KaNHj6ZHjx507tyZoUOHsnz5coqLi+3RhHppiPd/4cKFDB8+nOTkZBISEujXrx9vvPEGFy9ebPT6NxcSmyQ2VUVik8SmiiQ2NW5sctop6p3JnDlzCA8Pp7i4mIMHD7Js2TIyMzPZunUrvr6+AOzbt48ff/yRmJgYvLy82L9/v4Nr3XDu1v6ioiLS09MZMmQII0eOpGXLlhw9epSlS5fyzTff8OWXX+Lu7u7oZjQ4y+tSUYcOHRxQm4aRnJyMRqNh3759Nj+knpubS3Z2Np6enmRmZtKrVy/rtt9++43z58/z7LPPArB9+3YOHz5MTEwMLi4uHDlyxO7tqKv6tv/SpUusXLmSYcOG8cwzz+Dp6cmBAwdYvHgxP/zwAytWrECj0TiiabXSEO9/fn4+gwcPJiIiAi8vL06cOMHSpUvZtWsXmzZtomXLlnZvV1MlsUliU1UkNqkkNklsauzYJEmYHXTs2JGEhAQAUlJSMBqNpKens2PHDp588kkAJk6cyKRJkwD46KOPmlSgu1v73d3d2blzp80HOCUlheDgYKZMmcLXX3/NsGHDHFX9RlP+dWkq/P396dixY6XP708//YRer+fJJ5+sdDZ13759gPqeA8yePRutVu2kf/PNN50q0NW3/SEhIezatQtPT0/r9oceeggPDw/eeecdDhw4QLdu3Rq/IXXUEO//X/7yF5vtltdlwoQJ7Ny5k6eeeqoRW9C8SGyS2FQViU0qiU0Sm6BxY5MMR3QAy5fb9evXressf9jNQcX263S6Ks8g/O53vwPUsxHCeaSkpHD69GmuXLliXZeZmUl8fDx9+vThyJEjFBQUWLft378fnU5n/QJ39r+F+rTf09PTJshZONPfQn3f/6r4+/sDoNfLecPGJLFJYlNTJrFJYtP9Fpuc+xPlpCzj6UNDQx1bEQepbfstZyGceQhETUwmEwaDwWYxGo2Orla9paamAticccrMzCQ5OZkuXbqg0Wg4cOCAzbbY2Fh8fHzsXtfG0Bjtd6a/hYZqv8FgoKioiKNHj/L2228TGhrKo48+ap9GNFMSmyQ2gcSm8tskNklsaszYJEmYHVi+0AoLC9mzZw9Lly4lKSmJvn37OrpqdlGX9l++fJkFCxYQHx/PI488Ysfa2s/TTz9NXFyczdIUhoAkJSWh1WqtX3Q3b94kJyeHpKQkvLy8iI2NtX5x//rrr1y4cMHa3d8UNHT7jx07RkZGBo8++ijR0dF2aUN9NET7r169SlxcHImJiYwYMQKj0cinn36Kl5eX3dvTlElskthUFYlNEpskNtknNsnYDjt4+umnbR5HRESwZMmSZjO05l7bn5uby/PPP4+iKLz33ntOPwSgOvPmzSMiIsJm3f18YWtt+fr6Eh0dbR1f/dNPP6HT6ejSpQugfhFavugsZZpSoGvI9l+4cIG0tDTatGnD7Nmz7VD7+muI9rds2ZIvvviCkpISTp06RUZGBmPGjOGzzz4jKCjIjq1p2iQ2SWyqisQmiU0Sm+wTm5rmN8h9Zt68eXzxxResXLmSUaNGcfLkSaZOneroatnNvbQ/Ly+P5557jsuXL/Pxxx/Trl07O9fWfiIiIkhISLBZ4uPjHV2tBpGSksKZM2e4fPkymZmZxMXFWc8UJScn88svv3Dr1i0yMzPR6/V07drVwTVuWA3R/osXLzJmzBh0Oh0rV67Ez8/Pzq2ou/q2X6/Xk5CQQNeuXRk5ciQrV67kwoULLF++3BHNabIkNklsqorEJolNEpvsE5skCbMDyxdaamoqb775JiNHjmTPnj189dVXjq6aXdS2/Xl5eTz77LNcuHCBFStWOEX3tqia5ezR/v372b9/P0lJSdZtli+1n376iczMTBISEprcMLP6tv/ixYuMHj0agE8//ZQ2bdrYqeYNo6Hf/zZt2hAUFFTpN6xE/UhsktjU3EhsktgE909skiTMAV555RV8fX1ZtGgRJpPJ0dWxu6rabwly58+f56OPPiI2NtbBtRT1kZSUhE6n4+uvvyYnJ4fk5GTrNh8fH2JiYli/fj0XL15sUsM9LOrT/kuXLjF69GhMJhMrV66kbdu29q5+vTX0+3/27Fl+++03HnzwwcasdrMnsUliU1MnsUli0/0Um5rHwO/7jK+vLxMmTGD+/Pls3LiRYcOGcePGDevFgtnZ2QDs3r0bf39//P39bT4ozq5i+x9//HHGjRvH0aNHmTFjBkajkUOHDlnL+/v70759e8dVuJHk5ORUOeNU+/btrdOeOitvb29iY2PZsWMHWq22Upd+UlISK1euBCqPub548SJZWVkAnDt3DsB6Zrpt27ZOcYF4Xdt//fp1xowZw9WrV3nrrbe4fv26zXThbdq0cYozj3Vt/7Fjx5gzZw6PP/447dq1Q6vVkp2dzSeffIKfnx/PPfecXdvR3EhsktgEEpskNklsAvvEJknCHGT06NF8/vnnLFmyhCFDhpCTk8OUKVNsysyaNQtQx6l+9tlnjqhmoynf/s6dO1u/2N56661KZUeMGMHcuXPtXcVGN3369CrXz549m5EjR9q5Ng0vJSWFrKwsYmJi8Pb2ttmWlJTEJ598gouLC507d7bZlpmZWem1sfxtONNnoS7tP3HiBOfPnwfUs/IVTZo0icmTJzduxRtIXdofEBBAUFAQK1as4OrVqxgMBtq0acPDDz9MWloawcHB9m5GsyOxSWKTxCaJTRKb7BObNIqiKPVqjRBCCCGEEEKIWpNrwoQQQgghhBDCjiQJE0IIIYQQQgg7kiRMCCGEEEIIIexIkjAhhBBCCCGEsCNJwoQQQgghhBDCjiQJE0IIIYQQQgg7kiRMCCGEEEIIIexIkjAhhBBCCCGEsCNJwoTTWbt2LVFRUdYlNjaWnj178tJLL3HmzBlHVw+AZcuWsWPHjkrrMzMziYqKIjMz0wG1Uu3atYu0tDS6d+9OfHw8ycnJjB07lg0bNlBaWuqwelVU1Wv15z//mb59+zbq816+fJn09HR++eWXRn0eIUTTIrGpfiQ21UxiU9Ojd3QFhKirOXPmEB4eTnFxMQcPHmTZsmVkZmaydetWfH19HVq3Dz74gMcff5z+/fvbrI+Li2P16tV06NDB7nVSFIUZM2awdu1a+vTpw5///GeCg4O5desWmZmZzJo1i5s3bzJ27Fi71622Jk6cyJgxYxr1Oa5cucLixYtp27YtMTExjfpcQoimR2LTvZHYVDsSm5oeScKE0+rYsSMJCQkApKSkYDQaSU9PZ8eOHTz55JMOrl3VvL296dSpk0OeOyMjg7Vr1zJ58mQmTZpks61v376MHz+es2fP2rVORUVFuLu717p8+/btG7E2QghRfxKb7o3EJtFcyXBE0WRYgt7169dt1mdlZZGWlkZycjIJCQkMHz6cLVu22JS5ceMGM2fOZNCgQXTu3JmHHnqIMWPG8PPPP1d6npKSEhYvXszAgQNJSEggJSWF0aNHc/DgQQCioqK4ffs269atsw5LGT16NFD9kI+dO3cyatQoEhMT6dy5M88++yz/+te/bMqkp6cTFRVFTk4OU6dOpWvXrnTv3p3p06dz69atGl+b0tJSMjIyCA8P549//GOVZQIDA+nWrZv1cW5uLjNnzqRXr17Ex8fTr18/Fi5cSElJic1+xcXFLFiwgL59+xIfH0+vXr2YNWsW+fn5NuX69u3LCy+8wLZt2xg+fDgJCQksXrwYgJMnTzJu3DgSExNJSUnhf//3fyksLKxUx6qGfERFRfHmm2+yfv16Bg4cSGJiIr///e/55ptvbMqdPXuW6dOn89hjj5GYmEivXr1IS0vj+PHj1jKZmZk89dRTAEyfPt36/qWnp1vL1ObzJIQQFhKbqiexSWJTcyY9YaLJuHDhAgChoaHWdfv27WP8+PEkJiYyc+ZMfHx82LJlCy+99BJFRUU88cQTgPqlDjBp0iQCAgK4ffs227dvZ/To0XzyySekpKQAYDAYGD9+PAcOHGDMmDGkpqZiNBo5fPgwv/76KwCrV69m7NixpKSkMHHiREA9y1idjRs38vLLL9OzZ08WLFhASUkJGRkZ1ucuH3wAJk+ezKBBg3jqqafIzs5mwYIFgDoEpjr/+c9/yM3NZeTIkWg0mru+lsXFxYwZM4bz588zefJkoqKi+Pnnn1m+fDm//PILy5cvB9RhJBMnTmTfvn1MmDCBbt26cfz4cdLT0zl06BCrV6/G1dXVetwjR45w8uRJ/vCHPxASEoKHhwfXrl1j9OjR6PV6/vKXv9CqVSs2btzIX//617vW0+Lbb78lKyuLF198EU9PTzIyMpg0aRJfffUV7dq1A9ShHH5+fkybNg1/f3/y8vJYt24dTz/9NOvWrSM8PJy4uDjmzJnD9OnT+cMf/sDDDz8MQJs2bYDaf56EEMJCYpPEJolNokqKEE7myy+/VCIjI5VDhw4ppaWlSkFBgbJ7926lR48eyn//938rpaWl1rIDBgxQhg8fbrNOURTlhRdeUHr06KEYjcYqn8NgMCilpaXK2LFjlT/+8Y/W9evWrVMiIyOVNWvW1FjHTp06Ka+++mql9fv27VMiIyOVffv2KYqiKEajUenZs6cyZMgQm7oUFBQoDz30kDJq1CjrukWLFimRkZHKhx9+aHPMmTNnKgkJCYrJZKq2Pps3b1YiIyOVVatW1Vhvi1WrVimRkZHKli1bbNYvX75ciYyMVPbu3asoiqLs3r27yjpZnm/16tXWdY888ogSExOjnDp1yqbs/PnzlaioKOWXX36xWf/ss8/avFaKoiivvvqq8sgjj9iUi4yMVLp3767cunXLuu7q1atKdHS08sEHH1TbRoPBoJSUlCiPPfaY8vbbb1vX//vf/1YiIyOVL7/8stI+df08CSGaPolNEpvKk9gk7kaGIwqn9fTTTxMXF0eXLl0YP348LVq0YMmSJej1agfv2bNnOXXqFEOHDgXUM4WWpXfv3ly9epXTp09bj7dq1SpGjBhBQkICsbGxxMXF8eOPP3Ly5ElrmT179uDm5tZg4/pPnz7NlStXGDZsGFpt2Z+jl5cXjz32GIcPH+bOnTs2+1Q15KG4uLjSUJf62LdvH56engwYMMBmveVs2o8//mgtV369xcCBA/H09LSWK1/XsLAwm3WZmZl07NiR6Ohom/VDhgypdX1TUlJszugGBATQqlUrLl68aF1nMBhYtmwZgwYNIj4+ntjYWOLj4zlz5ozNe1yde/08CSGaJ4lNKolNEptEzWQ4onBa8+bNIyIigsLCQrZs2cLq1auZOnUqGRkZAFy7ds1abt68eVUe4+bNmwCsWLGCuXPn8l//9V9MmTKFli1botVqef/99zl16pS1/I0bNwgKCrIJSvVhef7AwMBK24KCgjCZTOTn5+Ph4WFd7+fnZ1POMqSiqKio2ucJDg4GyobF3E1ubi4BAQGVhoe0atUKvV5vHSKTm5uLXq/H39/fppxGoyEgIMBazqKqdubm5hISElJpfUBAQK3qCpVfE1Bfl+LiYuvjuXPn8vnnn/P888+TlJSEr68vGo2G119/3aZcde7l8ySEaL4kNqkkNklsEjWTJEw4rYiICOsFz6mpqZhMJv75z3/y1VdfMWDAAFq2bAnACy+8wKOPPlrlMSxnvjZs2EBycjKzZs2y2V7xAlx/f38OHDiAyWRqkGBnqePVq1crbbty5QparZYWLVrU+3ni4+Px8/Nj586dTJs27a5j7/38/Dh8+DCKotiUvX79OgaDwVpvPz8/DAYDN27csAl2iqJw7do16/tjUdXz+vn5WYNIeVWtq48NGzYwfPhwpk6darP+5s2btXqN7+XzJIRoviQ21Z7EJolNzZkMRxRNxiuvvIKvry+LFi3CZDIRHh5OaGgox44dIyEhocrFMkxAo9HYXKQLcOzYMQ4dOmSzrlevXhQXF7N27doa6+Lq6lrj2T+LsLAwWrduzaZNm1AUxbr+9u3bbNu2jU6dOtmcaawrFxcXxo8fz6lTp/j73/9eZZnr169z4MABAB566CFu375d6Uc9169fb91e/nbDhg025b7++mtu375t3V6TlJQUcnJyOHbsmM36TZs23b1h90Cj0eDi4mKz7ttvv+Xy5cs266o7e3svnychhLCQ2FQ9iU0Sm5oz6QkTTYavry8TJkxg/vz5bNy4kWHDhjFr1iyef/55xo0bx4gRI2jdujV5eXmcPHmSI0eOsGjRIgAefvhhlixZwqJFi0hKSuL06dMsWbKEkJAQjEaj9TmGDBnC2rVrmTlzJqdPnyYlJQVFUTh8+DAREREMHjwYgMjISPbv38+uXbsIDAzEy8uL8PDwSnXWarW88sorvPzyy7zwwguMGjWKkpISPvroI/Lz85k2bVqDvT6WQJeenk5WVhZDhgyx/iDmTz/9xJo1a5g8eTJdu3Zl+PDhfP7557z66qtcvHiRyMhIDhw4wAcffECfPn3o3r07AD169KBnz5787W9/o6CggC5dunD8+HEWLVpEbGwsw4YNu2u9xo4dy5dffsmECRP405/+ZJ2BqvxQm4bw8MMPW2eaioqK4siRI3z00UfW2aUs2rdvj7u7Oxs3biQiIgJPT0+CgoJo3bp1rT9PQghhIbGpZhKbJDY1V5KEiSZl9OjRfP755yxZsoQhQ4aQmprKP//5T5YtW8bbb79Nfn4+fn5+REREMHDgQOt+aWlp3Llzhy+++IKMjAw6dOjAzJkz2bFjB/v377eW0+v1fPjhh3zwwQds3ryZlStX4uXlRXR0NL169bKWe+2115g1axZTp07lzp07JCcn89lnn1VZ56FDh+Lh4cHy5ct56aWX0Ol0JCYm8umnn9KlS5cGe200Gg1z5syhf//+rFmzxvp6WOr/8ssvWy9idnNz49NPP2XhwoVkZGRw8+ZNWrduzXPPPWfzY5oajYYlS5aQnp7O2rVrWbZsGX5+fgwbNoypU6dWOoNblcDAQP7v//6Pt956i5kzZ+Lh4UH//v154403rNMoN4TXXnsNvV7P8uXLuX37NrGxsaSnp/P+++/blPPw8ODtt99m8eLFjBs3jtLSUiZNmsTkyZNr/XkSQojyJDZVT2KTxKbmSqOU72cWQgghhBBCCNGo5JowIYQQQgghhLAjScKEEEIIIYQQwo4kCRNCCCGEEEIIO5IkTAghhBBCCCHsSJIwIYQQQgghhLAjScKEEEIIIYQQwo4kCRNCCCGEEEIIO5IkTAghhBBCCCHsSJIwIYQQQgghhLAjScKEEEIIIYQQwo4kCRNCCCGEEEIIO/r/4v170c8TUDAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHaCAYAAAA3yBn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcYUlEQVR4nOzdd3yUVdr/8c89k0baTOikQEKoQgoqVUARxMLasaxr37WtsLu6PpZV1/L81rb77LoCKriWVdeGCpZVLFhApUNC6NJTINQUSJ+Z3x+ThIQEkklmck8y3/frlVdm7jbXGTT3XHPOuY7hcrlciIiIiIiIyAlZzA5ARERERETE3ylxEhERERERaYISJxERERERkSYocRIREREREWmCEicREREREZEmKHESERERERFpghInERERERGRJihxEhERERERaYISJxERERERkSYocRIREREREWmCEicREREREZEmBJkdgASebdu28fbbb7NixQry8vIoKSkhMjKSpKQkRowYwUUXXUS/fv189voDBw6s99xisRAdHc2gQYO48sormTJlis9e+/gYLBYLX3/9NXFxcY0ed8EFF7Bt2zYAXn31VcaMGdPgmKysLN566y2WL1/O/v37CQoKIi4ujrFjx3LjjTfSo0ePk8ZwIk8++SSXXXaZJ83y2LZt23jrrbdYtmwZe/bsoby8HLvdzimnnMI555zDRRddRGhoaIPzWtpmEZHG6L6k+1LNa2/evPmEx5x99tnk5uaycOFC4uPjW/xauoe1X4bL5XKZHYQEBpfLxT//+U9efPFFXC4XqamppKSkEBUVRXFxMRs2bGDt2rU4nU7+8Y9/cP755/skjpo/jtOmTQOgqqqKHTt28PXXX+NwOLj55pu57777fPLadWMICgqiqqqKadOmMX369AbHrFq1imuuuab2uONvUC6Xi7/97W/861//IigoiDFjxjBgwAAqKytZs2YNa9eupVOnTjz11FOcd955jcYAx96H402aNInBgwd7qcUNzZw5k1mzZuF0OklPTyclJYWIiAgOHDjAypUr2blzJ0OGDOHDDz+sPae1bRYRqUv3pfoxBPJ9qS0SJ93DOgCXSBv55z//6RowYIDr7LPPdmVmZjZ6TF5enuvRRx91vfvuuz6LY8CAAa4BAwY02P7TTz+5Bg4c6Bo0aJArJyfHZ69fE8O4ceNcl156qeuss85yORyOBsfcf//9riFDhrh+85vfuAYMGOD68ccf6+2fMWOGa8CAAa4JEya4tmzZ0uD8BQsWuFJSUlyDBw92/fTTT43G0Nj70Baef/5514ABA1xnnnmmKyMjo9Fjvv/+e9d1111Xb1tr2ywiUpfuS/VjCOT7UnNee8KECa4BAwa4srOzW/Qauoe1f5rjJG1i9+7dzJ49m5CQEF566SVSU1MbPa5Xr1488sgjDbriP/zwQ6ZPn87EiRNJTU3l1FNP5eqrr2b+/Plei3H06NH07dsXp9NJVlYW27ZtY+DAgVx//fUnPOfCCy9kyJAh7N+/H4CcnBwGDhzI/fffz7Zt2/jd737HqFGjGDRoEMuWLWtw/tSpU8nLy+PHH3+st/3IkSMsWLCAs88+my5dujQ4Lzs7mxdeeIHg4GBeeOEF+vfv3+CYc889lwceeACHw8Gjjz6K0+n09C3xiZycHGbNmkVwcDBz5swhLS2t0ePGjx/Pv/71r9rn7bnNIuJ/dF/Sfakt6f3pGJQ4SZv48MMPqaqq4rzzzqNv375NHh8UVH/63aOPPkpubi7Dhw/nhhtu4IILLiAnJ4f77ruPv//9716L01Vn5GpycjIjR45k2bJl7Nixo8Gxq1atYsuWLUycOJFu3brV27dr1y6uuuoq9uzZw0UXXcTUqVOJiIhocI0LL7yQTp06MXfu3HrbP/nkE0pKSpg6dWqjcda8nxMnTjzpmPArrriCbt26sXPnTpYvX37StreVDz/8kMrKSiZPnsyAAQNOemxISEi989prm0XE/+i+pPtSW9L70zGoOIS0idWrVwMwcuTIFp3/6aef0rt373rbKioq+PWvf83LL7/MNddcQ8+ePVsV49KlS9m5cyeGYTB06FAArrnmGpYtW8Z7773XYHz5u+++C8BVV13V4FqrV6/mtttu4+677z7pa0ZFRXHuuefy3//+l0OHDtG5c2cA5s6dS2xsLGPHjuWzzz5rcN6qVasAOOOMM056/aCgIEaOHMmnn37K6tWrGTVqVINjZsyY0WBbXFyczybgrly5EnB/k+oJb7ZZRET3pcYF4n2pqdeuUVRU1OLr6h7WMShxkjZx4MABALp3795g37Zt2xr8Ee7Vq1e9b7WOvzmBuzfi2muvZfny5SxdupRLLrnEo5hq/jjWTMJduHAhTqeTG2+8sXbS56RJk+jevTvz5s3jrrvuqu0BKSwsZMGCBfTu3bvRikJdu3Y94eTW411xxRXMnz+fjz76iJtuuomNGzeyfv16pk2bhsXSeKdwzfvZnJtyzTH79u1rdP/MmTMbbBsxYoTPblA1sXtaNcibbRYR0X3pxALtvtTUa3uD7mEdgxInaRM1Qw0Mw2iwb8eOHQ3+UJ166qn1blB5eXm89NJLLFmyhD179lBWVlbv+Pz8/NrHjX1bdOmllzaogFPzmoZhEB0dXfuaF198ce0xQUFBXHnllcycOZMvv/ySX/ziFwDMmzeP8vJyrrzyykbbNGjQoHrDzE7m9NNPJykpiffff5+bbrqJ9957D4vFwuWXX37Cc072fh6v5pgTHXuyCkIn09z3+XiexN7S8xpr8+zZs/nyyy/ZsWMHISEhpKenc/fddzc5XFBEOibdl04s0O5LzX3tmqp6dTX33uLN90fMo8RJ2kTXrl3Zvn17vRtJjUmTJtX+ocrJyWHixIn19mdnZzN16lSKioo4/fTTGTt2LJGRkVitVnJzc5k3bx4VFRW1x5/om6rj/3A29w/zlVdeyYsvvsi7775be4N67733CA4OPuFNpGvXrs26do2pU6fy17/+lSVLlvDpp58yZswYYmNjT3h8t27d2L59O3v37m3y2jXHHD/evbWa+z4fr3v37s2Ova7Wtnn58uVcc801pKSk4HK5eO6557jpppv473//i91u9ygWEWn/dF86uUC6L7VGc+8t/vD+SOspcZI2ceqpp9YOXTjRxNITefXVVykoKGh04btPP/2UefPm1dvW0m+qTqRHjx6cffbZfPnll2zfvp2DBw+ybds2pkyZUjv2+3iefkt06aWX8uyzz3L//fdTVFTU5Ht02mmnsWzZMn766SeuuOKKEx7ncDhqqyadeuqpHsXUlJa+z6eddhpLly5l6dKlJ429sfNa0+aXX3653nHPPPMMp59+OqtXr+bss8/2sBUi0t7pvnRygXRfao3m3lv84f2R1lNVPWkTl112GVarlS+++ILt27d7dO6uXbsAmDx5coN9bVVx5pprrgHc3+i98847QOOTb1uqS5cunHXWWezdu5eYmJgG324er+b9/Oqrr9i6desJj/vggw/Yt28fSUlJjBgxwmvxtsZll11GcHAwX3zxxUljB+p9Y+vtNh89ehSn00l0dLTnjRCRdk/3pZMLpPuSN53o3qL3p2NQ4iRtok+fPtx2221UVFRwyy23sHbt2kaPKy4ubrAtLi4OoMF6E4sXL+b999/3frCNGD16NElJScybN48vv/ySpKSkFldiOpH77ruPWbNmMWfOnCbHoSckJHDbbbdRWVnJ7bff3ugf4a+//pq//OUvWK1WHnnkkRNO6G1r8fHxTJs2jcrKSm699VaysrIaPW7RokX85je/qX3u7Tb/5S9/YfDgwQwbNqz1jRKRdkf3paYFyn3Jm050b9H70zFoqJ60md/97nc4nU5mz57NFVdcQWpqKikpKURFRVFYWMju3btZunQphmFw2mmn1Z53zTXX8OGHH/KHP/yByZMn06NHD37++WcWL17M+eef32hZVF+4+uqrefLJJ2sfe1tCQgIJCQnNPn769OmUlpby6quvcvHFFzN27Fj69etHVVUVa9asITMzk7CwMP7v//7P49Lfvnb77bdTVVXFrFmzmDp1KsOGDWPo0KFERERw4MABVq5cyc6dO2vL79bwVpuffvppVq1axdtvv43VavV1c0XET+m+dHKBdF/yhqbuLYH+/nQESpykzRiGwV133cWFF17IO++8w7Jly/joo48oKysjMjKSxMREbr75Zi655BL69etXe96gQYN4/fXXefbZZ1m0aBFVVVUMGjSImTNnEhUV1WY3qEsvvZSnn36a4OBgj0vM+oLFYuH+++/nggsu4D//+Q8rVqxgyZIlWK1W4uLiuPnmm7nhhhtavY6Ir0ybNo3zzz+ft956i2XLlvHhhx9SUVGB3W5n0KBB/OY3v6lXSQq80+Ynn3yS//73v/z73//26AOBiHQ8ui95V3u/L7VGc+4tgfz+dBSGq+6S1CJyQkuWLOHGG2/k4osv5plnnjE7HGmB//f//h+fffYZb7zxBsnJyWaHIyLSKrov+QfdWwKHepxEmulf//oXANdee63JkUhLPProo3z88cfMmjWL6Oho9u/fD0B4eDgREREmRyci4jndl8yne0tgUY+TyEls2rSJhQsXsn79ehYuXMjEiRN5/vnnzQ5LWmDgwIGNbp82bRrTp09v42hERFpG9yX/ontLYFGPk8hJbNiwgeeee47IyEguuOACHnnkEbNDkhYyY30PERFv033Jv+jeEljU4yQiItJC999/f4PFTut69913SU9Pb7uARETEZ5Q4iYiItNDu3bs5dOhQg+233347ISEhfPvttyp5LyLSQWionoiISAv17t2b3r1719u2fPlyDh8+zB133KGkSUSkAwnIxMnpdFJVVYXFYsEwDLPDEREJGC6XC6fTSVBQEBaLxexwfOL999/HMAwuv/zyZp+j+5KIiHmae28KyMSpqqqKrKwss8MQEQlYKSkphISEmB2G1xUXF/PFF18wevRojxZY1n1JRMR8Td2bAjJxqskkU1JSWjSMwuFwkJWV1eLz2zu1X+1X+9X+1v797Ki9TZ9++illZWVMnTrVo/M66vshItKeNPW3OCATp5phEFartVUffFp7fnun9qv9ar/a31IddTja+++/j91u55xzzvHovJr3Q1/otYzar/ar/YHbfvDel3pN3ZsCMnESERHxtk2bNrFu3Tquv/76Fg9D1Bd6raP2q/1qf+C2H3z/HmhsgIiIiBe8//77AFxxxRUmRyIiIr6gxElERKSVKioq+OSTT0hNTWXAgAFmhyMiIj6gxElERKSVvv76awoKCtTbJCLSgSlxEhERaaX333+f8PBwLrjgArNDERERH1FxCBERkVZ65ZVXzA5BRER8TD1OIiIiIiIiTVDiJCIiIiIi0gQlTiIiIiIiIk0wPXE6cuQIzzzzDDfffDOjRo1i4MCBzJgxo9Fj169fz4033siwYcM4/fTTmTZtGtnZ2W0csYiIiIiIBBrTE6eCggLee+89KioqmDRp0gmP27ZtG9dddx2VlZU8++yzPPHEE+zcuZNrrrmGQ4cOtWHEIiIiIiISaEyvqhcXF8eKFSswDINDhw4xd+7cRo977rnnCAkJYfbs2URGRgIwZMgQzj33XF5++WX+53/+py3DFhERERGRAGJ6j5NhGBiGcdJjqqqq+O6775g8eXJt0gTupGvkyJF8/fXXvg5TREREREQCmOmJU3Ps3r2bsrIyBg4c2GDfgAED2LVrF+Xl5W0Sy5b8Ym58bSVbDla0yeuJiIg0xVj3AcnL/wRlRWaHIiLSYZk+VK85CgoKALDb7Q322e12XC4XhYWFdO/e3aPrOhwOj2NZtGUfi38+gKM0jMvP8vz8jqDmfWvJ+9cRqP1qf93fgaa17Q/U983XjHVzsecvxblxPpx+k9nhiIh0SO0icapxsiF9TQ33a0xWVpbH51iK3T1b2w5Xtuj8jkTtV/sDmdof2O33N65up2D8/CXkrlbiJCLiI+0icarpaTp8+HCDfQUFBRiGQXR0tMfXTUlJwWq1enROUmkljy9aSP5RB/HJA+ka1cnj123vHA4HWVlZLXr/OgK1X+1X+1ve/przxbu+PZLARMCRvap9jMEXEWmH2kXi1Lt3b8LCwtiyZUuDfVu2bKFPnz6EhoZ6fF2r1erxjb9zpJU+XcLZdbCEjXuPcpY9sumTOqiWvH8didqv9qv9gdt+f/Pfg7FMBKwHNkLFUQiJMDskEZEOp118MRUUFMSECRP46quvOHLkSO32vLw8li1bxjnnnNOm8aTG2QBYm1PYpq8rIiLSmF4Jfdnj6owFJ+zJNDscEZEOyS8Sp++//54FCxbw7bffArB161YWLFjAggULKC0tBWD69OmUlpZy++238/333/PVV19x2223ERMTw80339ym8abGuxOnrFwlTiIiYr60eBsZzmT3k5yV5gYjItJB+cVQvccee4zc3Nza5zVJE8DChQuJj48nOTmZN954g7/97W/8/ve/x2q1MmrUKGbNmkXnzp3bNN6UOPd8KiVOIiLiD1LjbbzmTOZ86woqs1cSbHZAIiIdkF8kTt98802zjhs6dCivvfaab4NphlN6RWMB9haVs6+ojO7RYWaHJCIiAaxbVCg7gvsD4FDiJCLiE34xVK+9iQgNIi7anXNqnpOIiPiDss4DcboMwo7mwpF9ZocjItLhKHFqoX6d3d/nrc0pMDcQERERIL5LND+74txPcleZG4yISAekxKmFkmOqe5w0z0lERPxAv5hgMpz93E9UIEJExOuUOLXQsR6nQlwul8nRiIhIoEvuHEymy11Zr2L3CpOjERHpeJQ4tVCiLZhgq8GhoxXkFpSaHY6IiAS4iGALB6KHAmDkrQGn0+SIREQ6FiVOLRRsNRjQIwpQgQgREfEPkb1TKHWFEFxZBIe2mR2OiEiHosSpFVLj3AvhZqpAhIiI+IGhCV1Y50p0P1GBCBERr1Li1Aq1C+Gqx0lERPxAapyNTKd7npNLBSJERLxKiVMrpMa7e5yycgpxOlUgQkREzHVKryjW4l4IVwUiRES8S4lTK/TvHklokIXi8ip2HjxqdjgiIhLgQoOtHO2aCkDwvvVQVW5yRCIiHYcSp1YIsloYEuserqcCESIi4g969B7IAVc0Flcl7M0yOxwRkQ5DiVMrpcbbASVOIiLiH9ITYmrnOalAhIiI9yhxaqWaeU5rVVlPRET8QGrCsQIRThWIEBHxGiVOrVTT47Qur5AqhxYbFBERc/XrFskGi7tARJUKRIiIeI0Sp1bq2zWCyNAgyiqdbN1/xOxwREQkwAVZLTh6nQpASOEOKDlkckQiIh2DEqdWslgMhlav57Q2W/OcRETEfMm949nh7OF+krfa3GBERDoIJU5ekFZTICK3wNQ4REREANIS7GS4+rmf5CpxEhHxBiVOXpBSWyBCPU4iImK+tHh7bYEIhwpEiIh4hRInL6jpcdq4p4jyKoe5wYiISMBL6NyJbSGDAHBmrwSXy+SIRETaPyVOXhAf04mY8GAqHS427y02OxwREQlwhmEQGp9GhctKcNlBKNhtdkgiIu2eEicvMAyDlOpep0wN1xMRET9wSkI3Nrr6uJ9oIVwRkVZT4uQlqXHueU5ZWghXRCTgrFy5kltuuYXhw4eTmprK5MmTmTVrlqkxpcbbyaie56TESUSk9YLMDqCjSFWBCBGRgPTJJ59w7733cv755/P0008THh5OdnY2+fn5psaVmmDjM2cy8BWO7JVYTY1GRKT9U+LkJWkJdgC25BdTWuGgU4huUSIiHV1+fj5//vOfueqqq3j00Udrt48aNcq8oKp1jwojL2IIVAJ7MsBRCdZgs8MSEWm3NFTPS3pEh9E9KhSnC9bnqddJRCQQzJ07l5KSEm655RazQ2lU596DKXKFY3WUwb6NZocjItKuKXHyotSahXA1XE9EJCCsWLECu93O9u3bufjiiznllFMYPXo0f/7znzly5IjZ4ZGS0JlMZ1/3E81zEhFpFQ3V86LUeBtfb8xnrQpEiIgEhPz8fEpLS/n973/PbbfdRnp6OllZWcyYMYOff/6Zt956C8Mwmn09h6NlawHWnHf8+UNjo8hw9WMc63DmrMA17PoWXd/fnaj9gULtV/vr/g5ErX0PmnueEicvUoEIEZHA4nK5KC8vZ9q0adx6660AjBw5kuDgYJ544gmWLFnCmDFjmn29rKysVsVz/PmuSidrqyvrlWz9kc0ZGa26vr9r7fvX3qn9an+g8/V7oMTJi2qG6m0/cJSiskqiwzQJV0SkI7Pb7QCMHTu23vbx48fzxBNPsH79eo8Sp5SUFKxWz4sLORwOsrKyGj3/ucU5cBQijuwifXAyhEZ5fH1/d7L2BwK1X+0P5PZD69+DmvObosTJizpHhBAf04mcw6WsyylkTL+uZockIiI+NHDgQDIa6cVxuVwAWCyeTSW2Wq2t+uDT2Pm9eyeRs6Er8cYBrPlZkDSuxdf3d619/9o7tV/tD+T2g+/fAxWH8LK0mgIRuRquJyLS0U2ePBmARYsW1dte8zwtLa3NYzpeWoJdBSJERLxAPU5elhJv479Ze1QgQkQkAIwdO5YJEyYwa9YsnE4n6enprFu3jpkzZzJhwgROP/10s0MkNd7GZ85+TLEux5W7kuaXqhARkbqUOHlZTYGIzGz1OImIBIJnn32WmTNn8t577zFr1iy6d+/OjTfeyLRp08wODYDBvaL5q9EPAEf2Kt34RURaSH8/vWxonDtxyi0o5eCRcrpEhpockYiI+FJYWBj33HMP99xzj9mhNCos2Epl91QcBw2CjuRB0R6I7mV2WCIi7Y7mOHlZdFgwfbtFAJrnJCIi/mFAQk+2uBLcTzTPSUSkRZQ4+UBNgYgsreckIiJ+IC3BTkb1ek5KnEREWkaJkw+kxNUshFtgbiAiIiK4v9DLcLnnOblyVpocjYhI+6TEyQfSEmoSJ/U4iYiI+fp1j2SztT8AztzV4HSaHJGISPujxMkHTullw2ox2Fdczt7CMrPDERGRAGe1GITFDqHEFYq18ggc/NnskERE2h0lTj7QKcRK/+6RAGRquJ6IiPiBlITOZLmS3E80XE9ExGNKnHykZj0nFYgQERF/oAIRIiKto8TJR1KrK+upx0lERPxBWrydzOrEyanESUTEY0qcfKS2JHluIS6Xy9xgREQk4MXHdGJH6CAAjL3roLLU5IhERNoXJU4+MrBnFCFWCwUllWQf0s1JRETMZRgGPRL6sd9lw3BVwd4ss0MSEWlXlDj5SEiQhcG9ogBYm1tgbjAiIiJAakIMGU73ek4qECEi4hklTj6UEq/1nERExH+kxdtUIEJEpIWUOPlQbYGI7AJT4xAREQH3fSnTVV0gIkeJk4iIJ5Q4+VBNSfJ1uYU4nSoQISIi5uoWFcr+qCEAWAp2wNGDJkckItJ+KHHyoX7dIukUbOVohYPtB46YHY6IiAh9E2LZ5uzlfpK32txgRETaESVOPhRktTA0LhrQPCcREfEPaQl2MqqH66lAhIhI8ylx8rGUODugxElERPxDarztWGU9FYgQEWk2JU4+lpZQU1mvwNxAREREgJQ4G2vrFojQIu0iIs2ixMnHUuLcidP6vCIqHU6ToxERkUAXFRZMeZdTKHcFYSk7BId3mB2SiEi7oMTJxxK7RBAVFkR5lZMt+cVmhyMiIsIpCV3Z4Ep0P8lVgQgRkeZQ4uRjFotR2+uUpXlOIiLiB9IT7FoIV0TEQ+0qcdqwYQO//e1vGTt2LGlpaZx33nnMnDmT0tJSs0M7qdqFcJU4iYiIH0iNP5Y4uVRZT0SkWYLMDqC5tm7dytVXX01SUhJ/+tOfiImJYeXKlTz//POsX7+eF154wewQTyiteiHcrNwCcwMREREBBveKYr1RXVlvTyY4KsEabG5QIiJ+rkWJ088//8zq1avJz8+nrKyMmJgY+vXrx/Dhw4mMjPR2jAB88sknlJeXM2PGDHr37g3A6NGj2b9/P++++y6FhYXYbDafvHZrpVQnTpv2FFNW6SAs2GpyRCIiEshCg6yE9xxAwYEI7I6jkL8OYoeZHZaIiF9rduJUWFjIu+++y7vvvkteXh6uRsqXBgUFMX78eK677jpGjx7t1UCDg93fhB2fmEVFRWGxWGr3+6M4eye6RIRw8GgFG/cUMax3jNkhiYhIgEtNsJO5L5kzrWvd85yUOImInFSzEqfXX3+dWbNmAXDBBRcwYsQIhgwZQufOnQkNDaWwsJDs7GwyMjJYuHAhN998M2PGjOHPf/4zffr08Uqgl1xyCf/+97959NFH+Z//+R9iYmJYsWIF7777Lr/61a8IDw/3+JoOh6NFsdSc58n5Q+Oi+X7LATKzD5MaF92i1/UXLWl/R6L2q/11fwea1rY/UN83f5QWbydjZTJnstZdWW+42RGJiPi3ZiVOb7zxBg888ABTpkxptGena9eudO3alWHDhnHTTTexe/duXnjhBT7//HNuv/12rwQaHx/PO++8w7Rp05g0aVLt9uuuu44HH3ywRdfMyspqVUyenN89yF3A4ru1O0gJO9yq1/UXrX3/2ju1X+0PZIHe/o4gLcHOZ073PCdXzkoMk+MREfF3zUqcPv/8c4KCmj8dqnfv3jz55JNe/WYxJyeHO+64gy5duvDcc8/RuXNnMjMzeeGFFygpKeGJJ57w+JopKSlYrZ7PN3I4HGRlZXl0/qGwfczdsJrc0iDS09M9fk1/0pL2dyRqv9qv9re8/TXni/mSu0Xyc1B/95MDW6CsEML8c66wiIg/aFY29PPPPzN48GCPL+7NDxX/93//x5EjR5g/f37tsLzhw4cTExPDn/70Jy655BJGjBjhcXwtirGq3OPz06rnNW3bf4SyKhcRoe2moOEJtfj96yDUfrVf7Q/c9ncEVotBXFxvsnO7kWDZD3lroO9ZZoclIuK3mrWO06WXXspll13GW2+9RXFxsa9jatTGjRtJTk5uMJcpJSUFcCd3bWLLl1ieiqPrrk89Oq17VBi9bGE4XbA+r8hHwYmIiDRfWoKdDJcWwhURaY5mJU633XYbhw4d4vHHH2fs2LHcc889LF261Nex1dO9e3e2bt3K0aNH623PyMgAoEePHm0TyJG9GC4nnXO+8vjUlDj3EIi1OQVeDkpERMRzqfG22oVwyV1tbjAiIn6uWYnTXXfdxbfffsucOXOYMGECX375JTfddBMTJ07k+eefZ8+ePb6OkxtuuIHDhw9z880389lnn7FkyRJefPFFnnzySfr168f48eN9HgMAfc4AIOLwRqgs8ejUtAQ7AJk5hd6OSkRExGNp8XYy6hSIoJGlRkRExK1ZiROAYRiMHz+eZ599lh9++IEHH3wQm83Gc889x6RJk/j1r3/NggULqKys9EmgEydO5LXXXiMyMpInnniC22+/nXnz5nH11Vfz5ptvEhIS4pPXbaBzX1zRsVhcVZC9zKNTa3qcstTjJCIifiA+phN7Og2gymXBOLIXivLMDklExG+1qEJBdHQ01157Lddeey2bNm3igw8+4NNPP+Wuu+7CbrezZMkSb8cJwKhRoxg1apRPrt1shoGrzziMrHcxdv4A/Sc1fU611Hh34rTzYAmFJZXYwv130V4REen4DMNgYEJ3Nu9IYIixyz3PyRZndlgiIn6p2T1OJzJo0CAuuugizj77bAAKCgpae0n/lzgWAGPnYo9Os4eH0KeLu7hFVq6G64mIiPlS6wzXI3elucGIiPixFtfEPnToEB9//DEffPABW7duxWq1MmHCBKZOnerN+PySK3Gc+0HeGigvhtCoZp+bEmdj18ESMnMKGNu/q48iFBERaZ60BBufu5L5FQtVIEJE5CQ8SpycTieLFi3igw8+4LvvvqOyspLExETuvvtuLr30Urp2DZBEwN6b8k49CS3dC7uXQv9zmn1qWrydT9fuIUsFIkRExA+kxtt5sqZARN5qDKcDLFqjS0TkeM1KnHbs2MEHH3zARx99xIEDBwgLC+MXv/gFl19+OaeffrqvY/RLxV3TCc1eADsWeZQ4pcSrJLmIiPiPrpGhlEX35UhZGJEVR2H/ZuhxitlhiYj4nWYlTueffz4AqampTJ8+nSlTphAREeHTwPxdcZd0umYvAA/nOQ2Ns2EYkFdYxv7icrpFhfooQhER8bVly5Zx/fXXN7rv3XffJT09vW0DaqGU3p3J2tSX0dYN7gIRSpxERBpoVuJ0ww03MHXqVPr37+/reNqN4q7D3A/2ZEJZIYTZmnVeZGgQyd0i2brvCFm5BZw9qI0W7hUREZ+5++67GTlyZL1t7ememRZvJ2NjMqPZ4C4Qcep1ZockIuJ3mpU4PfDAA41u3759O4cPH2bw4MGEh4d7NTB/V9mpG67OyRiHtsGun2Dg+c0+NzXextZ9R8jMLlTiJCLSAfTp06fd9C41JjXezmvOZPeT3FXmBiMi4qdaVI58/vz5jB8/nilTpnDttdeyY8cOAH7/+9/z3nvveTVAf+aqLkvODs+G66XF2wGVJBcREf+QEm9jrcudOLnyN0BFickRiYj4H4/LkX/++efcf//9nHXWWYwfP57HH3+8dt+QIUP4/PPPufLKK70apN/qMxZW/xt2LvLotLoFIlwuF4Zh+CI6ERFpI48//jh33303YWFhDBs2jDvuuKNFxZMcDkeLXr/mvJae3ynIILJbH/YWxtCTwzhy10Bvkxec90Br29/eqf1qf93fgai170Fzz/M4cZozZw6XXXYZTzzxBA6Ho17i1LdvX9544w1PL9lu1fY47V0HJYcgvHOzzjulVzRBFoMDRyrYU1hGrL2TD6MUERFfiYqK4vrrr2fkyJHY7XZ27drFyy+/zPXXX8/s2bMZN26cR9fLyspqVTytOT+uUxWZh5PpaV1J3opP2HcorFWxmKG17197p/ar/YHO1++Bx4nTtm3buOeeexrdZ7fbKSgoaG1M7UdkD+g6EA5shl0/wuALm3VaWLCVAT2i2LCniLU5BUqcRETaqVNOOYVTTjlWge7000/nnHPO4cILL+Svf/2rx4lTSkoKVqvnayg5HA6ysrJafD7AhLLdZOT041zrSuLYQ2w7mrPljfa3Z2q/2h/I7YfWvwc15zfF48SpU6dOFBcXN7ovPz8fm6151eU6jKRx7sRpx+JmJ07gXql9w54iMnMKOW9oLx8GKCIibSk6OpqzzjqLd955h7KyMsLCmt9zY7VaW/XBpzXnp/eO4anqeU5G3mos7fADWGvfv/ZO7Vf7A7n94Pv3wOPiEMOGDeM///kPLperwb4PP/yQESNGeCWwdiOx+ttED9dzSomzA5CVowIRIiIdTc09sj3NYR3UK4pNRl+cLgOjYDcc2W92SCIifsXjxOnOO+8kIyODqVOn8sYbb2AYBl9++SW33347K1eu5Pbbb/dFnP6rJnHatwGOHmj2aanHFYgQEZGOobCwkO+++47BgwcTGtp+FjkPDbLSu1dPtrpi3RtUllxEpB6PE6eUlBReeuklSkpKeOqpp3C5XMyePZsdO3YwZ84cBgwY4Is4/VdEF+g+xP3Yg16ngT2jCAmyUFRWxa6DKvsqItIe/fGPf+Rvf/sbCxYsYNmyZbz33ntcddVVHDx4kHvvvdfs8DyWGm8nU+s5iYg0yuM5TgCjRo3i888/Z/fu3Rw4cICYmBiSkpK8HVv7kTQO9q13z3MacmmzTgm2WjilVzQZ2QVk5hSQ2DXCx0GKiIi3DRw4kM8++4x33nmHkpISbDYbp512Gs888wypqalmh+ex1HgbmSuSuYJFkLvS7HBERPxKixKnGr1796Z3797eiqX9ShwHy170eJ5TWryNjOwC1uYUcnF6nI+CExERX7n11lu59dZbzQ7Da9IT7Lzm7AeAK3cVhssF7WieloiILzVrqN5nn33m8YXz8/NZtSpAuvkTzwAMOLAFivc2+7SUeDugAhEiIuIf+naLJCc4kTJXMEZZIRzabnZIIiJ+o1mJ0+OPP87FF1/M3LlzOXLkyEmPXbduHY899hjnnnsumzZt8kqQfq9TDPRMcT/e+UOzT0urLhCxLq8Qh1MFIkRExFxWi8Hg+C6sc1UPv8/RcD0RkRrNGqr31VdfMWPGDP7yl7/w+OOP1y7416VLF0JCQigsLCQ7O5uMjAz2799P//79mTFjhscL/7VrSeNh71rYsQhSpjbrlL7dIokIsXK0wsG2/UcY0CPKx0GKiIicXFq8nczdyZxu2eIuEJF2ldkhiYj4hWYlTlFRUfzpT3/izjvv5MMPP+T7779n/vz5lJaW1h6TkJDAuHHjuPDCCxk1apTPAvZbieNgyUyP5jlZLQZD4mws33GIzOwCJU4iImK61Hg7X9RW1lOPk4hIDY+KQ9hsNm666SZuuukmAIqLiykrK8NutxMcHOyTANuNPqPBsLjHgxfmgq15xR7S4t2JU1ZuIVecnuDjIEVERE4uLcHGUy534uTam4VRVQ5B7Wc9KhERX/F4Hae6oqKi6Natm5ImgDAb9Ep3P/ag16mmQESmCkSIiIgfiLN3oqRTPAddURiOCshfZ3ZIIiJ+oVWJkxwnqXpO147mJ041BSI25hVRUeX0RVQiIiLNZhgGqQl1FsLNCZAKuSIiTVDi5E2J492/dy5q9im9O4dj6xRMhcPJlvxiHwUmIiLSfGl1E6dcJU4iIqDEybt6jwJLEBTshsO7mnWKYRikVvc6ZeYU+DA4ERGR5kmLt5PpUuIkIlKXEidvCo2E2FPdjz2Y51STOGkhXBER8Qep8TYyanqcDv4MpYfNDUhExA8ocfK2FsxzSomzAyoQISIi/qFLZCiRMd3Z6ezh3pC3xtyARET8gMeJ0//+7/+yfft2X8TSMSRWJ047F4PL1axT0hLcPU5b8ospq3T4KjIREZFmqzdcTwUiREQ8T5zmz5/PlClTuOmmm/j6669xNTM5CBgJI8ESDEW57jWdmqFndBhdI0NxOF2szyvycYAiIiJNS0uoM1xP85xERDxPnBYvXsxDDz3E/v37mTZtGmeffTZz5szh0KFDvoiv/QkJh/jh7sfNnOdkGEZtWfK1KhAhIiJ+IDX+uMp6+qJURAKcx4lTeHg4v/rVr/j000959dVXGTJkCP/85z8566yzuP/++8nKyvJFnO1LS+Y5qUCEiIj4kaFxNtaTSKXLCkf3QWG22SGJiJiqVcUhRo8ezcyZM1m4cCHDhg3jo48+4sorr+SKK67gm2++8VaM7U9L5jnF2wGVJBcREf8QGRpEn+6d2ejq7d6g4XoiEuBalTiVlZUxd+5cbr/9dpYtW0ZycjJ33nknDoeDO++8k1mzZnkrzvYlfjhYQ+FIPhzY0qxTanqcth84SnFZpS+jExERaZZ6w/VyVpobjIiIyVqUOO3evZsnn3yS8ePH88gjj9CzZ09eeeUVPv30U6ZNm8aHH37ILbfcwptvvunteNuH4DBIGOF+vGNRs07pGhlKnL0TLhesy1WBCBERMV9agp0MZz/3k9zV5gYjImIyjxOn3/zmN5x33nm8//77XHzxxSxYsIAXX3yRMWPG1DtuwoQJHD4cwAvmJY13/27JQri5BT4ISERExDNp8TYyqkuSu/ZkgKPK3IBEREwU5OkJ2dnZPPDAA1x22WVERESc8Lj+/fvz+uuvtyq4dq12ntMP4HSCpekcNSXexufr9mohXBER8QuDekaTY4mjyNWJ6MoS2L8ReqaYHZaIiCk8Tpy++OKLZh0XGRnJiBEjPA6ow4g7DYLDoeSg+0bTY0iTp9QUiFBJchER8QchQRYGxdpZu7cvY63r3QUilDiJSIBqVXEIOYmgEPdiuNDssuRD49xD9bIPlXL4aIWvIhMREWm2tHgbmS4thCsi4nGP09lnn41hGI3us1gsREVFkZKSwvXXX09ycnKrA2zXksbB9m/d85xG3d7k4bZOwSR1jWDHgaOszS3kzAHd2iBIERGRE0uNt/PFsuoCETlKnEQkcHnc4zRixAhcLhf5+fnExcWRlpZGbGws+fn5OBwOevXqxVdffcXll1+uxXATawpEVM9zaobaAhEariciIn4gPcFGRnVJctf+jVB+xOSIRETM4XHiNHbsWEJCQvjqq694/fXX+fvf/84bb7zBl19+SUhICJMmTeKLL74gMTGRGTNm+CLm9iM2HUIioawA8puXRKZUD9dTgQgREfEHfbtGUhrajTxXZwyXE/ZkmB2SiIgpPE6cXnzxRaZPn06vXr3qbY+NjeXOO+9kzpw5REVFceONN5KRkeGtONsnazD0Hu1+3Mx5TmkJdkAFIkRExD9YLAYpcbY66zlpuJ6IBCaPE6ddu3YRGRnZ6L7o6Ghyc3MBiIuLo7S0tHXRdQRJNWXJm5c4DYmNxmJAflE5+UVlPgxMRESkeVITbGQ6VSBCRAKbx4lTbGws8+bNa3TfBx98UNsTVVBQgM1ma110HUHNek67fmrWwoHhIUH07x4FwFoN1xMRET+QFm8/1uOkAhEiEqA8rqr361//mj//+c9cffXVnHfeeXTt2pUDBw6wYMECMjMzefzxxwFYtmwZQ4cO9XrA7U6vNAi1QXkh7M10r+/UhNR4G5vzi8nKKeCcU3q0QZAiIiInlpZgJ8uVhMNlYC3KgeK9ENXT7LBERNqUx4nTlVdeicvlYsaMGTz11FO127t27cpjjz3GFVdcAcDtt99OSEiI9yJtryxW6DMGtnzunufUzMRp7qocFYgQERG/EGsLIzwymp8r4hlkZLuH6w2aYnZYIiJtyqPEyeFwsHv3bs4//3yuvPJKtm/fTkFBAXa7nb59+9Zb36lr165eD7bdShrnTpx2Loaxf2jy8NR4OwBZuYW4XK4TrpslIiLSFgzDIDXeTsbWZAZZlDiJSGDyaI6Ty+ViypQprFmzBsMwSE5O5rTTTiM5OVkf7k+mdp7TEnBUNnn4oF5RBFsNDh2tIOewCmyIiIj50uLtZLpUIEJEApdHiVNQUBBdu3bF5XL5Kp6OqcdQ6BQDlUchb02Th4cGWRnUMxpQgQgREfEP9SvrrW72wu4iIh2Fx1X1pkyZwvz5830QSgdmsUCfM9yPdyxq1ikp8e6KhGtzC3wUlIiISPOlxdvZ7Eqg1BUC5UVwcKvZIYmItCmPi0MMGjSIzz77jOuvv57JkyfTrVu3BsP0Jk+e7LUAO4yk8bDpU/c8p/H3NHl4WryNt5bB2mz1OImIiPk6R4QQ2zmSrCNJjDA2u4frdRtgdlgiIm3G48TpvvvuAyA/P5/ly5c32G8YBhs3bmx9ZB1N0nj3793LoKocgkJPenhNgYh1uYU4nS4sFs0hExERc6XG28nY0I8Rls2QuxLSf2l2SCIibcbjxOn111/3RRwdX7dBENENju53f0vXZ8xJD+/fPZKwYAvF5VXsOHiU5G6RbRSoiIhI49Lj7WSsU4EIEQlMHidOI0aM8EUczbZy5Upmz55NRkYG5eXl9OzZk4svvpg777zT1LiaZBiQOBbWz3Ov59RE4hRktTAk1saqXYfJyilU4iQi0k7MnTuXhx56iPDwcNasabogUHuSGm/j3zWV9faug8oyCA4zNygRkTbicXGIGsXFxSxevJiPP/6YwsK2mYfzySefcN111xEVFcXTTz/NnDlzuOWWW9pPlb+asuQ7Fzfr8JQ4d4GIzJwCHwUkIiLelJ+fz9NPP0337t3NDsUnhsbZyKMr+13R4KyEvVlmhyQi0mY87nECmDVrFi+99BJlZWUYhsH777+PzWbjhhtu4IwzzuDWW2/1dpzk5+fz5z//mauuuopHH320dvuoUaO8/lo+UzPPKXt5s76lS0uorqynkuQiIu3CI488wumnn47dbueLL74wOxyviwgNon/3aDIPJTPJusY9XC9huNlhiYi0CY97nP7zn/8wa9Yspk6dyuzZs+v19kyYMIHvvvvOm/HVmjt3LiUlJdxyyy0+uX6b6NIPInuCoxxyGhbWOF5KnB2A9XmFVDm0XoaIiD/76KOPWL58eb0v9zqi1HgbGc5+7ie5K80NRkSkDXnc4/Sf//yHG2+8kXvvvReHw1FvX58+fdi1a5fXgqtrxYoV2O12tm/fzm9/+1t+/vlnbDYb55xzDvfeey+RkZ7PATo+fk/Pa8n5RuJYLOvex7n9e1y9zzjpsX1iwogMDeJIeRWb9xYxqGdUi+L1tta0vyNQ+9X+ur8DTWvb31Hft4MHD/LEE0/wxz/+kZ49e5odjk+lJtj5co0KRIhI4PE4ccrOzmbcuHGN7ouIiKCoqKjVQTUmPz+f0tJSfv/733PbbbeRnp5OVlYWM2bM4Oeff+att95qsJ5UU7KyWjc2uyXnd7H0IRE4uv4LttgvaPL4xGgL6/bDf5dkUZYU7nmQPtTa96+9U/vV/kAW6O0/3mOPPUZSUhLXXHNNq65jxhd6nkqJjeKvzr7uJ4e24yjeD+Gdff66J6MvNNT+ur8DTaC3H9ruSz2PE6eoqCgOHDjQ6L7c3Fy6dOni6SWbxeVyUV5ezrRp02rnUI0cOZLg4GCeeOIJlixZwpgxJ69Ud7yUlBSsVqvHsTgcDrKyslp2fm8brP0/Igs2kT5kAASfPBkavXcz6/bvoMBiIz19iMex+kKr2t8BqP1qv9rf8vbXnN+RfPHFF3zzzTfMnz/f4y/wjmfGF3qeqnS6KLFEss3Zi2TLHrb/8D5F3c2tuFujo/235Sm1X+0PdL5+DzxOnEaPHs2//vUvJk6cSGioexFXwzCoqqri7bffZuzYsV4PEsButwM0uP748eN54oknWL9+vceJk9VqbdUHnxad3zUZouMxinKw5q6A5LNPenh6Qgywg3V5RX73Ia217197p/ar/Wp/4La/xtGjR3n88ce57rrr6N69e+2oi8rKSgCKiooICgoiPLx5IwZM+UKvBYYuX0Lm3mSS2UNyWAGu9HSfv+bJ6AsNtV/tD9z2Q9t9qedx4vS73/2OqVOnMmXKFCZNmoRhGLz55pts3LiRvLw8nn32WY+DbY6BAweSkZHRYHtNcQqLpcWV1duWYUDSOMh8272eUxOJU2q8u7Lexj1FlFc5CA0KzP8hRET80eHDhzlw4ACvvPIKr7zySoP9w4cPZ+LEiTz//PPNup4pX+i1QFq8ncy8ZC6z/oAlbzX4yYe1QE/o1X61P5DbD75/DzzONvr06cPbb79N3759efvtt3G5XHz00UfExMTw1ltvERsb64s4mTx5MgCLFi2qt73meVpamk9e1yc8WM8pPqYTMeHBVDpcbNpT7OPARETEE926deP1119v8DN27FhCQ0N5/fXX+cMf/mB2mF6XGm8nw1mnQER7WU9RRKQVWrSOU79+/Xj55ZepqKjg8OHD2Gw2wsJ8u3L42LFjmTBhArNmzcLpdJKens66deuYOXMmEyZM4PTTT/fp63tVUnXilLsayosh9MTV8gzDICXezqIt+1mbW0hagr1tYhQRkSaFhoYycuTIBtvnzZuH1WptdF9HkJZgZ6OrDxWuIEJKDkLBLohJNDssERGfatX4tpCQEHr06OHzpKnGs88+yw033MB7773HLbfcwttvv82NN97Ic8891yav7zX23mDvAy4H7F7a5OFp1cP11mYX+DgwERGRpvXtGkFoaCc2uPq4N+RoPScR6fha1OOUk5PD559/Tl5eHmVlZfX2GYbBE0884ZXgjhcWFsY999zDPffc45Prt6mkcbBmF+xYBP3POemhqfF2ALJyC9sgMBERaa2nnnqKp556yuwwfMZiMRgaZyNjdzLplm3uERQpU80OS0TEpzxOnL777jumTZuG0+mkc+fOhISE1Nvf2lKsASNxPKx5s1nznGoKRGzJL6akoorwkBbluyIiIl6TlmAnc2fNPCf1OIlIx+fxJ/B//OMfnHrqqfzjH//w2ZpNAaFmntOeTCgrhDDbCQ/tER1Gj+hQ8ovKWZ9XxPBEcxcaFBERSYu38Yyrn/vJnkxwVII12NygRER8yOM5Trt27eKWW25R0tRa0bHQORlcTtj1U5OHp8TZAVibo+F6IiJivrQEOztdPSh0RUBVGezbYHZIIiI+5XHiFBsbS0lJiS9iCTw1vU47mh6uV1sgIqfAhwGJiIg0Ty9bGF0iO5Hp7OveoAIRItLBeZw43XbbbbzyyiuUlpb6Ip7AUrue06KTHwekVpchz1KPk4iI+AHDMEiLt5HhqpnntNrcgEREfMzjOU5ZWVkcPHiQc845h5EjRxITE9PgmIceesgrwXV4NYnT3nVQcgjCTzx3KSXO3eO0/cBRCksrsXXSOHIRETFXWoKdzC0qECEigcHjxOnNN9+sffzf//63wX7DMJQ4NVdUD+g6EA5shl0/wuALT3ho54gQEjp3IvtQKetzCxnTr2sbBioiItJQaryN153VBSL2b4ayIgiLNjcoEREf8Thx2rRpky/iCFxJ49yJ047FJ02cAFLj7GQfKiUzR4mTiIiYLzXezgFs5Li6Em8cgD0ZkDTe7LBERHzC4zlO4mW185yav56TCkSIiIg/6BwRQu/O4WQ4q4frqUCEiHRgzUqcVqxYwdGjR5s87tChQ7z//vutDiqg1CRO+zbA0QMnPTSlNnFSgQgREfEPqfE2MmqG6+WuMjcYEREfalbidP3117Nt27ba506nk6FDh7JhQ/01G7Kzs3n44Ye9G2FHF9EFug9xP26i1yklzoZhQG5BKQePlLdBcCIiIieXnmAn06nKeiLS8TUrcXK5XA2eV1VVNdguLdTM9ZyiwoLp2zUCgLW56nUSERHzpcbbWedKpAoLFOdBUZ7ZIYmI+ITmOPkDj+Y52QFYm63ESUREzDc0LppyI4wtzgT3Bg3XE5EOSomTP0g8AzDgwBYo3nvSQ2sKRGTlFvg+LhERkSaEhwQxoEcUGc6+7g0qECEiHZQSJ3/QKQZ6prgf7/zhpIfWJE6ZOYUaKikiIn4hNd5GhksFIkSkY2v2Ok7bt2/HarUC4HA4arcdf4y0UNJ42LsWdiyClKknPOyUXjasFoP9xeXsLSqjl61TGwYpIiLSUGq8nTdWVReIyMsApwMsVlNjEhHxtmYnTg888ECDbffee2+95y6XC8MwWh9VIEocB0tmNjnPqVOIlf7dI9m0t5i1OYVKnERExHTpCXb+7IqnhFDCK4rdQ8+7DzY7LBERr2pW4vTkk0/6Og7pMxoMCxzaDoW5YIs74aFp8fbqxKmAc4f0bMMgRUREGhrYM4qgoCDWOvsyyrLRPVxPiZOIdDDNSpwuvfRSX8chYTbolQ55q929TmlXn/DQ1AQb767M1kK4IiLiF4KtFobERpORl+xOnHJWwrBrzQ5LRMSrVBzCnzRzPafUODsAWbkqECEiIv4hLd5OhlMFIkSk41Li5E8Sx7t/71x00sMG9owixGqhoKSS7EOlbRCYiIjIyaXG28h0VheIyF8Plbo/iUjHosTJn/QeBZYgKNgNh3ee8LCQIAuDe0UBkJlT0DaxiYiInERagp09dGafyw4uB+zJNDskERGvUuLkT0IjIfZU9+OmhuvF2wFYq8RJRET8QFKXCKJCg8mo6XXScD0R6WCUOPmbmnlOTZQlT6leCFcFIkRExB9YLAYp8TYlTiLSYXmUOJWVlXH11Vfz008/+SoeSaxTIOIkhR/Sqnuc1uUW4nCqQISIiJgvLcFOhqu6QETOSnODERHxMo8Sp7CwMLZs2YLVqtXAfSZhJFiCoTjPvabTCfTrHkmnYCtHKxzsOHCkDQMUERFpXFq8jSxnX/eTgl1w9IC5AYmIeJHHQ/WGDRvG2rVrfRGLAISEQ/xw9+MdJ66uZ7UYDI2LBiAzW8P1RETEfKnxdooJZ6sr1r1Bw/VEpAPxOHG67777ePfdd5k/fz5Hjx71RUzSzHlOKhAhIiL+pJctjG5RoVrPSUQ6pCBPT7jqqquorKzkgQce4IEHHiAsLAzDMGr3G4bBqlX6Q9kqiePg+6ePzXOq8/7WlVpTICJXPU4iImI+wzBIi7eRsSWZqdZFSpxEpEPxOHE699xz6yVK4gPxw8EaCkf3wYEt0G1go4fV9DhtyCui0uEk2KoiiSIiYq60eDtfbqpTWe8kXwCKiLQnHidOTz31lC/ikLqCwyBhhHuo3o5FJ0ycEruEExUWRHFZFVvyixkSa2vjQEVEROpLTbDznKs3FQQTUnrYXeioS7LZYYmItJq6KPxV0nj375PMczIM49hwPa3nJCIifiA1zkYlQaxz9nFv0HA9EekgPO5xqrFlyxa2bdtGeXl5g32XXHJJa2IScCdO3/4Fdv4ATidYGs9xU+Pt/Lj1IGtzCvnliDaOUURE5DgxESH06RJORmE/TrVsdSdOqVeaHZaISKt5nDiVlpZyxx13sHTpUgzDwFW9SGvdeU9KnLwg9lQIDoeSg7B/I/QY0uhhqXE1PU4FbRiciIjIiaXG28k4XGeek4hIB+DxUL3nn3+e3Nxc3nzzTVwuFzNnzuTVV1/lnHPOoU+fPsybN88XcQaeoBDoPcr9eMeJh+ulJtgB2Ly3mLJKRxsEJiIicnJp8TYyXdWJ0561UFVhbkAiIl7gceK0cOFCbrnlFoYNGwZAr169GD16NM899xxDhgzhrbfe8nqQASux6fWcYm1hdIkIocrpYuOeojYKTERE5MTSEuzscvWgkEhwlEP+OrNDEhFpNY8Tp9zcXPr27YvVasUwDEpLS2v3XXjhhSxcuNCrAQa02gIR1fOcGqECESIi4m+GxEZjMQzWODRcT0Q6Do8Tp6ioKEpKSgDo0qULu3btqt1XVVVVu0+8oFc6hERBWQHkZ53wsJr1nJQ4iYiIPwgPCWJAj6hjw/WUOIlIB+Bx4jRw4EB27twJwMiRI5k9ezYrV65k7dq1zJo1i0GDBnk7xsBlDYI+o92PTzbPKV4FIkREzLBx40ZuvfVWzjrrLFJTUxkxYgRXXXUVH330kdmhmS4t3s4apxInEek4PK6qd/nll9f2Mv3hD3/gmmuu4brrrgMgOjqaOXPmeDfCQJc4Dn7+0j3Pacy0Rg9JqU6ctu4/wtHyKiJCW1xlXkREPFBUVETPnj2ZMmUKPXr0oLS0lE8++YR7772X3Nxcfvvb35odomlSE2z838rqxOnAFigtgE52M0MSEWkVjz9hX3DBBbWPExIS+OKLL2pLkw8bNgy73e7N+CSpukDErp/AUeXuhTpO96gwetnC2FNYxrrcQkb27dLGQYqIBKaRI0cycuTIetsmTJhATk4O7733XkAnTmnxdg4RTTY9SCAf8tZA8gSzwxIRaTGPh+odLzw8nLPPPpsJEyYoafKFnqkQZoPyItibecLDVCBCRMR/xMTEYLVazQ7DVAN7RhEaZGGNo697g4briUg7pzFd/s5ihT5nwObP3POc4k5r9LDUeDtfrM9nba4SJxGRtuZ0OnE6nRQVFfH555/zww8/8PDDD3t8HYejZevx1ZzX0vN9wQKc0iuKzLxkLrIuwZWzEqeP4vPH9rcltV/tr/s7ELX2PWjuec1KnAYNGoRhGM26oGEYbNiwoVnHSjMljnMnTjsXw9g/NHqICkSIiJjn0Ucf5d133wUgODiYBx98kKuvvtrj62RlnbiCaluc7229QitZ4+wHQNWupaxdswaa+XmiJfyt/W1N7Vf7A52v34NmJU533nlnsxMn8YHaeU5LwFEJ1uAGh6TG2d2HHCyhsKQSW3jDY0RExDduv/12rrjiCg4dOsQ333zD//7v/1JaWsqvf/1rj66TkpLSoiF+DoeDrKysFp/vKxPJ409bC6jCSnD5YdL7dgNbvNdfx1/b31bUfrU/kNsPrX8Pas5vSrMSp+nTp3scgHhR9yHQqTOUHnJPrk0Y0eAQW3gwfbqEs+tgCWtzCxjXv5sJgYqIBKbY2FhiY2MBOPPMMwH4+9//zqWXXkrnzp2bfR2r1dqqDz6tPd/bhvWOoZwQNrl6M9TYgXXPGujcx2ev52/tb2tqv9ofyO0H378HrS4OIW3AYoHEM9yPdyw64WFaCFdExD+kpqZSVVVFdna22aGYKrFLBFFhQWSoQISIdAAeF4eYP39+k8dccsklLQhFTipxPGz8xD3Pafw9jR6SGmfjk8w8zXMSETHZsmXLsFgsJCQkmB2KqSwWg9R4G5k7krmWhUqcRKRd8zhxuv/++xvdXncOlBInH6iZ57R7GVSVQ1Bog0NUklxEpG09/PDDREZGkpKSQteuXTl8+DALFizgs88+49e//rVHw/Q6qrR4O19ucxeIIG/NCdckFBHxdx7/5Vq4cGGDbYcPH2bhwoV89tln/OMf//BKYHKcboMgohsc3e/+xq7PmAaHDImzYRiwp7CMfcVldI8KMyFQEZHAkZ6ezocffsi8efMoLi4mPDycQYMG8cwzz3DxxRebHZ5fSI2386IrlqN0IqKyBA5shh5DzA5LRMRjHidOcXFxjW4bOnQoVVVVvP766zz11FNeCU7qMAxIHAvr57nXc2okcYoMDaJft0h+3neErJxCJg5W4iQi4kuXX345l19+udlh+LW0BBtOLKx1JjHasgFyVipxEpF2yavFIUaPHs0333zjzUtKXYnVw/V2Lj7hISoQISIi/qRndBjdo0Jr13PSPCcRaa+8mjjl5uZisahQn88kjXf/zl4OlWWNHqKFcEVExJ8YhkFqvJ1MZ7J7gxInEWmnPB6qt2LFigbbKioq2Lx5M7Nnz2b06NFeCUwa0aUfRPaEI3shZ/mxRKqOugUiXC6XFi4WERHTpSfYeH1jdY/Tvg1QcRRCIswNSkTEQx4nTtddd12DD+MulwuAMWPG8PDDD3snsmaYO3cuDz30EOHh4axZs6bNXtc0huGurpc11z3PqZHEaXCvaIIsBgePVpBXWEacvZMJgYqIiByTGm9nHzHsM7rQ3XUQ9mQ2OldXRMSfeZw4vf766w22hYaGEhcXR9euXb0SVHPk5+fz9NNP0717d44cOdJmr2u6xOrE6QTznMKCrQzsGcX6vCLWZhcocRIREdPVjIZYXdWX86wH3QUilDiJSDvjceI0YsQIX8ThsUceeYTTTz8du93OF198YXY4badmPaeclVBRAiHhDQ5Jjbe5E6fcQs5P6dXGAYqIiNRnDw8hsUs4GQXJnGddoXlOItIueVzJYceOHSxfvrzRfcuXL2fnzp2tjalJH330EcuXL+fRRx/1+Wv5nZgkiI4HZyVkL230kGOV9QraLi4REZGTSI23k+lSgQgRab887nF66qmnSExMbLTn6dtvv2XHjh28+OKLXgmuMQcPHuSJJ57gj3/8Iz179mzVtRwOR6vOa+n5rWUkjsWy9h2c2xfhSjyzwf6hvaIAd4GIqqoqrxeIMLv9ZlP71f66vwNNa9sfqO+buEdD/COzL04MLIXZUJwPUT3MDktEpNk8TpyysrK44oorGt03fPhwPvnkk1YHdTKPPfYYSUlJXHPNNa2+VlZWlqnnt1QXS28SgZINX7C584UN9lc5XYRYoLisis9/WEVslMf/zM1iVvv9hdqv9geyQG+/eC49wc5ROrGDeJLJhrzVMPB8s8MSEWk2jz9RFxcXEx7ecF4NQFhYGIWFvlt49YsvvuCbb75h/vz5XulFSUlJwWq1enyew+EgKyurxee3WmIXyHiGiILNpA9OhtCoBocMWb6ENdmFVEXHkp4W69WXN739JlP71X61v+XtrzlfAs+QWBtWi8Gqqr4kB2W75+oqcRKRdsTjxKlHjx6sXbuWMWMaVsNZu3Yt3bp180pgxzt69CiPP/441113Hd27d6eoqAiAyspKAIqKiggKCjphUtcYq9Xaqg8+rT2/xbokgr0PRsEurLkroP85DQ5JjbezJruQdXnFXHqqb2I0rf1+Qu1X+9X+wG2/eK5TiJX+3SPJ2N+PK/le85xEpN3xuDjEpEmTmDNnDkuX1i9MsGzZMl566SXOOafhh3hvOHz4MAcOHOCVV15h+PDhtT+ffvopJSUlDB8+nHvuuccnr+2Xaqrr7VjU6G4ViBAREX+TnmAn01ldICJvNTid5gYkIuIBj3uc7rzzTn744QduuukmEhMT6dmzJ3v37mXnzp3069eP6dOn+yJOunXr1ugaUnPmzGHFihW89NJLxMTE+OS1/VLieFjz5gnXc0pLcK+ZsS63CIfThdXi3QIRIiIinkqNt/P+ingqCCGkrBAObYOu/c0OS0SkWTxOnKKionj33Xd57bXXWLx4MXl5ecTExDB9+nRuuOEGIiIifBEnoaGhjBw5ssH2efPmYbVaG93XodX0OO3JhLJCCLPV3901kogQK0crHGzdd4SBPRvOgxIREWlLaQk2qghiHUmcymb3cD0lTiLSTrSo3FpERAR33nknd955p7fjkeaKjoXOye5v63b91GCCrdViMDTOxrIdh1ibU6DESURETDegRxShQRZWV/Xl1KDN7gIRaVebHZaISLN4PMepRnFxMYsXL+bjjz/2aSW9pjz11FOsWbPGtNc3Ve08p8aH66XGu3uh1uaY9+8jIiJSI9hqYUhsNBnOfu4NKhAhIu1IixKnWbNmMW7cOG655Rbuu+8+cnJyALjhhhuYM2eOVwOUk0isTpx2qkCEiIi0D2kJdjJc1QUi9mZBVbm5AYmINJPHidN//vMfZs2axdSpU5k9ezYul6t234QJE/juu++8GZ+cTE3itHcdlBxqsLumx2njnmIqqlS5SEREzJcWbyfH1Y1CIxqcle7kSUSkHWhR4nTjjTfy0EMPMXbs2Hr7+vTpw65du7wWnDQhqgd0HQi4YNePDXb37hyOPTyYCoeTzXuL2z4+ERGR47i/1DNY7ajuddJwPRFpJzxOnLKzsxk3blyj+yIiImoXppU2cpJ5ToZhkBJXPc8pt6ANgxIREWlcYpcIosOCWKPESUTaGY8Tp6ioKA4cONDovtzcXLp06dLqoMQDtfOcmigQka0CESIiYj6LxSA13k5mzTynnJXmBiQi0kweJ06jR4/mX//6FyUlJbXbDMOgqqqKt99+u8HwPfGxmsRp3wY42jChrS0QkavESURE/ENago0MZ3XidGhbo/N0RUT8jceJ0+9+9zvy8vKYMmUKTz31FIZh8Oabb3LFFVewa9cufvvb3/oiTjmRiC7QfYj7cSO9TjU9TlvyiymtcLRlZCIiIo1KjbdTSCS5ll7uDXmrzQ1IRKQZPE6c+vTpw9tvv03fvn15++23cblcfPTRR8TExPDWW28RGxvrizjlZE4yz6lndBjdokJxOF1s2KNeJxERMV9a9WiIFZV93RtylTiJiP8LaslJ/fr14+WXX6aiooLDhw9js9kICwvzdmzSXInjYNmLjfY4GYZBapyNhZv2sTankNP6dDYhQBERkWN62sLoER1KxtFkLrH+qAIRItIutGgB3BohISH06NFDSZPZEs8ADDiwBYr2NNh9bCFc9TiJiIh/SI23k+msUyCizrqQIiL+qFk9TvPnz/foopdcckkLQpEW6xQDPVNg71rY+QOkXlFvd2pCdWW9nAITghMREWkoLd7GjA19qCKIoJIDULAbYvqYHZaIyAk1K3G6//77m31BwzCUOJkhaXx14rSoYeJUvZbT9gNHKS6rJCos2IwIRUREaqUl2CknhJ8tiQx2boXclUqcRMSvNStxWrhwoa/jkNZKHAdLZjZaIKJLZChx9k7kFpSyLreI0claa0tERMyVGmcHYHlFEoODtroLRAy93NygREROolmJU1xcnK/jkNbqMwYMKxzeAYU5YIuvtzs13kZuQSlrcwqUOImIiOls4cEkdY0g81Ay8JUKRIiI32txcYgjR47www8/8Omnn/Ljjz9y5MgRb8YlngqLhth09+NGep1UIEJERPxNaryNTFd1gYi8DHBUmhqPiMjJtKgc+csvv8zMmTMpKyvD5XJhGAZhYWH87ne/46abbvJ2jNJciePc39jtXAzpv6y3q2Yh3LW5BSYEJiIi0lBqvJ2PM3pRYokgvOoo7NsIvVLNDktEpFEeJ07z58/nr3/9K+PHj+fSSy+le/fu7Nu3j/nz5/PMM88QExOj4hBmSRoHPz7baI/T0OoCEdmHSjl0tILOESFtHJyIiEh96Qk2XFjIciUzkrXuL/+UOImIn/J4qN5rr73GL37xC+bMmcP555/Paaedxvnnn8/s2bOZMmUK//73v30RpzRHwiiwBEHhbji8s94uW6dg+naNACArV8P1RETEfKf0smG1GKyoTHJvyF1pbkAiIifhceK0fft2Lrrookb3XXTRRWzbtq3VQUkLhUZC3Gnux430OqXUDNfLLmjDoERERBrXKcTKgB5RZDj7uTfkrjY3IBGRk/A4cQoLC6OwsPEei8LCQsLCwlodlLRC4jj3750nLhCRqQIRIiLiJ9ITbGQ6qwtE7NsI5cXmBiQicgIeJ06nnXYaM2fOJD8/v972/fv3M2vWLE4//XSvBSctkFSdOO1YDC5XvV01BSKyVCBCRET8RGq8nf3Y2W/tDrjc1fVERPyQx8Uh7r77bq6++momT57M6NGj6datG/v372fp0qUEBQUxc+ZMX8QpzZUwEqwhUJwHh7ZDl+TaXUNio7EYkF9UTn5RGT2i1TsoIiLmSqseDbGmqi+TjX3uAhE1XwKKiPgRj3uc+vfvz/vvv8/EiRPJysriww8/JCsri4kTJzJ37lz69evniziluYI7Qfxw9+Mdi+rtCg8JYkCPKEDrOYmIeMOSJUt44IEHOO+880hPT2fcuHHccccdrFu3zuzQ2o0BPSIJC7awskoFIkTEv7VoHaekpCT+/ve/ezsW8ZbEcbDrR/c8p9Prr6uVEmdj095i1uYUcM4pPUwKUESkY3j77bcpKCjg+uuvp1+/fhw6dIhXX32Vq666in/961+MHj3a7BD9XpDVwpBYGxm7VSBCRPxbixIn8XNJ4+D7p47NczKM2l2pCXbmrspRj5OIiBc88sgjdOnSpd62cePGMXnyZGbPnq3EqZnS4u28sysJJxYsRblQtAeie5kdlohIPS1KnDZs2MAnn3xCXl4e5eXl9fYZhsELL7zgleCkheKHQ1AYHN0HB7ZAt4G1u1KrF8Jdm1OAy+XCqJNUiYiIZ45PmgAiIiJITk5mz549JkTUPqUl2HiFMHZZ+5Dk2OGe5xT9C7PDEhGpx+PEaf78+TzwwANYLBY6d+5McHBwvf36IO4HgkIhYYR7jtOORfUSp0G9ogi2GhwuqSTncCkJncNNDFREpOMpLi5mw4YNjBo1yuNzHQ5Hi16z5ryWnm+2Ib3c829XVCaRZNmBM2clrgHnN/v89t7+1lL71f66vwNRa9+D5p7nceL0wgsvcOaZZ/L0009js9k8DkzaSOJ4d9K0czGMuKV2c2iQlUE9o8nKLWRtTqESJxERL3vssccoLS3l9ttv9/jcrKysVr12a883i8vlIiLYYLWjL1davuHI5u/4ufOFHl+nvbbfW9R+tT/Q+fo98Dhx2rdvH4888oiSJn+XNA6+BXb+AE4nWI4VUEyNt1UnTgVMSdUYchERb3n22Wf55JNPePjhhxk6dKjH56ekpGC1Wj0+z+FwkJWV1eLz/cGwjBVkbHMXiIgq+pn0tFQwmlf8tyO0vzXUfrU/kNsPrX8Pas5viseJ0+DBgxssfit+KPZUCA6HkoOwfyP0GFK7Ky3ezn+W7VaBCBERL5o5cyYvvPACd911F9dee22LrmG1Wlv1wae155spPSGGF7bGUWGEEVJxBOvh7fWGmjdHe26/N6j9an8gtx98/x54vI7Tvffey5w5c9i0aZMv4hFvCQqB3tXj63csrrcrJd7dW7gutxCn09XWkYmIdDgzZ85kxowZTJ8+vUVD9MQ9GsKBlc2W6oXbc7Sek4j4F497nNLT05k8eTKXXnop3bp1azBkzzAMPv74Y68FKK2QOA62feOe5zTq2I28f3f3YoPF5VXsOHiU5G6RJgYpItK+zZo1ixkzZnDHHXcwbdo0s8Npt9IS7AAsKU8kJWi9u7LesF+ZG5SISB0eJ05z5sxh9uzZdO7cmdjY2AZV9cSPJI13/z5unlPNYoOrdh1mbU6BEicRkRZ65ZVXeO655xg3bhxnnXUWGRkZ9fanp6ebEld71CM6jJ7RYWQcqe5xylWPk4j4F48Tp9dff53LL7+cxx9/PODHUfq9XukQEgVlBZCfBb3SanelxrsTp8zsQi4dFm9aiCIi7dm3334LwOLFi1m8eHGD/Zs3b27rkNq11HgbGRvcBSLIXw+VpRDcydygRESqeZw4HT16lF/84hdKmtoDaxD0GQ0/f+me53Rc4gSQlasCESIiLfXGG2+YHUKHkpZg58sNXSiyxhDtOAx7s9zrEoqI+AGPi0OceuqpbNu2zRexiC8kjnP/3ln/m9DUeDsA6/MKqXI42zgoERGRhtLi7YDBWqp7nVQgQkT8iMeJ04MPPsg777zD119/TUVFhS9iEm9Kqk6cdv0Ejqpjm7tEEBUaRFmlk5/3HTEpOBERkWNqqr4uKUtyb8hdZWI0IiL1eTxU7/LLL6eqqorp06djGAZhYWH19huGwapV+kPnN3qmQpgNygphbybEnQaAxWIwNM7Gku0HWZtTwOBe0SYHKiIigc7WKZikrhFkHlKBCBHxPx4nTueeey6GYfgiFvEFixX6nAGbP3PPc6pOnABSE2oSp0KuGm5ijCIiItXS4m18c6Cv+8nhnXD0IER0MTUmERHwMHFyOBzcdtttdO7cucH6TeLHEse5E6edi2HsH2o3p8bZAVibowIRIiLiH1Lj7czPiGBPUAK9qrIhbzX0P8fssEREPJvj5HK5mDJlSoN1KsTP1c5zWgKOytrNNZX1Nu0torzKYUZkIiIi9dQshLvaUd3rpAIRIuInPEqcgoKC6Nq1Ky6Xy1fxiC90HwKdOkPlUchbU7s5PqYTMeHBVDpcbNpTbGKAIiIibkNiowmyGCytUIEIEfEvHlfVmzJlCvPnz/dBKOIzFgsknuF+vGNR7WbDMGrLkq/NKWj7uERERI4TFmxlQI8oMp01BSJWgb6wFRE/4HFxiEGDBvHZZ59x/fXXM3nyZLp169agWMTkyZO9FqB4SeJ42PiJe57T+HtqN6fF2/h+y37NcxIREb+RlmDngz29qTKCCSo9BId3QOe+ZoclIgHO48TpvvvuAyA/P5/ly5c32G8YBhs3bmx9ZOJdNfOcdi+DqnIICgUgpbbHSYmTiIj4h7R4G28vD2ZHUDL9KzdB7molTiJiOo8Tp9dff90XcYivdRsEEd3g6H73sIc+Y4BjBSJ+3ldMSUUV4SEe/ychIiLiVTXDyJdXJNLf2OQuEJEy1dygRCTgefwpecSIEb6IQ3zNMCBxLKyf517PqTpx6hEdRo/oUPKLylmfV8TwxM4mByoiIoFuQI9IwoItLK/sy69CUIEIEfELHheHqFFcXMzixYv5+OOPKSzUMK92IbF6uN7OxfU213yzl5ld0LbxiIiINCLIamForI1MV3WBiD2Z9ZbTEBExQ4sSp1mzZjFu3DhuueUW7rvvPnJycgC44YYbmDNnjlcDFC9KGu/+nb0cKstqN6dVD9fLylUCLCIi/iEtwc5OV09KrFHgKIf8dWaHJCIBzuPE6T//+Q+zZs1i6tSpzJ49u96aThMmTOC7777zZnziTV36QWRP9w0o51hhDxWIEBERf+Oeg2uwyTLAvUHD9UTEZC1KnG688UYeeughxo4dW29fnz592LVrl9eCEy8zjGPV9XYcG66XGufucdpx4CiFpRoKISIi5kur/lLvp7I+7g05SpxExFweJ07Z2dmMGzeu0X0REREUFRW1OijxoUbmOcVEhJDQuRMA6zRcT0RE/ECfLuHYOgWz2lFdhlw9TiJiMo8Tp6ioKA4cONDovtzcXLp06dLqoMSHanqcclZCRUnt5toCETkFbR+TiIjIcQzDIDXeRqazukDEgS1Qpi/3RMQ8HidOo0eP5l//+hclJcc+dBuGQVVVFW+//XaD4XviZ2KSIDoenJWQvbR2c81wvSzNcxIRET+RFm/nIDYOBfcEXJC3xuyQRCSAeZw4/e53vyMvL48pU6bw1FNPYRgGb775JldccQW7du3it7/9rS/iZMmSJTzwwAOcd955pKenM27cOO644w7WrVOVHY+caJ6TCkSIiIifSUuwA7CW/u4NGq4nIibyOHHq06cPb7/9Nn379uXtt9/G5XLx0UcfERMTw1tvvUVsbKwv4uTtt98mNzeX66+/njlz5vDggw9y6NAhrrrqKpYsWeKT1+ywGpnnNDQuGsOA3IJSDhwpNykwERGRY2qWy/ixtLd7Q+5qE6MRkUAX1JKT+vXrx8svv0xFRQWHDx/GZrMRFhbm7djqeeSRRxrMnxo3bhyTJ09m9uzZjB492qev36HU9DjlrobyYgiNIiosmL5dI9i2/yhZOYVMGNTd3BhFRCTgdY8Oo5ctjDVFye5PLDkrweVyj54QEWljHvc4PfDAA2RnZwMQEhJCjx49apOm3NxcHnjgAe9GWK2xohMREREkJyezZ88en7xmh2XvDfY+4HLA7mPznNI0XE9ERPxMaryNda4knIYVjuyFojyzQxKRAOVxj9O8efP45S9/SUJCQoN9hw8fZv78+Tz55JNeCa4pxcXFbNiwgVGjRrXofIfD0arzWnq+PzASx2LJ2IVz+/e4+p4NwJDYKD5cA5nZh0/ato7Q/tZQ+9X+ur8DTWvbH6jvm7RcarydL9bnkxuSREL5VshdCbY4s8MSkQDUoqF6J1JYWEhISIg3L3lSjz32GKWlpdx+++0tOj8rK6tVr9/a883U2ehNElC64Us2db0UgE6lFQCs3nmQNWvWYDQxFKI9t98b1H61P5AFevul7aRXF4hY5ehLAlvdBSJOudjcoEQkIDUrcVqxYgXLli2rfT537lwWLVpU75jy8nIWLlxIcnKydyM8gWeffZZPPvmEhx9+mKFDh7boGikpKVitVo/PczgcZGVltfh8v9C3O6x5kvCin0kf1BfCohlY4eDh776moNxJz76D6WVrfN5ah2h/K6j9ar/a3/L215wv0lxD42oKRCRySTAqECEipmlW4rRs2TJmzpwJuNdsmjt3bqPHxcbG8uc//9l70Z3AzJkzeeGFF7jrrru49tprW3wdq9Xaqg8+rT3fVDEJ0KUfxsGtWHOWwsDziexkZUCPKDbuKWJdXjHxnSNOeol23X4vUPvVfrU/cNsvbcfWyV28KPNg9RezeWvA6QCL/vsTkbbVrMTpN7/5Db/61a9wuVyMGTOGl19+mVNOOaXeMSEhIUREnPyDtjfMnDmTGTNmMH369BYP0ZNqiePg4Fb3ek4DzwfcpV837ikiK7eA84b2NDlAERER93pOHx2Io8IaTkjFEdi/GXqc0vSJIiJe1KyqemFhYcTExNC5c2cWLlzI8OHDiYmJqffTFknTrFmzmDFjBnfccQfTpk3z+et1eDVlyXceG3aZUr1mhirriYiIv0iNt+HEwrbgmoVwV5obkIgEJI+LQ8TFmVPJ5pVXXuG5555j3LhxnHXWWWRkZNTbn56ebkpc7VrNQrh7s6DkEIR3rleS3OVyNVkgQkRExNfSqgtELC9PZDCZ7gIRp15vblAiEnA8TpwqKyt56aWX+PTTT8nLy6O8vLzefsMw2LBhg9cCrPHtt98CsHjxYhYvXtxg/+bNm73+mh1eZHfoNgj2b4KdP8ApFzGgRxQhVguFpZXsPlRCny6+70kUERE5mVN6RRNkMfipPIkbQnAnTiIibczjxOnvf/87r732GuPHj2fSpEltVn78jTfeaJPXCTiJ46oTp8VwykWEBFkYHBtNZnYBmTmFSpxERMR0YcFWBvaMIjOvukBE/gaoKIGQcHMDE5GA4nHi9Pnnn3PnnXdqjlFHkTQOVrzkLhBRLTXORmZ2AVk5BVyUFmticCIiIm5pCXbeyutCcXA3oir3w55M6DPa7LBEJIA0qzhEXYWFhZx++um+iEXM0Ges+/f+jXBkP+CehAuQqQIRIiLiJ9Kq700brTUFIjRcT0TalseJ0/Dhw9m0aZMvYhEzRHSBHtULCO909zrVTMJdn1uIw+kyKTAREZFjUquLF/1U2se9QZX1RKSNeZw4PfTQQ7z//vt8+eWXVFRU+CImaWs11fWqE6fkbpGEh1g5WuFg+/4jJgYmIiLi1r97JJ2CrSyr7OveoB4nEWljHs9xuvjii6mqquL3v/89hmEQFhZWb79hGKxapT9m7UrSOFj2Qu08J6vFYGisjeU7D5GZU0j/HlEmBygiIoEuyGphaFw063Ym4cLAKNjtHmIe2c3s0EQkQHicOJ177rla26ej6TMGMODgz1C0B6J7kRLvTpyycgqYelq82RGKiPitI0eO8Pzzz7Np0yY2bNjA4cOHmTZtGtOnTzc7tA4nNd7Oip2H2R/Wh+5lO929TgPPMzssEQkQHidOTz31lC/iEDN1ioFeqe4KRTt/gNQrVCBCRKSZCgoKeO+99xg0aBCTJk1i7ty5ZofUYdXMwc1y9WMiO5U4iUib8jhxkg4qcVx14rQIUq8grXoS7oY9RVQ6nARbPZ4OJyISEOLi4lixYgWGYXDo0CElTj5UU1lvUUlvJlpRgQgRaVPNSpzWr1/v0UWHDBnSomDEREnjYcnM2nlOfbqEEx0WRFFZFZv3FjM0zmZygCIi/knD19tO787h2MODWVmaDFbcPU4uVX8VkbbRrMTp8ssvb9aNweVyYRgGGzdubHVg0sZ6jwbDCod3QGEOhi2e1Hg7P2w9QFZuoRInERExnWEYpMbb+WlLAg5LCNayQji4DWKSzA5NRAJAsxKnJ5980tdxiNnCoiE23f3t3Y7FkP5LUuJt/LD1AGtzCvjliN5mRygi0uE5HI5WndfS89uTlNhoFm3ZT3ZofxJL1+PMXoEj2n2PCoT2NyaQ/v0bo/YHdvuh9e9Bc89rVuJ06aWXtigIaWcSx7kTp53uxKlmLHlmtgpEiIi0haysLFPPbw+iKssAWF7eh0TWc2DtF2Q7BwCB0f6TUfvV/kDn6/dAxSHkmKRx8OOztfOcUqoLRGzJL6as0kFYsNW82EREAkBKSgpWq+d/ax0OB1lZWS0+vz2JSy7nqR+/5YfyvlwZDN3Kd2FPSQmY9jcmkP79G6P2B3b7ofXvQc35TVHiJMckjAJLEBTuhsM7ibX3oWtkCAeOVLBhTxGn9o4xO0IRkQ7NarW26oNPa89vD3raw+llC2NNUTIARv46rK4qIDDafzJqv9ofyO0H378HqjEtx4RGQtxp7sc7FtdOwgXI0npOIiLiJ9Li7WS7ulMWbAdHBezzrPqviEhLKHGS+hLHuX/vrB6uF1ezEG6BSQGJiPi/77//ngULFvDtt98CsHXrVhYsWMCCBQsoLS01ObqOJzXBBhhsCx4IgJG7ytyARCQgaKie1Jc0Dhb/zT3PyeUiLcGdOKnHSUTkxB577DFyc3Nrn9ckTQALFy4kPj7erNA6pPTq0RBLK5IYwjLIXQ2Jw80NSkQ6PCVOUl/CSLCGQHEeHNpOSpz7Zr91/xGOlFcRGar/ZEREjvfNN9+YHUJAGVpd9XVxSW9+HVLd45Robkwi0vFpqJ7UF9wJ4qu/tduxiG5RocTawnC5YF2uep1ERMR80WHB9O0WQaazLwDGoa1YK4pNjkpEOjolTtLQ8fOc4jVcT0RE/Et6vJ3DRFMQ5h4ZEV642eSIRKSjU+IkDSVVJ07V85xqKuupQISIiPiL1Oov9TZZ+gMQcXijmeGISABQ4iQNxQ+HoDA4ug8ObCGtpiS5huqJiIifSE2wA/BDaSIAEQWbzAtGRAKCEidpKCgUEka4H+9YVFuSfNfBEgpKKkwMTERExO2UXtEEWQx+KusDQMThTeBymRyViHRkSpykcYnj3b93LsYWHkxil3BAvU4iIuIfwoKtDOoVxXpXIk4jiOCKw1CYY3ZYItKBKXGSxtXMc9r5AzidpFQP11urAhEiIuIn0uLtlBNCfqd+AFgW3Aulh02OSkQ6KiVO0rjYUyE4HEoOwv6NpFVPws3MLjA3LhERkWo1c3DfCL0KpyUY4+cvYPZ4yF1lbmAi0iEpcZLGBYVA71HuxzsW185z0lA9ERHxF6kJ7nvTvw+ewoYznsMVkwgFu+Hlc2HZHM15EhGvUuIkJ1ZnPaehcTYsBuwpLGN/cbm5cYmIiAD9u0cRHmLlaIWDrZZknL/5DgZfCM5K+Px/YO6NUFZkdpgi0kEocZITS6opEPEDEcEW+nWPBNTrJCIi/sFqMRga6+51+vlQBYRFw5VvwHlPgSUINsyHOWfC3ixzAxWRDkGJk5xYr3QIiYKyAsjPIiXODqhAhIiI+I+ahXC3HapybzAMGHUH3LQAbAlwaDu8NBFWvaaheyLSKkqc5MSsQdBntPvxjsWkVY8lX6seJxER8RNp1Qvhbj1UWX9HwnC4bRH0Pxcc5fDJ72HebVB+pO2DFJEOQYmTnFydeU7HCkQU4dK3diIi4gdqKuvtLKikvMpZf2d4Z/jlOzDpMTCssPZdeOls2Lep7QMVkXZPiZOcXM16Trt+YnCPcIIsBoeOVrC/xHny80RERNpAQudOxIQHU+WCrzfmNzzAYoGxf4AbP4WoXnBgM7w0ATLfafNYRaR9U+IkJ9czFcJsUF5E2IF1DOoVBcC2w5VNnCgiIuJ7hmEwJrkLAL97J5NfzlnKsu0HGx7YZwzcthj6ngWVJe5hex9Ph8rStg1YRNotJU5ychYr9DnD/XjH4toCER9vPsr3W/bjcGrInoiImOuxi07h3OROBFsNlmw/yFVzljaeQEV2g2s/hLP+BBiw+nX41yQ4sNWUuEWkfVHiJE2rM89p4qDuAGw5VMnN/17F+Ge+5Z9f/0xegb6xExERc8SEh3DrqTa+uXs8147qffIEymKFs+6D6+dDRDfIXwdzzoJ1H5oVvoi0E0qcpGm185yWMGlgZz6bfgYX9AsnOiyI3IJS/vH1FsY+/Q03vbqcBev2UunQ/CcREWl7sfZO/L9LUvjufyY0nUD1Pcs9dK/PGVBRDO/fBJ/9D1RpkXcRaZwSJ2la9yHQqTNUHoW8NQzsGcWvh0Wz5P4JPHtVOiOTOuN0wbeb93P7m6sY89Q3PL1gEzsPHDU7chERCUBxzU2gonvB9R/D2Lvdz5fPgVfOhcM7TYtdRPyXEidpmsUCiTXznBbVbg4LtnLJsDjevW003/zxTG47sy9dI0PYX1zOC99t46y/fccv5yzlo4xcyiodJgUvIiKBqlkJlDUIJj0C18yFTjGQtwZmj4dN/zU7fBHxM0qcpHkSx7t/71zc6O6+3SJ54PzB/HT/RF689lTOHNANw4Al2w/y+3cyGPXkQh77ZD2b9xa3YdAiIiLNTKAGTHYP3YsfDmWF8M418MWD4FAVWRFxU+IkzVMzz2n3spOO/w4JsnDe0F78++YR/HDf2fx+Yn9ibWEUlFTy6o87OffZRVz6/I+8u2I3R8ur2ih4ERGRZiRQh8Lhxs9g9DT3CUtmwqsXQGGOuYGLiF9Q4iTN022Qu/pQVSnkrW7WKXH2Ttx1zgAW33c2r940nHOH9CDIYrBmdwH3fZDFiL98zQMfZpGZXYDLpbLmIiLSNk6aQL2ymmX974ar/gOhNshZDi+Og5+/NjtsETGZEidpHsOoLUtunGC43olYLQYTBnZn9nWn89MDZ3PfeYNI7BLO0QoHby/fzcWzfuSC537g3z/tpLBEQyJERKRtnDSBWtyVjAs+gl7pUHoI/nM5LPxfcGi0hEigUuIkzZdUkzj90OJLdI8K446zkvn2nrN4+5ZRXJweS0iQhY17injk4/WMeOJr7n43g2XbD6oXSkRE2sSJEqhL3s7jOv6XvQOvcx+4+G/wxiVQvNfUeEXEHEqcpPlqCkTkrMBwVLTqUoZhMDq5C/+8ehjL/zSRRy48hYE9oiivcvLhmlyumrOUiX//njmLtnHgiNbUEBER32ssgVq8o5hRmefzz5gHcARFuIskvTgOtn9vdrgi0saUOEnzdUmGqF4YjnIiDq/32mXt4SHcdEYSC/4wjnm/HcNVpycQHmJl+/6jPPHZJkY/uZDf/mcV32/Zj9OpXigREfGtxhKof+xJYdLRx9kdlARH98HrF8N3T4NTy22IBAolTtJ8deY5xW553b2mk9PpxcsbDOsdw9NTU1n+4CSevCyFtHgblQ4Xn2Xt5YZXljPumW95buHP7Cks9drrioiINOb4BCrHEss5Rx7hnaqzABd89wS8eTkc2W92qCLSBpQ4iWdOuQiAqIOZWN+8BGacCov/DsX5Xn2ZyNAgfjmiNx9NG8tnvxvHDaP7EB0WRG5BKX//agtnPPUNN7+2gi/W76XS4b3kTURE5Hh1E6grRvXjYddt3F1xOyWuUNj+LRWzzoBdP5kdpoj4mBIn8czgC3H85lv297kQV0gkHN4BCx+Dvw+Gd34FW770+rCFU2KjeezioSx/cBL/uCqNEUmdcbrgm037uO2NVYx56hueXrCJXQePevV1RURE6qqbQIWPuJbLq/6Xn51xhJTm43h1Crs/fsKrIzFExL8EmR2AtEO90tidehedr34e66aPYdW/3etcbPrU/RMdD8Oudf/YE7z2smHBVi4dFs+lw+LZvv8I767I5v1VOewvLueF77bxwnfbGJPchauGJ3DukJ6EBVu99toiIiI1ahKo3LP68fLCdNIyH+Niy4/0Xv00qzd8h/PiFzh9cLLZYYqIl6nHSVouJMKdHP3mK/jtUhj1W+gUA0U58P1T8GwKvDkVNnwMDu+uz9S3WyQPXDCYJQ9M5IVfncqZA7phGPDTtoP8/p0MRj25kMc+Wc+W/GKvvq6IiEiNOHsn/nz5SE6/633mJ9xLuSuYU8uW0fOdyTw86zWWbT9odogi4kXqcRLv6D4YznsSJj7i7nVa9Zq7ZOvWr9w/Ed0h/Ro49Xp3dT4vCQmycH5KL85P6UXO4RLeW5nD3JXZ7Cks49Ufd/Lqjzs5tbedq4f35hdpvQgP0X/yIiLiXXEx4cT9+kH2bZmM5f0bia/I4eF9d/PEy6v4Z59r+P2kAYzs28XsMEWkldTjJN4VHAYpU+HGT2H6ahh7lztpOroPfnzWXUzitV/A2rlQWebVl46PCefucwbww31n8+qNwzl3SA+sFoPVuwu494O1jPjLQv40L4u1OQVaXFdERLyu+4DhdL37J0r7/4IQw8Gjwa9zbfaf+c2cb7jmpaXqgRJp5/T1u/hOl2SY9ChMeBC2LHDPhdr6tbsnaudi97C+1KvhtBvcPVZeYrUYTBjUnQmDurOvuIz3V+Xw7opsdh0s4a1lu3lr2W5O6RXN1SMSuDg9DlunYK+9toiIBLgwG52ueROWz8H1xYNcwHKGWHbx2+2/56ptBxmT3IXfT+yvHiiRdqhd9TgdPXqUv/zlL4wdO5aUlBQuvvhi/vvf/5odljTFGgyDL4Rr34c/ZMGZ97sLSJQehmUvwPOj4F+TYPUbUOHdynjdo8L47Vn9+PaPZ/HWLSO5OD2WkCALG/YU8eeP1jPyia+5+70Mlu84pF4oERHxDsOAkbdh3PwF2HrTx8hnftijXBe8kJ+2HeCqOUvVAyXSDrWrHqfp06eTlZXFH//4RxITE/n000+5++67cTqdXHjhhWaHJ81hT4AJD8CZ98K2b9xzobYsgJwV7p8FD7iH+p12A8QO89rLWiwGY5K7Mia5K48erWB+Ri7vLM9mc34xH67O5cPVufTtFsHVwxO4/NR4ukSGeu21RUQkQMWfBrd9D/N/S/CWz/lf68tM7bqb6/ddw0/bDvKTeqBE2pV2kzh9//33/Pjjj/zf//0fv/jFLwAYNWoUeXl5PPPMM1xwwQVYrSo/3W5YrND/HPdPcT5kvgWrX4dD22HVq+6fnqnuYhKpV0KYzWsvHRMRwk1nJHHjmETWZBfw7vJsPlmbx/b9R3nis0389YvNTD6lJ1cNT2Bsv65YLIbXXltEOp6jR4/y7LPP8vnnn1NYWEjfvn259dZbmTJlitmhiT8I7wy/fBt+mgFfP0ra4a9Y2X0nL3R/mBnrgpVAibQj7Wao3ldffUV4eDjnnXdeve2XXXYZ+/btIzMz06TIpNWieriLSExbBTd8AkOngjUE9q6Fz+6Bvw2EeXfAriXgxeF0hmFwau8Ynp6ayrI/TeTJy1JIi7dR6XDx36w9XP/KcsY98y3PLfyZPYWlXntdEelYpk+fzvz585k2bRovvfQSKSkp3H333XzyySdmhyb+wjDgjN/BTZ9BVCzBh3/md9tuY/mUfVw7qjfBVoOfth3UED4RP9duepx+/vlnkpOTCQqqH/LAgQNr95966qlmhCbeYrFA0nj3T8khWPuuu6DE/o3uHqnMt6DrQHcvVNovIcJ738pFhQXzyxG9+eWI3mzIK+LdFbuZtyaX3IJS/v7VFp79egsTBnbnquEJnNlf3waKiJtGQ4hHeo+C2xfDh7fCtoXEfPl7/t+wa/ntHx7n+R/zeHdFtnqgRPxYu0mcCgoKiI+Pb7DdZrPV7veUw+FoUSw157X0/PauTdofaoPht8Lpt0DuCozVr2NsmI9xYDN8+SCuhY/hGjgF16nXQ+I4MLzXeTqwRwR//sVg7j13AAvW5/PuimyW7zzMwk37WLhpH90iQ+gc6iJy2VKsFgOLxcBquH9bDGofW6ufW4yax9X7qx/XbrNUn1NznkH1tYw616L6/MavW7vtRLEYdfZbDAzD/TrH4jp2jWNxNR4LLieHyxzkF5YQFBSEgfvLVIth1D4G97UMA4zqx9TZX/dYw2hfQyED9f9/l8uFy9X69ne09+1koyH++Mc/kpmZqS/1pL6IrvCr9+GH/4Nvn4A1bxKbu4b/d+W/ueOsCbzw3VYlUCJ+qt0kTnDyD1gt+fCVlZXVmnBafX5713btD4Hev8HS65d0zv2Grrv/S0ThFowN82DDPMrDe3Gg9wUcSDiPqjDv3lgSgfuGh5I7qCsLd5Ty7c5S9h+pYP8R4GCBV1+r3flkv9cuZVT/YFSPHzaObTOqk6zG99WcZ5xkH1iqdzS2r+5r1N1X8yelZoqbgVG7zwWw8LvakaMu9xZcrup9dR673AfUeeyqt73mV8Pj3NdtfPuJzned5FrHP3Y14/WPtaeuSwZGcB2B/fevhrdHQ+gLvZZpl+0/426IG47lw1sw9q3HNecsek35B49deDm3jUvixe+3896qnNoEanTfzvzu7H6MSOrc4FLtsv1epPYHdvuh7b7UazeJk91ub7RXqbCwEDjW8+SJlJSUFg2hcDgcZGVltfj89s7U9g8/A3gYx561GGtex1g3l9CSPcRtepnYza9B/3Nxnno9JE90F6DwknRgyjioqHKyfMdBNmzZRnzv3oAFh8uFy+XC4XThcLlwOsHpcuGsee6i9rHDWf2tvdOFs/q500Xt42PXos757mseO//Y6ziqX8dZfU7dWGq2OV11Xqv6ueME8Tmr4zlRfM46bfBm8fa6H9adNRvq7W3OFaStlFW5Wv33s6Pw9mgIfaHXOu2v/VEEjXmevqv/H1EHMzDm3cK+1Z+wf8hvuaxPCOO6dWXepiMs3F7Kku2HWLJ9OSndQ7jilEiGdAtpcLX2137vUvsDu/3g+/eg3SROAwYM4NNPP6WqqqreN3tbtmwBoH///h5f02q1tuqDf2vPb+9MbX/8MPfPuX+BDfNh1b8xspfCls+wbnFPvmXYtXDqdWDv7bWX7WS1MrZ/NyKP5pKeEhuQ//4Oh4OMjAzS09OxWCzHelaqkzAXrtqeGKfrWJJV87imJ8Xpqh7+Vb2vtoejOlGruabLVdN74zpuH1B7neprOpvx+rXXOfb6ruMe13v94+KocjjYuXMHfZP6YrVaanumjLq9WnWHItbpqeK454Zh1Dn/2DBH4yTX4fjrNtIj5tF1qp80N15cTnZsXh/wf//q8uZoCH2h1zLtvv0jzsT5/VMYP/yd7rs+plv5LpxTX4WYRM4ZA3kFpbU9UFn7Ksjad6heD1S7b38rqf0dp/0ul4visioKSispKKmksLSSwyUVFNZ77v5dUFpJYYn7t9Pp4s7TIrlh8uk+/VKv3SROkyZN4r333uPLL7/kggsuqN0+b948unfvTlpamonRiWlCwiH9GvfPvk3ukuaZb0NxHix6Bhb9FZLPdheUGHgBBDX8hk5aru4H/+qP2h2ew+Ego2IP6YO7t/sbVEsE8lCQxnh7NIS+0Guddtt+qxUm/RkSx8CHt2LszcT60gS4ZBYMvpCELpH85bJUfnt2/9o5UDU9UGOSuzB9QjIhtOP2e4na7z/tdzpdFJdXUVBSQUF1clP7uKSSgtIKCkvcSVHdBKiwtBKH0/NRJBYDSqucPn8P2k3idOaZZ3LGGWfw6KOPcuTIEXr37s1///tfFi9ezF//+le/+Q9FTNR9EJz3BEx6BDZ96q7It+N72LbQ/RPRzV2N79QboGs/s6MVkQ7AF6MhJID1mwS3LYb3b4bspfDutTDqTpj0KASFEGfvxP+7JIU7zurXoIjEwC7B9NuUQWiwldAgCyFWCyFBFkKDrIQEuR/XbHNvr//8+H2159XZHlRdXEgCh9NZ0wNUweESd/JT0/tzuDoRKqxOig7XeVxYWkkL8p9anYKt2MODsYeHYO8UXP04GFunEGLqPLaHBxMTHkJMeBDZP2/wXsNPoN0kTgAzZszgH//4B8899xwFBQX07duXv//971pkUOoLCoWhl7t/Dm2H1W9Axn/gSD789Jz7p89YOO0GGHwhBHcyO2IRaac0GkK8zhYHN34KCx9336+WzoKc5TD1VbAnADSaQG0+WMnmg3t9GpphUCchOy7xOkGyFnqC5KzmeWi959b6zxs9pv5jJXLN43C6KC6rrO39OVzi7vEpqO7xKTjB48LSylYtoRkeYsXeKRhbeMOEx97JnfTYqh/bq4+J7hRMWPBxHSJOJ5QXuperKTkEJQeh9BDsPQglh3A6KtkbMbZ1b1IztKvEKSIigoceeoiHHnrI7FCkvejc190DNeFB+PkLdy/U1q9g1w/unzA7pF7lTqJ6DDE7WhFpZzQaQnzCGgyT/xd6j4b5t0POCpg9Di6dDQPOrT2sJoG6bVwSb32zhq49Y6lyugsZVTiclFc5qag69rvC4aSiylHncf395cdtr3A46w2bcrmgvPq4YjPel0a4EykDi8tJyOff1C6xUbv0hUHtciD1n9d5bKnZd+w4S/UcUEtjxxuNHG+pOb76XE52TDOvadS/psXS+PG4nOTkHOX7gz9TVOao7QlyD4HzTgIUEWLFHh6Crbr3p37CU7dn6FhSZAsPJjSokb+BTgeUFrgTn5JcdyJUcBD2VCdENclRaZ3npYfA5TxhfBag8+By4JyWN7IZ2lXiJNJi1iAYNMX9U5gLa96ENW9AYTYsn+3+iTvdnUANuQxCI82OWMS3HFVQVgClh6tvYIfdP2V1HtfdXr3PUl5MbOJlkD7T3Pj9iEZDiM8MusA9dG/ujZC3Gt66EsbeBRMect/XqsXaOzGpbzjp6YleT9YdTtexBMvhaJBsNUjA6iZeVQ53Ald5bHvDY467hsNJeaWjQQJX87jquPFfFQ4nFTVTLysqvNr29qfpdDYyNKg2+WkwFK6TOxmKOS75sXcKISToBOtlOqqq7xF1kpxDB+s8P3ysd6g2CTpMi6vhhkRCeGfo1BnCu7gfh3fBGdmTA0HD6NWyqzabEicJPLY4OOs+GH8PbP/W3Qu1+TPIXen+WfCAe5jfaTdA7KnUqX4g4l9cLqg4elyy01QiVP28omXfFxtAUKW/fNfsHzQaQnwqpg/cvAC+fNj9Jd8P/4Ddy2DqKxDt64+J7kXRO4VY6RRiBYJ9/npNcThdVNbrTXNQVlFF1voNDBg4CAzjWHVUV82SHMcqv9Ys0VF3n7N6KY/a5UROcHxN9dYTnt/g9erup3bJj5rjayq+nuyYJq/pcuFwOjl8uIDEXt2IiQitHg5XJwGqHh5n6xR84gQIwFFZv6fn4CHIPlid+Byu0xtUJxEqK2z5P2aoDcJj3AlQvUSoYWLkft7ZPR2jES6HA0dGRstjaSYlThK4LFb3RNx+k+DIPsh4y12V79A2WP1v90+PFHdFvtQroZPd7Iilo3JUuW8+TfX6NLbdWdm61w61QScbdIo59hNmr/PcXm+7IzSa3dv20XAJThHxmaBQuOAZ6DMaPpoOu3+CF8fC5S+5K8cGEKvFwGqx1psD43A4KLQFM6hnVEAOjz22TMiQY+2vKq9OcvLg6CHYf4IhcLVJ0CEoL2p5EGH245KcJpKgTjHtstKxEicRgMjuMPYPcMbvYdeP7l6oDR9BfhZ8/j/w1cNwyiXuXqi4EWZHK/7I5YLKEo+HvlFa0LqbFYAluH7ic1yyc8LtYbZ6w32axeEAY3/r4hWRlhlyKfRMhfducN+f3rgMzrwPxv7R7MgE3AUMnJXgqHD33jhqHlfUeVxnm7Oy8e2Opq5R/bj6tSxVFfQ/tA/LSsexJKjiSAsbYbjvETVJTt3enkYToy7u+4mn95J2KjBaKdJchgGJY90/5z8NWXPdSdS+9bD2HVj7DpbO/UgO7oplc2f3HwqLFSxBYFT/tliP23b888aOCcI9O7Xu88a2VZ9X75jjt9Vc13LcMXW31X3tk3Tb+4LTCS6He3Jovd++3O5s5LiWbTcclSTu2YVlk9Gwl8jRyvH1odHu5OZEyc6JEqHgcA0pFQkUXZLhN1/Bgvth1Wvw/VNYdi8hqP/0touhZkVwXO6/l7U/dZ7X7nPV315v3/Hn0Pj2BudQf7ujisgDm2H7Yfff63qJxskSkwpwVp08uXE0tr/O47rJj7Oq7f4N6jCA6EZ3WKuToLq9Pcc/Pz4Jsrk/I0ijlDiJnEh4Zxh5G4y4FXJXuW9Q6z7EOLQVO1sh3+wAvcU4lkidMNk79txiWDiltBTLTyFNJBonSGzaOQvQ5aQHBHvW61P7uAW9PyISmII7wYX/hN5j4NM/YOz4niE5q7GsiWskoXHV/33CpMXV+PGNndPSif0+YgUGAiwxOZAGDLCGVP8EN/I4+LjHJzjWcrJjgnEaVnbl5tN7YBrWyG7HeodCbW3/5WgHp7u0SFMMA+JPd/+c9ySOLV+SvXUDveNjsdRLGKrcjxs8r2p8m8t53DGNbGvWMY76r3OiY07IdezazXk7gE4ALR0F0OQL1O1Bsx7rFWuw3dLM4zw5v+ntTizkHSwmNvkULOGdGyZBIRHq/RGRtpF2FfRKw/Xe9QQd2Az7N5kdURMM999Hw+L+oc7j2u3GSfbV3X7sWi4slFVUEBYehRFUnVhYmkpKgk+erDS4RmPHNJH0tFHPjcvh4JAlg94D0iEA53i1JSVOIp4IjYJTLuFgRSIJ6ent5w9UzTeHjSZcdZ9XnWCbs/a5o6qCbdu2kdx/IFZrcP3kolWJjAnDBlvA5XCQn5FBr/b07y8iHVf3QThv+Y6t379Dv75JWK1BzUo2GiYnxyUvTSYuTV3v+O2Gz75UcjocbMjIID09PSCLQ0jbUeIkEggM41iC0loOB8WFNuiTrsRBRMQfBIVypEsaJKXr77KID/n/17siIiIiIiImU+IkIiIiIiLSBCVOIiIiIiIiTVDiJCIiIiIi0gQlTiIiIiIiIk1Q4iQiIiIiItIEJU4iIiIiIiJNUOIkIiIiIiLSBCVOIiIiIiIiTVDiJCIiIiIi0gQlTiIiIiIiIk1Q4iQiIiIiItIEJU4iIiIiIiJNUOIkIiIiIiLShCCzAzCDy+UCwOFwtOj8mvNaen57p/ar/XV/Bxq1v3Xtrzmv5u+wuOm+1Dpqv9pf93egCfT2Q9vdmwxXAN69KioqyMrKMjsMEZGAlZKSQkhIiNlh+A3dl0REzNfUvSkgEyen00lVVRUWiwXDMMwOR0QkYLhcLpxOJ0FBQVgsGi1eQ/clERHzNPfeFJCJk4iIiIiIiCf0dZ+IiIiIiEgTlDiJiIiIiIg0QYmTiIiIiIhIE5Q4iYiIiIiINEGJk4iIiIiISBOUOImIiIiIiDRBiZOIiIiIiEgTlDgd58MPP2TgwIG1P6eccgpjx47lrrvuYufOnfWOXblyJQ8++CCXXXYZQ4cOZeDAgeTk5JgTuJc0t/0Oh4NXX32VX//614wfP560tDTOP/98/va3v1FUVGReA3zk+Pfl+J9ly5aZHWKLLViwgIEDB/LZZ5812HfRRRcxcOBAFi9e3GDfpEmTuPTSSwH49ttvuffee7nwwgsZMmQIAwcO9Hnc3tLa9h85coQXXniB6667jjPOOINhw4Zx4YUXMmfOHMrLy9uiCa3ijX//f/zjH1xyySWMGDGClJQUJk6cyMMPP0xubq7P4w8Uujfp3tSYjnpv0n1J9yV/vS8FtersDuzJJ5+kb9++lJeXs3r1al588UWWLVvG559/js1mA2Dp0qUsWbKEwYMHExERwfLly02O2nuaan9ZWRkzZszgF7/4BVdccQUxMTFs2LCBF154gW+//ZYPPviAsLAws5vhdTXvy/H69etnQjTeMWLECAzDYOnSpVxwwQW12wsKCtiyZQvh4eEsW7aMcePG1e77/+3de1BU5/3H8TcXEwENiIg4XmogLnLZ4g0WL1Sl3kMK1ltnOkC9ITFQK+oYkrYB67XWSQOUIMEqWsfRKDpirCZoM9ppWAyp1hJRAmiFJIgIoqJcz+8PZs/PDSAosCh8XzM7js954Hyfs2fPZ56zzy7ff/89N2/eZPHixQB89tlnXLp0CTc3N3r16kVOTo7Jx/Gs2jv+b7/9ltTUVAIDA/nVr36FtbU12dnZJCQk8K9//Yvdu3djZmbWFUNrk454/isrK3n99ddxcXHBxsaGb775hg8//JCzZ89y4sQJ+vXrZ/JxdVeSTZJNzelu2SS5JLn0vOaSTJxaMGLECLRaLQA6nY76+nri4+PJyMhg3rx5AKxcuZKIiAgAdu3a1a3CqbXx9+7dmzNnzhideDqdjkGDBrFq1SpOnz5NYGBgV5XfaR4/Lt2Fvb09I0aMaHL+XrhwAUtLS+bNm9fkrmVmZibQ+JwDbNy4EXPzxjewN2zY8EIFVHvHP2TIEM6ePYu1tbW6ffz48VhZWfHHP/6R7Oxsxo0b1/kDeUYd8fy/9957RtsNxyUsLIwzZ84wf/78ThxBzyLZJNnUnO6WTZJLkkvPay7JUr02MlyQysrK1DbDC7In+OH4LSwsmp2t//jHPwYaZ/7ixaHT6SgsLOTWrVtqm16vx9PTk8mTJ5OTk8P9+/fVbVlZWVhYWKgX3hf9tdCe8VtbWxuFk8GL9Fpo7/PfHHt7ewAsLeX+XGeSbJJs6q4klySXnsdcerHPKhMyrA8fPnx41xbSRdo6fsOM/0VdHtCahoYG6urqjB719fVdXVa7+fr6Ahjd3dHr9fj4+DBmzBjMzMzIzs422ubu7k7fvn1NXmtn6Izxv0ivhY4af11dHY8ePeLrr79m8+bNDB8+nOnTp5tmED2UZJNkE3TPbJJcklyC5y+XZOLUAsNF6MGDB5w/f54PP/wQb29v/P39u7o0k3iW8ZeUlLBjxw48PT2ZOnWqCas1nYULF+Lh4WH06A7LI7y9vTE3N1cvUOXl5eTl5eHt7Y2NjQ3u7u7qBfe7776jqKhIfTu8O+jo8efm5pKSksL06dMZOXKkScbQHh0x/tLSUjw8PPDy8mLu3LnU19ezd+9ebGxsTD6e7kyySbKpOd0xmySXJJeex1ySNRQtWLhwodH/XVxcSExM7DHLTp52/BUVFSxfvhxFUfjzn//8wr9F3pJt27bh4uJi1PY8f8CyrWxtbRk5cqS6ZvjChQtYWFgwZswYoPECZrhAGfp0p4DqyPEXFRURHh6Ok5MTGzduNEH17dcR4+/Xrx+HDx+mpqaGgoICUlJSCAkJYd++fTg6OppwNN2bZJNkU3O6YzZJLkkuPY+51D2vIB1g27ZtHD58mNTUVBYtWkR+fj5RUVFdXZbJPM347969y5IlSygpKeGvf/0rQ4cONXG1puPi4oJWqzV6eHp6dnVZHUKn03H9+nVKSkrQ6/V4eHiod2V8fHy4cuUK9+7dQ6/XY2lpydixY7u44o7VEeMvLi4mJCQECwsLUlNTsbOzM/Eonl17x29paYlWq2Xs2LEsWLCA1NRUioqKSE5O7orhdFuSTZJNzemu2SS5JLn0vOWSTJxaYLgI+fr6smHDBhYsWMD58+c5depUV5dmEm0d/927d1m8eDFFRUXs3r37hXj7VzTPcKcmKyuLrKwsvL291W2Gi9GFCxfQ6/VotdputwSrveMvLi4mODgYgL179+Lk5GSiyjtGRz//Tk5OODo6NvkbQ6J9JJskm3oSySXJJXi+ckkmTm20bt06bG1tiYuLo6GhoavLMbnmxm8Ipps3b7Jr1y7c3d27uErRHt7e3lhYWHD69Gny8vLw8fFRt/Xt2xc3NzeOHTtGcXFxt1oOYdCe8X/77bcEBwfT0NBAamoqgwcPNnX57dbRz/+NGzf4/vvv+dGPftSZZfd4kk2STd2Z5JLk0vOWSz1jUXQHsLW1JSwsjO3bt5Oenk5gYCB37txRP7R27do1AM6dO4e9vT329vZGT/CL7ofjnzlzJkuXLuXrr7/mnXfeob6+nosXL6r97e3tGTZsWNcV3Eny8vKa/aaiYcOGqV9z+aLq06cP7u7uZGRkYG5u3uQtb29vb1JTU4Gm64iLi4u5fPkyAP/73/8A1DvAgwcPfiE+pPys4y8rKyMkJITS0lI2bdpEWVmZ0VdDOzk5vRB3+Z51/Lm5uWzZsoWZM2cydOhQzM3NuXbtGnv27MHOzo4lS5aYdBw9jWSTZBN032ySXJJcet5ySSZOTyE4OJj9+/eTmJhIQEAAeXl5rFq1yqhPbGws0Lj2ct++fV1RZqd5fPyjR49WL0ibNm1q0nfu3Lls3brV1CV2uujo6GbbN27cyIIFC0xcTcfT6XRcvnwZNzc3+vTpY7TN29ubPXv20KtXL0aPHm20Ta/XNzk2htfGi3QuPMv4v/nmG27evAk03v3+oYiICCIjIzu38A7yLON3cHDA0dGR3bt3U1paSl1dHU5OTkyZMoXw8HAGDRpk6mH0OJJNkk3dOZsklySXnqdcMlMURXnmnxZCCCGEEEKIHkA+4ySEEEIIIYQQrZCJkxBCCCGEEEK0QiZOQgghhBBCCNEKmTgJIYQQQgghRCtk4iSEEEIIIYQQrZCJkxBCCCGEEEK0QiZOQgghhBBCCNEKmTgJIYQQQgghRCtk4iRMIi0tDVdXV/Xh7u7OpEmTWL16NdevX+/q8gBISkoiIyOjSbter8fV1RW9Xt8FVTU6e/Ys4eHhTJgwAU9PT3x8fAgNDeX48ePU1tZ2WV0/1Nyxevvtt/H39+/U/ZaUlBAfH8+VK1c6dT9CiO5Fsql9JJueTLKp+7Hs6gJEz7JlyxacnZ2prq7mq6++IikpCb1ez9///ndsbW27tLadO3cyc+ZMpk2bZtTu4eHBwYMHee2110xek6IovPPOO6SlpTF58mTefvttBg0axL1799Dr9cTGxlJeXk5oaKjJa2urlStXEhIS0qn7uHXrFgkJCQwePBg3N7dO3ZcQovuRbHo6kk1tI9nU/cjESZjUiBEj0Gq1AOh0Ourr64mPjycjI4N58+Z1cXXN69OnD6NGjeqSfaekpJCWlkZkZCQRERFG2/z9/Vm2bBk3btwwaU2PHj2id+/ebe4/bNiwTqxGCCHaT7Lp6Ug2iZ5KluqJLmUIqrKyMqP2y5cvEx4ejo+PD1qtlqCgIE6ePGnU586dO8TExDBnzhxGjx7N+PHjCQkJ4csvv2yyn5qaGhISEpg9ezZarRadTkdwcDBfffUVAK6urlRVVXH06FF1yUZwcDDQ8nKIM2fOsGjRIry8vBg9ejSLFy/m3//+t1Gf+Ph4XF1dycvLIyoqirFjxzJhwgSio6O5d+/eE49NbW0tKSkpODs789ZbbzXbZ8CAAYwbN079f0VFBTExMfj5+eHp6clPf/pT3n//fWpqaox+rrq6mh07duDv74+npyd+fn7ExsZSWVlp1M/f358VK1bw6aefEhQUhFarJSEhAYD8/HyWLl2Kl5cXOp2O3//+9zx48KBJjc0th3B1dWXDhg0cO3aM2bNn4+Xlxc9+9jP+8Y9/GPW7ceMG0dHRzJgxAy8vL/z8/AgPD+fq1atqH71ez/z58wGIjo5Wn7/4+Hi1T1vOJyGEMJBsaplkk2RTTybvOIkuVVRUBMDw4cPVtszMTJYtW4aXlxcxMTH07duXkydPsnr1ah49esTPf/5zoPFCDBAREYGDgwNVVVV89tlnBAcHs2fPHnQ6HQB1dXUsW7aM7OxsQkJC8PX1pb6+nkuXLvHdd98BcPDgQUJDQ9HpdKxcuRJovJvXkvT0dNauXcukSZPYsWMHNTU1pKSkqPt+PDAAIiMjmTNnDvPnz+fatWvs2LEDaFwe0pL//ve/VFRUsGDBAszMzFo9ltXV1YSEhHDz5k0iIyNxdXXlyy+/JDk5mStXrpCcnAw0LrFYuXIlmZmZhIWFMW7cOK5evUp8fDwXL17k4MGDvPTSS+rvzcnJIT8/nzfffJMhQ4ZgZWXF7du3CQ4OxtLSkvfee4/+/fuTnp7OH/7wh1brNPj888+5fPkyv/71r7G2tiYlJYWIiAhOnTrF0KFDgcZlDnZ2dqxZswZ7e3vu3r3L0aNHWbhwIUePHsXZ2RkPDw+2bNlCdHQ0b775JlOmTAHAyckJaPv5JIQQBpJNkk2STaJZihAmcOTIEUWj0SgXL15Uamtrlfv37yvnzp1TJk6cqPzyl79Uamtr1b6zZs1SgoKCjNoURVFWrFihTJw4Uamvr292H3V1dUptba0SGhqqvPXWW2r70aNHFY1Goxw6dOiJNY4aNUpZv359k/bMzExFo9EomZmZiqIoSn19vTJp0iQlICDAqJb79+8r48ePVxYtWqS2xcXFKRqNRvnoo4+MfmdMTIyi1WqVhoaGFuv55JNPFI1Goxw4cOCJdRscOHBA0Wg0ysmTJ43ak5OTFY1Go/zzn/9UFEVRzp0712xNhv0dPHhQbZs6dari5uamFBQUGPXdvn274urqqly5csWoffHixUbHSlEUZf369crUqVON+mk0GmXChAnKvXv31LbS0lJl5MiRys6dO1scY11dnVJTU6PMmDFD2bx5s9r+n//8R9FoNMqRI0ea/Myznk9CiO5Pskmy6XGSTaI1slRPmNTChQvx8PBgzJgxLFu2jFdeeYXExEQsLRvf/Lxx4wYFBQW88cYbQOMdOcPjJz/5CaWlpRQWFqq/78CBA8ydOxetVou7uzseHh588cUX5Ofnq33Onz/Pyy+/3GHr1AsLC7l16xaBgYGYm///S8jGxoYZM2Zw6dIlHj58aPQzzS0HqK6ubrIMpD0yMzOxtrZm1qxZRu2Gu1ZffPGF2u/xdoPZs2djbW2t9nu81ldffdWoTa/XM2LECEaOHGnUHhAQ0OZ6dTqd0Z1TBwcH+vfvT3FxsdpWV1dHUlISc+bMwdPTE3d3dzw9Pbl+/brRc9ySpz2fhBA9k2RTI8kmySbxZLJUT5jUtm3bcHFx4cGDB5w8eZKDBw8SFRVFSkoKALdv31b7bdu2rdnfUV5eDsDu3bvZunUrv/jFL1i1ahX9+vXD3NycDz74gIKCArX/nTt3cHR0NAqS9jDsf8CAAU22OTo60tDQQGVlJVZWVmq7nZ2dUT/DcoNHjx61uJ9BgwYB/79kpDUVFRU4ODg0WTrRv39/LC0t1eUjFRUVWFpaYm9vb9TPzMwMBwcHtZ9Bc+OsqKhgyJAhTdodHBzaVCs0PSbQeFyqq6vV/2/dupX9+/ezfPlyvL29sbW1xczMjN/+9rdG/VryNOeTEKLnkmxqJNkk2SSeTCZOwqRcXFzUD936+vrS0NDAxx9/zKlTp5g1axb9+vUDYMWKFUyfPr3Z32G4w3T8+HF8fHyIjY012v7DD4Ha29uTnZ1NQ0NDhwSUocbS0tIm227duoW5uTmvvPJKu/fj6emJnZ0dZ86cYc2aNa2uJbezs+PSpUsoimLUt6ysjLq6OrVuOzs76urquHPnjlFAKYrC7du31efHoLn92tnZqRf+xzXX1h7Hjx8nKCiIqKgoo/by8vI2HeOnOZ+EED2XZFPbSTZJNvVkslRPdKl169Zha2tLXFwcDQ0NODs7M3z4cHJzc9Fqtc0+DG+hm5mZGX1QFCA3N5eLFy8atfn5+VFdXU1aWtoTa3nppZeeeJfN4NVXX2XgwIGcOHECRVHU9qqqKj799FNGjRpldEfvWfXq1Ytly5ZRUFDAX/7yl2b7lJWVkZ2dDcD48eOpqqpq8ocSjx07pm5//N/jx48b9Tt9+jRVVVXq9ifR6XTk5eWRm5tr1H7ixInWB/YUzMzM6NWrl1Hb559/TklJiVFbS3dJn+Z8EkIIA8mmlkk2STb1ZPKOk+hStra2hIWFsX37dtLT0wkMDCQ2Npbly5ezdOlS5s6dy8CBA7l79y75+fnk5OQQFxcHwJQpU0hMTCQuLg5vb28KCwtJTExkyJAh1NfXq/sICAggLS2NmJgYCgsL0el0KIrCpUuXcHFx4fXXXwdAo9GQlZXF2bNnGTBgADY2Njg7Ozep2dzcnHXr1rF27VpWrFjBokWLqKmpYdeuXVRWVrJmzZoOOz6GcIqPj+fy5csEBASof2TwwoULHDp0iMjISMaOHUtQUBD79+9n/fr1FBcXo9FoyM7OZufOnUyePJkJEyYAMHHiRCZNmsSf/vQn7t+/z5gxY7h69SpxcXG4u7sTGBjYal2hoaEcOXKEsLAwfvOb36jfXPT4MpSOMGXKFPUbilxdXcnJyWHXrl3qtxIZDBs2jN69e5Oeno6LiwvW1tY4OjoycODANp9PQghhINn0ZJJNkk09lUycRJcLDg5m//79JCYmEhAQgK+vLx9//DFJSUls3ryZyspK7OzscHFxYfbs2erPhYeH8/DhQw4fPkxKSgqvvfYaMTExZGRkkJWVpfaztLTko48+YufOnXzyySekpqZiY2PDyJEj8fPzU/u9++67xMbGEhUVxcOHD/Hx8WHfvn3N1vzGG29gZWVFcnIyq1evxsLCAi8vL/bu3cuYMWM67NiYmZmxZcsWpk2bxqFDh9TjYah/7dq16gdpX375Zfbu3cv7779PSkoK5eXlDBw4kCVLlhj9gUIzMzMSExOJj48nLS2NpKQk7OzsCAwMJCoqqsmd0uYMGDCAv/3tb2zatImYmBisrKyYNm0av/vd79SvzO0I7777LpaWliQnJ1NVVYW7uzvx8fF88MEHRv2srKzYvHkzCQkJLF26lNraWiIiIoiMjGzz+SSEEI+TbGqZZJNkU09lpjz+fq4QQgghhBBCiCbkM05CCCGEEEII0QqZOAkhhBBCCCFEK2TiJIQQQgghhBCtkImTEEIIIYQQQrRCJk5CCCGEEEII0QqZOAkhhBBCCCFEK2TiJIQQQgghhBCtkImTEEIIIYQQQrRCJk5CCCGEEEII0QqZOAkhhBBCCCFEK2TiJIQQQgghhBCt+D8R/wkWPB7dJAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHaCAYAAAA3yBn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWMklEQVR4nOzdeXzU1dn//9dnJpmE7PvKEkgCISQsKpsSXEEtWmvV2p9Wq/Z2aQW9axdrq7X6vau2t7XeAqXgvrRWrYpL3cEluAAiSyAsYQmQhISEbCRknZnfH5OExASSSWYymcz7+XjMY5bPMteZQE6u+ZxzHcNut9sRERERERGREzJ5OgAREREREZGhTomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC+UOImIiIiIiPRCiZOIiIiIiEgvlDiJiIiIiIj0QomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC/8PB2AyIlMmDABgJ07d55wn3POOYfi4mJWrVrFyJEj+3RsYWEhN9xwA8XFxdx8883ccccdrF27lmuvvZYZM2bw/PPP9/heRUVFnHvuuSQnJ7N69eqO161WK6+++ipvvvkmu3btor6+nrCwMGJiYpg8eTLnnHMO5557bpe4+urBBx/k+9///kn3ee+991i/fj3bt29nx44d1NfXc/HFF/Pwww879V6usGfPHv75z3+ydu1aDh06RFNTExEREWRmZjJv3jy++93vEhAQ0O24vLw8/vnPf7Ju3TrKy8vx8/MjOTmZOXPmcN111xEfHz/obRER+Tb1S97TLw3kZ+Us9WG+Q4mT+JS8vDxuuukmqqurueeee/jRj340oPNZrVZuvvlmcnNzCQsL48wzzyQhIYGamhr279/PG2+8wd69ezs6qIULF3Y7x7PPPsvRo0e59tprCQsL67Jt4sSJvcawbNkyduzYQVBQEAkJCezdu3dAbeqvJUuWsHTpUmw2G1OnTuXSSy8lODiYiooKvv76a+6++25efPFFXnvttY5j7HY7Dz/8ME888QR+fn6cfvrpXHDBBbS0tLBx40aeeuopXnzxRR566CEuuOACj7RLRMSd1C95L/VhvkeJk/iMNWvWsGjRIlpaWnjkkUe48MILB3zOt99+m9zcXDIyMnjhhRcIDQ3tsr2mpoZt27Z1PF+0aFG3c7z++uscPXqUH//4x/36xuuuu+4iISGBMWPGsG7dOq699lrnGzJAy5YtY/HixSQmJvJ///d/TJkypds+n332GU888USX15YuXcoTTzxBcnIyy5cvJz09vcv2999/n1/96lfccccdhIeHM3v2bLe2Q0RkMKlf8m7qw3yP5jiJT3jrrbe45ZZbMJlMPPHEEy7pnAC++eYbAC699NJunRNAeHg4p59+ukve60RmzZpFSkoKhmG49X1OpKioiKVLl+Lv78+KFSt6TJoA5s6d2yVxOnjwIMuWLcPf359ly5Z163AAzj//fO666y6sVit/+MMfsNlsbmuHiMhgUr/k3dSH+SYlTjLsPfPMM/zqV78iIiKCF154gVmzZrns3FFRUYBjfLqveu2112hpaWH+/PmMHz/+pPtaLJYux7W2tnLuueeedIz9FVdcQWxsLIWFhaxbt85lcYuIeIr6Je+nPsw3aaieDHmLFy8+4bba2tqTHvvwww/z+OOPk5KSwhNPPMGoUaNcGtv555/P448/zr/+9S/q6uo499xzycrKcvn7DGVff/01gNNDEDZs2ADAGWeccdL9/Pz8mDlzJm+//TbffPONS//AEBHpD/VL3mMgP6uTUR/mm5Q4yZC3ZMmSfh/7+OOP4+/v75bOCSAjI4OHH36Y//mf/+Gtt97irbfeAiAiIoIZM2Zw+eWXc+aZZ7r8fYeSiooKAKerBrUfl5CQ0Ou+7fscPnzYyehERFxP/ZL3GMjP6mTUh/kmJU4y5PWllOiJzJkzhzVr1vCLX/yCJ554olt1IFe44IILOPfcc1m7di0bNmxg+/btbNiwgQ8++IAPPviAyy67jD/+8Y/9Huvd07dll1566YBKp7ryfex2O4DT7XPmuPZ9Ou+7fPlyPvjgA/bt24fFYmHq1KnccccdvQ4XFBEZKPVLQ7tf6szZn1Vf+5aB9mHinZQ4ybC2bNkybr/9dlavXs2Pf/xjnnzyyY7x352ZTI7pfiebuHmyX5L+/v7MmTOHOXPmAI5ysO+//z6/+93vePXVVznnnHM477zz+tWGnr4tmzFjhss7qP6+T1xcHHv37qW0tNSp94uNje3zce37xMbGdry2bt06rrrqKrKzs7Hb7Tz22GNcf/31/Oc//yEiIsKpWEREBov6paH3Pp31tW8ZaB8m3knFIWRYs1gsLF68mAsvvJD8/HyuvfZaysvLu+3XXnmourr6hOeqqqoC6NO3g2azme985zv8+Mc/BuCrr77qR/QOO3fu7HabOXNmv8/n6vc59dRTAefb2H7cF198cdL9rFYra9euBeCUU07peP3JJ5/ksssuY/z48UyYMIE///nPVFZWdlSUEhEZitQvDb336ayvfctA+zDxTkqcZNjz8/PjL3/5C5deeikFBQX86Ec/6vYN0dixY7FYLBQWFnZ0RN+2ceNGwLlV1oODg4Hj3woOR9///vfx9/fn/fffZ/fu3Sfdt7m5uctxZrOZDz/88KTHvfrqqxw+fJixY8cyY8aME+5XX1+PzWZzy7AXERFXUr/kPU7Ut7i6DxPvoMRJfILZbObBBx/kyiuvpLCwkKuvvpqioqKO7QEBAVx44YW0trby5z//uVuHUlpaypNPPgnA9773vY7X3377bT7//PMeh1KUl5fzyiuvAHDaaae5oVVDw8iRI1m4cCEtLS3cdNNN5OXl9bjfZ599xn/91391PB81ahQ333wzLS0t3HLLLT12PB999BF//OMfMZvN3HvvvR1DV3ryxz/+kYkTJzJt2rSBN0pExM3UL3mHE/Utru7DxDtojpP4DMMwuP/++wkMDOTZZ5/l6quv5tlnnyUlJQWA3/zmN2zZsoXXXnuNTZs2ccYZZxAcHExJSQmrVq2ivr6eG264oUsp0c2bN/Pcc88RGxvLKaec0jHuuqioiE8//ZTGxkbOPfdcLrjgAre166OPPuKjjz4C6BjusWnTJn7zm98AEBkZyZ133um29we45ZZbaG1tZenSpVx++eVMmzaNrKwsgoODqaio4Ouvv6awsJCsrKwuxy1atIiGhgaefvppLrnkEubMmUNaWhqtra1s3LiRzZs3ExgYyF/+8peTljv/05/+xIYNG3jxxRcxm81ubauIiKuoXxraeutbXNWHifcw7LpWK0NU+9CDvlTEWbVqVZfJor0d+9e//pW///3vxMbG8vTTT3es+F1XV8fzzz/Phx9+SGFhIU1NTYSHh5Odnc2VV17JOeec0+U8hw4dYvXq1XzxxRfs3r2b8vJympubiYiIYOLEiVx00UVcfPHFJ/2W6URt6KvFixeftNxqcnIyq1evdvq8/bFnzx7++c9/snbtWkpKSjo+i4yMDM4//3wuueSSLovgttuyZQv/+Mc/WL9+PRUVFZjNZpKTk8nJyeHHP/7xScu9Pvjgg/znP//h2WefJTU11Z3NExEfp36pb4ZCvzSQnxU417cMpA8T76LESUS81v/8z//wzjvv8PzzzytpEhERl1DfIieioXoi4pX+8Ic/8Oabb7J06VLCwsI6hoMEBQV1TH4WERFxhvoWORldcRIRr3SiKlILFy5k0aJFgxyNiIgMB+pb5GSUOImIiIiIiPRCdRFFRERERER6ocRJRERERESkF0qcREREREREeqHESUREREREpBc+WY7cZrPR2tqKyWTCMAxPhyMi4jPsdjs2mw0/P7+TLsDpa9QviYh4Tl/7Jp9MnFpbW8nLy/N0GCIiPis7OxuLxeLpMIYM9UsiIp7XW9/kk4lTeyaZnZ2N2Wx2+nir1UpeXl6/j/d2ar/ar/ar/QP9/amrTV2pXxoYtV/tV/t9t/0weH2TTyZO7cMgzGbzgP6BDfR4b6f2q/1qv9rfXxqO1pX6JddQ+9V+td932w/u75v0lZ+IiIiIiEgvlDiJiIiIiIj0QomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC+UOImIiIiIiPRCiZOIiIiIiEgvlDiJiIiIiIj0QomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC+UOImIiIiIiPRCiZOIiIiIiEgvlDg56/B2TP+4jOCqfE9HIiIiAoCx9VVS1/0WGms9HYqIyLClxMlZez7G2PsxcXtf9XQkIiIiABh5LxFR9hXGjrc8HYqIyLClxMlZMeMBCKrZ7eFAREREHOzR6Y4HZXmeDUREZBhT4uSsxMkABNQXQXOdh4MREREB4rMBMEqVOImIuIsSJ2eFxGEPScDADmXbPB2NiIgI9gTHl3qU5oHN5tlgRESGKSVO/WBPaP9mb4uHIxEREQFi0rGZ/DGa66C60NPRiIgMS0qcnPTFngoe3x3qeKLESUREhgKzPw2hYx2PNVxPRMQtlDg5affhOr5pHg1oLLmIiAwdDeFpjgeH9KWeiIg7KHFyUmZiGNvsKY4nh7dDa7NH4xEREQE4FtaWOOlLPRERt1Di5KTMpDBKiKXGHoRha4HyHZ4OSUREhGPtV5w0jFxExC2UODkpyOJHamwo+bYUxwvqoEREZAhoCEvFjgFHD0FduafDEREZdpQ49cOkpDC22cc4nmgsuYiIDAE2vxEQlep4oi/1RERcTolTP2Qlh7FNV5xERGSIsSdkOR6obxIRcTk/TwdQV1fH3/72N3bs2EF+fj5VVVUsXLiQRYsWdexjtVp57rnnWLNmDQUFBdTU1JCUlMS5557LTTfdRFhY2KDGnJ0UzsvtBSLaFxs0KQcVEREPS5gM+StVIEJExA08/td+dXU1L7/8Ms3NzZx33nk97tPY2MjixYtJTk7mt7/9LStWrOAHP/gBL7/8Mv/f//f/0djYOKgxT0wMZa89iUa7PzTXQdW+QX1/ERGRntjj2644aRi5iIjLefyKU3JyMuvXr8cwDCorK3nllVe67RMYGMiqVauIjIzseG3mzJkkJiZy++238/7773PJJZcMWszBAX7Eh1rY0TSKqcZeOLQZolMH7f1FRER6lDDZcX9kNzTXgyXYs/GIiAwjHr/iZBgGhmGcdB+z2dwlaWo3ebKjgygtLXVLbCeTGul/vLLeoc2D/v4iIiLdhMRBSDxgh7Jtno5GRGRY8fgVp4H46quvAEhLS+vX8Vartd/HjYv0Z2vxWADshzZj6+e5vFH759bfz8/bqf1qf+d7XzPQ9vvq5zaoEibD7g8dBSJGzfB0NCIiw4bXJk5lZWX85S9/ISsri7PPPrtf58jL6//k2XGR/rxqc5Qkby3ayJaNG6GXK2fDzUA+v+FA7Vf7fZmvt39IS8h2JE6a5yQi4lJemThVV1dz4403YrfbefTRRzH1s6JddnY2ZrPZ6eOsVisN32xmJ6NptZvwb65mamo8hCX1Kw5vY7VaycvL6/fn5+3UfrVf7e9/+9uPFzdKbJvnpMp6IiIu5XWJU01NDTfccANlZWU8++yzjBo1qt/nMpvN/f7DZ4S/iaToSPbUJjHBKMJ8eBtE9j8WbzSQz284UPvVfrXfd9s/pLUXiDicD9ZWMHtdVy8iMiR51W/Tmpoarr/+eoqKinjmmWfIyMjwaDyTksLYVpPCBIocY8knXODReERExDW+/PJL3nzzTTZu3EhpaSmhoaFkZWVx6623kpWV1bHfb37zG15//fVux48dO5b33ntvMEM+LnIsWEIcy2UcKYC4iZ6JQ0RkmPGaxKk9aTp48CBPPfUUmZmZng6JrOQwtm0bw/fNa1RZT0RkGHnxxReprq7m2muvJS0tjcrKSp5++mmuvPJKnnjiCWbPnt2xb2BgIM8++2yX4wMDAwc75ONMJojPgoNfOeY5KXESEXGJIZE4ffrppzQ0NFBfXw/A7t27O76pO/PMMzEMg5/85Cfk5+fz29/+FqvVyqZNmzqOj4qKYvTo0YMed1ZSGEvsKY4npZqEKyIyXNx7771ER0d3eS0nJ4f58+ezfPnyLomTyWRi6tSpgxxhLxInOxKn0i0w5UpPRyMiMiwMicTpvvvuo7i4uOP5e++915E4rVq1CjhewemPf/xjt+MvvfRSHnrooUGItKtJSWFsa6usR/UBaKiCEd3XmxIREe/y7aQJIDg4mNTUVA4dOuSBiJyUkO2415d6IiIuMyQSp9WrV/e6z86dOwchEueEBvoTHRPPwdpYRpnKHRWMxs71dFgiIuIGR48eJT8/n1mzZnV5vbGxkTPOOIPKykpiY2M577zzuO2224iIiPBMoHC8QERpHtjtPrdchoiIOwyJxMmbZSWHs60mhVGUO+Y5KXESERmW7rvvPhoaGrjllls6XsvIyCAjI4P09HQA1q1bx7PPPsuXX37Jv//9b4KDg516j4EuLNxxfPR4TCY/jIYqrFUHIHxkv87rLbQwtdrf+d7X+Hr7YfAWZ1fiNEDZyWFs3ZrCBeb1WmxQRGSYevTRR3nrrbe45557ulTVu+6667rsd8YZZ5CZmcltt93GK6+80m17bwa6xlXn4yeGjCaodi/7vnyDmoQzBnReb+Hra4Sp/Wq/r3P3Z6DEaYCyksJ5XAUiRESGrSVLlrBs2TJ+/vOf86Mf/ajX/efNm0dQUFCXIkZ9NdCFhTsfb+yfCVv2Mm5EHfahVrzCxbQwtdqv9vtu+2HwFmdX4jRAk5LD2WZLAcBesQuj+RhYgjwblIiIuMSSJUtYvHgxixYt6jJErzd2ux2TyeT0+w10YeEuxydOhi0vYirbCj7yx5SvL8ys9qv9vtx+cP9n4PxvdekifIQ/I6KSKLeHYdhtjpXaRUTE6y1dupTFixfz05/+lIULF/b5uPfee4+GhgamTJnixuj6ILFTgQgRERkwXXFygayREeRvT+FM8xZHgYiRp3k6JBERGYCnnnqKxx57jJycHM4666xuw+6mTp1KcXExv/jFL1iwYAGjR4/GMAzWr1/Ps88+S3p6OldccYVngm8X3zYXq+YAHKuEoCjPxiMi4uWUOLlAdnI42/JTOJMtmuckIjIMfPzxxwDk5uaSm5vbbfvOnTsJCQkhJiaGp59+miNHjmC1WklOTuaaa67hlltuISjIw8O2R0RAxBio3g9lW1X1VURkgJQ4uUB2cjj/bJvnpMp6IiLe7/nnn+91n/DwcJYsWTII0QxAQrYjcTq0RYmTiMgAaY6TC0xKCmObfQwA9sP5YG31cEQiIiJAYts8K81zEhEZMCVOLhARZMEWkcJR+wiM1kao2OXpkERERBxXnEDDyEVEXECJk4tkjYxku32044k6KBERGQoS2irrle+ElkbPxiIi4uWUOLlIVqf1nDi02aOxiIiIABCWBCOiwG7VchkiIgOkxMlFspPD2WZPcTxRgQgRERkKDEPrOYmIuIgSJxfJSjp+xcleugXsds8GJCIiAprnJCLiIkqcXCQy2MKx8DSa7H4YTbVQVejpkERERCBBlfVERFxBiZMLTUyOZpd9pOOJvtkTEZGhoOOK01awWT0bi4iIF1Pi5ELZIzsXiFDiJCIiQ0BMOviNgJZ6qNzn6WhERLyWEicXyupcIEJXnEREZCgwmSE+0/G4VFVfRUT6S4mTC2V3KkluU0lyEREZKhJUWU9EZKCUOLlQVLCF2rDx2OwGproyqDvs6ZBERESOlyTXMHIRkX5T4uRiqSPj2WdPcDxRByUiIkNBxxUnLZchItJfSpxcLCup80K4mzwZioiIiENcJhgmqC+HujJPRyMi4pWUOLlYVufKeioQISIiQ4ElCKLTHY81GkJEpF+UOLlYdnI4W9uuONlK1DmJiMgQkdhpuJ6IiDhNiZOLxYQEUBGSAYCpeh801ng4IhERETothKvESUSkP5Q4ucHokSMptkc7npRu9WwwIiIioJLkIiIDpMTJDbKTw8nXPCcRERlK2hOnyr3QWOvZWEREvJASJzfITg5nm32M44km4YqIyFAQHA1hyY7HZds8G4uIiBdS4uQGk5LDOirrWQ9t9mwwIiIi7TTPSUSk35Q4uUFcaCBlweMBMMp3QmuThyMSERGh60K4IiLiFCVObhKXnEqVPQSTvRUO53s6HBERkeNXnDSMXETEaUqc3CRrZATbbJrnJCIiQ0j7Wk7lO6C12bOxiIh4GSVObuIoEJHieKJ5TiIiMhREjIGAcLA2Q8VOT0cjIuJVlDi5SXZyONtsYwEViBARkSHCMDoViNB6TiIizlDi5CZxYYGUBKU7npRtA5vVswGJiIjA8eF6GkYuIuIUJU5uFJ6cwTF7AObWBjiy29PhiIiI6IqTiEg/KXFyo0kjo9huH+14om/2RERkKOgoSZ4HdrtnYxER8SJKnNzIMc8pxfGkVPOcRERkCIidAGYLNNVAVaGnoxER8RpKnNyoc2U9a4muOImIyBBg9oe4iY7HGq4nItJnSpzcKD4sgOJAR4EI+6HNGhIhIiJDQ8c8J32pJyLSV379OaigoIBvvvmGsrIyGhsbiYyMJC0tjenTpxMSEuLqGL2WYRiMSJ5Ey34z/k3VUFMEEaM8HZaIiPi6hCnAC7riJCLihD4nTjU1Nbz00ku89NJLlJSUYO/h6omfnx9z587lmmuuYfbs2S4N1FtljIxld2EyE40Djm/2lDiJiIintV9xUuEiEZE+61Pi9Nxzz7F06VIAvvOd7zBjxgwmTZpEVFQUAQEB1NTUcPDgQTZt2sSqVau44YYbOP300/n973/PmDFjTnruuro6/va3v7Fjxw7y8/Opqqpi4cKFLFq0qNu+27Zt43//93/ZvHkzZrOZWbNmceeddzJq1NBNRrLa5jlN5ICjg8pY4OmQRETE1yVkOe6PlkB9BQTHeDYeEREv0Kc5Ts8//zx33XUXa9as4d577+XCCy9k9OjRhISE4O/vT0xMDNOmTeP666/nhRde4P333ycuLo53332313NXV1fz8ssv09zczHnnnXfC/fbs2cM111xDS0sLjz76KA888ACFhYVcddVVVFZW9r3Fg8xRWc+RPFpLNnk2GBEREYCAUIga53iseU4iIn3SpytO7777Ln5+fZ8ONXr0aB588EGsVmuv+yYnJ7N+/XoMw6CyspJXXnmlx/0ee+wxLBYLy5cv75hHNWnSJM4//3yefPJJfvWrX/U5vsGUGB7IgYB0sIG1ZDNmTwckIiICjvWcKvc65jmlnuPpaEREhrw+XXEqKCjo18nN5t7TBMMwMAzjpPu0trbyySefMH/+/C7FJ5KTk5k5cyYfffRRv+IbDIZh4JfkWGzQUn8I6o94OCIRERE0z0lExEl9uox06aWXkpmZyeWXX87FF19MaGiou+Pq4sCBAzQ2NjJhwoRu28aPH8/nn39OU1MTAQEBTp23L1fETnZcX49PHZnAvgPxjDWVYS3ZCOPO7tf7DhXOtn+4UfvV/s73vmag7ffVz21ISpziuFdlPRGRPulT4nTzzTfzxhtvcP/99/OnP/2JefPmcfnllzNr1ix3xwc45kEBREREdNsWERGB3W6npqaGuLg4p86blzewzqKvxwc3NbLNnsJYyjj0zfuU1UYO6H2HioF+ft5O7Vf7fZmvt39YaL/idKQAmo+BJciz8YiIDHF9Spx+/vOf89///d/k5uby2muv8cEHH/Cf//yHpKQkLrvsMi699FISExPdHetJh/T1NtyvJ9nZ2X0aTvhtVquVvLy8Ph8fO6aBf61L4SLzWhIoJ3HqVKffcyhxtv3Djdqv9qv9/W9/+/EyBIQmQHAc1B+Gw/kw8jRPRyQiMqT1ueKDYRjMnTuXuXPnUltby5tvvslrr73GY489xtKlS5k1axZXXHEF5557Lv7+/i4Nsv1KU1VVVbdt1dXVGIZBWFiY0+c1m80D+sOnr8ePig5mvyUV7NBasoXAYfLH1kA/P2+n9qv9ar/vtn/YSMiGPavg0GYlTiIivehTcYhvCwsL40c/+hGvvfYaK1eu5KqrriI/P5+f//znzJ0719UxMnr0aAIDA9m1a1e3bbt27WLMmDFOz28aTIZhdIwlD6jZC011Ho5IREQESHQUL9I8JxGR3vUrceosIyOD7373u5xzjqOUaft8JFfy8/Pj7LPP5sMPP6Su7njSUVJSwtq1a5k3b57L39PVxoxOocwegYEdyrZ5OhwRERFHSXLQWk4iIn3Q98WZvqWyspI333yTV199ld27d2M2mzn77LO5/PLLnT7Xp59+SkNDA/X19QDs3r2b9957D4AzzzyTESNGsGjRIi6//HJuueUWbrzxRpqbm3nssceIjIzkhhtu6G8zBo1jIdwU4s2bHB3U6JmeDklERHxde+JUtg2srWDu958FIiLDnlO/IW02G5999hmvvvoqn3zyCS0tLaSkpHDHHXdw6aWXEhMT068g7rvvPoqLizuev/feex2J06pVqxg5ciSpqak8//zzPPzww9x+++2YzWZmzZrF0qVLiYqK6tf7Dqas5HBW2lM4h01YizdqIVwREfG8qHHgHwwt9XBkN8RleDoiEZEhq0+J0759+3j11Vd54403qKioIDAwkIsuuojLLruM004b+GTS1atX92m/rKwsnnnmmQG/nyeMjBzBPr9UAJqLNjPCw/GIiIhgMkFCFhxc6xgNocRJROSE+pQ4XXjhhQBMnjyZRYsWsWDBAoKDg90a2HBjGAb2hMlQCpbKHdDaDH4WT4clIiK+LmHy8cRp8g88HY2IyJDVp8Tpxz/+MZdffjnp6enujmdYix89gZpDQYRzDMp3HK9mJCIi4intC+EeUoEIEZGT6VNVvbvuuqvHpGnv3r1s2LCBY8eOuTyw4Sh7ZAT5thTHE1UwEhGRoaBzSXK73bOxiIgMYf0qR75y5Urmzp3LggUL+NGPfsS+ffsAuP3223n55ZddGuBwkp0czjb7GACsJZs9HI2IiAgQOxEMMzRUQm1x7/uLiPgopxOnd999l9/85jdkZmZyzz33YO/07dSkSZN49913XRrgcDIqagR72wpENB7Y6OFoRETkRL788kvuuusuLrjgAqZOnUpOTg4//elP2bp1a7d9t23bxnXXXce0adM47bTTWLhwIQcPHvRA1P3kHwixbUUhtBCuiMgJOZ04rVixgu9///v8/e9/58orr+yybdy4cezevdtlwQ03hmHQGucYS26p2AY2m4cjEhGRnrz44osUFxdz7bXXsmLFCn73u99RWVnJlVdeyZdfftmx3549e7jmmmtoaWnh0Ucf5YEHHqCwsJCrrrqKyspKD7bASZrnJCLSK6dXutuzZw+//OUve9wWERFBdXX1QGMa1qLGTKKxzJ9A6zGo2gfRqZ4OSUREvuXee+8lOjq6y2s5OTnMnz+f5cuXM3v2bAAee+wxLBYLy5cvJyQkBHCMvjj//PN58skn+dWvfjXosfdL4mTY8i/NvxUROQmnrziNGDGCo0eP9ritrKyM8PDwAQc1nE0aGc0O+yjHk0Oa5yQiMhR9O2kCCA4OJjU1lUOHDgHQ2trKJ598wvz58zuSJoDk5GRmzpzJRx99NGjxDlj7FSclTiIiJ+R04jRt2jT+8Y9/dJnb1O61115jxowZLglsuMpODu+orKcCESIi3uPo0aPk5+d3VJk9cOAAjY2NTJgwodu+48ePZ//+/TQ1NQ12mP3TnjhVH4CGao+GIiIyVDk9VO/WW2/lqquu4vLLL+fiiy/GMAw++OADFi9ezNdff80rr7zijjiHjTHRQTznNw5YTcOBbwjp9QgRERkK7rvvPhoaGrjlllsAOoamR0REdNs3IiICu91OTU0NcXFxfX4Pq9Xar9jaj+vv8VjCMIWPwqg56PhSL2VO/87jIQNuv5dT+9X+zve+aKCfQV+Pczpxys7O5vHHH+e+++7joYceAmD58uWMGTOGFStWMH78eGdP6VMMw6A5JhsqwO/wVseaGYbh6bBEROQkHn30Ud566y3uuecesrKyumwzTvI7/GTbepKXN7CqdgM5ftyI0UTWHKTkm/c4XO2dX+sN9PPzdmq/2u/r3P0ZOJ04AcyaNYt3332XAwcOUFFRQWRkJGPHjnV1bMNWWMoUWstNBDZXwtFDEJbk6ZBEROQElixZwrJly/j5z3/Oj370o47X2680VVVVdTumuroawzAICwtz6r2ys7Mxm81Ox2i1WsnLy+v38QBGzRwo/ZxkcyVJU6f26xye4or2ezO1X+335fbDwD+D9uN706/Eqd3o0aMZPXr0QE7hkyaMjGPPuiQmGEWO0q9KnEREhqQlS5awePFiFi1a1DFEr93o0aMJDAxk165d3Y7btWsXY8aMISAgwKn3M5vNA/rDZ0DHJ00FwFS2Fbz0j6+Bfn7eTu1X+325/eD+z6BPxSHeeecdp09cVlbGhg0bnD7OF2Qnh7PNngKoQISIyFC1dOlSFi9ezE9/+lMWLlzYbbufnx9nn302H374IXV1dR2vl5SUsHbtWubNmzeY4Q5c4mTHffkOaPWSohYiIoOoT4nT/fffzyWXXMIrr7zSpXPoydatW7nvvvs4//zz2bFjh0uCHG5SooPZbRoHQP3+bzwcjYiIfNtTTz3FY489Rk5ODmeddRabNm3qcmu3aNGijoIRn376KR9++CE333wzkZGR3HDDDZ5rQH+EJcOISLC1wuHtno5GRGTI6dNQvQ8//JDFixfzxz/+kfvvv5/MzEwyMzOJjo7GYrFQU1PDwYMH2bRpE+Xl5aSnp7N48WJycnLcHb9XMpkMGqMnQSWYyjSRT0RkqPn4448ByM3NJTc3t9v2nTt3ApCamsrzzz/Pww8/zO23347ZbGbWrFksXbqUqKioQYt3R+lR/lNQT/Zke/9H2RkGJEyGfZ861nNqG7onIiIOfUqcQkND+e1vf8utt97Ka6+9xqeffsrKlStpaGjo2GfUqFHk5ORw8cUXM2vWLLcFPFwEjZ4KlRDSUAwNVY5v+UREZEh4/vnn+7xvVlYWzzzzjPuC6YNHPtzFqh1HmTyhlO9NG9n/EyVkOxKnQ1oIV0Tk25wqDhEeHs7111/P9ddfDzgWA2xsbCQiIgJ/f3+3BDhcpaeM4uA3sYwylUNpHoyd6+mQRETES42LDWHVjnI+21U+sMQpcYrjvlSjIUREvq1Pc5xOJDQ0lNjYWCVN/ZClAhEiIuIiOWnRAHy++wh2u73/J0rIdtyXbQWbzQWRiYgMHwNKnKT/xkYHU2A41r6qL1T1QRER6b/TxkRiMUHZ0SYKDp+8iNNJRaeDXyA010HVPtcFKCIyDChx8hCTyaA+ahIAdo0lFxGRAQjwNzMx1gLAZ7vK+38isx/EZToeH9JoCBGRzpQ4eZBl1DQAQuv2QfMxD0cjIiLebGq8Y7Hd3IKKgZ2ofT0nzXMSEelCiZMHjR07jnJ7GCZscDjf0+GIiIgXm5LguOK0dt8RGlus/T9R+zynUo2GEBHpTImTB2WPjCDflgKATQUiRERkAEaH+REbEkBji41v9lf1/0QJqqwnItITpxOn//f//h979+51Ryw+Z2xMCLtMjgIRR1UgQkREBsAwDOakO6rrfTaQ4XrxmYABdWVwtMw1wYmIDANOJ04rV65kwYIFXH/99Xz00UcDK3vq48wmg9oIxyRclSQXEZGBmpMWA0BuwQAKRFiCISbd8VhXnUREOjidOOXm5nL33XdTXl7OwoULOeecc1ixYgWVlZXuiG/Y80+eCkBozS6wtno2GBER8WpnpDquOG0rqaWirqn/J+qY56Qv9URE2jmdOAUFBXH11Vfz9ttv8/TTTzNp0iT+7//+j7POOovf/OY35OXp2ylnJI/L5Kh9BP72ZqjY5elwRETEi8WGBjAxMQyAz3cPYLhegirriYh824CKQ8yePZslS5awatUqpk2bxhtvvMEPfvADrrjiClavXu2qGIe17FGRbLePBsCmNTNERGSA5qa3D9cbSOLUdsVJ6wyKiHQYUOLU2NjIK6+8wi233MLatWtJTU3l1ltvxWq1cuutt7J06VJXxTlspcaGsBNHgYjafSoQISIiA5OTHgs45jn1ex5yYltlvcq90HTURZGJiHi3fiVOBw4c4MEHH2Tu3Lnce++9JCQk8NRTT/H222+zcOFCXnvtNW688UZeeOEFV8c77JhNBjUREwFoLdrk2WBERMTrnZYSSYCfibLaJgoO1/XvJMExEJoE2KFsm0vjExHxVn7OHvBf//VffPHFF4wYMYLvf//7XHPNNYwePbrbfmeffTYrVqxwSZDDnTlpKtRCSPV2sNvBMDwdkoiIeKlAfzMzxkaRW1DBZ7vKGR8f2r8TJWTD0RLHPKfRs1wbpIiIF3L6itPBgwe56667+Oyzz/jd737XY9IEkJ6eznPPPTfgAH1B7LjJNNn9CLTWQVWhp8MREREvN7djuN4A5jklthWI0PxbERGgH1ec3n///T7tFxISwowZM5wOyBdljY5hl30k2UYhtkObMUWN9XRIIiLixXLGx8A7sHbfEZparQT4mZ0/SUdJchWIEBGBARaHENdIiw1hR1uBiJq9KhAhIiIDMyE+lNjQABpbbGworOrfSdpLkh/eDtYW1wUnIuKlnL7idM4552CcYA6OyWQiNDSU7Oxsrr32WlJTUwccoC/wM5uoCsuAuo9pUoEIEREZIMMwyEmL4bWNxXxWUMHpaTHOnyRiDASEQVMtlO+EhCzXByoi4kWcvuI0Y8YM7HY7ZWVlJCcnM2XKFJKSkigrK8NqtZKYmMiHH37IZZddpsVwnWC0lX4Nrsz3cCQiIjIc5IxvX8+pvH8nMJk6DddTfy4i4nTiNGfOHCwWCx9++CHPPfccjzzyCM8//zwffPABFouF8847j/fff5+UlBQWL17sjpiHpejUU7DZDUJbKqDusKfDERERL3dG21WmbSW1HKlr6t9JNM9JRKSD04nT3//+dxYtWkRiYmKX15OSkrj11ltZsWIFoaGhXHfddWzatMlVcQ57GaMT2WdPAMBWogpGIiIyMHGhgUxMDANgze5+Vtdrn+ekK04iIs4nTvv37yckJKTHbWFhYRQXFwOQnJxMQ0PDwKLzIenxIWxvKxBRrQIRIiLiAnPT24fr9Tdx6nTFyW53UVQiIt7J6cQpKSmJ119/vcdtr776aseVqOrqasLDwwcWnQ/xN5uoCJ0AQOOBbzwcjYiIDAdz0o/Pc7L3J/GJzQCTPzTWQPUBF0cnIuJdnK6q95Of/ITf//73/PCHP+SCCy4gJiaGiooK3nvvPTZv3sz9998PwNq1a8nKcm0Fnvz8fJYsWcKWLVs4evQoiYmJXHTRRfzkJz9hxIgRLn0vT7AnTIY9EHhkm6dDERGRYWB6ShQBfibKapsoOFzH+PhQ507gZ4G4DMdQvdItEDnGPYGKiHgBpxOnH/zgB9jtdhYvXsxDDz3U8XpMTAz33XcfV1xxBQC33HILFovFZYHu3r2bH/7wh4wdO5bf/va3REZG8vXXX/O3v/2Nbdu2sWzZMpe9l6dEjDsV9kBUU5Hj271AXbETEZH+C/Q3M2NsFLkFFeQWVDifOAEkTGlLnPJg4sWuD1JExEs4lThZrVYOHDjAhRdeyA9+8AP27t1LdXU1ERERjBs3rsv6TjEx/Vgz4iTeeustmpqaWLx4MaNHjwZg9uzZlJeX89JLL1FTU+P1QwPHj02h2B5NsnEEe2keRsocT4ckIiJebm56bFviVM5P5ox1/gTt85wOqbKeiPg2p+Y42e12FixYwMaNGzEMg9TUVE499VRSU1NPuCiuq/j7+wN0K0wRGhqKyWTq2O7NxseHst2eAkDVHhWIEBGRgWtfz+mrvUdoarU6f4JEVdYTEQEnEyc/Pz9iYmL6N8F0gL73ve8RFhbGH/7wBw4ePEhdXR0ff/wxL730EldffTVBQUGDHpOr+ZtNlAc7CkTU71eBCBERGbgJ8aHEhgbQ2GJjQ2GV8yeIb5uvXFsExypdG5yIiBdxeo7TggULWLlyJWeddZYbwjmxkSNH8q9//YuFCxdy3nnndbx+zTXX8Lvf/a5f57Ra+/HNW6fj+nv8ybTEZcF+sJRvdcv5XcGd7fcGar/a3/ne1wy0/b76uXmSYRjkpMXw2sZiPiuo4PQ0J4fSB4ZB5Fio2ucoEDHuLLfEKSIy1DmdOGVkZPDOO+9w7bXXMn/+fGJjY7sN05s/f77LAmxXVFTET3/6U6Kjo3nssceIiopi8+bNLFu2jGPHjvHAAw84fc68vIENOxjo8T2pszgWwY1u2MfmDeuwm11XYMPV3NF+b6L2q/2+zNfb721yxjsSpzW7y4EM50+QONmROB1S4iQivsvpxOnOO+8EoKysjHXr1nXbbhgG27dvH3hk3/KXv/yFuro6Vq5c2TEsb/r06URGRvLb3/6W733ve8yYMcOpc2ZnZ2M2m52OxWq1kpeX1+/jT8YvJoWqXSFEGnVMTvTHSJrq0vO7gjvb7w3UfrVf7e9/+9uPl8F1RttVpq3FtRypayI6JMC5EyRkQ/4bmuckIj7N6cTpueeec0ccvdq+fTupqand5jJlZzuq/RQUFDidOJnN5gH94TPQ43syMTmSr+0pnG5spWbfRqJHnebS87uSO9rvTdR+tV/t9932e5u40EAmJoax/VAta3ZXcMnUZOdOkDDFcV+qynoi4rucTpycTU5cJS4ujoKCAurr6wkODu54fdOmTQDEx8d7JC5Xs/iZKA0aD41bOVr4DdFzPR2RiIgMBznpMWw/VEtuQX8Sp7aS5BW7oPkYWLy/IJOIiLOcqqrX2dGjR8nNzeXNN9+kpqbGlTH16Mc//jFVVVXccMMNvPPOO3z55Zf8/e9/58EHHyQtLY25c4dPhtEc66hg5H9Y3+yJiIhr5KQ7huvlFpQ7Xx03NAGCY8Fug8OuH44vIuIN+pU4LV26lJycHG688UbuvPNOioqKAEdys2LFCpcG2O7cc8/lmWeeISQkhAceeIBbbrmF119/nR/+8Ie88MILWCxDt4iCs4JTTgEgpr4AbKpAJSIiAzc9JYoAPxNltU3sPlzn3MGGcfyqU+lm1wcnIuIFnB6q949//IOlS5dy1VVXkZOTw80339yx7eyzz+aDDz7gpptucmmQ7WbNmsWsWbPccu6hZEz6ZI59FkAQTdgrCjDi+lEBSUREpJNAfzMzxkaRW1DBZwUVpMeHOneChMmwZ7UKRIiIz3L6itM//vEPrrvuOu6++27mzJnTZduYMWPYv3+/y4LzVROSIthhHw1A5Z6vPRyNiIgMF3PTYwHHcD2ntV9xOqRh5CLim5xOnA4ePEhOTk6P24KDg6mtrR1wUL4uwM9MyYjxANTs3eDhaEREZLiY0zbP6au9R2hqdXIoeGJbZb2ybRpGLiI+yenEKTQ0lIqKih63FRcXEx0dPeCgBJpiJgFgKtOQCBERcY2MhFBiQgJobLGxobDKuYOjxoF/ELQ2wJHd7glQRGQIczpxmj17Nk888QTHjh3reM0wDFpbW3nxxRe7Dd+T/hkxuq1ARN0OcLb6kYiISA8Mw2Bue3W93T1/CXpCJjPEO6q+ap6TiPgipxOn2267jZKSEhYsWMBDDz2EYRi88MILXHHFFezfv5+f/exn7ojT5yRPOIUWu5kQ21HsNQc9HY6IiAwTOeOPlyV3Wsc8J1XWExHf43TiNGbMGF588UXGjRvHiy++iN1u54033iAyMpJ//vOfJCUluSNOnzMhOYbddscChZV7NM9JRERc44w0R+K0tbiWI3VNzh2cONlxrytOIuKDnC5HDpCWlsaTTz5Jc3MzVVVVhIeHExgY6OrYfFqgv5miwHQmNh+gavfXRJ96qadDEhGRYSAuNJCMhFB2lB5lze4KLpma3PeDO9Zy2uIYRm4Y7glSRGQI6tcCuO0sFgvx8fFKmtzkWFSm40GpSr+KiIjrzB3fXpbcyXlOcZPAMMOxI3D0kBsiExEZuvp1xamoqIh3332XkpISGhsbu2wzDIMHHnjAJcH5usBR06AUImu3ezoUEREZRnLSY1jx2V7WFFRgt9sx+nrlyD8QYifA4XzHek5hGp4vIr7D6cTpk08+YeHChdhsNqKiorBYLF229/mXr/QqYcJ0WA/R1nLs9RUYwTGeDklERIaB6SlRBPiZKK1tZPfhOtLjQ/t+cEK2I3EqzYMJF7gvSBGRIcbpxOmvf/0rp5xyCn/961+1ZpObTRiTTKE9gRSjlMo9XxM9WR2UiIgMXKC/mRljo8gtqOCzggonE6fJsOUlKFVlPRHxLU7Pcdq/fz833nijkqZBEOhv5oAlFYAjBes9HI2IiAwnOen9LEveUSBClfVExLc4nTglJSV1WfxW3KsuchIAtkMqECEiIq6Tk+4oEPHV3iM0tVr7fmB74lRVCI01rg9MRGSIcjpxuvnmm3nqqadoaGhwRzzyLf4jpwIQXq0CESIi4joZCaHEhATQ2GJjw/6qvh8YFAXhoxyPddVJRHyI03Oc8vLyOHLkCPPmzWPmzJlERkZ22+fuu+92SXACceOnwzcQ31qEvekoRoAT49BFRKRf6urq+Nvf/saOHTvIz8+nqqqKhQsXsmjRoi77/eY3v+H111/vdvzYsWN57733BivcfjEMg7npMby2sZjcggpOT3WiAFHCZKg56EicUua4L0gRkSHE6cTphRde6Hj8n//8p9t2wzCUOLnQ+HGplNkjiDeqObJ3E9ETczwdkojIsFddXc3LL79MRkYG5513Hq+88soJ9w0MDOTZZ5/t9po3yBnfnjiVc+cFGX0/MCEbdv7HUZJcRMRHOJ047dixwx1xyAmMsJjZ4p9GfOvXHN61TomTiMggSE5OZv369RiGQWVl5UkTJ5PJxNSpUwcvOBc6I81xlWlrcS1H6pqIDgno24GJkx33GqonIj7E6TlOMvhqIyYC0Fqs0q8iIoPBMAyfWJcwLjSQjATHEPA1uyv6fmB7gYjy7dDa5IbIRESGnj5dcVq/fj2ZmZkEBwefdL/KykpWr17N5Zdf7pLgxMGcNAUqniesepunQxERkW9pbGzkjDPOoLKyktjYWM477zxuu+02IiIinD6X1epEdbsejuvP8XPSotlRepTcXeVclJ3Qt4NCkjAFRmA0VmMtzT9+BcpDBtL+4UDtV/s73/uigX4GfT2uT4nTtddey0svvcTkyY5fjDabjcmTJ/Pyyy+TmZnZsd/Bgwe55557lDi5WEz6dNgCSc2F0NoMfhZPhyQiIkBGRgYZGRmkp6cDsG7dOp599lm+/PJL/v3vf/f6heO35eUNbOhbf45PMjmuGK3efoiNG1v7fKUtPTiFsMZNHFz/H46Mtjn9vu4w0M/P26n9ar+vc/dn0KfEyW63d3ve2tra7XVxj7Txk6i1BxFmHKOycAtRaad5OiQREQGuu+66Ls/POOMMMjMzue2223jllVe6be9NdnY2ZrPZ6TisVit5eXn9Oj6jxcqfvlhFZYONkOR00uNC+nScUX46HNnEaEsNozw8x2sg7R8O1H6135fbDwP/DNqP743TxSFk8AUF+LPJL5Wp1jxKd65T4iQiMoTNmzePoKAgNm3a5PSxZrN5QH/49Of4YLOZGWOjyC2o4PM9lWQkhvftwMQpAJjK8mCI/LE20M/P26n9ar8vtx/c/xmoOISXqA53lIltKtrk2UBERKRXdrsdk8l7uticdEd1vdyC8r4flNBeWW8r2IbGUD0REXfynt/qPs5o+2YvuFIFIkREhrL33nuPhoYGpkyZ4ulQ+iwnPRaAtXsraWrt4+TqmHQwB0DzUaja58boRESGhj4P1du7d2/Hpa/2yhN79+7tto+4R1TqabANkpt2O77Z86JvMkVEvNGnn35KQ0MD9fX1AOzevZv33nsPgDPPPJPKykp+8YtfsGDBAkaPHo1hGKxfv55nn32W9PR0rrjiCk+G75SMhFBiQgKoqGtiw/4qTk+N6f0gsz/EZ0LJRsd6TtGp7g9URMSD+pw43XXXXd1e+/Wvf93lud1u94l1Lzxh3MRpNL7hT7DRSGXRTqJGT/R0SCIiw9p9991HcXFxx/P33nuvI3FatWoVoaGhxMTE8PTTT3PkyBGsVivJyclcc8013HLLLQQFBXkqdKcZhsHc9Bhe21hMbkFF3xIncAzXK9kIpVtg0vfcGqOIiKf1KXF68MEH3R2H9CJ4RCA7zClk2Aoo2bFWiZOIiJutXr26132WLFkyCJEMjjkdiVM5d16Q0beD2hfCLVUZZBEZ/vqUOF166aXujkP6oDIsA6oLaDywEbjO0+GIiMgwMifNcZVpa3EtR+qaiA4J6P2gtvm3HNrixshERIYGTZTxIrZ4xzd7gUdUIEJERFwrLiyQjIRQAD7fc6SPB2UCBtSVQt1h9wUnIjIEKHHyIhHjHOs3JTXsBC0+LCIiLjZ3vKO6Xu6uPpYlDwiB6DTH41JddRKR4U2JkxcZk3kaVrtBFLVUlu73dDgiIjLMHF/PqQJ7X7+ga5/npOF6IjLMKXHyIqGh4RwwjwKgePtXHo5GRESGm+kpUVj8TJTWNrL7cF3fDkpsXwhXBSJEZHhT4uRlKkImAFC/f6OHIxERkeEm0N/MzLFRAHxWUNG3gzoq6+mKk4gMb04lTo2Njfzwhz/kiy++cFc80gtrnKODCqjY6uFIRERkOGofrremoI/znBLarjgd2QNNfbxKJSLihZxKnAIDA9m1axdms9ld8UgvQseeCkD8sV0ejkRERIajnHRHgYiv9lbS1Grt/YCQOAhJAOxQpqqvIjJ8OT1Ub9q0aWzZosvxnjJq0kwAkuyHqTqi0q8iIuJaGQmhxIQE0NBiZcP+qr4d1DHPSX8fiMjw5XTidOedd/LSSy+xcuVK6uvr3RGTnERYRCyHjDgADuSrQISIiLiWYRhdquv1ieY5iYgPcDpxuvLKKyktLeWuu+7itNNOY9q0aZxyyikdt1NPPdUdcUonZcGOAhFH933j4UhERGQ4Oj7Pqa+Jkyrricjw5+fsAeeffz6GYbgjFumjltgsqMvFv1wdlIiIuN6cNEfitLWkhiN1TUSHBJz8gPYrTmX5YG0Bs7+bIxQRGXxOJ04PPfSQO+IQJ4SMOQX2QVzdTk+HIiIiw1BcWCAZCaHsKD3K53uO8N0pSSc/IHIsWEKh+ShUFEB85uAEKiIyiLSOkxdKzpwFwGhbEVXV1Z4NRkREhqW54x3V9XJ39aEsuckECVmOx5rnJCLDlNNXnNrt2rWLPXv20NTU1G3b9773vYHEJL0Iix1FJeFEGTXs376eyNnzPB2SiIgMM3PSYljx2V5yCyqw2+29D9NPmAwHvnTMc5ryw8EJUkRkEDmdODU0NPDTn/6Ur776CsMwsNvtAF1+obozcfr6669Zvnw5mzZtoqmpiYSEBC655BJuvfVWt73nkGMYlAaNJ+rYemr2bgAlTiIi4mIzxkZh8TNRWtvInvI60uJCT35Ae0nyQ5vdH5yIiAc4PVTvb3/7G8XFxbzwwgvY7XaWLFnC008/zbx58xgzZgyvv/66O+IE4K233uKaa64hNDSUP/3pT6xYsYIbb7yxI3nzJY0xjiER5jIViBAREdcL9Dczc2wUAJ/t6kN1vY6S5Hngg/2yiAx/TidOq1at4sYbb2TatGkAJCYmMnv2bB577DEmTZrEP//5T5cHCVBWVsbvf/97rrzySh555BHOOeccZs2axRVXXMHChQvd8p5DWdBox+cfrQIRIiLiJsfXc+rDPKfYiWDyh8ZqqDno3sBERDzA6cSpuLiYcePGYTabMQyDhoaGjm0XX3wxq1atcmmA7V555RWOHTvGjTfe6Jbze5ukjBkAjLUWUlPX0MveIiIizstJdxSI+GpvJU2t1pPv7GeB2AzHY63nJCLDkNNznEJDQzl27BgA0dHR7N+/n9NOOw2A1tbWjm2utn79eiIiIti7dy8/+9nPKCgoIDw8nHnz5vHrX/+akJAQp89ptfbSCfRyXH+Pd4XghDTqGUGw0cDW/A1MO3X2oL33UGi/J6n9an/ne18z0Pb76ufmrTISQokJCaCirokN+6s4PTXm5AckToayPDi0BTIWDE6QIiKDxOnEacKECRQWFjJ37lxmzpzJ8uXLGTNmDBaLhaVLl5KRkeGOOCkrK6OhoYHbb7+dm2++malTp5KXl8fixYspKCjgn//8p9ML8+blDewbsYEeP1DBfilktG6ncMNHGOYRg/7+nm6/p6n9ar8v8/X2+wrDMMhJj+H1jcWsKajoPXHqmOekkuQiMvw4nThddtll7N+/H4D//u//5qqrruKaa64BICwsjBUrVrg2wjZ2u52mpiYWLlzITTfdBMDMmTPx9/fngQce4Msvv+T000936pzZ2dmYzWanY7FareTl5fX7eFfZtmEylGwnsukgU6dOHbT3HSrt9xS1X+1X+/vf/vbjxXu0J065BRX8+oJedk5oq6ynoXoiMgw5nTh95zvf6Xg8atQo3n///Y7S5NOmTSMiIsKV8XVoP++cOXO6vD537lweeOABtm3b5nTiZDabB/SHz0CPH6jA0dOg5CWiand4JA5Pt9/T1H61X+333fb7kjlpjqtMW0tqOFLXRHRIwIl3bl8Et+YgHKuEoKhBiFBEZHA4XRzi24KCgjjnnHM4++yz3ZY0gWOIYE/aS5GbTANuitdJGO8oEJFq3UvNsWYPRyMiIsNRXFggGQmh2O3w+Z4jJ985MBwiUxyPddVJRIYZr8k25s+fD8Bnn33W5fX251OmTBn0mDwtbHQ2LfgRZhxj966tng5HRESGqY6y5Lv6UJZc85xEZJjq01C9jIyMPhdeMAyD/Pz8AQXVkzlz5nD22WezdOlSbDYbU6dOZevWrSxZsoSzzz67o7KfT/GzUGIZy5jmAip3fw1TT/F0RCIiMgzlpMfyeO4+1uyuwG63n/xvgoQpsP0tXXESkWGnT4nTrbfe6nTFOnd49NFHWbJkCS+//DJLly4lLi6O6667zicXwG1XH5UJpQVYSzZ7OhQRERmmZoyNwuJn4lBNI3vK60iLCz3xzu1XnA7pipOIDC99SpwWLVrk7jj6JDAwkF/+8pf88pe/9HQoQ4b/yKlQ+gYRNds9HYqIiAxTgf5mZo6NIreggs92VZw8cUpsq6xXsQtaGsB/8JfLEBFxB6+Z4yQ9i0ufDsDY1j3UNrZ4OBoRERmuOuY5FfQyzyk0EYKiwW6Fw64fui8i4ilOlyNfuXJlr/t873vf60co0h/hKdOwYRBvVPP17j2cluWeBYhFRMS3zUmLBXbw1d5KmlqtBPidoBy9YTjWc9r7sWOeU/KpgxqniIi7OJ04/eY3v+nx9c5zoJQ4DaKAEA77jySh5SAVu9eDEicREXGDjIRQYkICqKhr4pv91cxOjT7xzoltiZPmOYnIMOJ04rRq1apur1VVVbFq1Sreeecd/vrXv7okMOm72oiJJJQfpKV4M3CNp8MREZFhyGQyyEmP4fWNxeQWlJ88cUpom+ekynoiMow4PccpOTm52y0rK4vbb7+d+fPn89xzz7kjTjkJc5JjDavQKo0lFxER9zk+z6ni5Du2J05lW8FmdXNUIiKDw6XFIWbPns3q1atdeUrpg5i2AhEpLbupa2r1cDQiIjJczUlzJE5bS2o4Utd04h2jU8E/CFqOQeXeQYpORMS9XJo4FRcXYzKpUN9gCx/rWPw3xShjx76DHo5GRESGq7iwQDISQrHb4fM9R068o8kM8ZMcjw9pnUERGR6cnuO0fv36bq81Nzezc+dOli9fzuzZs10SmDghOJpKcyxR1nJKd30NGWM9HZGIiAxTOekx7Cg9ypqCcr47JenEOyZkQ9F6KN0C2ZcPXoAiIm7idOJ0zTXXdKmgB2C32wE4/fTTueeee1wTmTilKnwiUZXlbQUirvB0OCIiMkzlpMfyeO4+cgsqsNvt3f4m6KACESIyzDidOPVU/CEgIIDk5GRiYmJcEpQ4z5Q4GSo/I6hym6dDERGRYWzG2CgsfiYO1TSyp7yOtLjQnndsT5wObQG73bG+k4iIF3M6cZoxY4Y74pABikw7DbbB6Kbd1De1Ehzg9I9WRESkV4H+ZmaOjSK3oILPdlWcOHGKzwTDBMcq4GgphCUObqAiIi7mdCWHffv2sW7duh63rVu3jsLCwoHGJP0Q0VYgIs0oZntRuYejERGR4ay9ul5uwUn6G/8REDPe8bhUC+GKiPdzOnF66KGHelwEF+Djjz/moYceGnBQ0g/hI6kzheJvWCne+Y2noxERkWEsJz0WgK/2VtLUepJ1mjrmOSlxEhHv53TilJeXx/Tp03vcNn36dLZu3TrgoKQfDIPK0AwAGg9s9HAwIiIynGUkhBITEkBDi5Vv9lefeMeEbMf9ISVOIuL9nE6cjh49SlBQUI/bAgMDqampGXBQ0j+2tm/2RhxRgQgREXEfk8kgJ70Pw/USVVlPRIYPpxOn+Ph4tmzp+ZujLVu2EBsbO+CgpH8ix50KQHJTAceaWz0cjYiIDGfHE6eKE+/UPlSvah806otVEfFuTidO5513HitWrOCrr77q8vratWt5/PHHmTdvnsuCE+eEj3MUiJhoHGB7cZWHoxERkeGsvUDE1pIaKuube94pKArCRjoel2k0hIh4N6drVt96662sWbOG66+/npSUFBISEigtLaWwsJC0tDQWLVrkjjilL6LTaDICCaKRA7u2cOrYcz0dkYiIDFNxYYFkJISyo/Qon++u4OIpST3vmJANtUWOeU5jTh/cIEVEXMjpK06hoaG89NJLLFy4kPDwcEpKSggPD2fRokX861//IiQkxB1xSl+YzBwJSQegXgUiRETEzTTPSUR8Sb9WSQ0ODubWW2/l1ltvdXU8MkDWuGw4mkdAuaobioiIe+Wkx/J47j5yCyqw2+0YhtF9p46S5JsHNzgRERdz+opTu6NHj5Kbm8ubb76pSnpDSNhYR4GIpMZdNDSfZG0NERGRAZoxNgqLn4lDNY3sKa/reaf2kuSHd0DrCeZCiYh4gX4lTkuXLiUnJ4cbb7yRO++8k6KiIgB+/OMfs2LFCpcGKM5pT5wyjf3klyihFRER9wn0NzMjJQqAz3adoLpexGgIDAdbC5TvGMToRERcy+nE6R//+AdLly7l8ssvZ/ny5djt9o5tZ599Np988okr4xMnGfGZtGIm0qijcO9OT4cjIiLDXPs8pzW7T5A4GUan4Xqa5yQi3qtfidN1113H3XffzZw5c7psGzNmDPv373dZcNIPfgFUBo0F4Oi+DR4ORkTEO9XV1fHnP/+ZG264gVmzZjFhwgQWL17c477btm3juuuuY9q0aZx22mksXLiQgwcPDnLEnpOT7li/8cs9R2hqPcEQ8Y7Eqed1IEVEvIHTidPBgwfJycnpcVtwcDC1tbUDDkoGpiXWMZ7c77AKRIiI9Ed1dTUvv/wyzc3NnHfeeSfcb8+ePVxzzTW0tLTw6KOP8sADD1BYWMhVV11FZWXlIEbsORkJocSEBNDQYuWb/dU979Q+z+mQEicR8V79KkdeUdHz5fji4mKio6MHHJQMTEjKKQDEN+yisUUFIkREnJWcnMz69et54YUXuOOOO06432OPPYbFYmH58uWceeaZzJ8/n+XLl1NVVcWTTz45iBF7jslk9F6WvHNJcpttkCITEXEtpxOn2bNn88QTT3Ds2LGO1wzDoLW1lRdffLHb8D0ZfGFjHYnTJGMf2w/pCqCIiLMMw+i5tHYnra2tfPLJJ8yfP7/LGobJycnMnDmTjz76yN1hDhlz0toTpxPMc4oZD+YAaD4K1YWDF5iIiAs5vY7TbbfdxuWXX86CBQs477zzMAyDF154ge3bt1NSUsKjjz7qhjDFGUbbWPIko5I1+wqZNjrSwxGJiAw/Bw4coLGxkQkTJnTbNn78eD7//HOampoICAjo8zmt1v6NEmg/rr/HD9Tp4xz9zNaSGsprG4gKtnxrDxOmuIkYhzZhLdkM4WNc+v6ebr+nqf1qf+d7XzTQz6CvxzmdOI0ZM4YXX3yRBx98kBdffBG73c4bb7zBzJkzefjhh0lKSnI6WHGxwDCqAkYS2VRE7b5v4Mxpno5IRGTYqa6uBiAiIqLbtoiICOx2OzU1NcTFxfX5nHl5A6s6N9DjB2J0uB8Halp5cfUGzhg1otv2Mf5JxLCJw5s/pKRptFti8GT7hwK1X+33de7+DJxOnADS0tJ48sknaW5upqqqivDwcAIDA10dmwxAY2wWFBVhKtNEXBERdzrZkL7ehvt9W3Z2Nmaz2ekYrFYreXl5/T7eFeYd2sGTawo52BLC1KnZ3bYbLWfBgXdIoJy4qVNd+t5Dof2epPar/b7cfhj4Z9B+fG/6lTi1s1gsxMfHD+QU4iZBo6dB0XvE1u2kscVKoL9v/kcSEXGX9itNVVVV3bZVV1djGAZhYWFOndNsNg/oD5+BHj8QZ46P48k1hazZfQSTydQ9aUyaAoBRmue2GD3Z/qFA7Vf7fbn94P7PoE+J08qVK5066fe+971+hCKuFDb2VPgCMo1CdpYeZcqoCE+HJCIyrIwePZrAwEB27drVbduuXbsYM2aMU/ObvN2MsVFY/EwcqmlkT3k9aXEhXXeInwQYcPQQ1JVDSKxH4hQR6a8+JU6/+c1v+nxCwzCUOA0BRqLjm72xRikv7z+kxElExMX8/Pw4++yz+fDDD/nVr37VUVmvpKSEtWvXct1113k2wEEW6G9mRkoUa3ZXkFtQ3j1xCgiFqHFQucexEG7auZ4JVESkn/qUOK1atcrdcYirhcRR5x9DSEsFlXu/gTkTPR2RiIhX+fTTT2loaKC+vh6A3bt389577wFw5plnMmLECBYtWsTll1/OLbfcwo033khzczOPPfYYkZGR3HDDDZ4M3yNy0mPaEqcKrj9jbPcdEie3JU55SpxExOv0KXFKTk52dxziBseiJxFS+qnjmz2u9nQ4IiJe5b777qO4uLjj+XvvvdeROK1atYqRI0eSmprK888/z8MPP8ztt9+O2Wxm1qxZLF26lKioKE+F7jE56bE8+O4OvtxzhKZWKwF+35prkJAN215v65dERLxLv4tD1NXVsWnTJqqrq4mMjGTKlCldFgAUzwsYNRVKPyWmbmfPHZiIiJzQ6tWr+7RfVlYWzzzzjHuD8RIZCaHEhARQUdfEN/urmZ0a3XWHBMcwckpVNllEvE+/Eqcnn3ySJUuW0NjYiN1uxzAMAgMDue2227j++utdHaP0U1jKKbAeJrKPXaV1ZI8M93RIIiIyjJlMBnPSolm5qYQ1u8u7J06JjgXaqSiA5nqwBA9+kCIi/WRy9oCVK1fyv//7v0yfPp1HHnmEf/zjHzzyyCPMmDGDP//5z05X4BP3aS8QMcE4yLaDFR6ORkREfEFOuqNaXm5BD/1OSByExAN2KMsf3MBERAbI6cTpmWee4aKLLmLFihVceOGFnHrqqVx44YUsX76cBQsW8Oyzz7ojTumPyBQazSFYDCuH9272dDQiIuIDctJjAMgrrqGyvrn7DgltV51K1S+JiHdxOnHau3cv3/3ud3vc9t3vfpc9e/YMOChxEcOgPtJRTc9Wog5KRETcLy4skIyEUOx2+Hx3D1edErId95rnJCJexunEKTAwkJqamh631dTUEBgYOOCgxHX8R04DIKp2B82tNg9HIyIivqD9qlNuQXn3je3znA6psp6IeBenE6dTTz2VJUuWUFZW1uX18vJyli5dymmnneay4GTgQlNOASDD2MeusqMejkZERHzBnLZ5TmsKKrDb7V03tg/VO5wP1tZBjkxEpP+crqp3xx138MMf/pD58+cze/ZsYmNjKS8v56uvvsLPz48lS5a4I84evfLKK9x9990EBQWxcePGQXtfb9JeICLT2M/bRVVkJauynoiIuNeMlCgsfiZKahrZU15PWlyn5Uoix4IlBJrr4EgBxGmBdhHxDk5fcUpPT+ff//435557Lnl5ebz22mvk5eVx7rnn8sorr5CWluaOOLspKyvjT3/6E3FxcYPyfl4rZjwtRgAhRiMl+1TBSERE3G+ExcyMFMcCwN2G65lMEJ/leKzheiLiRfq1jtPYsWN55JFHXB2LU+69915OO+00IiIieP/99z0ay5Bm9qMuYjyRVXm0Fm8GvuPpiERExAfkpMewZncFuQUVXH/G2K4bEyfDwa+gdAtMudIzAYqIOMnpK05DwRtvvMG6dev4wx/+4OlQvIJfkmO4XnjNdlqsKhAhIiLu176e01d7j3QvTtRRWU9XnETEe/TrilN+fj5vvfUWJSUlNDU1ddlmGAbLli1zSXA9OXLkCA888AC/+MUvSEhIGNC5rFbrgI7r7/GDLWj0VNj2Ahn2fewoqSEzKWxA5/O29rua2q/2d773NQNtv69+br4oIyGUmBALFXXNfHOgilnjoo9v7FjLKQ/sdjAMzwQpIuIEpxOnlStXctddd2EymYiKisLf37/LdsPNv/zuu+8+xo4dy1VXXTXgc+XlDWwNiYEeP1iCjo5gIjDJVMiTX+XRPC7YJef1lva7i9qv9vsyX2+/9M5kMpiTFsPKTSXkFpR3TZziJoLJDxqqoKYIIkZ5LlARkT5yOnFatmwZZ555Jn/6058IDx/cCm3vv/8+q1evZuXKlS5J0LKzszGbzU4fZ7VaycvL6/fxg65lPLY1i4gxasHeytSpUwd0Oq9rv4up/Wq/2t//9rcfL74hJz22LXGq4Ffnd9rgFwCxGVC21XHVSYmTiHgBpxOnw4cPc++99w560lRfX8/999/PNddcQ1xcHLW1tQC0tLQAUFtbi5+fH0FBQX0+p9lsHtAfPgM9ftCYQ6kNHUvY0T20FG3CbD7HNaf1lva7idqv9qv9vtt+6Zv2hXDzimuorG8mKthyfGNCdlvitAUyVLhIRIY+p4tDTJw4sdvit4OhqqqKiooKnnrqKaZPn95xe/vttzl27BjTp0/nl7/85aDH5S3a13MKrcqnVQUiRERkEMSFBZKREIrdDp/vrui6sfM8JxERL+D0Fadf//rX3HXXXUycOJGMjAx3xNSj2NhYnnvuuW6vr1ixgvXr1/P4448TGRk5aPF4m+Axp8Cu15hAIQWH65iYOLACESIiIn0xJy2GHaVHWVNQwcVTko5vaK+sp7WcRMRLOJ04TZ06lfnz53PppZcSGxvbbcieYRi8+eabLguwXUBAADNnzuz2+uuvv47ZbO5xmxxnaitJPsko5MviGiVOIiIyKHLGx/LEmn3kFpRjt9uPz1FuT5xqDjiKRIzQl58iMrQ5PVRvxYoVLF++nMjISJKSkoiIiOhyG+y5T9JHbR3UKFM5u/cf9HAwIiLiK2akRGHxM1FS08ie8vrjG0ZEQMQYx2MN1xMRL+D0FafnnnuOyy67jPvvv39ITAx+6KGHeOihhzwdxtA3IpL6oGSCjxXTcHATcLqnIxIRER8wwmJmRkoUa3ZXkFtQTlpcyPGNCdlQvd+ROI2d67kgRUT6wOkrTvX19Vx00UVDImkS59jjHRNxgytVIEJERAZPe3W93IJvFYhoK1ykeU4i4g2cTpxOOeUU9uzZ445YxM2CxkwDYLx9X9fhEiIiIm6Ukx4LwFd7j9Dc2umLu/Z5ThqqJyJewOnE6Xe/+x3/+te/+Oijj2hubnZHTOImpsTjBSLyims8HI2IiPiKjIRQYkIsHGu28s2BquMb2kuSl++AlkbPBCci0kdOz3G67LLLaG1tZdGiRRiGQWBgYJfthmGwYcMGlwUoLpTo6KDSjGL+fbAMTh3p4YBERMQXmEwGc9JiWLmphNyCcmaNi3ZsCEuCEVHQUAmH8yH5FM8GKiJyEk4nTueff/7xUqLiXUITabJEEdBcydEDm4FTPR2RiIj4iJz02LbEqYJfnd/2omE4vtTb+4ljuJ4SJxEZwpxKnKxWKzfffDNRUVEqO+6NDIPW+GwCDn5KYMU2rDY7ZpOSYBERcb/2AhF5xTVU1TcTGWxxbEjIbkucVCBCRIY2p+Y42e12FixYwKZNm9wUjrjbiNGOb/PG2/ayp7zOw9GIiIiviAsLJCMhFLsdPt/TqbpeQltlPRWIEJEhzqnEyc/Pj5iYGOx2u7viETcztc1zyjQVslUFIkREZBDNSWsrS76rc+LUXllvK9isHohKRKRvnK6qt2DBAlauXOmGUGRQtFXWyzAOsrXoiIeDERERX5Iz3lGWPLeg/PiXsDHp4DcCWuqhcp8HoxMROTmni0NkZGTwzjvvcO211zJ//nxiY2O7FYuYP3++ywIUF4scS4tfMIGt9VTv3wZM8XREIiLiI2akRGHxM1FS08ie8nrS4kLAZIb4TCjeAKWbISbN02GKiPTI6cTpzjvvBKCsrIx169Z1224YBtu3bx94ZOIeJhMtMZPwL12Hf/lWFYgQEZFBM8JiZkZKFGt2V5BbUO5InMCxnlPxBsc8p6zLPBukiMgJOJ04Pffcc+6IQwZR4KipULqOdNte9lXUkRYX6umQRETER+Skx7BmdwVrCiq4/oyxjhfb5zkdUmU9ERm6nE6cZsyY4Y44ZBCZkhzD8yYZ+8krrlHiJCIig2ZOegy8C1/uPUJzqw2Ln6lj/q0q64nIUOZ0cYh2R48eJTc3lzfffJOaGlVn8yoJjsp6k0yFbC3Sz05ERAbPxIQwYkIsHGu28s2BKseLcZlgmKD+MBwt9WyAIiIn0K/EaenSpeTk5HDjjTdy5513UlRUBMCPf/xjVqxY4dIAxQ1iM7AZfoQZxyg7sNPT0YiIiA8xmYzjZckLyh0vWoIgOt3xWFedRGSIcjpx+sc//sHSpUu5/PLLWb58eZc1nc4++2w++eQTV8Yn7uBnoTk6w/HwcB42m9blEhGRwZOT3l6WvNN6Tm3rDHJoswciEhHpXb8Sp+uuu467776bOXPmdNk2ZswY9u/f77LgxH0sI6cBkGrdy74j9R6ORkREfElOuuOKU15xDVX1zY4XOxbC1RUnERmanE6cDh48SE5OTo/bgoODqa2tHXBQ4n7HC0QUsrVY85xERGTwxIUFMiE+FLsdPt/TdtWpbf4tpaqsJyJDk9OJU2hoKBUVFT1uKy4uJjo6esBBySDoVCAiTwUiRERkkLVfdcrd9a3EqXIvNB31UFQiIifmdOI0e/ZsnnjiCY4dO9bxmmEYtLa28uKLL3YbvidDVPwk7BjEG9UcOFDo6WhERMTH5Ixvn+dU7pgvHRwNYcmOjaVbPRiZiEjPnE6cbrvtNkpKSliwYAEPPfQQhmHwwgsvcMUVV7B//35+9rOfuSNOcbWAEJrDxwFgKlOBCBERGVwzUqKw+JkoqWlkT3nbXNuOeU4ariciQ4/TidOYMWN48cUXGTduHC+++CJ2u5033niDyMhI/vnPf5KUlOSOOMUN/Ec65jmNa93D/spjvewtIiLiOiMsZmakRAGwpr0sueY5icgQ5tefg9LS0njyySdpbm6mqqqK8PBwAgMDXR2buJkpcQpse41MUyF5xTWMjQn2dEgiIuJD5qTHsGZ3BbkFFVx3xtjjV5wOKXESkaHH6StOd911FwcPHgTAYrEQHx/fkTQVFxdz1113uTZCcZ+2NTNUWU9ERDyhvUDEl3uP0NxqO76WU/kOaG32YGQiIt05nTi9/vrrVFVV9bitqqqKlStXDjQmGSwJjqF6Y01l7D5Q4uFgRETE10xMCCMmxMKxZivfHKiCiDEQEA7WZqjY6enwRES6cDpxOpmamhosFosrTynuFBxNS3AiALbSLY6qRiIiIoPEZDKYk+a46rSmoAIMQwvhisiQ1ac5TuvXr2ft2rUdz1955RU+++yzLvs0NTWxatUqUlNTXRuhuJU5aQoUHGJsyx72HzlGiuY5iYjIIMpJj2XlphJyC8r55fkTHInT/jWOeU5Tr/J0eCIiHfqUOK1du5YlS5YAjjWbXnnllR73S0pK4ve//73rohO3MyVNhYL3mGTaz9aSGiVOIiIyqOa0zXPaUlxDVX0zke3znHTFSUSGmD4lTv/1X//F1Vdfjd1u5/TTT+fJJ58kMzOzyz4Wi4XgYP3R7XU6FYhYWVzDRZNVTl5ERAZPfFggE+JD2Vl2lM/3VHBR56F6drtj+J6IyBDQp8QpMDCwo3LeqlWriI2N1Vym4aJtzYw0o5gdReXARM/GIyIiPicnPYadZUfJ3VXBRZMmgtkCTTVQvR8iUzwdnogI0I/iEMnJyUqahpPwkbQGROBvWGkq3qYCESIiMuhyxscCsGZ3BXaTH8S1fYmn9ZxEZAhxegHclpYWHn/8cd5++21KSkpoamrqst0wDPLz810WoLiZYTgWwi38lDEtezhY2cDo6CBPRyUi4hXWrl3Ltdde2+O2l156ialTpw5uQF5qRkoUFj8TxdUN7K2oJzUhGw5tdgzXy/yup8MTEQH6kTg98sgjPPPMM8ydO5fzzjtPV5+GAVPSZCj8lElGIXnFNUqcREScdMcddzBz5swur6Wnp3soGu8zwmJmekokn+8+Qu6uclITpgAvQKmuOInI0OF04vTuu+9y6623snDhQnfEI57QthDuJFMhH5XUsGByoocDEhHxLmPGjNHVpQHKSY91JE4FFVx3ttZyEpGhx+k5TjU1NZx22mnuiEU8pa2y3kTjANuKKj0cjIiI+KKctrLkX+49QnNMW+Xe2mKoP+LBqEREjnM6cZo+fTo7duxwRyziKdFp2PxGEGQ0cbR4hwpEiIg46f777yczM5NTTjmFn/zkJ3z99deeDsnrTEwIIybEwrFmKxvLWiFqnGODhuuJyBDh9FC9u+++m5/97GckJSVx1llnaY7TcGAyQ/wkKP6aUU27KapqYFSU5jmJiPQmNDSUa6+9lpkzZxIREcH+/ft58sknufbaa1m+fDk5OTlOnc9qtfYrjvbj+nv8UHFGajRvbD7Ep7sOMz0+G1PlXmwlm7CnzD3pccOl/f2l9qv9ne990UA/g74e53TidMkll9Da2srtt9+OYRgd6zu1MwyDDRs2OHta8TBT4hQo/ppJpkK2FtcocRIR6YPMzMwuC8KfdtppzJs3j4svvpj//d//dTpxyssb2JyegR7vaaMsDQB8sPkgV4+JIRmo3vEZ+4JOnji18/b2D5Tar/b7Ond/Bk4nTueffz6GVvEefhLbCkQYhXxRXMOF2SoQISLSH2FhYZx11ln861//orGxsdsXjCeTnZ2N2Wx2+j2tVit5eXn9Pn6oSBzXyJL1n7CnuoWQC8+BHU8S2VREeC+FN4ZL+/tL7Vf7fbn9MPDPoP343jidOD300ENOByNeoK1AxCTTfpYXVXs2FhERL9c+V9TZLxrNZvOA/vAZ6PGelhQZzIT4UHaWHWVdw0jmAcaR3ZitTWDpfSSEt7d/oNR+td+X2w/u/wycLg4hw1RcJnbDj0ijjiMle1UgQkSkn2pqavjkk0+YOHEiAQEBng7H67RX11tVZILgOLDb4HC+h6MSEenjFadt27Y5ddJJkyb1K5iT+fLLL3nzzTfZuHEjpaWlhIaGkpWVxa233kpWVpbL38/n+AVgj52AcXgbyY0FlNQ0khwxwtNRiYgMab/4xS9ITEwkKyuLyMhI9u/fz1NPPcWRI0c0QqOfcsbH8sSafeQWVGBPzsbYswoObYaRWgpFRDyrT4nTZZdd1qfhBna7HcMw2L59+4AD+7YXX3yR6upqrr32WtLS0qisrOTpp5/myiuv5IknnmD27Nkuf09fY0qcAoe3MclUSF5RjRInEZFeTJgwgXfeeYd//etfHDt2jPDwcE499VT+/Oc/M3nyZE+H55VmpERhMZsorm6gOnMikazSQrgiMiT0KXF68MEH3R1Hr+69916io6O7vJaTk8P8+fNZvny5EidXSJwMm//JJGM/m4truCArwdMRiYgMaTfddBM33XSTp8MYVkZYzEwfG8nnu4+wuWUUZ4HWchKRIaFPidOll17q7jh69e2kCSA4OJjU1FQOHTrkgYiGoQTHt6OZpkJeKK7xcDAiIuKrctJj+Xz3ET6ojHckTmXbwNoKZqdrWomIuIxXF4c4evQo+fn5pKenezqU4SEhG4Bk4whFRQdVIEJERDyivUDEmwcDsPsHQ2sjHNnt4ahExNd59Vc39913Hw0NDdxyyy39Ot7XV2jvxj8YIyIFU3UhiY0FFFXWk9TDPKdh2/4+UvvV/s73vmawVmcX3zYxIYyYEAsVdc3UxWcQWr7BMc8pLsPToYmID/PaxOnRRx/lrbfe4p577ul3VT1fX6G9J+NGjCayupBJRiFvf76ZGcknXrhxOLbfGWq/2u/LfL394l4mk8EZaTG8samE3aZxTGMDlG6GyVd4OjQR8WFemTgtWbKEZcuW8fOf/5wf/ehH/T6Pr6/Q3hOj7kw49BmTTIXsCohm6tTuwyCHc/v7Qu1X+9V+96/OLpKTHssbm0r4vD6RaaDKeiLicV6XOC1ZsoTFixezaNGifg/Ra+frK7T3KGkqAJOMQl4vqT1p+4Zl+52g9qv9ar/vtl/cr32e0/uVcSy0AIe2gN0OfVgeRUTEHbyqOMTSpUtZvHgxP/3pT1m4cKGnwxmeEh2V9cYapewuKlOBCBER8Yj4sEAmxIeyyzYSm2GGhkqoLfF0WCLiw7zmitNTTz3FY489Rk5ODmeddRabNm3qsn3q1KkeiWvYCYnDHpKAqa6U2GO7KattIiH8xPOcRERE3CUnPYadZUcpCxhDYuNex3pO4cmeDktEfJTXJE4ff/wxALm5ueTm5nbbvnPnzsEOadgyEidDQSmTTIXkFdcocRIREY+Ykx7DE2v2sal5NInsdcxzmnChp8MSER/lNYnT888/7+kQfEfCZCj4gElGIVuLa5iXGe/piERExAfNHBuNxWzi66aRXOgPHNrs6ZBExId51RwnGSRt85wmmRyJk4iIiCeMsJiZPjaSfPsYxwulWzwbkIj4NCVO0l2CI3EabxSxvajCw8GIiIgvy0mPZZutLXGqPgAN1R6NR0R8lxIn6S4yBXtAGAFGKxH1ezlc2+jpiERExEflpMdQSwjF9ljHC1rPSUQ8RImTdGcYGAnHh+vlabieiIh4yMSEMKKDLWxtv+qkxElEPESJk/SsbZ5TprFfiZOIiHiMyWQwJz2GfJvmOYmIZylxkp4lTgFUIEJERDwvJz2WbfYUxxNdcRIRD1HiJD1LOH7FaVtRtWdjERERn5bT6YqTvXwHtDZ5OCIR8UVKnKRnMeOx+wUSYjQSULef8qPqpERExDPiwwIJjUuhyh6CYWuFw9s9HZKI+CAlTtIzsx9GXCYAk4z9Gq4nIiIeNWd8p7LkmuckIh6gxElOLFGV9UREZGjISY8hv22ek/2QEicRGXxKnOTE2kuSG0qcRETEs2aOjWYnYwFoLNrk2WBExCcpcZITa6usl2kqZKsKRIiIiAeNsJgxJ2cD4Hd4G9hsHo5IRHyNEic5sbhM7IaJWKMWa20pFXUqECEiIp6TmjGNRrs//tZjULXP0+GIiI9R4iQnZgnCiBkPQJZpnwpEiIiIR50xPoEd9lEAtBRv9nA0IuJrlDjJyXWa56TESUREPCkzMYw95lQADu9a5+FoRMTXKHGSk+uorLdfBSJERMSjTCYDa1wWAE1FuuIkIoNLiZOcXFuBCMcVp1oPByMiIr4uJn06ABG1WgRXRAaXEic5uQRHBaNRpnKOVpdTWd/s4YBERMSXTZo2C5vdIMpWRc3hg54OR0R8iBInObkRkRAxGtBwPRER8bz46GiKzMkA7Nz0pYejERFfosRJetdWICJTBSJERGQIqI2YCEDlnvUejkREfIkSJ+ld+zwn034lTiIi4nEjRk0FwL98G3a73bPBiIjPUOIkvetUklxD9URExNNGTpwJwNjWPeyrqPdwNCLiK5Q4Se/aSpKnGcVUVFVTdUwFIkRExHMCRk4FIMUo48vt+z0bjIj4DCVO0rvQRAiKwWzYyTAOsq1EZclFRMSDQmKps8RiMuwc3K6FcEVkcChxkt4ZRqeFcLWek4iIeJ4t3rFcRmvxFlqsNg9HIyK+QImT9E2neU5bSzTPSUREPCs05RQA0mx72XSw2rPBiIhPUOIkfdNWWS/TVKiheiIi4nFG20iITNN+cguOeDgaEfEFSpykb9oSpwzjIMWVddQ1a1iEiIh4UNtIiAnGQb4sKPVwMCLiC5Q4Sd9EjgVLKIFGC6lGCXurWjwdkYiI+LKIMdgsoQQYrRw7tJ2j+kJPRNxMiZP0jckECVmAY57TV8WNHG1U8iQiIh5iMmFqH65HIXllWipDRNxLiZP0XcLxynrv72lg+gOruebJtTz3ZSEl1Q0eDk5ERHxOgqOyXqZpP5vLmjwcjIgMd36eDkC8SNs3e/OjynimwUzRUSu5BRXkFlTw+ze2kZUcxryJCczLjGdiYiiGYXg4YBERGdY6Kr7uZ3lZE3a73cMBichwpsRJ+q6tgxrVvIf/Oz+G8FHjWb2znA/zy/h6fxVbi2vZWlzLXz/aRXLECOZlxjM/M57pY6PwN+vipoiIuFinK07lx6y8uO4gF2QnERsa4OHARGQ4UuIkfRebASZ/jMYaLA2ljI2Zxk3xYdw0N5UjdU2s2nGYD/PLyC0op7i6gWe+KOSZLwoJC/TjnIw45mUmcOaEWEIC9M9ORERcoK1fCrfVM9Ko4J4387nnzXwyE8PIGR/DmemxnJoSSYCf2dORisgwoL9gpe/8LBA3EUq3EFRdAFzYsSk6JIAfnDaKH5w2ioZmK2t2V/Bhfimrth/mSH0zKzeVsHJTCRazidmp0czLjGdeZjzxYYGea4+IiHg3PwvEZUBpHtePPMRrralsO1RLfttt+ad7GeFvZua4KOamxzJ3fAypsSEaSi4i/aLESZyTOBlKtxC/9xWMjZEwbq6jVHmnTmiExdyRGFltdr45UMVH+WV8mF/G3op6Pt1Vzqe7yrl75VamjAxv2zeB8fHqzERExEkJU6A0jwsjS7juytOpamjl890VfLqrnNyCCsqPNvHJznI+2VkOQFJ4IDnpseSMj2FOWgwRQRYPN0BEvIUSJ3FOylzY+AIhVdvg7dsdr4UlQ8qc47dOiZTZZDA9JYrpKVHc9Z2J7D5cx4f5ZXyYX8rGg9VsLqphc1END3+wi9FRQR0J12ljIvHTvCgREelN2zynoJoCAGJCArhkajKXTE3Gbrezo/QouQWOJGrtvkpKahp56euDvPT1QQwDJo+M4Mz0GHLGxzJ1VITm5IrICSlxEudM/gHWkAQOf/USCY27MYq/gdpi2PKS4wYnTaTS4kJIiwvhp2elcvhoI6u3t82L2l3BgcpjPLlmH0+u2UdEkD/nZMQxPzOenPRYgjUvSkREetJW8TWoZk+3TYZhMDExjImJjvm4Dc1W1hVW8tmucnILytlVVsfmg9VsPljNY6t3Exrgx+zUaHLGxzI3PYYx0cGD3RoRGcL016g4xzAgZQ4l1SHETZ2K2doIB9dB4RrHrXhDnxOpuNBAfjhjND+cMZpjza18tquCD/PLWL2jjKpjLbz2TTGvfVOMxc/EnLQY5mXGc+7EOOJCNS9KRETaxDsWZ7c0HsZ6rBJCY0+46wiLmTPHx3LmeMc+pTWNfNZ2NWpNQTlVx1r4IL+MD/LLABgTHUROegxz02OZnRpNaKC/+9sjIkOWEicZGEswpJ7tuAE01/crkQqy+HFBVgIXZCXQarWxYX+VY0jf9jL2HznG6h2HWb3jMIYBU0dFdJQ61yRfEREfFxiGPXIsRtU+TP/6IYya6Ri+lzgZYsaD+cTJTkJ4YEdhI6vNzraSGnILHPOjvtlfxf4jx9h/5AAvfHUAs8nglNERzE2PJWd8LNnJ4ZhN6n9EfIkSJ3EtFyRSfpFjmTkumpnjovndgokUtM2L+iC/jM0Hq9l4wHH783s7GRsT3DEv6pTRkerERER8kD19Psa65RjFX0Px18c3mAMc1WATsiFxiuM+PgsCQrqdw2wymDwygskjI7j17DTqmlr5cs+RjvlR+yrqWV9YxfrCKv7y4S4igvw5Iy2Guekx5KTHkhQxYhBbLCKeoMRJ3GuAiZSRMofxcWMZHx/KrWenUVbbyEfbHRX6vth9hH0V9az4bC8rPttLdLClbb0ox7yoERat2yEi7ldfX8+jjz7Ku+++S01NDePGjeOmm25iwYIFng7NZ9jnP0B+4KlkRDRjKtsKpXmOW1MtHNrkuG18vm1vA6LGOa5IJWQ7qvIlZENofJdzhgT4dXwxB3Cw8phjWN+uCj7fU0H1sRb+s+UQ/9lyCHDM4c1Jj2Hu+Fhmjo0iyKI/sUSGG6/6X63OaRgYYCIVnzKHq2eM5eqZY6hrauWzXeVt86Ic60W9sqGIVzYUEehvYk5aLPMz4zlnYhwxIVpFXkTcY9GiReTl5fGLX/yClJQU3n77be644w5sNhsXX3yxp8PzDYZBQ3ga9ilTwdz2pZnNBtX7oXSLI4k61HZ/tAQq9zhu214/fo6Q+LZEavLxK1SRY8HkqLI3KiqIq2eO4eqZY2i12thcVM2nuyrILShn88Fqdh+uY/fhOp7+vBCL2cRpKZHMHR9LTnoMExPCMGlEhIjX86rESZ3TMDSARCokZQ7fSZnDd7Km0GKzs76wsq3UeRlFVQ18tL2Mj7aXYRhw6ujIjm8Ox8V2H6IhItIfn376KZ9//jl/+ctfuOiiiwCYNWsWJSUl/PnPf+Y73/kOZrOufnuEyQRRYx23zEuOv15XDmWdEqnSLVBRAHVlsLsMdn90fF9LiGNoX/ucqYRsiMvEzy+AU8dEceqYKO6YN57qY818secIn+0q57Nd5ZTUNPLFniN8secID73rKJGekx7TdoslNlRf5ol4I69JnNQ5+Yh+JlL+KXM4PWUOp58xh98vOIsdZXUdSVRecQ1f76/i6/1VPPjuDlJjg5mXmcC8zHimjYrQt4Ai0m8ffvghQUFBXHDBBV1e//73v88vfvELNm/ezCmnnOKh6KRHIbEQcg6knnP8teZ6KMtvuzrVllCVbYPmOjj4lePWzuQHMRM6DfXLJiIhm+9kJ/Kd7ETsdjt7K+rbSp5X8OWeI1TUNfH6xmJe31gMwMTEMOaOd1TrO3VMJIH++vtFxBt4TeKkzslH9SORMsKSmZgyh4kpc7jt6jkcMp3CR9sP80F+GV/tPcKe8nr2fLqHv3+6h5iQAM6b6JgXdUZajDovEXFKQUEBqamp+Pl17U4nTJjQsd2ZvslqtfYrjvbj+nu8txtw+82BkHSK49bO1gpHdmOU5kFZnuO+dAtGQxUc3ua4bX6xY3d7+ChImIw9PouUhMmkTMzm2pnTaLLa+eZAFWsKKsgtOMK2Q7Vsb7st/3Qvgf4mZo6NIifNcUUqNTbY6Wqx+vn7SPvtNrC2gLXZ8e/T2gzWFlqbG/Cv3U9jiT8mkwm73Y7dZsMGbY/t2LBjswHYsVlt2Nu32e3Y7HbsdrDh2NeOHVvbvd1G273jHLTd2+20HXf8HLSdp/M57XZbx750Pq/9+Ps79gfa7u12W8c+tD1vP7/NTlvstk7nAMMSRGTsyAH/Du2N1yROru6cQB1Uf3m0/eZASJnruAG0HIOi9RiFazD2fw7FGzC+lUglhCVx9Zg5XD3lDOrOn8XHh4P5aEc5n+wqp6KuiX+tP8i/1h9khL+ZnPQYzpsYx9kTYokKtvQYgn7+vtF+u92O1ea4tXa6Nbe0cqTBSlFlPSaT6XiH09ExOO5tnX6h2wGbra0jgU4dDp1eO35Mx7HQ5fz2TsfY7ADt+7a/1v7+dOq0uh5j79LhccKYOtpho1N8jg5unH8L2W7unLxFdXU1I0eO7PZ6eHh4x3Zn5OXlDSiegR7v7dzT/nSISYeY78MkO/6N5QTV7GZE7R6CagoIqt1DwLFDGDUHoeYgxs7/dBzZ6h9Ga3gqaWFpJIencfGUNA6fkszmCiubSpvYVNZMdaONT3dV8OmuCgCiR5iYEh/A1AQLk+MCCA0w9TlS/fydaL/dimFrxbC1YNismOwtbc9bMeyO1xzbWrBbW7FZW7C13dutrdhtLdhbHfdYWx2JjK0Fu82KYW0BWwuGvf0cju0meysmWwuGvRVT+3N7K+a2W/tjP1ox26340dJ239p2s/XYFDMwGeBTV3yK3uvt2JvJC3BvauM1iZOrOydQBzVQQ6f94RC5ACIXYGQ1ElKVT+iRTYQc2Uxw1XZMtSUYeS9D3suEARcGxjInegrV2VP4xshk9ZEo1pc0UdFg7Vj40ARkxPgzPTmQGUkBJIR0/68ydNrvXja7HasNWtvurTY7VjusXrsJq83xx7jVTqfHbfvZjx/b9fHx16xtf5hb7Y5znuhxz+9zPJbO79PTa7Z+vKcjMTmJt8sH5fN3loENP2yYsWJuu3c8b3ts2DBhw69je/s+x5/7Gd23mbDjhxUDO5ujpzI6XAuBtjvZ1QFnrxxkZ2f3a9i51WolLy+v38d7u8Fv//yu799YA2VbMUq3QGnbfcVO/FpqCavYSFjFxo59M/0COSsuE3tSFvZTstnvn8rqqjg+2VfPusIqjjTYWF3YwOrCBgwDspPC2+ZGRTN1VAT+5u6J1HD8+Vtbmmmqq6KpvoqWuipaj9XQ2lCN7Vg19sZaaKzBaKrB1HwUU1Mt1vpKAv0MDFtLW1LSgsnW0pGstCcnfvYWzLRiordf8kOfzW7Qgh/Nbb+lbTh+39g5/nvH3vFau+770Hkf4/jz9v2Mb+9vGB3n67rN6Nje7dxGD+c5wb7dXusSU9fnRtu5W81BRI+dMuDfob3xmsQJXNs5gTqo/hr67Z/V8cjecgzrt65IWRrLiS7+iOjij0gFLg9Lwj7pDIojTuODY2m8utef/NI68itayK9o4dnNR0mPC3EM6ZsYR2ZCCNu2be21/VabnVarjZa2+1abnRZr58c2Wq2O+5PuY7Mf3+9bz1u7vEenc9oc9602W9v5Oj222Whp7frccUzb+3bat8Vq6z2BOCE7ZmyYsLf9Ord3PDZhb3vevv1bzw07RqdtXY8/+fksHcd3Pb/j8Qnej2+9n+nE72c2bPhjw2w4EhQ/o+3WKTHpSFwMR7LRkbgY30piuiQ4ju3t28x2K2bsbdsdXWL7vib78f1M2DDbrZjaEpzBUGKeTkz2O27tnLxFREREj1/c1dTUAMe/3Osrs9k8oN+rAz3e23ms/cFRMG6u49autQkObz9egKKtRLrRXAcl32CUfAPAOGAcBv8VnUZrdhYHAtL4sj6JN0qjWVfux5biGrYU17D0kz2EBPgxOzWauW1lz8dEB3cJw93tt9vtNFttNLbYaGyx0tBspbHVcd/QYqWpxUZDi5WGplaam45ha6iGxpq2JKcWU1Mt5uZa/FqOYmk5iqX1KAHWOgKtdQTZ6giy1xNsryfUfowgowkLEOq21nTVajfR4rjG03bvRytmmu3HHx9PUvywGn5YDX9shhmryb/tsR92kz82kx82kz92kwVMftjNFuxmfzD5OxZkNlswmf3Bz4JhtmCY/TH8LJj8AjD5+2P2s2Bqu/n5B2D2D8DPz4LZ34LZEoC/fwD+lgD8/f3xNxuYsbNjez5TJmfj52fGZBiYDDAZBkbbfftr/fl72RtYrVbKN21y+/8Br0mcXN05gTqogfKK9ptDIe0cxw2g+RgUdZojVfQ1Rm0JxtZXGMUr/AT4SVgy9VNmscmcxb8rU3jrQAAFh+soOFzHsk/3EhNiIdBkw2/15x1JzPEE5XgS1P+EwzkGNiy0EkAzgbQQYLTd00wgzQQYLQTQQhjNBNBCoOG4D6ClY3tgD9sCjGYC/I9vC6CZQMNxb+6ccBjdEyDzCYYT+Jxv/xvw5Bechskxqd0wO+5N5rabX6fXO29ruzc67WMyYzf50RB1lnf8/x8E48eP5+2336a1tbXLUPJdu3YBkJ6e7qnQxNP8AiBpquPWzmaDqn3dS6TXlcKRAvyOFLQlUnA1YI2Opyx4PHmtY/ioKo51jSP5KL+ZD/PLABgdFUROegxz0qIJbLJRWd9Msw1HQtPiuDV0JDg2GtsSnI7X25Odb73e1NyCvbke/5aj+DXXOhKc1joCrEcJ5RihHCPMOEYY9YQaxwhre57Q6XWLMYAvcjr9bV9nD+QoQdQZwRwzgjlmCqHBHEKTOZgmv1Ca/UJp8Q+ltglCwqMw/AIwzBZMfo5kxOxnaUtK2hIP/wDMba+b/S34tSci/n74m034mw0C/Extj02Emk1YzCYsfo5tZpMx5JIPq9VKSYCJ8BH++r3sZl6TOKlzEpewBMG4sxw36DGRoraY4NpXOYNXOQP4S3QSxeGn8mnLBP5ROprtddE4fqu3djm1GSuBNBPSnpS0JSEdiYfRTLCphSBTK0GmFkYYrQQZzYwwtRLYlrwEGq2djnMkKRaaHfd2x2N/e9vN1oxf22OvZ5hOcjPcsN3c7+NtQFV1LZExsZg6Egq/7smIUwmK3/HEpuNm+tYxAzmX+VtDH/rPZrVSvWmTS841HJx33nm8/PLLfPDBB3znO9/peP31118nLi6OKVOmeDA6GXJMJohOddwmXXr89brDjmSqc4n0I3sw15eRVF9GErmcDxAAzeZg9phSWNc4kq01Y9i0LoVX1ibTjD+8uRpw9Eedk5sw49i3njcQTj2jurze/rieUBowGd/6psfUdnOCDRON5mCazKE0+YXS4h9Cq38YVksotoAw7AHhEBiOERiOOSgc04gI/IIjsARHEhAcSUBIBEEWCyG9VL+1Wq1s2rSJqVOnKnEQt/KaxEmdk7hFHxIp09ESRh0t4Ue8xY8MaI6Mo8HuT6DJhsnWhMnahKm1EcPu5LdrbdViXHpxxjCD/wjHN51+gcdv/u2PA8CvbXvHfp329w/selwP+1lN/mzfWcDEzEmYzX7OJS0mc8/7eBG71Urhpk1ETJ16fKFN8VlnnnkmZ5xxBn/4wx+oq6tj9OjR/Oc//yE3N5f//d//1R9x0jchcZB2nuPWrqkODufDoc3Hk6myfCzWeiZatzHRvM1RFQBoxcxBWwyBRgth1BNsNLkkLJvJgtUShi0grC3BCYPACMxBEZgCwzBGhENgBASGQ9s+jpvjsckSQpBhEOSSaEQ8z2sSJ3VOMij6kEhZGg7Tc729TswBnRKPQCeSmJ72O9lr30pszIPwX9pqpam4EaLGKXEQARYvXsxf//pXHnvsMaqrqxk3bhyPPPIICxYs8HRo4s0CQmDUDMetnbUVKnZ1mjfluErl11jNWFNZ93NYQk6Y1PT8ekSX103+gc5eZBIZ1rwmcQJ1TuIBPSRS1pJNFOzaRXpmNmZLUPckxhzgGI4hIj4hODiYu+++m7vvvtvTochwZ/aD+EzHbcqVjtfsdqxVB9i9fhVpk6ZiDoo8nvwMxpdpIj7Eq/5HqXMSj7MEwaiZ1B8JgMSpuuIiIiKeZRgQPpK6mCmQOEX9kogb6WtxERERERGRXihxEhERERER6YUSJxERERERkV4ocRIREREREemFEicREREREZFeKHESERERERHphRInERERERGRXihxEhERERER6YUSJxERERERkV4ocRIREREREemFEicREREREZFeKHESERERERHphRInERERERGRXihxEhERERER6YWfpwPwBLvdDoDVau3X8e3H9fd4b6f2q/2d732N2j+w9rcf1/57WBzULw2M2q/2d773Nb7efhi8vsmw+2Dv1dzcTF5enqfDEBHxWdnZ2VgsFk+HMWSoXxIR8bze+iafTJxsNhutra2YTCYMw/B0OCIiPsNut2Oz2fDz88Nk0mjxduqXREQ8p699k08mTiIiIiIiIs7Q130iIiIiIiK9UOIkIiIiIiLSCyVOIiIiIiIivVDiJCIiIiIi0gslTiIiIiIiIr1Q4iQiIiIiItILJU4iIiIiIiK9UOL0La+99hoTJkzouGVmZjJnzhx+/vOfU1hY2GXfr7/+mt/97nd8//vfJysriwkTJlBUVOSZwF2kr+23Wq08/fTT/OQnP2Hu3LlMmTKFCy+8kIcffpja2lrPNcBNvv25fPu2du1aT4fYb++99x4TJkzgnXfe6bbtu9/9LhMmTCA3N7fbtvPOO49LL70UgI8//phf//rXXHzxxUyaNIkJEya4PW5XGWj76+rqWLZsGddccw1nnHEG06ZN4+KLL2bFihU0NTUNRhMGxBU//7/+9a9873vfY8aMGWRnZ3Puuedyzz33UFxc7Pb4fYX6JvVNPRmufZP6JfVLQ7Vf8hvQ0cPYgw8+yLhx42hqauKbb77h73//O2vXruXdd98lPDwcgK+++oovv/ySiRMnEhwczLp16zwctev01v7GxkYWL17MRRddxBVXXEFkZCT5+fksW7aMjz/+mFdffZXAwEBPN8Pl2j+Xb0tLS/NANK4xY8YMDMPgq6++4jvf+U7H69XV1ezatYugoCDWrl1LTk5Ox7bS0lIOHjzI9ddfD8CHH37I5s2bmThxIv7+/mzbtm3Q29FfA21/SUkJzz77LJdccgnXXXcdQUFBbNiwgSVLlvDFF1/w9NNPYxiGJ5rWJ674+dfW1rJgwQJSU1MJDg5m9+7dLFu2jNWrV/P2228TGRk56O0artQ3qW/qyXDrm9QvqV8aqv2SEqcTSE9PJzs7G4CZM2ditVpZvHgxH330EZdddhkAP/vZz1i4cCEATz755LDqnHprf2BgIKtWreryD2/mzJkkJiZy++238/7773PJJZd4Kny36fy5DBdRUVGkp6d3+/e7fv16/Pz8uOyyy7p9a/nVV18Bjp85wP/8z/9gMjkuYN9///1e1UENtP0jR45k9erVBAUFdWyfPXs2I0aM4M9//jMbNmzgtNNOc39D+skVP/977723y/b2z+Wmm25i1apVXH755W5sgW9R36S+qSfDrW9Sv6R+aaj2Sxqq10ftv5COHDnS8Vr7f0hf8O32m83mHrP1yZMnA47MX7zHzJkz2bdvH4cPH+54be3atWRlZXHmmWeybds26urqOratW7cOs9nc8YvX2/8vDKT9QUFBXTqndt70f2GgP/+eREVFAeDnp+/n3El9k/qm4Ur9kvqlodgvefe/qkHUPj48JSXFs4F4SF/b357xe+vwgN7YbDZaW1u73KxWq6fDGrBZs2YBdPl2Z+3atcyYMYNTTjkFwzDYsGFDl22ZmZmEhoYOeqzu4I72e9P/BVe1v7W1lcbGRvLz83nggQdISUlh3rx5g9MIH6W+SX0TDM++Sf2S+iUYev2SEqcTaP8lVF9fT25uLsuWLWP69Omcc845ng5tUPSn/WVlZfzlL38hKyuLs88+exCjHTw/+MEPmDRpUpfbcBgeMX36dEwmU8cvqKqqKgoKCpg+fTrBwcFkZmZ2/MI9dOgQRUVFHZfDhwNXt3/Hjh088cQTzJs3j4yMjEFpw0C4ov3l5eVMmjSJKVOmcOmll2K1WnnuuecIDg4e9PYMZ+qb1Df1ZDj2TeqX1C8NxX5JYyhO4Ac/+EGX56mpqfztb3/zmWEnzra/urqaG2+8EbvdzqOPPur1l8hP5E9/+hOpqaldXhvKEyz7Kjw8nIyMjI4xw+vXr8dsNnPKKacAjl9g7b+g2vcZTh2UK9tfVFTELbfcQkJCAv/zP/8zCNEPnCvaHxkZyb///W+am5vZu3cvTzzxBNdeey3PP/88cXFxg9ia4U19k/qmngzHvkn9kvqlodgvDc/fIC7wpz/9iX//+988++yzXHnllezZs4c77rjD02ENGmfaX1NTww033EBZWRlPPfUUo0aNGuRoB09qairZ2dldbllZWZ4OyyVmzpxJYWEhZWVlrF27lkmTJnV8KzNjxgy2b9/O0aNHWbt2LX5+fpx66qkejti1XNH+4uJirr32WsxmM88++ywRERGD3Ir+G2j7/fz8yM7O5tRTT+WKK67g2WefpaioiBUrVniiOcOW+ib1TT0Zrn2T+iX1S0OtX1LidALtv4RmzZrF/fffzxVXXEFubi7vvfeep0MbFH1tf01NDddffz1FRUU8/fTTXnH5V3rW/k3NunXrWLduHdOn///t3XlMFOcfBvBnEQ/wYEUuo1IF3ZVjg6iwilCRWhWLBVuPJs1CFARUqBU1ivaAtorGGiNLCSDGq8SgFQwoVYvW2CayKhZKrSgFpJa2ihyiopzz+4Ps/NwCLipCK88nIYR33t35zuywT97Zd2ZdxGXaN6NLly5Bo9FAoVC8clOwXnT7y8vLoVKpAAAHDhyAlZVVN1XeNbr69beysoKFhUWb7xiiF8NsYjb1Jswl5hLw78olDpw6ad26dTAxMUFsbCxaWlp6upxu1972a4Pp1q1b2LNnD+zt7Xu4SnoRLi4u6NOnD06dOoWioiK4urqKywYPHgw7OzscO3YM5eXlr9R0CK0X2f4///wTKpUKLS0t2L9/P0aMGNHd5b+wrn79y8rK8Pfff+O11157mWX3eswmZtOrjLnEXPq35VLvmBTdBUxMTBAcHIzt27cjMzMTvr6+qKqqEi9au3HjBgDg/PnzMDU1hampqc4L/F/3z+2fPXs2AgMD8euvv2Ljxo1obm5GXl6e2N/U1BTW1tY9V/BLUlRU1O6diqytrcXbXP5XDRo0CPb29sjOzoaBgUGbj7xdXFywf/9+AG3nEZeXl6OgoAAA8PvvvwOAeAZ4xIgR/4mLlJ93+ysrK+Hv74+Kigps3rwZlZWVOreGtrKy+k+c5Xve7S8sLERMTAxmz56NUaNGwcDAADdu3MC+ffsglUqxdOnSbt2O3obZxGwCXt1sYi4xl/5tucSB0zNQqVRISUlBfHw8fHx8UFRUhFWrVun0iY6OBtA69/LgwYM9UeZL8+T2Ozs7i29ImzdvbtN3/vz52Lp1a3eX+NJFRka22/7FF19g4cKF3VxN11MqlSgoKICdnR0GDRqks8zFxQX79u1D37594ezsrLNMo9G02Tfa/43/0rHwPNv/22+/4datWwBaz37/U1hYGMLDw19u4V3kebbfzMwMFhYW2Lt3LyoqKtDU1AQrKyt4enoiNDQUw4cP7+7N6HWYTcymVzmbmEvMpX9TLkkEQRCe+9FERERERES9AK9xIiIiIiIi0oMDJyIiIiIiIj04cCIiIiIiItKDAyciIiIiIiI9OHAiIiIiIiLSgwMnIiIiIiIiPThwIiIiIiIi0oMDJyIiIiIiIj04cKJukZaWBrlcLv7Y29vD3d0dq1evxs2bN3u6PABAQkICsrOz27RrNBrI5XJoNJoeqKrV2bNnERoaCjc3Nzg6OsLV1RUBAQHIyMhAY2Njj9X1T+3tqw0bNsDLy+ulrvf27dtQq9W4du3aS10PEb1amE0vhtn0dMymV49hTxdAvUtMTAxsbGxQX1+PK1euICEhARqNBt9++y1MTEx6tLbExETMnj0bM2fO1Gl3cHBAamoqxo4d2+01CYKAjRs3Ii0tDdOnT8eGDRswfPhw3L9/HxqNBtHR0aiurkZAQEC319ZZK1asgL+//0tdx507dxAXF4cRI0bAzs7upa6LiF49zKZnw2zqHGbTq4cDJ+pW48aNg0KhAAAolUo0NzdDrVYjOzsb7777bg9X175BgwZhwoQJPbLu5ORkpKWlITw8HGFhYTrLvLy8EBQUhLKysm6t6fHjxxgwYECn+1tbW7/EaoiIXhyz6dkwm6i34lQ96lHaoKqsrNRpLygoQGhoKFxdXaFQKODn54esrCydPlVVVYiKisLcuXPh7OyMqVOnwt/fH5cvX26znoaGBsTFxcHb2xsKhQJKpRIqlQpXrlwBAMjlctTV1SE9PV2csqFSqQB0PB3izJkzWLx4MZycnODs7IwlS5bgp59+0umjVqshl8tRVFSEiIgITJo0CW5uboiMjMT9+/efum8aGxuRnJwMGxsbrFy5st0+5ubmmDx5svh3TU0NoqKi4OHhAUdHR7zxxhvYuXMnGhoadB5XX1+PHTt2wMvLC46OjvDw8EB0dDRqa2t1+nl5eSEkJASnT5+Gn58fFAoF4uLiAADFxcUIDAyEk5MTlEolPvnkEzx8+LBNje1Nh5DL5fjss89w7NgxeHt7w8nJCW+//Ta+//57nX5lZWWIjIzErFmz4OTkBA8PD4SGhuL69etiH41GgwULFgAAIiMjxddPrVaLfTpzPBERaTGbOsZsYjb1ZvzEiXrUH3/8AQAYPXq02JaTk4OgoCA4OTkhKioKgwcPRlZWFlavXo3Hjx/jnXfeAdD6RgwAYWFhMDMzQ11dHb777juoVCrs27cPSqUSANDU1ISgoCDk5ubC398fU6ZMQXNzM/Lz8/HXX38BAFJTUxEQEAClUokVK1YAaD2b15HMzEysXbsW7u7u2LFjBxoaGpCcnCyu+8nAAIDw8HDMnTsXCxYswI0bN7Bjxw4ArdNDOvLLL7+gpqYGCxcuhEQi0bsv6+vr4e/vj1u3biE8PBxyuRyXL19GUlISrl27hqSkJACtUyxWrFiBnJwcBAcHY/Lkybh+/TrUajXy8vKQmpqKfv36ic979epVFBcXY/ny5Rg5ciSMjIxw9+5dqFQqGBoa4tNPP8WwYcOQmZmJzz//XG+dWufOnUNBQQE++OADGBsbIzk5GWFhYTh58iRGjRoFoHWag1QqxZo1a2Bqaop79+4hPT0dixYtQnp6OmxsbODg4ICYmBhERkZi+fLl8PT0BABYWVkB6PzxRESkxWxiNjGbqF0CUTc4evSoIJPJhLy8PKGxsVF48OCBcP78eWHatGnC+++/LzQ2Nop958yZI/j5+em0CYIghISECNOmTROam5vbXUdTU5PQ2NgoBAQECCtXrhTb09PTBZlMJhw+fPipNU6YMEFYv359m/acnBxBJpMJOTk5giAIQnNzs+Du7i74+Pjo1PLgwQNh6tSpwuLFi8W22NhYQSaTCbt379Z5zqioKEGhUAgtLS0d1nPixAlBJpMJhw4demrdWocOHRJkMpmQlZWl056UlCTIZDLhxx9/FARBEM6fP99uTdr1paamim0zZswQ7OzshJKSEp2+27dvF+RyuXDt2jWd9iVLlujsK0EQhPXr1wszZszQ6SeTyQQ3Nzfh/v37YltFRYUwfvx4ITExscNtbGpqEhoaGoRZs2YJW7ZsEdt//vlnQSaTCUePHm3zmOc9nojo1cdsYjY9idlE+nCqHnWrRYsWwcHBARMnTkRQUBCGDBmC+Ph4GBq2fvhZVlaGkpISzJs3D0DrGTntz+uvv46KigqUlpaKz3fo0CHMnz8fCoUC9vb2cHBwwIULF1BcXCz2+eGHH9C/f/8um6deWlqKO3fuwNfXFwYG//8XGjhwIGbNmoX8/Hw8evRI5zHtTQeor69vMw3kReTk5MDY2Bhz5szRadeetbpw4YLY78l2LW9vbxgbG4v9nqx1zJgxOm0ajQbjxo3D+PHjddp9fHw6Xa9SqdQ5c2pmZoZhw4ahvLxcbGtqakJCQgLmzp0LR0dH2Nvbw9HRETdv3tR5jTvyrMcTEfVOzKZWzCZmEz0dp+pRt9q2bRtsbW3x8OFDZGVlITU1FREREUhOTgYA3L17V+y3bdu2dp+juroaALB3715s3boV7733HlatWoWhQ4fCwMAAu3btQklJidi/qqoKFhYWOkHyIrTrNzc3b7PMwsICLS0tqK2thZGRkdgulUp1+mmnGzx+/LjD9QwfPhzA/6eM6FNTUwMzM7M2UyeGDRsGQ0NDcfpITU0NDA0NYWpqqtNPIpHAzMxM7KfV3nbW1NRg5MiRbdrNzMw6VSvQdp8Arfulvr5e/Hvr1q1ISUnBsmXL4OLiAhMTE0gkEnz00Uc6/TryLMcTEfVezKZWzCZmEz0dB07UrWxtbcWLbqdMmYKWlhYcOXIEJ0+exJw5czB06FAAQEhICN588812n0N7hikjIwOurq6Ijo7WWf7Pi0BNTU2Rm5uLlpaWLgkobY0VFRVtlt25cwcGBgYYMmTIC6/H0dERUqkUZ86cwZo1a/TOJZdKpcjPz4cgCDp9Kysr0dTUJNYtlUrR1NSEqqoqnYASBAF3794VXx+t9tYrlUrFN/4ntdf2IjIyMuDn54eIiAid9urq6k7t42c5noio92I2dR6zidnUm3GqHvWodevWwcTEBLGxsWhpaYGNjQ1Gjx6NwsJCKBSKdn+0H6FLJBKdC0UBoLCwEHl5eTptHh4eqK+vR1pa2lNr6dev31PPsmmNGTMGlpaWOH78OARBENvr6upw+vRpTJgwQeeM3vPq27cvgoKCUFJSgq+++qrdPpWVlcjNzQUATJ06FXV1dW2+KPHYsWPi8id/Z2Rk6PQ7deoU6urqxOVPo1QqUVRUhMLCQp3248eP69+wZyCRSNC3b1+dtnPnzuH27ds6bR2dJX2W44mISIvZ1DFmE7OpN+MnTtSjTExMEBwcjO3btyMzMxO+vr6Ijo7GsmXLEBgYiPnz58PS0hL37t1DcXExrl69itjYWACAp6cn4uPjERsbCxcXF5SWliI+Ph4jR45Ec3OzuA4fHx+kpaUhKioKpaWlUCqVEAQB+fn5sLW1xVtvvQUAkMlkuHjxIs6ePQtzc3MMHDgQNjY2bWo2MDDAunXrsHbtWoSEhGDx4sVoaGjAnj17UFtbizVr1nTZ/tGGk1qtRkFBAXx8fMQvGbx06RIOHz6M8PBwTJo0CX5+fkhJScH69etRXl4OmUyG3NxcJCYmYvr06XBzcwMATJs2De7u7vjyyy/x4MEDTJw4EdevX0dsbCzs7e3h6+urt66AgAAcPXoUwcHB+PDDD8U7Fz05DaUreHp6incoksvluHr1Kvbs2SPelUjL2toaAwYMQGZmJmxtbWFsbAwLCwtYWlp2+ngiItJiNj0ds4nZ1Ftx4EQ9TqVSISUlBfHx8fDx8cGUKVNw5MgRJCQkYMuWLaitrYVUKoWtrS28vb3Fx4WGhuLRo0f45ptvkJycjLFjxyIqKgrZ2dm4ePGi2M/Q0BC7d+9GYmIiTpw4gf3792PgwIEYP348PDw8xH6bNm1CdHQ0IiIi8OjRI7i6uuLgwYPt1jxv3jwYGRkhKSkJq1evRp8+feDk5IQDBw5g4sSJXbZvJBIJYmJiMHPmTBw+fFjcH9r6165dK15I279/fxw4cAA7d+5EcnIyqqurYWlpiaVLl+p8QaFEIkF8fDzUajXS0tKQkJAAqVQKX19fREREtDlT2h5zc3N8/fXX2Lx5M6KiomBkZISZM2fi448/Fm+Z2xU2bdoEQ0NDJCUloa6uDvb29lCr1di1a5dOPyMjI2zZsgVxcXEIDAxEY2MjwsLCEB4e3unjiYjoScymjjGbmE29lUR48vNcIiIiIiIiaoPXOBEREREREenBgRMREREREZEeHDgRERERERHpwYETERERERGRHhw4ERERERER6cGBExERERERkR4cOBEREREREenBgRMREREREZEeHDgRERERERHpwYETERERERGRHhw4ERERERER6fE/i7omVFhM0k0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZyUlEQVR4nOzdd3jUVdr/8fd3Jo30BAKk03tIgFAFFLBj74+7tnVtq+7+dPexrPpYtqH7rPoI6IrdVbGLq6tYsKF0JCH0HlIgENJ7MjO/P76ZkJAAmZSZJPN5XVeumXzLzH0Gzcmdc859DIfD4UBERERERMTLWDwdgIiIiIiIiCcoGRIREREREa+kZEhERERERLySkiEREREREfFKSoZERERERMQrKRkSERERERGvpGRIRERERES8kpIhERERERHxSkqGRERERETEKykZEhERERERr6RkSEREREREvJKPpwOQnmf48OEAbN++vdPfw8lisRAaGsqIESO44oormDt3bqe9d+P3t1gsfP3118TGxrZ43bnnnsvu3bsBeOWVV5g2bVqL12VkZPDWW2+xZs0aDh8+jI+PD7GxsUyfPp3rr7+efv36HTeG4/nb3/7GJZdc4kqz2mT37t289dZbrF69mgMHDlBdXU14eDijRo3ijDPO4IILLsDf37/ZfW1ps4hIW6hfOqon90ut+XeePXs2OTk5LFu2jLi4uDa9j/qvnkXJkHRrd9xxBwB1dXXs3buXr7/+mlWrVrFp0ybuvffeTn1vHx8f6urq+PDDD7nzzjubnV+/fj27d+9uuK4lDoeD//3f/+XFF1/Ex8eHadOmcfbZZ1NbW8uGDRt4+eWXWbx4MfPmzePss89u8TWcn8GxRo4c2fbGtdKCBQtYuHAhdrudlJQULr74YoKCgsjPz2fdunU8+OCDLF68mA8//LDhno5os4hIV6V+ybP9UmdS/9VDOUQ62LBhwxzDhg3zyHusWLHCMXz4cMeIESMc2dnZnfr+M2bMcFx88cWO0047zWGz2Zpdc9999zlGjx7t+PWvf+0YNmyY46effmp2zfz58x3Dhg1zzJo1y7Fjx45m55cuXepISkpyjBw50rFixYpmMXT253wizz77rGPYsGGOU0891ZGWltbiNd9//73jmmuuaXKsPW0WEWkL9Uumnt4vteb9Z82a5Rg2bJgjKyvL5ddX/9Uzac2QdLrs7GyGDx/OfffdR3Z2NnfddReTJ08mKSmJSy65hGXLlnXYe02dOpVBgwZht9vJyMhg9+7dDB8+nGuvvfa495x//vmMHj2aw4cPN4t39+7d/Pa3v2XKlCmMGDGC1atXN7n3sssuIzc3l59++qnJ8bKyMpYuXcrs2bPp3bt3i++blZXFc889h6+vL8899xxDhw5tds1ZZ53F/fffj81m45FHHsFut7v6kXSK7OxsFi5ciK+vL4sWLSI5ObnF62bOnMmLL77Y8H13brOI9Bzql3pev9TZ9Nn0XEqGxG1ycnK4/PLLycnJ4cILL+Tcc89l586d3H777axcubLD3sfhcDQ8Hzx4MJMnT2b16tXs3bu32bXr169nx44dzJkzh6ioqCbnMjMzufLKKzlw4AAXXHABl112GUFBQU2uOf/88+nVqxfvvfdek+OffPIJFRUVXHbZZceN88MPP6Suro45c+accJ715ZdfTlRUFPv27WPNmjUnbLu7fPjhh9TW1nLmmWcybNiwE17r5+fX5L7u2mYR6XnULzWln9HHp8+m59KaIXGbNWvWcOeddzaZS3zeeefx61//mpdeeompU6e2+z1WrVrFvn37MAyDMWPGAHD11VezevVq3n333Wbztd955x0Arrzyymav9fPPP3PLLbdw9913H/f9QkJCOOuss/jPf/5DQUEBkZGRALz33nvExMQwffp0PvvssxbvXb9+PQCnnHLKCdvk4+PD5MmT+fTTT/n555+ZMmVKk/Pz589vdk9sbGynLlJdt24dgMv/Zh3VZhGRjqB+qanu3C+d7P2dSkpK2vSa6r96LiVD4jaxsbHcdtttTY7NmDGDmJgYMjIy2vSazh94zoWqy5Ytw263c/311zdUiTn99NPp27cvH330EXfddVfDSEVxcTFLly4lISGhxWo6ffr0Oe4i0MYuv/xylixZwscff8wNN9zA1q1b2bx5M3fccQcWy/EHX/Pz8wHo37//Sd/Dec2hQ4eanVuwYEGzY5MmTerUTscZu6sVczqqzSIiHUH9UlPduV862fu3l/qvnkvJkLjNyJEjsVqtzY7379+ftLS0Jsda+qvOxRdf3KwMpvMHnmEYhIaGMn78eC677DIuvPDChmt8fHy44oorWLBgAV9++SXnnXceAB999BHV1dVcccUVGIbR7P1GjBjRZIrX8aSmpjJw4EDef/99brjhBt59910sFguXXnrpCe9zTpto6b2P5bympWvbUyq2tZ/zsVyJva33tdTm559/ni+//JK9e/fi5+dHSkoKd99990mn6omItET9UlPduV9q7fs7S2s31pq+paM+G+l6lAyJ24SEhLR43MfHp9kiw+P9VenYH4at/YF7xRVX8M9//pN33nmnodN599138fX1PW7n0KdPn1a9NpgLVv/+97+zcuVKPv30U6ZNm0ZMTMwJ74mKimLPnj0cPHjwpK/vvObY+ePt1drP+Vh9+/ZtdeyNtbfNa9as4eqrryYpKQmHw8EzzzzDDTfcwH/+8x/Cw8NdikVERP1SU925X2qP1vQtXeGzkc6hZEi6pI7eGK9fv37Mnj2bL7/8kj179nDkyBF2797N3LlzG+ZTH8uVv+hcfPHFPP3009x3332UlJSccIGq04QJE1i9ejUrVqzg8ssvP+51NputoVrQ+PHjWx1Ta7T1c54wYQKrVq1i1apVJ4y9pfva0+aXXnqpyXVPPPEEqamp/Pzzz8yePdvFVoiItJ76paO6Yr/UHq3pW7rCZyOdQ9XkxGtcffXVgPmXt7fffhtoeYFqW/Tu3ZvTTjuNgwcPEhERwZw5c056zyWXXILVauWrr75i165dx73ugw8+4NChQwwcOJBJkyZ1SLztdckll+Dr68sXX3xxwtgBampqmtzXkW0uLy/HbrcTGhrqeiNERDxM/VLX1FLfos+m51IyJF5j6tSpDBw4kI8++ogvv/ySgQMHMnny5A57/XvvvZeFCxeyaNGiVs3pjo+P55ZbbqG2tpZbb721xR+uX3/9NX/5y1+wWq08/PDDJ1z46k5xcXHccccd1NbWcvPNNx93ofEPP/zAr3/964bvO7rNf/nLXxg5ciTjxo1rf6NERNxM/VLX1FLfos+m59I0OfEqV111FX/7298annek+Ph44uPjXbrnzjvvpLKykldeeYULL7yQ6dOnM2TIEOrq6tiwYQPp6ekEBATwj3/8o0NKvHakW2+9lbq6OhYuXMhll13GuHHjGDNmDEFBQeTn57Nu3Tr27dvXUErWqaPa/Pjjj7N+/XoWL17c4gJoEZHuQP1S13KivsXbP5ueSsmQeJWLL76Yxx9/HF9fXy666CJPh4PFYuG+++7j3HPP5c0332Tt2rWsXLkSq9VKbGwsv/rVr7juuutaVcrTE+644w7OOecc3nrrLVavXs2HH35ITU0N4eHhjBgxgl//+tdNKihBx7T5b3/7G//5z3947bXXXO7oRUS6EvVLXcfJ+hZv/mx6MsPReFtkkR5u5cqVXH/99Vx44YU88cQTng5H2uDPf/4zn332Gf/6178YPHiwp8MREWkX9Utdg/oW76WRIfEqL774IgC//OUvPRyJtMUjjzzCv//9bxYuXEhoaCiHDx8GIDAwkKCgIA9HJyLiOvVLnqe+xbtpZEh6vG3btrFs2TI2b97MsmXLmDNnDs8++6ynw5I2GD58eIvH77jjDu688043RyMi0jbql7oW9S3eTSND0uNt2bKFZ555huDgYM4991wefvhhT4ckbeSJ/SdERDqa+qWuRX2Ld9PIkIiIiIiIeCUVQBcREREREa+kZEhERERERLxSj1kzZLfbqaurw2KxYBiGp8MREfEaDocDu92Oj4+Pdlw/hvomERHPaG3f1GOSobq6OjIyMjwdhoiI10pKSsLPz8/TYXQp6ptERDzrZH1Tj0mGnBlfUlISVqvV5fttNhsZGRltvr+7U/vVfrVf7W/vz0+NCjWnvql91H61X+1X+zu7b+oxyZBz+oHVam3XfzDtvb+7U/vVfrVf7W8rTQNrTn1Tx1D71X61X+1vq5P1TfoznoiIiIiIeCUlQyIiIiIi4pWUDImIiIiIiFdSMiQiIiIiIl5JyZCIiIiIiHglJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiIiIiIh4JSVDIiIiIiLilZQMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQ4DD4eDeDzJ4f2uZp0MRERExFedgWXwloXmrPB2JiEiPpWQIKK2u4/2fc3h7Uxll1XWeDkdERASy12Ds+or+uxZ7OhIRkR5LyRAQGuBLdFgADmBzbomnwxEREYGoEQAEFu8Eu83DwYiI9ExKhuolx4UBkJ5d7OFIREREgD7DcPgGYrVVwZFdno5GRKRHUjJUb2x9MrQxu8izgYiIiABYrNA/CQDjQJpnYxER6aGUDNUbq5EhERHpYhzRyeYTJUMiIp1CyVC9MTFhGEBuURWHS6s9HY6IiAhEjwPAOJDu4UBERHomJUP1QgJ8iA31ATRVTkREuoaGkaGDG1VEQUSkEygZamRopC8A6VlFng1EREQEoPdQbNYAjNoKyN/p6WhERHocJUONDKlPhtK0bkhERLoCi5WKsKHmc60bEhHpcEqGGmk8MuRwODwcjYiICEeTodwNng1ERKQHUjLUSEKYD35Wg+LKWjKPVHg6HBERESrChplPctM8GoeISE+kZKgRX4vBqJhQANJVREFERLqAivD6ZEhFFEREOpySoWM07DeUpXVDIiLieVXB8Th8g0BFFEREOpySoWMkx4UDGhkSEZEuwrBC/yTzudYNiYh0KCVDx0iuHxnalFNMrc3u4WhEREQa7TekinIiIh1KydAxEiMDCQ3wobrOzvaDpZ4OR0REBKLHmY8qoiAi0qGUDB3DYjFIjg8HNFVORES6hoaRIRVREBHpUEqGWnC0iEKRZwMREREB6D0EGooo7PB0NCIiPYaSoRY0FFFQRTkREekKLFZwjg5pqpyISIdRMtSClPppcjsPlVJeXefZYERExO1Wr17N8OHDW/xKS0vzTFAxKeajKsqJiHQYH08H0BX1DQ0gOiyAA8VVbMopZvKg3p4OSUREPODuu+9m8uTJTY4NHTrUM8FEp5iPqignItJhukQytGXLFhYsWMDGjRspLS0lOjqa8847jxtvvJFevXp5JKbkuHAOFB8kPbtIyZCIiJdKTEwkJSXF02GYYuoryh3MAFsdWLtEFy4i0q15/Cfprl27uOqqqxg4cCB//OMfiYiIYN26dTz77LNs3ryZ5557ziNxJceHs3TzQa0bEhGRrqH3EPALhpoys4hCv1GejkhEpNvzeDL0ySefUF1dzfz580lISABg6tSpHD58mHfeeYfi4mLCwsLcHldyvPmeaaooJyLitR577DHuvvtuAgICGDduHLfddhupqakuv47N1rZy2M77bDYbWK1Y+idh7F+JPednHH2Gt+k1u5Mm7fdCar/a3/jR27S3/a29z+PJkK+vLwDBwcFNjoeEhGCxWBrOu1tSbBiGATlFlRwurSYqxN8jcYiIiPuFhIRw7bXXMnnyZMLDw8nMzOSll17i2muv5fnnn2fGjBkuvV5GRka74nHeH+cTSz8gP+Nrshwj2/Wa3Ul7P7/uTu1X+71ZZ7ff48nQRRddxGuvvcYjjzzCf//3fxMREcHatWt55513+MUvfkFgYKBH4goJ8GVwVDC7DpWxMbuIOSP7eSQOERFxv1GjRjFq1NFpaKmpqZxxxhmcf/75/P3vf3c5GUpKSsJqtboch81mIyMjo+F+w3oG7HmfqNpseneVtUyd6Nj2exu1X+1X+9vefuf9J+PxZCguLo63336bO+64g9NPP73h+DXXXMMDDzzg8ut1yFSEemNjQ9l1qIy0/YWcNqxPm163u9BQrNrf+NHbqP3umYrQ3YWGhnLaaafx9ttvU1VVRUBAQKvvtVqt7fplpuH+2PEAGAc3YcXhNUUU2vv5dXdqv9qv9nde+z3+UzQ7O5vbbruN3r1788wzzxAZGUl6ejrPPfccFRUV/PWvf3Xp9TpqKgJAbyoA+HFrFqf1KW/X63YXGopV+72Z2u/d7W8Nh8MBgGEYnglARRRERDqUx5Ohf/zjH5SVlbFkyZKGKXETJ04kIiKCP/7xj1x00UVMmjSp1a/XUVMRACx9inlhw0r2FjtITk72XOfnBhqKVfvVfrW/s6cidHfFxcV89913jBw5En9/D60jtVggOhkyfzI3X1UyJCLSLh5PhrZu3crgwYObrQ1KSkoCYOfOnS4lQx02FQEYHRuOn9VCUWUtOcXVJPYOavPrdhcailX71X61X+D3v/890dHRjBkzhoiICDIzM3n55Zc5cuQI8+bN82xw0SlmMnQgDcb9wrOxiIh0cx5Phvr27cvOnTspLy8nKOhospGWlgZAv36eK1zg52NhVEwoaVlFpGUVeUUyJCIiMHz4cD777DPefvttKioqCAsLY8KECTzxxBOMHTvWs8HFpJiPuWmejEJEpEfweDJ03XXXcfvtt/OrX/2K6667joiICNLT03n++ecZMmQIM2fO9Gh8KfHhpGUVkZ5VzIUpsR6NRURE3OPmm2/m5ptv9nQYLYsZZz4ezABbndcUURAR6Qwe/wk6Z84cXn31VV544QX++te/UlpaSv/+/bnqqqu4+eab8fPz82h8Y+PMzVfTs4s8GoeIiAgAkYPBLwRqSiF/O/Qb7emIRES6LY8nQwBTpkxhypQpng6jRcnx4QBsyimm1mbH12rxbEAiIuLdLBaIHltfRCFNyZCISDvoN/uTGNg7iJAAH6rr7OzIK/V0OCIiIkenyh1I82gYIiLdnZKhk7BYDJLjwgFIzyr2bDAiIiJgVpQDs7y2iIi0mZKhVkiOr183lFXk2UBERETgaEW5g5vMIgoiItImSoZaoWFkSEUURESkK3AWUairNIsoiIhImygZaoWU+iIKO/JKKa/WX+BERMTDLBaITjafa6qciEibKRlqhb6hAfQPDcDuMKvKiYiIeJw2XxURaTclQ63UsG5IU+VERKQrUEU5EZF2UzLUSs79htKzNTIkIiJdgLOi3MEMFVEQEWkjJUOtlNJQXrvIo3GIiIgAEDmovohCFRze5uloRES6JSVDrTQmLgzDgOzCSvLLqj0djoiI9HC5RZX86rV1rD9Q1fIFFsvRdUOaKici0iZKhlopNMCXwVHBAGzUuiEREelk6VlFfL8jnw+2lh//IlWUExFpFyVDLnDuN5SWpXVDIiLSuUbHmIV7dhfWUl1ra/kiZxEFVZQTEWkTJUMuaKgop3VDIiLSyeIjexEV7E+dHTJySlq+yJkM5W1SEQURkTZQMuQC58hQenYRDofDs8GIiEiPZhgG4xPDAVi/v7DliyIGgn+oiiiIiLSRkiGnnPX4l+0/4SUjokPws1ooqqglq6DSTYGJiIi3mpAQDsDPmUUtX2CxaN2QiEg7KBkCqCnH8vKZDF9xF9iPMy8b8PexMjImFIA0FVEQEZFONiExAoCf9xcef0aCKsqJiLSZkiEAnwDwD8a3uhDyNp/w0pQ4rRsSERH3GBUdip8FCipq2ZN/nKpyzs1XVURBRMRlSoYALFaImwSAsX/FCS9Njg8HlAyJiEjn8/OxMCTSF4D1+46zbshZROFgBthq3RSZiEjPoGSoniNhKgDG/pUnvM6ZDG3KLabWZu/ssERExMsN7+MHwPrMkxRRsFWriIKIiIuUDNVzJEwzn2StghNUihvYO4gQfx+qau3syCt1U3QiIuKtRvQ2R4bWZRa0fEGTIgpp7glKRKSHUDLkFDMOu8UXo/wwHNl93MssFoOxDfsNafNVERHpXM6Rod2Hyyksr2n5ImcRBVWUExFxiZIhJx9/ysNHmM9Ptm6ofr+hjaooJyIinSzEz8KQqCDgBFPlnEUUVFFORMQlSoYaKYscaz7JbF0RhTQVURARETcYn2CW2F53vGSooYjCJhVREBFxgZKhRsp6J5lPTpIMpdQnQzvySqmoqevkqERExNtNSAwH4OfjJUORg8A/zCyicGir+wITEenmlAw1UhYxGodhgaJMKMk97nX9QgPoHxqA3QGbckrcGKGIiHgj5+ar6dlF1NS1UMnUMCC6fnaDpsqJiLSakqFG7L5B0K91o0PJ8dp8VURE3GNA70B6B/lRXWdnU+5xivc4p8qpopyISKspGTqGI2GK+aSV+w2lqYiCiIh0MsMwGF8/OnT8zVdTzEdVlBMRaTUlQ8dwbr560pGh+opyGhkSERF3cE6VO+5+Q86KcnmbVURBRKSVlAwdK75+ZOjQFqg4TocDJMWZ0+SyCys5UlbtjshERMSLpTpHhjKLcLS0ObiKKIiIuEzJ0LGC+0LvoebzrNXHvSw0wJfB9fs+bMzW5qsiItK5xsSG4We1kF9Wzf6CiuYXGAbEJJvPNVVORKRVlAy1JLGVU+W035CIiLhJgK+1YVbCuuOtG9LmqyIiLvFpy007d+7k559/Ji8vj6qqKiIiIhgyZAgTJ04kODi4o2N0v4Rp8PPrJy2ikBIfzoc/55CuIgoiIuIGqYkRrM8sZF1mIZdOiGt+gSrKiYi4pNXJUHFxMe+88w7vvPMOubm5Lc5X9vHxYebMmVxzzTVMnTq1QwN1K+fIUO4GqCkHv6AWL2tcRMHhcGAYhpsCFBERb+SsKHfczVedFeXyNkNdDfj4uScwEZFuqlXJ0Ouvv87ChQsBOPfcc5k0aRKjR48mMjISf39/iouLycrKIi0tjWXLlvGrX/2KadOm8T//8z8kJiZ2agM6RXgihMRAaS5kr4NBp7Z42YjoEPysFgoraskqqCShd6CbAxUREW/irCi341ApxZW1hPXybXpBxEAICIOqYji8FaKTPRCliEj30ao1Q//617+4//77+fHHH3n44Yc555xzSEhIIDg4GF9fX/r06cO4ceO44YYbeOONN/jiiy/o27cvn3/+eWfH3zkMAxKnmc9PMFXO38fKyOgQQPsNiYhI5+sT7M/APkE4HPDz/hZGhwzj6LohTZUTETmpViVDn3/+ORdddBG+vr4nvxhISEjgb3/7GzfddFO7gvMoF4soaL8hERFxhwmt3XxVRRRERE6qVcnQzp072/TiVqu1Tfd1CQn1I0PZa0+4eZ1z3dBGjQyJiIgbtHrzVZXXFhE5qVYlQxdffDGXXHIJb731FqWlpZ0dU9cQNQICwqG2Ag6kH/cy58hQRk4xdTa7e2ITERGv5dx8NT2rmNqW+p1jiyiIiMhxtSoZuuWWWygoKOCxxx5j+vTp/OEPf2DVqlWdHZtnWSyQcPKpcoP6BBHi70NVrZ0deWVuCk5ERLzV4Khgwnr5UllrY+uBkuYXOIso2GrMIgoiInJcrUqG7rrrLr799lsWLVrErFmz+PLLL7nhhhuYM2cOzz77LAcOHOjsOD2jFUUULBaDsfHmJnjab0hERDqbxWIcnSrX0rqhJkUUNFVOROREWpUMARiGwcyZM3n66af58ccfeeCBBwgLC+OZZ57h9NNP58Ybb2Tp0qXU1h5/fU230zgZsh9/Clzj/YZEREQ6W0MRhZPtN6SKciIiJ9TqZKix0NBQfvnLX/Lhhx+yZMkSrr76arZs2cJdd93FzJkzOzpGz4lOBt9AqCyEw9uOe9nY+mQoTcmQiIi4QeMiCi1tgk7MOPNRFeVERE6oTclQYyNGjOCCCy5g9uzZABQVFbX3JbsOqy/EpZrP9x9/3VBKfRGFHXmlVNTUuSEwERHxZslx4fhYDPJKqskpqmx+gXOanIooiIicUJuToYKCAl599VXOP/98rrjiCj7++GNmzZrFwoULOzI+z0s8xXzMPP66of5hAfQL9cfugM25LSxmFRER6UC9/KyMjjXXq7Y4VS5igFkR1VYDh7a4NTYRke7Ex5WL7XY7P/zwAx988AHfffcdtbW1DBgwgLvvvpuLL76YPn36dFacnuOsKLd/JTgc5sLUFiTHhfPlljzSs4qYOCDSjQGKiIg3Sk2MID2riHX7CrkwJbbpScMw1w3t+c6cKudcQyQiIk20Khnau3cvH3zwAR9//DH5+fkEBARw3nnncemll5KamtrZMXpW3ESw+EBJDhTth4jEFi9LjjeTIa0bEhERd5iQGMFLP+5l3fGKKESnmMlQ7gaYcL0bIxMR6T5alQydc845AIwdO5Y777yTuXPnEhQU1KmBdRl+gWaHkrPO3G/oOMmQc92QymuLiIg7ODdf3X6whNKqWkICfJteoIpyIiIn1ao1Q9dddx2ffPIJ7777LldccYX3JEJOic6pcscvopAUZ87dziqo5EhZtTuiEhERN3nvvfcYPnw448aN83QoDfqGBhAf2Qu74zjVTJ0V5fI2Q536JRGRlrQqGbr//vsZOnRos+N79uxh/fr1VFRUdHhgXUoriiiEBvgyKMpMEjdmF7sjKhERcYO8vDwef/xx+vbt6+lQmklNNNeotrj5aniiWUTBXqsiCiIix9GmanJLlixh5syZzJ07l1/+8pfs3bsXgN/97ne8++67HRpglxA/2Xw8shPKDh/3shTtNyQi0uM8/PDDpKamcsopp3g6lGZOuPmqs4gCaKqciMhxuJwMff7559x3332MGjWKhx56qMlmb6NHj+bzzz/v0AC7hMBI6DvKfL7/+KNDyfXrhjZq3ZCISI/w8ccfs2bNGh555BFPh9IiZzK0YX8hdTZ78wu0+aqIyAm5nAwtWrSISy65hH/+859ceeWVTc4NGjSIXbt2dVhwXYqzxHbm8dcNJTcUUShueUdwERHpNo4cOcJf//pXfv/739O/f39Ph9OiYf1CCPH3obzGxva80uYXODdf1ciQiEiLXNpnCGD37t384Q9/aPFceHg4RUVF7Y2pa0qcButeOmERhZHRIfhaDQrKa8gurCQ+MtCNAYqISEd69NFHGThwIFdffXW7X8tms7XrvhPdn5IQzvKd+azde4QR/YKbnuw3FivgyNuMvboCfPzbFIentKb9PZnar/Y3fvQ27W1/a+9zORnq1asXpaUt/PUJc5FpWFiYqy/ZPThHhg5mQFUJBIQ2u8Tfx8qo6FDSs4tJyypSMiQi0k198cUXfPPNNyxZsgTjOJttuyIjI6PT7o/1qwLg67S9JAUcs3bI4SDZNxSf2hJ2/PgxFeHD2hWHp7T38+vu1H6135t1dvtdTobGjRvHm2++yVlnndXs3IcffsikSZM6JLAuJyzWrMxTlAnZa2DI6S1elhwfTnp2MelZRZyfHOPmIEVEpL3Ky8t57LHHuOaaa+jbty8lJSUA1NbWAlBSUoKPjw+Bga3/g1dSUhJWq9XlWGw2GxkZGSe8vzzkCG9vXsueUkhJSWl23rJlPOz5juGhFThaON+Vtab9PZnar/ar/W1vv/P+k3E5Gbr99tu5+uqrueyyyzj//PMxDIMvv/yS+fPns27dOt577z2Xg+02EqeZyVDmyuMnQ3HhQKY2XxUR6aYKCwvJz8/n5Zdf5uWXX252fuLEicyZM4dnn3221a9ptVrb9cvMie6fkBiJ1WKQW1TFobIaosN6Nb0gZhzs+Q7LgXTopr9Qtffz6+7UfrVf7e+89rucDCUlJfHCCy/w6KOPMm/ePACef/55EhMTWbRoEcOGdc8h+FZJmArpi09SRMGcJpiRU0ydzY6PtU3Vy0VExEOioqJ4/fXXmx1ftGgRa9eu5YUXXiAiIsIDkbUsyN+HkdEhbMopYX1mIeeNbSEZAlWUExFpgcvJEMCUKVP4/PPP2b9/P/n5+URERDBw4MCOjq3rSZxmPuasN3fzbmEh6qA+wQT7+1BWXceOvDJGxTRfWyQiIl2Xv78/kydPbnb8o48+wmq1tnjO01ITI9mUU8K6fYWcN/aYKdrOinJ5W47bd4mIeKt2DVskJCQwfvx470iEAHoPgaAosFVDzs8tXmKxGIyNM0eHtN+QiIi4wwk3Xw1PgF4RYK+FvM1ujkxEpGtrVTL02WefufzCeXl5rF+/3uX7ujTDOFpV7gQlto/uN1TU+TGJiIhbzJs3jw0bNng6jBY5k6EtB0oor65retIwjo4OaaqciEgTrUqGHnvsMS688ELee+89ysrKTnjtpk2bePTRRznrrLPYtm1bhwTZpTinyp1o3VBcOABpWcVuCEhERLxdTHgvYsICsNkdLf8hzrluSJuviog00ao1Q1999RXz58/nL3/5C4899hijRo1i1KhR9O7dGz8/P4qLi8nKyiItLY3Dhw8zdOhQ5s+fz4wZMzo7fvdzjgxlrQG7DSzNq1uk1I8M7cgrpaKmjkC/Ni3NEhERabUJAyLJTc9l/b5Cpg3u0/RkTIr5mNs1R7ZERDylVb+lh4SE8Mc//pHbb7+dDz/8kO+//54lS5ZQWVnZcE18fDwzZszg/PPPZ8qUKZ0WsMf1TwK/EKgugbxNEJ3c/JKwAPqF+pNXUs3m3BImDoj0QKAiIuJNUhMj+CQ9l3UtrRtyTpM7tFVFFEREGnFpyCIsLIwbbriBG264AYDS0lKqqqoIDw/H19e3UwLscixWSJgMu7429xtqIRkCGBsXzldb8kjPKlIyJCIinc65bujn/YXY7Q4sFuPoyfAE6BUJlQVmEYXY8R6KUkSka2lXNbmQkBCioqI6JBFat24dN910ExMnTmTs2LGceeaZLFy4sN2v2ylaUUTBOVUuLauo8+MRERGvN6J/CIF+Vkqr6thxqLTpScPQVDkRkRZ0iR1BP/nkE6655hpCQkJ4/PHHWbRoETfddBMOh8PTobWscRGF48ToLKKwMVtFFEREpPP5WC2MSwgHjlNiWxXlRESa8fjK/ry8PP7nf/6HK6+8kkceeaTheJdedxQzHqx+UH4YjuyGPkOaXZJUv9fQ/oIKCspriAzyc3eUIiLiZSYkRvLTriOs31fILyYnNj2pinIiIs14fGTovffeo6KigptuusnTobSebwDEpprPjzNVLqyXL4OiggDtNyQiIu6RWr9uqMUiCs5pcoe2Qm2V+4ISEenCPD4ytHbtWsLDw9mzZw+/+c1v2LlzJ2FhYZxxxhncc889BAcHu/R6NputTXE472vt/Ub8FCz7V2DftwJH8i9avGZsbBh7DpeTllnIzCG92xSXu7ja/p5G7Vf7Gz96m/a231s/t64oJSEcwzBnJRwqraJvSMDRk2HxR4soHNoMsRM8F6iISBfh8WQoLy+PyspKfve733HLLbeQkpJCRkYG8+fPZ+fOnbz11lsYhnHyF6qXkZHRrnhae39oXV+GArW7vmNTWlqL1/Q2ygFYviWLmb1PvFltV9Hez6+7U/vVfm/m7e3vCUIDfBneL4RtB0tZv6+Qc5Kij540DHOq3O5l5lQ5JUMiIq4nQ3/605/4xS9+waBBgzokAIfDQXV1NXfccQc333wzAJMnT8bX15e//vWvrFy5kmnTprX69ZKSkrBam2+EejI2m42MjIzW3189CMeaP+JfcYCUQX0hNKb5Nb2LeGnDKvaV2ElOTnYpqXM3l9vfw6j9ar/a3/b2O++XriF1QISZDGUekwyBOVVu9zIVURARqedyMrRkyRLeeustpkyZwi9+8QvmzJnTrl/yw8PDAZg+fXqT4zNnzuSvf/0rmzdvdikZslqt7fplptX3B0ZAvzFwcCPW7NWQdFmzS0bHhuNrNSioqOVASQ3xkYFtjstd2vv5dXdqv9qv9ntv+3uK1MRI3li1/8Sbr6q8togI0IYCCsuXL+fBBx/k8OHD3HHHHcyePZtFixZRUFDQpgCGDx/e4nFnWW2LxeM1Ho4v8RTzcf/KFk8H+FoZGR0KqIiCiIi4h3Pz1c25xVTVHrOey1lRTkUURESANiRDgYGB/OIXv+DTTz/llVdeYfTo0fzf//0fp512Gvfdd5/LUyXOPPNMAH744Ycmx53fJycnuxqi+yTWb76a2XIyBEf3G0rX5qsiIuIGcRG96BviT63N0bzvCYuDwN5grzOLKIiIeLl2DbtMnTqVBQsWsGzZMsaNG8fHH3/MFVdcweWXX84333zTqteYPn06s2bNYuHChTz77LOsWLGCRYsW8eSTTzJr1ixSU1PbE2LnSqhPhg5tgYqWR8aS48MBSM/S5qsiItL5DMMgdYA5OrR+f+GxJzVVTkSkkXYlQ1VVVbz33nvceuutrF69msGDB3P77bdjs9m4/fbbWbhwYate5+mnn+a6667j3Xff5aabbmLx4sVcf/31PPPMM+0Jr/MF94XeQwAHZK1u8ZKUeHPz1YycYupsdjcGJyIi3mpCYiQA6/e1tN+QNl8VEXFqU2nt/fv38+abb/LRRx9RVlbGzJkzueeeexoKHdxxxx08+eSTvPHGG9x+++0nfb2AgAD+8Ic/8Ic//KEt4XhWwlQ4sgsyV8Dwc5qdHtQnmGB/H8qq69h5qKxhDZGIiEhncW6+un5/IXa7A4ulUaEj5+arqignIuL6yNCvf/1rzj77bN5//30uvPBCli5dyj//+c9mFd9mzZpFYWELf5HqaU5SRMFiMUiKNUeHtG5IRETcYVRMKAG+FooqatmTf8w+d85pciqiICLiejKUlZXF/fffzw8//MADDzxAQkJCi9cNHTqU119/vd0BdnnOIgq5G6CmosVLGtYNqaKciIi4ga/V0lDAZ92xU+UaF1HIUxEFEfFuLidDX3zxBddccw1BQUEnvC44OJhJkya1ObBuIzwRQmLMTiV7bYuXONcNqYiCiIi4S0MRhWP3GzKMo+uGDqiIgoh4ty68iU83YRhHR4eOM1XOOTK0Pa+Uyhpbi9eIiIh0pFRnEQVtvioiclwuF1CYPXs2hmG0eM5isRASEkJSUhLXXnstgwcPbneA3ULiNNj0gVlEoQX9QwPoG+LPodJqNucWkzog0s0BioiItxmfYI4M7ckv50hZNb2D/Y+edBZRyE13f2AiIl2IyyNDkyZNwuFwkJeXR2xsLMnJycTExJCXl4fNZiM6OpqvvvqKSy+91OUNWLuthPriEdlrwVbb7LRhGA2jQ2kqoiAiIm4QFujL0L7BQAujQ85pcoe3Qm2lmyMTEek6XE6Gpk+fjp+fH1999RWvv/46Tz75JP/617/48ssv8fPz4/TTT+eLL75gwIABzJ8/vzNi7nqiRkBAONRWwIGNLV6S0lBEQeuGRETEPY67big0FgL7qIiCiHg9l5Ohf/7zn9x5551ER0c3OR4TE8Ptt9/OokWLCAkJ4frrryctLa2j4uzaLBZzvyGAzJ9avMRZ1UfltUVExF0mHG/dkGE0miqndUMi4r1cToYyMzMJDg5u8VxoaCg5OTkAxMbGUlnpRUPvJymikBRnVpTbX1BBQXmNu6ISEREv5tx8dWNOMdV1xxTwaagol+beoEREuhCXk6GYmBg++uijFs998MEHDSNGRUVFhIWFtS+67qTx5qt2e7PTYb18GdTHLEe+UfsNiYiIGyT2DqRPsB81dXY25RwzTbuhopyKKIiI93I5GbrxxhtZunQpV111Fa+++iqffvopr776KldddRVfffUVv/71rwFYvXo1Y8aM6fCAu6zoZPANhMpCyN/e4iUNm69qvyEREXEDwzAaqso123zVOU3u0BYVURARr+Vyae0rrrgCh8PB/PnzmTdvXsPxPn368Oijj3L55ZcDcOutt+Ln59dxkXZ1Vl+IS4W9P5gltvuObHZJclwYH23IIV0jQyIi4iapAyL4cktey0UUgqKg/LBZRCEu1TMBioh4kEvJkM1mY//+/ZxzzjlcccUV7Nmzh6KiIsLDwxk0aFCT/Yf69OnT4cF2eQnTjiZDE29sdvroyFARDofjuPs1iYiIdJTGRRSa9D2GYU6V2/WVWURByZCIeCGXpsk5HA7mzp3Lhg0bMAyDwYMHM2HCBAYPHqxf7KFpEQWHo9npkdGh+FoNjpTXkF2oKQkiItL5xsSG4udj4Uh5DfuOVDQ92VBRLs3dYYmIdAkuJUM+Pj706dMHRwu/6AsQNxEsPlCSA0X7m50O8LUyMjoUQFPlRETELfx9rIyNNQsardtX0PSkKsqJiJdzuYDC3LlzWbJkSSeE0gP4BR2tznOcEttj60tsa78hERFxlwnH23zV2Wcd2qoiCiLilVwuoDBixAg+++wzrr32Ws4880yioqKaTZE788wzOyzAbidxKuSsM9cNJV/V7HRyXDhvsF8V5URExG1SEyN5nj0tFFGIOVpE4eAmiJ/omQBFRDzE5WTo3nvvBSAvL481a9Y0O28YBlu3bm1/ZN1VwjRYMd9MhlqQUl9EISOnmDqbHR+ry4NzIiIiLplQv/nqzkNlFFXUEB5YX+3VMMypcju/NKfKKRkSES/jcjL0+uuvd0YcPUfCFPPxyE4oOwzBUU1OD4oKJtjfh7LqOnYdLmNE/1APBCkiIt4kMsiPQVFB7Dlczs/7C5k9ot/Rk9EpZjKkIgoi4oVcToYmTZrUGXH0HIGR0HeUuYnd/pUw6oImp60Wg6TYMFbuOUJ6VpGSIRERcYsJCRHsOVzOun3HJEMNFeU2eCQuERFPavMcrdLSUpYvX86///1viou1/qWJhEYltlvg3G8oTeuGRETETVLriyisO3bdkLOi3OFtKqIgIl6nTcnQwoULmTFjBjfddBP33nsv2dnZAFx33XUsWrSoQwPslhKnmY/HXTekinIiIuJezs1X07OKqLXZj54IiYagvuCwmUUURES8iMvJ0JtvvsnChQu57LLLeP7555vsOTRr1iy+++67joyve3KODB3cCFUlzU6PjQsHYHteKZU1NjcGJiIi3mpwVBDhgb5U19nZnNuobzIMTZUTEa/VpmTo+uuv58EHH2T69OlNziUmJpKZmdlhwXVbYbEQngAOO2Q3r7gXHRZAVIg/NruDzbmaKiciIp3PMAwmJNRPlTt281XnfkPafFVEvIzLyVBWVhYzZsxo8VxQUBAlJc1HQrxS4inmY2bzdUOGYZBcPzqUnq1kSERE3OO4m6861w2popyIeBmXk6GQkBDy8/NbPJeTk0Pv3r3bHVSPcJIiClo3JCIi7pZav25oXWZhk2nuDdPkDm+Fmgr3ByYi4iEuJ0NTp07lxRdfpKLi6A9LwzCoq6tj8eLFzabOeS1nEYXsdVBX3ey0s6JcenaR+2ISERGvNjYuDF+rweHSarILG1WOayiiYIc8FVEQEe/hcjL029/+ltzcXObOncu8efMwDIM33niDyy+/nMzMTH7zm990RpzdT+8hEBQFtmrI+bnZ6bGx4QBkHqmgsLzGzcGJiIg3CvC1MibWnJmwLrPRuiHD0FQ5EfFKLidDiYmJLF68mEGDBrF48WIcDgcff/wxERERvPXWW8TExHRGnN2PYTSaKte8xHZYoC+D+gQBGh0SERH3OVpE4dh1Qynmo4ooiIgX8WnLTUOGDOGll16ipqaGwsJCwsLCCAgI6OjYur/EabD132YRhRZqToyNC2NPfjnpWcWcNryv++MTERGvkzogghd/3Nu8iIKzopzKa4uIF2nTpqtOfn5+9OvXT4nQ8ThHhrJWg735fkJaNyQiIu7m3Hx1e14pJVW1R084p8kd3qYiCiLiNdo0MpSdnc3nn39Obm4uVVVVTc4ZhsFf//rXDgmu2+ufBH4hUF1iLkiNTm5y2pkMbcwuwuFwYBiGB4IUERFvEhXiT2LvQDKPVLBhfxGnDosyT4RGQ3A/KMsz+6z4SZ4NVETEDVxOhr777jvuuOMO7HY7kZGR+Pn5NTmvX+gbsVjNzmT3MnOq3DHJ0KjoUHwsBvllNeQUVRIXEeihQEVExJtMSIgg80gF6/cVHE2GwJwqt/MLc6qckiER8QIuJ0NPPfUU48eP56mnntKeQq2ROM1MhvavgCm3NjkV4GtlZHQoGTnFpGcVKxkSEekitm7dylNPPcWOHTsoKCggICCAgQMHcvXVV3PhhRd6Orx2mzAggg835LCupc1Xd36hinIi4jVcToYyMzOZP3++EqHWcu43lLkSHA6zylwjyfFhZjKUXcTcsdEeCFBERI5VUlJC//79mTt3Lv369aOyspJPPvmEe+65h5ycnG6/jYRz89W0rCLqbHZ8rPVLiFVRTkS8jMvJUExMTJMNV+UkYsaD1Q/KD0HBHug9uMnp5Lhw3mA/aVlFnolPRESamTx5MpMnT25ybNasWWRnZ/Puu+92+2RoaN9gQgN8KKmqY9vB0oa9hxoqyh3eBjXl4BfksRhFRNzB5Wpyt9xyCy+//DKVlZUnv1jANwBiJ5jPM39qdjqlvohCRnYxdTa7GwMTERFXRUREYLVaPR1Gu1ksBuMTnfsNNdp8NTQagvuDww4HN3koOhER93F5ZCgjI4MjR45wxhlnMHnyZCIiIppd8+CDD3ZIcD1GwlTYv9KcKjf+2ianBkUFE+RnpbzGxq7DZYzoH+qhIEVE5Fh2ux273U5JSQmff/45P/74Iw899JDLr2OzNd9ewZX72nr/iYyLD+e77YdZu6+Aa6YkNBy3RCdj7DyIPednHLGpHf6+rujM9ncHar/a3/jR27S3/a29z+Vk6I033mh4/p///KfZecMwlAwdK/EU+PFJs4jCMawWg6S4MFbtKWBjVrGSIRGRLuSRRx7hnXfeAcDX15cHHniAq666yuXXycjIaFcc7b2/JWG11QCs2nWItLS0huPRRj9igMLN37DPr2tUlOuM9ncnar/a7806u/0uJ0Pbtm3rjDh6tvhJYFigcB+UHDCnITSSHB/Oqj0FpGUXccXEeM/EKCIizdx6661cfvnlFBQU8M033/CnP/2JyspKbrzxRpdeJykpqU3T62w2GxkZGW2+/0SG1dTxp+XLOFJpp++A4cSE9zJPBJ4DO14nsno/4SkpHfqerurM9ncHar/ar/a3vf3O+0+mTZuuiosCQqHfGDi40RwdGnNpk9MpceEApKuIgohIlxITE0NMTAwAp556KgBPPvkkF198MZGRka1+HavV2q5fZtp7f0tCelkZHRPKxuxiNmSXEN872DwRNx4AI38HVltVlyii0Bnt707UfrVf7e+89reqgMLatWspLy8/6XUFBQW8//777Q6qR2oosd18qlxyfRGFbQdLqar1znmhIiLdwdixY6mrqyMrK8vToXSICfVFFNY3LqIQ0r9REQXvnp4jIj1fq5Kha6+9lt27dzd8b7fbGTNmDFu2bGlyXVZWVpsWlnqFhKnmY+bKZqeiwwKICvHHZnewObfYzYGJiEhrrV69GovFQnx8z5jS7EyGmm++mmI+avNVEenhWjVNzuFwNPu+rq6u2XE5AefI0KEtUFkIvY5W4TMMg+S4cL7emkdaVjETEls/9UJERDreQw89RHBwMElJSfTp04fCwkKWLl3KZ599xo033ujSFLmuzLn56tYDJZRV1xHsX/9rQcw42LFUm6+KSI+nNUPuEtwXeg+BI7tg/2oYfnaT08lxYXy9NU/rhkREuoCUlBQ+/PBDPvroI0pLSwkMDGTEiBE88cQTXHjhhZ4Or8P0DwsgNrwXOUWVpGcVccqQPuYJ5+arGhkSkR5OyZA7JUw1k6HMn5onQ/XrhtKzi9wfl4iINHHppZdy6aWXnvzCHiB1QAQ5aZWs21d4NBlyTpPL3w415V2iiIKISGdo1Zoh6SDOqXL7m68bGhsXBkDmkQqKKmrcGZWIiHixo+uGjimiEBKtIgoi0uO1emRoz549DWXtnDu67tmzp9k1cgLOZCh3A9RUgF9gw6nwQD8G9glib3456dnFnDosykNBioiIN3EmQxv2F2GzO7BaDPNEdAqUHjCnyiVM8Vh8IiKdqdXJ0P3339/s2D333NPke4fDgWEY7Y+qpwpPhJAYKM2FnHUwcGaT08lxYWYylFWkZEhERNxiRP9Qgv19KKuuY0deKSOjQ80TMSmw43PzD3giIj1Uq5Khv/3tb50dh3cwDEicCps+MEtsH5sMxYezJC1XRRRERMRtrBaDcQnhLN+Zz7rMwkbJ0DjzURXlRKQHa1UydPHFF3d2HN4jwZkM/dTsVOMiChplExERd5mQGMHynfms31fANVMSzYPOinL5O6C6DPyDPRafiEhnUQEFd3OuG8peC7baJqdGRYfiYzHIL6shp6jSA8GJiIg3anHz1ZB+KqIgIj2ekiF3ixoJAeFQWwEHNjY5FeBrZUR0CADpWcUeCE5ERLzRuIQILAZkF1aSV1J19ISmyolID6dkyN0sFnOqHMD+Fc1OJ8eFA7BR+w2JiIibBPv7MKK/uVZofePRIW2+KiI9nJIhT0isT4Yym+835Fw3lKYiCiIi4kapA+qnyu1rlAw5N19VRTkR6aGUDHlCgnPz1RVgtzc5lVKfDGXkFGOzO9wcmIiIeCvnuqH1jTdfPbaIgohID+NSMlRVVcVVV13FihXNp3eJC6KTwacXVBZC/vYmpwZHBRPkZ6WixsauQ+p4RETEPZzJ0ObcEiprzM3VzSIKMYBDRRREpEdyKRkKCAhgx44dWK3WzorHO/j4QfxE83lm08TSajFIigsD0H5DIiLiNrHhvegfGkCd3dF0qramyolID+byNLlx48axcePGk18oJ9YwVa6FdUP1RRTSVERBRETcxDAMJtSvG/p5f+N1Q6ooJyI9l8vJ0L333ss777zDkiVLKC8v74yYvENDEYUV4Gi6Nqhh81WNDImIiBulOvcb2tfCuiFVlBORHsjH1RuuvPJKamtruf/++7n//vsJCAjAMIyG84ZhsH79+g4NskeKmwgWHyjJgaL9EJHYcMqZDG0/WEpVrY0AX01LFBGRzne0iEIhdrsDi8U4Ok0ufwdUl4J/iOcCFBHpYC4nQ2eddVaT5EfayC/ILKSQs96cKtcoGYoJC6BPsD/5ZdVszi1p6JxEREQ608joUHr5WimpqmPX4TKG9QuB4L5mEYXSXLOIQuI0T4cpItJhXE6G5s2b1xlxeKfEaWYylLkCkq9qOGwYBinxYXy99RDpWUVKhkRExC18rRZS4sNZuecI6zMLzWQIzHVD23PNqXJKhkSkB9E+Q57UiiIK6SqiICIibnTCzVdVREFEehiXR4acduzYwe7du6murm527qKLLmpzQO+99x4PPvgggYGBbNjQw8t4JkwxH/N3QNlhCI5qOKUiCiIi4gkn3HxV5bVFpIdxORmqrKzktttuY9WqVRiGgaO+ElrjdURtTYby8vJ4/PHH6du3L2VlXrDhaGAkRI2Ew1vN0aFRFzScGlu/19C+IxUUVdQQHujnqShFRMSLjEuIwDDM/udwaTVRIf6NiijsVBEFEelRXJ4m9+yzz5KTk8Mbb7yBw+FgwYIFvPLKK5xxxhkkJiby0UcftTmYhx9+mNTUVE455ZQ2v0a3k9jyVLnwQD8G9A4EID272N1RiYiIlwrr5cuwvmaysz6zfqpccF8IjQUcZhEFEZEewuVkaNmyZdx0002MG2duwhYdHc3UqVN55plnGD16NG+99VabAvn4449Zs2YNjzzySJvu77acyVDmimannFPlNmqqnIiIuFGLm69qqpyI9EAuT5PLyclh0KBBWK1WDMOgsrKy4dz555/PAw88wGOPPebSax45coS//vWv/P73v6d///6uhtSEzWZr131tvb/N4iZhBRwHN2KvKGoy9SApNpSP03JJyyrs9Lg81v4uQu1X+xs/epv2tt9bP7eeLDUxgrdW72+6+WrMONj+H22+KiI9isvJUEhICBUVFQD07t2bzMxMUlNTAairq2s454pHH32UgQMHcvXVV7t877EyMto3fN/e+9tiTK/++FceZM/3b1PSd2LD8cDKGgDW7z3Chg0b3LK/kyfa35Wo/Wq/N/P29stRziIKm3JKjm7+rYpyItIDuZwMDR8+nH379jFz5kwmT57M888/T2JiIn5+fixcuJARI0a49HpffPEF33zzDUuWLOmQX/aTkpKwWq0u32ez2cjIyGjz/e1h7DsVMt5hsO8hHCkpDcdH1Nr4n+++pqjaTr+BI4gJ79VpMXiy/V2B2q/2q/1tb7/zfuk5EiIDGzb/zsgpZuKAyKPT5FREQUR6EJeToUsvvZTMzEwA/t//+39cffXVXHPNNQCEhoayaNGiVr9WeXk5jz32GNdccw19+/alpKQEgNraWgBKSkrw8fEhMDCw1a9ptVrb9ctMe+9vkwGnQMY7WLJWQaP3DrJaGREdwqacEjJyS4nvHdzpoXik/V2I2q/2q/3e2345yjAMUhMjWLr5IOv2FZrJUHAUhMZBSTYc2Gj2XSIi3ZzLydC5557b8Dw+Pp4vvviiocz2uHHjCA8Pb/VrFRYWkp+fz8svv8zLL7/c7PzEiROZM2cOzz77rKthdi/OIgrZ66CuGnz8G04lx4WzKaeE9Kwizk2K9lCAIiLibVIHmMlQQ0U5MKfKlWSbU+WUDIlID9DmTVedAgMDmT17dpvujYqK4vXXX292fNGiRaxdu5YXXniBiIiI9obY9fUeAkFRUH7YrNLj3IwVMxl6c/V+0lRRTkRE3Mi5bujn/YU4HA5zKnt0Cmz7VBXlRKTHaHcy1B7+/v5Mnjy52fGPPvoIq9Xa4rkeyTDMBGjrJ5D5U9NkqL68dkZOMTa7A6ul84soiIiIjI4Jw9/HQkF5DXvyyxkcFWxWlANVlBORHqNVydCIESNaXdzAMAy2bNnSrqC8UsK0+mRoJcw4enhI32AC/axU1NjYfbiMYf20YFVERDqfn4+F5Lhw1uwrYP2+wvpkKMU8eWQXVJVAQKhHYxQRaa9WJUO33367W8o6O82bN4958+a57f26BOe6oazVYLeBxVzEbLUYJMWGsXpvAWlZRUqGRETEbSYMiDCTocxCrpgYD0F9jhZROLgRBkz3dIgiIu3SqmTozjvv7Ow4pH8S+IVAdQnkbYbosQ2nUuLDWb23gPSsIq5IjfdgkCIi4k1S69cNrctsvPlqipkM5aYpGRKRbs/i6QCknsUK8ZPM5/tXNjnlXDeUnl3k3phERMSrjU8wk6Hdh8spLDc3AtfmqyLSk7hcQGHJkiUnveaiiy5qQyhC4lTYvcwsojD5lobDzmRo24HSozuBi4iIdLKIID8GRwWx+3A56zMLOX1UP4hWEQUR6TlcTobuu+++Fo83XlOkZKiNEurXDWWuBIfDrDIHxIQF0CfYj/yyGjbnljSUOxUREelsqYmR7D5czjpnMtRQRGGniiiISLfncjK0bNmyZscKCwtZtmwZn332GU899VSHBOaVYieA1Q/KD0HBHug9GDATzeS4cJZtO0R6VpGSIRERcZsJAyJ4Z10WPzs3Xw3qA2HxUJylIgoi0u25vGYoNja22deYMWP43e9+x5lnntniJqrSSr4BZkIEkLmiySnnVLmNWjckIiJu5CyikJ5dRE2d3TwYnWw+aqqciHRzHVpAYerUqXzzzTcd+ZLeJ2Gq+XjcIgrFbg5IRES82cA+QUQG+VFdZ2dTbn0f5Jwql7vBY3GJiHSEDk2GcnJysFhUoK5dnPsNZf7U5HByXBgAe/PLKaqocXdUIiLipQzDaKgqt35f/VS5mPoiCqooJyLdnMtrhtauXdvsWE1NDdu3b+f5559n6tSpHRKY14qfBBhQuA9KDkBoNADhgX4M6B3IviMVbMwuZuawKI+GKSIi3iN1QARfb81jXWYBNzHoaEW5I7tUREFEujWXk6FrrrmmSeU4AIfDAcC0adN46KGHOiYybxUQZm7AenAj7F8BYy5tOJUcH86+IxWkZxUpGRIREbdxrhtan1mEw+HACOp9tIjCgXQYOMPDEYqItI3LyVBLBRL8/f2JjY2lT58+HRKU10ucZiZDmSubJENj48L5OC1Xm6+KiIhbjYkNw89qIb+smv0FFST2DjLXDRVnmVPllAyJSDflcjI0adKkzohDGkuYCqv/2ayiXEq8uW4oLavY/MvcMSN0IiIinSHA18qY2FB+3l/Eun2FZjIUnQJbP1FFORHp1lyudrB3717WrFnT4rk1a9awb9++9sYkziIKh7ZAZWHD4dExYVgtBvll1RworvJQcCIi4o1SB0QCsM6535AqyolID+ByMjRv3rwWN14F+Pbbb5k3b167g/J6wX2h9xDAAftXNxwO8LUyon8IAOlZRZ6JTUREvJJzw++GzVedRRQKdkOVtn0Qke7J5WQoIyODiRMntnhu4sSJbNq0qd1BCY32G2p589U0rRsSERE3ciZDOw6VUlxZC0G9ISzBPHlgowcjExFpO5eTodLSUgIDA1s8FxAQQHGx/jrUIRr2G2q6+WpKXDigkSEREXGvPsH+DOgdiMMBP+93TpVLNh81VU5EuimXk6F+/fqxcWPLfwHauHEjUVEq+dwhnCNDuT9DTUXDYefIUEZ2MTa7wwOBiYiIt5qQaK4b0uarItJTuJwMnX766SxatIhVq1Y1Ob569WpeeOEFzjjjjA4LzqtFDICQaLDXQc66hsND+gYT6GelvMbG7sNlnotPRES8TuoAc6rcuswC80B0ivmoinIi0k25XFr79ttv58cff+SGG25gwIAB9O/fn4MHD7Jv3z6GDBnCnXfe2Rlxeh/DMKfKbfrAnCo3cCYAVovBmNgw1uwtIC2riGH9QjwcqIiIeAvn5qvpWcXU2uz4xhxTRCEgzIPRiYi4zuWRoZCQEN555x3uuOMOwsLCyM3NJSwsjDvvvJO3336b4ODgzojTOx2niEJK/VS5jSqiICLSKVauXMn999/P2WefTUpKCjNmzOC2227z+iJBg6OCCevlS2Wtja0HSiAwEsKdRRTSPRuciEgbuDwyBBAUFMTtt9/O7bff3tHxSGPOIgpZa8FWC1ZfAJIbiiioWIWISGdYvHgxRUVFXHvttQwZMoSCggJeeeUVrrzySl588UWmTp3q6RA9wmIxGJ8QzrfbD7NuXyFj48LNqXJF+82pcvWzGEREuos2JUNgVpVLS0ujsLCQU089lbAwDY13uKiREBAOVUVm2dK4CQAkx5uf9dYDJVTV2gjwtXouRhGRHujhhx+md+/eTY7NmDGDM888k+eff95rkyEwN1/9dvth1mcW8qvpA83NV7f+W0UURKRbcnmaHMDChQuZMWMGN910E/feey/Z2dkAXHfddSxatKhDA/RqFgskTDGfN5oqFxveiz7BftTZHWw5UOKh4EREeq5jEyEwZ0UMHjyYAwcOeCCirsO539C6zAIcDsfRinIqry0i3ZDLI0NvvvkmCxcu5Oqrr2bGjBnccsstDedmzZrFl19+yc0339yhQXq1xGmwY6lZRGGaWZzCMAyS48JZtu0Q6VlFjE+I8HCQIiI9X2lpKVu2bGHKlCku32uz2dr0ns772np/ZxgTHYKPxSCvpJqsI+XE9k3CClCwB1t5IQSEdth7dcX2u5Par/Y3fvQ27W1/a+9rUzJ0/fXXc8899zR7k8TERDIzM119STmRhPp1Q/tXgt1ujhZh7jfkTIZERKTzPfroo1RWVnLrrbe6fG9GRka73ru993e0AWE+7Cqs5cPlacxI6MWYXv3xrzzIrh8/oKzPuA5/v67WfndT+9V+b9bZ7Xc5GcrKymLGjBktngsKCqKkRNO2OlR0Mvj0gsoCyN8BfUcAMDbOXDeUnq0iCiIine3pp5/mk08+4aGHHmLMmDEu35+UlITV6vr6TpvNRkZGRpvv7ywzcraya0Um+YSRkjIKy86JsO0ThgaW4khJ6bD36artdxe1X+1X+9vefuf9J+NyMhQSEkJ+fn6L53JyclqcZy3t4OMHcamwbzlk/tSQDDkryu3NL6e4opawQF8PBiki0nMtWLCA5557jrvuuotf/vKXbXoNq9Xarl9m2nt/R5s4sDevrMhk/f4iM67Y8bDtEywHN0InxNnV2u9uar/ar/Z3XvtdLqAwdepUXnzxRSoqKhqOGYZBXV0dixcvZvr06R0aoHC0xPb+lQ2HIoL8SOwdCMDGnCIPBCUi0vMtWLCA+fPnc+edd7ZpelxP5dx8dfvBEkqras2KcqCKciLS7bicDP32t78lNzeXuXPnMm/ePAzD4I033uDyyy8nMzOT3/zmN50Rp3dzJkOZK5scPrrfUJF74xER8QILFy5k/vz53Hbbbdxxxx2eDqdL6RsaQHxkL+wOSMsqMvcaAijYA5VFHoxMRMQ1LidDiYmJLF68mEGDBrF48WIcDgcff/wxERERvPXWW8TExHRGnN4tbiJYfKAk29zYrl5yfDgAadp8VUSkQ7388ss888wzzJgxg9NOO420tLQmXwIT6iuZrttXCIGREJ5onjiQ7sGoRERc06ZNV4cMGcJLL71ETU0NhYWFhIWFERAQ0NGxiZNfkFlIIWe9OToUngBASv3mq2lZRTgcDgzD8GSUIiI9xrfffgvA8uXLWb58ebPz27dvd3dIXc6EAZEsSctlfWaheSAmBYoyzalyg071ZGgiIq3WpmTIyc/Pj379+nVULHIiCVPrk6GfIPlKAEbHhGG1GOSXVXOguIqY8F4eDlJEpGf417/+5ekQujznuqEN+wups9nxiU6BLR9r81UR6VZalQwtWbLEpRe96KKL2hCKnFDiKbByQZMiCgG+Vob3C2HLgRLSs4qUDImIiNsM6xdCiL8PpdV1bM8rZXRM/f5CuWkejUtExBWtSobuu+++Vr+gYRhKhjpDQv2O5/k7oDwfgvoA5rqhLQdKSMsu4pykaA8GKCIi3sRqMUhJCGf5znzWZxYyOjnZPFG4FyoLoVeEZwMUEWmFViVDy5Yt6+w45GQCIyFqJBzeao4OjTwfMNcNLV4DG1VEQURE3Cw1MZLlO/NZt6+Qa6cOMIsoFGWaRRQGnebp8ERETqpVyVBsbGxnxyGtkTjVTIYyVzQkQ86Kchk5xdjsDqwWFVEQERH3SB1gjv4cLaIwzkyGctOUDIlIt+ByaW2nsrIyfvzxRz799FN++uknysrKOjIuaUmCc7+hFQ2HhvYNIdDPSll1HXsO699ARETcJyU+HKvFIKeokgPFldp8VUS6nTZVk3vppZdYsGABVVVVDSWdAwIC+O1vf8sNN9zQ0TGKU+JU8/HgRqguBf8QrBaDMbFhrNlbQFpWEUP7hXg2RhER8RpB/j6MjA5hU04J6zMLOc+5+aoqyolIN+HyyNCSJUv4+9//zsSJE3nyySd58803efLJJ5k0aRJPPPGEy5XnxAVhceYeQw47ZK1pOJxSP1UuPbvIM3GJiIjXarL5qnNkqHCfWURBRKSLczkZevXVVznvvPNYtGgR55xzDhMmTOCcc87h+eefZ+7cubz22mudEac4OafKNSqxPTbO3Hw1XUUURETEzSYMiATq1w31ioCIAeaJA+meC0pEpJVcTob27NnDBRdc0OK5Cy64gN27d7c7KDkB51S5RuuGkuPCAdh6oISqWpsHghIREW/l3Hx1y4ESyqvroGGqXJrHYhIRaS2Xk6GAgACKi1segSguLiYgIKDdQckJOEeGstdBXTUAcRG96B3kR53dwdYDJR4MTkREvE1MeC9iwgKw2R3mdO2GzVe1bkhEuj6Xk6EJEyawYMEC8vLymhw/fPgwCxcuJDU1tcOCkxb0GQqBfcBW3dDRGIbRUGI7PavIc7GJiIhXapgq13jdkCrKiUg34HI1ubvvvpurrrqKM888k6lTpxIVFcXhw4dZtWoVPj4+LFiwoDPiFCfDMKfKbf3EnCqXMAUwp8p9s+0Q6dlaNyQiIu41ISGcT9JzWZdZCNOSzYPOIgq9Ijwam4jIibg8MjR06FDef/995syZQ0ZGBh9++CEZGRnMmTOH9957jyFDhnRGnNJYC0UUkuOdRRSKPBCQiIh4s9T6kaGf9xdi9w+HiIHmCa0bEpEurk37DA0cOJAnn3yyo2OR1nIWUdi/Cuw2sFgbiijsyS+nuKKWsEBfz8UnIiJeZUR/cwPw0qo6dhwqZURMChTuNafKDZ7l6fBERI7L5ZEh6QL6JYFfMFSXQN5mACKC/EjsHQjAxpwiDwYnIiLexsdqYVxCOFBfYlsV5USkm2jTyNCWLVv45JNPyM3Npbq6usk5wzB47rnnOiQ4OQ6rD8RPht3LzKly0WMBGBsXTuaRCtKzipgxNMrDQYqIiDeZkBDBT7uOsH5fIb+YmGIeVEU5EeniXE6GlixZwv3334/FYiEyMhJf36bTsQzD6LDg5AQSp5rJUOYKmHwLAMlxYXySnqsiCiIi4nbOinLrMgvhghTzYFEmVBRAYKTnAhMROQGXk6HnnnuOU089lccff5ywsLDOiElao3ERBYcDDIOU+vLaaVlFOBwOJaYiIuI24xLCMQzYX1DBobpe9I0YWL9uKF3rhkSky3J5zdChQ4e49tprlQh5WuwEsPpBWR4U7AFgdEwYVovB4dJqDpZUeThAERHxJqEBvgzvFwIcs9+QpsqJSBfmcjI0cuTIZhuuigf4BkDMePN55goAevlZGzoildgWERF3Sx1g7im0PrMQYsaZB7X5qoh0YS4nQ/fccw+LFi1i27ZtnRGPuCKxpf2GwgFIy9K6IRERca8JiWYytE4V5USkm3B5zVBKSgpnnnkmF198MVFRUc2myxmGwb///e8OC1BOIHEa/Phkw8gQQEp8GIvXaGRIRETcLzXRLJSwObeYqqgpBICKKIhIl+byyNCiRYt4/vnniYiIICYmhvDw8CZfWkvkRvGTAMNcoFpyADDLawNk5BRjszs8F5uIiHiduIhe9A3xp9bmIP2wAyIHmSc0VU5EuiiXR4Zef/11Lr30Uh577DGsVmtnxCStFRAG/cfAwQzYvwLGXMrQvsH08rVSVl3HnsNlDK1fQyQiItLZDMMgdUAEn2UcZP3+QiZHp5hFfnLTYPBsT4cnItKMyyND5eXlnHfeeUqEuorEU8zHTHPdkI/VQlKsOTqn/YZERMTdxifUF1FoXFFOI0Mi0kW5nAyNHz+e3bt3d0Ys0hYJU83HJkUU6pMhrRsSERE3S63ffHX9/kLs/VPMgyqvLSJdlMvJ0AMPPMDbb7/N119/TU1NTWfEJK5wVpTL2wyVhcDRinLp2UWeiUlERLzW6JhQAnwtFFXUss9viHmwaL9ZREFEpItxec3QpZdeSl1dHXfeeSeGYRAQENDkvGEYrF+/vsMClJMI7guRg6FgN+xfDcPPJrm+iMLWAyVU1doI8NWURhERcQ9fq4XkuHBW7y1gzQEbgyIHmeuGDqRp3ZCIdDkuJ0NnnXUWhmF0RizSVolT65OhFTD8bOIietE7yI8j5TVsPVDCuPr52yIiIu6QOiCC1XsLWJ9ZyFUx4+qLKGxQMiQiXY5LyZDNZuOWW24hMjJSJbS7ksRTYMMbDUUUDMNgbFwY324/THpWkZIhERFxK+fmq+szC2FqCmz6QJuvikiX5NKaIYfDwdy5c0lLS+ukcKRNnEUUcjdAbSXQeN2QKsqJiIh7OSvK7ckvpzhitHlQFeVEpAtyKRny8fGhT58+OBwdt5nnypUruf/++zn77LNJSUlhxowZ3HbbbWzatKnD3qPHixgAIdFgr4XsdYCKKIiIiOeEB/oxtG8wAOtrEsyDKqIgIl2Qy9Xk5s6dy5IlSzosgMWLF5OTk8O1117LokWLeOCBBygoKODKK69k5cqVJ38BAcM4OjqUuQKgoYjCnsPlFFfWeigwERHxVqkDzNGh1QfqzEI/oBLbItLluFxAYcSIEXz22Wdce+21nHnmmURFRTUrqHDmmWe2+vUefvhhevfu3eTYjBkzOPPMM3n++eeZOnWqqyF6p8RpsPlDs4gCEBnkR0JkIPsLKsjILmb60D4eDlBERLzJ+IQIFq/JOrr5asFuc6rckDmeDk1EpIHLydC9994LQF5eHmvWrGl23jAMtm7d2urXOzYRAggKCmLw4MEcOHDA1fC8l3O/oay1YKsDqw/J8eHsL6ggPbtIyZCIiLiVc/PVjTnF1I0Zi8+mDzQyJCJdjsvJ0Ouvv94ZcTRRWlrKli1bmDJlSqe/V48RNRICwqGqCA6mQ+wEkuPC+CQ9l7SsIg8HJyIi3mZA78CGbR52+w5jOEBuuqfDEhFpwuVkaNKkSZ0RRxOPPvoolZWV3HrrrS7fa7PZ2vSezvvaen9XYImfjLHzC+z7fsLRP4WkmFAA0vYXUVdXd8L9oXpC+9tD7Vf7Gz96m/a231s/NzkxwzCYkBjBl1vyWFEeYyZDxfuh/AgENZ8VIiLiCS4nQ06lpaWkpaVRWFjIqaee2mH7Dj399NN88sknPPTQQ4wZM8bl+zMyMtr1/u2935P6+SQSB5RsXMrugFOoq7NjMeBwWTXfrPyZ3oHWk75Gd25/R1D71X5v5u3tl46XOsBMhlbm1HFD5OD6dUMbYMjpng5NRARoYzK0cOFCXnjhBaqqqjAMg/fff5+wsDCuu+46TjnlFG6++eY2BbNgwQKee+457rrrLn75y1+26TWSkpKwWk/+S/+xbDYbGRkZbb6/S+hTA1sXEVaylZTksWBYGL7yJ7YeLKUuLI6U0f2Oe2uPaH87qP1qv9rf9vY77xc5VuPNVx0jx2EU7DY3X1UyJCJdhMvJ0JtvvsnChQu5+uqrmTFjBrfcckvDuVmzZvHll1+2KRlasGAB8+fP584772zT9Dgnq9Xarl9m2nu/R8VOAJ9eGJUFWAt2Q98RpCSEs/VgKRm5JZw7NuakL9Gt298B1H61X+333vZLxxsTG4afj4Uj5TUUhI2iN2jzVRHpUlzeZ+jNN9/k+uuv58EHH2T69OlNziUmJpKZmelyEAsXLmT+/Pncdttt3HHHHS7fL/V8/CAu1Xy+v+l+Q+kqoiAiIm7m72NlbKw5jT7DNsA8mJvmsXhERI7lcjKUlZXFjBkzWjwXFBRESUmJS6/38ssv88wzzzBjxgxOO+000tLSmnyJi5wltjPNDWuT48MB2JhdjN3u8FBQIiLirSbUb776bUn97ITiLLOIgohIF+DyNLmQkBDy8/NbPJeTk9PivkEn8u233wKwfPlyli9f3uz89u3bXQ3RuyXUb1KbaY4MDe0bTC9fK2XVdezJL2NI3xAPBiciIt4mNTGS59nDiuwa6D0EjuxSEQUR6TJcToamTp3Kiy++yJw5c/D39wfM8pl1dXUsXry42dS5k/nXv/7laghyIvGTwOIDJdlQtB+f8ASSYsNYs6+AtKxiJUMiIuJW4xPCAdh5qIyacWPxO7JLRRREpMtweZrcb3/7W3Jzc5k7dy7z5s3DMAzeeOMNLr/8cjIzM/nNb37TGXFKa/kFQXSy+bx+qtzYOHO+ttYNiYiIu/UO9mdQnyAAMv2HmQdzN3gwIhGRo1xOhhITE1m8eDGDBg1i8eLFOBwOPv74YyIiInjrrbeIiTl5xTLpZM6pcs4iCg3rhoo8E4+IiHg1Z4ntdTWJ5oED6R6MRkTkqDbtMzRkyBBeeuklampqKCwsJCwsjICAgI6OTdoqcRqsXNCwbiilPhnacqCE6job/j4qnSsiIu6TOiCC99Zn88WRvvwX1BdRyIegPp4OTUS8nMsjQ/fffz9ZWVkA+Pn50a9fv4ZEKCcnh/vvv79jIxTXOUeG8ndAeT5xEb2IDPKj1uZg64FSz8YmIiJexzkytCq3FkfvoeZBldgWkS7A5WToo48+orCwsMVzhYWFLFmypL0xSXsFRkLUSPP5/pUYhkGy1g2JiIiHDOoTTHigL1W1dgrDR5kHD2jdkIh4nsvJ0IkUFxfj5+fXkS8pbZXoLLHddL8hJUMiIidXVlbGE088wa9+9SumTJnC8OHDmT9/vqfD6rYsFoMJCebo0A7LYPOgRoZEpAto1ZqhtWvXsnr16obv33vvPX744Ycm11RXV7Ns2TIGDx7csRFK2yRMg3UvNyuikKYiCiIiJ1VUVMS7777LiBEjOP3003nvvfc8HVK3N2FABMu2HeKninimgJIhEekSWpUMrV69mgULFgDmnkLH6xRiYmL4n//5n46LTtrOOTJ0IB2qS0mOCwdgz+FyiitrCevl67nYRES6uNjYWNauXYthGBQUFCgZ6gCpiZEA/DsvirsxMEqyVURBRDyuVcnQr3/9a37xi1/gcDiYNm0aL730EqNGjWpyjZ+fH0FBQZ0SpLRBWByEJUDxfshaQ+SQOcRH9iKroJJNOcWcMkSdj4jI8RiG4ekQepyxcWH4Wg0yyyzURQ/Ct3C3OTo0VJuviojntGrNUEBAABEREURGRrJs2TImTpxIREREky8lQl1Q4jTzcX/9uqH60aE0rRsSERE3C/C1MjrGLOZzIKi+yI82XxURD3N5n6HY2NjOiEM6Q+JU2Ph2QxGFlPhwPt14QEUURETczGazteu+tt7f1UxICCctq4gM2wASAEfuBuwnaFtPa7+r1H61v/Gjt2lv+1t7n8vJUG1tLS+88AKffvopubm5VFdXNzlvGAZbtmxx9WWlMyTUjwzlrIO66qMV5VREQUTErTIyMjx6f1cRaa8CYGl+H+YCtZlryUhLO+l9PaX9baX2q/3erLPb73Iy9OSTT/Lqq68yc+ZMTj/9dJXS7sr6DIXAPlCRD7kbGB2TitVikFdSzcHiKvqHBXg6QhERr5CUlITVanX5PpvNRkZGRpvv72piB1fz95Xf8m1ZPA5/A7+qQ6QMjYWgqBav72ntd5Xar/ar/W1vv/P+k3E5Gfr888+5/fbbueOOO1wOStzMMCBhCmz7FDJXEJgwhWH9Qth6oIS0rCLODuvv6QhFRLyC1Wpt1y8z7b2/q+gfHkhCZCD7C6AidBBBJbux5mXA0DNOeF9PaX9bqf1qv9rfee13edPV4uJiUlNTOyMW6QyJp5iPDUUUzMWrmionIiKekJpobr6632+oeUD7DYmIB7mcDE2cOJFt27Z1RizSGZz7De1fDXbb0XVDKqIgInJC33//PUuXLuXbb78FYNeuXSxdupSlS5dSWVnp4ei6rwkDzGRoXW2ieUAV5UTEg1yeJvfggw/ym9/8hpiYGE477TStGerq+iWBXzBUF8OhLSTHmZ1PRnYxdrsDi0V7aYiItOTRRx8lJyen4XtnIgSwbNky4uLiPBVat+bcfPXLwmiusQAH0jwaj4h4N5eToQsvvJC6ujp+97vfYRgGAQFNF+EbhsH69es7LEBpJ6sPxE+C3d9A5gqGpY4mwNdCaXUde/LLGdI32NMRioh0Sd98842nQ+iRhvYNJiTAh/VVCTgCDIySHCg7DMEtF1EQEelMLidDZ511lnbm7m4SpzUkQz6TbyEpNoy1+wpJzypSMiQiIm5lsRiMT4jg+x11FAcNILx8rzk6dJIiCiIincHlZGjevHmdEYd0Jud+Q/tXgsNBcly4mQxlF3HpBE3zEBER90pNjOD7HYfZYRnCJPaa64aUDImIB7hcQEG6odgJYPWDsjwo2KMiCiIi4lHOIgorKur/IKeKciLiIa0aGdq8ebNLLzp69Og2BSOdxDcAYsZD1irIXEFy4qUAbDlQQnWdDX8f761dLyIi7pcSH47VYvBTRTz/zx8VURARj2lVMnTppZe2ap2Qw+HAMAy2bt3a7sCkgyVONZOh/SuJH/dLIgJ9KayoZeuBUlLqR4pERETcIdDPh1HRoWzOGYADZxGFQxDc19OhiYiXaVUy9Le//a2z45DOlngK/PgUZK7AMAyS48P5bvthNmYXKRkSERG3m5AYQUZOMYcDEulbtc+cKjfsTE+HJSJeplXJ0MUXX9zZcUhni58EGFC4F0oPkhxnJkNpWUVcO9XTwYmIiLdJHRDBqyv2sck+kNnsM6fKKRkSETdTAQVvERAG/ceYzzNXNIwGqYiCiIh4woREs4jCjw1FFDZ4MBoR8VZKhryJs8R25grGxoUBsPtwOSVVtR4MSkREvFF0WC9iw3ux0TbQPKCKciLiAUqGvEli/Xy4/SvpHexPfGQvADKyiz0YlIiIeKsJiRFscZhFFCjNhdI8T4ckIl5GyZA3cY4M5W2GyiKS48IBSNNUORER8YDUARFUEECOT4J5QCW2RcTNlAx5k5B+EDkYcEDW6oZkSOuGRETEE5zrhn6uTTQPaKqciLiZkiFv45wql7mC5PoiChs1TU5ERDxgRP9QgvysbKirT4Y0MiQibqZkyNs0KqIwJjYUiwEHS6o4WFzl2bhERMTrWC0G4xIiyLA7iyioopyIuJeSIW/jHBnK3UCgUcuwfiEAbMzR6JCIiLifs4iCHQuUHlARBRFxKyVD3iZiIIREg70Wstc17DekqXIiIuIJziIKmUaseUBT5UTEjZQMeRvDgISjJbad64bSlQyJiIgHpMSHYzHg5zoVURAR91My5I0Sj64bclaU25hdjN3h8FxMIiLilUICfBneP5QM+yDzgNYNiYgbKRnyRs6Roaw1DIsKIMDXQll1HbmlNs/GJSIiXik1sVERBU2TExE3UjLkjfqOgoAwqC3H51AGY2LCANhVWOvhwERExBulDohgiyMRW0MRhYOeDklEvISSIW9ksRwdHco8um5oV4GSIRERcb8JiRFUEsBue4x5QOuGRMRNlAx5qxaKKOw4UoND64ZERMTNYsN70T80gAyHpsqJiHspGfJWjYoojIszp8ntLqzjikWr+Xb7ISVFIiLiNoZhMKHxuiGNDImImygZ8lbRKeDTCyoLiLdlcffpQ/G1wM/7i7jhlbWcv+BHlm46iN2upEhERDrfhMQINqqinIi4mZIhb+XjB3Gp5vP9K7h91mCeOzeKG6cPoJevlU05Jdz6xnrO/r8f+DgtB5uSIhER6URHiygYUHZQRRRExC2UDHmzhqlyKwGI6GXlj+eM4Kf7ZnPHrCGE+PuwI6+M372dxulPfs+767Kotdk9GLCIiPRUI6NDMXwD2WWPNQ9oqpyIuIGSIW/WqIhCY5FBfvzhrOH8eN9sfn/GMMIDfdmbX84972/ktL9/x79WZVJVqz2JRESk4/haLSTHh5Hh0FQ5EXEfJUPeLG4iGFYozoKirGanw3r5cuecofx072z+eO4I+gT7k1NUyUNLNjHziW95cfkeKmrqPBC4iIj0RKmJkdp8VUTcSsmQN/MPhuhkAIxjRocaC/L34eaZg/nx3lk8duFoYsICOFRazZ//s5Xpj3/Lwm93UVKlPYpERKR9JgxQRTkRcS8lQ97OuW4o6/jJkFOAr5Vrpw7gu/+exeOXJpHYO5CC8hr+/sV2Tpn3DU9+uZ3C8ppODlhERHqq8QkRbCURm8NZROGAp0MSkR5OyZC3q0+GTjQydCw/HwtXTkxg2d2n8vSVKQzpG0xpVR3PfLOLUx7/hr99tpVDpVWdFbGIiPRQYb18Sejbh52OOPPAgXTPBiQiPZ6SIW9XX0TByN+BT3WRS7f6WC1cNC6WL//fTJ77xXhGRYdSUWPj+R/2MOPxb3nk35vJLarshKBFRKSnGp8YwSaHOVXO0LohEelkSoa8XWAkRI0AILggo00vYbEYnJMUzX9+O52Xr09lXEI41XV2Xl2xj1P//i33f7iRzCPlHRm1iIj0UKmJEWy0KxkSEfdQMiQNo0NtTYacDMNg9oh+fHjbNN769WSmDupNrc3B4jVZzPrf77jrnTR2HSrtiIhFRKSHSh0QwSYVURARN1EyJJB4CgAh+RvA3v5S2YZhMG1IHxbfPIX3b53KacOjsDvgow05nPHUD/zmzfVszi1u9/uIiEjPkxAZSF7gMGwOA6P8EL5V+Z4OSUR6MCVDAonTcBgWAkt2Y3l2MqS9BbaO2T8odUAkr94wiU/umM5Zo/vhcMBnGQeZ+8yP3PjqWjbsL+yQ9xERkZ7BMAySBvRvKKIQWLTDwxGJSE+mZEggLBbH+c9Q6xeGUbgXltwGCydB+tsdlhQlxYXx/DWpfPH/ZnJBcgwWA5ZtO8TFz67gly+uZtWeIzgcjg55LxER6d4mJB7dbyiwWMmQiHQeJUMCgCP5ajbNeQv77IehVyQU7IaPboFnJ8PGd8Fu65D3Gd4/hGf+axzLfn8aV6TG4WMx+HFXPlctWsUVz6/k+x2HlRSJiHi5CQMiyKivKNdv97sYXz0IJbkejkpEeiIlQ9LA7tMLxym/g/+XAXMehl4RcGQXfHgTPDsFMt7vsKRoYJ8gnrgsme/++zSumZKIn4+FtfsKue7lNVy48Ce+3HwQu11JkYiINxoTE8anxqlssA/BaqvCsupZ+L9k+OR3ULDH0+GJSA+iZEia8w+GGXebSdHshyAgHPJ3wAc3wrNTYdMHYLd3yFvFRQTyp4vGsPyeWfx6+kB6+VrZmF3Mzf9azzn/t5x/p+diU1IkIuJV/HwsDImL4eKaR3k38VEcCdPAVgPrX4X5E+D9GyFvs6fDFJEeQMmQHJ9/CMz8g5kUzXoQAsIgfzu8/yt4bhps/qjDkqJ+oQE8eN4ofrx3FrfPGkywvw/b80r57eINnPHk97y3LotaW8e8l4iIdH3jEyMAgwUHRvLGyGc5csW/YeiZ4LDDpvfNfuitqyBrradDFZFuTMmQnFxAKJz632ZSdNofwT8MDm+F966Hf06HLR93WFLUO9if/z5rBD/dO5u7zxhGeKAve/LL+e/3N3La37/jjVWZVNV2zFQ9ERHpumaP6IthwP6SOh76eAsTXi/jvILf8kbyGxQNPA8HBuz4HF46HV49D3Z/A1pzKiIuUjIkrRcQBqfdC/9vI5x6L/iHwqHN8O618PwM2PLvDkuKwgJ9+e2cofx472zuP2cEfYL9yCmq5MElmzj179/y0o97qajpmEp3IiLS9UwaGMnS307n6jHBjIsPwzBgU04JD662kLL1ai73fYa1EXOxW3xh33L418XwwizY+kmH9UUi0vMpGRLX9QqHWX80k6KZ/w1+IZC3Cd69BhbNhK2fdthf54L9fbjl1MH8eO9sHr1gNNFhAeSVVPOnT7cw4/FvWfjtLkqrajvkvUREpGsZ0jeYS0cG8/6tU1nzx9N54rKxnDW6H4F+VtaV9ubyA7/glIonec1+DtWGP+RugHd+aRb9SX8bbOofROTElAxJ2/WKgNkPmknRjN+DXzAczIB3fgHPz4Rtn3VYUhTga+W6aQP4/r9nMe+SJBIiAzlSXsPfv9jOKfO+4cmvdlBUUdMh7yUiIl1PVIg/V6TG8/w1qfz80Bm8esNEfjklASMslodrrmFq5f8xv+4iShyB5vrWj26h5qkUHGtegNpKT4cvIl2UkiFpv8BImPM/5pqi6XeDbxAc3Ahv/xcsOg22L+2wpMjPx8JVkxL45ven8tSVyQyOCqKkqo5nlu3klHnf8LfPt3K4tLpD3ktERLqmAF8rpw3vy58vSuKn+2bz2W9ncMMZqXwdfTOnVD/D47VXcdgRil9ZNsZnf6D08VHs/ujPVJUVejp0EelifDwdAEB5eTlPP/00n3/+OcXFxQwaNIibb76ZuXPnejo0cUVgJJz+MEy9A1Y8A2tegANpsPhKiBkPp90PQ88Aw2j3W/lYLVw8Lo4Lk2NZuvkg87/ZxdYDJTz//R5e/Wkf/zUpgVtOHUR0WK/2t0tERLoswzAYFRPKqJhQ7pwzlEOlVXy7bTIPb76W6D3vc4Pxb+Lq8glJ/zvFac/yVcTF1E28mVPGDqdvSICnwxcRD+sSydCdd95JRkYGv//97xkwYACffvopd999N3a7nfPPP9/T4YmrgnrDGY/CtDvhp/+DtS9C7s/w1uUQm2omRUPmdEhSZLEYnJsUzTlj+vPNtkPM/2YXaVlFvLpiH2+uzuSyCfHcdupgEnoHdkDDRESkq+sbEsCVExO4cmICVbVTWLXzD6xa+SapWa8ywMjh/KI3qPjyPRZ/Ppuf+v4X40aPYs7IfoyMDsHogH5JRLoXjydD33//PT/99BP/+Mc/OO+88wCYMmUKubm5PPHEE5x77rlYrVYPRyltEtQHzvwTTPst/PQ0rH0JctbBm5dC3CQ47T4YPLtDkiLDMJgzsh+zR/Rlxe4jzP9mJ6v2FLB4zX7eXZfFhckx/GbWEIb0DW5/u0REpFsI8LVy2qhYGHUPDvvv2b/iPfxXPU2/sq3c6PM51xz5kg++nclvvj6PmtCBzBnZjzkj+zJlUG8CfPW7h4g38Piaoa+++orAwEDOPvvsJscvueQSDh06RHp6uocikw4THAVn/QV+lw5TbgefAMheA29cAi+fDbu/7bA1RYZhcMqQPrx981Teu3Uqpw6LwmZ38OGGHM546ntuf+tntuSWdMh7iYhI92FYrCRMv4p+v18Jv/yQmrhp+Bk2/svnW5b5/YH7K55g3eofuP6VtYz/01fc8q91vLsui/wyrUMV6ck8PjK0c+dOBg8ejI9P01CGDx/ecH78+PGtfj2brW0bcjrva+v93Z1b2h/YB874E0y5HWPF/2GsfxUjaxX86yIc8VOwn3ofDJjRISNFAOPjw3j5uglszC7m2e9289XWQ/xn4wH+s/EAc0ZEcftpg0mODwf076/2q/2NH9t6f0+itaw9mGHAkDn4DZkD+1fDj09i3bGU862rON+6ih+NCTxZdT5fbB7GF5vzMAxIiQ/n9PpRo+H9NJ1OpCfxeDJUVFREXFxcs+NhYWEN512RkZHRrnjae39357b297sS39lz6L9rMX0yP8WStQrrGxdRGjmW3OHXU9YnpUPf7tYxFs6J780HW8tZmVXFsm2HWbbtMMn9/Lh0ZDCjo/wA/fur/Wq/mLSW1UskTIar3zG3hfjxKdj8EdMd65nuv56s0PG84LiQ1w8PYcP+IjbsL+LvX2wnNrwXp4/sy5yR/Zg8KBJ/H02nE+nOPJ4MASf8C4urf31JSkpq0xojm81GRkZGm+/v7jzW/imn4yjJxf7T0xgbXiekYCPDV96NI3G6OVKUOK3D3ioFuPBU2Jtfzj+/38OStFzS82pIzysgNTGc8b3tDEyIw9fHitVimF+GgcVi4GMxsBgGPlbzsfH5hucNx8BqsWC1YN5jOfoaVufrNDrWFf7CqP/+299+h8NBnd1Bna3+0W7HZndQa3NQZ7PXH3PUH7NTZ6t/fsx15jHzXJ3NTm2j6xruqb+urvHzRu/rvKeu/p46e9MYGr5vdC7Sz8ZrN02nl79vmz+/nkJrWb1Q/yS47GWY9YC5xjVtMfElP/MYP/NQwlhWxl7HawVJ/Li7gJyiSl5bmclrKzMJ8rMyc1gUc0b2Y9bwKHoH+3u6JSLiIo8nQ+Hh4S2O/hQXFwNHR4hay2q1tquTau/93Z1H2h8RD+f9A2bcBcufhJ9fx8j8Eevr58HAmXDaHyFxaoe93ZB+ofzvFSn87vRhPP/Dbt5dm826zCLWZQI/b+mw92ktw+A4SVXrjrUm4bLU39vSMfN6B/mHS4jK3YlhGDg4uozLgaPZki6Hw4Gj4bl5zdHnR4/T6PjJrm14xSbHHc5DjeJpepxGcTa8VguxN34Nmh13UFRcTODPPx9NWOyNkhNbo4TlBElOd5ZlgYo6B8GB3vvzz+lEa1l///vfk56e7tL0belGeg+GC+bDqffBygWw/lV8D21k5qHfM7PPMKov+i3LA2bx9fYClm07xOHSaj7fdJDPNx3EMGB8QgRzRvbl9JH9GNo3uEv8sUtETszjydCwYcP49NNPqaura7JuaMeOHQAMHTrUU6GJu4XFwXlPwvS7YPk/YMMbsPcH82vQaWZSlDC5w94uPjKQP1+UxJ2zh/Lyj3tYvzOX4JBQ7ICt/hfehi+H89gx5xwO7Hbqf0E+es7uMI85z53o92SHA+rqRxU8bsc+T0fgYUc6/BV9rQY+Fgs+FnNk0cfa6HnD8aPHfC0WrA3nzXO+VgOrxYJvfbJ79JiBr9W83rf+uHms/vpj3tt5/bHvbzEclB7YS+8gvw5vf3fU0WtZQetZ28pj7Q/uD2f8GU65C2PN8xhrX8DI34H/p3cwJyyO2VPvxHbOL9h0uJZl2w7xzbZDbDlQyvrMQtZnFvLE0u3ER/Ri9oi+zBkRxcQBkfj5uF6zSv/+an/jR2/jrvWsHk+GTj/9dN59912+/PJLzj333IbjH330EX379iU5OdmD0YlHhMfD+U/DjLvhh/+FtDdhz3fm1+DZZlIUP7HD3q5faAD3nDWctH6VpKSkdMrImMPRPHlqSKJaOGZ3HB1taHLMZr6GMxlzHmty/THH7PZjzjU6Zq+PqbbOzsG8PPr164fFYv4l08BoqGVhQKPnTY87vznRNQ3PG/2V9KTXNjre+N6m1zQ6btTHU/+NcfQpzu+O9z4Oh52srCwGD0zE18faJIHwPSbB8LEce6xRgmGxNEk6rJbu8Vdhm81GWtF+T4fRZXT0WlbQetb28mj7w8/FctqpRGV+Qr897+FbnI2x9F5s38wjatClzBlwAbOmB5NfEcC6A9Wsy61i06EasgqPTqcL9DFI7u9Paow/E/r7E+LvWmKkf3+135vYHQ4qah2U19rp08va6e33eDJ06qmncsopp/DII49QVlZGQkIC//nPf1i+fDl///vfvXrKmtcLT4ALnmmUFL0Fu78xv4acbiZFcRM8HWWrGPXrjY7+D9e1/ru22WykpVWSkjLcK/+fs9lspFnzSUmO8cr2S3MduZYVtJ61rbpU+yeeArUPY09/C2PFM/gWZxG37UVi976LY+JNOCbdwunT+gBQXl3HT7uP8M22Q3y7/TD5ZTWszK5iZXYVlvrpdLNHRDFnRF8GRwUd97+pLtV+D1D7u3f762x2SqrqKK6spbCihuKKWooqzS/n8+LKWooq6h/rjxdX1TZMZR8d5ctHd57Wrp+fJ+PxZAhg/vz5PPXUUzzzzDMUFRUxaNAgnnzySZUwFVPEALhwAcz4vZkUpS+GXV+bX0PPhNPuh1jN3xeRjtHRa1lB61nbq8u03xoMk2+G1Btg0wew/EmM/O0YP/4DVj0LE66DaXcSGhbHOUkxnJMUg93uID27iGVbD/H11jy2HSxlXWYh6zILeeKLHST2DmTOiH6cPrIvEwdG4mttPmrUZdrvIWq/Z9tfXWejuFECU1RRS1FFTUMiU1RZczShafR9aVVdu963l6+VQRG+nd7+LpEMBQUF8eCDD/Lggw96OhTpyiIHwkULj44UbXwbdn5pfg07G067D2LGeTpKEenmtJZVTsrqC8lXQdIVsP0/5jrX3A2w+p+w9iVIvhJOuQv6DMFiMRiXEMG4hAj+cNZwsgsr+GbbIb7eeohVu4+QeaSCl3/ay8s/7SUkwIdTh0Vx+sh+nDY8ihB/700ApGM5HA6qau0NiYqZvNQ/rzzme+eoTUUNRZW1VNS0b81SSIAP4YG+hPfyIzzQl7Bevub3AT709y2nr1FEb4qJcBQSUltAUO0R/KvysVQcJis4BZjZIZ/B8XSJZEjEJb0Hw8XPwcw/wPdPQMa7sGOp+TX8XDMpitZaM5HjqquG8nyoyIeKIxilhwnOL8csQC9ayyqtZrHAyPNhxHmw51uzIuq+5WYBoA1vwqgLzT/gNeqT4iICuXbqAK6dOoCy6jp+3HmYr7ce4ttthzhSXsOnGw/w6cYDWAyYkBhBCFX0z9yMv68VPx8L/lYLfj71X1YLfj7WJt/7+xx7/pjnjY51le0dpPUcDgflNTaKKloejXEePzoV7ej3NXX2Nr+vYUBYL18iAv2OJjO9fAlv/H2gL+EBvkT6VBLpKCLMVkhQ7RGsFYehLA/KDpmPJYcg9xCUHwbHiROtPqHZwMNtjrs1lAxJ99V7MFzy/NGkaNP7sP0z82vEeWZS1D/J01GKdC6HA6pL6pObAjPBKTeTHPP5kYakp+F4TVmTl7AAwwHb5DMhvHnhAG+jtaziMsMwC/wMng1Za8ykaMfnsGWJ+TXkDHOq9zHbRAT7+3D2mGjOHhONze4gLauIZVvzWLb1ENvzSlm7r9C8cF9Wp4XtTI78j02emnxvbZpoHee6ls77Os8d97Ut+FuPJnRtKTzjLAZ0bKGgxoWLzMfGxxrdU3/eeb/N7mj2mmbF2EbnjylmZGv0HnXH3t/sPWnh/savSX0xJDu5hwtxrF5lTlOrT3zaU33Wx2I0Gp3xI7yXL2GNRm2OPecc0Qmx1mApP2QmNOWHmiY3+fXHnd/bql2IyIDA3hDcD4L7Nvrqh71XH3ZW9mFMm1vbOkqGpPvrMxQufQFm/jf88ARkvA/bPjW/Rp5v7hfRv7P/VxLpILY6qCw4JqFpKdFplNzYa11/H4uP2QEF9sER2Js8awxRwf06vj3dlNaySpvFT4Kr34aDm+DHp2Dzh7DrK/MrYZqZFA2ZA8eMyFgtBhMSI5iQGME9Z48gq6CC77cfYuueTPpE9afW7qCmzk6NzW4+1tmpbvT82HPO59V1dmrqbA3fN/492uGA6vprSt38MR2P1WI0GcWqravF8tk3zZKUxglMz9c8ufDzsRBRn6iENYzSHDNSc+y0tEA/gvysR0cD62rM0ZnyQ1CWVZ/g5EGhM9lpNKJT4+J/If5hDUkNwVGNkp1+5ldQ/bGgPua00xY4bDbq0tJc/Kxcp2RIeo6oYXDpi2ZS9P3jsOlD2PqJ+TXqQjMp6jfK01GKt6mpaDQyc+wojXPkplHSU1XUtvfxC4bASAjsY3Yugb3Nr4bnxxwPCGv4Zcxus5GTlkaU4fo+KD2V1rJKu/UfA5e9BLP+CCueMSui7l8Bb66A/mPN6XMjLwBLyyON8ZGB/NekeNL8jpCSMqTDRiTrbMckVMdJolo81yipaikZq7Udm4Qd/7Ub39+Yze6g0m6jsrbx9KmadrXZuWm5xUL9o9HoWKMNyBufN5pvcN7kdZoda/w6BlaDFo41fi2wWizmY6P7G8dm4ODIoVyShg0mMti/SYIT4Huc/x7sdrNPKcurT3IOQV6jUZzGIziVBa59kD4BR5OZRiM4DY9BjUZ2fHu169/MnZQMSc8TNRwue/loUrT5I9jyMWz5N4y+yEyK+o7wdJTSHdntZrLSZGTmeIlO/TW1FW14IwN6RdQnL33MJMf5vMVEp3e36nhEvErvwXD+/8Gp98LKhbDuZTi4Ed67HnoPMTcaT7oCfNyz6bGP1YKP1UJgF9lj2eFwUGtzNEuUamw2Kqvr2L5jO6NGjMDXx9osufBpZZLSXZnbXhSRMqov1toyKM+DwjzIOk5yU9a6dThNWHyaJjGNR2+OTXL8Q5qNaPYESoak5+o7Ei5/FWbeA9/PMxOizR/B5iUw5hKzY4oa7ukoxd1sdWaCUlsJdZXmY3U5IYc3YGzaDVWFxyQ6BU2fu9LJOFn96hOZ+hGahkTmmETHebxXxHH/Wiwi3VRoDJz1F3Oa3Op/wurn4cgu+Ph2+PZvMO1OGH8t+AV6OlK3MgwDPx8DPx8L+Dc9Z7PZqDnky/D+Id1rrZ7dZvYzNRXmGk3n89ry+mPlR5/X1l/T8Ly84dFSU86YogNYPivqsHU4DceC6r/vFWEWAvFiSoak5+s3Cq543Zy//f08c9rcpg/MaXRJl5lJUcQgT0fp3ez2+sSkyuwE6qqOJizOr7rKpt83OVZx9N7aykb3t3DM3nzfAyswzJV4/UNbmIJ2gkTHL7hH/jVNRNogMNKcOjftTlj3CqxcACXZsPRe+OHvMOU2mPhr6BXu6Uh7Nme/06qEpdz8vvF5Z+LSkLw0ep26qg4J0eCY/LAD1uFIc0qGxHv0HwNXvgEHNprT57Z9ChnvwaYPMMZcRkhQKmSWg9UHDIv5hVH//NjHxucsjc4d7/wx10IL9x7vPg/9Eu1wgK2mlYnGiRKVRglLXVXz5KWuqsM6DtcY4BsIvgE4fHtRZfchIDIOI6iF9TWNk57A3m6bziIiPZh/CJzyW5h0M6S9CT89DUX74Zs/wU//ZyZEk27xdJSe5XBg2KrN0fq6yhYSlmOTmJYSlpZHXdo2hdlVBvgFmX2NX1Cj54HmH8mcz32D6o8FHX3uG4jNpxc7s/MZOm461tD+mg7dSZQMifeJHgtXvQkH0uG7ebD9MywZ7zKMd2GVp4M7jhMmYI0eT5iAHZOsNXpuAUZVVmD5wV6fpNR3OnigSo/VH3wD6hOVXuDTy3xs/NVwLLD+2paOneR+H/8mBQS2pKWRkpLSvaZiiEj35xsAE2+E8deZsxZ+fBIOb4Mfn8Sy6llG9YrGsqrR+IDDATjqHznOc0fTa3E+tPZaV97jeOfb+h5H+x0rMB7gsxN+gu3nG9jmhAW/4KbnGx/zCWjfHzRtNsrL0yA8AdQ3dRolQ+K9opPhvxZD7gYcP/yDquyNBPj7YeAAh938odz4seG4/ZjzznOOls81vretGl6ncxjACf/eZFiOJhfHSzx8AlxLRo53v9bKiIg3svpA8pWQdLm5X97yf2Dk/kyv0r10mbrXnuQTcEzy0ULy0mLCcpIkxqeX16+Z8XZKhkRixmG//DX3jAwcm2CdMMnqwCSs4VzL72uz1bFr916GjEzC6h/cPJmx+mrNi4iIO1gsMPI8GDEXW84Gdm9az+Ahg7FarPU/h+t/FjufN/xsbun5sddy4vMnfN3WvG8bX+s419rsdjZu3cHY8ZOx+mp6snQOJUMi7mQYYHTBkQ+bjbLiMIhN0VC8iEhXYBgQnUxpngMGpnjnz2abDbtPtmYMSKfSuKCIiIiIiHglJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiIiIiIh4JSVDIiIiIiLilZQMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQyIiIiIi4pWUDImIiIiIiFdSMiQiIiIiIl5JyZCIiIiIiHglJUMiIiIiIuKVfDwdQEdxOBwA2Gy2Nt3vvK+t93d3ar/a3/jR26j97Wu/8z7nz2E5Sn1T+6j9an/jR2+j9runbzIcPaT3qqmpISMjw9NhiIh4raSkJPz8/DwdRpeivklExLNO1jf1mGTIbrdTV1eHxWLBMAxPhyMi4jUcDgd2ux0fHx8sFs2+bkx9k4iIZ7S2b+oxyZCIiIiIiIgr9Cc8ERERERHxSkqGRERERETEKykZEhERERERr6RkSEREREREvJKSIRERERER8UpKhkRERERExCspGRIREREREa/kFcnQhx9+yPDhwxu+Ro0axfTp07nrrrvYt29fk2vXrVvHAw88wCWXXMKYMWMYPnw42dnZngm8g7S2/TabjVdeeYUbb7yRmTNnkpyczDnnnMP//u//UlJS4rkGdJJjP5djv1avXu3pENts6dKlDB8+nM8++6zZuQsuuIDhw4ezfPnyZudOP/10Lr74YgC+/fZb7rnnHs4//3xGjx7N8OHDOz3ujtLe9peVlfHcc89xzTXXcMoppzBu3DjOP/98Fi1aRHV1tTua0C4d8e//1FNPcdFFFzFp0iSSkpKYM2cODz30EDk5OZ0ev7dQ36S+qSXqm9Q3HUt9U+f2TT5tvrMb+tvf/sagQYOorq7m559/5p///CerV6/m888/JywsDIBVq1axcuVKRo4cSVBQEGvWrPFw1B3nZO2vqqpi/vz5nHfeeVx++eVERESwZcsWnnvuOb799ls++OADAgICPN2MDuf8XI41ZMgQD0TTMSZNmoRhGKxatYpzzz234XhRURE7duwgMDCQ1atXM2PGjIZzBw8eJCsrixtuuAGAr776ivT0dEaOHImvry+bN292ezvaqr3tz83N5bXXXuPCCy/k+uuvJzAwkPXr17NgwQJWrFjBK6+8gmEYnmhaq3TEv39JSQlz585l8ODBBAUFsWvXLp577jm++eYbPv30UyIiItzerp5KfZP6ppaobzKpb1Lf1Nl9k1clQ0OHDiUpKQmAyZMnY7PZmD9/Pl9//TWXXnopAL/5zW+44447AHjppZd6VIdzsvYHBASwbNmyJv8hTZ48mejoaH73u9/xxRdfcOGFF3oq/E7T+HPpKSIjIxk6dGiz/37Xrl2Lj48Pl156abO/Lq5atQow/80B/vznP2OxmIPHjz32WLfqcNrb/ri4OL755hsCAwMbzk+dOpVevXrxxBNPsH79elJTUzu/IW3UEf/+Dz/8cJPzzs/l5ptvZtmyZVx22WWd2ALvor5JfVNL1DeZ1Depb4LO7Zu8Yprc8Th/yBw5cqThmPN/MG9wbPutVmuLGfXYsWMBMzuX7mPy5Mns3buXQ4cONRxbvXo1Y8aM4dRTT2Xz5s2UlZU1nFuzZg1Wq7XhB2l3/3+hPe0PDAxs0tk4daf/F9r779+SyMhIAHx8vOrvaG6nvkl9U0+mvkl9U1frm7r3f1Ht5JxvPWDAAM8G4iGtbb8zK+/OQ/MnYrfbqaura/Jls9k8HVa7TZkyBaDJX2BWr17NpEmTGD9+PIZhsH79+ibnRo0aRUhIiNtj7Qyd0f7u9P9CR7W/rq6OqqoqtmzZwl//+lcGDBjAGWec4Z5GeCn1TeqbQH1T43Pqm9Q3dWbf5FXJkPMHS3l5OcuXL+e5555j4sSJzJ4929OhuUVb2p+Xl8c//vEPxowZw6xZs9wYrftcccUVjB49uslXT5iaMHHiRCwWS8MPnMLCQnbu3MnEiRMJCgpi1KhRDT9ADxw4QHZ2dsMwdE/Q0e3ftm0bL774ImeccQYjRoxwSxvaoyPaf/jwYUaPHk1ycjIXX3wxNpuN119/naCgILe3pydT36S+qSXqm9Q3qW9yT9/kVXMdrrjiiibfDx48mGeffdZrpny42v6ioiJuuukmHA4HTz/9dLcfmj6exx9/nMGDBzc51pUXILZWWFgYI0aMaJh/u3btWqxWK+PHjwfMH0jOHzjOa3pSh9OR7c/OzubWW2+lf//+/PnPf3ZD9O3XEe2PiIjg/fffp6amhj179vDiiy9y7bXX8q9//Yu+ffu6sTU9m/om9U0tUd+kvkl9k3v6pp75E+Q4Hn/8cd5//31ee+01rrzySnbv3s3dd9/t6bDcxpX2FxcX86tf/Yq8vDxefvll4uPj3Ryt+wwePJikpKQmX2PGjPF0WB1i8uTJ7Nu3j7y8PFavXs3o0aMb/nIyadIktm7dSmlpKatXr8bHx4cJEyZ4OOKO1RHtz8nJ4dprr8VqtfLaa68RHh7u5la0XXvb7+PjQ1JSEhMmTODyyy/ntddeIzs7m0WLFnmiOT2W+ib1TS1R36S+SX2Te/omr0qGnD9YpkyZwmOPPcbll1/O8uXLWbr0/7d35zFRXW0YwB8QF3BhRDajUgWdkWWCqDCKUJFaFYsFW5cmzUAUBFSoFTWKdoG2isYaI0MJIMatxKAVDChVi9bYJjIoFkqtKAWkSltFFlFR1vv9QeZ+TgFFQajO80uI8dwzc99z5zJPzr1nhpO9XVqP6Oz47927hyVLluDWrVvYu3fvK3HbldqnuZqSk5ODnJwcODs7i9s0by4XL16EWq2GXC5/7ZY/dXX85eXlUCqVAIADBw7A0tKyhyrvHt39+ltaWsLc3LzN38ChrmE2MZt0DbOJ2QT8d7JJpyZD/7Zu3ToYGxsjJiYGLS0tvV1Oj2tv/JqwuXnzJvbs2QM7O7terpK6wtnZGX369MGpU6dQVFQEFxcXcdvgwYNha2uLY8eOoby8/LVahqDRlfH/9ddfUCqVaGlpwf79+zFixIieLr/Luvv1Lysrwz///IM33njjZZat85hNzKbXHbOJ2fRfyibdWJDcAWNjYwQFBWH79u3IyMiAj48PqqqqxA91Xb9+HQBw/vx5mJiYwMTEROsFe9X9e/yzZ89GQEAAfv/9d2zcuBHNzc3Iy8sT+5uYmMDKyqr3Cn5JioqK2v2GHisrK/HrGl9VgwYNgp2dHbKysqCvr9/mVrOzszP2798PoO2a3PLychQUFAAA/vzzTwAQr9SOGDHilfgg74uOv7KyEn5+fqioqMDmzZtRWVmp9TXHlpaWr8SVuBcdf2FhIaKjozF79myMGjUK+vr6uH79Ovbt2weJRIKlS5f26Dh0DbOJ2QQwm5hNzCagZ7JJpydDAKBUKpGcnIy4uDh4e3ujqKgIq1at0uoTFRUFoHUd48GDB3ujzJfmyfE7OTmJbzCbN29u03f+/PnYunVrT5f40kVERLTb/tVXX2HhwoU9XE33UygUKCgogK2tLQYNGqS1zdnZGfv27UPfvn3h5OSktU2tVrc5NprfjVfpXHiR8f/xxx+4efMmgNar1P8WGhqKsLCwl1t4N3mR8ZuamsLc3Bx79+5FRUUFmpqaYGlpCQ8PD4SEhGD48OE9PQydw2xiNjGbmE3Mpp7JJj1BEIQujYaIiIiIiOgVpNOfGSIiIiIiIt3FyRAREREREekkToaIiIiIiEgncTJEREREREQ6iZMhIiIiIiLSSZwMERERERGRTuJkiIiIiIiIdBInQ0REREREpJM4GaIXlpqaCplMJv7Y2dnBzc0Nq1evxo0bN3q7PABAfHw8srKy2rSr1WrIZDKo1epeqKrV2bNnERISAldXVzg4OMDFxQX+/v5IT09HY2Njr9X1b+0dqw0bNsDT0/Ol7vf27dtQqVS4evXqS90PEb1emE1dw2x6OmbT68egtwugV190dDSsra1RX1+Py5cvIz4+Hmq1Gt9//z2MjY17tbaEhATMnj0bM2fO1Gq3t7dHSkoKxo4d2+M1CYKAjRs3IjU1FdOnT8eGDRswfPhw3L9/H2q1GlFRUaiuroa/v3+P19ZZK1asgJ+f30vdx507dxAbG4sRI0bA1tb2pe6LiF4/zKbnw2zqHGbT64eTIeqycePGQS6XAwAUCgWam5uhUqmQlZWF999/v5era9+gQYMwYcKEXtl3UlISUlNTERYWhtDQUK1tnp6eCAwMRFlZWY/W9PjxYwwYMKDT/a2srF5iNUREXcdsej7MJtJVXCZH3U4TPpWVlVrtBQUFCAkJgYuLC+RyOXx9fZGZmanVp6qqCpGRkZg7dy6cnJwwdepU+Pn54dKlS23209DQgNjYWHh5eUEul0OhUECpVOLy5csAAJlMhrq6OqSlpYnLJZRKJYCOlyKcOXMGixcvhqOjI5ycnLBkyRL88ssvWn1UKhVkMhmKiooQHh6OSZMmwdXVFREREbh///5Tj01jYyOSkpJgbW2NlStXttvHzMwMkydPFv9fU1ODyMhIuLu7w8HBAW+99RZ27tyJhoYGrcfV19djx44d8PT0hIODA9zd3REVFYXa2lqtfp6enggODsbp06fh6+sLuVyO2NhYAEBxcTECAgLg6OgIhUKBzz77DA8fPmxTY3tLEWQyGb744gscO3YMXl5ecHR0xLvvvosff/xRq19ZWRkiIiIwa9YsODo6wt3dHSEhIbh27ZrYR61WY8GCBQCAiIgI8fVTqVRin86cT0REGsymjjGbmE26jHeGqNvdunULADB69GixLTs7G4GBgXB0dERkZCQGDx6MzMxMrF69Go8fP8Z7770HoPXNFQBCQ0NhamqKuro6/PDDD1Aqldi3bx8UCgUAoKmpCYGBgcjNzYWfnx+mTJmC5uZm5Ofn4++//wYApKSkwN/fHwqFAitWrADQetWtIxkZGVi7di3c3NywY8cONDQ0ICkpSdz3kyEAAGFhYZg7dy4WLFiA69evY8eOHQBal2Z05LfffkNNTQ0WLlwIPT29Zx7L+vp6+Pn54ebNmwgLC4NMJsOlS5eQmJiIq1evIjExEUDr8oYVK1YgOzsbQUFBmDx5Mq5duwaVSoW8vDykpKSgX79+4vNeuXIFxcXFWL58OUaOHAlDQ0PcvXsXSqUSBgYG+PzzzzFs2DBkZGTgyy+/fGadGufOnUNBQQE++ugjGBkZISkpCaGhoTh58iRGjRoFoHWJgUQiwZo1a2BiYoJ79+4hLS0NixYtQlpaGqytrWFvb4/o6GhERERg+fLl8PDwAABYWloC6Pz5RESkwWxiNjGbqF0C0Qs6evSoIJVKhby8PKGxsVF48OCBcP78eWHatGnChx9+KDQ2Nop958yZI/j6+mq1CYIgBAcHC9OmTROam5vb3UdTU5PQ2Ngo+Pv7CytXrhTb09LSBKlUKhw+fPipNU6YMEFYv359m/bs7GxBKpUK2dnZgiAIQnNzs+Dm5iZ4e3tr1fLgwQNh6tSpwuLFi8W2mJgYQSqVCrt379Z6zsjISEEulwstLS0d1nPixAlBKpUKhw4demrdGocOHRKkUqmQmZmp1Z6YmChIpVLh559/FgRBEM6fP99uTZr9paSkiG0zZswQbG1thZKSEq2+27dvF2QymXD16lWt9iVLlmgdK0EQhPXr1wszZszQ6ieVSgVXV1fh/v37YltFRYUwfvx4ISEhocMxNjU1CQ0NDcKsWbOELVu2iO2//vqrIJVKhaNHj7Z5zIueT0T0+mM2MZuexGyiZ+EyOeqyRYsWwd7eHhMnTkRgYCCGDBmCuLg4GBi03ngsKytDSUkJ5s2bB6D1ypnm580330RFRQVKS0vF5zt06BDmz58PuVwOOzs72Nvb48KFCyguLhb7/PTTT+jfv3+3rfsuLS3FnTt34OPjA339//9aDBw4ELNmzUJ+fj4ePXqk9Zj2bsXX19e3WYLRFdnZ2TAyMsKcOXO02jVXly5cuCD2e7Jdw8vLC0ZGRmK/J2sdM2aMVptarca4ceMwfvx4rXZvb+9O16tQKLSucJqammLYsGEoLy8X25qamhAfH4+5c+fCwcEBdnZ2cHBwwI0bN7Re44487/lERLqJ2dSK2cRsoqfjMjnqsm3btsHGxgYPHz5EZmYmUlJSEB4ejqSkJADA3bt3xX7btm1r9zmqq6sBAHv37sXWrVvxwQcfYNWqVRg6dCj09fWxa9culJSUiP2rqqpgbm6uFQ5dodm/mZlZm23m5uZoaWlBbW0tDA0NxXaJRKLVT3Or//Hjxx3uZ/jw4QD+v1zjWWpqamBqatpm2cKwYcNgYGAgLt2oqamBgYEBTExMtPrp6enB1NRU7KfR3jhramowcuTINu2mpqadqhVoe0yA1uNSX18v/n/r1q1ITk7GsmXL4OzsDGNjY+jp6eGTTz7R6teR5zmfiEh3MZtaMZuYTfR0nAxRl9nY2IgfTJ0yZQpaWlpw5MgRnDx5EnPmzMHQoUMBAMHBwXj77bfbfQ7NlaD09HS4uLggKipKa/u/PyhpYmKC3NxctLS0dEvoaGqsqKhos+3OnTvQ19fHkCFDurwfBwcHSCQSnDlzBmvWrHnm2myJRIL8/HwIgqDVt7KyEk1NTWLdEokETU1NqKqq0godQRBw9+5d8fXRaG+/EolEfDN/UnttXZGeng5fX1+Eh4drtVdXV3fqGD/P+UREuovZ1HnMJmaTLuMyOep269atg7GxMWJiYtDS0gJra2uMHj0ahYWFkMvl7f5obl/r6elpfZgSAAoLC5GXl6fV5u7ujvr6eqSmpj61ln79+j31apjGmDFjYGFhgePHj0MQBLG9rq4Op0+fxoQJE7SuvL2ovn37IjAwECUlJfjmm2/a7VNZWYnc3FwAwNSpU1FXV9fmj/MdO3ZM3P7kv+np6Vr9Tp06hbq6OnH70ygUChQVFaGwsFCr/fjx488e2HPQ09ND3759tdrOnTuH27dva7V1dDXzec4nIiINZlPHmE3MJl3GO0PU7YyNjREUFITt27cjIyMDPj4+iIqKwrJlyxAQEID58+fDwsIC9+7dQ3FxMa5cuYKYmBgAgIeHB+Li4hATEwNnZ2eUlpYiLi4OI0eORHNzs7gPb29vpKamIjIyEqWlpVAoFBAEAfn5+bCxscE777wDAJBKpcjJycHZs2dhZmaGgQMHwtrauk3N+vr6WLduHdauXYvg4GAsXrwYDQ0N2LNnD2pra7FmzZpuOz6awFGpVCgoKIC3t7f4h+0uXryIw4cPIywsDJMmTYKvry+Sk5Oxfv16lJeXQyqVIjc3FwkJCZg+fTpcXV0BANOmTYObmxu+/vprPHjwABMnTsS1a9cQExMDOzs7+Pj4PLMuf39/HD16FEFBQfj444/Fb+x5cglId/Dw8BC/mUcmk+HKlSvYs2eP+G08GlZWVhgwYAAyMjJgY2MDIyMjmJubw8LCotPnExGRBrPp6ZhNzCZdxckQvRRKpRLJycmIi4uDt7c3pkyZgiNHjiA+Ph5btmxBbW0tJBIJbGxs4OXlJT4uJCQEjx49wnfffYekpCSMHTsWkZGRyMrKQk5OjtjPwMAAu3fvRkJCAk6cOIH9+/dj4MCBGD9+PNzd3cV+mzZtQlRUFMLDw/Ho0SO4uLjg4MGD7dY8b948GBoaIjExEatXr0afPn3g6OiIAwcOYOLEid12bPT09BAdHY2ZM2fi8OHD4vHQ1L927Vrxw6b9+/fHgQMHsHPnTiQlJaG6uhoWFhZYunSp1h/F09PTQ1xcHFQqFVJTUxEfHw+JRAIfHx+Eh4e3uaLZHjMzM3z77bfYvHkzIiMjYWhoiJkzZ+LTTz8Vv/61O2zatAkGBgZITExEXV0d7OzsoFKpsGvXLq1+hoaG2LJlC2JjYxEQEIDGxkaEhoYiLCys0+cTEdGTmE0dYzYxm3SVnvDkfVciIiIiIiIdwc8MERERERGRTuJkiIiIiIiIdBInQ0REREREpJM4GSIiIiIiIp3EyRAREREREekkToaIiIiIiEgncTJEREREREQ6iZMhIiIiIiLSSZwMERERERGRTuJkiIiIiIiIdBInQ0REREREpJP+B2A8YDnahdCzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHaCAYAAAA3yBn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2PUlEQVR4nOzdd3yUVdr/8c/MpEESkpCEkIq0UFOQFlhBEazYy+qja13ddde27q5rY3fVn6uoz6qPiC7YG6xiQUVFERsqXVMoEpqkkZCQTHrP/P6YzJCQOklmJuX7fr14Zbjvc0+uM5Z7rvuccx2DxWKxICIiIiIiIm0yujsAERERERGR3k6Jk4iIiIiISAeUOImIiIiIiHRAiZOIiIiIiEgHlDiJiIiIiIh0QImTiIiIiIhIB5Q4iYiIiIiIdECJk4iIiIiISAeUOImIiIiIiHRAiZOIiIiIiEgHPNwdgAwc48aNA8BoNPLFF18QGRnZaruzzz6b/fv3A/Dyyy8ze/bsVts999xzPPXUUwB8+umnjBo1qt3f25ZHHnmEiy66qMP4V61axaJFi5gzZw4vvPBCq21+97vf8c033/Dggw9y2WWXAVBUVMQXX3zB119/TXp6Onl5eXh6ehIbG8tFF13ExRdfjNHY8hnGqaeeSnZ2dqu/JyQkhO+//77DmPuC/fv3s2LFCjZv3szhw4eprq4mMDCQiRMnctppp3Heeefh7e3d4rq0tDRWrFjBli1byM/Px8PDg8jISE466SSuvfZawsLC3NAbEekrdE/SPakp2z+XPXv2tNnG9hmsX7+eqKioLv8u3b/6LiVO4lIeHh7U1dXx3nvvceutt7Y4v337dvbv329v1xaLxcI777yDwWDAYrGwatUq7rrrrnZ/9y233NLq8QkTJnQq9ksvvZQvv/ySL7/8kjfffJMrr7yy2fkVK1bwzTffcMopp9hvUABr167l/vvvJzQ0lJkzZxIREUFBQQHr1q1j0aJFfPvttzz99NMYDIYWv9Pf359rrrmmxfHBgwd3Kube7plnnmHp0qU0NDSQmJjIhRdeiK+vLwUFBWzbto1FixaxcuVK3nvvPfs1FouF//3f/+WFF17Aw8OD2bNnc+aZZ1JbW8tPP/3ESy+9xMqVK1m8eDFnnnmmG3snIr2d7km6J7mS7l/9gEXERWJjYy1z5syxXHjhhZZTTjnFUl9f36LN3XffbZk0aZLlhhtusMTGxlq+//77Vt/r22+/tcTGxloWLVpkmTVrliUpKclSXV3d5u+NjY3tkT4UFBRYkpKSLAkJCZb9+/fbjx84cMCSkJBgmTlzpiU/P7/ZNT/88INl3bp1lrq6umbHjxw5Yjn55JMtsbGxlk8//bTF75o3b55l3rx5PRJ3b/Tss89aYmNjLSeffLIlOTm51TbffPON5aqrrmp2bMmSJZbY2FjLvHnzLOnp6S2uWbt2rSUuLs4yYcIEyw8//OCU2EWk79M9Sfekpjrzz2XevHmW2NhYS2ZmZpd+h+5ffZ/WOInLXXLJJeTk5LQY1i8rK2Pt2rWceuqpBAcHt/seq1atAqxP3M4991wKCwv54osvnBazTXBwMP/v//0/KisrufPOO6mrq6Ouro4777yTyspKHnroIUJCQppdM2vWLBYsWIDJZGp2PDQ0lMsvvxyALVu29Eh8n3zyCVdccQVTp04lPj6ec845h//85z9UV1c3a/fHP/6RcePG8frrr7d4j6eeeopx48bxj3/8o0diak1WVhZLly7F09OT5cuXk5CQ0Gq7uXPnNpuCkpmZyXPPPYenpyfPPfccY8eObXHNGWecwT333EN9fT33338/DQ0NTuuHiPR9uidZDeR7kivo/tU/KHESlzv33HMZNGiQ/UZj89FHH1FRUcEll1zS7vUFBQV8+eWXjB49mvj4ePtc8LfffttpMTe1YMECLr74Ynbs2MHSpUtZunQpaWlpXHTRRSxYsMCh9/L09ASs00VaU1NTwwcffMB//vMfXn31VTZt2kR9fX2rbR9//HHuuOMODh48yLnnnsuVV16JxWLhySef5Prrr6empsbe9uGHHyYiIoLHHnuMXbt22Y9v3LiRZcuWERsby7333utQXxzx3nvvUVtby+mnn05sbGy7bb28vJpdV1dXx/z589tdJ3DppZcSGhrKL7/80mNfAESkf9I96ZiBek9yBd2/+getcRKX8/f354wzzuDjjz+msLCQoUOHAtYndhEREZx00kl88sknbV5v+9J9wQUXANYFnRMnTmTTpk1kZmYSHR3d6nVLlixpcSwyMrJTi3CPd++997J582aWLVtmf5/77rvPofeoq6tj9erVAMyZM6fVNvn5+fztb39rdiwqKopHHnmEGTNm2I9t376dF154gcjISFatWmV/OvqXv/yFP/7xj3zzzTe8+OKL/OEPfwAgMDCQf//731x11VXccccdvPfee1RVVXHnnXfi7e3Nk08+iY+Pj0P9ccS2bdsA65NPR2zfvh2AX/3qV+228/DwYObMmaxZs4Yff/yRpKSkrgUqIv2e7klWA/me1FRr/1xsSkpKuvy+un/1D0qcxC0uvfRSVq9ezQcffMB1113H7t272blzJ7fcckur1XxsLI2Lbk0mE+eff779+EUXXcRDDz3EqlWr+POf/9zqtc8880yLYzNmzOjSTcrPz4+bb76Ze+65B4D7778fPz8/h97j3//+N+np6cydO7fVm9RFF13E1KlTGTt2LL6+vmRmZvLGG2/w9ttvc+ONN/LWW28xfvx4AHvxhD/84Q/NppR4eHhw9913s2HDBt555x37TQrgxBNP5Pbbb+ff//43//jHPygqKiI/P59//etfjBkzxuHPxBEFBQUADlcOsl03fPjwDtva2hw5csTB6ERkoNE9aWDfk5pq7Z9LT9D9q39Q4iRuMW3aNEaOHMk777zDddddx9tvv43RaOTiiy9u97pNmzaRkZHBnDlzmn3pPuecc3j00Ud57733uO2221qdZtBeiVGb1p40XXjhhS3KjlZVVfH888/b//7ZZ58xd+7cDt/f5pVXXuGll15i5MiRPProo622Ob7iUmxsLA8++CC+vr689NJLLFmyhKVLlwKwe/duAGbOnNnifUaNGsXw4cPJysqipKSEIUOG2M/deOONbN68mTVr1gDWz7GjaSnH6+xn1pTFYgFotWpTexy5ztamadtly5bx+eefc/DgQby8vEhMTOTPf/5zh9MFRaR/0z1pYN+TmupMOfKmOntf6e79S3oHJU7iNpdccgmPP/44GzduZM2aNcyePZuIiIh2r3nrrbcAWjyRCwoK4tRTT+Wzzz7jq6++4rTTTutSTG09ATz+f7iPP/44Bw4c4Oqrr2br1q288847LFiwgHnz5nX4O1599VUeeeQRRo8ezauvvmqfFtJZl19+OS+99JJ9uhtAaWkpQItFwDahoaHk5ORQWlra7CZlMBg47bTT+O677wBaLTPbkc5+Zk0NGzaMAwcOkJub69DvCg0N7fR1tjahoaH2Y1u2bOGKK64gLi4Oi8XC008/zXXXXcfHH39MYGCgQ7GISP+ie9LAvSd1R2fvK929f0nvoMRJ3ObCCy/kqaee4u6776akpKTDp0pNqxTdcccd3HHHHa22e+utt7p8k+rME8DvvvuON998k9jYWO68805++eUXLr74Yv7+97/z0UcfERQU1Oa1L774Io899hixsbG88sorHVZqao3tmoqKCvsxf39/wDoVICYmpsU1+fn5zdrZ/PLLLzz66KMEBARQWlrKokWLWLVqVasbzralM5/Z8aZOncqmTZvYtGkTl156qUPXbd68mR9++KHd6+rr69m8eTNgnf5h8+KLLzZr99hjjzFt2jR+/PFHTj31VAd7ISL9ie5JA/ee1B2dva909/4lvYOq6onbBAcHc8opp5Cbm0tQUBDz589vt/37779PbW0tkyZN4pJLLmn1T1BQEN9//32bu5t3l9ls5p577sHDw4PHH38cLy8vYmNjuf3228nPz+f+++9v89ply5bx2GOPMWHCBF599dUu3aAAUlJSAJotOLZtmGj7n21Thw4dIjc3l6ioqGZP9mpqarjjjjuorKzkySef5He/+x179uzh4Ycf7lJcjrjooovw9PTks88+Y9++fe22bVp56aKLLsJkMrFu3bp2r3v33Xc5cuQII0eObLZg+Xjl5eU0NDQ0+1xEZGDSPWng3pN6Ulv3lZ6+f4mbuG0HKRlwbJsNNpWRkWFZt26dJSUlpdnxu+66q8Vmg2eccYYlNja2Rdum/vd//9cSGxtreeqpp5r93p7abPD222+3xMbGWp5//vlmx+vr6y1XXHGFJTY21vLRRx+1uO6ZZ56xxMbGWi688EJLUVFRh78nPT291XY5OTmW008/3RIbG2t57rnn7Me3b99u31Tv6NGj9uN1dXWWP/zhD5bY2FjLs88+2+y9HnzwQUtsbKzlf//3f+1tL7/88jY3P+xpzz33nD3m1NTUVtu0tgHuU089ZYmNjbXMnz/fsnfv3hbXrFu3zhIfH9+pDQRvu+02y/nnn99iI0gR6f90T9I9qame2gC3vftKT96/xD00VU/cKjo6us1SrU1t3ryZgwcPEhsbS3x8fJvtLr30Up5//nneffddbrnllhYb/HXH6tWr+fTTT5k+fTrXX399s3NGo5HFixdz3nnn8eCDDzJ9+nT7QuH333+fp59+GpPJxLRp01rd4O/4ErRr165l+fLlzJw5k6ioKHsFo6+//prq6mpOPvnkZjGceOKJ3HDDDbzwwgucc845nHHGGQwaNIgNGzaQnp7O1KlT+e1vf2tv/8UXX/DGG28wZcoUbr/9dgBMJhNPPPEEF1xwAYsWLWLy5MlOmxMOcNNNN1FXV8fSpUu55JJLmDJlCpMnT8bX15eCggK2bdvGL7/8wuTJk5tdd+utt1JZWcnLL7/M+eefz0knncSYMWOoq6vjp59+IiUlBR8fH/7973+3W+780UcfZfv27axcubJH/z0Rkb5L9ySrgXhP6gkd3Vd66v4l7qPESfoE20aCHa2HiYmJYcaMGWzevJlvvvmmx9at5OTk8NBDD+Hn58ejjz7aanna6Oho7r33XhYtWsR9993HCy+8AEBWVhZgnbf86quvtvr+x5egnTlzJgcPHmTXrl0kJydTWVmJv78/U6dO5fzzz+f8889vUW3nzjvvZOLEibzxxhusXr2auro6YmJi+NOf/sT1119v30g2JyeHe++9lyFDhvDvf/+7WbWn8PBw/vWvf3HzzTfz5z//mTfffNO+IaIz3HLLLZx11lmsWLGCzZs3895771FTU0NgYCDjx4/nhhtuaFbiF6xfCO6++27OPvts3nzzTbZu3crGjRsxmUxERkZy/fXXc80117Rb8vWRRx7h448/5tVXX+3UlyQRkaZ0T+qf96Tu6Mx9pSfuX+JeBoulsT6iiMgA8NBDD/HJJ5/w+uuvM3r0aHeHIyIifZzuKwOHRpxEZMC4//77+fDDD1m6dClDhgyxV3YaPHgwvr6+bo5ORET6Gt1XBhaNOInIgDFu3LhWj99yyy3ceuutLo5GRET6Ot1XBhYlTiIiIiIiIh1w+1S9srIynn32WX7++Wd27dpFUVFRiyy9vr6e1157je+++469e/dSXFxMREQE8+fP53e/+532YBEREREREady+wa4ZrOZt99+m5qaGhYsWNBqm6qqKpYsWUJkZCT33nsvy5cv59e//jVvv/02//M//0NVVZWLoxYRERERkYHE7SNOkZGRbN26FYPBQGFhIatWrWrRxsfHh/Xr1xMUFGQ/NnPmTMLDw7n99tv57LPPWpQsFhERERER6SluT5yOr/vfGpPJ1CxpsrFtOpebm9vjcYmIiIiIiNi4PXHqjk2bNgEwZswYh65raGigrq4Oo9HYqcRNRER6hsVioaGhAQ8Pj1Y37RyodF8SEXGfzt6b+mzilJeXx7///W8mT57MvHnzHLq2rq6OtLQ0J0UmIiIdiYuLw8vLy91h9Bq6L4mIuF9H96Y+mTiZzWZuvPFGLBYLTz31lMNPLW3tJ06ciMlkcvj319fXs2vXri5f39ep/+q/+q/+d/f/nxptas72ecTFxXX5c01LS+vy9X2d+q/+q/8Dt//Q/c/Adn1H96Y+lzgVFxdz/fXXk5eXx6uvvkp0dLTD72GbBuHl5dXlD7c71/d16r/6D+q/+t+9/39qOlpzts/DZDJ169+r7l7f16n/6r/6P3D7D93/DDq6N/WpxKm4uJjrrruOrKwsXnnlFcaPH+/ukEREREREZADoM4mTLWnKzMzkpZdeYuLEie4OSUREREREBohekTh98803VFZWUl5eDsC+fftYu3YtACeffDIGg4Hf/va37Nq1i3vvvZf6+nqSk5Pt1w8dOpSYmBh3hC4iIiIiIgNAr0icHnjgAbKzs+1/X7t2rT1xWr9+PYC92tC//vWvFtdfeOGFLF682AWRioiIiIjIQNQrEqcvv/yywzZ79uxxQSQiIiIiIiItqR6siIiIiIhIB5Q4iYiIiIiIdECJk4iIiIiISAeUOImIiIiIiHRAiZOIiIiIiEgHlDiJiIiIiIh0QImTiIiIiIhIB5Q4iYiIiIiIdECJk4PS80q59pVtpB+tcXcoIiIiAHyYksPD3xVRWlXr7lBERPotJU4O+m5vARv2FvBheoW7QxEREQHgw5TDbD9czSdpue4ORUSk31Li5KDYMH8ADhTpqZ6IiPQO48L8AEjJKnZzJCIi/ZcSJwfFRQYAkFdej7lC0/VERMT9EqIDASVOIiLOpMTJQQGDPRkRPBiAHTklbo5GREQEEqKsD/XS80qpqKlzczQiIv2TEqcuiIscAkCqnuyJiEgvEDbEh6GDjDRYYEe2HuqJiDiDEqcusE3XS9PNSUREeomxQz0BSM4scnMkIiL9kxKnLjiWOGnESUREegdb4pSSqXuTiIgzKHHqgkkRQzAAh4uryC+tdnc4IiIiTUaczO4NRESkn1Li1AV+3h5E+psA2KFRJxER6QVGB3liMEC2uZIjpVXuDkdEpN9R4tRFo21TIrLM7g1EREQEGORpZEyodT+nVE3XExHpcUqcumh0kDVxSlNlPRER6SUSo61rcDVdT0Sk5ylx6iJb4pSaXYzFYnFzNCIiIhDfuJ+TZkOIiPQ8JU5dNDLQE5PRQH5pNXklKhAhIiLulxgVCFhHnBoa9FBPRKQnKXHqIm8PA2OHNc4l15M9ERHpBcaG+eHjaaS0qo6DR8vdHY6ISL+ixKkb4iKHAJCqdU4iItILeJqMTI5onK6ndU4iIj1KiVM32DbCTVVJchER6SUSowMBFYgQEelpSpy6wZY4pWWZVSBCRER6hYTGxEkjTiIiPUuJUzeMG+6Pp8lAUUUtWUWV7g5HRETEPuK063AJVbX17g1GRKQfUeLUDd4eRsYPt65zStN0PRER6QWiggYR7OtFbb2F3YdL3B2OiEi/ocSpm+K0Z4aIiPQiBoPBPl1P65xERHqOEqduirevc9KIk4iI9A6JWuckItLjlDh1k23EKS27WJsNiohIr2AvEKGHeiIiPUaJUzfFhvnj7WHdbPBQYYW7wxERESGh8aHewYJyzBU1bo5GRKR/UOLUTZ4mIxMjbBvhmt0bjIiICBA42IuRIb6ARp1ERHqKEqceoHVOIiLS29g3ws0wuzUOEZH+QolTD4iLCgQgVYmTiIj0Egmq+ioi0qOUOPWA+Mab046cYupVIEJERHqBhCaV9SwW3ZtERLrLw90B9AejQ/0Y5GmioqaeA/lljA3zd3dIIiLSCRs3buTDDz/kp59+Ijc3F39/fyZPnszNN9/M5MmTO7z+6NGjPP7443z11VdUVVUxfvx4/vSnPzFr1iwXRN++iRFD8DQZOFpeQ1ZRJdFDB7s7JBGRPk0jTj3AZDQwOdJWIELT9URE+oqVK1eSnZ3N1VdfzfLly7nvvvsoLCzksssuY+PGje1eW1NTw7XXXsvGjRu57777ePbZZwkODuaGG25gy5YtLupB27w9TEwMt96btBGuiEj3acSph8RHBbL1lyLSsou5eGqUu8MREZFO+Oc//0lwcHCzY3PmzOH0009n2bJl7Y4crVq1ivT0dP773/8yZcoUAGbOnMn555/P448/zqpVq5wae2ckRgeSklVMcqaZcxMi3B2OiEifphGnHhKvRbgiIn3O8UkTgK+vL6NHj+bw4cPtXvvFF18wcuRIe9IE4OHhwXnnnUdqaip5eXk9Hq+jmq5zEhGR7lHi1EPiGkuS78opoba+wc3RiIhIV5WWlrJr1y7Gjh3bbru9e/cybty4Fsdtx/bu3euU+BxhS5x25BTr3iQi0k2aqtdDTgj2xd/bg9LqOvbmldk3xRURkb7lgQceoLKykptuuqnddmazmYCAgBbHbcfMZrPDv7u+vt7ha5ped/z1MYE+DPHxoKSqjt05xUzqp/emtvo/UKj/6n/TnwNRdz+Dzl6nxKmHGI0GJkcGsPHAUdKyzUqcRET6oKeeeoqPPvqIv//9752qqmcwGLp0ri1paWkOX9PR9SMDjKRUwccbd1A7un9X1uvu59fXqf/q/0Dn7M9AiVMPio+2Jk6pWcVcNt3d0YiIiCOeeeYZnnvuOe644w5+85vfdNg+MDCw1VGl4mJrddXWRqM6EhcXh8lkcvi6+vp60tLSWr3+pPy9pOTt5yj+JCbGOfzefUF7/R8I1H/1fyD3H7r/Gdiu74gSpx4UHxkIqCS5iEhf88wzz7BkyRJuvfXWDqfo2cTGxpKent7iuO1YR2ukWmMymbr1xae166fEBAGQml3c779Udffz6+vUf/V/IPcfnP8ZqDhED7JV1vs5t4TquoE7z1REpC9ZunQpS5Ys4Q9/+AO33HJLp69bsGABBw4cICUlxX6srq6ODz/8kISEBMLCwpwRrsNsBSL2HimjrLrOvcGIiPRhbk+cysrKeOyxx7j++utJSkpi3LhxLFmypNW2O3fu5Nprr2XKlClMmzaNW265hczMTBdH3LaooEEEDvaktt7CntxSd4cjIiIdeOmll3j66aeZM2cOp5xyCsnJyc3+2Nx7771MnDiR7Oxs+7FLLrmEsWPHcvvtt/PRRx/xww8/8Kc//YmDBw/y17/+1Q29aV2ovzeRgYOwWCBVW2aIiHSZ26fqmc1m3n77bcaPH8+CBQva3DBw//79XHXVVUyYMIGnnnqK6upqnn76aa644go++OADhg4d6uLIWzIYDMRFBrBhbwGpWcXERwW6OyQREWnHV199BcCGDRvYsGFDi/N79uwBoKGhgfr6eiwWi/2cl5cXr7zyCo8//jgPPfQQlZWVTJgwgeeff54ZM2a4pgOdlBgdSLa5kpTMYmaPDnF3OCIifZLbE6fIyEi2bt2KwWCgsLCwzcTp6aefxsvLi2XLluHn5wfApEmTOOOMM3jxxRe58847XRl2mxKiAtmwt4A0rXMSEen1Xn/99U61W7x4MYsXL25xPCQkhEcffbSnw+pxidGBfJx2mOTMIneHIiLSZ7l9qp7BYOiwZGtdXR1ff/01p59+uj1pAmvSNXPmTL744gtnh9lpcY3rnFI0HUJERHoJ2zqnlEw91BMR6Sq3jzh1RkZGBlVVVa3u0B4bG8v3339PdXU13t7eDr1vT280CDAp3B9oXIRbWcMgr/5X3WSgb7Sm/qv/TX8ONK7aZFB61uTIIZiMBnJLqsgtrmJ4gI+7QxIR6XP6ROJk2ycjMDCwxbnAwEAsFgvFxcUMGzbMofd1xkaDFouFQG8j5uoGPtywnXHBXt36Hb3ZQN9oTf1X/weygd7/vmawlwexYf7sPlxCcqaZMwOGuzskEZE+p08kTjY9vUO7MzYaBJiStp2v9uRTNTiMxMQRDr9/bzfQN1pT/9V/9d/5mwxKz0uMDmD34RJSssycOVmJk4iIo/pE4mQbaSoqarmo1Ww2YzAYGDJkiMPv64yNBsE6l/yrPfnsyCnp11+sBvpGa+q/+q/+D9z+90WJ0YGs3JJJcobZ3aGIiPRJbi8O0RkxMTH4+Pi0uUP7iBEjHF7f5Ey2jXBTVVlPRER6CVuBiLTsYuobLO03FhGRFvpE4uTh4cG8efNYt24dZWVl9uM5OTls3ryZ0047zY3RtTQ50po47c/XLu0iItI7jB3mz2AvE2XVdezPL+v4AhERaaZXJE7ffPMNa9eutW9EuG/fPtauXcvatWuprKwE4NZbb6WyspKbbrqJb775hnXr1vH73/+eoKAgrr/+eneG38Iwfx/CA3ywWGBntkadRETE/UxG6ybtAMmZZvcGIyLSB/WKNU4PPPAA2dnZ9r/bkiaA9evXExUVxejRo3n99df53//9X26//XZMJhNJSUksXbqUoUOHujZgS8dTHOIiAzhcXEVadjEzRwW7ICgREZH2JUYHsvlgISmZZn49Ldrd4YiI9Cm9InH68ssvO9Vu8uTJvPLKK84NpiMHvsb43ysJmnQ7JCa22SwhOpDPd+VpnZOIiPQaiY3rnDTiJCLiuF4xVa9PKTyAoaaMkMy17TazTYdI01Q9ERHpJWwFIn7OLaWqVpsRi4g4QomTo6JmAOBbtAsa2i78YEucDhaUU1xZ65LQRERE2hMe4MMwf2/qGyzs0IM9ERGHKHFy1LAJWLz9MdVXQt6uNpsF+XoRPXQQgG5OIiLSKxgMBvuok6briYg4RomTo4wmiJoOgCFrc7tN4yMDAe3nJCIivYdtnVOK7k0iIg5R4tQFlugk64vMDhKnKNs6J7OTIxIREemcYwUiitwbiIhIH6PEqQss0TMBMGRuarddXGPipBEnERHpLeKiAjAYILOwkqNl1e4OR0Skz1Di1BURJ2IxGDGU5IA5s81mkxsLRGQV6eYkIiK9wxAfT0aH+gGQkmV2bzAiIn2IEqeu8PKlImCs9XU70/WG+HgyKsQXUFlyERHpPRKiAgFIztS9SUSks5Q4dVFZ0GTri4yN7bazTddL03Q9ERFxEsOG/yVu3aXtzoJoKjHaem9SZT0Rkc5T4tRFZUNtiVNHBSICAUjViJOIiDiJ4XAqXlVHMez+oFPtE6ODAEjJNGOxWJwZmohIv6HEqYvsidORnVDVdlIUrxEnERFxMkvUNAAMHVR7tRk33B8vDyPFlbUcOlrhzNBERPoNJU5dVOcTjCXoBLA0QNbWNttNDB+C0QC5JVUcKalyXYAiIjJgWGJmWV9kboJOjCB5eRiZHDEE0HQ9EZHOUuLUDZYoa1ny9qbr+Xp7MGaYtXqRypKLiIhThCfQYPTGUHEUCvZ26pIE+35OZufFJSLSjyhx6o6YxsSpo/2cIgMBrXMSEREnMXlRHjTB+jrjh05dkqjESUTEIUqcusE+4pS1Depr22x3bJ2T2QVRiYjIQHSsaFH7D/NsbInTrpwSauoanBSViEj/4dGVi/bu3cuPP/5IXl4eVVVVBAUFMWbMGKZPn46fn19Px9h7hY4DnwBrcYjcNIg8sdVm9sQpuxiLxYLBYHBllCIiMgCUDY2zvjjUuRGnmKGDCRrsSVFFLT/nltirwIqISOs6nTgVFxfz1ltv8dZbb5GTk9Nq+VIPDw/mzp3LVVddxaxZs3o00F7JYIToJNj7mXUj3DYSpwnhQ/AwGigoqyGnuIrIwEEuDlRERPq7sqCJWAxGDOZDUJIDQyLabW8wGEiIDuTrPfkkZ5qVOImIdKBTU/Vee+01Tj/9dF588UXmzp3LE088weeff862bdtIS0vju+++Y+XKlfzlL3+hpKSE66+/nt/+9rccOnTI2fG7n22dUzsb4fp4mogN8wc0XU9ERJyjwdMXwjq3ObtNQmOypHVOIiId69SI0+uvv84999zDwoUL8fT0bHE+JCSEkJAQpkyZwnXXXUdGRgbPPfccn376KTfddFOPB92r2ErAZmy2loBtYxpefFQAuw6XkJpVzJmTw10YoIiIDBSWmCQMuanWdU6TL+6wfWJMIKDESUSkMzqVOH366ad4eHR+OVRMTAyPPPII9fX1XQ6sz4iYAkZPKMsF8yEIOqHVZnFRAfx3ayZpqqwnIiJOYolOgi3L4ZBjI04H8ssprqwlYFDLh6MiImLVqal6e/d2bk+I45lMpi5d16d4DoKIROvrdioZ2W5OqVnFra4PExER6bboJOvPvB3WwkUdGOrrRczQwQCkaa9BEZF2dSpxuvDCC7noootYsWIFpaWlzo6p74lpvFG1kzjFhvnjZTJSXFlLRmGFiwITEZEBxX84BI0ELJC5tVOXHNvPqch5cYmI9AOdSpx+//vfU1hYyIMPPshJJ53EX//6VzZt6tw+EQOC7Qlf5uY2m3h5GJkQbi0QkaqneiIi4iwjZlt/dnIj3AR74qR7k4hIezqVON1xxx189dVXLF++nHnz5vH5559z3XXXMX/+fJ599lkOHz7s7Dh7t+jGynpHdkFl20/s4prs5yQiIuIUnZgF0dSxESezppKLiLSjU4kTWPd7mDt3Lk899RTfffcd9913HwEBATz99NMsWLCA3/72t6xdu5ba2lpnxts7+YVC8Bjr63amRsRHBgKQqpLkIiLiLDGNI05Z26CuusPmkyJsew1Wk1Nc5eTgRET6rk4nTk0NGTKE3/zmN7z33nusXr2aK664gl27dnHHHXcwd+7cno6xb7BP12v7CV98tHXEaUd2CQ0NeqonIiJOEDwaBodAfTXkJHfY3MfTxPjGqeTJGWbnxiYi0od1KXFqavz48Zx33nmceuqpAJjN5u6+Zd9k3wi37cRpTKgfPp5GyqrrOHi03EWBiYjIgGIwNJmu17l1TrbpeimaESEi0qbOb850nMLCQj788EPeffdd9u3bh8lkYt68eVxyySU9GV/fYdsIN3s71NWAh1eLJh4mI5MiAth+qIjULDOjQ/1cHKSIiAwII2bDz2s6vc4pISqQN8jQRrgiIu1wKHFqaGjg22+/5d133+Xrr7+mtraWE044gT//+c9ceOGFhISEOCvO3i94DAwOhoqjkJsKUdNabRYXaUucirlwSpSLgxQRkQGhaYGIhgYwtj/BZEpMIGDdy6muvgEPU7cnpIiI9DudSpwOHjzIu+++ywcffEBBQQE+Pj6cc845XHzxxUyb1nqCMOAYDNbqens+gYyNbSZO8bbKeipJLiIizjI8ATx9ocoM+T9D2MR2m48K8cPP24Oy6jr2HiljQvgQ18QpItKHdCpxOuusswCIj4/n1ltvZeHChfj6+jo1sD4pJqkxcdoEs29ttUl8VCAAO3NK9FRPREScw+RhfYB38BvrOqcOEiej0UB8VAA/7D9KcqZZiZOISCs69a39mmuu4aOPPuLtt9/m17/+tZKmtjTdCLeNvTBGhfji62Wisrae/fkqECEiIk5i3wjXsf2cUrTOSUSkVZ1KnO655x7Gjh3b4viBAwfYvn07FRUVPR5YnxSRCCZvKM+HwgOtNjEaDUyOtE7XU/UiERFxGgc3wk1oshGuiIi01KV5YqtXr2bu3LksXLiQ3/zmNxw8eBCA22+/nbfffrtHA+xTPLwh8kTr63ZuVFrnJCIiThc1HQwmKM4Ec2aHzac0Jk7peaWUV9c5OTgRkb7H4cTp008/5e6772bixIn8/e9/x9JkStqkSZP49NNPezTAPie6cT+ndjbCjWtc55SarcRJREScxMsXwhOsrzsx6jRsiA/hAT40WGCH7k8iIi04nDgtX76ciy66iP/85z9cdtllzc6NGjWKffv29VhwfVInpkYkNI447T5cQk1dgyuiEhGRgci+zsmxjXA1XU9EpCWHE6f9+/ezcOHCVs8FBgZiNpu7G1PfZhtxKkiHisJWm8QMHcwQHw9q6hpIzyt1YXAiIjKgdHGdk9bgioi05HDiNGjQIEpLW/+yn5eXR0BAQLeD6tMGD4WQcdbXmZtbbWIwGOxlyVO1zklERJzFVu31yK42H+Y1ldB4b0rJ1L1JROR4DidOU6ZM4c0332y2tsnmvffeY8aMGT0SWJ8W0zjqlLGxzSZxtgIR2WYXBCQiIm0pKyvjscce4/rrrycpKYlx48axZMmSTl373nvvMW7cuFb/5OfnOznyTvALheDGqriZWzpsHh8VgNEA2eZKjpRWOTk4EZG+pVMb4DZ18803c8UVV3DJJZdw7rnnYjAY+Pzzz1myZAnbtm1j1apVzoizb4mZBT++BhmtjzgBxDeWJNeIk4iIe5nNZt5++23Gjx/PggULunQfe+SRRxg1alSzY4GBgT0UYTfFJMHRvdZ1TuPObLepr7cHY4f5syevlJTMYk6b6OOiIEVEej+HE6e4uDief/55HnjgARYvXgzAsmXLGDFiBMuXLyc2NrbHg+xzbOuccn6E2irwbHnjiW+cR74nt5Sq2np8PE0uDFBERGwiIyPZunUrBoOBwsLCLiVOY8eOJS4uzgnR9YARs+Gn1x3aCHdPXinJmUWcNjHMycGJiPQdDidOAElJSXz66adkZGRQUFBAUFAQI0eO7OnY+q6ho8A31LoR7uHkY4tzm4gI8CHY14uj5TX8nFtqr2QkIiKuZTAY3B2Cc9nuQdk/Qm0leA5qt3lCdCBvbcvUOicRkeN0KXGyiYmJISYmpqdi6T8MBuuNavdH1id8rSROBoOBuKgAvt6TT2qWWYmTiEgfdtNNN1FYWIi/vz8zZszgtttu69IMjPr6+i79ftt1rV4/JAaj33AMZbnUZ247VqK8DXER/oC1JHltbR1GY+9PLNvt/wCg/qv/TX8ORN39DDp7XacSp08++YSzzz7boQDy8vLIyspi6tSpDl3Xb0Q3SZzaEB9pS5z0VE9EpC8KCQnhpptuIjExET8/P9LT01m+fDmXXXYZK1euZPz48Q69X1paWrfiaev6kf7jGFqWS+6W98ktGtzue9Q3WPAyQVl1HZ98t52oId16xupS3f38+jr1X/0f6Jz9GXTq/4YPPvggy5Yt4ze/+Q1nnXUWfn5+bbbdsWMH7777Lu+//z533nnnwE2cbKNMmZvBYrGOQh0nrrHsa5oSJxGRPmnu3LnMnTvX/vfp06dz8sknc+655/J///d/PPfccw69X1xcHCaT42te6+vrSUtLa/N6Q81ZcPgbImp/YXhiYofvF79tM9sOFVHjH05iYqTD8bhaR/3v79R/9X8g9x+6/xnYru9IpxKndevWsWTJEv71r3/x4IMPMnHiRCZOnEhwcDBeXl4UFxeTmZlJcnIy+fn5jB07liVLljBnzhyHA+83hseDxyCoLISCvRDacspGfGNJ8r1HSqmoqWOwV995qiciIq2Liopi6tSppKSkOHytyWTq1hefNq8/wTo9z5C1FZMBMLb/O6bEBLLtUBGpWSVcOq3vTMnv7ufX16n/6v9A7j84/zPo1Dd1f39/7r33Xm6++Wbee+89vvnmG1avXk1lZaW9TXR0NHPmzOHcc88lKanlmp6esGvXLp555hlSU1MpLS0lPDycc845h9/+9rcMGtT+YleX8/CCyKlw6Dvrfk6tJE5hQ3wIG+JNXkk1u3JKmHbCUDcEKiIiPc1isWA0OrxVovOETQYvf6gugbydEB7fbvOExnW3KVlm58cmItJHODTEERAQwHXXXcd1110HQGlpKVVVVQQGBuLp6emUAG327dvH5ZdfzsiRI7n33nsJCgpi27ZtPPvss+zcudPh6RAuETPTmjhlboap17TaJC4ykLySPFKyipU4iYj0A5mZmfz444/Mnt1+EQaXMpogegbsX29de9tR4tQ4lXz34RJtmSEi0qhbc8P8/f3x9/fvqVja9dFHH1FdXc2SJUvslfxmzZpFfn4+b731FsXFxQQEBLgklk6LmWX92V6BiKgAvtidR5qe6omIuM0333xDZWUl5eXlgPVh3dq1awE4+eSTGTRoEPfeey+rV69m3bp1REZa1/1ce+21TJs2jfHjx+Pr60t6ejovvPACBoOB22+/3W39aVXMrMbE6QeY+bt2m0YFDSLEz4uCshp2HS7hxJggFwUpItJ79ZlFNbYRreMLU/j7+2M0Gp0+4tUlUdMBAxTuh7Ij4DesRZO4xnVOqdkqECEi4i4PPPAA2dnZ9r+vXbvWnjitX7+eqKgoGhoaqK+vx2Kx2NvFxsby6aef8tJLL1FdXc3QoUNJSkrij3/8Y+/b33BEk4d5bRQtsjEYDCREBbL+5yOkZJqVOImI0IcSpwsuuIBXX32V+++/nzvvvJOgoCC2bt3KW2+9xZVXXsngwe2XV22NU/bLaMrLH2PoeAz5u6k/tBHGn9OiyaRw64jdgfxyzOXV+Pv0/n8kA32/APVf/W/6c6Bx1V4Zrvbll1922Gbx4sUsXry42bF7773XWSH1vMipYPSE0sNQ9AsMbT+xS4y2Jk7JmWaXhCci0tv1/m/pjaKiovjvf//LLbfcwoIFC+zHr7rqKu67774uvaez9stoKmbwGELZTf72j8iuimq1TehgI/kVDXzw7XYmD/PuVkyuNND3C1D/1f+BbKD3v0/yHAQRUyBri3XUqYPEyV4gQomTiAjQhxKnrKws/vCHPxAcHMzTTz/N0KFDSUlJ4bnnnqOiooKHH37Y4fd01n4ZTRmMC+HQR4RVHyC0jb0zpu76ibU786gcNIzExF42taMVA32/APVf/Vf/nb9XhjhJTFJj4vQDJP5Pu01tBSJ+OVpBUXkNQb5eLghQRKT36jOJ07///W/KyspYvXq1fVre9OnTCQoK4t577+WCCy5gxowZDr2n0/bLaOoE65xyw+FUTA011id+x4mPDmTtzjzSckr61Bexgb5fgPqv/qv/A7f/fdaI2fDD0+0WLbIJGOzJqBBfDhSUk5Jl5pRxLdfpiogMJA5vMvH//t//48CBA86IpV27d+9m9OjRLdYyxcXFAbB3716Xx9QpgSPAPxwaaiH7x1abxEcGApCWpQIRIiLiRNEzrT8L0qG8oMPmx6br6f4kIuJw4rR69WoWLlzIddddxxdffNGsupAzDRs2jH379tlLxdokJycDEBYW5pI4HGYwHLtRZWxstUlcpLWyXkZhBeaKGldFJiIiA83goRA6wfq6E6NOiY2JU3JmkRODEhHpGxxOnDZs2MCiRYvIz8/nlltu4dRTT2X58uUUFhY6Iz67a665hqKiIq6//no++eQTNm7cyH/+8x8eeeQRxowZw9y5c536+7slJsn6M3Nzq6cDBntyQrB1JC1NZclFRMSZbPekNh7mNWUfccoqdtmDUhGR3srhxGnw4MFceeWVrFmzhpdffplJkybxf//3f5xyyincfffdTlv0O3/+fF555RX8/Px4+OGHuemmm3j//fe5/PLLeeONN/Dy6sWLVpsmTg0NrTaJa1yEm6rpeiIi4kwjZlt/diJxmhDuj5fJSGF5DZmFlU4OTESkd+tWcYhZs2Yxa9YscnNzueuuu/jggw/44IMPmDx5Mn/4wx849dRTeypOAJKSkkhKSurR93SJsDjw9IWqYsj/GcImtmgSHxnARyk5pGaZXR+fiIgMHLaHeYdToKYcvHzbbOrtYWJCxBBSMs0kZ5mJCXZ8z0QRkf7C4RGnpqqqqli1ahU33XQTmzdvZvTo0dx8883U19dz8803s3Tp0p6Ks28zeUDUVOvrzNbnlMdFWdc5qUCEiIg4VUA0DImEhjrI2tZh88TG+1NyhtnJgYmI9G5dSpwyMjJ45JFHmDt3Lv/85z8ZPnw4L730EmvWrOGWW27hvffe48Ybb+SNN97o6Xj7rhhrWXIyWl/nNDkyAIMBcoqryC+tdmFgIiIyoBgMTe5JnSgQERMIQIpmRIjIAOfwVL0bbriBH374gUGDBnHRRRdx1VVXERMT06LdvHnzWL58eY8E2S90UFnPz9uD0aF+7DtSxo7sYuaN134ZIiLiJDFJsOMd60a4HbBthLsju5ja+gY8Td2arCIi0mc5nDhlZmZyzz33cNFFF+Hr2/a86LFjx/Laa691K7h+JWo6GIxgPgSlueA/vEWT+MgA9h0pIzVLiZOIiDiRrUBE5laor7NOKW/DyBBfhvh4UFJVx57cUiY3bqEhIjLQOPzY6LPPPuOqq65qN2kC8PPzY8aMGV0OrN/xGQJhk6yv25gaYVvnpAIRIiLiVKETwCcAasshN7XdpgaDwV6WPDnT7PzYRER6KY23u1K0be+M1hOneFvilK39MkRExImMxg7vSU0lKnESEXF8qt6pp56KwWBo9ZzRaMTf35+4uDiuvvpqRo8e3e0A+5WYJNj6fJuV9SaGB2AyGsgvrSavpJrhAT4uDlBERAaMmCTY+5l17e2sP7bb1JY4pShxEpEBzOERpxkzZmCxWMjLyyMyMpKEhAQiIiLIy8ujvr6e8PBw1q1bx8UXX+y0zXD7LPveGanWvTOOM8jLxNhhfoCm64mIiJM13Qi3g1kOtql6+/LLKK2qdXJgIiK9k8OJ00knnYSXlxfr1q3jtdde44knnuD111/n888/x8vLiwULFvDZZ59xwgknsGTJEmfE3HcFRMGQKLDUt7l3hm26Xlq29nMSEREnipgCJm8oz4fCA+02DfHzJipoEBaL9hsUkYHL4cTpP//5D7feeivh4eHNjkdERHDzzTezfPly/P39ufbaa0lOTu6pOPuPmMay5Jmt7+cU11j2NUU3JhERcSYPb4hs3Jz9UCfKktvWOWlGhIgMUA4nTocOHcLPz6/Vc0OGDCE7OxuAyMhIKisruxddf9TBpoPxjWVe07LMKhAhIiLOFeNAgYjGB3vJGWbnxSMi0os5nDhFRETw/vvvt3ru3XfftY9Emc1mAgK010MLto1wM7dAQ32L0+PD/fE0GSiqqCWrSImniIg4kf1hXscjTokxgQCkaMRJRAYoh6vq/fa3v+Uf//gHl19+OWeeeSYhISEUFBSwdu1aUlJSePDBBwHYvHkzkydP7vGA+7ywSeDlDzWlcGQXDI9rdtrbw8T44UNIyy4mLbuY6KGD3RSoiIj0e9EzAIN1jVNpHviHtdl0coS18mteSTW5xVWq/CoiA47DidOvf/1rLBYLS5YsYfHixfbjISEhPPDAA1x66aUA3HTTTXh5efVcpP2F0QTR02H/l9apEcclTmDdCDctu5jUrGLOjgtv5U1ERER6wKBA6wO9vB3W6nqTLmi7qZeJcWH+7DpcQnJmEWcG6P4kIgOLQ4lTfX09GRkZnHXWWfz617/mwIEDmM1mAgMDGTVqVLP9nUJCQno82H4jOulY4jTjxhan4yMDWIFKkouIiAvEzGpMnDa1mziBtUCENXEq5szJSpxEZGBxaI2TxWJh4cKF/PTTTxgMBkaPHs3UqVMZPXp0m5viSitsi3HbrKx3rCR5Q4MKRIiIiBPZC0R0Yp1TtPX+lJxZ5MyIRER6JYcSJw8PD0JCQlTtrbuipoHBBMWZUJzV4nRsmD9eHkZKq+o4VFjhhgBFRGTAsBWIyE2D6tJ2myZGBwHWvZzq9WBPRAYYh6vqLVy4kNWrVzshlAHEy/fY2qZWSsB6moxMDB8CaLqeiIg4WUAkBMaApQGytrbbdMwwP3y9TJTX1LPvSJmLAhQR6R0cTpzGjx/PTz/9xNVXX80bb7zBZ599xueff97sj3SC7QlfG9P1EmzT9bQRroiIOFvMbOvPQxvbbWYyGuzTyVMyzU4OSkSkd3G4qt5dd90FQF5eHlu2bGlx3mAwsHv37u5H1t/FzITNz7W56WBcVCBwiNRsJU4iIuJkMUmQ+l9rZb0OJEQHsulAIclZZn49PdoFwYmI9A4OJ06vvfaaM+IYeKIbF+Pm7bDOKff2b3Y6vvGJ3o5s6zxyk1HFN0RExElGNI44ZW2DuhrwaHs7kSnRgQAkZ5idH5eISC/icOI0Y8YMZ8Qx8AwJh8ARYD5knVM++tRmp0eH+jHI00RFTT0H8ssYG+bfxhuJiIh0U0gsDBoKlYWQm2otYtSGhMbEaU9eKZU19QzyMrkoSBER93J4jZNNaWkpGzZs4MMPP6S4WNPJusReArblOieT0cDkSFuBCH2+IiLiRAbDsXvSofbLkg8f4sMwf2/qGyzsyNH9SUQGji4lTkuXLmXOnDnceOON3HXXXWRlWUtqX3PNNSxfvrxHA+zXomdaf7Yxpzw+KhCw7uckIiLiVLaiRW2svbUxGAwkNo46qUCEiAwkDidOb775JkuXLuWSSy5h2bJlzfZ0mjdvHl9//XVPxte/2W5SWdugvq7Fads6J5UkFxERp7MnThuhoaHdprbpeslKnERkAHF4jdObb77Jtddey9/+9jfq6+ubnRsxYgSHDh3qseD6vdDx4BMAVcWQlwYRU5qdjou0Jk47c0qorW/A09TlmZUiIiLtC08Aj0HWdU5H90LouDabTlHiJCIDkMPfxDMzM5kzZ06r53x9fSkpKel2UAOG0QhRjcU2WlnndEKwL/7eHlTXNbA3TxsNioiIE3l4HSsK0cE6p8lRARgMkFVUSUFZtQuCExFxP4cTJ39/fwoKClo9l52dTXBwcLeDGlBsi3EzW84pNxoNTG4cdUrLNrswKBERGZA6uc5piI8no0P9AK1zEpGBw+HEadasWbzwwgtUVFTYjxkMBurq6li5ciUnnXRSjwbY79kr622CJuvFbOKjbeucVCBCRESczH5P6ngjXBWIEJGBxuHE6bbbbiMnJ4eFCxeyePFiDAYDb7zxBpdeeimHDh3ij3/8ozPi7L8iTgSjB5QeBnNGi9PxkYGAKuuJiIgLRM8Ag9G6x2BJTrtN7QUi9GBPRAYIhxOnESNGsHLlSkaNGsXKlSuxWCx88MEHBAUFsWLFCiIiIpwRZ//lNRjCE62vM1uuc7JV1tt9uITquvoW50VERHqMtz8Mj7O+7mDUaUqTESdLKzMmRET6G4er6gGMGTOGF198kZqaGoqKiggICMDHx6enYxs4YpIge5v1JhX/62anooIGETjYE3NFLXtyS+17O4mIiDhFzGw4nAKHNsLki9tsNm64P14eRoora/nlaAUjQ3xdGKSIiOt1q761l5cXYWFhSpq6y74RbssRJ4PBYC9LrnVOIiLidE3X3rbD02RkcsQQAJIzi5wdlYiI23VpxCkrK4tPP/2UnJwcqqqqmp0zGAw8/PDDPRLcgGG7SR3ZBZVmGBTY7HRCVCAb9haQpsRJRESczVZZL29Hq/ekphKjg/gxw0xKZjEXTolySXgiIu7icOL09ddfc8stt9DQ0MDQoUPx8vJqdt5gMPRYcAOG3zAYOgoKD0DWVhh7WrPTcY3rnFJVIEJERJzNP6zde1JTCY2VX7URrogMBA4nTk8++SQnnngiTz75pPZs6knRSdabVMamFjcpW4GI9LxSKmvqGeRlckeEIiIyUMTMst6TDv3QbuI0JToIgF051gJG3h66P4lI/+XwGqdDhw5x4403KmnqafaNcFuucxo+xIcQP2/qGyzsOlzi4sBERGTA6eRGuNFDBzHU14ua+gZ+PlzqgsBERNzH4cQpIiKi2ea30kNsiVPWNqivbXbKYDDYR53SsswuDkxERAYcW+KUvR3qqttsZjAYSIjSdD0RGRgcTpx+//vf89JLL1FZWemMeAau4LEwKAjqKuFwaovT8VrnJCIirhI8GnxDob4acn5qt2lCk/2cRET6M4fXOKWlpXH06FFOO+00Zs6cSVBQUIs2ixYt6pHgBhSj0brOKf1TyNwEUVObnT424qTESUSkJ5WVlfHss8/y888/s2vXLoqKirjlllu49dZbO3X90aNHefzxx/nqq6+oqqpi/Pjx/OlPf2LWrFlOjtyJDAbrTIjdH1nXOdlmRbTCljhpxElE+juHE6c33njD/vrjjz9ucd5gMChx6qqYmdbEKWMjzLq52anJjXs57csvo6y6Dj/vLlWSFxGR45jNZt5++23Gjx/PggULWLVqVaevramp4dprr6WkpIT77ruP4OBg3nzzTW644QZefvllZsyY4cTInSxmtjVx6mCdU2LjxuwHCsoprqglYLCnC4ITEXE9h799//zzz86IQ8A64gTWjXAtFusTv0bD/H0ID/DhcHEVO7OLmTlKxTlERHpCZGQkW7duxWAwUFhY6FDitGrVKtLT0/nvf//LlClTAJg5cybnn38+jz/+uEPv1evYixZtgoYG68yIVgT5ejEieDCHjlaQmm1mzthQFwYpIuI6Dq9xEieKmAImLyg/AkUHW5yOaxx1StM6JxGRHmMwGLq8B+EXX3zByJEj7UkTgIeHB+eddx6pqank5eX1VJiuNzwePH2hqhjyd7fbNNE2XS/D7Py4RETcpFOJ09atWykvL++wXWFhIe+88063gxqwPH2syRO0OjXCNo88VeucRER6hb179zJu3LgWx23H9u7d6+qQeo7JA6KnW19nbGy3aULjdL0UVX4VkX6sU1P1rr76at566y3i4+MBaGhoID4+nrfffpuJEyfa22VmZvL3v/+dSy65xDnRDgTRM617OWVsgsQrmp3SiJOISO9iNpsJCAhocdx2zGw2O/R+9fX1XYrDdl1Xr2+LIToJ44GvafjlBywnXtdmu7hIfwB+yjBTV1fX5RG8rnJW//sK9V/9b/pzIOruZ9DZ6zqVOFkslhZ/r6ura3FcekDMLPjh6VY3wrUlTgcLyimurCVgkBbgioi4W3tJgqMJRFpaWrdi6e71x/OvCSEWqNu/gbTk5Dbb1dVbMBngaHkN6374kWG+ph6No7N6uv99jfqv/g90zv4M+lxptm3btrFs2TKSk5Oprq5m+PDhnH/++dx8880dX9wXRM+0/sz/GSoKYfBQ+6kgXy+ihw4is7CSHdnF/GpMiJuCFBERgMDAwFZHlYqLrTMDWhuNak9cXBwmk+NJR319PWlpaV2+vk01Y7FsvhuvqiMknhAMgdFtNp2w6Qd25JRQNySSxLjhPRdDJzit/32E+q/+D+T+Q/c/A9v1HelTidNHH33E3/72N8466yweffRRBg8eTGZmZt9efHs832DrZrhH90LmFhh3ZrPT8ZGBZBZWkpqlxElExN1iY2NJT09vcdx2bOzYsQ69n8lk6tYXn+5e38KgIRCeANnbMWVvgeAT2mw6JSaIHTklpGYXc25iZM/F4IAe738fo/6r/wO5/+D8z6DPVNXLy8vjH//4B5dddhlPPPEEp556KklJSVx66aXccsst7g6vZzUtAXucONtGuNlmFwYkIiKtWbBgAQcOHCAlJcV+rK6ujg8//JCEhATCwsLcGF0PiWncyPfQD+02sxUwSsnUOlwR6Z86PeJ04MABewZnW0B14MCBFm2cZdWqVVRUVHDjjTc67Xf0GjFJ8NPrrVbWi29MnFRZT0Sk53zzzTdUVlbaK8ju27ePtWvXAnDyySczaNAg7r33XlavXs26deuIjLSOqFxyySWsWLGC22+/nb/85S8EBwezYsUKDh48yMsvv+y2/vSomFmw8ZmON8KNPlbAqK6+AQ9Tn3k2KyLSKZ1OnO65554Wx/72t781+7vFYnFaJZ2tW7cSGBjIgQMH+OMf/8jevXsJCAjgtNNO429/+xt+fn4Ov2dvq15kFzkdE2DJ/pGG6grw8Lafmjjc2s+sokrySyoZ6uvlnBjaMdCrt6j/6n/TnwONqyoXudoDDzxAdna2/e9r1661J07r168nKiqKhoYG6uvrmxVG8vLy4pVXXuHxxx/noYceorKykgkTJvD8888zY8YMl/fDKWyzIPJ3t1h729SoED/8vT0ora4jPa+MiRFDXBikiIjzdSpxeuSRR5wdR4fy8vKorKzk9ttv5/e//z2JiYmkpaWxZMkS9u7dy4oVK/p89SI7i4V4r0A8a8zs/fYdyodOanY6ws9ETlk9H2z4iSnDvdt4E+cb6NVb1H/1fyDrb/3/8ssvO2yzePFiFi9e3OJ4SEgIjz76qDPC6h18QyAkFgrSrRVfx53VajOj0UB8dADf7ztKSpZZiZOI9DudSpwuvPBCZ8fRIYvFQnV1Nbfccgu/+93vAJg5cyaenp48/PDDbNy4kdmzZzv0nr2uelETxr2/gj0fE+tzFEtiYrNz09JT+DDlMOXeISQmjnbK72/PQK/eov6r/+q/8ysXSS8Tk2RNnDI2tpk4ASRGB/L9vqMkZ5j5nxkxLgxQRMT5+kxVvcDAQABOOumkZsfnzp3Lww8/zM6dOx1OnHpd9aKmYpJgz8cYs7bCcb8jPiqQD1MOsyOnxK1f3AZ69Rb1X/1X/wdu/wecmNnw42twaGO7zRKiAgFIyTI7PyYRERfrMys3x40b1+px21xzo7HPdKVzbFWMMjfBcRsN2yoXpalAhIiIuIJtnVPOT1Bb2WazxMb7U3peKeXVdS4ITETEdfpMtnH66acD8O233zY7bvt7QkKCy2NyqvAE8PCBiqNwdF+zUxPDh2A0QG5JFUdKqtwUoIiIDBhBJ4B/ODTUQvb2NpsNG+JDRIAPDRZrdT0Rkf6kzyROJ510EvPmzWPp0qU8++yz/PDDDyxfvpwnnniCefPmMW3aNHeH2LM8vCDiROvr40rA+np7MGaYtbqeypKLiIjTGQzHRp0yOpiu1zjqlJxpdm5MIiIu1mcSJ4CnnnqKa665hrfffpsbb7yRlStXcu211/L000+7OzTnaG8j3MhAAFL1RE9ERFzBvhFu+4lTon0jXLNz4xERcTGHikNUVVVx7bXXcttttzlciKEn+Pj48Ne//pW//vWvLv/dbmF/utf6Rrjv/phFmhbgioiIK9jX3m6Bhnowtl4cJEGJk4j0Uw6NOPn4+JCenq5KSq4SNd368+g+KC9odio+6tgO7ZbjikeIiIj0uLBJ4D0Eakohb0ebzeIiAzAaIKdY63BFpH9xeKrelClTSE1NdUYscrzBQyF0gvV15uZmpyaED8HDaKCgrIbDxboxiYiIkxlNED3D+rqVmRA2vt4exIb5A1rnJCL9i8OJ01133cVbb73F6tWrKS8vd0ZM0lTMTOvP4xbj+nia7DemVE3XExERV7BNIT/0Q7vNbPs5KXESkf7E4cTpsssuIzc3l3vuuYdp06YxZcoUTjzxRPufqVOnOiPOgSvats5pc4tTtul6qqwnIiIuEdO4vjmj5R6DTSXGBALaCFdE+heHikMAnHHGGRgMBmfEIq05ftNBz0H2U3FRAfx3a6b2yhAREdeIPBGMnlCWC0W/wNCRrTazjTilZhbT0GDBaNT3BhHp+xxOnBYvXuyMOKQtQSeAXxiU5VmTpxHHqhnab0xZ1gIRSmhFRMSpPAdZk6fMzdYp5G0kTrFhfgzyNFFaXceBgjLGDPN3caAiIj2vT+3jNCAZDBBtW+fUfDFubJg/XiYjxZW1ZBZWuiE4EREZcDqxEa6HyUhcpHU6eXKmZkWISP/g8IiTTXp6Ovv376e6urrFuQsuuKA7McnxYmbB7g9bJE5eHkYmhPuTklVMSpaZmODBbgpQREQGjJjZ8P3/dbgRbkJ0AFt+KSQ5s4hLpka5KDgREedxOHGqrKzkD3/4A5s2bcJgMNj3EGo6TUyJUw+zVdbL3AwNDWA8NlAYFxVASlYxadnFnJsQ4aYARURkwLCVJD+617rHoG9Iq80So4OAg6RoxElE+gmHp+o9++yzZGdn88Ybb2CxWHjmmWd4+eWXOe200xgxYgTvv/++M+Ic2IbHg+dgqDJDQXqzU/GRgYBKkouIiIs03WOwnel6CdHWqXq7D5dQVVvvishERJzK4cRp/fr13HjjjUyZMgWA8PBwZs2axdNPP82kSZNYsWJFjwc54Jk8IbKxzPtxN6n4xhvTjuwSGhraLg0rIiLSY0bMsv5sZyPcyMBBhPh5U9dgYWdOiYsCExFxHocTp+zsbEaNGoXJZMJgMFBZeawowbnnnsv69et7NEBpZFuMm9l8P6cxoX74eBopq67j4FFtSCwiIi4Q05g4tbMRrsFgILHx4V6KNsIVkX7A4cTJ39+fiooKAIKDgzl06JD9XF1dnf2c9DB7FaPmT/c8TEYmRVhvTGnaCFdERFzBljgdToGath/a2bbNSFbiJCL9gMOJ07hx4/jll18AmDlzJsuWLWPbtm2kpqaydOlSxo8f39MxCkDUdMAARQehNK/ZKVvJV+3QLiIiLhEYDUOiwFIPWVvbbJYYEwjo/iQi/YPDidPFF19Mebn16dKf/vQnKisrueqqq7jsssvIycnh7rvv7vEgBfAJgLBJ1teZzUed4qM04iQiIi7WiXVO8Y0jToeOVlBYXuOCoEREnMfhcuRnn322/XV0dDSfffaZvTT5lClTCAwM7Mn4pKmYJMjbARmbYeL59sO2G9POnBLq6hvwMGlfYxERcbKYJEhb1W5lvYBBnowK9eVAfjkpWWbmjRvmwgBFRHpWt79hDx48mFNPPZV58+YpaXK26NZ3ax8V4ouvl4nK2nr256tAhIiIuEDMbOvPzK1QX9dms8TGh3sqECEifZ2GJvoS20a4ualQc6wIh9FoYHLjOift5yQiIi4ROh58AqG23HpfakNCdCCgAhEi0vd1aqre+PHjMRgMnXpDg8HArl27uhWUtCEgGoZEQkk2ZG+HkXPsp+KjAth8sJDUrGIunRbtxiBFRGRAMBqt0/XS11pnQkSe2GqzxMbEKSXTjMVi6fT3CRGR3qZTidPNN9+s/9H1BgYDRM+Ene9ZF+M2SZziGqdCpGarQISIiLhI08Rp1s2tNhkf7o+XyUhRRS0ZhRWMCPZ1cZAiIj2jU4nTrbfe6uw4pLNikqyJ03GV9RIaK+vtPlxCTV0DXh6ahSkiIk5m3wh3I1gs1gd8x/H2MDExYgjJmWaSM81KnESkz9K3677GthFu5lZoqD92eOhghvh4UFPXQHpeqZuCExGRASViCpi8oaIAju5vs9mx6XqaFSEifZfD5chXr17dYZsLLrigC6FIpwybBF5+UF0MR3bD8MmAdW1ZfFQg3+0rIC272F4sQkRExGk8vCFyKmT8YP0TMqbVZon2AhFFLgxORKRnOZw4tbXBbdM1UEqcnMjkAVHT4MDX1ul6jYkTQFxUAN/tKyA1y8z/zIhxX4wiIjJwjJjVmDhtghOvbrWJrbLejpwSausb8NR+gyLSBzmcOK1fv77FsaKiItavX88nn3zCk08+2SOBSTtiZlkTp4zNMP0G++F4e0lyTYUQEREXsa9z+qHNJicEDyZgkCfFlbX8fLiUuCjNihCRvsfhxCkyMrLVY5MnT6auro7XXnuNxYsX90hw0oboxv2cMpoXiLDdiPbkllJVW4+Pp8nVkYmIyEATPQMwQNFBKM0F/+EtmhgMBhKiA/k2PZ/kLLMSJxHpk3p0rHzWrFl8+eWXPfmW0pqoaWAwQnEGlOTYD0cGDiLY14u6Bgs/56pAhIiIuIBPAIQ1Ths/7oFeU4mNyVKKNsIVkT6qRxOn7OxsjEbNW3Y6b38YHmd93eQmZTAY7E/x0rLMbghMREQGpBGN0/UyNrbZJDEmEIBkJU4i0kc5PFVv69atLY7V1NSwZ88eli1bxqxZs3okMOlAdBIcTrEmTpMvsh+Ojwzg6z35pGQVc5UbwxMRkQEkJgm2LG83cYpv3Kh9f34ZJVW1DPHxdFFwIiI9w+HE6aqrrmpWQQ/AYrEAMHv2bP7+97/3TGTSvpiZsGVZi41w4xpvTGkqECEiIq5iKxCRmwZVJeAzpEWTED9vooIGkVVUSVpWMb8aE+LiIEVEusfhxOm1115rcczb25vIyEhCQvQ/QZeJbtwINzcNqkut0/eA+MapenuPlFJRU8dgL4f/EYuIiDhmSAQEjgDzIcjaCmPmt9osMTqQrKJKkjPNSpxEpM9x+Fv1jBkznBGHOCogEgJirAUisrbB6HkAhA3xIWyIN3kl1ezKKWHaCUPdHKiIiAwIMbOsiVPGxnYTpzWph7XOSUT6JIcrORw8eJAtW7a0em7Lli388ssv3Y1JOiumsSx55uZmh+MiAwHt5yQiIi5kLxDRTmW9xo1wkzPN9mn+IiJ9hcOJ0+LFi1vdBBfgq6++0h5OrhTTOF3vuJuUbbpeqirriYiIq9jWOWVthbqaVptMigjAZDSQX1pNbkmVC4MTEek+hxOntLQ0pk+f3uq56dOns2PHjm4HJZ1kW+eUtRXq6+yHbSXJU7M14iQiIi4SEguDhkJdlbXqaysGeZkYF2Zdk5ucYXZhcCIi3edw4lRaWsrgwYNbPefj40Nxsb6su8ywCeA9BGrK4MhO++H4SGvidCC/nNKqWndFJyIiA4nBcGzUKeOHNpvZ93PSrAgR6WMcTpzCwsJITU1t9VxqaiqhoaHdDko6yWiC6MZiHRnH1jkF+3kTGTgIgB3ZJe6ITEREBqLOrHNq3DZDI04i0tc4nDgtWLCA5cuXs2lT8/8pbt68meeff57TTjutx4KTTrBN1ztu00HbOqe0bLOLAxIRkQErpkni1NDQahPbiFNadjH1DSoQISJ9h8PlyG+++Wa+++47rrvuOk444QSGDx9Obm4uv/zyC2PGjOHWW291RpzSlrYq60UF8OmOXFXWExER1wlPAI9BUFkIBekwbHyLJqND/fD1MlFeU8++I2WMG+7vhkBFRBzn8IiTv78/b731FrfccgsBAQHk5OQQEBDArbfeyn//+1/8/PycEae0JXIqGD2gJBvMmfbD8SpJLiIirmbyhKhp1tfHzYSwNzEa7EWMkjOLXBWZiEi3OTziBODr68vNN9/MzTff3NPxiKO8fGF4POT8aJ0aERgNQFxjgYiMwgrMFTUEDvZyZ5QiIjJQjJgNv2ywJk7Trmu1SWJ0EJsOFJKcWcxlrRfqFRHpdRwecbIpLS1lw4YNfPjhh6qk5262/Zwyj607CxjsyQnB1uqHaSpLLiLSpvLycv71r39x0kknERcXx/nnn8/HH3/c4XXvvfce48aNa/VPfn6+CyLvpWJaX3vbVGK0bcTJ7IKARER6RpdGnJYuXcrzzz9PVVUVBoOBd955h4CAAK655hp+9atf8bvf/a6n45T2xCTBpmebVdYDiIsK5JejFaRmFTNnrKodioi05tZbbyUtLY2//OUvnHDCCaxZs4Y///nPNDQ0cO6553Z4/SOPPMKoUaOaHQsMDHRStH1A1HQwmMCcAcXZEBDZoklidBAA6XmlVNTUMdirS19HRERcyuERpzfffJOlS5dyySWXsGzZMiyWYxVx5s2bx9dff92T8Uln2Crr5e2AqmOjS7b9nNK0zklEpFXffPMN33//Pf/85z+5/PLLSUpK4qGHHuJXv/oVjz32GPX19R2+x9ixY0lMTGz2x9PT0wXR91Le/jA8zvq6jVGn4QE+hA3xpr7Bws4cbZshIn1DlxKna6+9lkWLFnHSSSc1OzdixAgOHTrUY8FJJ/mHQdAJgAWyttoP2xbfpmqTQRGRVq1bt47Bgwdz5plnNjt+0UUXceTIEVJSUtwUWR9nL0ve3nS9QED7OYlI3+Hw2HhmZiZz5sxp9Zyvry8lJa57crRq1SoWLVrE4MGD+emnn1z2e3ulmFlQ9It1ut6YBQBMjgzAYICc4iryS6sJ9fd2b4wiIr3M3r17GT16NB4ezW+H48aNs58/8cQT232Pm266icLCQvz9/ZkxYwa33XYbsbGxXYqnMyNc7V3X1et7XPRMTJufw3JoIw1txBQfGcBnO/P4KbOo23H3uv67mPqv/jf9ORB19zPo7HUOJ07+/v4UFBS0ei47O5vg4GBH37JL8vLyePTRRxk2bBhlZWUu+Z29WvRMSFnZ7Omen7cHo0P92HekjB3ZxcwbP8yNAYqI9D5ms5moqKgWxwMCAuzn2xISEsJNN91EYmIifn5+pKens3z5ci677DJWrlzJ+PEt9zDqSFpamsPX9OT1PcWj2o8EgCO7SNv6HfWeLbcq8a2uBmDr/iMkJyf3yO/tLf13F/Vf/R/onP0ZOJw4zZo1ixdeeIH58+fj7W0dwTAYDNTV1bFy5coW0/ec5Z///CfTpk0jMDCQzz77zCW/s1ezVTHK3g71tda9NLA+0dt3pIzULCVOIiKtMRgMXTo3d+5c5s6da//79OnTOfnkkzn33HP5v//7P5577jmHY4mLi8NkMjl8XX19PWlpaV2+3hks20ZjKNxPXGAljG353WB0VR0PfPsF+RUNRI2ZQIhf12dF9Mb+u5L6r/4P5P5D9z8D2/UdcThxuu2227jkkktYuHAhCxYswGAw8MYbb7B7925ycnJ46qmnHA7WUR988AFbtmzhk08+ccnv6xNCxoFPIFSZITcNIq1TS+KiAnjvp2zSss3ujE5EpFcKDAxsdVTJts2GbeSps6Kiopg6dWqX10aZTKZuffHp7vU9KmYWFO7HlLUZxp/Z4nSgr4kxoX7sPVJGWnYpCyYO7vav7FX9dwP1X/0fyP0H538GDheHGDFiBCtXrmTUqFGsXLkSi8XCBx98QFBQECtWrCAiIsIZcdodPXqUhx9+mL/85S8MHz7cqb+rTzEardP1wLoRbqP4xgIRKVnFzSogiogIxMbGsn//furq6podT09PB6wV8xxlsVgwGru8TWL/MaLzBSJSVMRIRPqALm2cMGbMGF588UVqamooKioiICAAHx+fno6tVQ888AAjR47kiiuu6PZ79ZtFuI0MUTMw7v0MS8ZGGmb8HoBxw/wwGQ3kl1aTU1TB8IDu/3Pqrf13FfVf/W/6c6Bx1QJcV1mwYAFvv/02n3/+OWeffbb9+Pvvv8+wYcNISEhw6P0yMzP58ccfmT17dk+H2vfYKutlb4faKvBsef9JiA5k1fYsbYQrIn1Ct3ac8/LyIiwsrKdi6dBnn33Gl19+yerVq9udd95Z/WURro1fdTDjgLoD35H600/Q+BlF+Zs4VFzHh98lMyOy5xLc3tZ/V1P/1f+BrL/0/+STT+ZXv/oV999/P2VlZcTExPDxxx+zYcMGHn/8cfuUj3vvvZfVq1ezbt06IiOtG7pee+21TJs2jfHjx+Pr60t6ejovvPACBoOB22+/3Z3d6h2GjgLfYVB+BHJ+OjYC1YR9xCnTTEODBaOx+/d2ERFn6VTitHr1aofe9IILLuhCKO0rLy/nwQcf5KqrrmLYsGH2sue1tbUAlJSU4OHhweDBnZ8j3Z8W4QJQOw7LpjvxrC4k8YSgxr2dYMaBNA5tz6bMK5jERMennRyv1/bfRdR/9V/9d/4CXFdasmQJTz75JE8//TRms5lRo0bxxBNPsHDhQnubhoYG6uvrm015jo2N5dNPP+Wll16iurqaoUOHkpSUxB//+EdGjhzpjq70LgaDtXDR7g+t0/VaSZzGDffH28NISVUdvxwtZ1Roy+p7IiK9RacSp7vvvrvTb2gwGJySOBUVFVFQUMBLL73ESy+91OL89OnTmT9/Ps8++2yn37NfLcIFMPlBRCJkbcWUvRVCRgMQHx3Equ3Z7Mgp6dF4e13/XUz9V//V//7Rf19fXxYtWsSiRYvabLN48WIWL17c7Ni9997r7ND6vhGzjyVOrfA0GZkcGcD2Q0UkZ5qVOIlIr9apxGn9+vXOjqNDoaGhvPbaay2OL1++nK1bt/L8888TFBTkhsh6mZgkyNpqvUklXA5YS5IDpGaZsVgsPTLNUUREpEO2rTIyNkNDg7WQ0XESowPZfqiIlEwzF53Yck8tEZHeolOJk20+tzt5e3szc+bMFsfff/99TCZTq+cGpOgkYIn1JtVofLg/niYDRRW1ZBVVEj20+yVfRUREOhQWB15+UF0MR3bB8MktmiQ0rnNKzip2cXAiIo7pcr3UsrIyvvvuO9asWcP3339PWVlZT8YlXWUrSZ6/GyqLAPD2MDFuuD8Aadm6MYmIiIuYPCBquvV1G9P1EqMCAdidU0J1Xe+quigi0lSXEqcXX3yROXPmcOONN/LXv/6VG264gTlz5vDyyy/3dHwdWrx4MT/99JPLf2+v5RcKwWOsrzO32A/HN96YUvVET0REXCmm/f2coocOYqivFzX1Dew+XOrCwEREHONw4rR69Woef/xxpk+fzhNPPMGbb77JE088wYwZM3jsscccrsAnThBtm1PeZCPcxnVOadlmNwQkIiIDlq2a3qGN0MpG7AaDgYTGzdqTM4pcGZmIiEMcTpxeeeUVzjnnHJYvX85ZZ53F1KlTOeuss1i2bBkLFy7k1VdfdUac4oiYxul6mcfWOcVF2QpEFNPQ0PLGJSIi4hSR08DoAaU5UJzZapPEaGtxpxTNihCRXszhxOnAgQOcd955rZ4777zz2L9/f7eDkm5qult7XQ0AsWH+eHkYKa2q41BhhRuDExGRAcVrMIQnWl8fan26XkK09eFeSqbZNTGJiHSBw4mTj48PxcWtPxEqLi7Gx8en20FJNwWPgcHBUFcFh1MA614ZE8OHANay5CIiIi5jL0veRuLUuA73QEE5xRW1LgpKRMQxDidOU6dO5ZlnniEvL6/Z8fz8fJYuXcq0adN6LDjpIoPhWHW9zGPrnGxzyNM0FUJERFxpxGzrzzYSpyBfL04Itm6VkaKHeyLSS3VqH6em/vznP3P55Zdz+umnM2vWLEJDQ8nPz2fTpk14eHjwzDPPOCNOcVRMEuz5xFogYvatAMRFBQKHSFVJchERcSVb0aL8n6GiEAYPbdEkITqQX45WkJxpZm5sqIsDFBHpmMMjTmPHjuWdd95h/vz5pKWl8d5775GWlsb8+fNZtWoVY8aMcUac4qimlfUaqxjFN4447cwupl4FIkRExFV8gyFknPV1k4qvTSU2boSrdU4i0ls5POIEMHLkSJ544omejkV6UkQimLyhogAKD0DwaEaH+jHI00R5TT0H8ssYG+bv7ihFRGSgiEmCgj3W6Xrjz25xOsGWOGWZsVgsGAwGFwcoItK+Lm2AK32AhzdEnmh93Tin3GQ0MDnSViBC0/VERMSFOtgId2L4EDxNBgrKasgqqnRhYCIindOlEaddu3bx0UcfkZOTQ3V1dbNzBoOB5557rkeCk26Knmm9QWVsgim/ASA+KpCtvxSRll3MxVOj3BygiIgMGLaNcHOSoabCWqa8CR9PExPCh5CaVUxKlpnooYNbvoeIiBs5nDitXr2ae+65B6PRyNChQ/H09Gx2XkPrvUjMLPj+qWYb4cbbN8I1uycmEREZmAJHgH84lB627jM4ck6LJglRgaRmFZOcYeac+Ag3BCki0jaHE6fnnnuOk08+mUcffZSAgABnxCQ9JXqG9WdBOpQfBd9g4iIbC0TklFBX34CHSbM1RUTEBQwG6wO9ne9ZZ0K0kjglRgfy+qZDKkkuIr2Sw9+ajxw5wtVXX62kqS8YPPRYFaPGUacTgn3x9/aguq6B9LwyNwYnIiIDjn2d0w+tnrYViEjLLqa2vsFFQYmIdI7DidOECRNabH4rvZhtt/bGjXCNRgOTG0ed0rLNbgpKREQGJNs6p8wtUF/X4vSoEF/8fTyoqm0gPa/UxcGJiLTP4cTpb3/7G8uXL+fnn392RjzS02Ka7OfUKD7ats5JlfVERMSFhk0E7yFQUwZHdrY4bTQaSIgKBCAlU/coEeldHF7jlJiYyOmnn86FF15IaGhoiyl7BoOBDz/8sMcClG6Knmn9mfMT1FaBpw/xkYGAdSqEiIiIyxhN1vvSvnVwaCOEJ7RokhAdwHf7CkjOLOKKmTFuCFJEpHUOjzgtX76cZcuWERQUREREBIGBgc3+aO1TLzN0FPgOg/oaOJwMHKust/twCdV19W4MTkREBhz7TIjW93NKjA4CNOIkIr2PwyNOr732GhdffDEPPvggJpPJGTFJTzIYIGYm7P7IepOKSSIqaBCBgz0xV9SyJ7eU+MZpESIiIk43Yrb1Z8ZGsFis96kmEhqnk6cfKaWsug4/7y5tOSki0uMcHnEqLy/nnHPOUdLUl0Tbnu5ZK+sZDAZ7WXKtcxIREZeKOBFMXlCWB0UHW5we5u9DZOAgLBZI0z1KRHoRhxOnE088kf379zsjFnEWW/nXzM3QYC3valt8q5uSiIi4lKcPREyxvj7U+nQ926iT9nMSkd7E4cTpvvvu47///S9ffPEFNTU1zohJelp4PHgMgspCOLoXgLjGdU6pKhAhIiKuZt/PqY3EqfHhXnKG2TXxiIh0gsMThy+++GLq6uq49dZbMRgM+Pj4NDtvMBjYvn17jwUoPcDkCZFT4dB31rLkoePsBSLS80qpqq3Hx1NTL0VExEViZsH3T7VTICIQ0IiTiPQuDidOZ5xxBobjFnJKHxCTZE2cMjfD1GsYPsSHED9vCsqq2ZlTwtQRQe6OUEREBoqYxq0yju6DsnzwC212enJkAEYDHC6uIq+kirAhPq28iYiIazmUONXX1/P73/+eoUOHqux4X3Nc+VeDwUB8VABf/nyEtCyzEicREXGdQUHWzXCP7LLelyae1+y0r7cHsWH+/JxbSnKmmTMmDXdToCIixzi0xslisbBw4UKSk5OdFI44TdR0wACFB6DsCHBsPyetcxIREZezr3Pa1Opp+3S9TLNr4hER6YBDiZOHhwchISFYLBZnxSPOMijQ+nQPrNP1OJY4qbKeiIi4XAcFImyJU7ISJxHpJRyuqrdw4UJWr17thFDE6Wxzyhuf7k1u3MtpX34Z5dV17opKREQGohGNidPhFKgua3E6oTFxSs0qpqFBD2xFxP0cLg4xfvx4PvnkE66++mpOP/10QkNDWxSLOP3003ssQOlB0Umw7SV74jTM34fwAB8OF1exI7uYmaOC3RygiIgMGAFREBANxZmQvQ1GndLs9NhhfgzyNFFWXcf+/DLGhvm7J04RkUYOJ0533XUXAHl5eWzZsqXFeYPBwO7du7sfmfQ8W4GIwylQUwFeg4mLDOBwcRVpSpxERMTVYmZBWqZ1I9zjEicPk5G4qAC2HCwkOdOsxElE3M7hxOm1115zRhziCoEx4B8OpYch50c44STiowL4fFceqVrnJCIirhaTBGlvt7vOyZY4XTot2sXBiYg053DiNGPGDGfEIa5gMED0TNi12jpd74STiG/cnT1NlfVERMTVbAUisrZCfa11w/YmtBGuiPQmDheHsCktLWXDhg18+OGHFBfrS3efYbtJNVbWi2ssEHGwoJziylp3RSUiIgNR6HjwCYTaCshNbXHaViDi58OlVNXWuzY2EZHjdClxWrp0KXPmzOHGG2/krrvuIisrC4BrrrmG5cuX92iA0sNslfUyN0NDA0G+XkQPHQTATo06iYiIKxmNx9bfHmo5XS8iwIcQP2/qGizszNE9SkTcy+HE6c0332Tp0qVccsklLFu2rNmeTvPmzePrr7/uyfikp4XFgacvVBVD/s8AxEcGApCidU4iIuJq7eznZDAYmuznpHuUiLhXlxKna6+9lkWLFnHSSSc1OzdixAgOHTrUY8GJE5g8IGqa9XWmtSx5nG0j3Gyzm4ISEZEBy544bQJLy/2aEqOt9yhthCsi7uZw4pSZmcmcOXNaPefr60tJSUm3gxIns02LaNzPKb4xcVJlPRERcbmIRPDwgYoCOLqvxenE6CAAUpQ4iYibOZw4+fv7U1BQ0Oq57OxsgoO1F1CvF924zqkxcZrcWCAiq6iSwvIad0UlIiIDkYc3RE61vm5lup5tVkRGYYXuUSLiVg4nTrNmzeKFF16goqLCfsxgMFBXV8fKlStbTN+TXihqOhiMYD4EJYcZ4uPJqBBfQGXJRUTEDWzT9VopEBEwyJNRodZ7lEadRMSdHE6cbrvtNnJycli4cCGLFy/GYDDwxhtvcOmll3Lo0CH++Mc/OiNO6Uk+QyBskvX1ceucUnVTEhERV2unQATQpECE2TXxiIi0wuHEacSIEaxcuZJRo0axcuVKLBYLH3zwAUFBQaxYsYKIiAhnxCk9Ldq2zqn5fk6pGnESERFXi55hnQlRdBBKc1ucVuIkIr2BR1cuGjNmDC+++CI1NTUUFRUREBCAj49PT8cmzhSTBFuftz/ds20ymKYCESIi4mq2mRC5adb70qQLm522JU4pWWYsFgsGg8ENQYrIQOfwiNM999xDZmYmAF5eXoSFhdmTpuzsbO65556ejVCcw1ZZLzcNqsuYGD4EowFyS6o4UlLl3thERGTgaWed0/jhQ/AyGTFX1JJRWNHivIiIKzicOL3//vsUFRW1eq6oqIjVq1d3NyZxhYAoGBIFlnrI3o6vtwdjhvkBKhAhIiJu0M46Jy8PIxMjhgCarici7uNw4tSe4uJivLy8evItxZmO288pLjIQgBRN1xORAaS8vJx//etfnHTSScTFxXH++efz8ccfd+rao0ePcvfddzNz5kwSEhK47LLL2Lix9QIH0gFb4pS3A6pa7gmpdU4i4m6dWuO0detWNm/ebP/7qlWr+Pbbb5u1qa6uZv369YwePbpnIxTniUmCHe/YK+vFRwXw7o9ZpGWZ3RuXiIgL3XrrraSlpfGXv/yFE044gTVr1vDnP/+ZhoYGzj333Davq6mp4dprr6WkpIT77ruP4OBg3nzzTW644QZefvllZsyY4cJe9ANDwiHoBCj6BbK2wJgFzU4rcRIRd+tU4rR582aeeeYZwLpn06pVq1ptFxERwT/+8Y+ei06cy7YRbuZWaKgnvrEkeVp2sRbfisiA8M033/D999/z73//m3POOQeApKQkcnJyeOyxxzj77LMxmUytXrtq1SrS09P573//y5QpUwCYOXMm559/Po8//nib90ppR8wsa+J0aGObidPOnBJq6hrw8ujRSTMiIh3qVOJ0ww03cOWVV2KxWJg9ezYvvvgiEydObNbGy8sLX19fpwQJsHHjRj788EN++ukncnNz8ff3Z/Lkydx8881MnjzZab+3XwubBF7+UFMKeTuZED4JD6OBgrIaDhdXERE4yN0Riog41bp16xg8eDBnnnlms+MXXXQRf/nLX0hJSeHEE09s9dovvviCkSNH2pMmAA8PD8477zyeeOIJ8vLyCAsLc2r8/U7MLEhZaZ9C3tSI4MEEDvbEXFHLz7klxEcFuj4+ERnQOpU4+fj42CvnrV+/ntDQUJevZVq5ciVms5mrr76aMWPGUFhYyMsvv8xll13GCy+8wKxZs1waT79gNEH0dNj/JWRuxic8ntgwf3YdLiE1q1iJk4j0e3v37mX06NF4eDS/HY4bN85+vq3Eae/evUydOrXF8abXOpo41dfXO9T++Ou6en2vETUDE2DJ3kZDTSWYmn/XiI8M4Nu9Bfx0qIhJ4f724/2m/12k/qv/TX8ORN39DDp7ncP7OEVGRjocTE/45z//SXBwcLNjc+bM4fTTT2fZsmVKnLoqOsmaOGVsghk3Eh8V0Jg4mTlz8nB3Ryci4lRms5moqKgWxwMCAuzn27vW1s7Ra9uSlpbm8DU9eb3bWSzEewXgWVPM3m9WUT50UrPTYZ6VAHyVeoDJPoUtLu/z/e8m9V/9H+ic/Rk4nDjV1tby/PPPs2bNGnJycqiurm523mAwsGvXrh4L0Ob4pAnA19eX0aNHc/jw4R7/fQPG8ZX1ogL479ZMlSQXkQGjvfWcHa317M61rYmLi2tzTVV76uvrSUtL6/L1vYlx70mw52NifY5iSUxsdq7I5wirdv1IZoWJxCbn+lP/u0L9V/8Hav8tFgvFlbVU1dSR+0t6t/8f2hGHE6cnnniCV155hblz57JgwQK3lh8vLS1l165dJCUluS2GPi9qGhhMUJIFxVkkNM4ZT81SgQgR6f8CAwNbHRkqLrY+PGptRKknrm2LyWTq1hef7l7fK4yYDXs+xpi5GY7ry5QRQwHYn19OeW0DQ3w8m53vF/3vBvVf/e8P/bdYLJRW15FfWk1BaTX5ZU1/1pBfVm09V2b9U1tvAeCW6QEkJjr3M3A4cfr000+5+eabueWWW5wRj0MeeOABKisruemmm7p0/YCfSw5g8sE4PA7D4WQafvmB0eMvxMtkoLiyll8KyogZOrjFJf2q/12g/qv/TX8ONK6aR+4qsbGxrFmzhrq6umbrnNLT0wEYO3Zsu9fa2jXVmWulHbb9nDI3QUMDGI9Vzwv28yZ66CAyCytJzSzmpLEhbgpSRBxV3pgMNU+EqhsToZpmf6+pa3DovYf5exM62PmVNh1OnIqLi5k2bZozYnHIU089xUcffcTf//73LlfVG/BzyRtF+YwijGQKflpDZt1oYoZ4sK+olo++T+FX0W0XiOgv/e8q9V/9H8j6S/8XLFjA22+/zeeff87ZZ59tP/7+++8zbNgwEhIS2r32gQceICUlxd6urq6ODz/8kISEBFXU66rwePAcDJVFULAHhk1odjoxOojMwkpSssxKnETcrLKmnoKyao40jgDlt/qzhvzSaiprHXtw5u/tQYi/N6F+3oT4exHq502ovzchx/0M9vPCwwDJycnO6WQTDidO06dP5+eff3br9LhnnnmG5557jjvuuIPf/OY3XX4fzSVv5HUOHHyP0MoDBCcmMvPQTvZtyaTEI4jExPEtmve7/jtI/Vf/1f+u97+z88hd5eSTT+ZXv/oV999/P2VlZcTExPDxxx+zYcMGHn/8cXsf7733XlavXs26devsRZIuueQSVqxYwe23385f/vIXgoODWbFiBQcPHuTll192Z7f6NpOndRr5wW8hY2OLxCkhKoCPUnK0Ea6Ik1TX1duTnWMjQq0nRGXVdQ699yBPE6H+1oTnWELkY0+MbIlSqL83Pp6dv8e4ajaDw4nTokWL+OMf/0hERASnnHKKy9c4PfPMMyxZsoRbb721y1P0bDSXvNGI2QAYjuzEVFtOQnQQb27JZEdOSbv96zf97yL1X/1X//tH/5csWcKTTz7J008/jdlsZtSoUTzxxBMsXLjQ3qahoYH6+nosFov9mJeXF6+88gqPP/44Dz30EJWVlUyYMIHnn3+eGTNmuKMr/UfMLGvidGgjTLu+2SnbRrjJmWatxRXppJq6Bo6W29YIVTVbK3T81LmSKseSIW8PY6sjQaF+Xi2O+3o7nHr0Kg5Hf/7551NXV8ftt9+OwWCw7+9kYzAY2L59e48F2NTSpUtZsmQJf/jDH3rFGqt+Y0g4BI4A8yHI2kp89HQAdmSX0NBgwWjUTUlE+i9fX18WLVrEokWL2myzePFiFi9e3OJ4SEgIjz76qDPDG5hs65xa2Qh3cmQAJqOB/NJqbdYuApRW1ZGcW83+H7M5Wl7bYmQov6wac0WtQ+/paTI0GwE6lvx4Eerv0/jTeszP22PAPMBwOHE644wz3PLhvPTSSzz99NPMmTOHU045pcU8xsTjSpaKg2KSrIlT5mbGzJ2Hj6eRsuo6Dh4tZ3Son7ujExGRgSRqurXia3EGFGdBwLG9tnw8TYwf7s/OnBKSM81KnGRAyiys4IvdeazffYTNB482VpYravcak9FAiJ9Xi5GhYyNE3oQ2Tp0bMmjgJEOOcDhxau2Jmyt89dVXAGzYsIENGza0OL9nzx5Xh9S/RM+E1LcgYxMeJiOTIgLYfqiItKxiJU4iIuJa3n7WIhE5P1lHneIuaXY6MTqQnTklpGSaOTsu3E1BirhOfYOF5Mwivth9hPW780jPK2t2PszXRGx4IKH+PvaRoOMTo8BBnppF1E19ZqLh66+/7u4Q+jfbtIisbVBfR1ykNXFKzSrmgimR7o1NREQGnphZjYnTxhaJU0J0IG9uzlCBCOnXyqrr+DY9ny925/H1nnwKy2vs50xGA9NGBLFgQhjzxoVQnLWXxMTEfrP2tFOqy6D8CJTlQ20lhgafjq/ppk4lTjt37nToTSdNmtSlYMSNQseDTwBUFUNeGvFRoQCkZpndG5eIiAxMMbNg07PWAhHHsRWISMsupr7B0uK8SF+VWVjB+t15rP/5CJsOHLVv7grg7+PBKeOGsWDCME6ODSVwsLVAW319PclZ7oq4h9WUQ1meNRkqP3Lc68Y/9mSp3H6ZCQiZdAucON2p4XUqcbr44os7Nc/RVt1m9+7d3Q5MXMxotE7X2/s5ZGwmftSVAOzMKaGuvgEPk/M3FRMREbGLadz25Mgu655Og4Lsp0aH+uHn7UFZdR17j5QyNtTXTUGKdI91Cp7ZmiztPsKevNJm50eG+DJ//DBOnTCM6ScMxbMvfh+rKT8u6TnudXn+sQSpSTLUKZ6DwTcUS2AMpSGJTgm/qU4lTo888oiz45DewJ44bWTUjN/j62WivKae/fnljBvu7+7oRERkIPEbBsFj4Og+yNwCsWfYT5mMBuIiA9h44CjJGWYlTtKnlFXXsSE9n/U/H+Grn49wtMkUPKMBpp0wlAUThjF/QljvXWduS4bsSY/tdeMokf31EceTIY9B1v/+/YaBXxj4hh77u6/tZ6j1nLf182mor6eqt2yAe+GFFzo7DukNbE/3MjdjNFhLvm4+WEhqllmJk4iIuF5MkjVxytjYLHECSIwJZOOBo6Rkmbl0qtbiSu+WVVTB+t1H+GJ3HpsPFFJT32A/5+/jwcmxoSyYEMYp445NwXO5morWR4RavM6HmrKO36+ppsmQLfmxJ0DHJUheftBLK/r1meIQ4gIRJ4LRE0oPgzmD+Chr4pSWXcyl06LdHZ2IiAw0MbPhpzdaXeeUEBUIwE8ZZtfGJNIJDQ0WkrOOTcH7Obf5FLwRwYOZPz6MBROGMX2kE6fg2ZOhxpGhNl93NRlqHPnxHdbkdWjLBKkXJ0OOUOIkx3gNhvAEyN4GGZuIi5oDQEpWsZsDExGRAck2EyLnR6itAs9jVbNsBSLS80qpqKlzQ3AizZVX17FhbwHrd+fx1Z4jFJQdNwVvxFDmTxjG/AnDGB3q13P7JOXtZHj6GxgOv3lsipwtKaop7fj6pjx8miQ9YdZkqNkIUf9LhhyhxEmai0myJk6Zm4hPOgeA3YdLqKlrwMujDy5IFBGRvmvoKOsXtfIj1uRpxGz7qeEBPgwf4kNuSRU7c0rwdGOYMnBlmytZvzuPL3YfYdP+o82n4Hl7MHdcKAsmDOOU2GEE+fbgFLzaStj5Pmx7GVPWFtqdrNosGWpjrZDttbf/gEuGHKHESZqLSYKNz0DGZkYsHMwQHw9KqupIzytlcmSAu6MTEZGBxGCAEbNg1wfWdU5NEieAhOgAcndWkZxZzHQtxRUXaGiwkJJltq9XOn4KXszQwcyfMIwFE8KYfsLQnn/onL8Htr0MKSusW8gAFqMH5mEzCRiThHFIeMt1Q0qGeowSJ2kueqb155FdGKqKiY8K5Lt9BaRlFytxEhER14tpTJwObYQ5zU8lRgfx2c48UrOKmT7BPeFJ/1deXcd3+6xT8L78OZ+Csmr7OaMBpo4IYv6EMOaPH8aYYT04Bc+mrhp2fQjbX4ZD3x87HhgDJ15DQ8IVHNh3mMTERBhIG+C6gRInac5vmHVqROEByNpKXFQ03+0rIDWrmP+Z4e7gRERkwImZZf2ZuQUa6sF47IthQrT1gV5ylhkmBLo+Num3cppMwdt44Cg1dcem4Pl5W6vgzZ8wjFPGDWNoT07Ba+rofmuylLwCKo5ajxmMEHsWTLseRs+z/vdQXw8cdk4M0owSJ2kpZpY1ccrYRHzkZABSs8zujUlERAamsMnWRejVxXBkNwyfbD8VHxWIwQA55iqKqurdGKT0dQ0NFlKzi+3J0u7DJc3ORw8d1FgFL4wZI50wBc+mrgb2fGydjnfwm2PHh0TCiVfDlKsgQOX33UWJk7QUPROS37RW1jvxLwDsyS2lqrYeH08NAYuIiAuZPCB6Buz/0rrOqUni5OftwdhhfqTnlbGvsJZ5bgxT+p6Kmjq+21vA+t1H+HLPEfJLm0/BOzEmiFMb1yuNdcYUvKaKfoHtr1rL75cfaTxogLGnWUeXxpxm/W9B3Er/BKQlW/nX7O1E+nsQ7OvF0fIafs4ttZd/FRERcZmYWccSpxk3NjuVEBVIel4Zewtr3RSc9CWHiyv5YvcR1u/O44f9LafgzY0NYf74MOaNd+IUPJv6Okhfa52Ot289YGkMJMw6sjT1Gus6Juk1lDhJSyGxMGgoVBZiyE0jLiqAr/fkk5ZlVuIkIiKuZ1vndGgjWCzNKoQlxgSyansW+5Q4SSsaGiykNZmCt+u4KXhRQYNYMCGM+ROGMXNksGu2XinOgh9fgx9fh9KcY8dHzYNp18G4s8GkAvu9kRInaclgsE7XS/8UMjYSH3kaX+/JJ1Ub4YqIiDtETgWjp/VLpjkDgkbYTyVEBQKwt7CWhgaLiooJFTV1fL/vKOt357H+5+ZT8AwGmBIdyPwJ1vVKsWFOnoJn01AP+76wrl3a+xlYGke6BofAlCvhxGsgeLTz45BuUeIkrYtpTJwyNxEXdymAEicREXEPr8EQkQhZW63T9ZokTuOG++PjaaSitoGfMs3MGBXivjjFbY5W1LNicwZf7snnh/1HqW4yBc/Xy8Tc2FDmTwjjlHGhhPh5uy6w0lzryNKPr0Jx5rHjJ8yxji6NPwc8XBiPdIsSJ2mdbVpExmbizxwCwN4jpVTU1OFt0iZqIiLiYjFJxxKnhMvthz1NRuIiA9j6SxG/Xr6ZuMgAzokPZ2F8OFFBg90YsDhbZmEFn+44zMeph0nJKgby7eciAwexYMIw5k8IY+aooXh7uHAosqEBDn4N216Cnz8BS2PFx0FBkHAFTL0WQmNdF4/0GCVO0rrwRDB5QfkRwupyCBviTV5JNbtySpgSrY1wRUTExWJmwQ9LrOucjnPvWeO5/73t7MivJS27mLTsYh759GcSowPtSVR4wCA3BC09LbOwgk/SDvNJmi1ZsjIAidEBLJg4nPkThjEuzN81U/CaKsuH5Ddg+yvWKnk20UnWyngTzwdPH9fGJD1KiZO0ztMHIqZA5mbI3ExcZCx5Jdbd2ZU4iYiIy0U3Vnwt2APlR8E32H4qPiqAf8wdSvTYiazbfYQ1KYfZdPAoyZlmkjPNPPTxbqafEMQ58RGcFTecYf768tqXZBZW8HFjstR02YDRADNGDuWsScOJtOQzb9ZUTK5e5GaxwC8brGuXdn8EDY1FSrwDIOEymHodhE10bUziNEqcpG0xSdbEKWMj8VHT+WJ3HmnZWuckIiJu4BsMIeOsiVPmJhi/sEWTYF8vrpw5gitnjuBIaRWfpuWyJjWHrb8U2f/c/9FOZo4cak2iJg8n2JXrXaTTMo4eS5aafvcwGmDmyGDOjg/nzEnDCfX3pr6+nuTkQtcGWFEIySuso0tH9x47HjnVmixNvgi8fF0bkzidEidpW3QS8H+QsZm406yjTClZZreGJCIiA9iIWdbEKWNjq4lTU8P8fbhm9glcM/sEcour+DjtMGtSc/gpw8ymA4VsOlDIPz/cyezRwSyMC+fMycMJHOzkfXukXYeOltuTpR3Zx8qGGw2QNCqYs+PCOaMxWXILi8X6QHnbS7BzNdQ3Vuvz8oO4S63FHsIT3BObuIQSJ2lb9Ezrz4I9JAy1Lmw8kF9OaVWdG4MSEZEBK2aW9Ql/xiaHLhse4MNvTxrJb08aSVZRBR+nHubjxmlfG/YWsGFvAYtW7+CksSEsjAvn9EnDCRikfXRc4ZeCY8nSzpzmydKs0ceSJZdWwjtepRlS37JOx8vffez48Hjr2qW4S8Db323hiesocZK2+QZbN8MtSGdoYTKRgYPINleyM6cYzQ4XERGXs1V8zfkJaiqsZcodFBU0mN+fPJrfnzyaQ0fLWZN6mDWph9l9uISv9+Tz9Z587nt/B3NjQzgnPoIFE8Pw89bXpZ50sKCcT9Ks1fCabkhrMhqYZR9ZCnPvNEqLBbK3W5OlHe9CXaX1uMcgiLvYmjBFnNhsM2bp//R/Amlf9EwoSIeMTcRHnUe2uZK07BKm68GKiIi4WmAM+EdYN8LN3g4j53Tr7UYE+3LzvDHcPG8M+/PL+DjVOp0vPa+ML3Yf4YvdR/D2MDJv3DAWxoczf8IwBnvpq1NXHMgvsyZLabnsPi5Zmt04snT6RDcnSwDVpZD6Nmx/GXLTjh0fNtG6din+1zAo0G3hiXvpv35pX0wS/PS6tbLeqKv4dEcuadnFTB/v7sBERGTAMRis65x2vGtd59TNxKmp0aF+3DZ/LLfNH0t6XilrUnJYk3qYAwXlrN2Zy9qduQzyNHHqhGGcGx/OKeOG4ePp4gpufcz+/DI+aZwW+XNuqf24LVmyTYsc6tsL1pYdTrGuXUp7B2rKrMdM3jDpQuvoUvQMjS6JEifpgG1aRPaPJMy27oGRll0C44e4MSgRERmwYpokTk4SG+bPn08fxx2nxbL7cClrUq1JVEZh4/qo1MP4eplYMDGMc+IjmBsb4toNVnuxfUfK7PssNU2WPIwGZo8JYWHccE6fOJyg3pAs1ZRb/13a9jLk/HjsePBYa7KUcDkMHuq++KTXUeIk7Rs6CgaHQEUBCaZfAMgorKC0xs+9cYmIyMBke6CXuQXq68DkvK8yBoOBiRFDmBgxhDvPGEdadjFrGhOnbHMlHyTn8EFyDv7eHpw2KYxz4yP41ZgQvDyMToupN9p3pJSPU3P5JO0we/KaJ0u/GmMruBHWe6oW5u20Jkupb0F147RBoydMPM+aMI34lUaXpFVKnKR9BoN1ut7Pa/A7so0TguP55WgFB4pq6bkJEiIiIp00bIJ1c9HqYsjbARGJLvm1BoOB+KhA4qMCuees8fyUaWZNinVkJbekivd+zOa9H7MJGOTJmZOGc05COLNGBeNh6p9J1N68Uns1vPS8MvtxD6OBk8aG2Ncs9ZpkqbbSWkJ8+8vWkuI2QSOtZcQTrwTfELeFJ32DEifpWGPiRMYm4qLm8svRCjZmVfHrmnr8BmlqgoiIuJDRZF1vsm+ddbqeixKnpgwGAyfGBHFiTBCLFk5g26EiPk7N4eO0XArKqnlrWyZvbctkqK8XZ04ezjnx4cwcGYzJ2LdHMdLzSvk41Zos7T1yLFnyNBk4aYwtWRpOwOBeVMo9P92aLCWvgCqz9ZjRA8adbR1dGnkyGPtncis9T4mTdCw6yfozczNTZwfwUUoO6w5U8qvHvuaSqVFcOTOGUaGauiciIi4yYtaxxCnpD24NxWg0MGPkUGaMHMo/zp3E5oNHWZN6mLU7ciksr2HF5gxWbM4g1N+bsycPZ2F8BNNGBGHsA0mUxWIhPa/MPrK077hkac7YUM6OC+e0CWG9K1mqq4bdH1mn4x367tjxgBiYejVMuQr8h7svPumzlDhJx8ITwMMHKo5yxdgaKs6I5ZUN+zlSUcuL3x3kxe8OctKYEH6TFMOCCWH9dlqCiIj0ErZ1Toc2Wvfb6SWs1eJCmD06hAfPm8TGA0dZk3KYtTtzyS+t5tWNh3h14yGGD/Hh7LhwzkkIZ0p0IIZetJ7GYrGwJ6/UXg1vf365/ZyXycicxml4CyaG9b5NggsPwE+vQfKbUHHUesxghNgzraNLo0+1jliKdJESJ+mYhxdEToVD3+OVvYXfz72Saf7FlAyKZMXWLL7ac4Tv9hXw3b4CwoZ4c/n0GP5nRgzDA7RNroiIOEHEiWDygvIj1i/LgSe4O6IWPExG5owNZc7YUP7fBZP5fl8Ba1IP8/nOXHJLqnjp+4O89P1BIgMHsTA+nHPiw4mLDHBLEmWxWPg5t7Rxn6XDHDguWZobeyxZGuLTy5IliwX2f8nYjY9g+mj7seP+ETD1GuvoUkCk++KTfkWJk3RO9Ew49D1kbIaEKzEZDMwbP4wFk8LJLKxgxZYM3t6aSV5JNf+3fi/PfLWP0yaE8ZukEcweHdwnpiSIiEgf4eljTZ4yN1mn6/XCxKkpLw8j88YPY974YVTXTebb9ALWpObwxa48ss2VLP/2AMu/PUDM0MGcEx/OwvhwJoYPcWoSZbFY2H241F46/EBBk2TJw8jcsaEsjB/O/Am9MFmyObgBvvoXpoyNDAEsGDCMWWAdXRp7ulMrLsrApH+jpHNibOucNrU4FT10MHedOZ4/LRjL2h25vLkpgy2/FNo3DBwZ4suVM2O4dGp075oDLSIifdeIWccSp/j/cXc0nebtYeK0iWGcNjGMqtp6vt5zhI9SD/Pl7iNkFFbw7Nf7efbr/YwK8eWc+HDOSYggNsy/R363xWJh1+GSxmQpl4PHJUsnx4ayMC6c+ROG4d9bkyWwPsT96iE4+C0AFpM3R2LOIeScv2MKHunm4KQ/U+IknRM9w/rz6D4oz2+1ibeHifMTIzk/MZKfc0t4c1MG7/+UzcGCch76eDePf7aHcxMiuCppBAnRga6LXURE+p+YWcCTkNHygV5f4eNp4szJ4Zw5OZyKmjrW7z7CmtQcvtqTz4GCcp7+ch9Pf7mP2DA/FsZFcE5COKMdLMZksVjYmVNiH1n65WiF/ZyXh5FTYkNZGB/OqeN7ebIEkL0dvnoY9n1h/bvRE6ZeS8Ov/kTW/jxCAmPcG5/0e0qcpHMGBUHoBMjfbd10kPbnC48fPoT/d8Fk7jprPKt/yuaNTYf4ObeUd7Zn8c72LOIiA/hNUgznJUQyyEsLNUVExEHRMwCD9YFe2RF3R9Ntg708ODchgnMTIiirruOLXXmsSc3hm/R80vPKSM9L58kv0pkQPsQ6EhUfzohg31bfy5Ys2arhHWqSLHl7GDllnLUa3vwJYfh594Gvgrlp1oRpzyfWvxtMMOVKmHsnBMZAfT2Q59YQZWDoA/+1SK8RMxPyd2PI2gwhF3XqEj9vD36TNIIrZ8bwY0YRb2zK4OPUw6RlF3PXu2k89PHuxpLmIxgzTCXNRUSkkwYFwbCJcGRn44am0e6OqMf4eXtwwZRILpgSSXFlLZ/vzOXjtMN8t7eA3YdL2H24hMc/20NcZADnxIdz1qQwLBYLadnFrN15hE/SDpNR2DxZmjduGGfHhzN//DB8+0KyBHDkZ/j6Ydj1gfXvBiPEXwYn/w2GjnJvbDIg9ZH/cqRXiJkF21/BkLGp04mTjcFgYOqIoUwdMZRFCyewansWb24+RGZhJS9//wsvf/8Ls0YFc9WsEZw2MQxPlTQXEZGOjJgFR3ZiyNwIw/pP4tRUwCBPLp0WzaXToikqr+GznbmsST3MD/sLSMsuJi27mEc+/ZkAbyPF1cdGXXw8jZw6fhhnx4Uzb1wfSpYACvbBN4sh7R3AAhhg8kVw8t0QGuvu6GQA60P/FYnbRc+0/jycgqG+ustvE+znzU0nj+Z3c0bxzd583tx0iC9/PsLGA0fZeOAow/y9uXx6NP8zM4bwgEE9FLyIiPQ7MbNg6wsYMjbDsF+7OxqnC/L14vIZMVw+I4aCsmrW7shlTWoOmw8WUlzdwCBP07FkaXwog7362Ne8ol/gm8cg5b9gqbcem3AunHIvhE10a2gioMRJHBF0AviFYSjLw9e8B5jZrbczGg3MGzeMeeOGkW2uZOXmDP67NYMjpdU8/eU+nvlqHwsaS5qfNCZEJc1FRKQ5W8XX3FSMdZXujcXFQvy8+U3SCH6TNILDReV8vimFi06Ziv8gb3eH5rjiLPj2cfjpDWiosx6LPRPm3QvhCe6NTaQJJU7SeQaD9Sa16wNCD30IJfMhqGcq2EQGDuKvZ4zjtvlj+WxnLm9sOsTmg4V8viuPz3flcULwYK5oLGke5OvVI79TRET6uIAoCIjBUJyB7/9v787joqr3x4+/ZgFZVJYUIREVEpBFcGFxX3JfUiu1uqm3NPWa3r5p3dLqe7WvqS3ebuJXzUvXrMyvlugv99xK6wqaJuGCuKLghiguoCwz5/fHcUYGRkG2EXg/H4/PY+Bzzpn5fGZ7z/ucz/mca0eA9rZukU141HcgxKNO9TvCdPMi7P4H7F8Khjy1zq8HdH8HvNvZtm1CWFHNPmHC5pp3hSP/D/f0HSiftQLfbhD+JwgcAPZO5b57e73WPKtQyqWbLI9PJe5AOmcyc5i9MZlPfkxhYCsvXoxuSusmrja5wroQQohHiE80JJ2l7tUkW7dElFb2FfjlU9gXCwV31LqmnaDHO9C0g23bJsQDSOIkHk7bP2PU2ZP9yxLqXf0DTu1Ui309CBkKYS+oQawCEhr/RvWYOTiEv/UN5IfE83y9J5UjF24QdyCduAPpBD9enxejmzI4/PHqt5dNCCFExWjaHpJWSeJUHeRchf/EQMLnkH/34rvekWrC1Lxrhfx2EKIyya9N8XC0OpSwF0hRgghv6oouaRUkfgtZZ+HAV2px91UTqLAR6vUVysm5jp7nI314LqIJv5/L4pv4VNb/cYHD528wLS6J2RuO8nSbxrwY3ZQWFXR1dSGEENWEjzo8z/naUTDkg06uDfjIuXMd9iyE+IWQe0Ote7y1OiTviZ6SMIlqQxInUXZuzaD7NOj6Fpz9Dxz8Fg6vhaunYOcstTTvoiZRQU+BvfUL9ZWWRqOhjY8bbXzceG9AEN/tP8fyhLOkZuawbE8qy/akEtXcnRejm9In2BN7vUxpLoQoWXZ2Nv/85z/ZtGkT169fx9fXl3HjxjFgwIASt42Li2PatGlWl/3yyy80bNiwopsrimoQgOLohu72NYw7P1AvjNowQH6MPwpyb0HCYvUo050sta5RiDrpQ0B/eY1EtSOJkyg/rRaadVJLv4/g6Do4uBzO7IbTu9Sy8Q0IGgLhz4NPB3WbcnBztmdcFz/GdvLllxNX+Do+le1HL5Fw+ioJp6/SoO69Kc0bu8qU5kKI+5s8eTJJSUlMnTqVZs2asX79eqZMmYLRaGTQoEGluo85c+bg62t5QU5XV9dKaK0oRqtFad4NzZE1aPfMhz3zwd0PAvtD4EDwjgCtHIWqUnk56vlLv/4TcjLVugYB6s7WloPL/RtACFupVolTefYKiipSp66aHIU/D9dS4Y+VahJ17Qwc/EYtrk0h/AUIe049alUOWq2GLv4N6eLfkPNZt/m/vWdZse8cGTdzWbDzBAt/OkGPQA9ejG5KlxYNZUpzIYSFn3/+mV9//ZV58+YxcOBAAKKjozl//jwfffQR/fv3R1eKoV8tWrQgNDS0spsr7kMZ9Bmp+ub43D6E5tTPcPWkepTjPzHg3BAC+qlJVPOuYOdg6+bWXPl3YP+X8Ms/4Nbdi/G6+0G3tyHkGUlgRbVXrRKnitgrKKqQW1Po+jfo8iacjVcTqMNrISsVfpqjlqad1CQraDDUKd/5SY+7OjKldwCTn2zBj4cv8U18KntOZbLt6GW2Hb2Mj7s6pfnwdk1wlynNhRDA1q1bcXJyom/fvhb1Tz/9NFOnTiUxMZE2bdrYqHWi1OzrcqXpQLzD30VXkAMntsOxjZCyGbIz7p2Da+cMLXpCwADw7w2ObrZuec1QkKfuGN31CdxIV+tcfdSh/K2eA121+rkpxH1Vm3dyRe0VFDag0aizHjVtrw7lS16vJlGnfobUX9Sy8U01eQp7Hpp1LtdhfDudlgGtvBjQyosTl2/yTfxZVh9I4+zVHOZuSuYfW1MYEOrFi9E+tPFxkynNhajFjh8/jp+fH3q9ZTgMCAgwLy9N4jRhwgSuXr1KvXr1iIyM5K9//Sv+/v6V0mZRgjr1IHiIWgz5kPorJG9Qy410OPL/1KLVQ9OO6pGowP7qNaHEwzEUwB//Bz9/qE4SBVC/MXR5A8JfBL3spBQ1S7VJnGSvYA1h7wSthqvlehok/h8kroDME+pt4gpwaaIO4wt7Hh7zK9fDPeFRjxlPBfO3vgGsSzzP1/GpHEq/wZrf01nzezotverzYrQPQ8Ib41yn2nwchBAVJCsrC2/v4j+YXVxczMsfpEGDBkyYMIHw8HDq1q1LSkoKS5YsYcSIEaxYsYLAwMCHao/BYHio9YtuV9btq7v7918LTTurpfccuJiIJnkDmpRNaC4fgdM/q2XTmyieYSgB/VECBoBHy2o1cUGVv/5GA5rDcWh2fYTm6kkAlLqNUDq+jtJmFOgdTA2rkubI+7929x/K/xyUdrtq80uxovYKikeIi7e6V6rzVEjbpx6FOrQGrp+DXR+rxae9mkAFDwWH+mV+KCd7PSMi1GF6iWnX+SY+lXWJ5zl64QbvrDnEnI3JDG2tTmke4ClTmgtRHSUkJDBq1KhSrbt27VpatmwJ8MCjziUdke7SpQtdunQx/x8REUHXrl0ZNGgQn332GYsWLSpVe0ySksp3LaLybl/dlar/bgMgagD22em4XvwPrhd/oe7Vw2guJqK5mAg/zyHXyYssz05keXbklnswaKrHiJZKf/0VI64XdvH4sWU43koFIN/ehYtPPE9G06dQ9A5wKLly2/AA8v6v3f2Hyn8Oqk3iVN69gtbInr2yqZT+P95WLb0+QHNsI5o/VsCpn9Cc3QNn96BsegslcABK2PPQrEu5TjANfbweHz4dwrS+/sT9fp7lCWc5k5nD1/GpfB2fSkQzN16IbEKfYE/qWJnSXF5/6X/h29qmqvbqlUXz5s2ZNWtWqdb18vIC1JnvrMWP69evA/dizMPw9vambdu2JCYmPvS2oaGhZRp2bjAYSEpKKvP21V3Z+h8OqJNLGbMz0BzfgubYJji1kzo5F2h06jsanfoOxekxlBZ91CNRvt3A7tGbqbXSX39FgZRNaH+ei+bSIbXKwRWl/WS0ka/wuH1dHq/4Ry01ef/X7v5D+Z8D0/YlqTaJE5Rvr6A1smevfCqv/34Q9C52zcfjnr6Nx879iOOtVDSHvodD35Pn0JBM715kNulNbt3yXWC3jTOEd69H0uU6bDmZw77zuew7c419Z65Rv84hejZ3pJevIx7OxT8q8vpL/yuDoigUKGAwKhgUMBjBoChFbgsvV28LjApGBQqMYFQUi9sH35dp3cL3UfT23voK0LO5I/Dovf4eHh4MGzbsobbx9/dn/fr1FBQUWIxoSElJAdTZ8spCURS0ZThXU6fTleuHT3m3r+7K3P/6ntB2tFrysuHkDvWcqGOb0ORkokn8Vr3Yu50T+PVQz4vy7wNO7hXfiXKo8NdfUeDENtj5AZz/Xa2rUx/av4om+i9oHB5+x0Jlkvd/7e4/VP5zUG0Sp8rYKyh79sqmavvfC5S5GM4fQJO4As3h1djfycDrxLd4nfgWxTsCpdXzKMFDoRxf4G2A0cDF63dY+ds5Vu5L49LNXOKSs1lzLJtu/g35U5QPXVo0AMUor7+N+68oCgajQoFRId+gUGA0YjD9bTDerTdSYFDXKTCqf+cb1eWGQtup9eqtwbSdUVHr7/5duD6vwEDGlUzqu7jdTVju3Z/h7v3nG+/9bbovUzuKrltgVO4VgxGjYpOn9KEYFYUxfSMqda9eVenZsyerVq3ixx9/pH///ub6NWvW4OHhQVhY2EPf57lz5zhw4AAdOnSoyKaKqmLvDC0HqcVQoF7gPXkDJG+E62fVCY6S16vD95p2gMAB6sVc3ZrauuUV69TPasJ0LkH9384ZosZDh8mPXMIoRFWpNolTZewVlD175VOl/feJVEvfOZCyCQ6ugBPb0KTtQ5O2D7ZMU4NX+J/Ar3uZh/I1dndmSu9AJj/pz7Yjl/gmIZVfT2Sy81gGO49l4O3myHMR3nDzDhf0GeY9yoqVH7sKxSutr2elztqKVtcr2+OWpx1Go5HTqTkcupNuPuJhSjwKJw33EhejRUJjUXf31pxwFElmDIWSHXPd3cTD9m5X2SNpNGCn1aLTatDrNNjp1L/ttBp0Ok2hZVr0d9fRazXotVrz3zqtFjudRt3OtL1OXcf0t7V19KZy9751WnDLvVhjvv+6du1Kx44dmTFjBrdu3cLHx4cNGzawe/duPv74Y4s+Tp8+nbVr17J161YaN24MwJ///GfatWtHYGAgzs7OpKSkEBsbi0aj4bXXXrNVt0RF0emheRe19J0LF5PuzdB3KUm90PuZ3bD5bfAMvTtD3wBoFFKtJpewkLpHTZjO7Fb/1ztAxFjo9Do4N7Bt24SwsWqTOFXGXkFRDdk5qBNFBA+Fmxfhj1Vw8FvIOAqH49RSz0udtS/sBfB4uBmtzA+j09Iv1It+oV6czLjFtwln+e63c6Rdu80nPx5XV9pzsOL6VR3tP2LrFhRjSgRMyYXFj/67CYY5qbi73E5nqruXdJi31VkmEnqtBp0Grly+hHfjx7HX6yySjqL3fS+J0Vq0o2hSoy+y7b37VNv8KF242WAwcPBghq2bUaFiYmL49NNPmT9/PllZWfj6+vKPf/yj2MXVjUYjBoPBYoeCv78/mzZt4t///je5ubm4u7sTHR3NxIkTad68eVV3RVQmjQa8Wqml+zT1wu7JG9XrRaX+qiZVF5PUaxS6+KgJVOAAdZKj6nAdo7T9sHOWOkwRQGcPbV+CzlOgnqdt2ybEI6IafJJVD7NXUNQS9Tyh41/VYQMXDqoJVNJ3cPMC/PqZWh5vA+EvqFcsL+PQAr+GdXlvYBBv9A5g3R/nWZ94noxr16lbty4aCv2gLfLb1tpP3aI7IDVW1rK2k7Ks2xVfx3Kl0rSx6HqKAtm3bvCYmyt2ep1FcmJKXEw/+vU6LXZFEpCidYWPeBReVjipMC0rnIgUrrPTadFqynau48NSE4dswsN9q/f3jqEA8nMg/7Z6W3Cn0P+3LZcVutXk38FJH4R6Yn3N4OzszLvvvsu77777wPXmzp3L3LlzLeqmT59emU0TjzK3ZtB+olqyM+H4FvVI1Int6pC+hEVqcXQD/35qEuXXQ70sx6PkQiLsnK1eLBjU61u1HqnOeivXthLCQrVJnKD0ewVFLaPRwOOt1dJ7FqRsUa8HlbIFzh9Qy5bpENDv7lC+J8u098/RXsfwdk14pvXjHDx4kPDw8Or9w7mM1MSh9va/0hmNUFA4ebljJYm5f2JTct3dv435ZWqeFmjcoC10f75i+y1Edeb8mLqTLvwFyMuBUzvNk0tw+6o6sUTit6B3vDu5RH/w72vboW+XjsBPs+HoOvV/jU69/EfXN9WkUAhRTLVKnEq7V1DUYvo6EPSUWm5dVo9AHfwWLh26d7V4Zw91KF/4C9Ao2NYtFtWFooAhD+7cxO52BmSeBGPuQyQvpUxsCu5Uccc06kxhdo6Fbh2s1Kl/G/WOpOmDCKjiVgpRbdg73RumZyhQJ1dI3qBOKJGVCsc2qEWjVYfxmSaXcK+ioZ1XjqvDCQ/FoZ7dqoHQYdDt7XJfdF6Imq5aJU5CPJS6HtD+VbVc+EM9CvXHSsi+DHsWqMUrTD0KFfKsusdQVE+mpMaUfOTlFElOiiQqedkPWPaAbRUjOqAVwLYq6JfewTJ50TtaJDHWEpuS64os09d5qJPYFYOB2wcPVl6fhahJdHpo1lEtfT6AS4fvHonaoA6RS/1VLVumg0fwvYTLK6ziJ5e4egp+/kiNg4pRrQsaAt2mlfl8YCFqG0mcRO1gOqG350w4sVU9CpWyWQ1cFxJhyzvqNTnC/wQteoHOztYtrjmKJjXFEhcrCYpF8nIb8rOxODJjbbnph0AVMGr0aOyd0FgkIw5lSGIekNjoHcp1oWchxCNGowHPELV0ewuyzqpD+ZLXw5lf4fJhtez6COp730uimnYoX0zKOgu7Pobfl4Ny9wLUAf3VhMmrVcX0TYhaQhInUbvo7e8Fo+wrkPS9Ou78QuK9a3M4Nbg3lM8z1NYtrnymc2rycu4lKKa/zQlKjrlOk5tN4/OpaM7XLTKhgLXkx3SkxlB1/dHq1euNFE5M7IsmJ9aWF05mnC3XL7TcoK3DwaTDco6XEKJ8XH3U6yJFjYecq3D8RzUGndgON9Jg7+dqcXBRz4cKHKCeo1unbunu/8Z52D0P9i+7d07jEz2h+3Ro3Lby+iVEDSaJk6i9nBtA9AS1XDqsHoX6Y5U6lC9+oVoahaoJVOgwqNvQNu1UFDVBsUhssoscecm5V3ff5fdJjAoe7npEWqDME9NqdOrFJc1JSaFkxd7ZypEXpyLLCtffZ9vKPlpoqMIkUAhROzi5Q9hzasm/rV58Nnm9ekQq54o6vO6PlaCro16rMHCAOlOftbh06zL88ins+wIMuWpd8y7Q/V3wiarafglRw0jiJASok0T0+QB6zlD39iV+qwasS0nqxXW3vgcteqtJlF9Py21NQ9FKTFZKudzaulYvT1sJ9IWPrpiOxDgXOurijFHvwOWsW3g0bobW3tnqURnLxKZQ8iNDIIUQ4sHsHCGgr1qMBji39+6IiA1w7bQ6zDxlM6ABn2h12J1/P3R519FsmwG/xd6NG6iTT3R/B5p3tmWPhKgxJHESojCd3b2AlXMVDq1Wj0SdP6Be5PDYRrQOrgRrndDuNNxLbKpqKJqujtVk5t5QNGfriU+x5Va21zuCVltiExSDgfSDB2kYHg4yVE0IISqPVgdN26ul9yzISL6XRJ3/Hc7ugbN70G19j1YaPVqlQN2ucVs1YfLrUfGTTAhRi0niJMT9OLlD5CtquZx89zocK9HcuogDWda30dqVI5m5/1Ee83KZLEAIIWonjQY8Wqqly5twPc08uYRy5he0xgIUz1Zout+d7EgSJiEqnCROQpSGRyD0eh96/DeGtN84nnKMFkHh6BzqWk4uIEPRhBBCVAUXb/POPWP2VZL37iCw82B0eolDQlQWSZyEeBg6PXhHkH3FTp1SVoaqCSGEsDUHF+7Ub65eVFcIUWnkEyaEEEIIIYQQJZDESQghhBBCCCFKIImTEEIIIYQQQpRAEichhBBCCCGEKIEkTkIIIYQQQghRAkmchBBCCCGEEKIEkjgJIYQQQgghRAkkcRJCCCGEEEKIEkjiJIQQQgghhBAlkMRJCCGEEEIIIUogiZMQQgghhBBClEASJyGEEEIIIYQogSROQgghhBBCCFECSZyEEEIIIYQQogR6WzfAFhRFAcBgMJRpe9N2Zd2+upP+S/8L39Y20v/y9d+0nel7WKgkLpWP9F/6X/i2tqnt/Yeqi00apRZGr7y8PJKSkmzdDCGEqLVCQ0Oxt7e3dTMeGRKXhBDC9kqKTbUycTIajRQUFKDVatFoNLZujhBC1BqKomA0GtHr9Wi1MlrcROKSEELYTmljU61MnIQQQgghhBDiYcjuPiGEEEIIIYQogSROQgghhBBCCFECSZyEEEIIIYQQogSSOAkhhBBCCCFECSRxEkIIIYQQQogSSOIkhBBCCCGEECWQxEkIIYQQQgghSiCJUxFxcXEEBASYS1BQEJ06deL111/nzJkzFuv+9ttvvPPOOzz99NOEhIQQEBBAWlqabRpeQUrbf4PBwNKlSxkzZgxdunQhLCyMfv368cknn3Djxg3bdaCSFH1eipaEhARbN7HMNm/eTEBAABs3biy27KmnniIgIIDdu3cXW9azZ0+GDh0KwM6dO/nb3/7GoEGDCA4OJiAgoNLbXVHK2/9bt26xaNEiRo4cSceOHWndujWDBg1iyZIl5ObmVkUXyqUiXv9PP/2UIUOGEBkZSWhoKE8++STvvfce6enpld7+2kJik8Qma2pqbJK4JHHpUY1L+nJtXYPNmTMHX19fcnNzOXDgAIsXLyYhIYFNmzbh4uICQHx8PHv27KFly5Y4Ozuzd+9eG7e64pTU/zt37hATE8PAgQMZNmwYbm5uHDlyhEWLFrFz505Wr16Ng4ODrbtR4UzPS1FPPPGEDVpTMSIjI9FoNMTHx9O/f39zfVZWFikpKTg5OZGQkEDnzp3Nyy5evMi5c+d46aWXANi6dSuJiYm0bNkSOzs7Dh8+XOX9KKvy9v/8+fMsW7aMwYMH8+c//xknJyf279/PggUL+M9//sPSpUvRaDS26FqpVMTrf+PGDQYMGICfnx/Ozs6cOHGCRYsWsWPHDtavX4+bm1uV96umktgkscmamhabJC5JXHpU45IkTvfRokULQkNDAYiKisJgMBATE8O2bdt45plnAJg4cSKTJk0C4IsvvqhRwamk/js4OLB9+3aLN15UVBReXl689tprbNmyhcGDB9uq+ZWm8PNSU7i7u9OiRYti7999+/ah1+t55plniu21jI+PB9TXHGDWrFloteoB7Pfff79aBajy9t/b25sdO3bg5ORkXt6+fXscHR356KOP2L9/P+3atav8jpRRRbz+f//73y2Wm56XcePGsX37dp599tlK7EHtIrFJYpM1NS02SVySuPSoxiUZqldKpi+kzMxMc53pA1kbFO2/Tqezmq23atUKUDN/UX1ERUVx+vRpLl++bK5LSEggJCSErl27cvjwYW7dumVetnfvXnQ6nfmLt7p/FsrTfycnJ4vgZFKdPgvlff2tcXd3B0Cvl/1zlUlik8SmmkriksSlRzEuVe93VRUyjQ9v1qyZbRtiI6Xtvynjr67DA0piNBopKCiwKAaDwdbNKrfo6GgAi707CQkJREZG0qZNGzQaDfv377dYFhQURL169aq8rZWhMvpfnT4LFdX/goIC7ty5w5EjR5g9ezbNmjWjV69eVdOJWkpik8QmqJmxSeKSxCV49OKSJE73YfoSys7OZvfu3SxatIiIiAh69Ohh66ZVibL0/9KlS8ybN4+QkBC6d+9eha2tOsOHDyc4ONii1IThEREREWi1WvMX1LVr1zh+/DgRERE4OzsTFBRk/sK9cOECaWlp5sPhNUFF9z85OZnY2Fh69epFYGBglfShPCqi/xkZGQQHBxMWFsbQoUMxGAx89dVXODs7V3l/ajKJTRKbrKmJsUniksSlRzEuyRiK+xg+fLjF/35+fixcuLDWDDt52P5nZWXxyiuvoCgK//znP6v9IfL7+fDDD/Hz87Ooe5RPsCwtFxcXAgMDzWOG9+3bh06no02bNoD6BWb6gjKtU5MCVEX2Py0tjQkTJuDp6cmsWbOqoPXlVxH9d3Nz4/vvvycvL49Tp04RGxvLqFGj+Prrr/Hw8KjC3tRsEpskNllTE2OTxCWJS49iXKqZ3yAV4MMPP+T7779n2bJljBgxgpMnTzJlyhRbN6vKPEz/r1+/zssvv8ylS5f497//TZMmTaq4tVXHz8+P0NBQixISEmLrZlWIqKgozpw5w6VLl0hISCA4ONi8VyYyMpKjR49y8+ZNEhIS0Ov1tG3b1sYtrlgV0f/09HRGjRqFTqdj2bJluLq6VnEvyq68/dfr9YSGhtK2bVuGDRvGsmXLSEtLY8mSJbboTo0lsUlikzU1NTZJXJK49KjFJUmc7sP0JRQdHc3777/PsGHD2L17N5s3b7Z106pEaft//fp1XnrpJdLS0li6dGm1OPwrrDPtqdm7dy979+4lIiLCvMz0ZbRv3z4SEhIIDQ2tcUOwytv/9PR0Ro4cCcBXX32Fp6dnFbW8YlT06+/p6YmHh0exawyJ8pHYJLGpNpG4JHEJHq24JIlTKb355pu4uLgwf/58jEajrZtT5az13xSYzp07xxdffEFQUJCNWynKIyIiAp1Ox5YtWzh+/DiRkZHmZfXq1aNly5asXbuW9PT0GjUcwqQ8/T9//jwjR47EaDSybNkyGjduXNXNL7eKfv1TU1O5ePEiTZs2rcxm13oSmyQ21WQSlyQuPWpxqXYMiq4ALi4ujBs3jo8//ph169YxePBgrl69aj5pLSUlBYBdu3bh7u6Ou7u7xQtc3RXtf58+fRgzZgxHjhxh+vTpGAwGDh48aF7f3d0dHx8f2zW4khw/ftzqTEU+Pj7maS6rq7p16xIUFMS2bdvQarXFDnlHRESwbNkyoPg44vT0dJKSkgA4e/YsgHkPcOPGjavFScpl7X9mZiajRo0iIyODDz74gMzMTIupoT09PavFXr6y9j85OZk5c+bQp08fmjRpglarJSUlhS+//BJXV1defvnlKu1HbSOxSWIT1NzYJHFJ4tKjFpckcXoII0eOZPny5SxcuJCBAwdy/PhxXnvtNYt1Zs6cCahjL7/++mtbNLPSFO5/69atzV9IH3zwQbF1hw4dyty5c6u6iZVu2rRpVutnzZrFsGHDqrg1FS8qKoqkpCRatmxJ3bp1LZZFRETw5ZdfYmdnR+vWrS2WJSQkFHtuTJ+N6vReKEv/T5w4wblz5wB173dRkyZNYvLkyZXb8ApSlv43aNAADw8Pli5dSkZGBgUFBXh6etKtWzcmTJiAl5dXVXej1pHYJLGpJscmiUsSlx6luKRRFEUp89ZCCCGEEEIIUQvIOU5CCCGEEEIIUQJJnIQQQgghhBCiBJI4CSGEEEIIIUQJJHESQgghhBBCiBJI4iSEEEIIIYQQJZDESQghhBBCCCFKIImTEEIIIYQQQpRAEichhBBCCCGEKIEkTqJKxMXFERAQYC5BQUF06tSJ119/nTNnzti6eQAsXryYbdu2FatPSEggICCAhIQEG7RKtWPHDiZMmECHDh0ICQkhMjKS0aNH88MPP5Cfn2+zdhVl7bl6++236dGjR6U+7qVLl4iJieHo0aOV+jhCiJpFYlP5SGx6MIlNNY/e1g0QtcucOXPw9fUlNzeXAwcOsHjxYhISEti0aRMuLi42bdvnn39Onz596Nmzp0V9cHAwK1eu5IknnqjyNimKwvTp04mLi6Nr1668/fbbeHl5cfPmTRISEpg5cybXrl1j9OjRVd620po4cSKjRo2q1Me4fPkyCxYsoHHjxrRs2bJSH0sIUfNIbHo4EptKR2JTzSOJk6hSLVq0IDQ0FICoqCgMBgMxMTFs27aNZ555xsats65u3bqEh4fb5LFjY2OJi4tj8uTJTJo0yWJZjx49GDt2LKmpqVXapjt37uDg4FDq9X18fCqxNUIIUX4Smx6OxCZRW8lQPWFTpkCVmZlpUZ+UlMSECROIjIwkNDSUIUOGsHHjRot1rl69yowZM+jfvz+tW7emffv2jBo1it9++63Y4+Tl5bFgwQL69etHaGgoUVFRjBw5kgMHDgAQEBBATk4Oa9asMQ/ZGDlyJHD/4RDbt29nxIgRhIWF0bp1a1566SV+//13i3ViYmIICAjg+PHjTJkyhbZt29KhQwemTZvGzZs3H/jc5OfnExsbi6+vL6+++qrVdRo2bEi7du3M/2dlZTFjxgw6d+5MSEgITz75JJ9++il5eXkW2+Xm5jJv3jx69OhBSEgInTt3ZubMmdy4ccNivR49ejB+/Hh+/PFHhgwZQmhoKAsWLADg5MmTjBkzhrCwMKKiovjv//5vsrOzi7XR2nCIgIAA3n//fdauXUu/fv0ICwvjqaeeYufOnRbrpaamMm3aNHr37k1YWBidO3dmwoQJHDt2zLxOQkICzz77LADTpk0zv34xMTHmdUrzfhJCCBOJTfcnsUliU20mR5yETaWlpQHQrFkzc118fDxjx44lLCyMGTNmUK9ePTZu3Mjrr7/OnTt3ePrppwH1ixhg0qRJNGjQgJycHLZu3crIkSP58ssviYqKAqCgoICxY8eyf/9+Ro0aRXR0NAaDgcTERC5cuADAypUrGT16NFFRUUycOBFQ9+bdz7p163jjjTfo1KkT8+bNIy8vj9jYWPNjFw4YAJMnT6Z///48++yzpKSkMG/ePEAdHnI/hw4dIisri2HDhqHRaEp8LnNzcxk1ahTnzp1j8uTJBAQE8Ntvv7FkyRKOHj3KkiVLAHWIxcSJE4mPj2fcuHG0a9eOY8eOERMTw8GDB1m5ciX29vbm+z18+DAnT57kL3/5C97e3jg6OnLlyhVGjhyJXq/n73//O4899hjr1q3jf/7nf0psp8lPP/1EUlISf/3rX3FyciI2NpZJkyaxefNmmjRpAqjDHFxdXZk6dSru7u5cv36dNWvWMHz4cNasWYOvry/BwcHMmTOHadOm8Ze//IVu3boB4OnpCZT+/SSEECYSmyQ2SWwSVilCVIHVq1cr/v7+ysGDB5X8/Hzl1q1byq5du5SOHTsqf/rTn5T8/Hzzun379lWGDBliUacoijJ+/HilY8eOisFgsPoYBQUFSn5+vjJ69Gjl1VdfNdevWbNG8ff3V1atWvXANoaHhytvvfVWsfr4+HjF399fiY+PVxRFUQwGg9KpUydl4MCBFm25deuW0r59e2XEiBHmuvnz5yv+/v7Kv/71L4v7nDFjhhIaGqoYjcb7tmfDhg2Kv7+/smLFige222TFihWKv7+/snHjRov6JUuWKP7+/sovv/yiKIqi7Nq1y2qbTI+3cuVKc1337t2Vli1bKqdOnbJY9+OPP1YCAgKUo0ePWtS/9NJLFs+VoijKW2+9pXTv3t1iPX9/f6VDhw7KzZs3zXUZGRlKYGCg8vnnn9+3jwUFBUpeXp7Su3dvZfbs2eb6P/74Q/H391dWr15dbJuyvp+EEDWfxCaJTYVJbBIlkaF6okoNHz6c4OBg2rRpw9ixY6lfvz4LFy5Er1cPfqampnLq1CkGDRoEqHvkTKVLly5kZGRw+vRp8/2tWLGCoUOHEhoaSlBQEMHBwezZs4eTJ0+a19m9ezd16tSpsHHqp0+f5vLlywwePBit9t5HyNnZmd69e5OYmMjt27cttrE2HCA3N7fYMJDyiI+Px8nJib59+1rUm/Za7dmzx7xe4XqTfv364eTkZF6vcFubN29uUZeQkECLFi0IDAy0qB84cGCp2xsVFWWx57RBgwY89thjpKenm+sKCgpYvHgx/fv3JyQkhKCgIEJCQjhz5ozFa3w/D/t+EkLUThKbVBKbJDaJB5OheqJKffjhh/j5+ZGdnc3GjRtZuXIlU6ZMITY2FoArV66Y1/vwww+t3se1a9cAWLp0KXPnzuW5557jtddew83NDa1Wy2effcapU6fM61+9ehUPDw+LQFIepsdv2LBhsWUeHh4YjUZu3LiBo6Ojud7V1dViPdNwgzt37tz3cby8vIB7Q0ZKkpWVRYMGDYoNnXjsscfQ6/Xm4SNZWVno9Xrc3d0t1tNoNDRo0MC8nom1fmZlZeHt7V2svkGDBqVqKxR/TkB9XnJzc83/z507l+XLl/PKK68QERGBi4sLGo2Gd99912K9+3mY95MQovaS2KSS2CSxSTyYJE6iSvn5+ZlPuo2OjsZoNPLdd9+xefNm+vbti5ubGwDjx4+nV69eVu/DtIfphx9+IDIykpkzZ1osL3oSqLu7O/v378doNFZIgDK1MSMjo9iyy5cvo9VqqV+/frkfJyQkBFdXV7Zv387UqVNLHEvu6upKYmIiiqJYrJuZmUlBQYG53a6urhQUFHD16lWLAKUoCleuXDG/PibWHtfV1dX8xV+Ytbry+OGHHxgyZAhTpkyxqL927VqpnuOHeT8JIWoviU2lJ7FJYlNtJkP1hE29+eabuLi4MH/+fIxGI76+vjRr1ozk5GRCQ0OtFtMhdI1GY3GiKEBycjIHDx60qOvcuTO5ubnExcU9sC329vYP3Mtm0rx5cxo1asT69etRFMVcn5OTw48//kh4eLjFHr2ysrOzY+zYsZw6dYr//d//tbpOZmYm+/fvB6B9+/bk5OQUu1Di2rVrzcsL3/7www8W623ZsoWcnBzz8geJiori+PHjJCcnW9SvX7++5I49BI1Gg52dnUXdTz/9xKVLlyzq7reX9GHeT0IIYSKx6f4kNklsqs3kiJOwKRcXF8aNG8fHH3/MunXrGDx4MDNnzuSVV15hzJgxDB06lEaNGnH9+nVOnjzJ4cOHmT9/PgDdunVj4cKFzJ8/n4iICE6fPs3ChQvx9vbGYDCYH2PgwIHExcUxY8YMTp8+TVRUFIqikJiYiJ+fHwMGDADA39+fvXv3smPHDho2bIizszO+vr7F2qzVannzzTd54403GD9+PCNGjCAvL48vvviCGzduMHXq1Ap7fkzBKSYmhqSkJAYOHGi+yOC+fftYtWoVkydPpm3btgwZMoTly5fz1ltvkZ6ejr+/P/v37+fzzz+na9eudOjQAYCOHTvSqVMnPvnkE27dukWbNm04duwY8+fPJygoiMGDB5fYrtGjR7N69WrGjRvHf/3Xf5lnLio8DKUidOvWzTxDUUBAAIcPH+aLL74wz0pk4uPjg4ODA+vWrcPPzw8nJyc8PDxo1KhRqd9PQghhIrHpwSQ2SWyqrSRxEjY3cuRIli9fzsKFCxk4cCDR0dF89913LF68mNmzZ3Pjxg1cXV3x8/OjX79+5u0mTJjA7du3+f7774mNjeWJJ55gxowZbNu2jb1795rX0+v1/Otf/+Lzzz9nw4YNLFu2DGdnZwIDA+ncubN5vXfeeYeZM2cyZcoUbt++TWRkJF9//bXVNg8aNAhHR0eWLFnC66+/jk6nIywsjK+++oo2bdpU2HOj0WiYM2cOPXv2ZNWqVebnw9T+N954w3wibZ06dfjqq6/49NNPiY2N5dq1azRq1IiXX37Z4gKFGo2GhQsXEhMTQ1xcHIsXL8bV1ZXBgwczZcqUYntKrWnYsCHffPMNH3zwATNmzMDR0ZGePXvy3nvvmafMrQjvvPMOer2eJUuWkJOTQ1BQEDExMXz22WcW6zk6OjJ79mwWLFjAmDFjyM/PZ9KkSUyePLnU7ychhChMYtP9SWyS2FRbaZTCx3OFEEIIIYQQQhQj5zgJIYQQQgghRAkkcRJCCCGEEEKIEkjiJIQQQgghhBAlkMRJCCGEEEIIIUogiZMQQgghhBBClEASJyGEEEIIIYQogSROQgghhBBCCFECSZyEEEIIIYQQogSSOAkhhBBCCCFECSRxEkIIIYQQQogSSOIkhBBCCCGEECX4/0YMJkNUsYm7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAHaCAYAAAAQZpgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf1UlEQVR4nOzdeXhU9d3//+eZyb6HBEISSNgJkEACsqmIC7jhUhVrb1spWm2xgrZ61632e1d/rVK1rRXRQt2touKCOyq4K7IHwhr2JRtL9j2Zmd8fJxMSCJBJMjlZXo/rmmuSs0zen0Fz8przOe9juFwuFyIiIiIiIuI1NqsLEBERERER6eoUvERERERERLxMwUtERERERMTLFLxERERERES8TMFLRERERETEyxS8REREREREvEzBS0RERERExMsUvERERERERLxMwUtERERERMTLFLxERERERES8TMFLRERERETEy3ysLkDEU0OHDgXAZrOxbNky4uPjm9zu0ksvZdeuXQC88MILnHnmmZ2ipoyMDF577TVWrVrF4cOH8fHxIT4+nrPPPpuZM2cSExNzyhpO5pFHHuHqq6/mnXfe4b777jvltjabja1bt55ymyVLlnDPPfcA8Je//IVrr732lNu3lV27dvHaa6+xcuVKcnJyqKqqIiIiguHDhzN16lSuuOIK/P39T9ivpe+riMjp6LjUPY9L7vFt3779pNucf/75ZGVlsXz5cvr06dPin6VjWNeg4CWdko+PD7W1tbzzzjvMmTPnhPVr165l165d9dt1hppcLhePP/44zz77LD4+Ppx55plcfPHF1NTUsH79ep5//nkWLVrE3Llzufjii09ax+zZs5tcPmzYsPrnk22zZs0afvzxR84555xTjjUnJ4e//OUvBAUFUV5efspt29JTTz3F/PnzcTqdpKamctVVVxEcHMyRI0dYs2YNDzzwAIsWLeKdd96p36et3lcRkVPRcal7Hpe8TcewrkXBSzqlqKgooqOjeeedd7jtttuw2RrPmn3rrbfw9fVl4sSJfPPNN52ipvnz5/Pss88SHx/PggULGDx4cKP1n376KX/4wx+48847CQ8PZ+LEiU3W0dTBtaFhw4bVH+yOd9111wHw05/+9KT7u1wu7rvvPiIiIpg6dSrPP//8KX9eW3nmmWeYN28esbGx/Otf/2LUqFEnbPPNN9/w7LPPNlrWVu+riMip6LjU/Y5L7UHHsK5F13hJpzV9+nSys7P5/vvvGy0vLS1l6dKlnH/++URFRTW5r8vl4qWXXuLSSy8lJSWFSZMm8dBDD1FSUsL555/P+eef3641HThwgGeeeQZfX1+eeeaZE36xAlx00UXcd999OBwO/vznP+N0OltU48lkZmaSnp5OTEwM55577km3e/nll/nxxx955JFHCAoKatMaTubgwYPMnz8fX19fFi5c2GToAjjnnHMaBa+O8L6KSPeh41L3OS61h47wbyBtS8FLOq3LL7+cwMBAFi9e3Gj5Bx98QHl5OdOnTz/pvg8++CAPP/wwJSUlXHfddVx22WV8//333HjjjdTU1LR7Te+88w61tbVccMEFp5wTf+2119KzZ0/27t3LqlWrWlxnU9544w3APEjb7fYmt9m1axd///vfmTFjBmPHjm3Tn38q77zzDjU1NVx44YUMGTLklNv6+fk12s/q91VEug8dl7rPcak9dIR/A2lbmmoonVZoaCgXXXQRH330Efn5+fTo0QOAxYsXExcXx9lnn83HH398wn5r1qxh0aJF9OvXj8WLFxMWFgbA73//e2688UYOHTp00ouQvVXT2rVrATjrrLNO+fo+Pj6MHz+eDz/8kHXr1jFhwoQTtpk3b94Jy+Lj47n66qtP+rqVlZW8//772Gy2k16MXFtbyx/+8AdiY2O58847T1lnW1uzZg2Ax1Mo2vJ9FRE5HR2Xus9xqaGmxudWXFzc4tfVMazrUfCSTu3aa69lyZIlvPfee9x4441s3bqVzZs3M3v27BPmsru9++67ANx66631Bzcwz5TceeedXH/99e1e05EjRwDo3bv3aV/fvc2hQ4eaXP/UU0+dsGzcuHGnPMB98sknFBcXc+655xIbG9vkNvPnz2fr1q289tprBAQEnLbOtuR+fzzt2tSW76uISHPouHSirnhcaqip8bUFHcO6HgUv6dTOOOMM+vfvz1tvvcWNN97Im2++ic1m45prrjnpPu52tGPGjDlhXWpqKj4+jf+3aOqTrKuuuuqkbWFbUpPL5QLAMIyTbuPm3uZk256qre3JuKdzuC9iPt7GjRtZsGABN954I2lpaR6/fkOevp/g2fvT0v2ael8XLFjAZ599xp49e/Dz8yM1NZU777zztNMdRaT70nHpRF3xuNRQc9rJH685x5e2/DeQjkHBSzq96dOn89hjj7FixQo+/PBDzjzzTOLi4k66fUlJCUCTFxPb7XYiIiIaLTvZJ3Wn+oXsaU09e/Zk9+7d5ObmnnQbN/c2PXv2PO22zbFz507Wr19P7969mTx58gnr3VM5+vXrx+9+97tW/7yWvJ+9evVq9vvTUGvf11WrVnH99deTkpKCy+XiySef5MYbb+Sjjz464b8TERE3HZdapzMcl1qrOccXK/8NxDvUXEM6vauuugpfX1/uvfdeiouLT3nxMkBISAgAR48ePWGdw+GgsLCw0bLt27ef8Bg/fnyb1uT+lPOHH3445XYOh4OVK1cCMHr06FNu21yvv/46cPKLl8vLy9m7dy+7du0iJSWFoUOH1j/cB6sHHniAoUOH8te//vW0P68l76f7/fnxxx89Gltr39fnnnuOa665hiFDhjB06FAeffRR8vPzWbdunUd1iEj3ouNS63SG41JrNef4YuW/gXiHgpd0elFRUZx77rnk5uYSGRnJBRdccMrt3fcKcV+02lB6enqb3NjS05quvvpq7HY7n3/+OTt37jzpdm+//TaHDh2if//+jBs3rtV1VlVV1V+8fLKDsJ+fH9OnT2/yMXz4cMA8OEyfPr3V0z1O5uqrr8bX15dPP/30lO8PQHV1daP92vJ9LSsrw+l0NroGQ0TkeDoutVxnOS61taaOL1b9G4j3aKqhdAn33HMPP/nJT+jVq1ejduJN+clPfsLbb7/NM888wwUXXEBoaChg/sH+z3/+05Ka+vbty29+8xuefvppZs2axb///W8GDRrUaJtly5bx17/+Fbvdzv/93/+d9IJoT3zyyScUFRVx3nnnnfTi5YCAgJN+Yjhv3jy2bNnCVVddddKuU22hT58+zJ49m3/+85/8+te/5l//+hcpKSknbOe+gfLLL78MtP37+te//pVhw4Z1mgO5iFhHx6WW6SzHpbbW1PHFqn8D8R4FL+kS+vbtS9++fZu17bhx47juuut44403mDZtGhdeeCG+vr588cUXhIaG0qtXrza5ONWTmgDmzJlDRUUFL7zwAldeeSVnn302gwYNora2lvXr17NhwwYCAgL4+9//3mZ3pn/zzTcB+OlPf9omr+dNs2bNora2lvnz59d/ipmcnExwcDBHjhxhzZo17N27l+Tk5Eb7tdX7+re//Y21a9eyaNGik95PRkTETcellulMx6W2cqrjixX/BuI9Cl7SLf35z39mwIABvP7667z++utEREQwdepU7rzzTs455xwSExPbvSabzca9997LpZdeyquvvsrq1atZsWIFdrud+Ph4brrpJn75y182q61sc+zatYu1a9ee9OLljmj27NlccsklvPbaa6xcuZJ33nmH6upqIiIiSEpK4uabb+bKK69stE9bvK+PPPIIH330ES+99JJHf7SIiDSXjkud87jUWqc7vrT3v4F4l+Fy96oUEfbu3ctFF13EtGnT+Mc//mF1OdIB/OUvf+Hjjz/mlVdeYeDAgVaXIyLdjI5LXZeOL92PznhJt3T48GGioqIazYWuqKjg4YcfBuDCCy+0qjTpQP785z/z/vvvM3/+fMLCwjh8+DAAQUFBBAcHW1ydiHQlOi51Lzq+dE864yXd0uOPP85HH33EuHHj6NmzJ0eOHGHFihXk5uZy7rnn8u9//1s3IRSGDh3a5PLZs2czZ86cdq5GRLoyHZe6Fx1fuicFL+mWVqxYwYsvvsjWrVspKCjAbrfTv39/LrvsMmbMmIGvr6/VJYqISDei45JI16fgJSIiIiIi4mVq9i8iIiIiIuJlCl4iIiIiIiJepq6GHnI6ndTW1mKz2XSRq4hIO3O5XDidTnx8fBp1f+vudGwSEbGGJ8clBS8P1dbWkpGRYXUZIiLdWkpKCn5+flaX0WHo2CQiYq3mHJcUvDzkTrIpKSnY7XaP93c4HGRkZLR4/86uu48f9B5o/Bp/a8bv3l9nuxrTsal1NH6NX+PX+NvjuKTg5SH3FA673d6q/zhbu39n193HD3oPNH6NvzXj13S6xnRsahsav8av8Wv8LdWc45I+MhQREREREfEyBS8REREREREvU/ASERERERHxMgUvERERERERL1PwEhERERER8TIFLxERERERES9T8BIREREREfEyBS8REREREREvU/ASERERERHxMgUvERERERERL1PwEhERERER8TIFLxERERERES9T8BIREREREfEyBa92tnJPPg99k8++o+VWlyIiIgKA8eN8+q17GBw1VpciItJlKXi1s8+35LEhr5rXVx+wuhQREREAjPX/JSprGexfYXUpIiJdloJXOxvUKwSATdnFFlciIiJSJ3oIAEbuRosLERHpuhS82llyXBgAm7OLcblcFlcjIiICrthR5hcKXiIiXqPg1c6GxITiY4OiihoO5FdYXY6IiEh98DJyNlhciYhI16Xg1c78fGwkhvsAkJFVZHE1IiIiQO+R5vPRnVBVYm0tIiJdlIKXBQZE+gIKXiIi0kEE96Q6oCcGLsjdZHU1IiJdkoKXBdzBa5OCl4iIdBDl4YPNLzTdUETEKxS8LDCwwRkvNdgQEZGOQMFLRMS7FLwskBDmg6/doKiihoMFarAhIiLWU/ASEfEuBS8L+NoNhsSEArrOS0REOob64HV4G9ToQ0ERkbam4GUR9/28FLxERKQjqAmIxhXcE1wOyNtidTkiIl2OgpdFkuPN4KUGGyIi0iEYxrG28jnplpYiItIV+VhdQGlpKU8//TTbtm1jy5YtFBQUMHv2bObMmdNou3vvvZd33333hP379+/P0qVLm/WzfvjhB/71r3+xbds2AgICOO+88/jDH/5AVFRUm4zFE8lx4cCxBhuGYbR7DSIiIg25eo/C2LVc13mJiHiB5cGrsLCQN998k6SkJKZMmcLixYtPum1AQAAvvfTSCcuaY9WqVdxyyy1MnjyZp59+mqNHj/L4448zc+ZM3n77bfz8/Fo1Dk8N7R2Kr92gsNxssNG3R1C7/nwREZHjuWLdZ7wUvERE2prlwSs+Pp7Vq1djGAb5+fmnDF42m43U1NQW/ZxHH32Ufv368eSTT+LjYw67T58+/M///A9vvfUW119/fYtetyWM2kr8fWwMiQllc3Yxm7KKFLxERMR6vUeZz4e2QG01+LTvh5IiIl2Z5dd4GYbh9Wl2eXl5ZGRkcOWVV9aHLoDRo0fTr18/li1b5tWf35Cx5jlGf3Ip7FrOyD7HphuKiIhYLiIBAsLBUW12NxQRkTZj+RkvT1RWVnLWWWeRn59Pz549mTJlCrfffjsRERGn3C8zMxOAoUOHnrBu6NChrFu3zuNaHA6Hx/sAULjffN76IcNjfw9AxsHClr9eJ+MeZ3cZb1O6+3ug8Wv8DZ9bur94iWFA7CjY84053dA99VBERFqt0wSvpKQkkpKSGDzYvM/IqlWreOmll1ixYgVvvfUWwcHBJ923sLAQgPDw8BPWRURE1K/3REZGhsf7AERURzIQqNz9I35BeQCk789n/fr13arBRkvfv66ku78HGr/GLx1Uw+DFDVZXIyLSZXSa4DVz5sxG35911lkMHz6c22+/ncWLF5+wviknCzYtCTwpKSnY7XaP93P0CYW1DxFUuofLz0rhga++pqTaRa9+ScRHBnr8ep2Nw+EgIyOjxe9fV9Dd3wONX+Nvzfjd+4sXxaaaz2qwISLSpjpN8GrK1KlTCQoKIj09/ZTbuaciNnVmq7CwsMkzYadjt9tb9kdT1ABqfUPxqSkhqHBHfYONLbklJESHeP56nVSL378upLu/Bxq/xt+dx9+hxdY12MjNAKcDbPp3EhFpC5Y312gtl8uFzXbqYQwZMgSA7du3n7AuMzOzfn27MAzKw83pkuSkkxKvBhsiItKB9BgIfiFQWwFHdlhdjYhIl9Gpg9fSpUupqKhg1KhRp9wuJiaGkSNH8sEHHzS6MDs9PZ09e/YwdepUb5faSHl4XdDLTie5LnhtPKjgJSIiHYDNBr1TzK813VBEpM10iKmGX3/9NRUVFZSVlQGwc+dOli5dCsDkyZPJz8/nrrvuYtq0aSQkJGAYBqtXr+all15i8ODBXHvttY1eb/jw4YwdO7bRzZb/93//l5tuuok77riD66+/nqNHj/L3v/+dIUOGcM0117TfYIHyiLrglZNOSqoZvDZlFeFyubpVgw0REemgYkfB/hVm8Bp1ndXViIh0CR0ieD344INkZWXVf7906dL64LV8+XJCQ0OJjo7mhRde4OjRozgcDuLj47nhhhuYNWsWQUGNbz7scDhwOp2Nlo0fP56FCxfy5JNPMmvWLAIDAzn33HO5++678fNr3xtElrnPeOVtZmhPf3xsBgXlNWQVVtAnUjdSFhERi7mv89IZLxGRNtMhgtcXX3xx2m2eeuqpZr9eU9dygdkJ8ayzzmr263hLdVAsroAIjMpCAvK3MyQmlC05xWzKKlLwEhER69U32NgITqc5/VBERFpFv0mt4L5BJajBhoiIdDzRQ8EnAKqKoWCP1dWIiHQJCl4WcfWuC17Z6ST3cQevYgsrEhERqWP3gZgR5teabigi0iYUvKzSxBkvd4MNERERyzU4TomISOspeFnEFZtqfpG3maS6Bhv5ZdVkF1VaWpeIiAigBhsiIm1Mwcsqkf0gIBwc1QQUZDI4JhSADN3PS0REOgL3B4Q5G0CzMUREWk3ByyqGceyglr2elPgwwJxuKCIiYrlew8DmCxUFUHTA6mpERDo9BS8rxaWaz9nqbCgi0lWsWLGC++67j4svvpjU1FQmTZrErbfeyqZNm07YdvPmzcycOZO0tDTOOOMMZs+ezYEDHSTk+Pib4Qs03VBEpA0oeFmpfhpHOslqsCEi0iUsWrSIrKwsZsyYwcKFC/njH/9Ifn4+1113HStWrKjfbteuXdxwww3U1NTwxBNP8PDDD7N3716uv/568vPz27Xmv368lfuWH6W8urbxCl3nJSLSZjrEDZS7LfcZr7zNDOsVgN1mcLSsmpyiSuIiAi0tTUREWub//u//iIqKarRs0qRJXHjhhSxYsICJEycC8OSTT+Ln58eCBQsICQkBYMSIEVx00UU899xz/OEPf2i3mn/YlU9mfg0rduVzYXLssRWxo2D9KwpeIiJtQGe8rBTZv3GDjV7mgVfTDUVEOq/jQxdAcHAwAwcOJCcnB4Da2lq++uorLrzwwvrQBRAfH8/48eNZtmxZu9ULkBxnXme8/kBh4xUNG2yIiEir6IyXldwNNvZ8XXedVyrbckvYlFXERSN6W12diIi0kZKSErZs2cKECRMA2L9/P5WVlQwdOvSEbYcMGcL3339PVVUV/v7+Hv0ch8PRovpG9QnjrXVZrN9f0Pg1eiZhM2wYpXk4CrMgtGsem9xjbun719lp/Bp/w+fuprXj92Q/BS+rxaXWBa/1jOwzmcVrD+qMl4hIF/Pggw9SUVHBrFmzACgsLAQgIiLihG0jIiJwuVwUFRXRq1cvj35ORkZGi+oLqawBIH1/IWvXrcduM+rXDQ9JILBkL7t/WEJxzIQWvX5n0dL3r6vQ+DX+7qw9xq/gZbWGDTZGNW6wYRjGyfcTEZFO4YknnuCDDz7gT3/6E8nJyY3Wner3fEuOASkpKdjtdo/3G15Ty/1fLKei1kVQ7ECGxYYdq2PveMjYy8DAElypqR6/dmfgcDjIyMho8fvX2Wn8Gr/G3/Lxu/dvDgUvqzXRYONIaTW5xZXEhqvBhohIZ/bUU0/xzDPP8Pvf/55f/OIX9cvdZ7oKCgpO2KewsBDDMAgLCzth3enY7fYW/eHgBwzu4cvGQ9WkHywmuU/ksZVxqZDxBra8DOjif5S19P3rKjR+jV/j9+741VzDaidrsHFQ0w1FRDqzp556innz5jFnzpz6KYZuCQkJBAQEkJmZecJ+mZmZJCYmenx9V2sNifIFYN3+48KgWsqLiLQJBS+rGcaxg1qDGylv0nVeIiKd1vz585k3bx633nors2fPPmG9j48P5513Hp9//jmlpaX1y7Ozs1m5ciVTp05tz3IBGBLlB5jXeTXSO8V8LjoAZUfbtygRkS5EwasjiEszn3PSSeljBi812BAR6Zyef/55nnzySSZNmsS5555Lenp6o4fbnDlz6htufP3113z++ef85je/ITIykptuuqnd63af8dp9pIyCsupjKwLCoMdA8+tcnfUSEWkpXePVEbgbbGSvJ3nkseClBhsiIp3Pl19+CcC3337Lt99+e8L67du3AzBw4EBeeeUVHn/8ce644w7sdjsTJkxg/vz59OjRo11rBgj1szEgOpjdR8pYf6CA85Nijq2MHQX5u8zphgPPb/faRES6AgWvjqBBg43harAhItKpvfLKK83eNjk5mRdffNF7xXgotW+4Gbz2F54YvDa/o+u8RERaQVMNOwI12BARkQ4gLSECUIMNERFvUPDqCI5rsJGsBhsiImKB0QlmG/n0/YU4nK5jK9zHqPzdUKljk4hISyh4dRQNbqTs7myoBhsiItKeBvcKIdjPTlm1gx2HSo6tCOoB4Qnm17nNu1GoiIg0puDVUbg7GzY445WRVYzL5TrFTiIiIm3HbjMY1TcCgHX7ChuvjB1pPmu6oYhIiyh4dRT1DTY2MbxXADYDjpRWkVdcZWlZIiLSvbinG554nVeq+azgJSLSIgpeHUWDBhuBhZkM7hUKaLqhiIi0L3eDjfVqsCEi0qYUvDqKkzTYUPASEZH2lFZ3xmvX4TIKyxvcSNl9jDqSCdVlFlQmItK5KXh1JI0abIQB6mwoIiLtq0ewH/2iggBYf6Dw2IrQGAjpDS4n5G6ypjgRkU5MwasjcV/nlZ1OSh+d8RIREWu4r/Nav7+w8QpNNxQRaTEFr47E3dkwbzPDewViM+BwSRV5xZXW1iUiIt1KWqI7eOk6LxGRtqLg1ZHUN9ioIrAwk0G9QgDIOKizXiIi0n7S6lrKp+8vxNnUjZQVvEREPKbg1ZGowYaIiHQASb1DCfKzU1JVy87DpcdWuKfEH94KNZqNISLiCQWvjqZRgw0zeKnBhoiItCcfu42Rddcar9vXYLphWDwERYGzFg5tsag6EZHOScGro2nQYGOkGmyIiIhF0ppqsNFwZoamG4qIeETBq6Nxn/HK28zwXkHYDDhUUsUhNdgQEZF25O5suE4NNkRE2oSCV0fTYwD4N9FgQ2e9RESkHaUlRACw41ApRRU1x1YoeImItIiCV0djGBDnbrCxXg02RETEEtEh/iT0MG+kvKHhjZTdwStvMzhqTtxRRESapODVEanBhoiIdACj6856NZpuGNm/fmYGh7dbU5iISCek4NURNWiw4Q5eG3UvLxERaWejE93XeRUeW2gYEDvS/FrTDUVEmk3BqyNq2GAjJlANNkRExBJpfc3glb6/QDdSFhFpJQWvjqhBg42gwh0M7KkGGyIi0v6SYkMJ8LVRXFnL7iMNbqSs4CUi4jGfluy0Y8cO1q1bR15eHpWVlURGRjJo0CDGjh1LSEiIR69VWlrK008/zbZt29iyZQsFBQXMnj2bOXPm1G/jcDh4+eWX+e6779ixYwdFRUXExcVxwQUX8Otf/5qwsLDT/pwbbriBVatWnbD87LPP5rnnnvOoZq9zN9jY803ddV4j2XGolIysIi4YFmN1dSIi0k342m2M7BPBqj35rNtXyKBeoeYKd/DKzQCnA2x264oUEekkmh28ioqKeOONN3jjjTfIzs7G5XKdsI2Pjw/nnHMON9xwAxMnTmzW6xYWFvLmm2+SlJTElClTWLx48QnbVFZWMm/ePC677DKuvfZaIiMj2bJlC8888wxffvklb7/9NgEBAaf9WX379uXxxx9vtCw0NLRZdba72FQzeGWvJzl+Eu+sz1KDDRERaXdpCWbwWn+ggJ+O7WsujBoEvkFQUwZHd0HPIdYWKSLSCTQreL388svMnz8fgEsvvZRx48YxYsQIevTogb+/P0VFRRw4cID09HSWL1/OTTfdxJlnnsn/+3//j8TExFO+dnx8PKtXr8YwDPLz85sMXgEBASxfvpzIyMj6ZePHjyc2NpY77riDTz/9lCuvvPK04wgICCA1NbU5Q7ZewwYbyWopLyIi1qi/kfK+wmMLbXbonQIHVprTDRW8REROq1nB65VXXuG+++5j2rRp+Pr6nrA+Ojqa6Oho0tLSuPHGG9m/fz/PPPMMn3zyCbNmzTrlaxuGcdqfb7fbG4Uut5Ejza5Kubm5zRlG59KwwUavQAwD8oqrOFRSSa/Q05/dExERaQvuGylnHiqhuLKGsIC6vwNiR9UFr3QYea1l9YmIdBbNCl6ffPIJPj7NvxwsISGBRx55BIfD0eLCmuPHH38EYNCgQc3afv/+/YwbN47S0lLi4uKYNm0at956a7OmKR6vpWNz73fa/cMTsfmHYVQVE1CwnYHRwew8XMbG/QWcl9SrRT+7I2j2+Luw7v4eaPwaf8Pnlu4v7adXaAB9IgM5WFDBxgNFnD042lyhBhsiIh5pVprasWMHw4YN8/jF7XbvXWybl5fH3//+d5KTkznvvPNOu/3o0aO55JJLGDBgAFVVVXzzzTc8++yzrF27lpdffhmbzbMGjxkZGS0tvdn7Dw4ZQFhVOgdWfUBc4JnsBD5fl0lkZXarfnZH0Nr3ryvo7u+Bxq/xS+cxOiGSgwUVrNtf0ETw2ggul9kYSkRETqpZweuqq65i+PDhTJ8+ncsvv9zyhhSFhYXccsstuFwunnjiiWaFpt///veNvp88eTLx8fH87W9/Y/ny5UydOtWjGlJSUloULB0OBxkZGc3a3zgyCVakk+BzlHOS+/HN/m0cdQR1nuvUmuDJ+Luq7v4eaPwaf2vG795f2ldaQgTvb8hm/f6CYwt7JoHdD6qKoGAv9OhvWX0iIp1Bs4LXb37zG9577z0eeugh/va3vzF16lSmT5/OhAkTvF3fCYqKirjpppvIy8vjpZdeom/fvi1+rSuuuIK//e1vpKenexy87HZ7q/5oatb+8WkA2HI2MDLZvMZtU3Zxl/hjrbXvX1fQ3d8DjV/j787j72zcDTbWHyjE5XKZ12fbfSFmBGSvN6cbKniJiJxSs+bX/f73v+fLL79k4cKFnHfeeXz22WfceOONXHDBBTz99NPk5OR4u07ADF033ngjBw8e5IUXXiApKalNXtfTaYbtpkGDjRExZoON3OJKDpdUWVqWiIh0L8Niw/D3sVFYXsPuI2XHVtRPN0y3pC4Rkc6k2YnDMAzOOeccnnjiCb777jv++Mc/Eh4ezpNPPsmUKVP41a9+xdKlS6mpqfFKoe7QdeDAAZ577jmGDx/e6td89913ARg1alSrX8sregwA/3BwVBFctIMB0cEAup+XiIi0Kz8fGynx5q1N1u8vPLZCDTZERJqt+a0KGwgLC+MXv/gFv/jFL9i2bRtvv/02H374Ib///e+JiIhgxYoVHr3e119/TUVFBWVl5qdoO3fuZOnSpYB5LZZhGPzqV79iy5Yt3H///TgcDtLT0+v379GjBwkJCfXfDx8+nLFjx/LSSy8BsGbNGp555hmmTp1K375965trvPnmm0yYMIHzzz+/JW+D9xkGxI6Evd9CTjop8SnsOlxGRlZRp+5sKCIinc/oxEjW7Ctg3f4Cpo/pYy5sGLzUYENE5JRaFLwaSkpK4oorrqC8vJx33nmHwsJCj1/jwQcfJCsrq/77pUuX1gev5cuXA8c6YP31r389Yf+rrrqKuXPn1n/vcDhwOp313/fs2RO73c7TTz9NQUEBhmGQmJjI7bffzk033dRxpxqCeSPlvd9CdjrJ8WezJD1bN1IWEZF2N7rufl7r9jVosNFrBBh2KD8KxVkQ3sea4kREOoEWB6/8/Hzef/993n77bXbu3Indbue8885j+vTpHr/WF198cdpttm/f3uzXO37bxMREFi5c6HFdHUKc2WCD7PWkDDeneWiqoYiItLe0ugYbmXkllFbVEuLvA74B0GsY5G0yz3opeImInJRHwcvpdPLNN9/w9ttv89VXX1FTU0O/fv248847ueqqq4iOjvZWnd1XwwYbvYMwDMgpquRIaRXRIf6WliYiIt1HTFgA8RGBZBVWsPFAIWcOanA/L3fwSppmbZEiIh1Ys4LXnj17ePvtt3nvvfc4cuQIAQEBXHbZZVxzzTWcccYZ3q6xe3M32KgqIqSuwUb9dV5DdZ2XiIi0n7SECLIKzRspNwpe6a+qwYaIyGk0K3hdcsklAIwcOZI5c+Ywbdo0goODvVqY1DlJg41NBxW8RESkfaUlRPLhxhx1NhQRaYFmBa9f/vKXTJ8+ncGDB3u7HmmKGmyIiEgH4G6w0ehGyr1TAANKcqAkD0JjLK1RRKSjalY7v/vuu6/J0LV7927Wrl1LeXl5mxcmDbiv88pJr7+PihpsiIhIexsRF46fj438smr2Hq079vsFQ/QQ8+vcjdYVJyLSwbWoj/qSJUs455xzmDZtGr/4xS/Ys2cPAHfccQdvvvlmmxYoHOtsmLupvsFGdl2DDRERkfbi52MjOS4MgPX7G7SVr59umN7+RYmIdBIeB69PPvmEe++9l+HDh/OnP/0Jl8tVv27EiBF88sknbVqgcKzBhqOKkKId9I82r6/TdEMREWlvo+vayq9rMnjpOi8RkZPxOHgtXLiQq6++mn//+99cd911jdYNGDCAnTt3tllxUsfdYAMaTzc8qOAlIiLty30/r3X7Co8tVPASETktj4PXrl27mDat6ft0REREUFhY2NqapClxqeZz9rHgpTNeIiLS3kYnRgCwLbeY8upac2HvFPO5cD+U51tTmIhIB+dx8AoMDKSkpKTJdXl5eYSHh7e6KGlCgwYbyWqwISIiFokNDyQ2PACnCzYcqDsOBUZAZH/zazXYEBFpksfBKy0tjVdffbXRtV1u77zzDuPGjWuTwuQ4DRtsxAQCZoONo2qwISIi7Sytvq28rvMSEWkuj4PXbbfdRnp6OtOnT+eVV17BMAw+++wzZs2axZo1a5g1a5Y36pTI/vUNNkKLdzJADTZERMQio3Wdl4iIxzwOXikpKfznP/+hvLycuXPn4nK5WLBgAXv27GHhwoUMGTLEG3WKzdaowYamG4qIiFXcDTbW7y84NgNGwUtE5JR8WrLThAkT+OSTT9i/fz9HjhwhMjKS/v37t3Vtcry4VNj7bV2DjbN5f0O2zniJiEi7GxEXhq/d4GhZNQfyK0iICjoWvI7uhMpiCAiztkgRkQ6mRTdQdktISGD06NEKXe2lyQYbxdbVIyIi3VKAr50RceZxqP5+XsHRENbH/Dpvk0WViYh0XM0KXh9//LHHL5yXl8fatWs93k9OoWGDjd5mg42swgryy6otLEpERLoj3UhZRMQzzQpeDz30EFdeeSWLFy+mtLT0lNtu2rSJBx98kIsuuoht27a1SZFSJ7I/+IeBo4qwkl30V4MNERGxSH1nw/2FxxYqeImInFSzrvH6/PPPmTdvHn/961956KGHGD58OMOHDycqKgo/Pz+Kioo4cOAA6enpHD58mMGDBzNv3jwmTZrk7fq7F5vNPKjt/Ray15Mcn8KeI2Vsyipi8pCeVlcnIiLdyOhE84zX1pxiKqodBPrZFbxERE6hWcErNDSU+++/n9tuu4133nmHr7/+miVLllBRUVG/Td++fZk0aRKXX345EyZM8FrB3V6jBhtn8cGGbDIO6oyXiIi0r7jwAGLC/MkrrmLjwULGD4g6FrwOb4PqcvALsrZIEZEOxKOuhuHh4dx4443ceOONAJSUlFBZWUlERAS+vr5eKVCO07DBxjDzwmZNNRQRkfZmGAZpfSNZujmX9QfqgldobwjuBWWHIG8z9B1rdZkiIh1Gq7oahoaG0rNnT4Wu9tSgwUZyb/OTxKzCCgrUYENERNrZ6MQIANbtq2uwYRgNphumW1KTiEhH1argJRZQgw0REekgjnU2LNSNlEVETkPBq7NxN9gAyD52Py8FLxERaW/J8eH42AyOlFZxsKDuum8FLxGRJil4dUZxqeZz9npS4sMA2KTgJSIi7cy8kbJ5HKq/n5c7eB3aCrVVFlUmItLxKHh1Rg0bbOiMl4iIWCitbrph/f28IhIgIAKcNWb4EhERQMGrc2qiwcbBAjXYEBGR9nfsRspNNdjQdEMRETePg9f/9//9f+zevdsbtUhzHddgo1+UGb501ktERNqbu8HG5uxiKmsc5kIFLxGRE3gcvJYsWcK0adO48cYbWbZs2bEuRtJ+1GBDREQ6iD6RgUSH+FPrdB273ljBS0TkBB4Hr2+//ZYHHniAw4cPM3v2bM4//3wWLlxIfn6+N+qTk2lwn5SUuuClBhsiIh1DaWkpjz76KDfddBMTJkxg6NChzJs374Tt7r33XoYOHXrC4+KLL7ag6pYxDIPRddMNjzXYSDWf8zaBo9aSukREOhofT3cICgri5z//OT//+c9ZsWIFr776Kv/617946qmnuPTSS/n5z39OSkqKN2qVhtzXeWWvJ+U8nfESEelICgsLefPNN0lKSmLKlCksXrz4pNsGBATw0ksvnbCsMxmdGMlnW/JYt6/QXNBjAPiFQnUJHMmEmOGW1ici0hF4HLwamjhxIhMnTiQ3N5d77rmH9957j/fee4/k5GRuvfVWzj///LaqU47XoMHGiOMabEQG+1lYmIiIxMfHs3r1agzDID8//5TBy2azkZqa2n7FeUFa3wjAPOPlcrkwbDaIHQn7vjenGyp4iYi0rqthZWUlixcvZtasWaxcuZKBAwdy22234XA4uO2225g/f35b1SnHa9BgI7x0F4l1DTY2Zeusl4iI1QzDwDAMq8toNyP7ROBjMzhUUkV2UaW5UNd5iYg00qIzXvv37+fVV1/l3XffpbS0lHPOOYe7776bM888E4DZs2fzj3/8g//+97/cdtttbVqw1HE32Nj7bV2DjRHsO1pORlYRkwb3tLo6ERFppsrKSs466yzy8/Pp2bMnU6ZM4fbbbyciIsLj13I4HC2qwb1fS/f3s0NS71A2ZRezZs9Reo+MxYhJwQa4ctJxtvB120trx9/Zafwaf8Pn7qa14/dkP4+D180338wPP/xAYGAgV199NTfccAMJCQknbHfeeeexcOFCT19ePOEOXjnppMSfyUcbc9RgQ0SkE0lKSiIpKYnBgwcDsGrVKl566SVWrFjBW2+9RXBwsEevl5GR0ap6WrN/n8BaNgGfr9tBH2ceASV+jACcWemkr18HRse/dWhr37/OTuPX+Luz9hi/x8HrwIED3HfffVx99dWnPCAMHjyYl19+uVXFyWnUN9hIV4MNEZFOaObMmY2+P+ussxg+fDi33347ixcvPmH96aSkpGC32z2uw+FwkJGR0eL9AS4km6W7NnKw0te8Zs2ZjOu7QOy1FaQmhEHUoBa9bntoi/F3Zhq/xq/xt3z87v2bw+Pg9emnnzZru5CQEMaNG+fpy4sn6htsZJAcY17jdSC/gsLyaiKC1GBDRKQzmjp1KkFBQaSnp3u8r91ub9UfTq3Z/4x+UYB5I+UaJwT4+kPvZDi4GnteBvQa2uK62ktr37/OTuPX+DV+746/45/3l5Nr2GCjbBcJPeoabGQVW1yYiIi0hsvlwmbrXIfovj0CiQr2o8bhYnN23XFIDTZEROp5fMbr/PPPP2mnJpvNRmhoKCkpKcyYMYOBAwe2ukA5heMabKTEj2B/vtlg4+zB0VZXJyIiLbB06VIqKioYNWqU1aV4xDAM0hIiWbY1j/X7CxiTGKngJSLSgMfBa9y4caxatYpDhw4xevRooqOjOXz4MOvXr6dXr17Exsby+eef89577/HKK6/oZsre1qDBRnL8mXyUoQYbIiIdwddff01FRQVlZWUA7Ny5k6VLlwIwefJk8vPzueuuu5g2bRoJCQkYhsHq1at56aWXGDx4MNdee62V5bfI6MQIlm3NY93+AnNBw+DlckE3arEvInI8j4PX2WefTXp6Op9//jmxsbH1y7Ozs7npppuYMmUKc+fO5YYbbmDevHnqbOhtDRtsnKsGGyIiHcWDDz5IVlZW/fdLly6tD17Lly8nNDSU6OhoXnjhBY4ePYrD4SA+Pp4bbriBWbNmERQUZFXpLZbWNxKA9fsLzQU9h4HNFyoLoXA/RCZaVpuIiNU8Dl7//ve/mTNnTqPQBRAXF8dtt93G008/zVVXXcXMmTN5+OGHT/t6paWlPP3002zbto0tW7ZQUFDA7NmzmTNnzgnbbt68mccee4wNGzZgt9uZMGEC99xzD3379m1W7T/88AP/+te/2LZtGwEBAZx33nn84Q9/ICoqqnmD74hiU83nvE0k9w4EYH9+OUXlNYQH+VpXl4hIN/fFF1+cdpunnnqqHSppP6P6hmMzIKeokpyiCmLDAyFmuHnGK2eDgpeIdGseX7m7b98+QkJCmlwXFhZW/+lefHw8FRUVp329wsJC3nzzTaqrq5kyZcpJt9u1axc33HADNTU1PPHEEzz88MPs3buX66+/nvz8/NP+nFWrVnHLLbcQFRXF008/zR//+Ed++OEHZs6cSXV19Wn377B6DDAbbNRWElG2m749zPC1KVtnvUREpH0F+fmQ1DsMaHDWS9d5iYgALQhecXFxvPvuu02ue/vtt+vPhBUWFhIeHn7a14uPj2f16tX897//5c477zzpdk8++SR+fn4sWLCAyZMnc+GFF7JgwQIKCgp47rnnTvtzHn30Ufr168eTTz7JWWedxRVXXMETTzxBZmYmb7311mn377DcDTYAstMZGR8BaLqhiIhYY3RiBADr9h1/nVe6JfWIiHQUHgevX/3qVyxdupSf/exnvPjii3z44Ye8+OKL/OxnP+Pzzz/n5ptvBmDlypUkJyef9vUMwzhpl0S32tpavvrqKy688MJGZ9vi4+MZP348y5YtO+X+eXl5ZGRkcOWVV+Ljc2x25ejRo+nXr99p9+/wGhzUkuN1nZeIiFhndIJ5ndexBhup5nN2utlgQ0Skm/L4Gq+f/vSnuFwu5s2bx9y5c+uXR0dH8+CDD9Z3YZo1axZ+fm1zE9/9+/dTWVnJ0KEn3nxxyJAhfP/991RVVeHv79/k/pmZmQBN7j906FDWrVvXJnVapokGG+psKCIiVkirC16bsoupqnXgHzMCDDuUH4GSHAiLs7hCERFreBS8HA4H+/fv55JLLuGnP/0pu3fvprCwkIiICAYMGNDozFV0dNvdR6qwsBCAiIiIE9ZFRETgcrkoKiqiV69ep9y/qamPERER9es94XA4PN6n4X4t3b9JMSnYAVfeJob1MsPnvqPl5JdWEh7YsRpseGX8nUx3fw80fo2/4XNL95eOq19UED2C/cgvq2ZLdrEZxHoOhUNbzOu8FLxEpJvyKHi5XC6mTZvGM888w+TJk9v9BsmnmpJ4uumKp9qmOfseLyMjw+N92nL/RlxOUn2CsNeWk7fuE3oFh3GozMF736xjZEzTZwGt1qbj76S6+3ug8Wv80jUZhkFa3wiWbzvEuv2FZvCKHXUseA29xOoSRUQs4VHw8vHxITo6Glc7z9F2n+kqKCg4YV1hYSGGYRAWFnba/Zs6s9XcJiDHS0lJwW63e7yfw+EgIyOjxfufjC1jNOz7jqSwCsb0H8Anm/KoCOxJauqANvsZbcFb4+9Muvt7oPFr/K0Zv3t/6djSEszgtX5/AdDfDF4bFqmzoYh0ax5f4zVt2jSWLFnCueee64VympaQkEBAQED9tVoNZWZmkpiYeNLru8C8Dgxg+/btTJ48+YT93es9YbfbW/VHU2v3P0FcKuz7DlvuRlL6nMUnm/LYnFPSYf+wa/Pxd0Ld/T3Q+DX+7jz+rs7dYEMt5UVEjvG4q2FSUhLr169nxowZ/Pe//+XTTz/ls88+a/Roaz4+Ppx33nl8/vnnlJaW1i/Pzs5m5cqVTJ069ZT7x8TEMHLkSD744ING1wekp6ezZ8+e0+7fKTRssBGvBhsiImKdkX0jsBmQVVhBXnEl9E4xVxRnQelha4sTEbGIx2e87rnnHsBs0b5q1aoT1huGwdatWz16za+//pqKigrKysoA2LlzJ0uXLgVg8uTJBAYGMmfOHKZPn86sWbO45ZZbqK6u5sknnyQyMpKbbrqp0esNHz6csWPH8tJLL9Uv+9///V9uuukm7rjjDq6//nqOHj3K3//+d4YMGcI111zjUb0dkrtdb94mknsHA2aDjaKKmg7XYENERLq2EH8fhsSEsi23hPX7C7g4ORaiBsHRnZC7AQZNsbpEEZF253Hwevnll9u8iAcffJCsrKz675cuXVofvJYvX06fPn0YOHAgr7zyCo8//jh33HEHdrudCRMmMH/+fHr06NHo9RwOB06ns9Gy8ePHs3DhQp588klmzZpFYGAg5557LnfffXebtb23VI8B4BcK1SVElu2mT2QgBwsq2JxVxJmD2q7DpIiISHOMToxkW24J6/YXmsErdpQZvHIUvESke/I4eI0bN67Ni/jiiy+atV1ycjIvvvjiabfbvn17k8vPOusszjrrLE9K6zxsNvOgtu87yEknJX4YBwsqyFDwEhERC4xOiOS1lftZt899I+VRsOltXeclIt2Wx9d4uZWUlPDtt9/y/vvvU1Ska4k6hLhU8zl7Pcl113ll6DovERGxQFpCBGAeh6prnWqwISLdXouC1/z585k0aRK33HIL99xzDwcPHgTgl7/8JQsXLmzTAsUDarAhIiIdxIDoYCKCfKmqdbI1pxh6jzRXFOyFihNvDyMi0tV5HLxeffVV5s+fz/Tp01mwYEGje3qdd955fPXVV21Zn3iiQYONlFizwcbeo+UUV9ZYV5OIiHRL7hspA6zbXwBBPSAi0VyZq3uxiUj306LgNXPmTB544AHOPvvsRusSExPZt29fmxUnHnI32KitJLJsN/ERgYDOeomIiDXSdD8vEZF6HgevAwcOMGnSpCbXBQcHU1xc3OqipIXcDTagrsGGphuKiIh13DdSXre/QYMNUPASkW7J4+AVGhrKkSNHmlyXlZVFVFRUq4uSVqhvsJFOSh93gw2FYRERaX+j+oZjGHCwoIJDJZXHpsQreIlIN+Rx8Jo4cSLPPvss5eXl9csMw6C2tpZFixadMP1Q2ll9g41jnQ11xktERKwQGuDLkF6hQN10w9i6BhtHdkBVqXWFiYhYwOPgdfvtt5Odnc20adOYO3cuhmHw3//+l2uvvZZ9+/bx29/+1ht1SnM10WBjz5EyNdgQERFLjE6MAOqmG4b0gtA4wAV5myytS0SkvXkcvBITE1m0aBEDBgxg0aJFuFwu3nvvPSIjI3nttdeIi4vzRp3SXA0abPRo0GBjs6YbioiIBdL6qsGGiAiAT0t2GjRoEM899xzV1dUUFBQQHh5OQEBAW9cmLeFusLHvO8hJJzk+iazCCjZlFTFxoK6/ExGR9uU+47XxYCE1Die+saMg8xMFLxHpdlp0A2U3Pz8/YmJiFLo6mgYNNkb2iQAgQ9d5iYiIBQZEhxAW4ENljZNtOSU64yUi3VaLzngdPHiQTz75hOzsbCorKxutMwyDhx9+uE2KkxZyN9jISSf5HDXYEBER69hsBqkJkXyTeZj1BwpIGV4XvA5thZpK8NWHtyLSPXgcvL766itmz56N0+mkR48e+Pn5NVpvGEabFSct5G6wkZtR32Bj95EySiprCA3wta4uERHplkYnRPBN5mHW7StgxoRUCIqG8iOQtxn6jLG6PBGRduFx8PrnP//J6NGj+ec//6l7dnVU7gYb1SX1DTayCivYnF3MhAH6NxMRkfZ17EbKhWAY5nTDXcshJ13BS0S6DY+v8dq3bx+33HKLQldH5m6wAXUNNsIAyDio6YYiItL+RvWNAGB/fjlHSqt0nZeIdEseB6+4uLhGN0+WDqpBg42Uuhspq8GGiIhYITzQl8G9QgD3jZQVvESk+/E4eP3mN7/h+eefp6Kiwhv1SFtxX+eVk05yvBpsiIiItY5NNyw4FrwObYHaagurEhFpPx5f45WRkcHRo0eZOnUq48ePJzIy8oRtHnjggTYpTlrB3dlQDTZERKQDSEuI4I01B1i/vwAumgD+4VBVBIe3QexIq8sTEfE6j4PXf//73/qvP/rooxPWG4ah4NURNGiwEVW+h7jwALKLKtVgQ0RELDE60fygdsOBImqdLnxiR8Leb83phgpeItINeBy8tm3b5o06pK25G2zs+65uumES2UWVbMoqUvASEZF2N6hnCKH+PpRU1bItt4Tk2FHHghc3WF2eiIjXeXyNl3QiarAhIiIdhHkj5QgA1h8obHAtshpsiEj30KzgtXr1asrKyk67XX5+Pm+99Vari5I20rDBRh8FLxERsVZaXYON9fsaNNjIzQCnw8KqRETaR7OC14wZM9i1a1f9906nk+TkZLZs2dJouwMHDvCnP/2pbSuUlnOf8crdVN9gY8+RMkqraq2rSUREuq20hme8ogaCbzDUVsCRHZbWJSLSHpoVvFwu1wnf19bWnrBcOpgeA80GG7UVRFfsJTY8AJcLNuusl4iIWGB0X/OM154jZeRXOKB3irlC0w1FpBvQNV5dmbvBBkD2+vr7eWm6oYiIWCE8yJeBPc0ZGOsb3s9LwUtEugEFr66uiQYbupGyiIhYpf46r/2FCl4i0q0oeHV1DRpsqLOhiIhYbXRd8FrX8IxX7kZwOi2sSkTE+5p9H6/du3djt9sBcDgc9cuO30Y6mAYNNpLrGmzsrmuwEeLv8W3cREREWmV0YgQAGw4U4ogajd3uD1XFULDHbLghItJFNfsv7/vuu++EZXfffXej710uF4ZhtL4qaTvuBhvVJfSs3EvvsAByiyvZkl3MuP49rK5ORES6mcG9Qgnx96G0qpbMI5UM650MWWvN6YYKXiLShTUreD3yyCPerkO8xd1gY993kJ1OcvxQcosrycgqUvASEZF2Z7cZjOobzvc7j7JufwHDYkcdC17JV1tdnoiI1zQreF111VXerkO8KS61LnitJyV+HMu25qnBhoiIWGZ0QqQZvPYV8vOBarAhIt2Dmmt0Bw0bbPQJA9RgQ0RErHPsRsrHtZTX/UFFpAtT8OoOmmiwsetwKWVVtdbVJCIi3VZa3Y2Udx8uozBkENh8oCIfig5aXJmIiPcoeHUH7gYbtRX0qtxH77AAXC7YklNsdWUiItINRQb7MSC67kbK2RXQa5i5QtMNRaQLU/DqDmw2iB1pfp2dTrL7fl4HNd1QRESskeqebri/QDdSFpFuQcGru4hLM591I2UREekAjt1IubDRtcgiIl2VR8GrsrKSn/3sZ/zwww/eqke8xX1Qy16vBhsiImI5d/BKP1CII6ZuVobOeIlIF+ZR8AoICCAzMxO73e6tesRb1GBDREQ6kCExIQT52SmtqmWXrR8YNijNg5Jcq0sTEfEKj6capqWlsXHjRm/UIt50XIONmDB/NdgQERHL+NhtjOoTAcDanCqIHmKu0FkvEemiPA5e99xzD2+88QZLliyhrKzMGzWJNxzXYCNFDTZERMRiaWqwISLdiI+nO1x33XXU1NRw3333cd999xEQEIBhGPXrDcNg7dq1bVqk27333su777570vVvvPEGqampTa575513uO+++5pc991339GzZ8+2KLFji02Ffd9DTjrJ8WNZtvUQm3Sdl4iIWKRRg42Jo2DjGwpeItJleRy8LrrookZBqz399re/5Wc/+9kJy2fNmoWfnx8pKSmnfY1HHnmEAQMGNFoWERHRViV2bO7OhtnppJylzoYiImIt9xmvnYdKKY0cQQgoeIlIl+Vx8Jo7d6436miWhIQEEhISGi1btWoVBQUF3Hrrrc1q+jF48OBmBbQuqb7BRgYpDRpslFfXEuTn8X8KIiIirRIV4k9iVBD7jpaTXpvA2QBFB6DsKARHWV2eiEib6vT38XrrrbcwDINrrrnG6lI6voYNNqr20SvUH6cLtmSrwYaIiFjDPd1wdU4t9KibkZKrs14i0vW0+DRHZmYmu3btoqqq6oR1P/nJT1pTU7OVlJTw6aefMnHiRPr27dusfWbNmkV+fj6hoaGMGzeO22+/nSFDhni50g7C3WBj3/d1DTaGsHzbITKyijijXw+rqxMRkW5odEIE767PYp27wUb+bnO64cDzrS5NRKRNeRy8KioquPXWW/nxxx8xDAOXywXQ6Lqv9gpeH374IZWVlUyfPv2020ZHRzNr1ixSU1MJCQkhMzOThQsXct1117Fo0SKSkpI8+tkOh6NFNbv3a+n+rWX0Holt3/c4s9czIm4My7cdYuPBwnarx+rxdwTd/T3Q+DX+hs8t3V+6jrQGN1J2XjAK2+Z3dZ2XiHRJHgevp59+mqysLP773//yi1/8gqeeeorg4GAWLVpEZmYmTzzxhBfKbNpbb71FREQEU6dOPe2255xzDuecc07992PHjmXy5Mlcfvnl/Otf/+KZZ57x6GdnZGR4XG9b7t9SPaoj6Q+U7/yeoAFXAbBm1yHS09PbtQ6rxt+RdPf3QOPX+EUAknqHEuhrp6SylpzAIcSDgpeIdEkeB6/ly5dzyy23kJZmdsiLjY1lxIgRTJw4kbvuuovXXnuNhx56qM0LPd62bdvYtGkTM2bMwM/Pr0Wv0adPH8aMGcOGDZ7/gk9JSWlWM4/jORwOMjIyWrx/q/UJhvUPE1yyhyvOTGbu99+RVVLLkOHJ7dJgw/LxdwDd/T3Q+DX+1ozfvb90HT52GyP7hLNyTz6rqvpwFZjTDSuLICDc6vJERNqMx39pZ2VlMWDAAOx2O4ZhUFFRUb/u8ssv549//GO7BK+33noLgGuvvbZVr+NyubDZPO8xYrfbW/VHU2v3b7GeQ8AvFKO6hLjag/QM9edwSRWZh8oYk9h+13lZNv4OpLu/Bxq/xt+dxy+NpSVEsnJPPitzDa4K72t2NszNgH5nW12aiEib8ThxhIaGUl5eDkBUVBT79u2rX1dbW1u/zpuqq6v54IMPGDlyZKsaYxw4cIB169YxatSoNqyug3M32IC6Bht19/M6qPt5iYiINUbX3c+rvsEGaLqhiHQ5HgevoUOHsnfvXgDGjx/PggULWLNmDRs3bmT+/PkeN6loiWXLllFYWHjSs133338/w4cPJysrq37ZzJkzeeqpp1i2bBkrVqzgpZde4vrrr8cwDO644w6v19yhxKaazznpJLuDV5ZayouItJXS0lIeffRRbrrpJiZMmMDQoUOZN29ek9tu3ryZmTNnkpaWxhlnnMHs2bM5cOBAO1dsLXeDjR2HSqnsmWwuVPASkS7G4+B1zTXXUFZWBsDvfvc7KioquOGGG7juuuvIzs7m3nvvbfMij/fWW28RFBTEpZde2uR6p9OJw+Go77gIMGTIED755BPuvvtubr75Zp599lkmTJjA22+/3X3aybu5b6Tc4IzXpiyd8RIRaSuFhYW8+eabVFdXM2XKlJNut2vXLm644QZqamp44oknePjhh9m7dy/XX389+fn57VixtXqG+tO3RyAuF+y0DzQXKniJSBfj8TVeDcNO3759+fTTT+tby6elpREREdGW9TXp+eefP+X6uXPnMnfu3EbL7r//fm+W1Lm4z3jlZpASGwzAjkMlVFQ7CPTTNRciIq0VHx/P6tWrMQyD/Px8Fi9e3OR2Tz75JH5+fixYsICQkBAARowYwUUXXcRzzz3HH/7wh/Ys21KjEyI5kF/BivK+JAMcyYTqMvALtro0EZE24XlXieMEBQVx/vnnc95557VL6JI2EDUI/EKgtoKY6n30DPXH6YItOZpuKCLSFgzDaHR/y6bU1tby1VdfceGFF9aHLjBD2/jx41m2bJm3y+xQRtdNN/wu1w4hMeByQt5mi6sSEWk73u8fLh2PzWZevLzve4zsdFLih/DFtkNsyipiTGKk1dWJiHQL+/fvp7KykqFDh56wbsiQIXz//fdUVVXh7+/f7Nds7Y2prbxB9cj4MKDuRsoDR2Hb+RnOrPW44sZ4/Wd3hPFbSePX+Bs+dzetHb8n+zUreCUlJZ32kzs3wzDYsmVLswsQi8Smwr7v6xpsjOWLbYfYqM6GIiLtprCwEKDJ2SIRERG4XC6Kioro1atXs1+ztfc4s/IeabVOF352KKqoYUd1T4YC+Zu/ZJ/vGe1WQ3e/R5zGr/F3Z+0x/mYFr9tuu63ZwUs6iYYNNs5Ugw0REauc6vjq6bG3tTemtvrG3qPWrmT13gIO9xzL0P2vElV9kMjUVK//3I4yfqto/Bq/xt/y8bv3b45mBa85c+Z4XIR0cGqwISJiKfeZroKCghPWFRYWYhgGYWFhHr1ma29MbfWNrUcnRLJ6bwHflfXhbMA4vBW7qxZ8mj/dsjWsHr/VNH6NX+P37vhb3VxDOqnjGmxEh6jBhohIe0pISCAgIIDMzMwT1mVmZpKYmOjR9V1dgft+Xl/l+EFgD3DWqsGGiHQZHjfXWLJkyWm3+clPftKCUqRdNWywkbOBlPhBfLn9sBpsiIi0Ex8fH8477zw+//xz/vCHP9R3NszOzmblypXMnDnT2gItMDohAoDth0qpHToSn71fmffzih9taV0iIm3B4+B1shskN5yHruDVSbgbbGSvJyV+DF9uP0yGrvMSEWkTX3/9NRUVFZSVlQGwc+dOli5dCsDkyZMJDAxkzpw5TJ8+nVmzZnHLLbdQXV3Nk08+SWRkJDfddJOV5VuiV1gA8RGBZBVWkBs8lD58pRspi0iX4XHwWr58+QnLCgoKWL58OR9//DH//Oc/26QwaQcNGmwkT1SDDRGRtvTggw+SlZVV//3SpUvrg9fy5cvp06cPAwcO5JVXXuHxxx/njjvuwG63M2HCBObPn0+PHj2sKt1SoxMjySqsIMPRjz6g4CUiXYbHwSs+Pr7JZcnJydTW1vLyyy8zd+7cNilOvKxhg404d4ONUiprHAT4dt+LK0VE2sIXX3zRrO2Sk5N58cUXvVtMJ5LWN4IPNmTzdUkcl4B5jZejBuy+VpcmItIqbdpcY+LEic0+0EgH0KDBRu/q/USH+OFwutRgQ0RELDO67jrjz7IDcPmHgaMKDm+3uCoRkdZr0+CVlZWFzaZGiZ2GzQa9RwJg5GwgOV7TDUVExFrDY8Pw87GRX+GgMmqEuVDTDUWkC/B4quHq1atPWFZdXc327dtZsGABEydObJPCpJ3EpcH+H8wbKceP4avth8k4qOAlIiLW8POxkRIfztp9BRwMGMxgVpjBK+3nVpcmItIqHgevG264oVEHQwCXywXAmWeeyZ/+9Ke2qUzaR32DjfX1DTbU2VBERKw0OiGCtfsKWF+byGDQGS8R6RI8Dl4vv/zyCcv8/f2Jj48nOjq6TYqSdtSwwUasGmyIiIj1RidEAntYXhjLTwFyM8DpAJuOSyLSeXkcvMaNG+eNOsQq7gYb1aXE1uwnKtiPo2XVbM0pJi1BN1IWEZH25z7+LD8chis4EKOmDI7ugp5DLK5MRKTlPO6EsWfPHlatWtXkulWrVrF3797W1iTtSQ02RESkg+kdHkBceAC1LhslkUnmQk03FJFOzuPgNXfu3CZvogzw5Zdf6h5enVGDGymnxOs6LxERsV5aXVv5vb6DzQU56dYVIyLSBjwOXhkZGYwdO7bJdWPHjmXTpk2tLkraWVya+ZyTXn/GKyNL9/ISERHrpPWNAGBtdV9zgc54iUgn53HwKikpISgoqMl1AQEBFBXpTEmn426wkbORlLi6Bht5JVTWOKyrSUREujX3jZQ/ze9tLsjZCHVdlEVEOiOPg1dMTAwbN25sct3GjRvp2bNnq4uSduZusFFbQVzNfnoE+1HrdLEtt8TqykREpJsaEReGn93G2vIYXDY/qCqCgr1WlyUi0mIeB68pU6awcOFCfvzxx0bLV65cyX/+8x+mTp3aZsVJOzmuwYau8xIREav5+9gZER9GDT4Uhrqv89J0QxHpvDwOXrfddhtxcXHceOONXHLJJfXPM2fOJC4ujjlz5nijTvG2JhpsbDqo4CUiItYZXddWfqfPQHOBgpeIdGIeB6/Q0FDeeOMNZs+eTXh4ONnZ2YSHhzNnzhxef/11QkJCvFGneFv9dV7HGmxs1BkvERGxUFpCBACrKvuYCxS8RKQT8/gGygDBwcHcdttt3HbbbW1dj1jF3dkwN+OEBhsBvnYLCxMRke7KfcZrWWEst/liBi+XCwzD2sJERFrA4zNebiUlJXz77be8//776mTYFbgbbNSUq8GGiIh0CHERgfQOC2CLoy8uww7lR6A42+qyRERapEXBa/78+UyaNIlbbrmFe+65h4MHDwLwy1/+koULF7ZpgdJOjmuwkawGGyIi0gGkJURQhR/5Qf3NBZpuKCKdlMfB69VXX2X+/PlMnz6dBQsW4GpwT43zzjuPr776qi3rk/bUqMFGGKAGGyIiYi33dMNthhpsiEjn5vE1Xq+++iozZ87k7rvvxuFofIPdxMRE9u3b12bFSTtr0GAjZbzOeImIiPVGJ0YA8EN5PGcB5KRbWI2ISMt5fMbrwIEDTJo0qcl1wcHBFBcXt7oosYj7jFduBsmxZnfKzLoGGyIiIlYYEReOr93gx4q+5gKd8RKRTqpF7eSPHDnS5LqsrCyioqJaXZRYpEGDjfjaA0QG+VLrdLFdDTZERMQiAb52hseFs9WViAsDSnKgJM/qskREPOZx8Jo4cSLPPvss5eXl9csMw6C2tpZFixZx9tlnt2mB0o5s9gYNNtLVYENERDqE0QkRlBPAEf8Ec0HuRmsLEhFpAY+D1+233052djbTpk1j7ty5GIbBf//7X6699lr27dvHb3/7W2/UKe2lUYMNM3htUvASERELpdU12NiMu7NhunXFiIi0kMfBKzExkUWLFjFgwAAWLVqEy+XivffeIzIyktdee424uDhv1CntpWGDDZ3xEhGRDmB0QgQAK8rizQW6zktEOiGPuxoCDBo0iOeee47q6moKCgoIDw8nICCgrWsTK5ykwUZVrQN/H7t1dYmISLcVHxFIr1B/Npb1MxcoeIlIJ9SiGyi7+fn5ERMTo9DVlUQNAt9gqCmnj+MAEUG+1DjUYENERKxjGAZpCRFsdvYzFxTuh/J8S2sSEfFUs854LVmyxKMX/clPftKCUqRDsNkhdhTs/wEjZwMp8QP4dscRMrKKGNknwurqRESkmxqdEMmnm4M57BNLz9ocs8HGgHOtLktEpNmaFbzuvffeZr+gYRgKXp1dXCrs/wGy15Mcn8a3O46owYaIiFhqdKLZYGODox9TyDGnGyp4iUgn0qzgtXz5cm/XIR1JwwYb49RgQ0RErJcSH46PzWBddQJTfFfoOi8R6XSaFbzi4+O9XYd0JA0abKTUNdjYnqsGGyIiYh3zRsphbMruZy5Q8BKRTqZFXQ0BSktLSU9Pp7CwkMjISEaNGkVISEhb1iZWqW+wUUYfxwHCA30pqqghM7eUlD7hVlcnIiLdVFrfCD482M/85uhOqCyGgDBLaxIRaa4WBa/nnnuOp556isrKSlwuF4ZhEBAQwO23386NN97Y1jUCsHLlSmbMmNHkujfeeIPU1NRT7n/06FEee+wxvvzySyorK0lKSuJ3v/sdEydO9EK1nZzNDrEjYf+K+gYb3+00G2woeImIiFVGJ0by0opwjtiiiXYegbxNkHim1WWJiDSLx8FryZIlPPbYY5xzzjlcddVV9OrVi0OHDrFkyRIeffRRIiMjvdpc484772T8+PGNlg0ePPiU+1RXVzNz5kyKi4v54x//SFRUFK+++io333wzL7zwAuPGjfNavZ1WXBrsX2Fe59UnrT54iYiIWGV0gtlgI702kSm2I+Z0QwUvEekkPA5eL774IpdddhmPP/54o+WXXHIJ//u//8tLL73k1eCVmJh42rNbx1u8eDGZmZm8/vrrpKWlATB+/HiuvPJKHnvsMRYvXuyFSjs5d4ON7PWkjPsdgDobioiIpfpEBhId4kdGRT+m2NbqOi8R6VQ8voHy7t27ueKKK5pcd8UVV7Br165WF9XWli1bRv/+/etDF4CPjw9XXHEFGzduJC8vz8LqOqgmGmxsyy2mqtZhXU0iItKtmTdSjmSTq5+5QMFLRDoRj894BQQEUFTU9JmPoqIiAgICWl3UqTz00EPceeedBAQEkJaWxq233soZZ5xxyn127NjBmDFjTlg+dOjQ+vUxMTEe1eFwtCyAuPdr6f7tJqI/Nt9gjJoyYmv21TfY2JpdREp8y6/z6jTj96Lu/h5o/Bp/w+eW7i/d1+iESF7c0t/85vA2qC4HvyBrixIRaQaPg9eYMWN46qmnGDduXKOwcvjwYebPn3/aENRSoaGhzJgxg/HjxxMREcG+fft47rnnmDFjBgsWLGDSpEkn3bewsJDw8BPDgntZYWGhx/VkZGR4vE9b7t8ehoQOIDQ/gwMrPyAx9Aw2VsAnKzfjGND6A1xnGL+3dff3QOPX+EVaIi0hgr8RST7h9HAVwaEt0Mc7f3uIiLQlj4PXnXfeyc9+9jMuvPBCJk6cSM+ePTl8+DA//vgjPj4+PPXUU96ok+HDhzN8+PD678844wymTp3K5ZdfzmOPPXbK4AXm9ISWrDuZlJQU7HbP72nlcDjIyMho8f7tycg7E1ZlkOiXz8SkeDYe2kORLYzU1OQWv2ZnGr+3dPf3QOPX+Fszfvf+0n2N7BOO3WZjo6Mf59o3QE66gpeIdAoeB6/Bgwfz1ltvMW/ePFauXElhYSERERFccMEFzJ49m/79+3ujziaFhYVx7rnn8vrrr1NZWXnSaY4RERFNntVyT5ls6mzY6djt9lb90dTa/dtFvDk905azkZFjI4E9bM4uaZO6O8X4vay7vwcav8bfnccvLRfk58Ow2FA25fXjXDboOi8R6TRadB+v/v37849//KOta2kRl8sFnPqs1ZAhQ8jMzDxhuXvZ6drRd1v1DTY21jfY2J5bQnWtEz8fj/uyiIiItIm0vpFsyqn7oFfBS0Q6iU7913NRURFfffUVw4YNw9/f/6TbTZkyhd27d7Nhw7FfzrW1tbz//vuMGjXK48Ya3UbUIPANhppy+joPEB7oS7XDSWZeidWViYhINzY6MeJYZ8O8LVBbbWk9IiLN0aIzXlu2bOGDDz4gOzubqqqqRusMw+CZZ55pk+Iauuuuu4iNjSU5OZnIyEj27dvH888/z9GjR5k7d279dvfffz9Llizh888/Jz4+HoDp06fz2muvcccdd3DXXXcRFRXFa6+9xp49e3jhhRfavNYuw2aH2JGwfwVGzgaS4/vz/c6jZGQVkdyKzoYiIiKtMTohkoOunhS5ggl3lsHhrRA7yuqyREROyePgtWTJEu677z5sNhs9evTA19e30fqWNKpojqFDh/Lxxx/z+uuvU15eTnh4OGPGjOHRRx9l5MiR9ds5nU4cDkf9FEQAPz8/XnzxRR577DH+8pe/UFFRwbBhw/jPf/7DuHHjvFJvlxGbCvtXQE46yfGp9cHrf6yuS0REuq2EHkH0CPZnU3U/zrJvhux0BS8R6fA8Dl7PPPMMkydP5m9/+1uLmlK01K9//Wt+/etfn3a7uXPnNjoD5hYdHc3f/vY3b5TWtbmv88pOJ2Ws+e+9Kavp+7iJiIi0B8MwGJ0QQcaO/pzFZl3nJSKdgsfXeB06dIgZM2a0a+gSC8Wlmc8NGmxsyzEbbIiIiFglLSGSzc5+5jcKXiLSCXgcvIYNG0ZeXp43apGOqEGDjQTnQcICfNRgQ0RELJeWEMEmV11nw7xN4Ki1tiARkdPwOHjdfffdLFy4kG3btnmjHulo3A02oK7BhqYbioiI9Ub1iWA/MZS6AqC2Eo6ceNsYEZGOxONrvFJTU7nwwgu56qqr6Nmz5wlTDg3D4P3332+zAqUDaNBgIyU+lR92mQ02fmZ1XSIi0m0F+/swpHcEm4/2Y7yxzZxuGDPc6rJERE7K4zNeCxcuZMGCBURGRhIXF0dERESjh6796oIaNNjQGS8REekoRidE6DovEek0PD7j9fLLL3PNNdfw0EMPYbfbvVGTdDSxqeZzgwYbW3NLqHE48bV36ntwi4hIJzY6IZLvV/czv1HwEpEOzuO/msvKyrjssssUurqT6MH1DTYSySI0wIfqWjXYEBERazVssOHK3QhOddwVkY7L4+A1evRodu3a5Y1apKNq2GAjO53kOE03FBER6/WPDiY/IJFKly9GdSnk77a6JBGRk/I4eP3xj3/k9ddfZ9myZVRXV3ujJumI3NMNc9JJ6WMGrwwFLxERsZBhGIxMjGarK9FckJNuaT0iIqfi8TVe11xzDbW1tcyZMwfDMAgICGi03jAM1q5d22YFSgfRoMFGyhnu4FVsXT0iIiJAWt8INu3sR5ptp3mdV8p0q0sSEWmSx8HroosuwjAMb9QiHVlTDTZyitVgQ0RELDU6MZL33TdSVoMNEenAPApeDoeD3/zmN/To0UNt47ub+gYbZfUNNkoqa8nMK2FEnP5bEBERa4zqG8Ejrn4AOLM3YHO5QB8Qi0gH5NGpCpfLxbRp00hPT/dSOdJhNWywkbNBDTZERKRDCPH3weg5jGqXHVtVIRTut7okEZEmeRS8fHx8iI6OxuVyease6cjc0w2z16vBhoiIdBjJib3IdPU1v9F0QxHpoDy+OGfatGksWbLEC6VIh9egwUZyvBpsiIhIxzA6IYJNzn7mNwpeItJBedxcIykpiY8//pgZM2Zw4YUX0rNnzxOabVx44YVtVqB0IGqwISIiHVBaQiQvuvoDX+HMSff8U2URkXbgcfC65557AMjLy2PVqlUnrDcMg61bt7a+Mul4GjbYcGUR6u9DSVUtO/JKGR4XZnV1IiLSTQ2IDmav7yAAHAfT1WBDRDokj4PXyy+/7I06pDOw2aF3Chz4EVvuBkbEJ/Lj7nw2ZRUpeImItMDKlSuZMWNGk+veeOMNUlNT27egTspmMwjqOxLHfgPfyiNQkgthsVaXJSLSiMfBa9y4cd6oQzqLuDQ48KN5I+X4kfy4O5+MrCJ+Orav1ZWJiHRad955J+PHj2+0bPDgwRZV0zmNSIxl5754hhoHzeu8FLxEpIPxOHi5lZSUkJ6eTkFBAZMnT9Z9vbqL+gYb60keMwdQZ0MRkdZKTEzU2a1WGp0YwSZXP4ZSF7yGXmx1SSIijbTo+tP58+czadIkbrnlFu655x4OHjwIwC9/+UsWLlzYpgVKB3OSBhu1Dqd1NYmISLc3qm8Em139Aag6sM7iakRETuRx8Hr11VeZP38+06dPZ8GCBY3u6XXeeefx1VdftWV90tHUN9gopx/ZhPj7UFXrZMehUqsrExHptB566CGGDx/O6NGj+dWvfsWaNWusLqnTCQvwpSh8GACu7HRrixERaYLHUw1fffVVZs6cyd13343D4Wi0LjExkX379rVZcdIBHd9gIy6RlXvM67yGxarBhoiIJ0JDQ5kxYwbjx48nIiKCffv28dxzzzFjxgwWLFjApEmTPHq944/Lnu7X0v07iqCENNgKARW5OIpzIbhns/brKuNvKY1f42/43N20dvye7Odx8Dpw4MBJDwTBwcEUF+uGul1eXGqjBhsr95idDX96hhpsiIh4Yvjw4QwfPrz++zPOOIOpU6dy+eWX89hjj3kcvDIyMlpVT2v3t1qI3cFuZ28G2HLZ/f0SinuN9Wj/zj7+1tL4Nf7urD3G73HwCg0N5ciRI02uy8rKIioqqtVFSQcXl2Y+56STMloNNkRE2lJYWBjnnnsur7/+OpWVlQQEBDR735SUFOx2u8c/0+FwkJGR0eL9O4rguFI2b+jHAHLpH1iC0cyGJV1l/C2l8Wv8Gn/Lx+/evzk8Dl4TJ07k2Wef5YILLsDf3x8wb5pcW1vLokWLOPvssz19Sels3A02cjaQfFyDDR97i/q1iIhIA+7rpw0PbwJst9tb9YdTa/e32pCYMD6yDwJ+pGzfOsLP9WwsnX38raXxa/wav3fH73Hwuv3225k+fTrTpk1jypQpGIbBf//7X7Zu3Up2djZPPPGEF8qUDqW+wUYZ/esabJRW1bLzcClJvXWdl4hIaxQVFfHVV18xbNiw+g84pXlsNoPqnilwGGy5G60uR0SkEY9PTyQmJrJo0SIGDBjAokWLcLlcvPfee0RGRvLaa68RFxfnjTqlI3E32ABsuRsYHmeGrYyDmm4oIuKJu+66i8cff5ylS5eycuVK3nzzTa677jqOHj3K3XffbXV5nVJ4/zEAhFYchIoCi6sRETmmRTdQHjRoEM899xzV1dUUFBQQHh7u0Rx06QKOa7Cxqq7BxrVqsCEi0mxDhw7l448/5vXXX6e8vJzw8HDGjBnDo48+ysiRI60ur1MaMagfB37sSV/bYcjNgP7nWF2SiAjQgjNe9913HwcOHADAz8+PmJiY+tCVlZXFfffd17YVSsdUf51XOinx4YAabIiIeOrXv/41S5YsYc2aNWzZsoUVK1bw1FNPKXS1QmqfCDa5+gFQtnettcWIiDTgcfB69913KSho+tR9QUEBS5YsaW1N0hnUdzbcSEqc2WBjS12DDREREauEB/mSEzQUgOI9Cl4i0nG0aQu6oqIi/Pz82vIlpaNqosFGZY2TnYdLra5MRES6OVdv84yh3+HufV8iEelYmnWN1+rVq1m5cmX994sXL+abb75ptE1VVRXLly9n4MCBbVuhdEzuBhsHfqxrsJHIqj35ZBwsUmdDERGxVI9BY2EfRFbsg6pS8A+xuiQRkeYFr5UrV/LUU08B5j1FFi9e3OR2cXFx/L//9//arjrp2NRgQ0REOqDhgweTuyyS3kYBtTkb8el3ptUliYg0L3jdfPPN/PznP8flcnHmmWfy3HPPMXz48Ebb+Pn5ERwc7JUipYNq2GAjbQ6gBhsiImK9wb1C+Ib+9KaAw5mriVXwEpEOoFnBKyAgoL5z4fLly+nZs6eu5RLzjBdAzkaSL23cYMPH3qaXD4qIiDSbzWaQHzYcStZRvk8NNkSkY/D4r+P4+HiFLjFFDwHfIKgpY4CRQ7CfncoaJ7sOl1ldmYiIdHP2+FEABB7ZZHElIiImj2+gXFNTw3/+8x8+/PBDsrOzqaqqarTeMAy2bNnSZgVKB2azQ++RdQ020hkRl8iqvflkZBUxtHeo1dWJiEg31nPweNgGMVV7oKYSfAOsLklEujmPg9c//vEPXnzxRc455xymTJmis1/dXYMGG8nxI1m112ywMX1MH6srExGRbmx4UhJH3w8lyiiheN8GwgaNt7okEenmPA5en3zyCbfddhuzZ8/2Rj3S2TRqsGH+N6EGGyIiYrWIYH9W+wwkypFO9rYfFbxExHIeB6+ioiLOOOMMb9RySitWrOD9999n/fr15ObmEhoaSnJyMrfddhvJycmn3Pedd97hvvvua3Ldd999R8+ePb1RcvfQoMFGirvBRnYxDqcLu82wri4REen2iiNGwNF0qg6st7oUERHPg9fYsWPZtm0bEyZM8EY9J7Vo0SIKCwuZMWMGgwYNIj8/nxdeeIHrrruOZ599lokTJ572NR555BEGDBjQaFlERISXKu4mGjTY6G/kEuRnp7zawa7DpQyJ0XVeIiJiHb++aXD0VULyN1tdioiI58HrgQce4Le//S1xcXGce+657XaN1//93/8RFRXVaNmkSZO48MILWbBgQbOC1+DBg0lJSfFWid1TgwYb9tx0RsQlsHpvARkHixS8RETEUrFJ4yEd+lbvxlFTjd1X16WLiHU8Dl5XXnkltbW13HHHHRiGUX9/LzfDMFi7tu3vmXF86AIIDg5m4MCB5OTktPnPEw80arCRYgavrCKuUYMNERGxUP/ByRS7gggzytmzfR39k9t3to6ISEMeB6+LLroIw+gY1+6UlJSwZcuWZk97nDVrFvn5+YSGhjJu3Dhuv/12hgwZ0qKf7XA4WrVfS/fviIyYkdgAV/Z6Roz6LQAZWYVNjrErjt9T3f090Pg1/obPLd1fpDnsdhsH/AcxonojedtWKniJiKU8Dl5z5871Rh0t8uCDD1JRUcGsWbNOuV10dDSzZs0iNTWVkJAQMjMzWbhwIddddx2LFi0iKSnJ45+dkZHR0rLbZP+OJKDEnxGAMzsdn/4HAdh0sIi169djP0lI70rjb6nu/h5o/Bq/SHuoiEqGnI04stVgQ0Ss5XHw6iieeOIJPvjgA/70pz+dtqvhOeecwznnnFP//dixY5k8eTKXX345//rXv3jmmWc8/vkpKSnY7XaP93M4HGRkZLR4/w7JmYLr+yDsNeVcOiyc+78qprzaQVj8YAb3Cmm0aZccv4e6+3ug8Wv8rRm/e3+R5gpIGA05rxFRuMXqUkSkm2tW8Nq82bNuQCNGjGhRMc311FNP8cwzz/D73/+eX/ziFy16jT59+jBmzBg2bNjQov3tdnur/mhq7f4dit0OvVPgwEr8Dm1ieGxf1uwrYEtOCUmx4SfZpQuNv4W6+3ug8Wv83Xn80n76jJgIK2GAYw+FpRVEhARaXZKIdFPNCl7XXHNNs67rcrlcGIbB1q1bW13YyTz11FPMmzePOXPmnHaK4em4XC5sNlsbVdbNxaXBgZWQvZ7k+GTW7DMbbFw9Wg02RETEOhF9hlGBP4FGFRlb1jFu3FlWlyQi3VSzgtcjjzzi7TqaZf78+cybN49bb72V2bNnt+q1Dhw4wLp16zjzzDPbqLpuLjbVfM5JJ2WU+W+zKavIunpEREQAbHZyAwfTv2ITR3esBgUvEbFIs4LXVVdd5e06Tuv555/nySefZNKkSZx77rmkp6c3Wp+amgrA/fffz5IlS/j888+Jj48HYObMmZxxxhkkJSURHBxMZmYmzz77LIZhcMcdd7TzSLqouFTzOWcjKZeY13Vtzi7G4XRht3WMLpgiItI9VfVMgf2bIKdllxeIiLSFTtNc48svvwTg22+/5dtvvz1h/fbt2wFwOp04HA5cLlf9uiFDhvDJJ5/w/PPPU1VVRY8ePZgwYQK//e1v6d+/f/sMoKuLHgK+QVBTxkBbLoG+dsqrHew5UsqgXrqRsoiIWCe0/xmwfxHRJdtwOl3Y9IGgiFig0wSvV155pVnbzZ0794SW9/fff783SpKGbMcabNhzNzAizmywsfFgkYKXiIhYKmboOPgahrKHnYeKGdK76cZPIiLepM4S0nYaXOeVHG8e1DJ0nZeIiFjMJ2YY1fgSZlSQuVW3IxARayh4SduJSzOfs9eTUhe81GBDREQsZ/flSPBgAIp2r7G4GBHprhS8pO00bLAR17jBhoiIiJWcMSMBsOdttLgSEemuFLyk7ZyiwYaIiIiVwgeeAUBcRSZFFTUWVyMi3ZGCl7Qdd4MNwJ67geFxYYCu8xIREeuF9hsDQLJtDxv2F1hcjYh0Rwpe0rYa3kjZ3WDjYLF19YiIiAD0Go4DOz2MUnbs2GZ1NSLSDSl4SdtyX+eVfayzoRpsiIiI5XwDKAodBEDJ3rUWFyMi3ZGCl7Qtd2fDnA2kxLobbBThVIMNERGxWuwoAAKOZOi4JCLtTsFL2lajBhs5BPjaKKt2sPtImdWViYhINxc+wLzOa7BjN7vV+ElE2pmCl7StBg02fPI2MjzWbLCh6YYiImI1e92sjGTbHtbtK7S2GBHpdhS8pO011WBDwUtERKzWOxkXBjFGITt377C6GhHpZhS8pO010WBDwUtERCznF0xZ6AAAyvelW1uLiHQ7Cl7S9txnvHI3khJnNtjYkl2sC5lFRMRyPn1SAYgs3kJJpW6kLCLtR8FL2p67wUZ1KYNsuQT42iitqmXPUTXYEBERawX0HQ3ACGMvGw5oNoaItB8FL2l7dp9GDTaGqcGGiIh0FHUt5ZNte1i3v8DiYkSkO1HwEu9oqsHGQQUvERGxWN0Hg32MI+zYs9faWkSkW1HwEu9Qgw0REemIAiOoCk0EoCYrHZdL1x+LSPtQ8BLvaNRgIxSAzWqwISIiHYBPH/N+Xv2qd7L7iK4/FpH2oeAl3hE9BHwCobqUwfZc/H3MBhv78sutrkxERLo5e5z7Oq+9rN9faG0xItJtKHiJd9h9IHYkAD65GxgeZzbY0HRDERGxXF2DjRGGGmyISPtR8BLvaaLBxqasYuvqERERgfrg1d+Wx7a9By0uRkS6CwUv8Z4mGmxsytYZLxERsVhwNI7QeAD8Dm+mtKrW4oJEpDtQ8BLvOVmDDXWQEhERi9nrPhwcYexho253IiLtQMFLvKfJBhsOcksdVlcmIiLdnfs6LzXYEJF2ouAl3mP3qb9RpU/eRobFmg02dhXUWFmViIhI/XT4ZGMP6QcKLS1FRLoHBS/xrjjzXilkr69vsLFbwUtERKxWd8ZroJHNtv25upGyiHidgpd4V4MGG+7gtatAFzGLiIjFQnvjConBbrjoXbmLHE2DFxEvU/AS72rQYCO5rsHGnoIanE59sigiItYyGlznlZmv2Rgi4l0KXuJdDRts+OTi52OjvNbFvvxyqysTEZHuri54JRt7yTxabXExItLVKXiJdzVosOGbt5Fhvc2zXm+vy6KgTAc5ERGxkDt42faQeVRnvETEuxS8xPsaXOeVlhABwDNf72bMXz7n2n//wL+/3sXOQyW6sFlERNpXXfAaYhwkp6iCfUc1G0NEvMfH6gKkG2jQ2XDOtX+itOAImwtsbM0tYfXeAlbvLWDuJ9tIjArigqQYpgzrxdj+PfC163MBERHxovC+EBiJb0UBgzjA+f/4hpF9wrk0JZZpKbH07RFkdYUi0oUoeIn3NWiwERHow/8kh5KamkpuSTVfbM1j2dZDrNh1lH1Hy3n++z08//0eQgN8mDykJ1OGxXDu0J5EBPlZOgQREemCDMM867X7Ky4MO8CW4gFsPFjExoNFzP1kGynxx0JYQpRCmIi0joKXeF+DBhsc3Vm/OD4ikBsm9uOGif0oq6rl2x1HWL41jy+2HeJoWTUfbszhw4052G0GYxIjmTKsFxcMi2FgzxALByMiIl1KXfD6n97ZXPfb8/hs62E+3pjDyj1HycgqIiOriL8t3UZyfFh9CEuMCra6ahHphBS8xPvcDTYOrsLI2QAMPmGTYH8fLk7uzcXJvXE4XaQfKGT51jyWbz3E9rwSVu3JZ9WefB7+eBv9o4O5IMkMYWP7ReKjKYkiItJSddd5BRXtICDEnxsmJHLDhEQOl1Tx6eZcPs7I4cfdR9mUVcymrGIeXbqdEXHHQli/aIUwEWkeBS9pH3GpcHAV5KRDrxODV0PuM1xjEiO5++IkDuSXmyFs2yF+3H2UPUfKePa7PTz73R7CAnw4d2gvLhjWi3OH9iI80LddhiMiIl1E3XT4wOJduBw1YLcD0DPUn19MSOQXExI5WlrFp5vz+DgjhxW7j7I5u5jN2cU89ul2hsWGMS2lN5emxDJAMzJE5BQUvKR91B3YjJwN0Otaj3bt2yOImWf1Z+ZZ/SmprOHbHUdYtjWPL7cdoqC8hvc3ZPP+hmx8bAZj+/XggmG9mDIsRp9CiojI6UX2x+UXgq26FNfLl8PIn8KIqyA4un6TqBB/rh+fwPXjE8gvq64/E/bDrqNszSlma04xj3+WSVLvUKalxHLpyFhNixeREyh4SftwdzbM3QgjnS1+mdAAXy5NieXSlFgcThfr9xewbOshlm/NY8ehUlbsPsqK3Uf5y0dbGdgzmCnDYrhgWAyjEyI0JVFERE5ks+EacxOsmIdxcJU5O+OTe2DgeZA8HZKmQUBY/eY9gv34n3EJ/M84M4R9viWXjzJy+WHnEbbllrAtt4S/f26GMPfxalAvhTARUfCS9lLXYMOoLsW/9CAwutUvabcZnNGvB2f068G9lySx72gZy7ceYvm2PFbuzmfX4TJ2Hd7Ngm92ExHky3l1UxLPGdKTsABNSRQREZNryp/ZFHwWyWzHtvkdc1r8zmXmwycABl8IKdeaz74B9fv1CPbjurEJXDc2gYKyaj7fksdHGTl83yCE/ePzTIbEhNRfEzY4JtS6gYqIpRS8pH00aLARXJTplR+RGBXMTWf356az+1NcWcPX2w+zfGseX24/TGF5De+uz+Ld9Vn42AzGD+hRd8+wGLUIFhFLlZWV8cQTT/DJJ59QVFTEgAED+PWvf820adOsLq1bqQnsiSt1Kpx9BxzZCZvehozFcHQHbH3ffPiHQdJlkHIN9D/XPLbViQz246dj+/LTsX0pLK/msy3mNWHf7zxCZl4pmXk7eGLZDgb3qgthI2MZohAm0q10quDVmoPT0aNHeeyxx/jyyy+prKwkKSmJ3/3ud0ycOLEdKhegvsFGkJeCV0NhAb5cPiqOy0fFUetwsnZfAcu3HWLZ1jx2Hy7j+51H+X7nUR76cAuDe4VwwTDzxs1pCZHYbYbX6xMRcZszZw4ZGRncdddd9OvXjw8//JA777wTp9PJ5ZdfbnV53VP0IDj3Hph8tzlFPuMtM4gVZ8GG18xHcE8Y/hNImQ59xoHt2HT2iCA/fnpGX356Rl+Kymv4fKsZwr7dcZgdh0r51/Id/Gv5Dgb1OnYmbEhMCIah449IV9apgldLD07V1dXMnDmT4uJi/vjHPxIVFcWrr77KzTffzAsvvMC4cePacRTdWF2DjaBC7wevhnzsNsYPiGL8gCjuv3QYe46UsXxrHsu25rF6bwE7DpWy41Ap//56Fz2C/Th3aE+mDoth0pCehPh3qv9FRKST+frrr/n+++/5+9//zmWXXQbAhAkTyM7O5tFHH+XSSy/FXtdlTyzgvsFy7CiY8iAc+NEMYVuWQNlhWP0f8xGeAMlXmyEsJtncr054kC/Tx/Rh+pg+FFXUsGyLO4QdYeehUp5cvoMnl+9gYM/g+mvCknqHKoSJdEGd5q/K1hycFi9eTGZmJq+//jppaWaTh/Hjx3PllVfy2GOPsXjx4nYbR7cWlwqY90rB5QSs+WOif3QwN08awM2TBlBUXsNXmYdYvvUQX20/RH5ZNe+sy+KddVn42W2MH9CjrkFHL/pEakqiiLStzz//nKCgIC6++OJGy6+++mruuusuNmzYwOjRrb8mVtqAzQaJZ5qPS/4Gu782pyJu+xCK9sP3T5iP6KHm9WAp10CPAY1eIjzQl2vG9OGaMX0orjwWwr7JPMKuw2XM+2In877YyYDoYyFsWKxCmEhX0WmCV2sOTsuWLaN///71oQvAx8eHK664gn/84x/k5eURExPj1foFiB6KyycQe20FjqM7IWaY1RURHuTLlanxXJkaT43DyZq9BSzbmsfyrXnsPVrOtzuO8O2OI/zf+5tJ6h3KBcPMGzen9onApimJItJKO3bsYODAgfj4ND4cDx06tH69J8HL4XC0qA73fi3dv7PzfPw2GHCe+bj077DjM2yb3oadn2Mc2Q5f/gW+/AuuuNG4RlyNa8RVEBrb6BWCfW1cOSqWK0fFUlJZwxfbDvPxply+2XGE3UfKeOrLnTz15U76RQVxSXJvLk3u7bUQpn9/jb/hc3fgcrlwOF04XFBdU0uN09Xq35/N0WmCV2sOTjt27GDMmDEnLG+4r4JXO7D7QO9kOLga44d/mfdKiR8DAeFWVwaAr93GxIFRTBwYxQPThrHrsDklcfnWQ6zZl1/foWr+l7uIDvGr65IYw6TB0QRrSqJ0Yy6XC6cLHE4XTpf5ML8Gp9OFo26Z0wkGLb+dRFdUWFhInz59TlgeHh5ev94TGRkZraqntft3di0ffyIMuRNb/18TmfsdkVlfEHZ4HUa2+XB9/idKokZREH8+BbHn4PALa+oVuDXZxi+HRrM2p4ofDlSyPreKvUfLeebr3Tzz9W56h9iZ2CeAM/sE0D/Cp81DmP79u8f4nS4XNQ6odriodriocriocbrY/c068/e2+3d63dcOJ3Xf1/1er/9932CbuuXOkyyvPyZ4sBynA8NVi81Zg91Vi91Vg1H3ta3ue3N5LXZnjfk95vc+rlp8XDX4uGqxY37vSw0+dV/7UIsfNfgZDnyppZwgsg7dQr/ePb363neavxZbc3AqLCys387TfU9Gnyq2UPw47AdXY9uwCDYsAsAVPQRX/BiIH2s+9xoGNuv/0+wfFcjNZ/fj5rP7UVBezdeZR1i+7RDfZB7hSGk1i9ceZPHag/j52JjQvwcXJPXi/KSexEUEnvJ1u/t/A51l/C6XixqHi1qnkxqHixqHk9omv3dR7XBS63BS63Sdctsap5OaGgdZOaV8l78TDOO4YOKqP1i5l7ucNAoujbdtEG6cLlx1B0bz6xNf69TbHh+UGm5rvtbJtnW5PHtvrxsRQkqK9z9Z7CxO9cezp39Yp6SktOiaMIfDQUZGRov37+zadvxnA/fiLD2EsfU9jE1vYxxcRdjRdMKOppOwaR4MvABX8jW4hlwMfsEnvMKZwBygtKqWL7Yd4pNNeXydeZjcUgfvbivj3W1lJPQI4pLkGC5J7k1yXFirQpj+/a0dv9PporLWQWWNk8oaB1W15nNFjbmsqsZBZd2yyhonlbUOqmqObVNVt8y9f2Vt3T71yxuvq65t+AGYixAqCKECX6MWP8yHb93Dzzjue2rwM2rxxVH/vS+1BBru9cc9Gw33rVtuNPze3N/XOPZ67n3thocHl+MZdY9m2hn8E/qnTvX4x7j/+2kO6/+69UBrDk5teWADfarYUrYelxCVbCO4YAshBVvwL8/BOJKJcSSzPog57AGUhw+hLHKY+YgYRk2gdz+BaI5+wK+SYMaQKLYermZNThVrsqvIK3PwzY4jfLPjCP/3AfQL9+GMOH/OiPNnYKQvtpP899Ud/htwuVzUOKHG6aoLHnVfO2Hvt+uodUJtXdiodZqfqjX1fW3dH/3Hf99w/+O/b8nrOZxQ6zJfx9nK3/ent9PbP8AyBk4CqK571OBvVBNIDYFGNb42iPYf2S3++2+OiIiIJj/8KyoqAmjyQ8NTsdvtrfrDsbX7d3ZtOv7wWJgwy3wU7DO7Im56GyNvE+xYirFjKfgGwdBLzGvCBl4APn6NXyLIzlWj+3LV6L6U1YWwjzNy+HL7Ifbnl7Pgmz0s+GaPGcJSejMtJZaU+PAWhzD9+5vjdzhddWGlYeBpEF4aBZkGgalu+4rqE/etOi4EVTRYXu1o3UwAG05CKSfcKCOMMsKNMqLrnsMpI8woJ7zu+zCjjDC/smPfU46P0TlmIjhsvrhsvjhtfrhsfjhtvrjsvrjs5vfYzfXY/XHZfcHuBz5+GHY/82u7H4ZP3aPua5uPHy67HwfzK+l/5rVe/++/0wSv1hyc2vrABvpUsaUcDgcZPkH0vuL/mb/cyo5A1lqMrDUYWWsgex32qhJC8zcSmr+xfj9XWBzEjcEVPwZXn7Fmhylf65pdjAVmYAaLnYfL+GLbIZZvO8T6/YXsLaplb1Etb20to2eIP+cN7cn5ST05a1AUQX4+Xv1vwOUypw1U15q/yKvrPtlyf11V62jw/bHtqmocx7Y/bj/3QeH4dVUn+RkN19U4vJ5e2pWPzcDHbuBjs+HrfvZp+L2Br73ua7utye/tNoPiwgKio3pgt9mwGeYymw3za8PAZjOwGRxb1+hrc729bpn5dd02dV8bNuqWGdgMJ37OKnyc1fi6qvB1VuHjfriqsTur8HFU4uOswu6swu6oxsdZic1Rhd1Rid1Zhc1Rhc1hLrPVVtZ9XYlRW1X3fOyBowrDUX3K9zGv4moiUxa06ndoVzFkyBA+/PBDamtrG02lz8w0u78OHjzYqtKkLUUmwqQ7zcehrXXt6d+Cgr31gYyACBh+BSRPh35ng63x/x/B/j71t0kpq6rly+1mCPtiW10I+3o3C77eTZ/IwPrGHKP6tDyEdWYul4uKGgcF5TUUlldTWF5DYXkNBeXV9d8XlNdQVFFdv83RkgocHyyjssZhybHLh1rCKSPaXkG0bzlR9kp62MvpYSsn0nCHpnJCXWWEUkqws5QgZymBjhICHKWt/vkuww6+gY1CCnZf8PE3nxst9zu27KTrT7d/w/V+p/8ZNh/sXvpv2eFwUJSebv48L+s0was1B6chQ4bUb9dQaw5s+lSxderHHxYDYZfCsEvNFU6nebPKg6vh4BrzcWgzRnE2FGdjbPvA3M6wQ8wI6HMG9BkL8WdA1KBG91FpL0mx4STFhvPb8wZztLSKL+tu3PxN5mEOl1bx5tqDvLn2IP4+Ns4cGMWkwdEcyS1nc1UWNU4aB6ImAsyxgOM4LkQ1CD21Tqocx08f6Hj87Db8fAwMl5MAPz987Qa+PscCijvU+Lm/ttvwbbDO1x1mfMzlPnXL/ew2fGzubdyB6Ng2vg33bfBa7m2PfX/ybXztRuv/gHG5cFSWsGn9apKTemB3VkNNBdRWQm0F1DR8rnu419dUQHVVM7Y7bpmzpm3+8VrK5gu+geATAL4BuPxCKIkeTXQ3/x3oNmXKFN58800+++wzLr300vrl7777Lr169WLUqFEWVide0WsYXPAnOP8ByFpndkbc/A6U5sG6l81HSG+zPX3ydIgf3ag9PZgh7LKRcVw2Mo7y6lq+3Ha4PoQdLKhg4Te7WfjNbuIjArk0pTeXpsSS2jeiU4awyhqHGZwqqikoaxiWahqEqGoKKxqHrJadRTpxHz+7DX9fGwG+dgJ97QTUfR3gY69fHuBrJ8BuEOrrIMIoI5xSQikjxFVGiKuUIEcpQc4SAh0l+NcW41dTgm9NMT7VxfhUF2GrKsKoKW/8gx11D0/4BkNghBniA8KPfX2aZQ6/UNI3byc1NVW/l72s0wSv1hycpkyZwoMPPsiGDRvqt6utreX9999n1KhRaqzRkdhs0HOo+Uj7hbmsqhRy0s0QllUXxkpyzJta5m6ENc+b2wWEm8064t1hbAwER7Vr+VEh/vX3a6mqdbByd37dPcMOkVVYwZfbD/Pl9sN1W2/xej0+NgM/Hxv+Pjb83A+7DT8fe/1y//plx9b7+9rws9vrl/k3Wn78a9nwb/B6jZc33tYwDBwOB+np6Z3nF7zLBbVVUF4KVcVQVWL+N1lVUvcohuqG3zfY7vjl1SXYXU5GAXxmwVjsfuATCL4BZhCqC0PHlgWanyzWB6VAD7bzb7ze/TOO+9Te6f5kUQCYPHkyZ511Fn/+858pLS0lISGBjz76iG+//ZbHHnusc/w/Ii1jGNBnjPm46K+w9zvzLNiW96A0F3582nxE9jfvD5Y8HXolnfAyQX4+TBsZy7SRsVRUOxqdCcsqrOA/3+7hP9/uIT4i0OyOODKWNAtCWHWtkyJ3OKqooaCscViqPwNVVlO/vKC8msqaln+g6Gs3iAjyIzLIl4hAPyKCfIkI8iUyyI/wuueIQF/CAuxk79tNWvIwgo0qAp2ldQGpGHtVEVQUQmURVBbWfV14bFlxg2WnOdvfLP7hEBh+mvAUeeKygPATpqo2Wxe8draj6jTBq7kHp/vvv58lS5bw+eefEx8fD8D06dN57bXXuOOOO7jrrruIioritddeY8+ePbzwwgtWDkuawz/EnHbR7+xjy4qyzLNiWWvg4FrIXm/+Atz1hflwi+xvhrA+Z5iPmJSW/2LytGwfO+cM6ck5Q3ry5ytcbM8rYfnWQ6zac5SS4hKie0Tg72tvFGiaDi72xqHo+EBzsgBkt3XvlveOWqguOS4QNRWUjntUN9jOvY8Xzhq57P4Yx4eUhmHnVGGmJdv5+J8QgqRjmDdvHv/85z958sknKSwsZMCAAfzjH/9g2rRpVpcm7cVmhwGTzcelj8PO5WYI2/4JFOyBbx4zHzHJdSHsGohIOOFlAv3s9dMMK6odfJ15iI8yclm+NY+swgqe/W4Pz363h7jwAC5OjmXayN6k9Y30qFSH01UfoAqOO+tUVOGezldz3FmqGkqralv89thtBhGBvo3CUkSQX12I8iW8LlxFBvkRHuhLZLC5TZCfvXHArCyCwv1QuNt8ProPCvfjKtyHI38/9u/LMFytDCGGvYnAFN44KJ1smX+Yfk93cZ0meEHzDk5OpxOHw4GrQZstPz8/XnzxRR577DH+8pe/UFFRwbBhw/jPf/7DuHHjrBiKtFZ4vPkY8RPze0cNHNpSN0Vxrfl8dId5wCrYAxlvmtvZ/c3rw/qcYZ4R6zPWPHh5+ZM/wzBI6h1GUu8wZp3Tv3Od8WlPTifUlJ3m7FETZ52qmzgbVVvR9vX5hYB/qPlo+PXxD78Q8wDqH2p+cOAfan7vF4LDJ9Cc0pE2Wv/+AkBwcDAPPPAADzzwgNWlSEfg4w9Jl5qPqlLIXGpOR9y5DPI2mY9lf4a+482zYCOugpATG1AF+tm5ODmWi5Njqaxx8NV2czri8q15ZBdV8vz3e3j++z3Ehgdw0YgYYqhkH9kUV9bWnX1qGKKOnaUqrmx5gDIM8ybSjYNTXVgKOnZGqtFZqmBfQv2b2Tq/qtQMVHn76gLWfvM6OvfXlYVN18VxfxDb/ZoXlJpa5hfi9b8ppPPqVMGrOQenuXPnMnfu3BOWR0dH87e//c2b5YmV7L5moIodBWNvNpdVFEDWWjOIZa0xw1hFARxcZT7cgnsem5rY5wyIGw0BJ95jRTzgdEJFPpQegrJD5nPd10bpIQbkHcC2yd4gTJUeC1C08UXNPgHHBaXjA1Eo+DUMTsdt597PL6RtriF0OMBo/2sRRaQT8g8xz3ClTIfyfNj6vtmYY+93cGCl+Vh6r3mmLHk6DLusyXtjBvjauTi5Nxcn96ayxsHXmYf5JCOHZVsPkVNUyYs/7KvbsrDZpYUG+JwkOJlnmyKDG07vM4NUaIAv9tbMxKgug8IDdUFqX91jv9k1snC/edw5naAo8wPXiMS65wQc4X3Zll1KUtoE7MFR5nFD4Um8oFMFLxGPBEbCoCnmA8xrdfJ3N75WLHcjlB2G7R+bDwAM6Jl0bHpin7Hm99399L/TCeVHjwWpssPmxeD1XzcIWWVH4CTTNWzAaSe2GPbjQlILgpL70Q5dikREvC6oB4yZaT6Ks2Hzu2YIy153bJr9h7+HIReaIWzIReZU4+ME+Nq5aERvLhphhrBvdxzho43ZZOw7REyP8Pppek0FqfBAM0CFB/riY/fCB0g1FU0HK/ej7PDpXyMwsj5QmeGqLmBFJkJ4X/OYcTyHg8rSdAiNBc1EEC9S8JLuwzAgaqD5GHWduaym0gxfDbsoFu2Hw1vNx/pXzO38QiAurW6KYl0gC+1t3VjaitNhfopamlcXmg7XPec1+LruuewwuDy8yDmwB4T0Ms8qhvSCkBicgVEcOFJM34HDsQWGNz1lT582ioicXFgcTLzNfBzdZbajz1gMRzJh6wfmwy8UkqaZ9wgbMLnJD6ECfO1MHR7D+UOj22cKfG0VFB1sPP2vPmTtN489p+MfDpGNz1gd+7pvk2f8RDoKBS/p3nwDoO848+FWknfsjFjWGrPdb3Up7P3WfLiF920cxGJHNfnpYrtzOswzU6V1AarR2ajDjZeVH/E8TAVFQXAv85qCYDNMHfvaHbJiIDi6yQO9y+HgSHo6fVJS9cmiiEhrRQ2EyXfDOX+A3AyzKcemd6DoAGx83XwERcHwn5ghrO947916pbYaig82uL5qX+NwVZLLaaeT+4U0Pkt1fLgKjPBO7SLtQMFL5HihMeanhEl1TVucDji8vUEXxTXmDTCLDpiPze+a29l8zI5T7i6K8WeYB8S2OHPjdJjT9467XqrRND/3svKjHoYpwzwoNzwz5Q5R9V/XBauThCkREbGYYUDsSPNxwZ/Na5kzFsPmJeaHbGueMx9hfcx7hKVMh94jPTtGOWqhOKvxFMCG4aok+/THH9+gxmerjg9XgZGa8SBdloKXyOnY7BAz3HyM+aW5rKrEbGHfsIti2SHzfmM56bD6P+Z2gZHHuifGn2HeCNO/bhqEsxbKT3E2quGy8qN41nTCMENSozNTTQSpkF4QFA12/SoQEekybDZImGA+Lv4b7PnKvB5s64fmGakfnjQfUYPNs2DDrzL3czrM8NRw+l/DcFWcddLrd+v5BJzQvOJYuEo0P+hTsJJuSn9tibSEfyj0P8d8gNm4o+jAsSCWtQay080uijuXmY86tvC+jKwowfZBER6FKcNWd2YqpsGZqWPXTjU6WxUUpTAlIiLmscDdaOqyCtjxmXkmLPMz87YrXz2M/auHSQmIwvZRkfmh4Clfz6+Ja6vqvo5MNI9FClYiTdJfZiJtwTCOHXySrzGX1Vab91up76K4GvJ3YxQdoH6ynmEzzzg1uk7qJNdOBUWps6KIiLScbyAMv9J8VBbBto8g4y1cu7/Cr/KouY3NF8L7HDcFsN+xr0NivHeNmEgXp+Al4i0+fubUwvjRwK/NZeX5OPK2sm1vNkljJmEP6akwJSIi7S8gHFKvh9TrcRbnsmPlZww+41zs4fE6Lol4iT6yEGlPQT0gYQKVYQPM6Rg6uImIiNWCe1LWYwSEKXSJeJOCl4iIiIiIiJcpeImIiIiIiHiZgpeIiIiIiIiXKXiJiIiIiIh4mYKXiIiIiIiIlyl4iYiIiIiIeJmCl4iIiIiIiJcpeImIiIiIiHiZgpeIiIiIiIiXKXiJiIiIiIh4mYKXiIiIiIiIlyl4iYiIiIiIeJmCl4iIiIiIiJcpeImIiIiIiHiZj9UFdDYulwsAh8PRov3d+7V0/86uu48f9B5o/Bp/w+eW7u/+XSwmHZtaR+PX+Bs+dzcaf/sdlwyXjl4eqa6uJiMjw+oyRES6tZSUFPz8/Kwuo8PQsUlExFrNOS4peHnI6XRSW1uLzWbDMAyryxER6VZcLhdOpxMfHx9sNs2Wd9OxSUTEGp4clxS8REREREREvEwfF4qIiIiIiHiZgpeIiMj/3969B0V13XEA/y5gIqBhQUQcHzWgu7y2CAqLClGJLwwGiKKd6QBVEImBWlFriE0DVkVrHBugiASLaB0Ho+iIIZqgZrRTWRQrpShKAK2QBBFBROR9+wezt66gorA8v5+ZHcdzD9zfuXv3fufcPbsQERFpGSdeREREREREWsaJFxERERERkZZx4kVERERERKRlnHgRERERERFpGSdeREREREREWsaJVzdLS0uDXC4XHzY2NnB1dcXatWtx+/Ztjb5XrlzBpk2b8MEHH8DOzg5yuRylpaW9U3g36ez4W1pakJycjMDAQLzzzjuwt7eHh4cHPv/8c9TU1PTeALTk2ePy7EOlUvV2ia/t9OnTkMvlyMjIaLft/fffh1wux8WLF9ttmzNnDnx8fAAA58+fx+9//3ssWrQItra2kMvlWq+7u3R1/LW1tdizZw/8/PwwY8YMODg4YNGiRUhMTERDQ0NPDKFLuuP53717N7y9veHs7AyFQoF3330Xn376KcrKyrRe/2DBbGI2dWSgZhNzibnUV3NJr0s/Tc8VHR0NCwsLNDQ04OrVq0hISIBKpcI333wDIyMjAEBWVhYuXboEa2trGBoaIjs7u5er7j4vG399fT1iY2Ph6ekJX19fGBsb4/r169izZw/Onz+PY8eOYejQob09jG6nPi7PmjhxYi9U0z2cnZ0hkUiQlZWFhQsXiu3V1dW4desWDAwMoFKp4ObmJm77+eefcffuXSxfvhwA8N133yE3NxfW1tYYMmQI8vPze3wcr6ur4//xxx+RkpICLy8v/OY3v4GBgQFycnIQFxeHf/7zn0hOToZEIumNoXVKdzz/NTU1eO+992BpaQlDQ0P88MMP2LNnD86dO4dTp07B2Ni4x8c1UDGbmE0dGWjZxFxiLvXVXOLES0smTZoEhUIBAFAqlWhpaUFsbCwyMzOxePFiAMDq1asRGhoKANi3b9+ACreXjX/o0KE4e/asxomrVCoxevRorFmzBmfOnIGXl1dvla81Tx+XgcLExASTJk1qd/5evnwZenp6WLx4cbu7pllZWQDannMA2LJlC3R02t6A37x5c78KuK6Of+zYsTh37hwMDAzE7dOmTYO+vj7+/Oc/IycnB1OnTtX+QF5Tdzz/n332mcZ29XEJDg7G2bNnsWTJEi2OYHBhNjGbOjLQsom5xFzqq7nEpYY9RH1Bq6ysFNvUL+jB4Nnx6+rqdni34Je//CWAtjsP1H8olUqUlJTg3r17YptKpYKdnR1mzpyJ/Px81NbWituys7Ohq6srXrj7+2uhK+M3MDDQCDe1/vRa6Orz3xETExMAgJ4e7w9qE7OJ2TRQMZeYS30xl/r3WdWPqNfHT5gwoXcL6SWdHb/6jkN/Xd7wMq2trWhubtZ4tLS09HZZXebi4gIAGneXVCoVnJ2d4ejoCIlEgpycHI1tNjY2GD58eI/Xqg3aGH9/ei101/ibm5tRX1+P69evY9u2bZgwYQLmzp3bM4MYpJhNzCZgYGYTc4m5BPS9XOLES0vUF7HHjx/j4sWL2LNnD5ycnODu7t7bpfWI1xl/eXk5du3aBTs7O8yePbsHq+05S5cuha2trcZjICzvcHJygo6OjniBq6qqQmFhIZycnGBoaAgbGxvxgv3TTz+htLRUfDt/IOju8RcUFCApKQlz586FlZVVj4yhK7pj/BUVFbC1tYW9vT18fHzQ0tKCAwcOwNDQsMfHM5Axm5hNHRmI2cRcYi71xVziGg4tWbp0qcb/LS0tER8fP2iWzbzq+Kurq7Fy5UoIgoC//OUv/f4t/ufZsWMHLC0tNdr68gdUO8vIyAhWVlbimunLly9DV1cXjo6OANougOoLnLrPQAq47hx/aWkpQkJCYG5uji1btvRA9V3XHeM3NjbG0aNH0djYiOLiYiQlJcHf3x8HDx6EmZlZD45mYGM2MZs6MhCzibnEXOqLuTQwryB9wI4dO3D06FGkpKRg2bJlKCoqQnh4eG+X1WNeZfwPHz7EihUrUF5ejr/97W8YN25cD1fbcywtLaFQKDQednZ2vV1Wt1Aqlbh9+zbKy8uhUqlga2sr3hVydnbGjRs38OjRI6hUKujp6WHKlCm9XHH36o7xl5WVwd/fH7q6ukhJSYFUKu3hUby+ro5fT08PCoUCU6ZMga+vL1JSUlBaWorExMTeGM6AxWxiNnVkoGYTc4m51NdyiRMvLVFfxFxcXLB582b4+vri4sWLOH36dG+X1iM6O/6HDx9i+fLlKC0tRXJycr94+5o6pr5TlJ2djezsbDg5OYnb1Bezy5cvQ6VSQaFQDLglZF0df1lZGfz8/AAABw4cgLm5eQ9V3j26+/k3NzeHmZlZu78xRV3DbGI2DSbMJeYS0LdyiROvHrJhwwYYGRkhJiYGra2tvV1Oj+to/Opgu3v3Lvbt2wcbG5terpK6wsnJCbq6ujhz5gwKCwvh7Owsbhs+fDisra1x4sQJlJWVDajlHGpdGf+PP/4IPz8/tLa2IiUlBWPGjOnp8rusu5//O3fu4Oeff8YvfvELbZY96DGbmE0DGXOJudTXcmlwLOruA4yMjBAcHIydO3ciPT0dXl5eePDggfihv1u3bgEALly4ABMTE5iYmGicIP3ds+OfP38+AgMDcf36dXzyySdoaWnBtWvXxP4mJiYYP3587xWsJYWFhR1+U9T48ePFryntr4YNGwYbGxtkZmZCR0en3Vv2Tk5OSElJAdB+HXVZWRny8vIAAP/9738BQLwDPWbMmH7xIe/XHX9lZSX8/f1RUVGBrVu3orKyUuOrvc3NzfvFXcbXHX9BQQGio6Mxf/58jBs3Djo6Orh16xb2798PqVSKFStW9Og4BhtmE7MJGLjZxFxiLvW1XOLEqwf5+fnh0KFDiI+Ph6enJwoLC7FmzRqNPlFRUQDa1p4ePHiwN8rUmqfH7+DgIF7Qtm7d2q6vj48Ptm/f3tMlal1ERESH7Vu2bIGvr28PV9P9lEol8vLyYG1tjWHDhmlsc3Jywv79+zFkyBA4ODhobFOpVO2Ojfq10Z/OhdcZ/w8//IC7d+8CaLv7/qzQ0FCEhYVpt/Bu8jrjNzU1hZmZGZKTk1FRUYHm5maYm5tj1qxZCAkJwejRo3t6GIMOs4nZNJCzibnEXOpLuSQRBEF47Z8mIiIiIiKil+JnvIiIiIiIiLSMEy8iIiIiIiIt48SLiIiIiIhIyzjxIiIiIiIi0jJOvIiIiIiIiLSMEy8iIiIiIiIt48SLiIiIiIhIyzjxIiIiIiIi0jJOvKhfSEtLg1wuFx82NjZwdXXF2rVrcfv27d4uDwCQkJCAzMzMdu0qlQpyuRwqlaoXqmpz7tw5hISEYPr06bCzs4OzszMCAgJw8uRJNDU19Vpdz+roWH388cdwd3fX6n7Ly8sRGxuLGzduaHU/RDSwMJu6htn0YsymgUevtwsgehXR0dGwsLBAQ0MDrl69ioSEBKhUKnzzzTcwMjLq1dr27t2L+fPnY86cORrttra2SE1NxcSJE3u8JkEQ8MknnyAtLQ0zZ87Exx9/jNGjR+PRo0dQqVSIiopCVVUVAgICery2zlq9ejX8/f21uo979+4hLi4OY8aMgbW1tVb3RUQDD7Pp1TCbOofZNPBw4kX9yqRJk6BQKAAASqUSLS0tiI2NRWZmJhYvXtzL1XVs2LBhmDx5cq/sOykpCWlpaQgLC0NoaKjGNnd3dwQFBeHOnTs9WlN9fT2GDh3a6f7jx4/XYjVERF3HbHo1zCYarLjUkPo1ddBVVlZqtOfl5SEkJATOzs5QKBTw9vZGRkaGRp8HDx4gMjISCxcuhIODA6ZNmwZ/f39cuXKl3X4aGxsRFxcHDw8PKBQKKJVK+Pn54erVqwAAuVyOuro6HD9+XFxy4ufnB+D5yznOnj2LZcuWwd7eHg4ODli+fDn+9a9/afSJjY2FXC5HYWEhwsPDMWXKFEyfPh0RERF49OjRC49NU1MTkpKSYGFhgY8++qjDPiNHjsTUqVPF/1dXVyMyMhJubm6ws7PDu+++i927d6OxsVHj5xoaGrBr1y64u7vDzs4Obm5uiIqKQk1NjUY/d3d3rFq1Ct9++y28vb2hUCgQFxcHACgqKkJgYCDs7e2hVCrxxz/+EY8fP25XY0fLOeRyOTZv3owTJ07Aw8MD9vb2eP/993H+/HmNfnfu3EFERATmzZsHe3t7uLm5ISQkBDdv3hT7qFQqLFmyBAAQEREhPn+xsbFin86cT0REasym52M2MZsGM77jRf1aaWkpAGDChAliW1ZWFoKCgmBvb4/IyEgMHz4cGRkZWLt2Lerr6/HBBx8AaLuQA0BoaChMTU1RV1eH7777Dn5+fti/fz+USiUAoLm5GUFBQcjJyYG/vz9cXFzQ0tKC3Nxc/PTTTwCA1NRUBAQEQKlUYvXq1QDa7iY+T3p6OtavXw9XV1fs2rULjY2NSEpKEvf9dOAAQFhYGBYuXIglS5bg1q1b2LVrF4C25S3P85///AfV1dXw9fWFRCJ56bFsaGiAv78/7t69i7CwMMjlcly5cgWJiYm4ceMGEhMTAbQtEVm9ejWysrIQHByMqVOn4ubNm4iNjcW1a9eQmpqKN954Q/y9+fn5KCoqwocffoixY8dCX18f9+/fh5+fH/T09PDZZ59hxIgRSE9Px5/+9KeX1qn2/fffIy8vD7/97W9hYGCApKQkhIaG4vTp0xg3bhyAtmUaUqkU69atg4mJCR4+fIjjx49j6dKlOH78OCwsLGBra4vo6GhERETgww8/xKxZswAA5ubmADp/PhERqTGbmE3MJuqQQNQPHDt2TJDJZMK1a9eEpqYmoba2Vrhw4YIwY8YM4de//rXQ1NQk9l2wYIHg7e2t0SYIgrBq1SphxowZQktLS4f7aG5uFpqamoSAgADho48+EtuPHz8uyGQy4ciRIy+scfLkycLGjRvbtWdlZQkymUzIysoSBEEQWlpaBFdXV8HT01OjltraWmHatGnCsmXLxLaYmBhBJpMJX375pcbvjIyMFBQKhdDa2vrcer7++mtBJpMJhw8ffmHdaocPHxZkMpmQkZGh0Z6YmCjIZDLhH//4hyAIgnDhwoUOa1LvLzU1VWybPXu2YG1tLRQXF2v03blzpyCXy4UbN25otC9fvlzjWAmCIGzcuFGYPXu2Rj+ZTCZMnz5dePTokdhWUVEhWFlZCXv37n3uGJubm4XGxkZh3rx5wrZt28T2f//734JMJhOOHTvW7mde93wiooGP2cRsehqziV6GSw2pX1m6dClsbW3h6OiIoKAgvPXWW4iPj4eeXtubt3fu3EFxcTEWLVoEoO2OoPrxzjvvoKKiAiUlJeLvO3z4MHx8fKBQKGBjYwNbW1tcunQJRUVFYp+LFy/izTff7LZ1+iUlJbh37x68vLygo/P/l6ChoSHmzZuH3NxcPHnyRONnOlrO0NDQ0G4ZS1dkZWXBwMAACxYs0GhX3zW7dOmS2O/pdjUPDw8YGBiI/Z6u9e2339ZoU6lUmDRpEqysrDTaPT09O12vUqnUuHNramqKESNGoKysTGxrbm5GQkICFi5cCDs7O9jY2MDOzg63b9/WeI6f51XPJyIanJhNbZhNzCZ6MS41pH5lx44dsLS0xOPHj5GRkYHU1FSEh4cjKSkJAHD//n2x344dOzr8HVVVVQCA5ORkbN++Hb/61a+wZs0aGBsbQ0dHB1988QWKi4vF/g8ePICZmZlGEHWFev8jR45st83MzAytra2oqamBvr6+2C6VSjX6qZdL1NfXP3c/o0ePBvD/JS8vU11dDVNT03ZLP0aMGAE9PT1x+Ut1dTX09PRgYmKi0U8ikcDU1FTsp9bROKurqzF27Nh27aampp2qFWh/TIC249LQ0CD+f/v27Th06BBWrlwJJycnGBkZQSKR4A9/+INGv+d5lfOJiAYvZlMbZhOziV6MEy/qVywtLcUPLbu4uKC1tRVfffUVTp8+jQULFsDY2BgAsGrVKsydO7fD36G+w3Xy5Ek4OzsjKipKY/uzH6I1MTFBTk4OWltbuyXg1DVWVFS023bv3j3o6Ojgrbfe6vJ+7OzsIJVKcfbsWaxbt+6la+mlUilyc3MhCIJG38rKSjQ3N4t1S6VSNDc348GDBxoBJwgC7t+/Lz4/ah3tVyqVisHxtI7auuLkyZPw9vZGeHi4RntVVVWnjvGrnE9ENHgxmzqP2cRsGsy41JD6tQ0bNsDIyAgxMTFobW2FhYUFJkyYgIKCAigUig4f6iUAEolE44O2AFBQUIBr165ptLm5uaGhoQFpaWkvrOWNN9544V0+tbfffhujRo3CqVOnIAiC2F5XV4dvv/0WkydP1rij+LqGDBmCoKAgFBcX469//WuHfSorK5GTkwMAmDZtGurq6tr9oc0TJ06I25/+9+TJkxr9zpw5g7q6OnH7iyiVShQWFqKgoECj/dSpUy8f2CuQSCQYMmSIRtv333+P8vJyjbbn3aV9lfOJiEiN2fR8zCZm02DGd7yoXzMyMkJwcDB27tyJ9PR0eHl5ISoqCitXrkRgYCB8fHwwatQoPHz4EEVFRcjPz0dMTAwAYNasWYiPj0dMTAycnJxQUlKC+Ph4jB07Fi0tLeI+PD09kZaWhsjISJSUlECpVEIQBOTm5sLS0hLvvfceAEAmkyE7Oxvnzp3DyJEjYWhoCAsLi3Y16+joYMOGDVi/fj1WrVqFZcuWobGxEfv27UNNTQ3WrVvXbcdHHW6xsbHIy8uDp6en+EcqL1++jCNHjiAsLAxTpkyBt7c3Dh06hI0bN6KsrAwymQw5OTnYu3cvZs6cienTpwMAZsyYAVdXV3z++eeora2Fo6Mjbt68iZiYGNjY2MDLy+uldQUEBODYsWMIDg7G7373O/Gbo55eRtMdZs2aJX5DlFwuR35+Pvbt2yd+K5Ta+PHjMXToUKSnp8PS0hIGBgYwMzPDqFGjOn0+ERGpMZtejNnEbBqsOPGifs/Pzw+HDh1CfHw8PD094eLigq+++goJCQnYtm0bampqIJVKYWlpCQ8PD/HnQkJC8OTJExw9ehRJSUmYOHEiIiMjkZmZiezsbLGfnp4evvzyS+zduxdff/01UlJSYGhoCCsrK7i5uYn9Nm3ahKioKISHh+PJkydwdnbGwYMHO6x50aJF0NfXR2JiItauXQtdXV3Y29vjwIEDcHR07LZjI5FIEB0djTlz5uDIkSPi8VDXv379evGDyG+++SYOHDiA3bt3IykpCVVVVRg1ahRWrFih8QcuJRIJ4uPjERsbi7S0NCQkJEAqlcLLywvh4eHt7tR2ZOTIkfj73/+OrVu3IjIyEvr6+pgzZw4+/fRT8SuPu8OmTZugp6eHxMRE1NXVwcbGBrGxsfjiiy80+unr62Pbtm2Ii4tDYGAgmpqaEBoairCwsE6fT0RET2M2PR+zidk0WEmEp99PJiIiIiIiom7Hz3gRERERERFpGSdeREREREREWsaJFxERERERkZZx4kVERERERKRlnHgRERERERFpGSdeREREREREWsaJFxERERERkZZx4kVERERERKRlnHgRERERERFpGSdeREREREREWsaJFxERERERkZb9D2NSEkHuTVfVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHbCAYAAAD8lMpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACie0lEQVR4nOzdeXhU9d3//+eZyb7vkIWEnQAJhEUWFRRFtKK1Ki5dXFutFqx37d1WW1ur96/WpYtfFi227gsqVnHHBTdcQSAQ9j2QFQLZ98zM74+TCQkJkMl2kszrcV1zzcw5c2ben7Hl5DXnc97HcLlcLkREREREROSEbFYXICIiIiIi0tspOImIiIiIiJyCgpOIiIiIiMgpKDiJiIiIiIicgoKTiIiIiIjIKSg4iYiIiIiInIKCk4iIiIiIyCkoOImIiIiIiJyCgpOIiIiIiMgpKDiJiIiIiIicgoKTiIiIiIjIKSg4iXjonHPO4ZxzzunUe+Tk5DBq1CjuvPPOLqqqY7piLCIiYi3tl0R6ho/VBUj/M2rUKABsNhsfffQRiYmJbb7uwgsvZM+ePQA89dRTnH766R36vOLiYj766CM+/fRTdu7cSWFhIb6+vowcOZLLLruMyy+/HJtNvxH0JXv27OHFF1/k22+/JT8/n9raWiIiIhgzZgznnXce3//+9/H392+1XVZWFi+++CJr1qzh8OHD+Pj4kJiYyJlnnsn111/PgAEDLBiNiFhN+yXpKPf/dnbs2HHC15xzzjnk5uayatUqkpKSOvxZ2of1fvp/rXQLHx8fnE4nr732Wpvr161bx549e/Dx6Xx2X7lyJXfffTcbN25k3LhxXHfddcyZM4ddu3Zx9913c/vtt+NyuTr9OdIzFi9ezEUXXcTzzz9PcHAwl156KT/96U8566yzyM7O5u677+aHP/xhi21cLhcPP/ww8+bN480332To0KFcc801zJs3j4CAAJ588knOP/98Vq5cadGoRMRq2i9Jb6V9WN+hI07SLaKjo4mJieG1115j/vz5rX5Ze/XVV/H19WX69Ol8/vnnnfqswYMHs2TJEmbNmoXdbm9afscdd3DFFVfwwQcf8P7773PBBRd06nOk+z322GMsWrSI+Ph4/t//+3+MHz++1Ws+//xz/vOf/7RYtmTJEv7zn/+QmJjI0qVLGTFiRIv177//Pr/5zW+44447CA8PZ/r06d06DhHpfbRfkt5K+7C+Q0ecpNvMmzePvLw8vvzyyxbLKyoqWLlyJeeccw7R0dFtbutyuXjmmWe48MILSU9PZ8aMGdx3332Ul5e3mv88ffp0Zs+e3WLnBBAbG8vVV18NwJo1azyq3eVy8fzzzzN37tymz7/33nspLy8/6XbvvvsuP/rRj5g0aRLjxo3joosu4l//+he1tbUn3GbPnj384he/YMqUKWRkZPDDH/6QL774otXrms8/b+82HR3Lpk2b+J//+R9mzJhBWloaZ555JjfeeCPvvvvuScffGTk5OSxZsgRfX18ef/zxNkMTwMyZM1sEp4MHD/LYY4/h6+vLY4891mqHA3D++edz11134XA4+POf/4zT6ey2cYhI76X9kvZLvY32YX2LgpN0m4svvpjAwECWL1/eYvlbb71FVVUV8+bNO+G29957L/fffz/l5eVcddVVXHTRRXz55ZfccMMN1NfXt7sGX19fAI+nXvzlL3/h//7v/ygtLeWqq65i7ty5fPHFF1x//fXU1dW1uc3DDz/Mr371K/bt28fFF1/Mj3/8Y1wuF//85z+58cYb29wuJyeHq6++mpKSEq666iouuOACtmzZwk033XTCnYGn23g6lldeeYWrr76ajz76iAkTJnDjjTdy1llnUVRUxLJlyzz6Hj3x2muvUV9fz5w5cxg5cuRJX+vn59diu4aGBs4999ymuehtueKKK4iNjWX//v0e/8EiIv2D9kvaL/U22of1MS6RLjZy5EjXjBkzXC6Xy/Xb3/7WNXbsWNeRI0ea1l966aWus88+2+VwOFy/+93vXCNHjnR9+eWXTevXrl3rGjlypGvOnDmu0tLSpuW1tbWuH/3oR66RI0e6Zs2adco66uvrXRdddJFr5MiRrs8//7zd9a9bt841cuRI1+zZs13FxcVNy2tqalxXXnllm5//3XffNS0vKipqUcNNN93kGjlypOvRRx9tWn7w4EHXyJEjXSNHjnQ98MADLd5r06ZNrjFjxrgmT57sKi8v79Q2no5l165drjFjxrhOO+00186dO1t9N3l5eaf49jrummuucY0cOdL1yiuvdGi7l19++ZSvveOOO1wjR450LVmypKNlikgfpP2S9ksd5R7fwoULT3ibNGmSa+TIka6DBw96/P7ah/UtOuIk3eqKK66gvr6eN954A4Bt27axZcsWLrvsshN2FHr99dcBuPXWWwkLC2ta7ufnxx133NHuz/773//Ozp07mTlzJjNmzGj3du4Th2+55RYiIiKalvv7+5/w893b3HrrrS2mefj4+HDnnXdis9l49dVXW20XGhrK/PnzWyxLT0/n4osvpqysjA8//LBT23g6lmXLltHQ0MAvfvGLNqcLxMfHtzX8LlFUVATgcdcg93YDBw485Wvdrzl06JCH1YlIf6H9kvZLHbF48eIT3k41XfJktA/rW9QcQrrV5MmTGTJkCK+++io33HADr7zyCjabjcsvv/yE22zbtg2ASZMmtVqXkZHRrukNTz/9NE8++SRDhgzhwQcfbLV+0aJFrZZdeumlJCUlsXXrVgCmTJnS5nja+nx3zVOnTm21bujQoQwcOJCcnBzKyspa7HTHjBlDSEhIq22mTJnC66+/ztatW7n00ktbrPNkG0/HkpmZCeDRDr0tJ/t+T8TV2GHKMAyPPsuT7dyvaf7apUuX8sEHH7Bv3z78/PzIyMjgjjvuOOV0QRHpm7Rf0n7J7VT7peba0468ufbuWzq7D5OepeAk3W7evHk8/PDDfP3117z99tucfvrpJCQknPD17l9u2jpB1263t/iFqi3PPPMMf/3rXxk2bBjPPPMMUVFRrV6zePHiVsumTJlCUlJShz7fvU1MTEybNcXGxpKXl0d5eXmLHdSJXu9eXlFRccJ17dnG07G4X9/Za0Wc7Ps9kbi4OPbu3UtBQYFHnxUbG9vu7dyviY2NbVq2Zs0afvSjH5Geno7L5WLhwoXccMMNvPPOO6f835qI9E3aL2m/BKfeL3VGe/ctnd2HSc9ScJJud+mll/LII49w5513UlZWdtKTb4GmX62OHDlCUFBQi3UOh4OSkpIT/gP6xBNP8NBDDzFy5EiefvrpE3ZHOtkvR6GhoR5/vnuboqIikpOTW73n4cOHW7zOzX2I/nju5W39gufJNp6Oxf36wsLCNj+7vU72/Z7IpEmT+Oabb/jmm2+44oorPNru22+/5auvvjrpdg6Hg2+//RaAiRMnNi1/4oknWrzuoYceYvLkyaxfv15Xrxfpp7Rf0n6pu7V339LZfZj0LJ3jJN0uOjqas88+m4KCAiIjIzn33HNP+vrRo0cD5sUIj5eZmUlDQ0Ob2y1dupSHHnqI0aNH88wzz5xw53QqY8aMAdpuFfvdd9+1+fnumt3/qDWXnZ1NQUEBSUlJLX7VA3PKQlu/3rk/211LR7fxdCwZGRkAJ2wh250uu+wyfH19ef/999m9e/dJX9u869Jll12G3W7nww8/POl2//3vfzl06BBDhgxpc4qIW2VlJU6ns9V/KxHpP7Rf0n6pp51o39LV+zDpXgpO0iN+97vfsWTJEh5//PEWraTb8oMf/AAwL4ba/ITLuro6/vnPf7a5zZIlS/jHP/7B2LFjefrpp9ucBtFe7nnY//rXvygpKWlaXltbyz/+8Y82t3HPjX/sscc4evRo03KHw8GDDz6I0+ls8xfN8vJylixZ0mJZVlYWb731FqGhoZx33nmd2sbTsfzwhz/Ex8eHRx99lD179rRa7+k0Ok8kJSWxYMEC6uvrufnmm8nKymrzdZ9//jk/+9nPmp4PGjSIn//859TX13PLLbe0ueP56KOP+Mtf/oLdbueee+454QngYLbJHT16NBMmTOj8oESk19J+SfulnnSifUtX78Oke2mqnvSIQYMGMWjQoHa9dsqUKVx11VW8/PLLzJ07lzlz5uDr68vHH39MaGgocXFxLU6MfP3111m4cCF2u53Jkyfz3HPPtXrPxMRELrvssnZ9/qRJk7jmmmt47rnnuOiii7jgggvw8fFh1apVhIWFtTm3eOLEifzsZz/jP//5DxdddBHnn38+gYGBrF69mp07dzJp0iR++tOfttrutNNO49VXX2XTpk1MnDiRw4cP8+677+J0OrnvvvvanJbgyTaejmX48OHcc8893HPPPfzgBz/gnHPOYfDgwRQXF5OVlUVISEib329XueWWW2hoaGDJkiXMmzePCRMmkJaWRnBwMEVFRXz33Xfs37+ftLS0FtvddtttVFdX89RTT3HJJZdw5plnMnz4cBoaGtiwYQMbN24kICCAv//97ye94vqDDz7IunXrWLZsWasLV4pI/6L9kvZLPeVU+5au2odJ91Nwkl7pz3/+M0OHDuWll17ipZdeIiIigvPOO4877riDmTNnkpKS0vTanJwcwPwV7Zlnnmnz/aZMmdLuHRTAH/7wBwYPHswLL7zQ6vMvueSSNrf5zW9+w5gxY3j++edZsWIFDQ0NJCcn8z//8z/ceOONbf6imZSUxL333svf/vY3XnrpJerq6hgzZgzz588/YQchT7fxdCxXXnklI0aM4Mknn2TNmjWsWrWKiIgIRo0a5dG5Rx21YMECvve97/Hiiy/y7bff8tprr1FXV0dERASpqan87Gc/a1W3zWbjzjvv5MILL+SFF15g7dq1fP3119jtdhITE7nxxhu57rrrTtru9a9//SvvvPMOzzzzTLv/mBIR76H9kvfulzqjPfuWrtiHSc8wXO4+iCJ9wP79+zn//POZO3fuCacn9Fc5OTmce+65XHrppTzwwANWl9Ov/H//3//Hu+++y3PPPcewYcOsLkdE+hDtl7RfOhHtW/ofHXGSXunw4cNER0e3mMdbXV3N/fffD8CcOXOsKk36mT//+c+8+eabLFmyhLCwsKZOU0FBQQQHB1tcnYj0FtoviSe0b+mfFJykV3rmmWd45513mDJlCrGxsRQVFfH1119TUFDA2Wefzfnnn291idJPLFu2DIDrr7++xfIFCxZw2223WVCRiPRG2i+JJ7Rv6Z8UnKRXOuOMM9i1axdff/01xcXF2O12hgwZwrXXXsu1116rq2ZLl+npa3uISN+k/ZJ4QvuW/knnOImIiIiIiJyCGsGLiIiIiIicgoKTiIiIiIjIKXjlOU5Op5OGhgZsNpvmJIuI9CCXy4XT6cTHx6dFdzJvp/2SiIh12rtv8srg1NDQQFZWltVliIh4rfT09DYvvumttF8SEbHeqfZNXhmc3EkyPT0du93u8fYOh4OsrKwOb9/Xafwav8av8Xf2308dbWpJ+6XO0fg1fo3fe8cPPbdv8srg5J4GYbfbO/U/sM5u39dp/Bq/xq/xd5Smo7Wk/VLX0Pg1fo3fe8cP3b9v0k9+IiIiIiIip6DgJCIiIiIicgoKTiIiIiIiIqeg4CQiIiIiInIKCk4iIiIiIiKnoOAkIiIiIiJyCgpOIiIiIiIip6DgJCIiIiIicgoKTiIiIiIiIqeg4CQiIiIiInIKCk4iIiIiIiKnoOAkIiIiIiJyCj5WFyAiItLbfP3117z55pts2LCBgoICQkNDSUtLY/78+aSlpTW97s477+T1119vtf2QIUNYuXJlT5YsIiLdTMHJQzsLy/m/t7ZwYbKLDKuLERGRbrFs2TJKSkq49tprGT58OEePHuWpp57iqquu4j//+Q/Tp09vem1AQADPPPNMi+0DAgJ6tF5j838ZtuZJSF0GwZE9+tkiIt5CwclDX+wqYvXuIzhqArjyXKurERGR7nDPPfcQHR3dYtmMGTOYM2cOS5cubRGcbDYbGRkZPVxhS0bWK0QUfo1z+5sw6TpLaxER6a90jpOHRgwIAWBvcb3FlYiISHc5PjQBBAcHM2zYMPLz8y2o6ORcMSPNB/mbrC1ERKQf0xEnD6UlhANQUOmgrLqeyBC7xRWJiEhPKC8vZ+vWrUybNq3F8pqaGs444wyOHj1KbGwss2fP5pe//CUREREef4bD4ehQba4B48xfQvM3dvg9+jL3mL1x7KDxa/zePX7o/HfQ3u0UnDwUGexHUmQgOcXVbM4rY8bInp3HLiIi1rj33nuprq7mlltuaVqWmppKamoqI0aMAGDNmjU888wzfP3117z66qsEBwd79BlZWVkdqs2/wp80gPxNZG5YB4Z3/qjX0e+vv9D4NX5v193fgYJTB6QlhDULTnFWlyMiIt3skUce4a233uKPf/xji656119/fYvXnXHGGYwZM4Zf/vKXLF++vNX6U0lPT8du9zz0OBrG4vg8ELujmoykYIhN9fg9+jKHw0FWVlaHv7++TuPX+L15/ND578C9/akoOHVAWmIYK7cUsjm31OpSRESkmy1evJjHHnuMX/3qV/zkJz855evPO+88goKCyMzM9Piz7HZ7h//wqQofTujRLOyFm2Hg2A69R1/Xme+vP9D4NX5vHj90/3eg5hAdkJ5onue0Oa/M4kpERKQ7LV68mEWLFnHbbbe1mKJ3Ki6XC5utZ3exVeHmdEHyN/bo54qIeAvLg1NFRQUPPfQQN954I9OmTWPUqFEsWrTopNu4XC5+/OMfM2rUKO67774eqvSYsQlhAGQfqaKsRt31RET6oyVLlrBo0SJuvfVWFixY0O7tVq5cSXV1NePHj+/G6lo7Fpwye/RzRUS8heVT9UpKSnjllVdITU1l9uzZLF++/JTbvPDCC2RnZ/dAdW2LDPIjLsjOoSoHm3NLOX1YjGW1iIhI13vyySdZuHAhM2bM4Oyzz2417S4jI4Pc3Fx+/etfM3fuXJKTkzEMg7Vr1/LMM88wYsQIrrjiih6tuSq8WUtypxN6+IiXiEh/Z3lwSkxMZO3atRiGwdGjR08ZnHJycvj73//OQw895NEvgF1taKQPh6ocZOUoOImI9DeffPIJAKtXr2b16tWt1u/YsYOQkBBiYmJ46qmnOHLkCA6Hg8TERK655hpuueUWgoKCerTmmpBkXD4BGHXlULwPoof16OeLiPR3lgcnwzA8ev2f/vQnzjjjDM4777xuqqh9hkX68k1uLVlqECEi0u8899xzp3xNeHg4ixcv7oFq2slmhwFjIXedOV1PwUlEpEtZHpw8sXz5cjZt2sQ777zTJe/XmYtkDY30BSArt9TrLjjm7Rda0/g1/ub33qanLjIoHeMaOB4jd53ZICLtcqvLERHpV/pMcCosLOTBBx/kN7/5DQMGDOiS9+zMRbKGNQan7CNVfLl2PcG+3jeX3NsvtKbxa/zezNvH32vFjzPv1VlPRKTL9ZngdM8995CamsqVV17ZZe/Z2YtkJUYEkFtSgy06hYyh0V1WV2/n7Rda0/g1fo2/+y8yKB3jGtjYyS8vE1wu8HA6vIiInFifCE4rV65k9erVvPjii5SXl7dYV19fT1lZGYGBgfj6+nr0vp29SFZaYji5JTVszS/nzBFxHX6fvsrbL7Sm8Wv8Gr/3jr/XihsNNl+oKYGSAxCZYnVFIiL9Rp+YX7Zr1y4aGhq48sorOe2005puAK+88gqnnXYan332WY/XlZ5oXs8pK1cXwhURkV7A7gcDxpiPNV1PRKRL9YkjTpdeeilTpkxptfzaa69l9uzZXHvttYwYMaLH60pLCAdgszrriYhIbxE/3gxN+RthzPetrkZEpN/oFcHps88+o7q6msrKSgB2797NypUrATjrrLNISkoiKSmpzW0HDBjA1KlTe6zW5tIajzjtK6qkrKaesADPpgqKiIh0ufjG85x0xElEpEv1iuB07733kpub2/R85cqVTcFp1apVJwxNVosM8iMxIpDckmo25+pCuCIi0gvEZ5j3+ZlqECEi0oV6RXD6+OOPO7Tdjh07urgSz6Unhis4iYhI7zFgLBh2qDwM5QUQFm91RSIi/UKfaA7RqxzegW3ZVQQVbwMgPck8z0kNIkREpFfwDYTYUebj/ExLSxER6U8UnDy152OM3R8yYO9ywGxJDmoQISIivUjTdD2d5yQi0lUUnDwVmwpAUMlOwJyqB8caRIiIiFhODSJERLqcgpOnEjIACKjKg+oSooLNBhEAWzRdT0REegMFJxGRLqfg5KnASFyRQ8zHjXPH0zVdT0REepOBaYABZblQcdjqakRE+gUFpw5wNc4dN9zBqalBhIKTiIj0Av6hED3cfFygo04iIl1BwakjGqfrGXkbADWIEBGRXsg9XS8v09IyRET6CwWnDnDFTzAfHDdVb68aRIiISG/R+COfznMSEekaCk4dET8OAKP0IFQWqUGEiIj0PmoQISLSpRScOsI/jJrgQebjxikQaYlhgKbriYhILzHQ/JGPkmyoLra2FhGRfkDBqYMqIxqvyt54npN7up4aRIiISK8QGAGRg83H+ZusrEREpF9QcOqgqoiR5oO89YAaRIiISC+k6XoiIl1GwamDKsPbPuK0t6iScjWIEBGR3qApOGVaWoaISH+g4NRB1eHDcRk2KM+HsnyiQ/yPNYjIU4MIERHpBXTESUSkyyg4dZDTJxBiGqfrNf6SpwYRIiLSqzResJ0ju6FGP+qJiHSGglMnNF3PSQ0iRESkNwqOgbAk83HhZmtrERHp4xScOsN9ccHG4ORuEJGVo+AkIiI9Z0dBOe/uqsTpdLVeqel6IiJdQsGpE1zuKRB5G8DlUoMIERGxxN8+2MkTmeV8sLWw9UoFJxGRLqHg1BkD0sCwQ+VhKMslOsSfhPAAQA0iRESk57ibE63NbuNCt+7g1HjBdhER6RgFp87wDYS4Mebj46brqUGEiIj0lIkpEQCszy5pvdIdnIp2QF1Vj9UkItLfKDh11nHnOalBhIiI9LQJgyIA2JpfRk29o+XKsHgIGQAuJxRu6fniRET6CQWnzkpo2VkvLUnBSUREelZSZCARATYanC42tdWgSBfCFRHpNAWnzmoenJo1iNhXVElFbYOFhYmIiLcwDINR0b4ArD9wkvOc1CBCRKTDFJw6a8BYsPlCdTGUZBPT2CDC5YItOuokIiI9ZFS0HwDrTtYgQsFJRKTDFJw6y8cfBqaZj4+/npOCk4iI9BD3EacNB4pxuY67npM7OB3aBg21PVyZiEj/oODUFY47z0kNIkREpKcNjfTF125QVFHHgaPHdc8LHwSBkeCsh0NbrSlQRKSPU3DqCmoQISIiFvOzG6QlhAFtnOdkGJquJyLSSQpOXaEpOG0Ep1MNIkRExBITkiOAE53nlGHeKziJiHSIglNXiE0FnwCoLYXifcSE+BOvBhEiItLDJiZHArDuZBfCVXASEekQBaeuYPeFgenmYzWIEBERi7gvhLujoKz1jAd3cCrYDI76ni1MRKQfUHDqKidoELFZwUlERHrIwPAAEiMCcbpg48GSlisjh4B/GDhqoWinJfWJiPRlCk5d5fjgpAYRIiJigYkp5nS99cef52SzwcBx5uO8zJ4tSkSkH1Bw6iru4JS/EZyOpiNOe9UgQkREetBEd4OI4zvrgc5zEhHpBB+rC6ioqODRRx9l+/btbN26leLiYhYsWMBtt93W9BqHw8Gzzz7LF198wa5duygtLSUhIYFzzz2Xm2++mbCwMAtH0ChmJPgGQV0FHNlNTOwo4sMDyC+tYUtuKVOHRltdoYiIeIFJjUecNhwowel0YbMZx1YmZJj3Ck4iIh6z/IhTSUkJr7zyCnV1dcyePbvN19TU1LBo0SISExP5/e9/z+OPP86VV17JK6+8wg9/+ENqamp6uOo22OzHfslTgwgREbHI6PgwAnxtlFbXs7eoouXKpgYRWeB09HxxIiJ9mOVHnBITE1m7di2GYXD06FGWL1/e6jUBAQGsWrWKyMjIpmVTp04lPj6e22+/nffff59LLrmkJ8tuW8IEOPA15K6H8VeTnhjOh1sL1SBCRER6jK/dxrikCNbsO8q67GKGx4UeWxk93JwdUV8JR/ZA7EjrChUR6WMsP+JkGAaGYZz0NXa7vUVochs3zjzJtaCgoFtq89gJOuvpiJOIiPQk9/Wc1h9/PSeb/djlMzRdT0TEI5YfceqMb775BoDhw4d3aHuHo2PTFNzbtdp+wDjsgKtgE876WsbEhwBmg4jSqlpC/Pv0193khOP3Ehq/xt/83tt0dvze+r31NPd5TidsEHHwW8jPhHFX9GxhIiJ9WJ/9S76wsJC///3vpKWlMWvWrA69R1ZWVqdqaLW9y0mGTxD2hip2fPEG1WHDiAq0cbTayZufr2dMrF+nPq+36ez319dp/Bq/N/P28fd27s56uw9VUFpVT3iQ77GV6qwnItIhfTI4lZSUcNNNN+FyuXjkkUew2To24zA9PR273e7xdg6Hg6ysrDa3t2VNhOwvSA2rxpWRwcSs9Xy0/RC1QXFkZAzuUJ29zcnG7w00fo1f4+/4+N3bS/eKDvFncHQQ+49Usf5gMbNGxR1b2Tw4OZ3m9Z1EROSU+lxwKi0t5cYbb6SwsJBnnnmGQYMGdfi97HZ7p/7waXP7xAmQ/QW2/I0w6TrGDYrgo+2H2JJf3u/+yOrs99fXafwav8bvvePvCyamRLL/SBUbso8LTrGpYPeH2jIo2Q9RQy2rUUSkL+lTPzOVlpZyww03kJOTw1NPPUVqaqrVJbWmBhEiItILuBtEtDrPye4LA8aajzVdT0Sk3fpMcHKHpoMHD/LEE08wZswYq0tqmzs4FW6GhrqmazntOVxBRW2DhYWJiIg3cTeIyDxQgsPparlS5zmJiHisV0zV++yzz6iurqayshKA3bt3s3LlSgDOOussDMPgpz/9KVu3buX3v/89DoeDzMzMpu2joqJITk62ovTWIodAQDjUlMKhrcQmZDAwLICCshq25pUxZUiU1RWKiIgXGDkglBB/HypqG9hRUM6YhLBjKxWcREQ81iuC07333ktubm7T85UrVzYFp1WrVgHHOjj95S9/abX9pZdeygMPPNADlbaDYZhHnfZ+ak7XS8ggLTGcgrIasnJLFZxERKRH2G0GGYMi+GJ3EesOFLcdnPIyweUy910iInJSHQpOu3btYv369RQWFlJTU0NkZCTDhw/ntNNOIyQkxOP3+/jjj0/5mh07dnSkVGs0D07cQHpiOB9tK2SzznMSEekTvv76a9588002bNhAQUEBoaGhpKWlMX/+fNLS0lq8dsuWLTz88MNs3LgRu93OtGnT+N3vftep5kVdZWKyGZw2ZBdzzbSUYyvixoDNB6qPQmkORFhfq4hIb9fu4FRaWsrLL7/Myy+/TF5eHi6Xq9VrfHx8mDlzJtdccw3Tp0/v0kL7lOMbRCSZv/KpQYSISN+wbNkySkpKuPbaaxk+fDhHjx7lqaee4qqrruI///lP0z5uz549XHPNNYwePZpHHnmE2tpaFi5cyI9+9CPeeOMNoqKsnWUw8UQXwvUNgLjRUJBlTtdTcBIROaV2Badnn32WJUuWAHDhhRcyZcoUxo4dS1RUFP7+/pSWlnLw4EEyMzNZtWoVN954I6effjp/+tOfSElJOcW790Pu4HRoK9TXtGgQUVnbQLB/r5ghKSIiJ3DPPfcQHR3dYtmMGTOYM2cOS5cubQpOCxcuxM/Pj6VLlzbNuBg7diznn38+TzzxBL/5zW96vPbmJjR21ss+UkVRRS0xIf7HVsaPPxacRl9kUYUiIn1Hu7rqPffcc9x111188cUX3HPPPXzve98jOTmZkJAQfH19iYmJYcKECdxwww08//zzvP/++8TFxfHee+91d/29U/ggCIoBZwMUbiEuNIABYf64XLA1v8zq6kRE5BSOD00AwcHBDBs2jPz8fAAaGhr49NNPmTNnTotp6omJiUydOpWPPvqox+o9kfBAX0bEmbWtzz7uqFN8hnmvBhEiIu3SrkMf7733Hj4+7T9KkpyczF//+lccDkeHC+vT3A0idn8IeeshaRLpiREUlhWSlVPKaYPVIEJEpK8pLy9n69atTJs2DYADBw5QU1PDqFGjWr125MiRfPnll9TW1uLv799q/Yl0dL/p3q6t7SckR7DrUAXrso9ybmrssRUD0rADrvyNOPv4/vpk4/cGGr/G3/zeG3X2O2jvdu1KQ7t27WL06NEeF+HVV5VvCk6ZAGoQISLSx917771UV1dzyy23AFBSUgJAREREq9dGRETgcrkoLS0lLi6u3Z/h7iDbUW1tH0MVAJ9vzWHOgOqm5bYGBxnYMCoK2PzNKhoCWh9l62s6+/31dRq/xu/tuvs7aFdwuvTSSxkzZgzz5s3j4osvJjQ0tFuL6hdO0CBik4KTiEif88gjj/DWW2/xxz/+sVVXPeMkrbxPtq4t6enpHfrR0eFwkJWV1eb2oYkVPPrdF+wtcTAmbRx+Ps1m6a8dAUU7SIt2wIgMjz+3tzjZ+L2Bxq/xe/P4ofPfgXv7U2lXcPr5z3/OG2+8wX333ceDDz7Ieeedx7x585qmK0gb3MHp8Daoq1KDCBGRPmrx4sU89thj/OpXv+InP/lJ03L3kabi4uJW25SUlGAYBmFhYa3WnYzdbu/UHz5tbT88LozwQF9Kq+vZeaiS8YMijq1MmABFO7AXZkHq9zr8ub1FZ7+/vk7j1/i9efzQ/d9Bu5pD/OpXv+KTTz7h8ccfZ9asWXzwwQfccMMNnHvuuTz66KNNJ8pKM2HxEDIQXE4oyFKDCBGRPmjx4sUsWrSI2267rWmKnltycjIBAQHs3Lmz1XY7d+4kJSXFo/ObuovNZjAxOQKAda0aRDReCFcNIkRETqldwQnM6QYzZ87kkUce4YsvvuAPf/gD4eHhLFy4kNmzZ/PTn/6UlStXUl9f35319i3HT9drPOqUlaPpeiIivd2SJUtYtGgRt956KwsWLGi13sfHh1mzZvHhhx9SUVHRtDwvL49vv/2W8847ryfLPalJjddzWn/89ZwUnERE2q3dwam5sLAwfvKTn/Daa6+xYsUKfvSjH7F161Z+9atfMXPmzK6use86Lji5p+upQYSISO/25JNPsnDhQmbMmMHZZ59NZmZmi5vbbbfd1tQw4rPPPuPDDz/k5z//OZGRkdx4443WDeA4Exuv59SqJfnAdPO+9CBUHunhqkRE+pZOn2iTmprK97//faqqqnjttdeaugwJJz7ipOAkItKrffLJJwCsXr2a1atXt1q/Y8cOAIYNG8Zzzz3H3/72N26//XbsdjvTpk1jyZIlREX1nktPjB8Ugc2AvNIa8kuriQ8PNFcEhEHUMDi6B/IzYfi5ltYpItKbdTg4HT16lDfffJP//ve/7N69G7vdzqxZs5g3b15X1te3JWSY90U7oba8KTjtOVxBVV0DQX5qECEi0hs999xz7X5tWloaTz/9dPcV0wWC/X1IHRjG1vwy1meXMHdc4LGV8eMbg9NGBScRkZPw6C93p9PJ559/zn//+18+/fRT6uvrGTx4MHfccQeXXnopMTEx3VVn3xQSB2FJUJYD+ZuIG3wGA8L8KSyrZWteGZN1IVwREekhk1Ii2ZpfxrrsYuaOiz+2In48bHlN5zmJiJxCu4LTvn37+O9//8sbb7xBUVERAQEBXHTRRVx++eVMnjy5u2vs2xIyzOCUtwEGn0F6YjiFZYfIyi1VcBIRkR4zMSWC577Jbt0gwj07QsFJROSk2hWcvvc989oO48aN47bbbmPu3LkEBwd3a2H9RsIE2P425K0HzAYRH207pM56IiLSoyYlmz/WbckrpabeQYBv47VOBo4z74v3QXUJBEZYUp+ISG/XruB03XXXMW/ePEaMGNHd9fQ/ahAhIiK9wKCoQGJC/CmqqGVz81kPQVEQkQwlB6AgC4bMsLZQEZFeql3tyO+66642Q9PevXtZt24dVVVVXV5Yv+EOTkf3QnVxqwYRIiIiPcEwdCFcEZHO6NB1nFasWMHMmTOZO3cuP/nJT9i3bx8At99+O6+88kqXFtjnBUVBRIr5OH8jcWEBxIX643TB1rwya2sTERGvcuoL4Wb2bEEiIn2Ix8Hpvffe484772TMmDH88Y9/xOVyNa0bO3Ys7733XpcW2C9oup6IiPQCExuD07rskhb7b+IzzHsdcRIROSGPg9Pjjz/OZZddxr/+9S+uuuqqFuuGDh3K7t27u6y4fuO44JSm4CQiIhZITwzH125QVFFLTnH1sRXuI05Fu6C2wpriRER6OY+D0549e5g7d26b6yIiIigpKelsTf3PCY44bVZwEhGRHhTga2dMgrkPanGeU0gchCYALijcbE1xIiK9nMfBKTAwkPLy8jbXFRYWEh4e3umi+h33L3klB6DyCOlJ5ne0+5AaRIiISM+alOyerqcGESIinvA4OE2YMIEXXnih5dzoRq+99hpTpkzpksL6lcAIiBpmPs7fwAA1iBAREYtMTIkATtYgQsFJRKQtHgen+fPnk5mZybx583juuecwDIMPPviAW265he+++45bbrmlO+rs+9QgQkREegF3Z71t+WVU1jab9eAOTnmZPV+UiEgf4HFwSk9P59///jdVVVU88MADuFwuli5dyr59+3j88ccZOXJkd9TZ9zUFp0xADSJERMQa8eGBJIQH4HTBxpySZisag9Ph7VBf3ea2IiLezKcjG02bNo333nuPAwcOUFRURGRkJEOGDOnq2voXNYgQEZFeYkJKJHmb8lmfXczpw2LMhWEJEBQDVUVQuBWSJllbpIhIL9OhC+C6JScnM3HiRIWm9ogfDxhQlgvlhWoQISIilnE3iFh/oOTYQsOAhAzzsS6EKyLSSruC07vvvuvxGxcWFrJu3TqPt+u3/EMgdpT5OD+TAWEBxDY2iNiWrwYRIiLSc9wXwl1/oBins/mFcNUgQkTkRNoVnO677z4uueQSli9fTkXFyS+Mt3nzZu69917OP/98tm/f3iVF9hsnahCRo+l6IiLSc8bEh+HvY6Okqp69RZXHVig4iYicULvOcfrwww9ZtGgRf/nLX7jvvvsYM2YMY8aMITo6Gj8/P0pLSzl48CCZmZkcPnyYESNGsGjRImbMmNHd9fctCRNg47Km4JSWGM7H2w+RlasjTiIi0nP8fGyMSwpn7f5i1h8oZnhciLnCHZwObYWGOvDxs65IEZFepl3BKTQ0lN///vfMnz+f1157jc8++4wVK1ZQXX2s686gQYOYMWMGF198MdOmTeu2gvu05kecXC7GqUGEiIhYZGJKpBmcsou5cvIgc2FECgSEQ00pHN52LEiJiIhnXfXCw8O54YYbuOGGGwAoLy+npqaGiIgIfH19u6XAfmVAGhh2qCiE8nzSk6IA2HWonKq6BoL8OtTkUERExGPHGkQ0uxCuYZhhad/n5nQ9BScRkSad6qoXGhpKbGysQlN7+QVB3Gjzcd4GNYgQERHLuBtE7CysoLS6/tiK+AzzXuc5iYi00Kng1BUqKip46KGHuPHGG5k2bRqjRo1i0aJFbb52y5YtXH/99UyYMIHJkyezYMECDh482MMVd5K71asaRIiIiIViQvxJiQ4CIPNgybEVahAhItImy4NTSUkJr7zyCnV1dcyePfuEr9uzZw/XXHMN9fX1PPLII9x///3s37+fH/3oRxw9erQHK+6k4zrrpbmDkxpEiIhID5vYOF1vXXaz6XruI04Fm8Gh6wyKiLhZflJNYmIia9euxTAMjh49yvLly9t83cKFC/Hz82Pp0qWEhJjdf8aOHcv555/PE088wW9+85ueLLvjjmsQka4GESIiYpGJKZG8viGXDc3Pc4oaCn4hUFcBRTthwBjrChQR6UUsP+JkGAaGYZz0NQ0NDXz66afMmTOnKTSBGbqmTp3KRx991N1ldp0BaWDzhaojUHqwKTjtOlROdZ3D4uJERMSbTEyOAGDDgRIc7gvh2mwwcJz5WNP1RESaWH7EqT0OHDhATU0No0aNarVu5MiRfPnll9TW1uLv7+/R+zocHQsq7u06tL3hgy1uDEbBRhw564hJvZiYED+KKurYnFvcNG2iN+vU+PsBjV/jb37vbTo7fm/93nqrUQNCCfazU1HbwM7CckbHh5kr4sfDga/M4JTxQ2uLFBHpJTwOTv/3f//Hj3/8Y4YOHdod9bSppKQEgIiIiFbrIiIicLlclJaWEhcX59H7ZmVldaqujm6f7DeIWDZyOHMlubXJJIcYFFXAyjVbsR0N7lRNPamz319fp/Fr/N7M28ffX/jYbYwfFMFXe46w/kBxy+AEOuIkItKMx8FpxYoVvPjii0ybNo0f//jHnHvuuaecatdVTvY5HakhPT0du93u8XYOh4OsrKwOb284z4UDbzPAkU9sRgZnFO1ifcEeSowwMjLSPX6/ntbZ8fd1Gr/Gr/F3fPzu7aX3mJQSyVd7jrAuu5gfT00xF7o7wBZsAqfTnL4nIuLlPA5Oq1ev5vXXX2fZsmUsWLCA+Ph4fvjDHzJv3jyioqK6o8amI03FxcWt1pWUlGAYBmFhYR6/r91u79QfPh3ePmkSAEZeJnabjXGDzOl5m3PL+tQfYp39/vo6jV/j1/i9d/z9ift6ThsOlBxbGD0CfALNBhFH90LMcGuKExHpRTz+CSkoKIgf//jHvP322zz11FOMHTuW//f//h9nn302d955Z7f8kpicnExAQAA7d+5stW7nzp2kpKR4fH6TpWJHg90fakvh6F41iBAREctMbPzxbl9RJUcqas2Fdh8YmGY+zs+0pjARkV6mU8fep0+fzuLFi1m1ahUTJkzgjTfe4Morr+SKK67g448/7qoa8fHxYdasWXz44YdUVFQ0Lc/Ly+Pbb7/lvPPO67LP6hE+fsd2SHkbGBDmT0yIP04XbM3X9ZxERKTnhAf5MjzO7Fjb4qhT03lOmT1ek4hIb9Sp4FRTU8Py5cu55ZZb+Pbbbxk2bBjz58/H4XAwf/58lixZ0q73+eyzz1i5ciWffPIJALt372blypWsXLmS6upqAG677Taqq6u55ZZb+Oyzz/jwww/5+c9/TmRkJDfeeGNnhmGNZtdzMgyD9ERzqqGu5yQiIj3N3ZZ8XfPrOalBhIhICx1qR37gwAFeeOEFXn/9dSoqKpg5cya//e1vOf300wFYsGAB//jHP3j++eeZP3/+Kd/v3nvvJTc3t+m5OzQBrFq1iqSkJIYNG8Zzzz3H3/72N26//XbsdjvTpk1jyZIl3XZuVbdqCk6ZAKQnhvPJjsNkKTiJiEgPm5QSySvf5bAu+wTByeWCHmoEJSLSW3kcnH72s5/x1VdfERgYyGWXXcY111xDcnJyq9fNmjWLxx9/vF3v2d5pfWlpaTz99NOelNt7uYNTfiY4naQ1nuekI04iItLT3NcQ3JRTQr3Dia/d1ng+rh/UlEJJNkQOtrZIERGLeRycDh48yF133cVll11GcPCJrzk0YsQInn322U4V16/FjDrWsejIbtKTBgGw61AFNfUOAnzVrUpERHrGsNgQwgJ8KKtpYFt+GeOSIszzcePGmD/w5W9UcBIRr+fxOU7vv/8+11xzzUlDE0BISAhTpkzpcGH9nt0H4seZj/M2MDAsgJgQPxxOlxpEiIhIj7LZjKa25OtPNF1PRMTL6Yp2VmrVIELT9URExBru6Xrr2uqs13g+roiIN/N4qt4555yDcYITRG02G6GhoaSnp3PttdcybNiwThfYryVMNO/zNgDHGkRsylFwEhGRnjWpzSNOGea9GkSIiHh+xGnKlCm4XC4KCwtJTExk/PjxJCQkUFhYiMPhID4+ng8//JDLL7+8Wy6G26+4jzgVbAJHgxpEiIiIZcYPisBmQG5JNYVlNebCAWPAsENVEZTlWVugiIjFPA5OZ555Jn5+fnz44Yc8++yz/OMf/+C5557jgw8+wM/Pj9mzZ/P+++8zePBgFi1a1B019x/Rw8EvBOqroGgn6UlmcHI3iBAREekpIf4+jBpoXlOw6aiTbyDEppqPdZ6TiHg5j4PTv/71L2677Tbi4+NbLE9ISGD+/Pk8/vjjhIaGcv3115OZmdlVdfZPNtuxaRBqECEiIhZruhBu8+l6CRnmvYKTiHg5j4NTdnY2ISEhba4LCwtrupBtYmIi1dXVnavOG7h3SI0NIjRdT0RErOI+z2ndAXXWExE5nsfBKSEhgddff73Ndf/973+bjkSVlJQQHh7eueq8QbPOekBTZ70sNYgQEZEe5g5OW3LLjk0ZbwpOmdYUJSLSS3jcVe+nP/0pf/rTn7j66qu54IILiImJoaioiJUrV7Jx40buu+8+AL799lvS0tK6vOB+p6lBRBY46puOOGXpiJOIiPSw5KggooP9OFJZx5a8UialRMGANMCA8nwoL4TQAVaXKSJiCY+D05VXXonL5WLRokU88MADTctjYmK49957ueKKKwC45ZZb8PPz67pK+6uooeAfDrWlcGgb6YkjgGMNIgJ87RYXKCIi3sIwzAvhfri1kPXZJWZw8g+BmBFQtNPsAht6ntVliohYwqPg5HA4OHDgAN/73ve48sor2bt3LyUlJURERDB06NAW13eKiYnp8mL7JcMwz3Pa9xnkbSB+YjoxIX4UVdSxLb+MCY0XJBQREekJE5PN4LQuu5ib3Avjx5vBKT8TRig4iYh38ugcJ5fLxdy5c9mwwWxkMGzYMCZNmsSwYcNOeFFcaYdm5zk1bxCh6XoiItLTmjeIcLlc5sLmF8IVEfFSHgUnHx8fYmJijv1DKl1DDSJERKSXGJcUjo/N4HB5LTnFjd1x1VlPRMTzrnpz585lxYoV3VCKF3MHp8It0FCrI04iImKZAF87YxMaL4Trbks+MN28LzkAVUctqkxExFoeN4dITU3l3Xff5dprr2XOnDnExsa2mqY3Z86cLivQK0QkQ2AUVB+Fwi2kJ44G1CBCRESsMSE5ko05pazPLuaSjEQIjIDIIVC8zzzqNGyW1SWKiPQ4j4PT7373OwAKCwtZs2ZNq/WGYbBt27bOV+ZNDMM86rRnldkgYvKEpnawahAhIiI9bVJKJE9/tb/1hXAVnETEi3kcnJ599tnuqEOagtN6DOOnpCWG89nOw2zOLVVwEhGRHuVuELEtv5yqugaC/HzM4LR1hc5zEhGv5XFwmjJlSnfUIU0NIjIBs0HEZzsP6zwnERHpcQkRgQwMC6CgrIaNB0uZPixaDSJExOt53BzCrby8nNWrV/Pmm29SWqo/7jvNHZwObYO6qmYNIsosLEpExDtVVFTw0EMPceONNzJt2jRGjRrFokWLWr3uzjvvZNSoUa1uF1xwgQVVdy33UaemBhHuluRH90CN9k0i4n08PuIEsGTJEv79739TU1ODYRi8+uqrhIeHc91113HGGWdw8803d3Wd/V9YAgTHQeUhKNzMuCSzg9HOwnI1iBAR6WElJSW88sorpKamMnv2bJYvX37C1wYEBPDMM8+0WtbXTUiO4J2sfNZnNwan4GgIHwSlB6EgCwafYW2BIiI9zOMjTi+88AJLlixh3rx5LF26tMU1nWbNmsWnn37alfV5D3eDCDAbRIQHEB3sh8PpYlu+ftkTEelJiYmJrF27lueff5477rjjpK+12WxkZGS0uKWmpvZQpd2n+RGnYxfCdU/Xy7SmKBERC3UoOF1//fXcfffdnHnmmS3WpaSkkJ2d3WXFeZ1mwckwjKbpept1npOISI8yDKPVpTa8zdiEcPx8bBRX1bOvqNJcqPOcRMSLeRycDh48yIwZM9pcFxwcTFmZjo50WLPgBGaDCNCFcEVEerOamhrOOOMMRo8ezcyZM7nvvvsoKSmxuqxO8/OxMa5xP7TOPV1PwUlEvJjH5ziFhoZSVFTU5rrc3Fyio6M7XZTXSsgw7w/vgNoKNYgQEenlUlNTSU1NZcSIEQCsWbOGZ555hq+//ppXX32V4OBgj97P4XB0qA73dh3d/kQmJEfwXXYx67KPctmEBIhLww64inbirC4DP8/G1126a/x9hcav8Te/90ad/Q7au53HwWn69On85z//4dxzz8Xf3x8wpzQ0NDSwbNmyVtP3xAOhAyE0AcrzoGAT6UnmEahdahAhItIrXX/99S2en3HGGYwZM4Zf/vKXLF++vNX6U8nKyupUPZ3d/niRjhoAvtpRQGZmAwDp/tH41R5h1xcrqIwa26Wf11ldPf6+RuPX+L1dd38HHgenX/7yl8ybN4+5c+cye/ZsDMPg+eefZ9u2beTl5fHII490Q5leJGEC7MiDvA0kJE8nKtiPo5V1bC8oJ2NQhNXViYjIKZx33nkEBQWRmZnp8bbp6enY7Z7/SOZwOMjKyurw9ieSOKyWh776hIPlDQxLHUtogC+27ZNg1weMDK3GlZHRZZ/VGd01/r5C49f4vXn80PnvwL39qXgcnFJSUli2bBl//etfWbZsGS6XizfeeIOpU6fyt7/9jYSEBI+LlWYSJ8COd1o0iPi88UK4Ck4iIn2Dy+XCZvP8Uol2u71Tf/h0dvvjDYwIYlBUIAePVrMpt5yZI2PN6znt+gBbwSboZX+kdfX4+xqNX+P35vFD938HHbqO0/Dhw3niiSeoq6ujuLiY8PDwfnHNil6hVYOIMD7feZjNOWoQISLSF6xcuZLq6mrGjx9vdSldYlJyJAePVrP+QHFjcFKDCBHxTh0KTm5+fn4MGDCgq2oRgPjG4HRkN9SUkp4YAcAmddYTEelRn332GdXV1VRWmq24d+/ezcqVKwE466yzOHr0KL/+9a+ZO3cuycnJGIbB2rVreeaZZxgxYgRXXHGFleV3mYkpkazIzGvdWe/wNqivAV/9cCoi3qFDwSknJ4f33nuPvLw8ampqWqwzDIP777+/S4rzSsHREJEMJQcgfyPpSacBahAhItLT7r33XnJzc5uer1y5sik4rVq1itDQUGJiYnjqqac4cuQIDoeDxMRErrnmGm655RaCgoKsKr1LTUw2L4SbeaAEp9OFLTwJAqOg+igc2gqJEy2uUESkZ3gcnD799FMWLFiA0+kkKioKPz+/Fuu9/YKBXSJhghmc8jaQMHiGGkSIiFjg448/PuVrFi9e3AOVWCt1YChBfnbKaxvYdaiCUQNDzctn7PnYnK6n4CQiXsLj4PTPf/6TiRMn8s9//lPXbOouCRNg6xtqECEiIpbzsdsYnxTB13uPsC672AxO8eOPBScRES/hccuf7OxsbrrpJktC09atW/nFL37BmWeeyfjx47ngggtYvHgx1dXVPV5Lt2qjQQSgBhEiImKJSSnmdL31B447z0nBSUS8iMdHnBISEqiqquqOWk5q9+7dXH311QwZMoTf//73REZG8t133/Hoo4+yZcsWHnvssR6vqdu4d0jF+6HqKOmJ4QBkqUGEiIhYYGJKBADrj28QUbgFHPVg97WmMBGRHuRxcPr5z3/Ok08+ycyZMwkMDOyOmtr01ltvUVtby6JFi0hOTgZg+vTpHD58mJdffpnS0lLCw8N7rJ5uFRgJUUPh6F7IzyQtcRoAO9UgQkRELDBhkHnEaW9RJUcr64iKHAL+4VBbCoe3w8B0iysUEel+HgenrKwsjhw5wnnnncfUqVOJjIxs9Zq77767S4prztfX/DUrJCSkxfLQ0FBsNlvT+n4jYYIZnPI2kDh0FpFBvhRX1bOjoJzxOs9JRER6UGSwH0Njg9l7uJINB4o5d/QAiB8H+1eb0/UUnETEC3h8jtPzzz9PTk4ORUVFvPPOOzz//PMtbi+88EJ31MkPfvADwsLC+POf/8zBgwepqKjgk08+4eWXX+bHP/5xv2n72qTZeU7uBhGg6XoiImKNSck6z0lEvJvHR5y2b9/eHXWcUlJSEi+99BILFixg9uzZTcuvueYa/vCHP3ToPR0OR6e26+j27TJwPHbAlbcBp8NBWkIYq3cVselgCY7Tkrrvc9uhR8bfi2n8Gn/ze2/T2fF76/fWH0xMiWT5upxmF8LNMO8VnETES3ToArhWyMnJ4dZbbyU6OpqFCxcSFRXFxo0beeyxx6iqqurQRXezsrI6VVNntz8ZWz1kYGCU5rD5208IqTPPJ1u7p4DMzIZu+1xPdOf4+wKNX+P3Zt4+fm/k7qy38WApDQ4nPu4jTgVZ4HSATeffikj/1q7gtHbtWsaMGUNwcPBJX3f06FE+/vhj5s2b1yXFNff3v/+diooKVqxY0TQt77TTTiMyMpLf//73/OAHP2DKlCkevWd6ejp2u+f/0DscDrKysjq8fbutHQ5HdpEW3UDkyPE8/PVnHCxzMHpsOv4WNojosfH3Uhq/xq/xd3z87u2l7xkeG0JogA/lNQ1sLygnLX4Y+AZDfSUU7YK4VKtLFBHpVu0KTtdeey0vv/wy48aNA8DpdDJu3DheeeUVxowZ0/S6gwcP8sc//rFbgtO2bdsYNmxYq3OZ0tPNE1J37drlcXCy2+2d+sOns9ufUuJEOLILe/5GBo08v6lBxK7DVb2iQUS3j7+X0/g1fo3fe8fvjWw2gwnJkXy+8zDrsovNc28HpsPBb8zpegpOItLPtas5hMvlavW8oaGh1fLuFBcXx+7du6msrGyxPDMzE4ABAwb0WC09Rg0iRESkF1GDCBHxZh531bPKddddR3FxMTfeeCPvvvsuX3/9Nf/617/461//yvDhw5k5c6bVJXa9ZsEJaLoQ7mYFJxERsYD7Qrjrjr8QroKTiHiBPtMc4txzz+Xpp5/m3//+N/fffz/l5eUMHDiQq6++mptvvhk/Pz+rS+x6A9PBsEFFAZTlNwUnHXESERErZAyKwDAgp7iaQ2U1xCVkmCsKNoHTCbY+83usiIjH+kxwApg2bRrTpk2zuoye4xcMsalwaCvkbSAt8WwAdhaWU9vgwN9H5xeIiEjPCQ3wZdSAULYXlLP+QDEXjB4FPgFQWwbF+yB6mNUlioh0m3YHp7179zadCOy+DsfevXtbvUa6WMKEpuCUNOp7RAT5UlJVz46CcsYlRVhdnYiIeJmJKZFsLyhnXXYxF6TFw4CxkLsO8jMVnESkX2t3cLrrrrtaLfvtb3/b4rnL5cIwjM5XJcckTIDMF5oaRKQnhpsXws0pVXASEZEeNyk5khe/PcD6AyXmgvjxjcFpI6RdbmltIiLdqV3B6a9//Wt31yEn0rxBhMvVFJzUIEJERKwwsfFCuFk5pea0cTWIEBEv0a7gdOmll3Z3HXIiA8aCzQeqiqA0Rw0iRETEUoOjg4gK9uNoZR1b8sqY2Dw4uVygmSci0k+p/U1v5xsIcaPNx3kbmq7l5G4QISIi0pMMw2BicgQA67OLIW4M2HyhuhhKD1pbnIhIN1Jw6gsSJpr3eRtIigwkIsiXeoeLHQXl1tYlIiJeyT1db/2BYvDxP/YDn6briUg/puDUFzQ7z8ndIAI0XU9ERKwxMdkMTuuyi3G5XMcuhJuXaV1RIiLdTMGpLziuQYR7up4aRIiIiBXGJ0VgtxkUltWSV1pzLDjpiJOI9GMKTn1B3Biw+0FNCRTv1xEnERGxVKCfnTHxYYB51In4DHNFfqbZIEJEpB/yKDjV1NRw9dVX89VXX3VXPdIWHz8YkGY+ztvQFJx2FKhBhIiIWGOS+zyn7GKzA6xhg8rDUF5gcWUiIt3Do+AUEBDAzp07sdvt3VWPnEiz6XpqECEiIlZr0SDCLwhiRpkrNF1PRPopj6fqTZgwgU2bNnVHLXIyahAhIiK9iLsl+da8MqrrHJCQYa5QcBKRfsrj4PS73/2Ol19+mRUrVlBZWdkdNUlb3MEpfyM4nWoQISIilkqMCGRAmD8NThebckrUIEJE+j0fTze46qqrqK+v56677uKuu+4iICAAo9lVwg3DYN26dV1apACxqeATALVlcHSvjjiJiIilzAvhRvLe5gLWHShm6hB3cMq0tC4Rke7icXA6//zzWwQl6SF2Hxg4DnLWmA0ikuYCxxpE+PvovDMREelZk1LM4LQ+uwSmp5sLy3Kh4jCExFpam4hIV/M4OD3wwAPdUYe0R8KEpuCUlD6P8EBfSqvr2VlQQXpSuNXViYiIl5mQfKxBhMsvBCN6OBzZDQUbYfhsi6sTEelauo5TX6IGESIi0oukJYbhZ7dxtLKO/UeqdJ6TiPRrHh9xctu5cyd79uyhtra21bof/OAHnalJTqRFgwgHaYnhfLG7SMFJREQs4e9jJz0pnHXZxazPLmZI/HjY/F8FJxHplzwOTtXV1dx666188803GIaBq/EK4c3Pe1Jw6iYxI8A3GOoroWhXsyNOJdbWJSIiXmticgTrsotZd6CYy8dnmAsVnESkH/J4qt6jjz5Kbm4uzz//PC6Xi8WLF/PUU09x3nnnkZKSwuuvv94ddQqAzX5sGkTeesY1ntfkbhAhIiLS0ya5L4SbXQzx48yFxfuhuti6okREuoHHwWnVqlXcdNNNTJhgThuLj49n+vTpLFy4kLFjx/Liiy92eZHSTLPznJIiAwkP9KXe4WJnQYW1dYmIiFea2NggYkdhOeVGCESkmCvyN1lYlYhI1/M4OOXm5jJ06FDsdjuGYVBdXd207uKLL2bVqlVdWqAcRw0iRESkF4kLCyApMhCXCzYeLFWDCBHptzwOTqGhoVRVVQEQHR1NdnZ207qGhoamddJN3MGpIAsc9aQpOImIiMXcR53WZRcrOIlIv+VxcBo1ahT79+8HYOrUqSxdupTvvvuOTZs2sWTJElJTU7u6Rmkuaij4h0FDDRze3nTEabOCk4iIWKTpPKcDxRCfYS5UcBKRfsbj4HT55ZdTWVkJwP/8z/9QXV3NNddcw1VXXUVeXh533nlnlxcpzdhszRpEbGgKTjsKyqlrcFpYmIiIeKuJzS6E6xzY2CDiyG6oLbewKhGRruVxO/ILL7yw6fGgQYN4//33m1qTT5gwgYiIiK6sT9qSMAH2r4a8DQyacA3hgb6UVtezs7C8aeqeiIhIT0mNDyXQ1055TQO7qwIZGZYIZbnmtPKU060uT0SkS3h8xOl4QUFBnHPOOcyaNUuhqacc1yAiLTEM0HlOIiJiDV+7jfGDzB/u1us8JxHppzodnMQCTQ0iNkNDbdNRpk05Ck4iImINNYgQkf6uXVP1UlNTMQyjXW9oGAZbt27tVFFyCpGDITDSvLjgoa2MSxwIqEGEiIhYp0WDiHEKTiLS/7QrOM2fP7/dwUl6gGGYR532fGw2iBhyNXCsQYSfjw4kiohIz5rQeMRpz+FKSiPSCAc4vB3qqsAvyNLaRES6QruC02233dbddYinmgWnQZNuUIMIERGxVFSwH0NjgtlbVMn6owHMCo6FysNwaCskTba6PBGRTtOhib5KDSJERKSXcR91WnegpNn1nDKtKkdEpEt53I58xYoVp3zND37wgw6UIh5xB6dD26C+mrTEcL7cfYSs3FJ+aG1lIiLipSalRPLf9Tlmg4hh42H3h5CXaXVZIiJdwuPgdKIL3DY/B6o7g9N3333H0qVLyczMpLa2loEDB3LJJZcwf/78bvvMXiksEdzTIAq3kJ6YAKhBhIiIWMfdIGJjTgmO08dhBzWIEJF+w+PgtGrVqlbLiouLWbVqFe+++y7//Oc/u6Swtrz11lv89re/5Xvf+x4PPvggQUFBHDx4kMLCwm77zF7L3SBi1wdmg4hhowHYnq8GESIiYo0RcSGE+vtQXtvAbp9hjAJzZkRDLfj4W12eiEineBycEhMT21yWlpZGQ0MDzz77LA888ECXFNdcYWEhf/rTn7jqqqv485//3LR82rRpXf5ZfUaz4JR82s8IC/ChrKZBDSJERMQSNptBRnIEq3cVseZoMKMCIqCmxAxPCRkWVyci0jldelhi+vTpfPzxx135lk2WL19OVVUVN910U7e8f5/UqkGEGZbUIEJERKwysUWDCF3PSUT6jy4NTrm5udhs3TNFbO3atURERLB3714uueQSxowZw/Tp0/nTn/5ERUVFt3xmr+fuWHR4O9RVkp6k4CQiItY6diHckmNHmRScRKQf8Hiq3tq1a1stq6urY8eOHSxdupTp06d3SWHHKywspLq6mttvv52f//znZGRkkJWVxaJFi9i1axcvvviixxfpdTgcHarFvV1Ht+8ywXHYQuMxyvNx5GUyNj4FgKyckm6trdeM3yIav8bf/N7bdHb83vq9eZOM5AgMAw4craIsYixhoJbkItIveBycrrnmmlYBxeVyAXD66afzxz/+sWsqO47L5aK2tpYFCxZw8803AzB16lR8fX25//77+frrrzn99NM9es+srKxO1dTZ7bvCsKAhRJTnk7f2HexxlwCwLb+Mtes34GvzLEh6qjeM30oav8bvzbx9/HJiYQG+jIwLZUdhORsdKcwAKNgMjnqw+1pdnohIh3kcnJ599tlWy/z9/UlMTCQmJqZLimpLREQEAGeeeWaL5TNnzuT+++9ny5YtHgen9PR07Ha7x7U4HA6ysrI6vH1XMsrOgsKvSLQdJv6MSYR9soqymgaCBg5jbEJYt3xmbxq/FTR+jV/j7/j43dv3dhUVFTz66KNs376drVu3UlxczIIFC7jttttavXbLli08/PDDbNy4EbvdzrRp0/jd737HoEGDLKi8d5iYEsmOwnK+OBLKDL9QqCuHop0wYKzVpYmIdJjHwWnKlCndUccpjRo1iszMzFbL3Ue7OnJuld1u79QfPp3dvkskTQLAlp+JzceHtMRwvtpzhK355YwbFNmtH90rxm8hjV/j1/j77/hLSkp45ZVXSE1NZfbs2SxfvrzN1+3Zs4drrrmG0aNH88gjj1BbW8vChQv50Y9+xBtvvEFUVFQPV947TEyOYNmaA6w7UArx4yD7S/M8JwUnEenDPE4b+/btY82aNW2uW7NmDfv37+9sTW2aM2cOAJ9//nmL5e7n48eP75bP7fXcDSKKdkFNGenqrCci0mmJiYmsXbuW559/njvuuOOEr1u4cCF+fn4sXbqUs846izlz5rB06VKKi4t54oknerDi3sXdIGJTbimOAePMhWoQISJ9nMfB6YEHHmjzIrgAn3zySbdcwwnMKXqzZs1iyZIlPProo3z11Vc8/vjj/OMf/2DWrFlMnjy5Wz631wuJhfBBgAsKNjW1JN+s4CQi0mGGYZyy4VBDQwOffvopc+bMISQkpGl5YmIiU6dO5aOPPuruMnutITHBRAb5Utfg5GDASHOhgpOI9HEeT9XLysriiiuuaHPdaaedxltvvdXpok7kkUceYfHixbzyyissWbKEuLg4rr/+ehYsWNBtn9knJGRA6UHIXU/6KPPaTtsKyqlrcOLn0z3t4UVEvN2BAweoqalh1KhRrdaNHDmSL7/8ktraWvz9/dv9nn2+22szEwZF8PGOw3xXO4jBgCt/E876OrB1/RTP3jj+nqTxa/zN771RT3V89Tg4lZeXExQU1Oa6gIAASku770hHQEAA//u//8v//u//dttn9EkJE2DbW5C3gZTTgwgN8KG8poGdheVNR6BERKRrlZSUAMeaFzUXERGBy+WitLSUuLi4dr9nf+j26jbQtxqA13a7uMzmj62+km1fvkNtaHK3fWZvGr8VNH6N39t193fgcXAaMGAAmzZtarOD3aZNm4iNje2SwsQDCeZRJvI2YBgG6Y0NIjbnlio4iYh0s5NN6fP0+oL9odurW03YEV7cvJa9FXaMhHGQs5YxEXW40jO6/LN64/h7ksav8Xvz+KHnOr56HJxmz57N448/TkZGBtOmTWta/u233/Lvf/+befPmefqW0lnuBhHF+6C6uCk4ZeWWcrWlhYmI9F/uI03FxcWt1pWUlGAYBmFhnl0Wol90e200ISUKu82goLSGqtQ0gnPWYivcBBlXddtn9qbxW0Hj1/i9efzQ/d+Bx8Fp/vz5fPHFF9xwww0MHjyYgQMHUlBQwP79+xk+fHib17iQbhYUBZGDoXg/5GWSlmjOt1eDCBGR7pOcnExAQAA7d+5stW7nzp2kpKR4dH5TfxPk58Po+FA255axyzaMDFCDCBHp0zzuHBAaGsrLL7/MggULCA8PJy8vj/DwcG677TZeeumlFp2FpAc1m67nbkm+raCceofTwqJERPovHx8fZs2axYcffkhFRUXT8ry8PL799lvOO+88C6vrHSYlm23Jv6lJMhfkb4LG6y+KiPQ1Hh9xAggODmb+/PnMnz+/q+uRjkqYAFteNxtEnNmyQcTYBJ3nJCLiqc8++4zq6moqKysB2L17NytXrgTgrLPOIjAwkNtuu4158+Zxyy23cNNNN1FXV8fChQuJjIzkxhtvtLL8XmFiSiTPfJ3NB4ciucXuB7Wl5uyIqCFWlyYi4rEOBScwu+tlZmZSXFzMWWedRXi4/ji3VNMRp0wMwyAtIZyv95oNIhScREQ8d++995Kbm9v0fOXKlU3BadWqVSQlJTFs2DCee+45/va3v3H77bdjt9uZNm0aS5YsISoqyqrSe42JjUecNuVX4UwZiy1/A+RnKjiJSJ/UoeC0ZMkS/v3vf1NTU4NhGLz66quEh4dz3XXXccYZZ3DzzTd3dZ1yKu4GEaUHoLKI9CQzOGXllnLVaZZWJiLSJ3388cftel1aWhpPP/109xbTRyVFBhIb6s/h8lqKQlOJy99gnuc09lKrSxMR8ZjH5zi98MILLFmyhHnz5rF06VJczeYqz5o1i08//bQr65P2CgiD6BHm47zMpjbkWTlqECEiItYwDKPpPKdtNB5lUoMIEemjOhScrr/+eu6++27OPPPMFutSUlLIzs7usuLEQ2oQISIivczElAgAvqhINBfkb1SDCBHpkzwOTgcPHmTGjBltrgsODqasrKzTRUkHNQtOKVFmg4i6Bic7C8utrUtERLzWpBTziNM7hZG4bD5QdQTKck+xlYhI79OhduRFRUVtrsvNzSU6OrrTRUkHNQtONpvZIAJ0PScREbHO2IRw/Ow28iqhPmqkuVDT9USkD/I4OE2fPp3//Oc/VFVVNS0zDIOGhgaWLVvWavqe9KCB6WDYoDwPygtIT2o8z0nBSURELBLga2dsYhgAeYHmBdrJy7SuIBGRDvI4OP3yl78kLy+PuXPn8sADD2AYBs8//zxXXHEF2dnZ/OIXv+iOOqU9/EMg5thOqalBRK6mT4qIiHXcDSKynIPNBTriJCJ9kMfBKSUlhWXLljF06FCWLVuGy+XijTfeIDIykhdffJGEhITuqFPaq60GEfllahAhIiKWmdh4ntMnZY1/Iyg4iUgf1KHrOA0fPpwnnniCuro6iouLCQ8PJyAgoKtrk45ImAAbXzQbRJwVRKi/D+W1DewqrGBMQpjV1YmIiBdyN4h4vygal7+BUVEA5QUQOtDiykRE2s/jI07N+fn5MWDAAIWm3qR5gwiDpnnlahAhIiJWGRAWQGJEIJWuAKrDh5kL8zdZW5SIiIfadcRpxYoVHr3pD37wgw6UIl1iYBoYdqg8BGV5pCeG883eo2zKLeHK0wZZXZ2IiHipiSmR5JZUc8BvBKnsNqfrjZxjdVkiIu3WruB05513tvsNDcNQcLKSbyDEjYHCLMjbQFqieQRKDSJERMRKE5MjeGtjHusbUkgFyM+0uCIREc+0KzitWrWqu+uQrpSQ0RScxo2fBRxrEOFr79TsTBERkQ5xn+f0YfFAfgRqECEifU67glNiYmJ31yFdKWECbHjObBAxSw0iRETEeqPjwwjwtfFdTRIEAKUHofIIBEdbXZqISLt0+PBDRUUFX3zxBW+//TZffvklFRUVXVmXdIYaRIiISC/ja7cxLimCcoIoD0o2FxboqJOI9B0dakf+xBNPsHjxYmpqanC5XBiGQUBAAL/85S+54YYburpG8dSAsWDzheqjUHKgqUFEVm6pGkSIiIhlJqVEsmbfUfb6DGc8B8zpesPOsbosEZF28Tg4rVixgocffpiZM2dy6aWXEhcXx6FDh1ixYgUPPfQQkZGRag5hNR9/MzzlZ0LeetISpwCQpSNOIiJioYnJ5nlOa2oHMR50npOI9CkeB6enn36aiy66iL/97W8tln/ve9/jf//3f3nmmWcUnHqDhAmNwWkD6RnnAWaDiAaHEx81iBAREQtMTI4A4NPyBG7yA/IyrSxHRMQjHv8FvXfvXr7//e+3ue773/8+e/bs6XRR0gWanec0ODqYEH8fahuc7Dqkc9FERMQa0SH+DI4OYotzsLmgeB9Ul1hZkohIu3kcnAICAigtbXvKV2lpKQEBAZ0uSrpAU3DaiA0XYxu76WXlaLqeiIhYZ2JKJCWEUuofby4oyLK2IBGRdvI4OE2aNInFixdTWFjYYvnhw4dZsmQJkydP7rLipBPiRoPdH2pLoXgf6YnhgM5zEhERa7mv57TTGGou0HlOItJHeHyO0x133MHVV1/NnDlzmD59OrGxsRw+fJhvvvkGHx8fFi9e3B11iqfsvjAwHXK/M89zSpoOKDiJiIi13A0ivq5K5DQbCk4i0md4fMRpxIgRvPrqq5x77rlkZWXx2muvkZWVxbnnnsvy5csZPnx4d9QpHdHsPCf3ESd3gwgRERErjBwQSoi/D+sbUswFCk4i0kd06DpOQ4YM4R//+EdX1yJdLXEirMVsEHGe2SCioraBXYcqGB0fZnV1IiLihew2g4xBEWzZPcRcULQT6irBL9jawkRETkF9qfsz9xGn/I3YcB5rEKHpeiIiYqGJKZEcJoJSnxjApQYRItIndOiI09atW3nrrbfIy8ujtra2xTrDMHjssce6pDjppJiR4BsEdRVwZDfpieF8u+8om3NLuXLyIKurExERL+W+ntMW12BOp8icrpc8zdqiREROwePgtGLFCu666y5sNhtRUVH4+vq2WG8YRpcVJ51ks0P8eDjwdWODiBmAjjiJiIi1JjQ2iFhbm8zpPt/pPCcR6RM8Dk6PPfYYZ511Fg8++CDh4eHdUVO7LV++nLvvvpugoCA2bNhgaS29VsKEpuCUNvkiALbmmQ0ifOyaqSkiIj0vPNCXkQNC2Hx4sLlAwUlE+gCP/3I+dOgQ1157reWhqbCwkAcffJC4uDhL6+j1mnXWGxJtNoiobXCy61CFtXWJiIhXm5gcyWZnY4OIQ9ugvsbagkRETsHj4DR69OhWF7+1wj333MPkyZM544wzrC6ld2tqELEJm8vBGDWIEBGRXmBiSiT5RFFmhIPLAYe2WF2SiMhJeRycfvvb3/L444+zffv27qinXd544w3WrFnDn//8Z8tq6DOihoFfKDRUQ9EOxjVez2mzgpOIiFjIvBCuwUbHYHNBXqaF1YiInJrH5zhlZGQwZ84cLr30UmJjY1tN2TMMgzfffLPLCjzekSNHuP/++/n1r3/NwIEDu+1z+g2bDRIyYP/qxgYRswAdcRIREWsNjQkmIsiXTXUpzLBt1HlOItLreRycHn/8cZYuXUpUVBQJCQmtuup1t3vvvZchQ4bwox/9qNPv5XA4OrVdR7fvaUb8eGz7V+PMXc+YyRcDsC2/jNq6+g41iOhr4+9qGr/G3/ze23R2/N76vUlrNpvBhEERbN7VeJ6TgpOI9HIeB6dnn32Wyy+/nPvuuw+73d4dNZ3Q+++/z8cff8yKFSu6pO15VlbnLrjX2e17SmRtJEOB6t1fUjJwF4E+BtX1Tt75Yh0p4R0Pvn1l/N1F49f4vZm3j1+6xqSUSF7eOdh8cmgrNNSBj5+lNYmInIjHwamyspKLLrqox0NTZWUl9913H9dccw1xcXGUlZUBUF9fD0BZWRk+Pj4EBQW1+z3T09M7NA6Hw0FWVlaHt+9xyeGw/v8IKt/HxHFjSf+ujjX7i6kPjScjI8njt+tz4+9iGr/Gr/F3fPzu7UXAPM/pb644ygki1FEFh7dD/DiryxIRaZPHwWnixIns2bOH6dOnd0c9J1RcXExRURFPPvkkTz75ZKv1p512Gueeey6PPvpou9/Tbrd36g+fzm7fY2KGQUA4Rk0p9iM7SU+KYM3+YrbmlWM/zQvG3000fo1f4/fe8UvXGD8oApthkOUYzOn2reZ0PQUnEemlPA5Of/jDH/jlL3/JwIEDmTlzJn5+PXNIPTY2lmeffbbV8scff5y1a9fy73//m8jIyB6ppc8xDLMt+d5PzQYRiecBahAhIiLWCvb3YXR8GJsPDeF0tkJ+JnCN1WWJiLTJ4+B0+eWX09DQwG233YZhGAQEBLRYbxgG69at67IC3fz9/Zk6dWqr5a+//jp2u73NddJMs+CUNnUeAFvzy2hwODvUIEJERKQrTEyOZHOBGkSISO/ncXA6//zzu6Qxg/Qw94Vw8zYwNCaYYD87lXUOdh+uIHVgmLW1iYiI15qUEsnCbwebTwo2g6MB7B7/eSIi0u08+pfJ4XDw85//nKioqFbXb7LKAw88wAMPPGB1Gb2fOzgVbsXmqGVsYjhr9h0lK6dUwUlERCwzMTmSfa6BVLgCCGmohiO7IG601WWJiLTi0Rwtl8vF3LlzyczM7KZypNuED4KgaHDWw6EtpCeawXezznMSERELDYoKJDokkK2uFHOBpuuJSC/lUXDy8fEhJiYGl8vVXfVId3E3iADIXd8UnNQgQkRErGQYBhOTI9jiHGwuUHASkV7K464Ac+fOZcWKFd1QinS7pvOcMklrDE7uBhEiIiJWmZQSyWanGkSISO/m8dmXqampvPvuu1x77bXMmTOH2NjYVs0i5syZ02UFShc6QYOIPYcrGTUw1NraRETEa01KieS/LjM4ufI3YTidYFPHVxHpXTwOTr/73e8AKCwsZM2aNa3WG4bBtm3bOl+ZdD13cDq8DVtDNWMTwlmz/yhZuaUKTiIiYpm0xHAO2BKpcfkSUFcOR/dCzHCryxIRacHj4NTWRWiljwiNh5ABUFEIBVmkJTYGp5wS5k1Ksro6ERHxUgG+dlITothWmMIEY7d5IVwFJxHpZTwOTlOmTOmOOqQnuBtE7FwJeRtIT7oIUIMIERGx3sTkSDbnD2aCbbd5nlP6PKtLEhFpocMTiMvLy1m9ejVvvvkmpaX6w7vPSJho3udtaOqspwYRIiJitUkpkWx2qUGEiPReHQpOS5YsYcaMGdx000387ne/IycnB4DrrruOxx9/vEsLlC7WrEHEkJgQgv3s1NQ72XO40tq6RETEq01MiWBzY0tyV/5G0KVPRKSX8Tg4vfDCCyxZsoR58+axdOnSFtd0mjVrFp9++mlX1iddLSHDvC/aib2+grEJup6TiIhYLz48kIrQ4dS57Bg1JVCSbXVJIiItdCg4XX/99dx9992ceeaZLdalpKSQna1/6Hq1kDgISwJckL+p6XpOmxWcRETEYmmD49jhGmQ+0XQ9EellPA5OBw8eZMaMGW2uCw4OpqysrNNFSTdzH3XK20B6UhigI04iImK9Scm6EK6I9F4eB6fQ0FCKioraXJebm0t0dHSni5Ju1uw8p6YGEXllOJyaTy4iItaZlBLJFtdgAFx5Ck4i0rt4HJymT5/Of/7zH6qqqpqWGYZBQ0MDy5YtazV9T3qh4xpEBPnZqa53sOdwhbV1iYiIVxsdH8YOYygAjrwNahAhIr2Kx8Hpl7/8JXl5ecydO5cHHngAwzB4/vnnueKKK8jOzuYXv/hFd9QpXckdnI7uwV5bytgEc7rephxN1xMREev4+djwSxxHg8uGT/URKM+3uiQRkSYeB6eUlBSWLVvG0KFDWbZsGS6XizfeeIPIyEhefPFFEhISuqNO6UpBURCRYj7O36gGESIiHfTtt98yatSoNm+ZmZlWl9cnpQ0ewG5XovkkL9PSWkREmvPpyEbDhw/niSeeoK6ujuLiYsLDwwkICOjq2qQ7JUwwW73mbSA90bw6uxpEiIh0zB133MHUqVNbLBsxYoRF1fRtk5Ij2fzVEFI5aDaISL3Q6pJERIAOHHG66667OHjwIAB+fn4MGDCgKTTl5uZy1113dW2F0j2anec0LkkNIkREOiMlJYWMjIwWt+DgYKvL6pMmpkQ2XQi3PneDtcWIiDTjcXB6/fXXKS4ubnNdcXExK1as6GxN0hPUIEJERHqhmBB/ikJTAXDmZlpbjIhIMx2aqncipaWl+Pn5deVbSneJH2/el2RjrylmbEIYa/cXk5VTysgBodbWJiLSx9x3333ccccdBAQEMGHCBG699VYmT57s8fs4HI4Ofb57u45u39sED8rAudPAv7oQR2m+efH2k+hv4/eUxq/xN7/3Rp39Dtq7XbuC09q1a/n222+bni9fvpzPP/+8xWtqa2tZtWoVw4YN86BMsUxgBEQNg6N7IG8DaYkDzeCUW8rlk5Ksrk5EpE8IDQ3l2muvZerUqURERJCdnc0TTzzBtddey9KlS094wfgTycrK6lQ9nd2+twjzdbLPNZBhRj57v1pBWdyUdm3XX8bfURq/xu/tuvs7aFdw+vbbb1m8eDFgXrNp+fLlbb4uISGBP/3pT11XnXSvhAlNwSk98WpAnfVERDwxZswYxowZ0/R88uTJnHfeeVx88cU8/PDDHgen9PR07Ha7x3U4HA6ysrI6vH1v4z+gjM1ZQxhGPkMCyzEyMk76+v42fk9p/Bq/N48fOv8duLc/lXYFp5/97Gf8+Mc/xuVycfrpp/PEE0+02FGA2ShCJ8L2MQkTYPOrZnCa9XMAtjQ2iLDbDIuLExHpm8LCwjj77LN56aWXqKmp8ajrrN1u79QfPp3dvrcYnRDBu8ZQ4CuqstcTdnb7xtRfxt9RGr/G783jh+7/DtoVnAICApr+4V+1ahWxsbE6l6k/aGoQkcnQWLNBRFWd2SBC5zmJiHScy2V2KDUM/QjVEXabQX1cOhSBrWCj1eWIiAAd6KqXmJio0NRfxI8DDCjLwV51mDHxYQBk5Wi6nohIR5WWlvLpp58yevRo/P39rS6nzwofajbXCKnOg6qjFlcjItKBrnr19fX8+9//5u233yYvL4/a2toW6w3DYOvWrV1WoHQj/1CIGQlFO8zpeklJfJetBhEiIu3161//mvj4eNLS0oiMjCQ7O5snn3ySI0eO8MADD1hdXp82dlgy2d/EkWI7BAWbYOjZVpckIl7O4+D0j3/8g6effpqZM2cye/ZsHX3q6xImHAtOiWMBNYgQEWmvUaNG8e677/LSSy9RVVVFeHg4kyZN4qGHHmLcuHFWl9enTRwUyReuwaRwiMr96whWcBIRi3kcnN577z3mz5/PggULuqMe6WkJE2DTS2ZwGj0fUIMIEZH2uvnmm7n55putLqNfCg/ypSBoFNSuoXzfOtR+SkSs5vE5TqWlpR26qJ/0Uk0NIjYwNCaYID871fUO9h6usLYuERGRgebF2v0Ob7K4EBGRDgSn0047je3bt3dHLWKFgelg2KCiEHtlwbEGEZquJyIiFosecRoAUTUHoabM4mpExNt5HJzuvvtuXn31VT744APq6uq6oybpSX5BEDvafJy3gbTEcEDBSURErJc2chi5rmgAGvLUllxErOXxOU6XXHIJDQ0N3H777RiG0erCfoZhsG7dui4rUHpA4gQ4tKWxQYQ5LUINIkRExGpDY0L41BhCIkc4tHMNCUNnWF2SiHgxj4PT+eefrwv69TcJE2DD82ZwGns7AJtz1SBCRESsZbMZlISPgdLvqMpeb3U5IuLlPA5OVl2X4uuvv+bNN99kw4YNFBQUEBoaSlpaGvPnzyctLc2SmvqNZg0ihsUEE+h7rEHEiAGh1tYmIiJezSdxApQ+S9CRzVaXIiJezuNznKyybNkycnNzufbaa3n88cf5wx/+wNGjR7nqqqv4+uuvrS6vbxuQBjZfqDqCvTyHsQlqECEiIr1DfOpUAAbUHYC6SourERFv1q4jTlu2bPHoTceOHduhYk7mnnvuITo6usWyGTNmMGfOHJYuXcr06dO7/DO9ho8/DBgD+RsbG0QM57vsYrJyS7lsYpLV1YmIiBcbPWoUh1wRxBklHNmznujROs9JRKzRruB0+eWXt+u8JpfLhWEYbNu2rdOFHe/40AQQHBzMsGHDyM/P7/LP8zoJE5qCU3riJEANIkRExHoh/j5s9R1OXMN3FOz4VsFJRCzTruD017/+tbvr6JDy8nK2bt3KtGnTrC6l70uYAOueNoNTutmSfEueGkSIiIj1KqPHQuF31OdssLoUEfFi7QpOl156aXfX0SH33nsv1dXV3HLLLR3a3uFwdGq7jm7fKw0Yjx1w5W1gcGQAgb52quoc7C4sY3hcSIuX9svxe0Dj1/ib33ubzo7fW7836ZzA5IlQ+AxhJVutLkVEvJjHXfV6i0ceeYS33nqLP/7xjx3uqpeVldWpGjq7fW9iOOvJsPliqyllxzfvkRwWwI4jDt75OouzUgLb3KY/jb8jNH6N35t5+/ilZyWNmQ5rYVB9NjXVVQQEBlldkoh4oT4ZnBYvXsxjjz3Gr371K37yk590+H3S09Ox2+0eb+dwOMjKyurw9r2VsSEd8tYzNqKWqSOHsOPrA5T5RJCRMbrF6/rr+NtL49f4Nf6Oj9+9vYgnElNGUEIIEUYFu7euYfSks60uSUS8UJ8LTosXL2bRokXcdtttHZ6i52a32zv1h09nt+91EidC3npsBRsZlzQdOMCWvLITjrHfjd9DGr/Gr/F77/ilZxk2G3mBI4moXk/RzrWg4CQiFugz13ECWLJkCYsWLeLWW29lwYIFVpfT/zRdCDeT9MSWDSJERESsVBs7DgBX/kaLKxERb9Vnjjg9+eSTLFy4kBkzZnD22WeTmZnZYn1GRoYldfUrzYLTsJjApgYR+4oqGB4Xam1tIiLi1UKHTIIDTxNdvq3p8iciIj2pzwSnTz75BIDVq1ezevXqVut37NjR0yX1PzGjwCcQ6srxKdnHmIQw1jVeCFfBSURErDRozHT4DIY7s8kpKmNQbLjVJYmIl+kzwem5556zuoT+z+4D8ePg4LeNF8IdawannDIunWB1cSIi4s38Y4dRaQQRTBW7t65j0FnnWF2SiHiZPnWOk/SApul6G0hrPM9pc26phQWJiIgANhuHg0cBULJnrcXFiIg3UnCSlpoFp2MNIkpxqkGEiIhYzDHAbBDhc2iTxZWIiDdScJKW3MEpfyPDogMI8LVRWedgb1GltXWJiIjXixoxBYCEqp1U1TVYXI2IeBsFJ2kpejj4hUB9FT5HdzEmPgyArNwSa+sSERGvFznsNABGG9lszD5qcTUi4m0UnKQlmx3ix5uPm03Xy8ops7AoERERIHo4tUYAQUYt+3boek4i0rMUnKQ1NYgQEZHeyGanJMxsEFGxf53FxYiIt1FwktaaBadxSRGAGkSIiEjvYEvIACCwKAuXS/slEek5Ck7Smjs4FWQxLMpPDSJERKTXcJ/nNMK5h33aL4lID1JwktaihoJ/ODhq8Tmyo6lBhKbriYiI1XySMgAYY+xn3f4j1hYjIl5FwUlaMwxonArRokGEgpOIiFgtNpUGw48wo5rs3VutrkZEvIiCk7StjQYRCk4iImI5uy8VEWaDiNoD6y0uRkS8iYKTtK1ZcEpPMoPTllw1iBAREev5DzL3UVHl2yirqbe4GhHxFgpO0jZ3cCrcwvBIXzWIEBGRXiMweSIAY439ZB4osbYYEfEaCk7StohkCIwCZz0+RdsYrQYRIiLSWzReqD3dto/12UctLkZEvIWCk7TNMFpO19N5TiIi0lvEjcFp+BBpVLB/7w6rqxERL6HgJCem4CQiIr2RbwC1UWaDCFfeRp1/KyI9QsFJTqwpOGU2NYjYmlemHZSIiFjO3SBimGM3uw5XWFyNiHgDBSc5MXdwOrSV4RF2AnxtVNQ2sP+IGkSIiIi1bI3XG0wz9rM+u8TSWkTEOyg4yYmFJUBwHLgc+BzeeqxBRF6ZxYWJiIjXa2wQkWbbz4aDJdbWIiJeQcFJTuwEDSI25yo4iYiIxQaMxWXYiDNK2L9/j9XViIgXUHCSk2sWnNLcwSlPDSJERMRifsE4o0YAEF6ylbJap8UFiUh/p+AkJ9fGEacteWU4XWoQISIi1rInZgDmeU47j9RZW4yI9HsKTnJyjSffUrSDERHg72OjotZBfoXDyqpEREQgPgOANNs+dhypt7YWEen3FJzk5EIHQmgCuJz4HNrS1CBib7F2UCIiYrHGBhFjbfsVnESk2yk4yak1m643rvF6Tss2V/C3D3ayLvsoDl3XSURErDAwHYBE4whHjh6hwaHznESk+yg4yak1C07njx2Ir92gsNLBY5/t5fLHvmby//chv3o5kzc35lFapV/8RESkhwSE4YoaBsAI1z6e//YA5TXaD4lI9/CxugDpA5oFpzMuj+Gr383iuY/Wsac6kNW7iiiuquf1Dbm8viEXu81gUnIks1LjOCc1jpEDQjAMw9r6RUSk3zLix8PRPaQb+/i/d7bz0Ps7mTUqjovHJ3BOahyBfnarSxSRfkLBSU7N3SDiyC6oKSMqOJizUgK5PSMDFwbrsov5eMchPtl+iJ2FFazZf5Q1+4/y4MrtJEYEMis1lnNS4zh9WAwBvtqBiYhIF4ofD1te44KIg6w0gtlbVMnKLQWs3FJAkJ+d2aMHcPH4BGaOjMHfR/sgEek4BSc5teAYCE+G0gOQnwnJZzSt8rHbmDo0mqlDo7nre6M5eLSKT3cc4uPth/hqzxFyS6p5/psDPP/NAQJ8bZw+LKbpaFRiRKB1YxIRkf6h8ce9Ua59fPCrM9lxqJK3N+Xz1sY8coqreXNjHm9uzCM0wIfzxw7konHxnDE8Bl+7zlYQEc8oOEn7JGSYwSlvQ4vgdLxBUUFcM30w10wfTHWdg6/2FPHxdvNoVF5pDR9vN0PVH4FRA0KbQtTE5Ah8tBMTERFPDRwHgH9VPo6aUsYmRDM2IZzfnj+KjTmlvLUxj3c25VNQVsOr63J4dV0OkUG+XJAWz8Xj45k6JBq7TVPKReTUFJykfRImwLY3zeDUToF+ds4dPYBzRw/A5XKxo7C8KUStyy5mR2E5OwrL+ddnewgP9GXmyFjOSY3lrJFxRAX7deNgRESk3wiKwhWRjFFyAOOjP8KUmyF+PIZhkDEogoxBEfzhwtF8l13MWxvzeG9zPkUVdSxbc4Blaw4QG+rP3PR4LhoXz8TkSGwKUSJyAgpO0j7NGkR0hGEYpA4MI3VgGL84ezglVXV8tvMwn2w/xKc7D1NSVc9bG/N4a2MeNgMmJEdyTmocs0bFMTo+VA0mRETkhFzDzsVY9xS2zBcg8wWIGQXjr4L0KyAiGZvNYMqQKKYMieKei8fwzd6jvL0pj/c2F3C4vJanv9rP01/tJyE8gIvGJ3DRuHjSE8O17xGRFhScpH3cDSKK90N1caffLiLIj0syErkkIxGH08WGA8VN0/i2F5SzLruYddnFPPz+DuLDAzh7lDml74zh0QT56X+2IiJyjOuCB9ltH87QirXYdq6Eoh2w6j7zlnIGjLsSxvwAAs1p4WeOiOHMETHcd0kaX+4u4q2NeXywtZC80hoe/3wvj3++l5ToIC4el8BF4+MZNUA/4ImIgpO0V2AkRA2Fo3vNBhFEdtlb220GkwdHMXlwFL+9IJW8kmo+aezS98XuIvJLa5qmVPj52Jg2NJpzG8+NGhQV1GV1iIhIH2XzoXTAdFzn3wr1FbDtLdj4Euz/ArK/NG/v/gZGXgDjroIRc8DHDz8fG7NS45iVGkdNvYNPdxzmrU15rNpWSPaRKhZ/spvFn+xmRFwIFzWGqGGxIVaPVkQs0qeCU2VlJY888gjvvfcepaWlDB06lJtvvpm5c+daXZp3SJgAR/di5GVCyKzu+5iIQH48NYUfT02hpt7BN3uPNB2Nyimu5vOdh/l852HueXMLw+NCmqb0TR4cqS5JIiLeLiAcJvzEvJXmQNarsOllOLTVPFd325vmj4FjL4VxV8OgKWAYBPjauSBtIBekDaSytoFV2w/x9sY8Pt1xmF2HKvjnRzv550c7GRMfxsWN0/n0452Id+lTwem2224jKyuLX//61wwePJi3336bO+64A6fTycUXX2x1ef1fwgTY/F+M/A0wovuCU3MBvnbOHhXH2aPiuPf7LnYfqmgKUd9lF7P7UAW7D1Xw+Od7CQ3wYeaIWGalxnH2qFhiQvx7pEYR8W76Ua8XC0+CM/8HzrgdCjebASrrVSjPh++eNG+RgyH9SvNIVMxwAIL9ffj++AS+Pz6Bspp6PtxSyFub8vhiVxFb88vYml/Ggyu3kzEogovGxXPRuAQGhgdYOlQR6X59Jjh99tlnfPnll/z973/noosuAmDatGnk5eXx0EMPceGFF2K368J23crdICI/E0b0/McbhsGIAaGMGBDKz88aRml1Pat3Hebj7Yf4dMdhjlbW8U5WPu9k5WMYMD4pgnMap/SNTQjT/HQR6Rb6Ua8PMAwYmG7eZt8L+z6HTa+YR5+K98PnD5m3xElmgBp7GYTEAhAW4Mvlk5K4fFISxZV1rNxSwFsb8/hm7xEyD5aQebCEv7y7jdMGR3HxuHi+lx6vH+5E+qk+E5w+/PBDgoKCuOCCC1osv+yyy/j1r3/Nxo0bmThxokXVeYmB4wADozQHn9rON4jorPBAX3PO+bgEHE4XG3NK+KTxaNSWvLKmHdo/PtxJXKg/s0aZ89jPHBFDiH+f+Z++iPRi+lGvD7LZYdgs8zb377DjXfNI1O5VkLvOvK28C4bPNptKjLoQ/MwpeZHBfvxwSjI/nJLMofIa3ssq4O1NeazdX8yafUdZs+8o97y5hdOHxXDx+HjOHzuQiCBdXkOkv+gzfz3u2rWLYcOG4ePTsuRRo0Y1rfc0ODkcjg7V4t6uo9v3Wb7B2KKHYxzZRVDJThyOmVZX1ML4xDDGJ4bxP+cOp7Cshk93HOaTHYf5cs8RDpXX8vJ3B3n5u4P42g2mDI5i1qhYZqXGMjg62KPP8dr//o00/tbjdzpdOF0uHK5jj50uFw6nC6eLpscOpwuXCxwu9+OW2xz/evN9aPbYhcNpvt7hatzeSbPHjcsblzkb3+/Y42Of1+o9m9XcskaOvW/jbVxYHemd/Pezv9CPen2cXxCkzzNvFYdh83/NEJW3Hna9b978QmHM980QNXiGGbyAuNAArjt9MNedPpi8kmre2ZTP25vy2JhTyhe7i/hidxF3r9jMjBGxXDw+ntmjBxAa4GvxgEWkM/pMcCopKSEpKanV8vDw8Kb1nsrKyupUTZ3dvi8aHJBCNLsYsPdVclZWUBk5hrrAgeY0iF5mlC+MSrPx09ExbC2q47u8Wtbn11JQ6eDLPUf4cs8R/r93t5MQYmdivD+T4v0ZHeuHbzsvfuiN//2b6+z4XS4XDe4/yp3Q4IKGxj/oG5yNj12Y65yupudN6xrDQb37sRMaXOa27vesb3qP49/TRb37dS73+7f9vKHxfR3NnjtdLpyvFuAEnK6u+T77Dhe7BvgzNta7//fv1h0/6olFQmJh2i3mrWiXGaA2vQwlB8xrQ2W+AKEJZsgadxUMTGvaNCEikJtmDuWmmUPJPlLJ25vyeWtjHtsLypvOy/XzsXHOqDguGh/PuakDCPTTkUiRvqbPBCfgpOeodOT8lfT09A5NoXA4HGRlZXV4+77McF4IuR8RVrSOsKJ1ALiCYyFhEq6kybgSJ5nnQvmHWVxpS6cB12H+sb6vqJJPGo9Grd1fTF6Fg7xdVby9q4oQfztnDI9h1shYzh4VS2xo63nqffm/v8vlos7hoqbeQXWdg5oGBzX1TvN5/bHH7ue19U6qj39c18DhI8UEh4Y1hhMnDQ4X9Q4n9U4XDQ4n9Y7Ge6e5vKGt516WOOw2A7th/ltltxnYmu5p+dhmYDeMxtfR7LF7ufletsbX2w2jaRubAT6Gk0BqCXTVEmDUEkgN/q5aAqglwFWLv6vGvKcGP6f52M9lPvZ31eDrrMXfVY2vswZfp7ncx2E+9nVUY3fVsydsHsnpj3bq38/+oqt/1NNMiI7p8vFHDoWz7oKZd8LBbzGyXsHYugKjPA++WghfLcQVNwZX+pW40i6HsMSmTZMiArhl5hBumTmE3YcqeCcrn7c3FbC3qJKVWwpYuaWAID8756TGclF6PDNHxuLv07mOsPrv793jb2hooMHporKmDpdha5qV4J7p0HRrnH3Q4Dw2m6H5Ovdjp8tFg8PVYraEe73TBQ1OJ04nJ3jf4z/XAY56cNRhOOvAUY/hqMdwND521mM46zAc9dicddic5jKbsx6bq/HeWY+Pqw7DWY/d2YDd1XhPPXZnPXZXA067H660K0lPT+/Qd9je/+30meAUERHR5g6otLQUOLaT8oTdbu/UH76d3b5PmngdjoAIjqx/i9jabIyCLIzKw7BrJcaulY0vMiButHmSbdJpkDQZYlObpjdYbcTAcEYMDOfms4ZTXlPPF7uK+Hj7IT7ZcZiiilre31LI+1sKAUhPDGdWahznpsaRnhiOrdnRqK767+9yuah3uMwQU2eGl+pm4cUMLceCTVPgqXNQ09D4vGl96+1rj3vu6rK8UtNVb9TEx2bgYzfwtdnw9bHhYzPwtdvwtRv42Fs/97Wbz31sxy2z2cz3afFaG76247Zr+izj2Hs0fnabr7XbMFwudmzfRnraWPx87C1DTWPQsdsaA07T42Y/7Djqoa4S6qugvrrxcTXUV0Jd1bHHTeuOf11Vy23qqxu3a3zsqOvy/y7HC7PXe+e/fyfQlT/qaSZE53TP+AMg8VqMgVcTdmgN0TkfEn7oG2yHtmKs+jOuVfdSHpPB0cTZFMfPxOnbcvr3WdEw8+wQsksD+OJgDV8erOFQpYO3NxXw9qYCgnwNpiT4c2ZyIOlxfvi0c9ZDW/Tf3/rxuxpnPtQ5XNQ5zR8r6xyNz1vdji2vd7ioPW55vbP162sbX9t8uc1RRzDV+P13C75GA7404I9570sDvkYDfs2e+7WxzJcG/Ixm65vdu98zEAd+1LdY5ofjuM+pb9yucbnRQ2G2AT46GEdWVusfsrpSnwlOI0eO5O2336ahoaHFlIidO3cCMGKEBW3evJHdB8b8gIN1g4nOyMDurIeCTZDzHeSsNe9LD5jXyzi0FTY8Z27nFwKJEyFx8rEwFRJn7ViA0ABfvpdudkFyOl1szitl1bZDfLLjEJtySsnKNW8LV+0iJsSfs0fFMnNENIcKajm0tfC4ozfHQkzzIzjHAk3r5+7tHBYcfbHbDAJ97QT42gnwtTU9DvS143/c80C/Y8v87AaHC/IZnDwIP197szDjDhctw0zz0NH6tc3Cit3oXZ0PHfVQWw61pVBTBjXlUFuGs7oUe9EOErZ9i62hpjHYNN7qjn/cRiByNvTQAAzwCwbfIPM8Dl/3LbBxeSD4Bjeua3zsG9j4PPi41wU1PXbYAzm48wDRPTSK3q6rf9TTTIiO6bnxTwEW4KouwbntDfNI1IGvCSvaQFjRBlK2LMI18nu40q+EYeeA/dg5TROAH2D+Yb0pp5S3s/J5N6uAgrJaPs2u4dPsGiKDfDl/7ADmpsczdUgU9naGKP33b3v87lkWtY373NoGJzUN5syK2npn06yLWvd9vePY+jZe515e2+x5TYPTXOaetdHg6Q+ULkKoJpRqwoxKwqgi1KgijKp2PK8i1KcKf9+e2q90nsOw4zR8cRi+OG3mzWH44LIde+60+ZnP7b64Gh+77L7gfuzjBzY/sPvisvth2P2wBYUTHZbB2E7+G3oqfSY4zZ49m1deeYUPPviACy+8sGn566+/TlxcHOPHj7ewOi/mG2BePHDQlGPLygsh97tjYSp3PdRVmO1f931+7HURyWaIcoep+HHgY10LV5vNYFxSBOOSIvjVeSM5VN7YYGL7IVbvKqKoopZX1+Xw6rqcxi26vrOgYdAisAT42po9bhlyAv1aLzvRdoF+dgJ87AT4HVve0YsFOxwOMjPLyMhI7p07aKejMfCUNd6Xm8Gn6XlZs2Xu58cvK4eG6jbf3gakdEWdhv1YsGkKKccHm6CWIadVsGkeiI4LSD7+3XPuocMBHOj69+2juvpHPc2E6JweG39INJx2o3krzoas5bDpZYyinRhbX4etr0NQNKRdbp4PlTipxf8fJw6OZuLgaO6eO5bvsot5e1Me72blU1RRx0trc3hpbQ6xof7MTY/nonHxTEyObDHj4UT6y39/h9NFeU09ZdUNlNXUU1Zd33jf/HkDZdX1lDbeDpeUw8dfNgWd2g6FGM/ZcRDSGHoS3OHHMENOqFFNlK2aSFsV4bZqwo3GsEMlwa4qgl2VBDkrseHsdB0uDPPffbtfs5svRrPH2P0aX+PbclmLx/4nWN7W9m29h/9J3tsXu82OHejqNikOh4PCzMxu//9AnwlOZ511FmeccQZ//vOfqaioIDk5mXfeeYfVq1fz8MMP94t/KPqN0AGQOte8gfmH7OHtx45I5XxnPi85YN42/9d8nd3PvMZGU5iabF6Y0KKjEHGhAVw5eRBXTh5EXYOT7/Yf5ePth/h6zxEqq6qIDA8xA4yHoca/+Wt8WoYaP7utdx116UlOp3lEpnl4qS09LvycKOg026auomvr8g0G/1DzFhCGyy+EkuoGwmPisbV1ROdEj1sFG7Uo7g/0o54QmQIz/xdm/Nq8zuGmV8yL7FYegjWPm7eoYWaAGncFRA1t2tRmM5gyJIopQ6L400Vj+HbfUd7amMd7mws4XF7L01/t5+mv9pMQHsDccfFcPD6B9MTwXr+fcDhdVNSYIaf0JKGn6flx6ypqO3oE5cTb2QwI8LXj72Nr2j/7+9gI8XESZa8moingVBFGNWFUEkxlU7gJclYQ6KjA31GBX0M5fvXl+NSX49NQ2b7STpWN7H4QEH7s5h/W8nlAGAREtLne4RtM5tbdZEyYoL+Hu1mfCU4AixYt4p///CcLFy6kpKSEoUOH8o9//ENXZ+/tbHYYMNa8TbreXFZTZrZ7zVkLOevM+6qiY9fQcAuKMQNUUuNRqYSJ5j8ePczPx8bpw2M4fXhM4xGXTDIyMvQPFIDLZU5Da35Ep61AU9MsBLV1hKe2DOjCnwbt/ub/Vtyhxz+scUcT1uy5OxCFt7EszGxDbG/5z6TT4WBv439/9N/f6+lHPWliGGZzpIQJcN7/wd5Pza5829+Go3vg0/vNW9IUGN94kd2gqKbNfew2zhgewxnDY7jvkjS+3F3EWxvz+GBrIXmlNfx79T7+vXofKdFBXDQunovGJZA6MLRbQpTT6aK8tuGkR3qaLy+tNteVN64r73DwaSnIz05YgC9hgT6N976EB/oSFuBDWKCvuSzAToRRReWBTEYlRhHsqiLAUY5fQyV+DWX4NgYcW20ZRk1p476ozLyvKIWGLjpf1ze4MdycKvy4H0e0XO8b0PHPdjh6ZXfj/qhPBafg4GDuvvtu7r77bqtLkc4KCIOhZ5s3MP/4Lt5vhib3kan8jWaY2rnSvAFgmI0mmoepXtR4ot9wOqDiEJTlQVmueV+eB2V52MryGF2cj211w7HQ05Xn7Rj2xnBzfNBpFmya1h+/rNlzC6d9infRj3rSit0HRsw2b7UVZnja9LIZpnLWmLf37oQR55lHokZe0OIPZz8fG7NSzYu219Q7+HTHYd7elMdH2wrJPlLFkk/2sOSTPQyPC+HicQlcmNbynGGn00VFXUObR3PaDkP1lFYfW1dR29AlU9wCfe0tQk+LwNO4PDzQt9WysEBfQgN8zCnl9dXmPqg0B0r3mfuk0hwozGl8nAt15eYHdqY3hH9b4eZU4Se8cbuwFuezSf/Vp4KT9GOGAVFDzFv6PHNZfQ0UZDWeL9UYpkqy4fA289a88UTChGNNJxInm9MFpW0NdVCe3zIUNQtG5uMCcLXdCccAgk605qRBp9lRnxbLQs0dj3uZT4B+OZM+RT/qyUn5h8D4q81bWf6xi+wWbIId75o3/3DzIrvjr4bk08F27BzUAF87F6QN5IK0gVTWNrBq+yHe3pjHpzsOs/tQBf/8aCf//GgnA4Pt+H70GaWNR3y6Ivj4+9jaPsrTIgy1fUQoNMAXv1O1WXc0QEWB2VSq9CAcagxCpTlQlmM+ripqV60NvqHYQ2IwTnVkp63w4xfa4jsXOREFJ+m9fANg0GnmjVvNZRWHzACVe1zjif2rzZtbePKxI1JJk2HguM4dBu8r6iqPhZ8WR4vyjz2uPNy+9zLsEDoQwhLMW6h57wwZyO68owwbk4E9KPJY+PELUeARETmZsHg4fYF5O7St8SK7y82QsOE58xaWZJ4LNe5qiEttsXmwvw/fH5/A98cnUFZTz4dbCnlrUx5f7CqioNIBlS2b2vjZzeBz/FGfEx3laR6OQgN8CPDtxGwOlwsqi8xAVJrbeHSo+eNcc990gh/pWvANhvBECE8yr5kVntTisSNkIBu37NQUeul2Ck7St4TEQeqF5g0aG0/saDwitdac6ndoW+OvVwdgy2vm62y+xxpPJJ0GSZMgckjf+UPf5YKakuNCURvBqKa0fe9n9zd34GGJrYJR07KQuDanQLocDsobMiEpQ+f4iIh0VNxomP1nOOdPcOAr2PgSbH3DDFFf/NO8DRxnTuVLn2f+kNVMWIAvl09K4vJJSRSVV/Pm6g2MGz2KiGD/pjDUqeBzKrXljdPnchuPDh33uCyvfecP2XzMfU74oMYg5A5IScceB0ScfH/tpRe+lZ6n4CR9m80OA8aYt0nXmctqyiBvw7HpfbnfmUdZ8tabtzVLzdcFRbe8rlTiRPOQfU9zOs2pCM2nzTUPRu5pdfVV7Xs/v5BjYehEwSgoqu+ERhGR/sxmg8FnmrcL/2ae07vpZdj1gTmdr2ATfPhH85zgcVdB6kXm9L9mIoP8GD/An4zkiK454tJQe+yoUKsjRY0BqbadP9SFDDjhkSLCkyA4TtPkpM9QcJL+JyAMhp5l3sA8WlOSfawVes5ac0dUdQR2vW/eALPxxP/f3p1HNXXm/wN/B4IKqCwi4riMBU3YMrhB3KhL3bBYsG5zzhxwVFRqYRxRa63TKTiuYz1OwUGkOIqOxy9W0SOWauvSo/MbCYrVMipK3UaoRUQRENmS+/sjkyuRYFAg0fB+nXOP5blPyPMkIe9+7n1yI3/2Oame/tojgs258IS6Fqgoavh5ovpb+T1AU9u032fr/L9iqLt+YdSp3tkjM1x1kIiIWoBNB8AnVLs9KdF+H9SlNO3FJG6c1G42dtri6TcztcWU9Uv+r5xGrc2lxs4UPS7UXkq9KTo4vPhMUadf8asXyKKwcCLLJ5Fovw/Kqc+zC0/UVWsvPKErpArO/e/CE3na7Yd/avvZ2GvPRNUvpuxctPtqnwKlRYYvtKDbKorQtEtsS7RH5cQzRb8yUBj9Svulp0REZPnsuwD+Edrt4U3tZ6F+/D/tf+fu0272rtpc852mPUgoCEDlw/8tldOdHSrQP1NU/nPTroQq7dDImaIez4ql5858EVk6Fk7UNknbP7ukOSK1bRXF/7voRP0LT5Q3uPCEVafu8Kt6AuuMsqbdl5XNs8KnscKoYzdeypSIiAxzdgdGLQdGfqT9LO+Padqr8z25D2QlwjorEYr2XWB17GnTlnVLrJ9lkKEzRZ17ckk3kQEsnIh0OnYF5EHaDdAuZ3hw/dkZqYIc4P4VSMrvPfvDkdpqg6bTcxdaqF8Y2blw/TYRETWfRPLsoN+EtcBPJ4Af0yBcy0S76pJn/ey7vvhMUSc3fv8h0Stg4UTUGCtr7WecXL2AgeHatupyqO/lIu9WITz9x8DankfkiIjIDKxtAPlEQD4RmspHyP9/h9Gv/zBYO/ZqG1+/QWQGPAxO9DLadwJ6KVHV2R2wdWTRRERE5te+M544+2qX9LFoImo1LJyIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREawcCIiIiIiIjKChRMREREREZERLJyIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREZIzT0AcxAEAQCgVqtf6fa6273q7d90nD/nX//ftobzb978dbfTvQ+TFnOpeTh/zr/+v21NW58/YLpskghtML1qamqQm5tr7mEQEbVZCoUC7dq1M/cwXhvMJSIi8zOWTW2ycNJoNKirq4OVlRUkEom5h0NE1GYIggCNRgOpVAorK64W12EuERGZT1OzqU0WTkRERERERC+Dh/uIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREawcCIiIiIiIjKChdNz0tPTIZfLxc3b2xsjRozA4sWLcfv2bb2+58+fx8qVK/H+++/D19cXcrkcBQUF5hl4C2nq/NVqNXbs2IG5c+fi7bffhp+fH4KCgvD555+jrKzMfBNoJc8/Ls9vKpXK3EN8ZUePHoVcLkdmZmaDfe+99x7kcjnOnDnTYN/YsWMxZcoUAMCpU6fw0UcfYfLkyfDx8YFcLm/1cbeU5s6/oqICW7duRVhYGIYPH44BAwZg8uTJSE5ORnV1tSmm0Cwt8fxv3rwZoaGhCAgIgEKhwDvvvINPP/0UhYWFrT7+toLZxGwyxFKzibnEXHpdc0narFtbsHXr1sHd3R3V1dW4cOECkpKSoFKp8M0338DBwQEAkJWVhbNnz8LLywv29vbIzs4286hbjrH5V1VVISEhAcHBwZg+fTqcnJxw5coVbN26FadOncKBAwfQoUMHc0+jxekel+f17dvXDKNpGQEBAZBIJMjKysKkSZPE9tLSUly/fh12dnZQqVQIDAwU9/3yyy+4e/cuZs+eDQD47rvvcOnSJXh5ecHGxgaXL182+TxeVXPn//PPPyM1NRUhISH4/e9/Dzs7O+Tk5GDLli3497//jR07dkAikZhjak3SEs9/WVkZ3n33XXh4eMDe3h4//fQTtm7dipMnT+LIkSNwcnIy+bwsFbOJ2WSIpWUTc4m59LrmEgunRvTr1w8KhQIAoFQqoVarkZCQgOPHj2Pq1KkAgIULFyIqKgoAsH37dosKJ2Pz79ChA06cOKH3wlMqlejevTsWLVqEY8eOISQkxFzDbzX1HxdL4ezsjH79+jV4/Z47dw5SqRRTp05tcNQyKysLgPY5B4DVq1fDykp7AnvVqlVvVEA1d/49e/bEyZMnYWdnJ+4fOnQobG1t8de//hU5OTkYPHhw60/kFbXE8//ZZ5/p7dc9LvPnz8eJEycwbdq0VpxB28JsYjYZYmnZxFxiLr2uucSlek2ke0MqKSkR23R/kG3B8/O3trY2WK3/5je/AaCt/OnNoVQqcevWLdy/f19sU6lU8PX1xciRI3H58mVUVFSI+7Kzs2FtbS2+8b7pfwvNmb+dnZ1eOOm8SX8LzX3+DXF2dgYASKU8PteamE3MJkvFXGIuvY659Ga/qkxItz68T58+5h2ImTR1/rqK/01dHmCMRqNBXV2d3qZWq809rGYbMmQIAOgd3VGpVAgICMDAgQMhkUiQk5Ojt8/b2xudOnUy+VhbQ2vM/036W2ip+dfV1aGqqgpXrlzB2rVr0adPH4wbN840k2ijmE3MJsAys4m5xFwCXr9cYuHUCN2b0JMnT3DmzBls3boV/v7+GDNmjLmHZhKvMv+ioiJs2rQJvr6+GD16tAlHazozZsyAj4+P3mYJyyP8/f1hZWUlvkE9evQI+fn58Pf3h729Pby9vcU33Hv37qGgoEA8HW4JWnr+eXl5SElJwbhx4+Dp6WmSOTRHS8y/uLgYPj4+8PPzw5QpU6BWq7Fr1y7Y29ubfD6WjNnEbDLEErOJucRceh1ziWsoGjFjxgy9nz08PJCYmNhmlp287PxLS0sxb948CIKAv/3tb2/8KfLGbNiwAR4eHnptr/MHLJvKwcEBnp6e4prhc+fOwdraGgMHDgSgfQPTvUHp+lhSQLXk/AsKChAZGQk3NzesXr3aBKNvvpaYv5OTE/bv34+amhrcvHkTKSkpCA8Px+7du+Hq6mrC2Vg2ZhOzyRBLzCbmEnPpdcwly3wHaQEbNmzA/v37kZqaipkzZ+LGjRuIiYkx97BM5mXm//jxY8yZMwdFRUX4xz/+gV69epl4tKbj4eEBhUKht/n6+pp7WC1CqVTi9u3bKCoqgkqlgo+Pj3hUJiAgAFevXkV5eTlUKhWkUikGDRpk5hG3rJaYf2FhIcLDw2FtbY3U1FQ4OjqaeBavrrnzl0qlUCgUGDRoEKZPn47U1FQUFBQgOTnZHNOxWMwmZpMhlppNzCXm0uuWSyycGqF7ExoyZAhWrVqF6dOn48yZMzh69Ki5h2YSTZ3/48ePMXv2bBQUFGDHjh1vxOlfMkx3pCY7OxvZ2dnw9/cX9+nejM6dOweVSgWFQmFxS7CaO//CwkKEhYUBAHbt2gU3NzcTjbxltPTz7+bmBldX1wbfMUTNw2xiNrUlzCXmEvB65RILpyZatmwZHBwcEB8fD41GY+7hmJyh+euC6e7du9i+fTu8vb3NPEpqDn9/f1hbW+PYsWPIz89HQECAuK9Tp07w8vLCoUOHUFhYaFHLIXSaM/+ff/4ZYWFh0Gg0SE1NRY8ePUw9/GZr6ef/zp07+OWXX/DrX/+6NYfd5jGbmE2WjLnEXHrdcqltLIpuAQ4ODpg/fz42btyIjIwMhISE4OHDh+KH1q5fvw4AOH36NJydneHs7Kz3BL/pnp//hAkTMHfuXFy5cgWffPIJ1Go1Ll68KPZ3dnZG7969zTfgVpKfn2/wSkW9e/cWL3P5purYsSO8vb1x/PhxWFlZNTjl7e/vj9TUVAAN1xEXFhYiNzcXAPDf//4XAMQjwD169HgjPqT8qvMvKSlBeHg4iouLsWbNGpSUlOhdGtrNze2NOMr3qvPPy8vDunXrMGHCBPTq1QtWVla4fv06du7cCUdHR8yZM8ek82hrmE3MJsBys4m5xFx63XKJhdNLCAsLw549e5CYmIjg4GDk5+dj0aJFen3i4uIAaNde7t692xzDbDX15z9gwADxDWnNmjUN+k6ZMgXr16839RBb3YoVKwy2r169GtOnTzfxaFqeUqlEbm4uvLy80LFjR719/v7+2LlzJ2xsbDBgwAC9fSqVqsFjo/vbeJNeC68y/59++gl3794FoD36/byoqChER0e37sBbyKvM38XFBa6urtixYweKi4tRV1cHNzc3jBo1CpGRkejevbupp9HmMJuYTZacTcwl5tLrlEsSQRCEV741ERERERFRG8DPOBERERERERnBwomIiIiIiMgIFk5ERERERERGsHAiIiIiIiIygoUTERERERGRESyciIiIiIiIjGDhREREREREZAQLJyIiIiIiIiNYOJFJpKenQy6Xi5u3tzdGjBiBxYsX4/bt2+YeHgAgKSkJx48fb9CuUqkgl8uhUqnMMCqtkydPIjIyEsOGDYOvry8CAgIwa9YsHD58GLW1tWYb1/MMPVYff/wxxowZ06r3W1RUhISEBFy9erVV74eILAuzqXmYTS/GbLI8UnMPgNqWdevWwd3dHdXV1bhw4QKSkpKgUqnwzTffwMHBwaxj27ZtGyZMmICxY8fqtfv4+CAtLQ19+/Y1+ZgEQcAnn3yC9PR0jBw5Eh9//DG6d++O8vJyqFQqxMXF4dGjR5g1a5bJx9ZUCxcuRHh4eKvex/3797Flyxb06NEDXl5erXpfRGR5mE0vh9nUNMwmy8PCiUyqX79+UCgUAAClUgm1Wo2EhAQcP34cU6dONfPoDOvYsSP69+9vlvtOSUlBeno6oqOjERUVpbdvzJgxiIiIwJ07d0w6pqqqKnTo0KHJ/Xv37t2KoyEiaj5m08thNlFbxaV6ZFa6oCopKdFrz83NRWRkJAICAqBQKBAaGorMzEy9Pg8fPkRsbCwmTZqEAQMGYOjQoQgPD8f58+cb3E9NTQ22bNmCoKAgKBQKKJVKhIWF4cKFCwAAuVyOyspKHDx4UFyyERYWBqDx5RAnTpzAzJkz4efnhwEDBmD27Nn44Ycf9PokJCRALpcjPz8fMTExGDRoEIYNG4YVK1agvLz8hY9NbW0tUlJS4O7ujg8//NBgn65du2Lw4MHiz6WlpYiNjUVgYCB8fX3xzjvvYPPmzaipqdG7XXV1NTZt2oQxY8bA19cXgYGBiIuLQ1lZmV6/MWPGYMGCBfj2228RGhoKhUKBLVu2AABu3LiBuXPnws/PD0qlEn/+85/x5MmTBmM0tBxCLpdj1apVOHToEIKCguDn54f33nsPp06d0ut3584drFixAuPHj4efnx8CAwMRGRmJa9euiX1UKhWmTZsGAFixYoX4/CUkJIh9mvJ6IiLSYTY1jtnEbGrLeMaJzKqgoAAA0KdPH7EtKysLERER8PPzQ2xsLDp16oTMzEwsXrwYVVVVeP/99wFo34gBICoqCi4uLqisrMR3332HsLAw7Ny5E0qlEgBQV1eHiIgI5OTkIDw8HEOGDIFarcalS5dw7949AEBaWhpmzZoFpVKJhQsXAtAezWtMRkYGli5dihEjRmDTpk2oqalBSkqKeN/1AwMAoqOjMWnSJEybNg3Xr1/Hpk2bAGiXhzTmP//5D0pLSzF9+nRIJBKjj2V1dTXCw8Nx9+5dREdHQy6X4/z580hOTsbVq1eRnJwMQLvEYuHChcjKysL8+fMxePBgXLt2DQkJCbh48SLS0tLQrl078fdevnwZN27cwAcffICePXvC1tYWDx48QFhYGKRSKT777DN06dIFGRkZ+Mtf/mJ0nDrff/89cnNz8Yc//AF2dnZISUlBVFQUjh49il69egHQLnNwdHTEkiVL4OzsjMePH+PgwYOYMWMGDh48CHd3d/j4+GDdunVYsWIFPvjgA4waNQoA4ObmBqDpryciIh1mE7OJ2UQGCUQmcODAAUEmkwkXL14UamtrhYqKCuH06dPC8OHDhd/97ndCbW2t2HfixIlCaGioXpsgCMKCBQuE4cOHC2q12uB91NXVCbW1tcKsWbOEDz/8UGw/ePCgIJPJhH379r1wjP379xeWL1/eoD0rK0uQyWRCVlaWIAiCoFarhREjRgjBwcF6Y6moqBCGDh0qzJw5U2yLj48XZDKZ8OWXX+r9ztjYWEGhUAgajabR8Xz99deCTCYT9u7d+8Jx6+zdu1eQyWRCZmamXntycrIgk8mEf/3rX4IgCMLp06cNjkl3f2lpaWLb6NGjBS8vL+HmzZt6fTdu3CjI5XLh6tWreu2zZ8/We6wEQRCWL18ujB49Wq+fTCYThg0bJpSXl4ttxcXFgqenp7Bt27ZG51hXVyfU1NQI48ePF9auXSu2//jjj4JMJhMOHDjQ4Dav+noiIsvHbGI21cdsImO4VI9MasaMGfDx8cHAgQMRERGBzp07IzExEVKp9uTnnTt3cPPmTUyePBmA9oicbnv77bdRXFyMW7duib9v7969mDJlChQKBby9veHj44OzZ8/ixo0bYp8zZ86gffv2LbZO/datW7h//z5CQkJgZfXsT8je3h7jx4/HpUuX8PTpU73bGFoOUF1d3WAZSHNkZWXBzs4OEydO1GvXHbU6e/as2K9+u05QUBDs7OzEfvXH+tZbb+m1qVQq9OvXD56ennrtwcHBTR6vUqnUO3Lq4uKCLl26oLCwUGyrq6tDUlISJk2aBF9fX3h7e8PX1xe3b9/We44b87KvJyJqm5hNWswmZhO9GJfqkUlt2LABHh4eePLkCTIzM5GWloaYmBikpKQAAB48eCD227Bhg8Hf8ejRIwDAjh07sH79evz2t7/FokWL4OTkBCsrK3zxxRe4efOm2P/hw4dwdXXVC5Lm0N1/165dG+xzdXWFRqNBWVkZbG1txXZHR0e9frrlBlVVVY3eT/fu3QE8WzJiTGlpKVxcXBosnejSpQukUqm4fKS0tBRSqRTOzs56/SQSCVxcXMR+OobmWVpaip49ezZod3FxadJYgYaPCaB9XKqrq8Wf169fjz179mDevHnw9/eHg4MDJBIJ/vSnP+n1a8zLvJ6IqO1iNmkxm5hN9GIsnMikPDw8xA/dDhkyBBqNBl999RWOHj2KiRMnwsnJCQCwYMECjBs3zuDv0B1hOnz4MAICAhAXF6e3//kPgTo7OyMnJwcajaZFAko3xuLi4gb77t+/DysrK3Tu3LnZ9+Pr6wtHR0ecOHECS5YsMbqW3NHREZcuXYIgCHp9S0pKUFdXJ47b0dERdXV1ePjwoV5ACYKABw8eiM+PjqH7dXR0FN/46zPU1hyHDx9GaGgoYmJi9NofPXrUpMf4ZV5PRNR2MZuajtnEbGrLuFSPzGrZsmVwcHBAfHw8NBoN3N3d0adPH+Tl5UGhUBjcdKfQJRKJ3gdFASAvLw8XL17UawsMDER1dTXS09NfOJZ27dq98CibzltvvYVu3brhyJEjEARBbK+srMS3336L/v376x3Re1U2NjaIiIjAzZs38fe//91gn5KSEuTk5AAAhg4disrKygZflHjo0CFxf/1/Dx8+rNfv2LFjqKysFPe/iFKpRH5+PvLy8vTajxw5YnxiL0EikcDGxkav7fvvv0dRUZFeW2NHSV/m9UREpMNsahyzidnUlvGME5mVg4MD5s+fj40bNyIjIwMhISGIi4vDvHnzMHfuXEyZMgXdunXD48ePcePGDVy+fBnx8fEAgFGjRiExMRHx8fHw9/fHrVu3kJiYiJ49e0KtVov3ERwcjPT0dMTGxuLWrVtQKpUQBAGXLl2Ch4cH3n33XQCATCZDdnY2Tp48ia5du8Le3h7u7u4NxmxlZYVly5Zh6dKlWLBgAWbOnImamhps374dZWVlWLJkSYs9PrpwSkhIQG5uLoKDg8UvGTx37hz27duH6OhoDBo0CKGhodizZw+WL1+OwsJCyGQy5OTkYNu2bRg5ciSGDRsGABg+fDhGjBiBzz//HBUVFRg4cCCuXbuG+Ph4eHt7IyQkxOi4Zs2ahQMHDmD+/Pn44x//KF65qP4ylJYwatQo8QpFcrkcly9fxvbt28WrEun07t0bHTp0QEZGBjw8PGBnZwdXV1d069atya8nIiIdZtOLMZuYTW0VCycyu7CwMOzZsweJiYkIDg7GkCFD8NVXXyEpKQlr165FWVkZHB0d4eHhgaCgIPF2kZGRePr0Kfbv34+UlBT07dsXsbGxOH78OLKzs8V+UqkUX375JbZt24avv/4aqampsLe3h6enJwIDA8V+K1euRFxcHGJiYvD06VMEBARg9+7dBsc8efJk2NraIjk5GYsXL4a1tTX8/Pywa9cuDBw4sMUeG4lEgnXr1mHs2LHYt2+f+Hjoxr906VLxg7Tt27fHrl27sHnzZqSkpODRo0fo1q0b5syZo/cFhRKJBImJiUhISEB6ejqSkpLg6OiIkJAQxMTENDhSakjXrl3xz3/+E2vWrEFsbCxsbW0xduxYfPrpp+Ilc1vCypUrIZVKkZycjMrKSnh7eyMhIQFffPGFXj9bW1usXbsWW7Zswdy5c1FbW4uoqChER0c3+fVERFQfs6lxzCZmU1slEeqfzyUiIiIiIqIG+BknIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREawcCIiIiIiIjKChRMREREREZERLJyIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyIj/D+mjIMCidB9pAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHbCAYAAABCwpIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8GklEQVR4nOzdeXzU5bn//9fMZIOQPSFkh0DYQzYIoAIuVK2IVqXFttZSj62oUE+1v1NFe6z9tkeU1lqRUtGqdQErLVJFoeKOimyBENkCBLITliwkIetkfn9MMhDJNklmJpO8n4+Hj4HP3J+Z604in1zzue/rMlgsFgsiIiIiIiLiFEZXByAiIiIiIjKQKAkTERERERFxIiVhIiIiIiIiTqQkTERERERExImUhImIiIiIiDiRkjAREREREREnUhImIiIiIiLiRErCREREREREnEhJmIiIiIiIiBMpCRMREREREXEiJWHiFgoKChgzZgwPPvigq0MRJ9L3XUT6Kv37NDDp+y69xcPVAcjAM2bMGAAiIyPZtGkT3t7eF4258sorKSwsZN++fXh49PzHNCsri9WrV7N9+3ZOnTqFh4cHUVFRXHbZZSxYsIDw8PAOY23P448/zs0332z32AvHHzp0CIAHHniADRs28Oijj/KDH/ygw9f60Y9+xPbt2/nrX//KFVdc0el7A6xfv55x48Z1Og5g06ZN7NixgwMHDnDw4EGqq6uZO3cuf/jDH7p0/je54nveXUePHmX16tVs27aN4uJi6urqCAwMZPz48XzrW9/ihhtuaDP+7v6MiYjr6brU+rV1XbJy9XXpm9+PtrTE+OGHHxIdHd2t99H1yzWUhInLFBUV8fe//52f/exnDnsPi8XCH/7wB1544QU8PDy45JJLuPbaa2loaGD37t28+OKLrFmzhqVLl3Lttde2+zqLFi1q83hbFw97xl7oe9/7Hhs2bGDt2rUdXuzy8vLYsWMH4eHhzJw5s0vvDRAaGtrh+19o5cqVHDx4kMGDBzNs2DBycnK6fG5H7P2eh4eH89577+Hn59cr79+ZZ599lhUrVtDU1ERycjI33XQTvr6+nD59mp07d/LII4+wZs0a1q1bZzunt37GRMT1dF1qTdelizn7uuRIun65lpIwcYmAgAAMBgPPPfcc8+bNIzg42CHvs2LFCl544QWioqJ47rnnSEhIaPX8f/7zH/6//+//4/777ycgIIDp06e3+TqLFy/u8nvaM/ZCU6dOZfjw4ezfv599+/YxYcKENsetXbsWi8XCLbfcgslk6pX3/qaHHnqIYcOGERcXx/bt27n99tt7/Jrd+Z57enoycuTIHr93V6xcuZLly5cTERHBn//8Z5KSki4a89lnn/HCCy+0OtZbP2Mi4lq6Ll1M16WLOfO65Gi6frmW9oSJS/j4+HD33XdTVVXFihUr7Dr36NGj3HPPPaSnp5OcnMz3v/99Pv/884vG5efns3LlSjw9PVm5cuVF/7gAXHPNNTz00EOYzWZ+85vf0NTU1O059Ybvfe97gPWC1pbGxkbeeustjEYj8+bNc1gc06ZNY/jw4RgMhl57ze58z5219r6goIAVK1bg6enJqlWr2kzAAGbOnNkqCXPHnzERaZuuS23Tdam1/rInzB1/FvsbJWHiMj/84Q+JjY3lH//4B8eOHevSOQUFBdx6662Ul5czf/58rr32Wvbt28dPf/pT3nvvvVZj161bR2NjI1dddVWHa9O/+93vEhYWxvHjx9m+fXuP5tRTN910E56enmzYsIHa2tqLnv/kk084deoUl156KVFRUS6IsGe68z13hnXr1tHQ0MDVV1/N6NGjOxzr5eXV6jx3+xkTkfbpunQxXZf6J3f8WexvtBxRXMbT05MHHniA++67jz/+8Y88++yznZ6zY8cO7rjjDn71q1/Zjv3whz/k1ltv5dFHH2XmzJkMGTIEgF27dgFw6aWXdviaHh4eTJ06lQ0bNpCRkcG0adMuGrN8+fKLjkVFRbXa0Nydsd8UHBzM7Nmz2bhxI5s2beI73/lOq+fffPNNAObPn9/m+W29N4C3t7dD9zh0VXe+586wc+dOALuXWvTmz5iIuJ6uSxfTdcn12vsaApw9e7Zbr6nrl+spCROXuvbaa0lJSWHz5s3s3LmTyZMndzjez8+Pe++9t9WxxMRE5s6dy1tvvcXmzZu56aabADh9+jQAw4YN6zSOljEnT55s8/m2/lFOT09v8wJmz9i2zJ8/n40bN7J27dpWF7sTJ07w+eefExYWxhVXXNHlOMH6desLFzuw/3vuDC0/K/ZWgOrNnzER6Rt0XbqYrkuu5YjEUNcv11MSJi73q1/9iltvvZUnnniCN998s8P13uPHj7d9onih9PR03nrrLfbv32+72FksFoAurR9vGdPe2I7Kw/ZkbFumTZtGbGwsO3fuJCcnh/j4eAD++c9/Yjabufnmm9stldvV927rU7Wbbrqp2+Vt7X09e77njoyjhT0/K90975s/Y8899xzvv/8+x44dw8vLi+TkZO6///5Ol0OKiOPputSarkvd1xvz6kqJ+gt15frSmz+L0j1KwsTlUlJSuOaaa/jPf/7Dxo0bue6669od214525bjVVVVtmNhYWHk5ORw4sSJTmNoGRMWFmZP6A5hMBj47ne/yx//+EfWrl3Lr371K5qamli3bh0Gg6FXNj6396lody929r6ePd9zR8bRYujQoV3+WblQT37Gtm/fzg9+8AMSExOxWCw888wz/OQnP+Hdd98lMDDQrjhEpHfputSarkvd19vz6oquXF/c9WexP1FhDukTfvnLX+Lp6ckf//hH6uvr2x3Xcvu8veMXfhqZlpYGwJdfftnhe5vNZrZt2wZAamqqXXE7ys0334ynpyf//ve/aWho4IsvvqCwsND2aWRPHTp06KL/pk6d6tTX6+r33NFxwPmfla+++squ9+vJz9jf/vY3brnlFkaPHs2YMWN48sknKS0tJSMjw64YRMQxdF1qTdcl58XRU125vrjzz2J/oSRM+oTY2Fi+//3vU1BQwGuvvdbuuP3797f6VLFFS8We8ePH247dfPPNmEwmNm/ezJEjR9p9zX/961+cPHmSESNGkJ6e3oNZ9J7Q0FCuvPJKzpw5w0cffWQrDdxSKrg/6Or33Blafrn4z3/+0+HPCtDqwtybP2PV1dU0NTXh7+/fvUmISK/Sdak1XZfcV1vXF3f+WewvlIRJn3Hvvffi7+/PX//6V6qrq9scU1lZeVEvj6ysLN555x38/Pz41re+ZTseExPDXXfdRUNDAwsXLmzzH5kPPviA3//+95hMJh599FGMxr7zv8R3v/tdwPqJ1kcffWSrUNWfdOV77gzR0dEsWrSIhoYGfvazn5GVldXmuM8++4w777zT9vfe/Bn7/e9/z7hx40hJSemdSYlIj+m61JquS+6preuLu/8s9gfaEyZ9RmBgIHfddRfLli1rd8yUKVP45z//yd69e0lNTeXUqVO89957NDU18dvf/vaizdGLFy+mpqaGl156iRtvvJHLLruMUaNG0djYyO7du8nMzMTHx4c//vGPfa4T/GWXXUZ0dDSZmZkAfOc732nVo6otHZWxnT17NuPGjevSe3/wwQd88MEHAJw6dQqAPXv22JpTBgUFtSrH3F1d+Z47y8KFC2lsbGTFihXMmzePlJQUJk6ciK+vL6dPn2bnzp0cP36ciRMntjqvN37GnnjiCXbt2sWaNWswmUzOmK6IdIGuS63puuR+Orq+uPPPYn+gJEz6lNtvv53Vq1dfVOmnRXR0NI899hh/+MMfeOONN6ivr2f8+PHce++9zJgx46LxRqORBx98kOuuu47XX3+dHTt2sHXrVkwmE1FRUdxxxx38+Mc/7lKJVmdr2ez89NNPA+c/gexIR2Vso6KiunyxO3DgAG+99VarY/n5+eTn59teqzcudtD599yZFi1axLe//W1Wr17Ntm3bWLduHfX19QQGBjJ27FjuvPNObrzxxlbn9PRn7PHHH+fdd9/l73//OzExMc6YpojYQdel83Rdci+dXV/c+WexPzBYWmpUioiIU/3ud7/jvffe49VXX2XkyJGuDkdERPoJXV/6Pt0JExFxgd/85je8/fbbrFixAn9/f9vymsGDB+Pr6+vi6ERExF3p+uIedCdMRMQFxowZ0+bxRYsWsXjxYidHIyIi/YWuL+5BSZiIiIiIiIgTaTmiiIhIL9m6dStvv/02u3fv5sSJE/j5+TFx4kTuvffeiyprftO6det46KGH2nzu888/JywszBEhi4iICygJExER6SVr1qyhvLyc22+/nVGjRlFaWspLL73E/PnzeeGFF7pU5vnxxx8nPj6+1bHAwEAHRSwiIq6gJExERKSXPProo4SEhLQ6NmPGDK6++mqee+65LiVhCQkJJCYmOipEERHpA9T6WkREpJd8MwED8PX1ZeTIkRQXF7sgIhER6Yt0J6yHmpqaaGxsxGg0YjAYXB2OiMiAYbFYaGpqwsPDA6Ox736mWFlZyf79+5k2bVqXxi9cuJDS0lL8/PxIT0/n5z//OaNHj7brPXVtEhFxja5em5SE9VBjYyNZWVmuDkNEZMBKTEzEy8vL1WG067HHHqOmpoaFCxd2OC40NJSFCxeSnJzMkCFDyM7OZtWqVcyfP581a9YwduzYLr+nrk0iIq7V2bVJSVgPtWS4iYmJmEwmu883m81kZWV1+3x3p/lr/pq/5t/Tfz/78l2wp59+mnfeeYdf//rXnVZHnDlzJjNnzrT9fcqUKcyaNYu5c+fy5z//mZUrV3b5fVu+JuPHj+/213b//v3dPt/daf6av+av+ff038/Ork1KwnqoZZmHyWTq0Q9qT893d5q/5q/5a/7d1VeX2z377LOsXLmSX/ziF9x2223deo3o6GjS0tLIzMy067yWr4mXl1e3f4noyfnuTvPX/EHz1/x79u9nZ9emvvvxoYiIiJt69tlnWb58OYsXL+50GWJnLBZLn77bJyIi9tO/6iIiIr1oxYoVLF++nLvvvptFixb16LXy8/PJyMggKSmpl6ITEZG+QMsRRUREesmLL77IM888w4wZM7j88svZs2dPq+eTk5MBWLJkCevXr2fz5s1ERUUBsGDBAiZPnszYsWPx9fUlOzubF154AYPBwH333efkmYiIiCMpCRMREeklH3/8MQBbtmxhy5YtFz1/6NAhwFpC3mw2Y7FYbM+NHj2ajRs38uKLL1JXV0dwcDDTpk3jnnvuYcSIEc6ZgIiIOIWSMBERkV7y6quvdmnc0qVLWbp0aatjS5YscURIIiLSB2lPmIiIiIiIiBMpCRMREREREXEiJWEiIiIiIiJOpCRMRERERETEiZSEiYiIiIiIOJGSMBERERERESdSEiYiIiIiIuJEbtsnbOvWrbz99tvs3r2bEydO4Ofnx8SJE7n33nuZOHFih+euW7eOhx56qM3nPv/8c8LCwhwRsoiIiIiIiPsmYWvWrKG8vJzbb7+dUaNGUVpayksvvcT8+fN54YUXmD59eqev8fjjjxMfH9/qWGBgoIMibkN9NcZ1dxHiNRqSk533viIiIu04UHyW/3t3P9fHQbKrgxER6afcNgl79NFHCQkJaXVsxowZXH311Tz33HNdSsISEhJITEx0VIidK83BcPAdoryC4IYlrotDRESk2eeHT7PlyBksdT7Mu9LV0YiI9E9uuyfsmwkYgK+vLyNHjqS4uNgFEXVDyCgsBhOe9WVQWeTqaERERBgX4Q/AoTP1Lo5ERKT/ctskrC2VlZXs37+fhISELo1fuHAh48aNIz09nUWLFpGdne3gCL/BcxD1waOtfy7a49z3FhERaUNSTABGA5w618SJilpXhyMi0i+57XLEtjz22GPU1NSwcOHCDseFhoaycOFCkpOTGTJkCNnZ2axatYr58+ezZs0axo4da/d7m81mu8/JKz3HjpPhfM90AAozMI+dY/druLuWr1t3vn79geav+V/4OND0dP4D9evmaH4+nowJ9+PAiUp255cTFezr6pBERPqdfpOEPf3007zzzjv8+te/7rQ64syZM5k5c6bt71OmTGHWrFnMnTuXP//5z6xcudLu98/KyrL7nFPnzOxtGsH3TJ9wNvtzckL22P0a/UV3vn79ieav+Q9kA33+fVFqbCAHTlSSkVfG9UlRrg5HRKTf6RdJ2LPPPsvKlSv5xS9+wW233dat14iOjiYtLY3MzMxunZ+YmIjJZLLrHIvFwhuf7AIzDKk8QnJSEhgM3Xp/d2U2m8nKyurW168/0Pw1f82/+/NvOV96X2pcEK9vzycjr9zVoYiI9Etun4Q9++yzLF++nMWLF3e6DLEzFosFo7F72+RMJlO3fokYEptEQ44Jz7oyqCqGwJhuvb+76+7Xr7/Q/DV/zX/gzr8vSo0NBGBf0VlqG8z4eOr7IyLSm9y6MMeKFStYvnw5d999N4sWLerRa+Xn55ORkUFSUlIvRdc1icOHkm2Jtv6laLdT31tERKQtMUGDCPQ20mC2kFVY4epwRET6Hbe9E/biiy/yzDPPMGPGDC6//HL27NnT6vnk5ubHS5YsYf369WzevJmoKOu69gULFjB58mTGjh2Lr68v2dnZvPDCCxgMBu677z6nziMlJpC9TfFMMOZiKdqNYfwNTn1/ERGRbzIYDIwJ9WRbYR27csuYMjzY1SGJiPQrbpuEffzxxwBs2bKFLVu2XPT8oUOHAGhqasJsNmOxWGzPjR49mo0bN/Liiy9SV1dHcHAw06ZN45577mHEiBHOmUCziZH+vGMZAXxMbd4uBjn13UVERNo2JsTLloSJiEjvctsk7NVXX+3SuKVLl7J06dJWx5YsWeKIkLrF29NE6ZDRUAem4j1gsQy44hwiItL3jAnxBCAjtwyLxYJB1yYRkV7j1nvC+guPsJHUW0x4NVRAeZ6rwxERESE+yBMvk4Ez1fXknjnn6nBERPoVJWF9wMjQwRyyNFdFVHEOERHpA7xMBiZEBQBoSaKISC9TEtYHjA7xIqspHoCGgl0ujkZERMSqpVT9rjwlYSIivUlJWB8QOshIrncCANXHlYSJiEjfkNachGXoTpiISK9SEtYHGAwGmiKSAfA5lWUtziEiIuJiKTGBABwqqaSytsG1wYiI9CNKwvqIoSNTqLN44NN4FsqOuzocERERhvr7EBM8CIsF9uSXuzocEZF+Q0lYH5EUF8ZBSywAFhXnEBGRPiItNghQcQ4Rkd6kJKyPmBjpzz6LtThHZc4OF0cjIiJilRanJExEpLcpCesjvD1NlAZMAKAuT8U5RESkb0htTsL25JVjbtKeZRGR3qAkrA/xjEkFYEjZPhXnEBGRPmFMuB++XiYq6xo5fLLS1eGIiPQLSsL6kKjRKdRZPBlkroLSHFeHIyIigofJSHJLvzAtSRQR6RVKwvqQlBFDOdBcnENLEkVEpK9QcQ4Rkd6lJKwPiQzw4YiHtWnzmcPbXByNiIiIVUrzvjA1bRYR6R1KwvoQg8HAudBEQGXqRUSk70iNsSZhx8+c43RVnYujERFxf0rC+hjf4ZMBCK44AE1NLo5GREQEAgZ7kjB0CKC7YSIivUFJWB8zfFwqtRZPBlnOYTlzxNXhiIiIABf0C8tTEiYi0lNKwvqYCdEhHLAMB+C09oWJiEgfkap9YSIivUZJWB/j42miaPBYACqO7nBxNCIiIlYtd8IyCyqob9RyeRGRnlAS1gc1DEsCwKMk08WRiIiIWMWH+hI42JP6xib2FVW4OhwREbemJKwPCho5BYChVYegyeziaERERKwVfNUvTESkdygJ64MSJqRxzuLNYGqoOXHQ1eGIiIgAF+wLU3EOEZEeURLWB0UEDeGwcTgAhfu/cm0wIiIizWwVEnPLsFgsLo5GRMR9KQnrgwwGA2f8JwBQfUzFOUREpG9Iig7EZDRQcraOwvIaV4cjIuK2lIT1UYbIFAAGnc5ycSQiIiJWg7xMTIj0B7QvTESkJ5SE9VFDx04FIKbuMBZzo4ujERERsUqNVb8wEZGeUhLWR40cm0K1xZtB1FF8dK+rwxERkS7YunUrDz30ENdeey3JycnMmDGDu+++m6+//rpL5585c4YHH3yQqVOnkpSUxPz589m6dauDo7aPbV+YinOIiHSbkrA+ysfbi+NeowAoOtC3LsAiItK2NWvWUFhYyO23386qVat4+OGHKS0t7VIyVV9fz4IFC9i6dSsPP/wwf/nLXwgJCeHOO+9k+/btTppB51qSsAPFlVTXaaWGiEh3eLg6AGlfZdBEOLmPhvwMV4ciIiJd8OijjxISEtLq2IwZM7j66qt57rnnmD59ervnrl27luzsbN544w1SUqz7gqdOncqNN97IsmXLWLt2rUNj76rIwEFEBPhQXFFLZkE5l4wMdXVIIiJuR3fC+jDv2DQAAsr3uTgSERHpim8mYAC+vr6MHDmS4uLiDs/94IMPGDFihC0BA/Dw8OCGG25g7969lJSU9Hq83WXrF6Z9YSIi3aI7YX1Y1PjpsBNGNBzlXG0tg318XB2SiIjYqbKykv379zNt2rQOxx0+fJi0tLSLjo8ZM8b2fHh4uF3vbTab7Rr/zfPaOz8lJoB39xaz83hZt9+jL+ts/v2d5q/5X/g40PR0/l09T0lYHzZ0+ESq8cHXUEvmvl0kpV3q6pBERMROjz32GDU1NSxcuLDDceXl5QQEBFx0vOVYeXm53e+dldWzNiftne9X2wDAzmOnydi9G6PB0KP36at6+vVzd5q/5j+QOXr+SsL6MqORwkFjGF2TyensbaAkTETErTz99NO88847/PrXv2bixImdjjd0kMx09Fx7EhMTMZlMdp9nNpvJyspq9/wJ5iYe/ewDqhqa8I9KYNTQIXa/R1/W2fz7O81f89f8uz//lvM7oySsj6sNTYT8TAxFe1wdioiI2OHZZ59l5cqV/OIXv+C2227rdHxgYGCbd7sqKioA2rxL1hmTydSjX6LaO99kMjEpOpDtx0rJLDjLmAj7Y3MHPf36uTvNX/PX/B03fxXm6OOGxE8BIKxyPxaLxcXRiIhIVzz77LMsX76cxYsXd7oMscXo0aPJzs6+6HjLsYSEhF6Nsads/cJUnENExG5Kwvq4qHHWcsYJluPknapwcTQiItKZFStWsHz5cu6++24WLVrU5fNmz55NTk4OmZmZtmONjY28/fbbJCUl2V2Uo9ssFjh5ACwdby5Pi1XTZhGR7lIS1sd5D02g2jAYH0MDR/bvdHU4IiLSgRdffJFnnnmGGTNmcPnll7Nnz55W/7VYsmQJ48ePp7Cw0HZs3rx5JCQkcN999/HOO+/w5Zdf8t///d8cO3aMX/7yl86bxO7XMD13KeE5/+xwWEuZ+iMnqyg/V++MyERE+g3tCevrjEZODhnHiMpdnD26Ey6f7eqIRESkHR9//DEAW7ZsYcuWLRc9f+jQIQCampowm82tlpl7eXnx8ssvs2zZMn73u99RU1PDuHHjeP7550lPT3fOBAAsTQAElGzrcFiwrxfxob7knK5md145V4wd6ozoRET6BSVhbqBpWBJU7sLrZGbng0VExGVeffXVLo1bunQpS5cuveh4aGgoTzzxRG+HZZ8Ya8I3uPwgmBugg43pqXFB5JyuZldumZIwERE7aDmiGwgaZb0gRtcc4lx9o4ujERGRfi10DBZvf0zmWji5r8OhKs4hItI9SsLcQHBzEjbWkMfe46dcHI2IiPRrRiNEWyvzGgp2dDi0JQnbk19Oo7nJ4aGJiPQXSsLcQXA854y+eBsayDu0y9XRiIhIP2dpTsLI397huFFhQ/Dz8aCmwczBE5VOiExEpH9QEuYODAbKAiYAUJOrJExERBzLEm1dgWEo6DgJMxoNpMZqSaKIiL2UhLkJU1QKAL5nstS0WUREHCsqFQtGDBX5cLa4w6HaFyYiYj8lYW4iZPRUAEabj5BXes7F0YiISL/m7U+N/3Drnzu5G6YkTETEfm6bhG3dupWHHnqIa6+9luTkZGbMmMHdd9/N119/3aXzz5w5w4MPPsjUqVNJSkpi/vz5bN261cFRd59nTBpgLc6x51iJi6MREZH+rjrIugy+s31hSTGBGA1QWF7DiYpaJ0QmIuL+3DYJW7NmDYWFhdx+++2sWrWKhx9+mNLS0i4lU/X19SxYsICtW7fy8MMP85e//IWQkBDuvPNOtm/v+GLjMoFx1Jj88DKYKcrOcHU0IiLSz1V1MQkb4u3BmGH+AGTk6W6YiEhXuG2z5kcffZSQkJBWx2bMmMHVV1/Nc889x/Tp09s9d+3atWRnZ/PGG2+QkmLdazV16lRuvPFGli1bxtq1ax0ae7cYDFSFJDLo5Jc0FuwG5rk6IhER6ceqg5uTsOI90FALnj7tjk2LC+RA8Vl25ZZxXWKEcwIUEXFjbnsn7JsJGICvry8jR46kuLjjTcQffPABI0aMsCVgAB4eHtxwww3s3buXkpK+udzPJ9a6JDGscr+aNouIiEPVDY7EMjgUzPVQnNnhWO0LExGxj9smYW2prKxk//79JCQkdDju8OHDjBkz5qLjLccOHz7skPh6yi/e2rdloiGHzPwKF0cjIiL9msEAzaXqOy3OERsMwL6iCmobzI6OTETE7bntcsS2PPbYY9TU1LBw4cIOx5WXlxMQEHDR8ZZj5eXldr+32dy9i07LeV06PzwJEzDakM/fjhWRPjywW+/Zl9g1/35I89f8L3wcaHo6/4H6dXMmS/QUDNnvQf42YHG742KCBxE6xJvTVXVkFVYwZXiw84IUEXFD/SYJe/rpp3nnnXf49a9/zcSJEzsdbzAYuvVce7Kysuw+x+7zLRbGmvzwNVdyPPML9gTV9+g9+5Kefv3cneav+Q9kA33+fZklpvlOWP52sFisd8faYDAYSIsL5D/7StiVW6YkTESkE/0iCXv22WdZuXIlv/jFL7jttts6HR8YGNjm3a6KCusSv7buknUmMTERk8lk93lms5msrKwun1+VkQxFWwioOkJS0p3dShj7Envn399o/pq/5t/9+becLw4UkQxGD6gqgfI8CIprd2haXJAtCRMRkY65fRL27LPPsnz5chYvXtzpMsQWo0ePJjs7+6LjLcc621PWFpPJ1KNforp6vu+IKVC0hfiGwxRW1BEX4tvt9+xLevr1c3eav+av+Q/c+fdpnoNg2CQoyrDeDeskCQPIyC3DYrG4/YeEIiKO5NaFOVasWMHy5cu5++67WbRoUZfPmz17Njk5OWRmnq/21NjYyNtvv01SUhLh4eGOCLdXeESnAjDJeEz9WERExPFiplof87d1OGxCZABeJiNnquvJPXPOCYGJiLivbt0JO3z4MBkZGZSUlFBbW0tQUBCjRo1iypQpDBkypLdjbNOLL77IM888w4wZM7j88svZs2dPq+eTk5MBWLJkCevXr2fz5s1ERUUBMG/ePFavXs19993HAw88QEhICKtXr+bYsWO89NJLTom/2yKtZfUTDAWsPVbCTSnRLg5IRET6tZh02Lay0wqJPp4mJkb5k5FXzq7cMoaH9o+VGiIijtDlJKyiooJ//OMf/OMf/6CoqAiLxXLxi3l4MHPmTH70ox912Cy5N3z88ccAbNmyhS1btlz0/KFDhwBoamrCbDa3itfLy4uXX36ZZcuW8bvf/Y6amhrGjRvH888/T3p6ukPj7jH/KOq8g/GuK6Xi+G4gzdURiYhIf9ZSnOPE11BXBd7tf9iaFhdkTcLyyrglTR8Sioi0p0tJ2CuvvMKKFSsAuO6660hPT2fChAkEBwfj7e1NRUUF+fn57Nmzhw8//JA77riDSy65hP/93/8lLq799eM98eqrr3Zp3NKlS1m6dOlFx0NDQ3niiSd6OyzHMxiwRCTD8Y/wK/2ac/WNDPZy+619IiLSVwVEg38UnC207g0bMbPdoWlxQTy/5RgZKs4hItKhLv32/uqrr/LQQw8xZ84cPD09L3o+NDSU0NBQUlJS+MlPfkJeXh4rV65k48aNXS6WIV3nE5sGxz9iAtamzdNHhrg6JBER6c9i0mHfW9biHB0kYamx1uIch0oqOVvbgL/Pxb8ziIhIF5OwjRs34uHR9bstsbGxPP7442qk6SjN+8ISjTl8lFemJExERBwr+oIkrAND/X2ICR5EfmkNe/LKmTk6zEkBioi4ly5VRzx8+HC3Xlwlhx3EVpyjkH3Hi10cjIiI9HstFRILmps2dyCt+W6Y+oWJiLSvS0nYTTfdxM0338zq1auprKx0dEzSGb8IGgaF4mFo4lx+ZptFUkRERHrNsETw8IGaMjhzpMOhtn5haqMiItKuLiVhd911F6Wlpfz2t7/lsssu45e//CVfffWVo2OT9hgMGKOs/cLi6rLVj0VERBzLw8u2CqOzfmGpzUnYnrxyzE36kFBEpC1dSsJ+8Ytf8PHHH7Nq1SquuOIK3n//fX7yk59w1VVX8Ze//IXiYi2JczZTcxKWaDzG7nx92igiIg7WUqq+kyRsTLgfvl4mKusaOXxSq2dERNrSpSQMwGAwMHPmTJ5++mk+//xzHn74YQICAnjmmWeYPXs2//Vf/8WmTZtoaGhwZLzSIjIZgERDDhm55S4NRUREBoCWfWH5Ozoc5mEykhwbCGhfmIhIe7qchF3I39+f2267jXXr1rF+/Xp+8IMfsH//fn7xi18wc2b7pWulF0UkAzDKUMi+XN2JFBERB4tuvhN26gDUlHc4VMU5REQ61q0k7EJjx47lhhtu4MorrwSgvLy8py8pXeEfgdk3HJPBgsdJa9NmERERhxkSBkEjrH8u2Nnh0JZ9YWraLCLStq43//qG0tJS3n77bf71r39x5MgRTCYTV1xxBfPmzevN+KQDpqhUyN7IBI6qabOIiDhezFQoO2YtVZ8wu91hKc13wo6fOcfpqjpCh3g7K0IREbdgVxLW1NTEZ599xr/+9S8++eQTGhoaGD58OPfffz833XQToaGhjopT2hKZAtkbmWg8RoaaNouIiKPFTIG9b3RanCNgkCejw4eQXVJFRm4ZV08Y5qQARUTcQ5eSsGPHjvGvf/2Lf//735w+fRofHx+uv/56brnlFiZPnuzoGKU9zcU5JhmOsVH9WERExNFsTZt3QpMZjKZ2h6bFBZFdUsWuPCVhIiLf1KUk7Nvf/jYAkyZNYvHixcyZMwdfX1+HBiZd0FycY6ShiAO5xVgsFgwGg2tjEhGR/mvoePAaAvVVcPIADJvY7tDU2CDWbM/XvjARkTZ0KQn78Y9/zLx580hISHB0PGIPv3AsfhEYK4uJrDlM7plzDA9VciwiIg5iNEFUGhz71LoksYMkLK25OEdmQQX1jU14efS4FpiISL/RpX8RH3rooTYTsJycHHbt2sW5c+d6PTDpGkOktWnzJGMOGVqSKCIijmbrF7a9w2EjQn0JGuxJfWMT+4oqnBCYiIj76NbHUuvXr2fmzJnMmTOH2267jWPHjgFw33338eabb/ZqgNKJyBQAW3EOERERh7LtC+s4CTMYDLa7YeoXJiLSmt1J2MaNG3nwwQcZP348v/71r7FYLLbnJkyYwMaNG3s1QOmErThHDrvzyl0aioiIDADRadbH0hyoOtXhUFu/MH1IKCLSit1J2KpVq7j55pv561//yvz581s9Fx8fz5EjR3otOOmCluIcxmIKTpSoabOIiDjWoCAIG2v9cyd3w9Jiz98Ju/BDWxGRgc7uJOzo0aPMmTOnzecCAwMpLy/vaUxijyFh4B8NwFjLcTLzte5eREQcLCbd+tjJvrBJ0YF4GA2UnK2jsLzGCYGJiLgHu5OwQYMGUVlZ2eZzJSUlBAQE9DgosVPzksREFecQERFniO5aEjbIy8T4SH9A+8JERC5kdxKWkpLC66+/3uaygnXr1pGent4rgYkdmotzJBqPsVtJmIiIOFpLcY6iDGis73BoavOSRPULExE5z+4k7N5772XPnj3MmzePV199FYPBwPvvv8/ChQvZuXMnCxcudESc0pGWO2GGHDLyyrXuXkREHCtklHVvWGMtlGR1ONRWIVEfEoqI2NidhCUmJvL8889z7tw5li5disVi4bnnnuPYsWOsWrWK0aNHOyJO6UiE9U5YvPEEDdXl5J5R3zYREXEgoxGip1j/3MmSxJYk7EBxJdV1Kh4lIgLg0Z2Tpk2bxsaNG8nLy+P06dMEBQUxYsSI3o5Nuso3BAJjoTzP1i9seKivq6MSEZH+LCYdDr8P+dtg2t3tDosMHEREgA/FFbVkFpRzychQJwYpItI3datZc4vY2FhSU1OVgPUFzaXqrUsSteRDREQcrGVfWP6OTofa+oVpX5iICNDFJOy9996z+4VLSkrYtWuX3edJN11QnCMjt9y1sYiISP8XmQoGI5wtgIqCDode2C9MRES6mIT99re/5cYbb2Tt2rVUVVV1OPbrr7/mscce45prruHgwYO9EqR0ga04xzEOnjirdfciIi5QVVXFk08+yR133MG0adMYM2YMy5cv79K569atY8yYMW3+d+rUKQdH3g3eQyB8ovXPXdwXlpFXTlOTikeJiHRpT9jmzZtZvnw5v//97/ntb3/L+PHjGT9+PCEhIXh5eVFRUUF+fj579uzh1KlTJCQksHz5cmbMmOHo+KVF83LE4cYShliqtO5eRMQFysvLefPNNxk7diyzZ89m7dq1dr/G448/Tnx8fKtjgYGBvRRhL4uZCif2QsEOmHhzu8PGR/rj42mkoqaBnNNVjBrq58QgRUT6ni4lYX5+fixZsoR7772XdevW8emnn7J+/XpqampsY2JiYpgxYwZz585l2rRpDgtY2jE4GIKGQ9lxJhqPsztPSZiIiLNFRUWxY8cODAYDpaWl3UrCEhISSExMdEB0DhCTDjuetxbn6ICnycik6EC2HytlV26ZkjARGfDsqo4YEBDAT37yE37yk58AUFlZSW1tLYGBgXh6ejokQLFDRDKUHWeSIUdNm0VEXMBgMLg6BOeKSbc+Fu+FhhrwHNTu0LS4IFsSNn9KrJMCFBHpm7pVor6Fn58ffn76NKvPiEyB/euZaDzGm81NmwfcLwQiIm5u4cKFlJaW4ufnR3p6Oj//+c+73YPTbDb36LxOz/eLxjgkHENVCeaCDIhtfyVMSnQAYC3O0d24nKXL8++nNH/N/8LHgaan8+/qeT1KwqSPaS7OkWQ8Rml1PblnzqlfmIiImwgNDWXhwoUkJyczZMgQsrOzWbVqFfPnz2fNmjWMHTvW7tfMysrqUUxdOT9+SAJBVSUUb19PSalPu+M865oAOHqqmi3bMvDz7lGXHKfo6dfP3Wn+mv9A5uj5KwnrTyKSAIgxnCSQSjVtFhFxIzNnzmTmzJm2v0+ZMoVZs2Yxd+5c/vznP7Ny5Uq7XzMxMRGTyWT3eWazmaysrC6db6j5Fpz4nKimQiKSkzscO+LLzzh2+hyNAdEkjx1qd1zOYs/8+yPNX/PX/Ls//5bzO6MkrD8ZFATB8VCaw0TjcTLyJnBzarSroxIRkW6Kjo4mLS2NzMzMbp1vMpl69EtUl86PnQ6AoWA7JqMROlgGnxYXzLHT59hTcJbZEyK6HZez9PTr5+40f81f83fc/Pv+WgCxT3Op+kmGHDVtFhHpBywWC0ZjH75cRySB0ROqT0HZsQ6HtvQLU9NmERno+vC/6tItkSkAJBpz1LRZRMTN5efnk5GRQVJSkqtDaZ+nj21PMvk7OhzakoTtyS+n0dzk4MBERPouu5Ow//f//h85OTmOiEV6Q/OFMNl0nCYLZBaUuzQcEZGB5tNPP2XTpk18/PHHABw5coRNmzaxadMmW3/NJUuWMH78eAoLC23nLViwgGeffZYPPviArVu38ve//50f/OAHGAwG7rvvPpfMpctiplofO+kXNipsCH4+HtQ0mDl4otIJgYmI9E127wlbv349q1evZtq0afzwhz/kqquuUhn0vqS5OEcEpwjirJo2i4g42WOPPdYquWpJwAA+/PBDoqOjaWpqwmw2Y7FYbONGjx7Nxo0befHFF6mrqyM4OJhp06Zxzz33MGLECKfPwy7RU6yP+ds7HGY0GkiNDeLT7FPsyi1jYlSAE4ITEel77E7CtmzZwltvvcWaNWtYtGgRERERfP/732fevHkEBwc7Ikaxh08AhIyCM0dINB4jI3eUqyMSERlQPvroo07HLF26lKVLl7Y6tmTJEkeF5Hgtd8JO7oO6SvBuv4doWtz5JOzHlwx3TnwiIn2M3csRBw8ezA9/+EM2bNjASy+9xIQJE/jzn//M5ZdfzoMPPjjgewr0Cc3FORINx9idX97qk1YREZFe5x8BAbFgaYLCXR0OVXEOEZEeFuaYPn06zz77LB9++CEpKSn8+9//5nvf+x7f/e53u/RJoDhIc3GOZNP5ps0iIiIOFdO1JYlJMYEYDVBYXsOJilonBCYi0vf0KAmrra1l7dq1LFy4kG3btjFy5EjuvfdezGYz9957LytWrOitOMUeLUmYx3EAMvL0aaOIiDiYrThHx0nYEG8Pxg7zB3R9EpGBq1tJWF5eHo8//jgzZ87k0UcfZdiwYbz44ots2LCBRYsWsW7dOn7605/y2muv9Xa80hURkwADYU2nCKFCFzkREXG8mHTrY8F2aOq4/LyWJIrIQGd3YY4777yTL7/8kkGDBnHzzTfzox/9iNjY2IvGXXHFFaxatapXghQ7eftBaAKczm4uzhHj6ohERKS/C58IHoOgtgJOZ8PQse0OTYsL4tWvcpWEiciAZXcSlp+fz0MPPcTNN9+Mr69vu+MSEhJ45ZVXehRcR6qqqvjLX/7CwYMH2b9/P2VlZSxatIjFixd3eu66det46KGH2nzu888/JywsrLfDdb6IZGsSZshhxYlkqusa8fW2+9stIiLSNSZPiEqD3M+td8M6ScIA9hVVUNtgxsfT5KwoRUT6BLt/K//Pf/7TpXFDhgwhPT3d7oC6qry8nDfffJOxY8cye/Zs1q5da/drPP7448THx7c6FhgY2EsRulhkCmS9yRTvXJrOWZs2q1+YiIg4VEy6NQnL3wapt7c7LDpoEGF+3pyqrCOrsIIpw9XiRkQGFre9NRIVFcWOHTswGAyUlpZ2KwlLSEggMTHRAdH1Ac3FORKNxwDUtFlERByvZV9YJ8U5DAYDabFBbNp3gl25ZUrCRGTAsTsJu/LKKzEYDG0+ZzQa8fPzIzExkdtvv52RI0f2OMD2tBeDNBuWCBgIajxNGOVkaN29iIg4WnRzEnY6G86VwuD2k6u0uPNJmIjIQGN3dcT09HQsFgslJSVERUWRlJREZGQkJSUlmM1mIiIi2Lx5M7fcckufb9y8cOFCxo0bR3p6OosWLSI7O9vVIfUe7yEQNgaAiUY1bRYRESfwDYGQUdY/F+zscGhq876wjNwyXZ9EZMCx+07YZZddxp49e9i8eTMRERG240VFRdxxxx3Mnj2bpUuX8qMf/Yjly5f3yQqJoaGhLFy4kOTkZIYMGUJ2djarVq1i/vz5rFmzhrFj299M3B6z2dytWFrO6+75HTEMS8J46iApphw+rk7h6MlKRoS2X0zFFRw5f3eg+Wv+Fz4OND2d/0D9uvV50elw5oh1X9joq9sdNjHKHy+TkTPV9eSeOcfwPnZ9EhFxJLuTsL/+9a8sXry4VQIGEBkZyb333stf/vIXbrrpJhYsWMD//d//9VqgvWnmzJnMnDnT9vcpU6Ywa9Ys5s6dy5///GdWrlxp92v29K6fI+4ahjWFEQukex2HBvj3F3u5PG5Qr79Pb+jrd00dTfPX/AeygT7/ficmHTJXWyskdsDbw0RidAC7csvYlVumJExEBhS7k7Dc3FyGDBnS5nP+/v4UFhYC1sIZNTU1PYvOiaKjo0lLSyMzM7Nb5ycmJmIy2V9i12w2k5WV1e3zOxRSB/ueZYIxF4BS/ElOntC779FDDp2/G9D8NX/Nv/vzbzlf+piYqdbHgl1gbgRT+79qpMYGWpOwvDJuSYt2UoAiIq5ndxIWGRnJW2+9xaxZsy567l//+pftDll5eTkBAQE9j9CJLBYLRqPd2+QAMJlMPfolqqfntykyGQxG/BpOM5Qyduf799lf9Bwyfzei+Wv+mv/AnX+/EzYWvP2h7iyc3AcRSe0OTYsL4vktx1Q8SkQGHLszjv/6r/9i06ZN3Hrrrbz88sts2LCBl19+mVtvvZXNmzdz5513ArBt2zYmTpzY6wE7Sn5+PhkZGSQltX+xcDteg60XQyDRmMPBE2eprmt0cVAiItKvGY0QPdn6505K1afGWotzHCqp5Gxtg6MjExHpM+y+E/a9730Pi8XC8uXLWbp0qe14aGgojz32GN/97ncBa+VBLy+v3ou0DZ9++ik1NTVUV1cDcOTIETZt2gTArFmzGDRoEEuWLGH9+vVs3ryZqKgoABYsWMDkyZMZO3Ysvr6+ZGdn88ILL2AwGLjvvvscGrPTRSTDyf1cMiifD6vT1LRZREQcLzodjn5kTcLSf9rusKH+PsQEDyK/tIY9eeXMHB3mxCBFRFzHriTMbDaTl5fHt7/9bb73ve+Rk5NDeXk5gYGBxMfHt+rdFRrq+F/0H3vsMdseNIBNmzbZkrAPP/yQ6OhompqaMJvNrcrfjh49mo0bN/Liiy9SV1dHcHAw06ZN45577mHEiBEOj9upIlMgczVTvXOhWk2bRUTECWxNm7d1OjQtNoj80hp25ZYpCRORAcOuJMxisTBnzhxWrlzJrFmzHNqMuSs++uijTscsXbq01R07gCVLljgqpL4nMgWA+MYjgEXr7kVExPGiJwMGKM+FyhLwC293aFpcEOv3FJGRp+uTiAwcdu0J8/DwIDQ0VE0V3cmwiWAwMbj+DMMoVdNmERFxPJ8AGDrO+udOStW3NG3enVeOuUnXJxEZGOwuzDFnzhzWr1/vgFDEITwH2S6EqR7HKa2u5/iZcy4OSkRE+r0uLkkcE+6Hr5eJqrpGsksqnRCYiIjr2V2YY+zYsbz33nvcfvvtXH311YSFhbXaCwZw9dVX91qA0gsik6Hka67wL+S90jQycssYoaaYIiLiSDFTYdfLkL+jw2EeJiPJsYF8ceQMu3LLGBfh75z4RERcyO4k7Fe/+hUAJSUlbN9+8RIDg8HAgQMHeh6Z9J6IZNj9GikexwHIUFNMERFxtOjmO2FFu6GxDjy82x2aFhvEF0fOkJFbxm3T4pwUoIiI69idhL3yyiuOiEMcKTIVgJi6bMDC7rxyl4YjIiIDQMhIGBQMNaVQvBdiprQ7tGVf2C4V5xCRAcLuJCw9Pd0RcYgjhU8AowfedaVEcoaDJwxU1zXi6233t19ERKRrDAbrksTsjdbiHB0kYSnNTZtzz5zjdFUdoUPav2smItIf2F2Yo0VlZSVbtmzh7bffpqKiojdjkt7m6WMrzjFrSAFNFsgsKHdtTCIi0v+1JF6dFOcIGOTJ6PAhAGqlIiIDQreSsBUrVjBjxgx++tOf8qtf/YqCggIAfvzjH7Nq1apeDVB6SXO/sFn+1ubWWpIoIiIOFzPV+pi/HTppj5KmJYkiMoDYnYS9/vrrrFixgnnz5vHcc8+16jl1xRVX8Mknn/RmfNJbIpIBmEgOoE8aRUTECSJTwWCCymKoKOhwaGrzkkRdn0RkILB7U9Drr7/OggUL+J//+R/MZnOr5+Li4sjNze214KQXNd8JG1Z9ELDYmjZ/s72AiIhIr/EaDMMSoXiPdUliYEy7Q1vuhGUWVFDf2ISXR7d3TIiI9Hl2/wuXn5/PjBkz2nzO19eXs2fP9jgocYDwCWD0xKOujBGmM2raLCIiznHhksQOjAj1JWiwJ/WNTewr0l5zEenf7E7C/Pz8OH36dJvPFRYWEhIS0uOgxAE8vCF8PADXhZwAtORDREScIKa5qnJBx0mYwWA4vy9M1ycR6efsTsKmT5/OCy+8wLlz5++iGAwGGhsbWbNmDZdddlmvBii9qHlJ4iWD8wFr02YRERGHaknCivdCfXWHQ1v6hen6JCL9nd1J2M9//nOKioqYM2cOS5cuxWAw8Nprr/Hd736X3Nxc7rnnHkfEKb2huTjHmKajAGSoQqKIiDhaQAz4RYDFDEW7OxyaFnv+Tpilk2qKIiLuzO4kLC4ujjVr1hAfH8+aNWuwWCz8+9//JigoiNWrVxMZGemIOKU3NN8JC67YD1g4dOIsVXWNro1JRET6N4Ph/N2wTvaFTYoOxMNooORsHYXlNU4ITkTENeyujggwatQo/va3v1FfX09ZWRkBAQH4+Pj0dmzS24aOB5MXxrpyJvtXsPNsIHsLyrlkZKirIxMRkf4sOh32/7vTJGyQl4kJkf5kFlSwK7eM6KDBTgpQRMS5elT/1cvLi/DwcCVg7sLDy1olEfh2c3EONW0WERGHa6mQWNB502bbvjAV5xCRfqxbd8IKCgrYuHEjRUVF1NbWtnrOYDDwf//3f70SnDhAZAoU7WaKVx4wVhc5ERFxvIhJYPKGc2egNAdCRrY7NC0uiJe+OM4uFecQkX7M7iTsk08+YdGiRTQ1NREcHIyXl1er59X8t49rLs4xoj4buFpNm0VExPE8vCEy2dqwOX9bp0kYwIHiSqrrGvH17tbnxSIifZrd/7L96U9/IjU1lT/96U/qCeaOmotzDCn9Gi8Pg61p84hQXxcHJiIi/VpM+vkkLPkH7Q6LCBhEZIAPRRW1ZGrfsoj0U3bvCcvNzeWnP/2pEjB3NXQcmLwx1J1l9lBrvxYtSRQREYdr2ReWv6PTodoXJiL9nd1JWGRkZKtGzeJmTJ4wbCIAswOLADXFFBERJ4huLlN/cj/UVnQ4tGVJ4i4lYSLST9mdhN111128+OKL1NSof4fbal6SmGw6Dqhps4iIOIFfOATGARYo2Nnh0JYkLCOvnKYmNW0Wkf7H7j1hWVlZnDlzhm9961tMnTqVoKCgi8Y88sgjvRKcOEhzcY6omoPAbFvT5iHa/CwiIo4UMxXKc6FgB4y6qt1h4yL88fE0UlHTQM7pKkYN9XNikCIijmf3b92vvfaa7c/vvvvuRc8bDAYlYX1d850w75NZRPl7UXi2nr355VwySpufRUTEgWLSIetNa3GODniajCRFB7LtWCm7csuUhIlIv2N3Enbw4EFHxCHOFDYWPHygvpKrh5/jpbMeZOSVKQkTERHHimneF1awE5qawNj+roi0uCBbEjZ/SqyTAhQRcQ6794RJP2DygGGJAMwcUgDAbu0LExHpsaqqKp588knuuOMOpk2bxpgxY1i+fHmXzz9z5gwPPvggU6dOJSkpifnz57N161YHRuxkQyeApy/UnYVTHX+omxqr4hwi0n91KQnbsWMH1dXVnY4rLS3ln//8Z4+DEidoXpI4wZIDYGvaLCIi3VdeXs6bb75JfX09s2fPtuvc+vp6FixYwNatW3n44Yf5y1/+QkhICHfeeSfbt293UMROZvKAqFTrnztZkthSpv7oqWrKqusdHZmIiFN1KQm7/fbbOXr0qO3vTU1NTJw4kf3797cal5+fz69//evejVAco7k4R2jlfrw8jLamzSIi0n1RUVHs2LGD1157jfvvv9+uc9euXUt2djZPP/00N9xwA5deeinPPPMMw4cPZ9myZQ6K2AVs/cI6TiyDfb2ID/UFYHe+7oaJSP/SpSTsm3dILBYLjY2NunPizprvhBlP7GVSpHXDs5piioj0jMFgwGAwdOvcDz74gBEjRpCSkmI75uHhwQ033MDevXspKSnprTBdqyUJK+j87l6q+oWJSD+lPWEDVeho8BwM9VXMHnoWUNNmERFXOnz4MGPGjLnoeMuxw4cPOzskx4iebH08cwSqz3Q4VE2bRaS/UmOogaqlOEf+NqYPygei1bRZRMSFysvLCQgIuOh4y7Hy8nK7X9NsNncrlpbzunt+h7wDMIYkYDhzGHPeVzD62naHJkf7A5CZX0FtfQOeJud8duzQ+bsBzV/zv/BxoOnp/Lt6npKwgSwyBfK3MarxCBCtps0iIi7W0VLG7ixzzMrK6kk4PT6/PXGDRxF65jAnd22g6Nywdsc1WSwM9jRwrsHM25/tYmSQp0PiaY+j5u8uNH/NfyBz9Py7/Nt2Tk4OJpMJOJ/h5eTkXDRG3EhzcQ7fM1lEBlxLUUWtmjaLiLhIYGBgm3e7KioqANq8S9aZxMRE27XbHmazmaysrG6f3xmD5RrI38iwhlyGJid3OHZy5k4+O3yaKp+hJCfH9XosbXH0/Ps6zV/z1/y7P/+W8zvT5STsoYceuujY//zP/7T6u8Vi6faGZHGB5uIcFGeSOtyfoqxaNW0WEXGR0aNHk52dfdHxlmMJCQl2v6bJZOrRL1E9Pb9dsdMBMBRmYKIJTO3f4Zo8PJjPDp9mT34Fd1zm3F8IHTZ/N6H5a/6av+Pm36Uk7PHHH3dYAOJCoQnWppkN1VwRUsEG0L4wEREXmT17No899hiZmZkkJSUB0NjYyNtvv01SUhLh4eEujrAXhY4GnwCorYCSr89/KNgGFecQkf6oS0nYTTfd5Og4xBWMJoiYBHlbmex5HIhgd16Z7miKiPTAp59+Sk1NDdXV1QAcOXKETZs2ATBr1iwGDRrEkiVLWL9+PZs3byYqKgqAefPmsXr1au677z4eeOABQkJCWL16NceOHeOll15y2XwcwmiE6Clw5ANrv7AOkrCkmECMBigsr+FERS3DAnycGKiIiGOoAsNAF5kCeVuJrs3GyyOKsnMNHDtdTXzYEFdHJiLilh577DEKCwttf9+0aZMtCfvwww+Jjo6mqakJs9ncqt+ml5cXL7/8MsuWLeN3v/sdNTU1jBs3jueff5709HSnz8PhYqY2J2HbYOpd7Q4b4u3B2GH+7C8+S0ZeGdclRjgxSBERx1ASNtA1f/poOrGHxKjvsCu3jN155UrCRES66aOPPup0zNKlS1m6dOlFx0NDQ3niiSccEVbfE9OcWObv6HRoWlwQ+4vPsitXSZiI9A9q1jzQNVdIpHgvaTHWxEtNm0VExOGi0sBghIo8OFvU4VDtCxOR/kZJ2EAXMgq8hkBjDTMCrRc3FecQERGH8/aDoROsf87f3uHQliRsX1EFtQ0Ds4GsiPQvSsIGOqMRIqxVuCaZjgHYmjaLiIg4VMuSxIKOlyRGBw0izM+bBrOFrMIKJwQmIuJYdiVhtbW13HrrrXz55ZeOikdcoXlfWEDp10QFDqLJAnvzy10bk4iI9H+2fWHbOhxmMBhIi9WSRBHpP+xKwnx8fMjOzh7Qjdv6JVvT5j0kxwYC2hcmIiJO0JKEFWdCQ22HQ7UvTET6E7uXI6akpLB3715HxGKXqqoqnnzySe644w6mTZvGmDFjWL58eZfPP3PmDA8++CBTp04lKSmJ+fPns3XrVgdG3Ie1FOc4kUVatB+gfWEiIuIEQSPANwzM9dZErAOpzUlYRm5Zq9L+IiLuyO4k7Fe/+hX/+Mc/WL9+va0RpSuUl5fz5ptvUl9fz+zZs+06t76+ngULFrB161Yefvhh/vKXvxASEsKdd97J9u0dbw7ul4LjwdsfGmuZ7n8KwNa0WURExGEMBoju2pLEiVH+eJmMnKmuJ/fMOScEJyLiOHb3CZs/fz4NDQ089NBDPPTQQ/j4+GAwGGzPGwwGdu3a1atBtiUqKoodO3ZgMBgoLS1l7dq1XT537dq1ZGdn88Ybb5CSYl2KN3XqVG688UaWLVtm12v1Cy3FOY5vIaHxCF4eYWraLCIizhGTDofehYKOPwT19jCRGB3ArtwyduWWMTzU10kBioj0PruTsGuuuaZV0uUqPYnhgw8+YMSIEbYEDMDDw4MbbriBp556ipKSEsLDw3sjTPcRmQzHt+BxYg+JUfPYlVtGhpo2i4iIo8VMtT7mbweLxXp3rB1pcUHWJCyvjFvSop0UoIhI77M7CVu6dKkj4nCqw4cPk5aWdtHxMWPG2J4feEnY+eIcqbF3NidhZczTRU5ERBwpMhmMHlBVAuW5EDS83aGpsef3hYmIuDO7k7D+oLy8nICAgIuOtxwrLy+3+zXN5u41j2w5r7vn95rwSZgAy4mvSZk8GIDduWUOj6vPzN9FNH/N/8LHgaan8x+oX7d+x3OQdUl84S7I39FxEhYXCMChkkrO1jbg7+PpnBhFRHpZt5Ow7Oxsjh49Sl1d3UXPfec73+lJTE7R0XLG7ix1zMrK6kk4PT6/xywWkjx88WisJujEl0AAh05UsnVHBoM8Hd/T2+XzdzHNX/MfyAb6/AXrksTCXdbiHJO+2+6woX4+xAYPJq/0HHvyypk5OsyJQYqI9B67k7CamhruvvtuvvrqKwwGg62C3oWJS19PwgIDA9u821VRUQHQ5l2yziQmJnarf5rZbCYrK6vb5/cm49dpcPwzpobVERnoQ1F5LZbgOJJHhjjsPfvS/F1B89f8Nf/uz7/lfOkHoqdYHzupkAjWfWF5pefYlVumJExE3JbdSdhf/vIXCgsLee2117jtttt49tln8fX1Zc2aNWRnZ/P00087IMzeNXr0aLKzsy863nIsISHB7tc0mUw9+iWqp+f3iqgUOP4ZxuJMUmOTKCovJrOgghmjhzr8rfvE/F1I89f8Nf+BO3/hfHGOkn1QVwXe7ReFSo0L4q3dhWTkaV+YiLgvu9eZffjhh/z0pz+1VRaMiIhg+vTpPPPMM0yYMIHVq1f3epC9bfbs2eTk5JCZeb4xZGNjI2+//TZJSUkDryhHi1bFOZo3P6tps4iIOFpAFPhHg8UMRRkdDk1rvj7tzivH3KR+liLinuxOwgoLC4mPj8dkMmEwGKipqbE9N3fuXD788MNeDbAjn376KZs2beLjjz8G4MiRI2zatIlNmzbZ4lqyZAnjx4+nsLDQdt68efNISEjgvvvu45133uHLL7/kv//7vzl27Bi//OUvnRZ/nxORbH0s2UdqVHNxDjVtFhERZ4jp2pLEMcP88PUyUVXXSHZJpRMCExHpfXYvR/Tz8+PcOWun+pCQEHJzc5k8eTJgvZvU8pwzPPbYY62Sq5YEDKx37KKjo2lqasJsNrdKJLy8vHj55ZdZtmwZv/vd76ipqWHcuHE8//zzpKenOy3+PidoOPgEQm05EzyK8PIwqmmziIg4R8xU2PeWtUJiB0xGAymxQXx+5DS7cssYF+HvpABFRHqP3UnYmDFjOH78ODNnzmTq1Kk899xzxMXF4eXlxYoVKxg7dqwj4mzTRx991OmYpUuXttnbLDQ0lCeeeMIRYbkvg8G6JDHnYzxL9pAYNUZNm0VExDlimj8ELdgOTU1gbH+xTmqcNQnLyC3jtmlxTgpQRKT32L0c8ZZbbqG6uhqA//7v/6ampoYf/ehHzJ8/n6KiIh588MFeD1KcKDLZ+li0m9TYQABtfhYREccLTwQPH6gpgzNHOhyaFmfdF7ZL1ycRcVN23wm77rrrbH+OiYnhP//5j61cfUpKCoGBgb0ZnzjbhcU5LgkCjpGRq4uciIg4mIcXRKZC3pfWu2Fho9sdmhwTCEDumXOcqqwjzM/bSUGKiPSOHnfhHTx4MFdeeSVXXHGFErD+wFacYz+pUYMAyC6ppKqu0XUxiYjIwNCyJLGT4hwBgzwZHW5dJq/VGiLijnqchEk/ExgLg4KhqYHwmqNEBQ6iyQJ788tdHZmIiPR3tiRse6dDW5YkarWGiLijLi1HHDt2LAaDoUsvaDAY2L9/f4+CEhdqKc5x9EMo2kNKbAqF5TVk5JVxyahQV0cnIiL9WXRzEnbqINSUw6DAdoemxgaxZns+u5SEiYgb6lISdu+993Y5CZN+IDK5OQnbTWrslWzYW6ymzSIi4nhDwiA4HkpzoGAnJMxud2jLnbC9hRXUNzbh5aHFPSLiPrqUhC1evNjRcUhfcmFxjlTrRa6labOScRERcajodGsSlr+twyRsRKgvQYM9KTvXwL6iClJig5wYpIhIz+hjI7lYS3GOkwcYH+qJ9wVNm0VERBzqwn5hHTAYDOdL1WtJooi4GbtL1K9fv77TMd/5zne6EYr0GQHRMDgUzp3G68wBEqMC2KmmzSIi4gwxU62PBTuhyQxGU7tDU+OC+ODASVVIFBG3Y3cS1l4z5guXqSkJc3MtxTmObIai3aTEXtqchJUxLy3a1dGJiEh/NnQcePlBfSWc3A/DEtsdmhZ7/k6YlsyLiDuxOwn78MMPLzpWVlbGhx9+yHvvvcef/vSnXglMXCwyuTkJ20PqyOtR02YREXEKowmi0yDnE2up+g6SsEnRgXgYDZScraOwvIbooMHOi1NEpAfs3hMWFRV10X8TJ07kvvvu4+qrr+aVV15xRJzibBcW52hec6+mzSIi4hQtSxI76Rc2yMvEhEh/QPvCRMS99GphjunTp/PRRx/15kuKq1xQnCPcp8nWtDlTTZtFRMTRWvqF5W/rdGiqmjaLiBvq1SSssLAQo1EFF/sF/0jwHQoWM5R8TUpsIKCLnIiIOEH0ZOtj2TGoOtXhUFuFRBXnEBE3YveesB07dlx0rL6+nkOHDvHcc88xffr0XglMXKylOMfh/1j3hcV+iw17i9mtO2EiIuJogwIhbBycOmAtVT92TrtDW5KwA8WVVNc14utt9682IiJOZ/e/VD/60Y8uqj5ksVgAuOSSS/j1r3/dO5GJ60UmNydhu0md/D1ATZtFRMRJYqZYk7D8bR0mYREBg4gM8KGoopbMgnIuGRnqxCBFRLrH7iSsrcIb3t7eREVFERqqf/j6lQuKc4yP8G/VtFn9wkRExKFipkLGK5B/8Qqcb0qNC6JobzEZuWVKwkTELdidhKWnpzsiDumLWopznDqIV1ONmjaLiIjztFRILMqAxnrw8Gp3aFpcEBv2FqtCooi4DburaBw7dozt29suGbt9+3aOHz/e05ikr/CPgCHDwNIEJ7LOV6DS5mcREXG0kFEwKAgaa+FEVodD02zXp3KamizOiE5EpEfsTsKWLl3aZsNmgI8//pilS5f2OCjpQ1qWJBbtIVUVEkVExFkMhvOl6gs67hc2LsIfH08jFTUN5JyuckJwIiI9Y3cSlpWVxZQpU9p8bsqUKXz99dc9Dkr6kMhk62PRblJi1bRZREScKKZr/cI8TUaSogMBNW0WEfdgdxJWWVnJ4MGD23zOx8eHioqKHgclfcgFxTnC/X3UtFlERJzHloR1fCcMLugXpiRMRNyA3UlYeHg4e/fubfO5vXv3EhYW1uOgpA+xFec4BHVVatosIiLOE5kKBhOcLYSKgg6HKgkTEXdidxI2e/ZsVq1axVdffdXq+LZt23j++ef51re+1WvBSR/gFw5+kYAFTuwlNVbFOURExEm8h8CwidY/d3I3rGXJ/NFT1ZRV1zs6MhGRHrG7RP29997L559/zk9+8hOGDx/OsGHDOHHiBMePH2fUqFEsXrzYEXGKK0WmwKEia3GOuPEA7M4vV9NmERFxvOh0KM60JmETb253WLCvF/FhvuScqmZ3fhlXjg13YpAiIvax+06Yn58f//jHP1i0aBEBAQEUFRUREBDA4sWLeeONNxgyRP2j+p0LinO0NG0ub27aLCIi4lAt/cI6qZAIkBarJYki4h7svhMG4Ovry7333su9997b2/FIX2QrU78bLw+jmjaLiIjztBTnKM6EhhrwHNTu0LS4INbuKlASJiJ9nt13wlpUVlayZcsW3n77bVVE7O9ainOcOQK1Z9W0WUSkHdXV1fz+97/nsssuIzExkRtvvJF333230/PWrVvHmDFj2vzv1KlTToi8DwuMhSHh0NQIRbs7HNpSnCMzv4IGc5MzohMR6ZZu3QlbsWIFzz//PLW1tRgMBv75z38SEBDAj3/8Yy699FJ+9rOf9Xac4kpDwsA/Gs4WNBfnGAmoQqKIyDctXryYrKwsHnjgAYYPH86GDRu4//77aWpqYu7cuZ2e//jjjxMfH9/qWGBgoIOidRMGg/Vu2IF3rPvC4i5pd+jIsCH4+3hwtraRg8WVJEYHODFQEZGus/tO2Ouvv86KFSuYN28ezz33HBaLxfbcFVdcwSeffNKb8UlfYdsXtsdWIVFNm0VEzvv000/54osvePTRR7n11luZNm0av/vd77j00kt58sknMZvNnb5GQkICycnJrf7z9PR0QvR9XMu+sE4qJBqNBttqjV25pY6OSkSk27qVhC1YsIBHHnmEyy67rNVzcXFx5Obm9lpw0odcUJxjqJo2i4hcZPPmzQwePJhrr7221fGbb76ZkydPkpmZ6aLI+oHolqbN2+CCD3/bYivOkVfu4KBERLrP7iQsPz+fGTNmtPmcr68vZ8+e7XFQ0gddUJwDUNNmEZFvOHz4MCNHjsTDo/VK/zFjxtie78zChQsZN24c6enpLFq0iOzsbIfE6nYiksDkBedOQ9mxDoe27AvT9UlE+jK794T5+flx+vTpNp8rLCwkJCSkx0FJHxTRnISVHoXaClJjg9iwt1jFOUREmpWXlxMdHX3R8YCAANvz7QkNDWXhwoUkJyczZMgQsrOzWbVqFfPnz2fNmjWMHTu2WzF1ZQlkR+d19/xeZ/TEGJGEoWAHTblfYQmIa3foxEg/jAYoLK+hoLSaiAAfu9+uz83fyTR/zf/Cx4Gmp/Pv6nl2J2HTp0/nhRde4KqrrsLb2xsAg8FAY2Mja9asuWiJovQTviEQEAsVeVCcSWrcJEBNm0VELtTRv4UdPTdz5kxmzpxp+/uUKVOYNWsWc+fO5c9//jMrV67sVjxZWVndOq+3zu9N0V7DCWcHZ/a8R17TmA7HxgV4cKy8kbc+28MlMfYnYS360vxdQfPX/AcyR8/f7iTs5z//OfPmzWPOnDnMnj0bg8HAa6+9xoEDBygqKuLpp592QJjSJ0QmW5Owoj2Mn3qZrWlzzulqRqpfmIgMcIGBgW3e7Wpp49JyR6yroqOjSUtL69FessTEREwmk93nmc1msrKyun2+Q3jPgZy1hNYeIzg5ucOhl+bt59i2PEqNASQnj7P7rfrk/J1I89f8Nf/uz7/l/M7YnYTFxcWxZs0aHn/8cdasWYPFYuHf//43U6dO5Q9/+AORkZF2BytuIjIFDrx9cdPm3DIlYSIy4I0ePZoNGzbQ2NjYal9Yy76uhIQEu1/TYrFgNHa7pScmk6lHv0T19PxeFTsNAMPJ/ZgaqsHHv92hk4cH89q2PHbnV/Sf+buA5q/5a/6Om3+3/mUfNWoUf/vb38jIyODTTz9l165dvPjii4wcObK345O+5IIKiYCtDPBuVUgUEWH27NmcO3eO999/v9Xxt956i6FDh5KUlGTX6+Xn55ORkWH3ef2Wf4R1WbylCQp3dTi0pTjHvqIKahsG5r4WEenbutWsuYWXlxfh4eG9FYv0dRHJ1seyY1BTRqoqJIqI2MyaNYtLL72U3/zmN1RVVREbG8u7777Lli1bWLZsme0T1SVLlrB+/Xo2b95MVFQUAAsWLGDy5MmMHTsWX19fsrOzeeGFFzAYDNx3332unFbfEpNuXRZfsANGXtHusOigQYT5eXOqso6swgqmDA92YpAiIp3rUhK2fv16u170O9/5TjdCkT5vcDAExkF5rrU4R/PSkJamzUO8e5TTi4i4veXLl/OnP/2JZ555hvLycuLj43nqqaeYM2eObUxTUxNmsxnLBf2uRo8ezcaNG3nxxRepq6sjODiYadOmcc899zBixAhXTKVvipkKX//T2i+sAwaDgbTYIDbtO8Gu3DIlYSLS53Tpt+YHH3ywyy9oMBiUhPVnkSnWJKxoD0PjLycqcBCF5TVk5pdz6ahQV0cnIuJSvr6+PPLIIzzyyCPtjlm6dClLly5tdWzJkiWODq1/iJlifczfAU1N0MF+ubS480mYiEhf06Uk7MMPP3R0HOIuIlNg//pW+8IKy2vIyC1TEiYiIo4VPhE8B0NdBZzOhqHt909LvaBps1qpiEhf06UkrGXNushFxTliA3kns0hNm0VExPFMnhCVBse3WJckdpCETYzyx8tk5Ex1PblnzjE81NeJgYqIdKzbdW+rqqr4/PPP2bBhA1988QVVVVW9GZf0VRHNVbrKc+FcKamx5yskXri/QURExCGiW5Ykbu9wmLeHicRoa282LUkUkb6mW5UU/va3v/Hss89SW1tru8Xv4+PDz3/+c37yk5/0dozSlwwKgqAR1gqJxXsYF3e5mjaLiIjzxEy1PhZ0nISBdV/YrtwyduWVcUtatIMDExHpOruTsPXr17Ns2TJmzpzJTTfdxNChQzl58iTr16/nySefJCgoyGmFOaqrq3n66afZuHEjFRUVxMfH87Of/axVFaq2rFu3joceeqjN5z7//HPCwsIcEW7/EZliTcKKduM18ko1bRYREedpuRN2OhvOlVor97ajZbWGWqmISF9jdxL28ssvc/311/OHP/yh1fFvf/vb/PKXv+Tvf/+705KwxYsXk5WVxQMPPMDw4cPZsGED999/P01NTcydO7fT8x9//HHi4+NbHQsMDHRQtP1IZArsWwdFewDr5ueduWVk5JXz3ckxro1NRET6N98QCBkFZ45Y+4WNvqbdoalxgQAcKqnkbG0D/j6eTgpSRKRjdidhOTk53H///W0+d8MNN7Bo0aIeB9UVn376KV988QV//OMfuf766wGYNm0aRUVFPPnkk1x33XW2xpjtSUhIIDEx0Rnh9i+24hx7AGxNm3erOIeIiDhDzFRrEpa/vcMkbKifD7HBg8krPceevHJmjtZKFxHpG+wuzOHj40NFRUWbz1VUVODj49PjoLpi8+bNDB48mGuvvbbV8ZtvvpmTJ0+SmZnplDgGpJbiHBV5UH3GttzjUEkllbUNLgxMREQGhJh062MnTZvBui8MVJxDRPoWu5OwtLQ0nn32WUpKSlodP3XqFCtWrGDy5Mm9FlxHDh8+zMiRI/HwaH0zb8yYMbbnO7Nw4ULGjRtHeno6ixYtIjs72yGx9js+ARA80vrn4t0M9fchKnAQFgvsLWg7QRcREek10c1JWOEuMDd2ONTWL0yrNUSkD7F7OeL999/PrbfeytVXX8306dMJCwvj1KlTfPXVV3h4ePDss886Is6LlJeXEx19caWjgIAA2/PtCQ0NZeHChSQnJzNkyBCys7NZtWoV8+fPZ82aNYwd237fkfaYzWa7z7nwvO6e7yqGiGSMpUdpKsjAMuIKUmIDKCyvYefxUqaNCOry67jr/HuL5q/5X/g40PR0/gP16yZA2Fjw9oe6s3By3/kVGm1Ia2mlkleOucmCyaimzSLienYnYQkJCfzzn/9k+fLlbNu2jfLycgIDA7nqqqtYtGgRI0aMcEScbTIY2v+HtKPnZs6cycyZM21/nzJlCrNmzWLu3Ln8+c9/ZuXKlXbHkpWVZfc5vXm+sw21DCUGqDj4KTl+VzHUWA3Ap1/ncVlQpd2v527z722av+Y/kA30+Us3GI3WKolHP7TuC+sgCRszzA9fLxNVdY1kl1QyLsLfiYGKiLStW33CRowYwVNPPdXbsdglMDCwzbtdLfvVWu6IdVV0dDRpaWnd3kuWmJjYaSGQtpjNZrKysrp9vssEVcP+lQSeO0ZycjLG0Ape3LOVnIomkpKSOkyCL+S28+8lmr/mr/l3f/4t58sAFZPenIRtg/SftjvMZDSQEhvE50dOsyu3TEmYiPQJ3UrC+oLRo0ezYcMGGhsbW+0La9nXlZCQYPdrWiwWjEa7t8kBYDKZevRLVE/Pd7rIZMCA4WwhpppSJkSFWJs21zSQW1Zrd78wt5t/L9P8NX/Nf+DOX7rJVpyj86bNqXHWJCwjt4zbpsU5ODARkc51Kwnbv38/77zzDkVFRdTV1bV6zmAwdGs5n71mz57Nm2++yfvvv891111nO/7WW28xdOhQkpLaX5rQlvz8fDIyMrjkkkt6O9T+yccfQhOszTKL9+CV8C0mRQew47iaNouIiBNETQYMUJ4LlSXgF97uUFuFRBXnEJE+wu4kbP369Tz00EMYjUaCg4Px9Gzd+LCry9B6atasWVx66aX85je/oaqqitjYWN599122bNnCsmXLbJ+qLlmyhPXr17N582aioqIAWLBgAZMnT2bs2LH4+vqSnZ3NCy+8gMFg4L777nNK/P1CRLI1CSvaDQnfIiU2yJqEqWmziIg4mo8/DB1vLcxRsB3GzW13aHJMIAYD5J45x6nKOsL8vJ0YqIjIxexOwlauXMmsWbN44okn7N531duWL1/On/70J5555hnKy8uJj4/nqaeeYs6cObYxTU1NmM1mLBaL7djo0aPZuHEjL774InV1dQQHBzNt2jTuuecepxYWcXuRKZD1ppo2i4iIa8SkW5Ow/G0dJmEBgzwZPdSPQyWVZOSVcc2EYU4MUkTkYnYnYSdPnuTRRx91eQIG4OvryyOPPMIjjzzS7pilS5eydOnSVseWLFni6NAGhshk62PRboCLmjb7+Xi2c6KIiEgviEmHXS91eV/YoZJKMnKVhImI69ldhWLcuHEXNWqWAWrYJMAAlUVQWdKqaXNmvpo2i4iIg8VMtT4W7YHGug6H2vaF5Wq1hoi4nt1J2P/8z/+watUqDh486Ih4xJ14D4GwMdY/F+8BrJ80AmRoSaKIiDhacDwMDgFzHRTv7XBoSxK2t7CCukY1+hYR17J7OWJycjJXX301N910E2FhYRctSzQYDLz99tu9FqD0cRHJcOqgdUni6GtIjQ3kncwi7QsTERHHMxggOh2yN1r3hcVMaXfo8JDBBPt6UVpdz76is7Yl9CIirmD3nbBVq1bx3HPPERQURGRkJIGBga3+6wt7xcSJIlOsj7biHNaL2u788lbFUERERByipV9YQcf7wgwGg+0alaEliSLiYnbfCXvllVe45ZZb+O1vf6vmmnJRcY5xEf7Wps3nGsg5Xa1+YSIi4lgt+8Lyt4PFYr071o60uCA+OFDCrtwy7pzhpPhERNpg952w6upqrr/+eiVgYjUsEQxGqDoBZ4vx8jAyKdp6N1SfNIqIiMNFpoDRAyqLoSK/w6Et+8J25pZptYaIuJTdSVhqaipHjx51RCzijrx8IWys9c8txTlalnvklbsmJhERGTi8Bls/EIROS9VPig7Aw2jgVGUdBWU1TghORKRtdidhDz/8MG+88QYffPAB9fX1johJ3E1EsvWxeUliSsu+MBXnEBERZ7hwSWIHfDxNTIhqXq2ha5SIfENTk4XTVXU0OeFOud17wm655RYaGxtZvHgxBoMBHx+fVs8bDAZ27drVawGKG4hMgczVFxTnCATUtFlERJwkegps+6u1QmInUmMDycwvJyO3jBuTo5wQnIj0NRaLheKKWrJLKjlcUsWhkkoOl1Ry+GQV5+rNXDF8EC+kODYGu5Owa665BkMHm15lALqwOIfFYmvaXFheQ2Z+BZclhLo0PBER6eda7oSdyIL6autS+XakxQXx0hfH2aU7YSL9nsVi4WRlHdkllRw6YU24sk9WcqSkisq6xjbP8TQZiPW3O0Wym13vYDabueuuuwgODlYpejkvfCIYTFB9Es4WQUAUqXFBFJbXkJFXpiRMREQcKyAa/CKhssj6geDwy9od2lKc40BxJdV1jfh6O/6XLRFxLIvFwqmqOmuSVVJJdkkVh0sqyS6p5Gxt28mWh9HAiFBfRof7kRA+hNHhfowOH0J0oA/7sjpu/t4b7PqXx2KxMGfOHFauXMmsWbMcFZO4G6/BMHQclHxtLc4REGVr2qw19yIi4nAGg7VR8/5/W5ckdpCERQQMIjLAh6KKWjILyrlkpD4oFHEnZ6rqrEnWycpWCVfZuYY2xxsNMDzUl9FDrUlWQrgfo8P9GBHqi5fHxeUxzGazo6cA2JmEeXh4EBoaqrKucrGIZGsSVrQbxs4537Q5r5ymJgtGo5awioiIA8VMbU7CdnQ6NDUuiKK9xWTklikJE+mjys/Vk918Z+twc7KVXVLJmeq2CwMaDBAXPLg5ybLe2UoY6kd8mC8+nn2vtZbd9+DnzJnD+vXrufzyyx0QjrityGTY85qtOEdL0+aKmgaOnVHTZhERcTBbhcRtXWravGFvMbvUz1LE5c7WNrRKslrubp2qrGv3nJjgQYwe6tcq4Ro1dEifTLbaY3cSNnbsWN577z1uv/12rr76asLCwi4q1HH11Vf3WoDiJiJTrY/NxTlamjbvOF5GRm6ZkjAREXGsYZPA5A01pXDmKISOandoy76wDK3WEHGaqrpG2z6t83e4qjhxtrbdc6ICB9n2ayUMPZ9s9Ye9nHbP4Fe/+hUAJSUlbN9+cT8Og8HAgQMHeh6ZuJfwCWD0gHOnoaIAAmNIjQ2yJmF55Xx3coyrIxQRkf7Mw8vaMiX/KyjY3mESNi7CHx9P62qNnNNVjBrq58RARfq3c/WNHDlZZa1GePJ8slVY3n6D9GH+Pq2KY1iLZfgxpB8kW+2xe2avvPKKI+IQd+fpYy3OcSLLWpwjMEZNm0VExLli0q1JWP42SP5Bu8M8TUaSogPZdqyUXbllSsJEuqG2wcyRk9+oRniykvzS9pOtMD9va3GMoX6MGWZNuEYN9SNg0MDrKWt3Epaenu6IOKQ/iEi2JmFFu2HcXFLjAgE1bRYRESeJaf4dJf/ilTrflBYXZEvC5k+JdXBgIu6rtsFMzqnqi6oR5paeo71afSG+XiSED2FMuJ+tGuHo8CEEDvZybvB9WLfv8VVWVrJnzx7KysqYNWuW+oaJdRnI7ldtxTmG+vkQHTSIgjI1bRYRESeIbk7CTh6A2grwaf93k5Z9YSrOIXLeufpGPjlYwkdfV7Jq/24Ol1Rx/Ew1Te0kW4GDPVsvIWwuAx8yxNu5gbuhbiVhK1as4Pnnn6e2thaDwcA///lPAgIC+PGPf8yll17Kz372s96OU9xBZIr1sbk4BwYDqbFBFJSpabOIiDiBXzgEDYey41CwE0Zd1e7QliXzR09VU1ZdT5CvPqGXgam2wcyn2ad4J7OIDw+cpKahpU9WtW2Mn4/HBXe1htgaHIcN8b6oQJ90jd1J2Ouvv86KFSv4wQ9+wIwZM7jrrrtsz11xxRW8//77SsIGqvAJYPS0VqYqz4OgOFJiA3lbTZtFRMRZotOtSVj+9g6TsGBfL+LDfMk5Vc3u/DKuHBvuvBhFXKzB3MSXR8/w9p4i3t93gsq6RttzscGDSAiAaePiGDPMn9HhfoT7K9nqbd1KwhYsWMD//M//XNRROi4ujtzc3F4LTtyMhzeEj4fiTGtxjqA4NW0WERHnikmHrDetFRI7kRYbRM6panblKgmT/q+pycL246W8k1nExq9PUHpB0+Nh/j5cPymCG5IjGT9sCJmZmSQnD8dkcp++W+7G7iQsPz+fGTNmtPmcr68vZ8+e7XFQ4sYikq1JWNFuGH9jq6bNOaerGTVU/cJERMSBWpo2F+yEJjMY2/8lMi0uiLW7CrQvTPoti8VCZkEF72QWsWFvESVnzzdADvH14rrECOYmRTI5Lsj2Qfk3b7KIY9idhPn5+XH69Ok2nyssLCQkJKTHQYkbi0yBjL/binO0atqcV6YkTEREHGvoePD0hbqzcOqgdal8O1qKc2TmV9BgbsLTZHRWlCIOY7FYOFRSydt7inhnb1GrkvF+Ph5cO2EYc5MiuWRkCB76mXcZu5Ow6dOn88ILL3DVVVfh7W2tfGIwGGhsbGTNmjVcdtllvR6kuJF2inPsOF7G7rxyvqemzSIi4kgmD4hOg2OfWfeFdZCEjQwbgr+PB2drGzlYXElitCo9i/s6drqadzKLeCeziMMnq2zHB3mamD0+nLmTIpg1JgxvDy0x7AvsTsJ+/vOfM2/ePObMmcPs2bMxGAy89tprHDhwgKKiIp5++mkHhCluY+h4MHlBbbl1Y3TwCDVtFhER54qZej4Jm/yTdocZjQZS44L45NApduWWKgkTt1NYXsO7e4t4O7OIrwvPbwnyMhm5fEwYc5MiuWrcUAZ7dbsrlTiI3d+RuLg41qxZw+OPP86aNWuwWCz8+9//ZurUqfzhD38gMjLSEXGKu/Dwsn7qWLTbWpwjeISaNouIiHO19AvL39bp0LTY5iQsr5wFlzo4LpFecKqyjo1fF/P2niJ2XrCf0WQ0cOmoUOZOiuDqCcMIGKTft/qybqXFo0aN4m9/+xv19fWUlZUREBCAj49Pb8cm7ioi2ZqEFe2GCTepabOIiDhX9GTrY+lRqD4Dvu3vV2/ZF5ah4hzSh1Wca2DTvmLeySzmy6Onbc2TDQaYMjyYG5Ii+fbEYWqS7Ebs3o330EMPkZ+fD4CXlxfh4eG2BKywsJCHHnqodyMU93PhvrBmLaXq1S9MRPqz6upqfv/733PZZZeRmJjIjTfeyLvvvtulc8+cOcODDz7I1KlTSUpKYv78+WzdutXBEfdTg4MhdIz1z52Uqk+KCcRosC7rKq6o6XCsiDNV1zXy7z2F3Pn3HUz+/WZ+9a8sPj9iTcCSYgJ5ZM44vnzwSt68azq3TYtTAuZm7L4T9tZbb/H973+fmJiLCyyUlZWxfv16Hn/88V4JTtyULQnLvKA4h5o2i0j/t3jxYrKysnjggQcYPnw4GzZs4P7776epqYm5c+e2e159fT0LFizg7NmzPPzww4SEhPD6669z55138tJLL5Genu7EWfQTMVPg9CHrksQx3253mK+3B+Mi/NlXdJaM3HLmTBrkxCBFWqttMPPJoVO8k1nEhwdLqG1osj03dpgfc5MimTspktiQwS6MUnpDr+7Sq6iowMvLqzdfUtzR0HFg8oa6CijNgZCRpMapabOI9G+ffvopX3zxBX/84x+5/vrrAZg2bRpFRUU8+eSTXHfdde02Pl27di3Z2dm88cYbpKRYP8iaOnUqN954I8uWLWPt2rVOm0e/ETMVdr8G+Ts6HZoWF8S+orPsyi1jzqQIJwQncl6DuYnPj5zmncwi3t9XQlVdo+254SGDuSEpkuuTIhkd7ufCKKW3dSkJ27FjB9u2nd/cunbtWj777LNWY+rq6vjwww8ZOXJk70Yo7sfkCcMmQuEua3GOkJGMHaamzSLSv23evJnBgwdz7bXXtjp+880388ADD5CZmUlqamqb537wwQeMGDHCloABeHh4cMMNN/DUU09RUlJCeHi4Q+Pvd1qaNhfuAnOD9drUjrS4IF7ZmssurdYQJzE3Wdh+rJR39haxMauYsnMNtuciAnxsd7wmRvljMOiD6/6oS0nYtm3bePbZZwFrT7D2PpGLjIzkf//3f3svOnFfkSnWC1/Rbph4i5o2i0i/d/jwYUaOHImHR+tL65gxY2zPt5eEHT58mLS0tIuOX3hud5Iws9ls9zkXntfd8/uEoHiMPgEYaiswF2WeXyrfhuRofwD2FVZQXVuPZ/OOebeefw/0i+9/Dzhq/haLhcyCCt7ZW8x7WSc4WVlney7E14vrJg7j+kkRpMYG2lYMNTU1tfdyDqPvf8/m39XzupSE3Xnnnfzwhz/EYrFwySWX8Le//Y3x48e3GuPl5YWvr6/9kUr/FJFsfSzaYzt0vmlzmZo2iwxA5iYLZ6rqKK6opbiilqLycxgr60h2dWC9pLy8nOjo6IuOBwQE2J7v6NyWcfae25GsrKxunddb57vaKP8xBNRup3DbW5wa0f7dBIvFQpCPkbLaJtZ9sovxYdatFe4+/57S/Hs+f4vFQm5FI5/n1/JFXi0nz53/Bd3X08C0aB8ujfFhYpgXJmM9lOeytzy3x+/bG/T9d+z8u5SE+fj42Cogfvjhh4SFhWnvl3Ss5RPH4kxoagKj0da0OSO33HVxiYhDNJqbOFlpTbBOVNRSXFFjfTxr/fuJilpKztbS2FJXuZmXCb5/VVO7e6XcTUfLhjpbUtSTc9uTmJjYra+t2WwmKyur2+f3FYbK2XByO9GWIqKSkzscO/XAbjbtK6HSO5TExLh+Mf/u6i/f/+7qjfkfO13Nhr3FbNhbzJFT1bbjg71MzB43lOsTI7gsIRRvD7sLlTucvv89m3/L+Z2xuzBHVFSU3cHIABQ2Fjx8oO6stThH6Chb0+bsk2raLOJO6hrNlFTUWROrs7UXJVonztZyqrKOb+RXbTIaYKifD8MCfBjm782IQTV4mPreLyHdERgY2OYdq4qKCoA273T1xrkdMZlMPfolqqfnu1ysdV+YsWAHdDKPycOD2bSvhIy8CkwzrWPdfv49pPnbN/+CsnO8u7eYtzOL2Fd01nbcy8PIFWPCuCEpiivHDmWQl3t8TfX9d+z87U7CGhoaeP7559mwYQNFRUXU1dW1et5gMLB///5eC1DclMkDhiVCwQ5rcY7QUWraLNIHnatvtN2pKm5OqGx3sZqPn6mu79JreZoMhPv7EBHgw7CAQdZH2999iAgYROgQL1vSZTab2bNnjwNn51yjR49mw4YNNDY2ttoXlp2dDUBCQkKH57aMu1BXzpUORKWBwQgV+XC2CPwj2x16vopvGRZLFz5REAFOVtby3t5i3tlbzK4LGn6bjAZmJIQyd1Ik35oQjr8+eJZvsDsJe+qpp3j55ZeZOXMms2fP1rJEaV9kijUJK9oNifMA676wgrIaMvLKlISJOJDFYqGyrvGCZKrmgjtY1qWBxRW1VNQ0dP5igLeHsVUyZX1sSbKsfw/x9RrQ7Sdmz57Nm2++yfvvv891111nO/7WW28xdOhQkpKSOjz3scceIzMz0zausbGRt99+m6SkJFVG7C5vPwifACeyIH87TPhOu0MnRPrj5WHkTHU9uaXnnBejuJ3yc/Vs+voE7+wtYuvRM7ZVAAYDTB0RzNykSL49MYJgX/2OLO2zOwnbuHEj9957L4sWLXJEPNKf2Ipz7LYdUtNmkZ6zWCyUn2tovnPVOrm6cJlgdX3XKjT5epmICPzmnatBFyRdPgQM8lSZ5E7MmjWLSy+9lN/85jdUVVURGxvLu+++y5YtW1i2bJltWcuSJUtYv349mzdvti3xnzdvHqtXr+a+++7jgQceICQkhNWrV3Ps2DFeeuklV07L/UWndykJ8/YwMSkqgJ25ZWTklROvH3e5QFVdIx/sL+GdzCI+O3yKBvP5u6XJMYHMTYrk+kkRhPv7uDBKcSd2J2EVFRVMnjzZEbFIf9NGcY5vNm0Wkdaamiycrq77RlJlvZN14uz5v9c1dq1sccAgz1bJ1DD/1snVsAAf7c/sRcuXL+dPf/oTzzzzDOXl5cTHx/PUU08xZ84c25impibMZnOrJW9eXl68/PLLLFu2jN/97nfU1NQwbtw4nn/+edLT010xlf4jZirs/BsUbO90aFpckDUJyy0nfrjjQ5O+rbbBzGf7T/LO3iI+PHCy1b+74yL8mZsUwdxJkcQED3ZhlOKu7E7CpkyZwsGDB5k2bZoj4pH+JHQ0eAyC+io4cwTCRjMuwh8fz/NNm0eEDHJ1lCJO19Rk4eipKrblnGH7gbO8eHAPJWetlQVPVta2+oS1I6FDvJoLXFycWEUEDGKYv4/bbADvL3x9fXnkkUd45JFH2h2zdOlSli5detHx0NBQnnjiCUeGNzDFNCexRXugoRY8279TYavim1fGvOHqZzkQNTVZ+OTQKV7ZXs6utz+iqu78ioIRob7NTZQjSAj3c2GU0h/YnYQ98sgj3HPPPURGRnL55ZdrT5i0z+QBEZMgf5u1OEfYaDxNRiZFBbL9eCkZeWVKwmRAqG9s4uuiCnYcK2XH8TJ25pZSfu7CvVit95+0VBAMD/Ahwv/i5CoiwIeh/t54eyjBEulU0HDwDYPqU9ZrUWz7HyKfr+JbRXWD7m4MJLUNZtZlFPLClhxyTp8vKR8VOIjrm+94TYj017Js6TV2J2E33ngjjY2N3HfffRgMBlv/sBYGg4Fdu3b1WoDi5iJTrElY0W6Y9D0AUmKtSdjuvDJuSWm/UpWIu6qsbSAjr5ydx0vZfqyUPfnlFy0f9PE0khwTSJhHLUmjYokMGmxLtsKGePebsu0iLmcwWJckHtxg3RfWQRI21M+H2ODB5JWe4/CZBi51YpjiGuXn6nntq1xe/vI4p6uslWD9fTy4NNqLn1yZyOThIQO64JA4jt1J2DXXXKNPAaTr2ijOoabN0t+cPFvLjuNl7Dheyo7jpRwoPntRz6xgXy8mxwUxZXgwk4cHMTEqACMW9uzZQ3Ly8AHdi0XE4WLSm5OwbZ0OTYsLIq/0HOsOVjFxbBnp8SH6vacfyi89x98+P8abO/M511zEKCpwEHdcNoJ5qZEcOfA1yXFBSsDEYexOwtpax+4q1dXVPP3002zcuJGKigri4+P52c9+1moDdHvOnDnDsmXL+Pjjj6mtrWXs2LH893//N9OnT3dC5AOIrTjHXmgyg9F0UdNmEXdisVjIOV3dfJfLurQw98zF5axjggcxZXiw7b+RYb4X/SJnNneteqGI9FB0876w/O1gsVjvjrXj6vHhvLW7kH2nGpj//DbGR/jz40viuCEpSnss+4GvCytY9VkO72YVY27+tGxchD93zYxnzqQIPE1G/dssTmF3EtaXLF68mKysLB544AGGDx/Ohg0buP/++2lqamLu3LntnldfX8+CBQs4e/YsDz/8MCEhIbz++uvceeedvPTSS6pE1ZtCE8DTFxqq4fRhGDq2ddPmggq09Vn6sgZzE/uLztrucu08XnZR82KDAcYN82fK8CAmNyddwwJUplikz4hMBqMnVJ+E8lzrPrF2fDsxgnfuvYQ/v7ebzwvq2F98ll/9K4v/e+8g86fEcNvUOGJDtF/MnVgsFrYcPs2qz3L4/Mhp2/HLRoVy16x4LhsVqrud4nRdSsL27dtn14tOmDChW8HY49NPP+WLL77gj3/8I9dffz0A06ZNo6ioiCeffJLrrruu3eU9a9euJTs7mzfeeIOUFOudmqlTp3LjjTeybNky1q5d6/D4BwyjyVqcI2+rdUP00LHA+abNu/PKmRHs2hBFLlRd18ie/HK2HytlZ24pu/PKbUtVWnh5WPdzTRluXV6YGheEv8q8i/RdnoMgIgkKd1rvhnWQhAGMj/Tn7skBPPGD8azbXcwrXx0nv7SGVZ/l8PyWHK4cM5TbLxnOjFGhWq7WhzWYm9iwt4hVnx3jQPFZAExGA9dPiuCnM+KZGBXg4ghlIOtSEnbLLbd06RMCi8WCwWDgwIEDPQ6sM5s3b2bw4MFce+21rY7ffPPNPPDAA2RmZpKamtrmuR988AEjRoywJWAAHh4e3HDDDTz11FOUlJQQHh7u0PgHlMgUaxJWtBuSbgXON23enV/OjGC3viErbu50VR07jzdXLTxeytdFZ21LVFoEDPK07ucaEcyU5v1cqkwo4mZi0puTsG22QlGdCRzsxU9nxnPHZSP45NBJ/r41l8+yT/HhwZN8ePAkI0J9+dG0OOZNjtYHMX1IVV0jb2zP48XPj1FUUQvAYC8T86fEcMelI9TXS/qELv32+/jjjzs6DrsdPnyYkSNH4uHRegpjxoyxPd9eEnb48GHS0tIuOn7huUrCelEbxTlamjbvya+gaZJuhYlzWCwW8krPWe9yNRfSuLAUcYuowEFMbr7LNWV4MAlDh+jTbhF3F5MOX/3FeifMTiajgavGhXPVuHByTlXx6le5/HNnAcdOV/PbDfv5w/uHuCklitunD2fMMPWPcpWTlbW8/MVxXvsql7O1jYC1n+KCS4Zz27Q4AgerrZL0HV1Kwm666SZHx2G38vJyoqOjLzoeEBBge76jc1vG2Xtue7q7ibPlvH69CXTYJEyA5UQWTQ11YPRg9FBfW9PmokozSf15/h0YEN//Djh6/uYmCweKz7Izt8z63/FyTlXVXTRudPgQpsQFMXl4EJPjgogMbN2/zmJpwhEh6vvfs/kP1K+bdFNLcY6Sr6GuCry7tyM5PmwIj86dwC+vHsNbuwt5ZetxskuqeH1bHq9vy2NafDA/nj6cb40PV6sJJzlysooXtuSwLqOQerO1HUh8qC93zojn5tQofDy1ckH6HrdeB9bREsnOlk/25Ny2ZGVl2X1Ob57fp1maSDYNwtRwjoOfv0Ot/wgARgSYOHC6iewz9UT35/l3Qb/+/ndBb82/rtHC4dJ6Dp5uYP/perLPNFDT2HppoYcRRgV5MjbUi3GhnowJ9cLPywg0gOUkJ4+f5GSvRNN1+v4P7PmLkwREgX80nC2Awl0QP6tHL+fr7cFt0+L44dRYvsop5ZWtx3l/fwlf5ZTyVU4pEQE+/HBqLLemxxI6xLuXJiEX2nm8lL9+msMHB0psx1JjA7lr1ki+NS5cKxikT3PbJCwwMLDNO1YVFRUAbd7p6o1z25OYmNitPj9ms5msrKxun+8ujHtTIO9LxgXUYElKBmDGiUMc2HKMQ2cauO+G/j3/9gyU7397ejr/snP17MotZ8fxUnbllvF10VkazK2TriHeHqTFBTb36AoiMSqgz3wqqu9/z+bfcr5Il8Wkw74CKNje4ySshcFgYPrIEKaPDKGovIbV2/JYsz2P4opa/vB+Ns98eIQ5kyK4fXqcrU+mdF9Tk4X395ew6rOjZOSV245/a3w4d82MZ/JwbXEQ9+C2Sdjo0aPZsGEDjY2NrfaFZWdnA5CQkNDhuS3jLtSVc9tjMpl69EtUT8/v86JSIe9LjCf2QuqPAEgbHgxbjrElr5bHNhzkh9OGMz7S38WBuka///53oivzt1gsFJTVsDO3uT/X8VIOn6y6aFy4v3er/lxjhvlh6uOfhur7P7DnL04UMxX2revWvrCuiAwcxC+vGcPiq0bxXlYxf/8ylz355by1u5C3dhcyKTqA26cP5/pJEX3mwyB3UdtgZl1GIS9sybHt5fUyGbk5NYo7Z8Qzaqga3oh7cdskbPbs2bz55pu8//77XHfddbbjb731FkOHDiUpKanDcx977DEyMzNt4xobG3n77bdJSkpSUQ5HaKM4xyUjQxgdPsS6ln57Pq9vzycpJpAfpsdyfVIEg73c9sdTeoG5yUJ2SWVzf64ydhwr5cTZ2ovGjRo6xFYqfsrwYKKDBqnfi4i0LWaK9TF/OzQ1gdExe7a8PUzclBLNTSnRZOaX88rWXN7ZW8Teggp+uTaT/3vvALdOieGH0+KI+sYeVGmt/Fw9r27N5e9bj3O6ytqj0d/Hgx9Nj+PHlwxnqJ96Mop7ctvfcmfNmsWll17Kb37zG6qqqoiNjeXdd99ly5YtLFu2zPap6pIlS1i/fj2bN28mKioKgHnz5rF69Wruu+8+HnjgAUJCQli9ejXHjh3jpZdecuW0+q/I5nYAJ7LA3AgmD/x8PHl30aW8tnk7O0q9eX9/CZn55WTml/P/NuznOylRfD89dsDeHRtoahvMZBVWNFcuLGVnbhmVzdWtWngYDUyMCiB9RDCT46yNkYN9Ve1KRLpo2CTwGAS15XDmCISNdvhbJsUE8seYQJZcN5Z/7Mznta25FFXU8pdPjvLXT4/yrfHh/Hj6cKaPDNEHSBfILz3H3z4/xps78229GqMCB3HHZSOYPyWGId5u+yusCODGSRjA8uXL+dOf/sQzzzxDeXk58fHxPPXUU8yZM8c2pqmpCbPZjMVyfp+Il5cXL7/8MsuWLeN3v/sdNTU1jBs3jueff5709HRXTKX/C44Hb3+oOwunDsKwiQAYjQYmhXtz+zXJlJ5r5J+7CnhjRx65Z87x6le5vPpVLskxgfxAd8f6nUZzE18cOc36rEr+b/tXZBWctVW1auHrZSI1znqXa/LwIFJighjkpSU8ItJNJk/r8vjcL6z9wpyQhLUIGeLNPZeP4mcz4vnw4Ele2XqcL46c4T/7SvjPvhJGDR3Cj6fHcVNq9IBOML4urGDVZzm8m1Vs69k4LsKfu2bGM2dSBJ6qOClNTdDUCBaz9bHJbP2v1d8bwdL0jb+bz4/95t+/8Vqm+kCHT8Ot/y/39fXlkUce4ZFHHml3zNKlS1m6dOlFx0NDQ3niiSccGZ5cyGiEiCQ4vsW6JLE5CbtQmJ83d18+krtmxrM15wyrt+Xxn30n2JNfzh7dHesXzE0Wth07w4a9xWz6+gSl1fWtng8d4k36iCAmx1mXFo6L8FOJZxHpXdFTzidhzXuUncnDZOSaCcO4ZsIwDpdU8upXufxrVwFHTlbx63/v44lNh5iXFs2PpscxMmxg7HOyWCxsOXyaVZ/l8PmR07bjl40K5a5Z8Vw2KlR3CZ2l8gSG/e8wLGc/hrPvA5buJzatEqWuJE7mC87v4LUczAQMD78U0mc69H3cOgkTNxOZbE3CivcA7V/4jEYDl44K5dJRoZyqrNPdMTfX1GQhI6+MDXuLeTermFOV5/t0Bft6kRxm4prUkUyNDyUuZLAutCLiWDFTrY8FO1wbB5AQ7sdvb5zI/3fNGP61q4BXtuaSc7qal788zstfHmdGQii3Tx/OlWOH9vkCQ93RYG5iw94iVn12jAPFZwFrY+zrJ0Xw0xnxTIyyv1q1dENDDRx8FzLXwNGPMFqaiAI45OrAusFgAqMHGJsfDcZv/N1kvTFg+7PHRX+3GD04E/YtHN12Xb+9ivO0UZyjM129O/aDqbGMi9Ddsb7CYrGwt6CCDXuLeHdvMUUV5wtqBAzy5NoJw5ibFMmUuAC+ztpLcnK0quOJiHPENG87OHUQaspgkOvLxvv5eLLg0hHcPn04Xxw9zd+/zOXDgyVsOXyaLYdPExU4iB9Nj2P+5BiC+sE+2Kq6Rt7YnseLnx+zXR8Ge5mYPyWGOy4dQUzwYBdHOABYLNa7wXtWw771UFdx/qnoKZwxhhEcOhSjyeOCBMX0jWTmmwlMR4lPZ+d6nB9z4d/tOddghF74ILfJbKZ8z54ev05nlISJ89iKc3wN5gbr2vwuauvu2JrteeSVfuPu2NRYrp+ku2OuYLFY2F981nrHa28xeaXnbM/5eXvwrQnhzJ0UyaWjQvHysC4xNJvNrgpXRAYq31DrPuXSHCjYCQnfcnVENkajgRkJYcxICCO/9ByvbcvlHzvyKSyvYenGg/xpczY3JEXy40uGu+VdopOVtbz8xXFe+yqXs82Fl0KHeLHgkuHcNi2OwMHun2D2eeV5kPkP612v0qPnjwfEQNKtkPR9mgKHk7tnD0HJyaAPSB1Gv6mK8wTHg3eA9dOWkwcgYlK3XubCu2NfHj3Dmu3fuDv2ju6OOdPhkkre2VvMhr1F5Jyqth0f5Gli9vhwrp8UwazRYeqJIyJ9R8xUaxKWv71PJWEXigkezEPfHscvZo/m7cwi/v7lcfYVnWXtrgLW7iogNTaQH18ynG9PjLB9sNVXHTlZxfOf5fDW7kJbAab4UF/unBHPzalRuj44Wl0VHHjbetfr+Jbzxz19YfyNkPx9iLvsfMsGfUDqFErCxHkMBohMgmOfWZckdjMJa2E0GrgsIZTLEnR3zNmOn65mw94i3sks5lBJpe24t4eRK8YMZW5SJFeOHapKhiLSN8WkW+8E5G9zdSSd8vE08b3JMXw3LZqMvHJe2Xqc97KKycgrJyNvD/9vyAF+kB7DD6bGMSygb/XM2nm8lL9+msMHB0psx1JjA7lr1ki+NS4cYz/c59ZnNDVZE67MNbD/bWg4/yEpw2dA8g9g3A3gPTCKv/RF+q1UnCsyxZqEFe8BftxrL6u7Y46XX3qOd7Osd7y+LjxrO+5pMjBrdBjXT4pk9vjwAV1aWUTcRHTzvrDCXdbKa8a+/4GRwWAgLS6ItLggHp4zjje25/P6tlxKztbxzEdHWPHJUa6dMIzbp8eRPiLYZUWOzE0WNu8vYdVnR8nIK7cd/9b4cO6aGc/k4cEuiWvAOHPUmnhlvgEV+eePB8dD0g8gaT4ExrouPrHRb0viXN0ozmGPrtwdS4kN5PvpujvWFScqam2J1+4LLqam5j1610+K4JrxwwgY3PX9fSIiLjd0HHj5QX0lnNwPwxJdHZFdhvr58POrErj78pG8v6+Ev289zvZjpbybZa1CO3aYH7dPH853UiKddp2rbTCzLqOQ57fkcOy09a6Ll8nIzalR3DkjnlFDdcfFYWrKYd9bF9/d9Q6AiTdZk6+Y9F4pWiG9R7+BinO1FOco2QeN9daqNg7yzbtjq7fn8v6+EnbnlbM7z3p37KZUa98x3R0773RVHRuzinlnbzE7jpfS0ufcYIBpI0KYmxTJtROHEdwPKnSJyABlNEH0ZMj52PpLq5slYS08TUbmTIpgzqQIDhSf5ZWtuby1u4CDJypZ8lYWSzce4HuTY7htWhzDQ30dEkP5uXpe3ZrL37ce53SVtfejv48Ht02LY8Elwxnq37eWSPYb5kbrz++e1dby8ubm9i8GI4y8yrrPa8x14DnItXFKu5SEiXMFDQefQKgtt376GO74C19Hd8de2ZrLK1t1d6ysup5N+06wYW8RW4+eocly/rnJcUHMTYrk24nDGOqni6mI9BMx6c1J2A6Ycqero+mxcRH+PH5zIg9eO5a1u/J59atccs+c44XPj/G3L45x+egwbr9kOLMSwnplL1Z+6Tn+9vkx3tyZz7l6ayGHyAAf/mtGPPOnxGhpuqOcPGBNvPa+CVUnzh8PG2dNvBK/B/4RrotPukz/h4hzGQzWps05n1iXJDohCbuQ7o6dd7a2gff3lbBhbxGfHz5N4wWZV1JMIHMnRXBdYgSRgfoUTUT6oZZ+YW5QnMMeAYM9uXNGPHdcOoJPD5/ilS+P8/GhU7b/4kIG86NpcXw3LaZbS8m/Lqxg1Wc5vJtVjLn5ujEuwp+7ZsYzZ1IEnqa+XanRLVWfga//aU2+ivecPz4oGBK/a02+IpK13NDNKAkT54tMsSZhxXsg5XaXhPDNu2Nrd+Xzxvb8Nu+OzZ0U2W+q/FXXNfLBgRI27C3m00OnbKWCAcZH+HN9UgTXJ0YSG6JGmSLSz0VNBgxQdgyqTsGQMFdH1KuMRgNXjBnKFWOGcvx0Na9+lcubO/PJPXOO3717gD++n813UqK4fXpcpx86WiwWthw+zarPcvj8yGnb8ctGhfKzmfHMSAh1WSGQfquxHg6/b93nlf0faGqwHjd6wOhrIen7kHA1eGhrgLtSEibO17IvzEHFOewV5ufNPZePYuHMkXxx9DRrtue1vju2YT83NVdWHDvM/e6O1TaY+ejgSTbsLeKjgyepbTifeCUMHcLcpEiunxRBfJg2TYvIADIoEMLGwqkDULAdxs5xdUQOMzzUl19fP54Hrh7N+t1FvLL1OAdPVLJmex5rtueRPiKYH08fztUTwlvdyWowN/H23mJWfXaMA8XWqrgmo4E5iRH8bGa8WzaM7tMsFijOtCZeWWvh3Jnzz0UkWQtsJM6zNhwXt6ckTJyvpUJiyX5orHNpKBcyGg3MSAhjRkKY298dq2s081n2aTbsLeKD/SVU159vvDgi1JfrJ0Vw/aRIxgzzc2GUIiIuFpNuTcLyt/XrJKzFYC8PfjD1/2/vzuOqLPP/j78O4MKiLCKKoikkKILgwuJuZrnhqJU5y0/bzTHNSevb6DTfsb5N2mKWOGqOZdaUU1PqpKml2WKl4JJKpuKeuG+guICcc//+uOHgEVQQOEfg/Xw87gd4L+d8rnOO58Pnvq77upvyu/gmpO47zXtrD7Bi21FS950mdd9pGtStxR8SbqN/dAOWpJ9n9JffcSTrUv6x7gyNa8LDnZvTJECjJcrVuaPmNV5bFpjXyxfwaQBt7jeLrwaRrotPKoSKMHE+v6bmOOaLp/O/bG69IQyVsXfsstXGD7tPsnTrEb7YdpRzl/Ls2xr7eZIUE8yANo1o3aiuho2IiAA0SYBN8+FgqqsjcSqLxUJCaD0SQutxNOsSH6Yc4MPUXzl2NofXV6bz+sp0+76BPjV5sFMz/l/ibfh5aehbubl8CXZ+DpsXwJ6vwMgfpeJeyzwhEPt7CL0D3PWnelWld1acr2Byjj2rsRzZDO5tXR3RNd3qvWNWm0HK3lMs2XqYFT8f5cyFy/ZtDevWpn+bYJLaBBPbxE+Fl4jI1Qom5zj8k3kNTjW8vqahb23G3R3BEz1vZ8XPR5n/4342/ZpJIx93Rt3Zkvs6NKF2jVt35EelYhiQsd6cYOPnhZCTVbgtJN4svFoPNofKSpWnIkxco1Fb2LPanJwj5NYtwq5Ukt6xe9o25ncV3DtmsxlsOHCGpVsPsyztKCezC4d0BvrUpF+0OdSww23+5TINsYhIlVXvdvD0h4tn4GgahLR3dUQuU8vDnYGxjRkY25gz2ZfYveNn2rVtgru7CrAyyzwIW/8NW/4Np3YXrq8bAjG/NSfZCLzddfGJS6gIE9fIn5zDcngzhLg2lNK6snfs+LlLfLIxw947Nn/tAebn9479Pr4pSeXUO2YYBpsPZrJ06xE+33qEo2cv2bf5edWgb1RDkto0IqF5AB6aHlhEpGQsFnNIYvoK87qwalyEXamuZw3cNHqibHLPw/YlsPkD2LcGyL8NTA0viBxoFl7NuoKbcnZ1pSJMXKNgco4T27FYc10aSlkE1al93d6xF8rQO2YYBtsOn2XJ1sN8vvUIGWcu2rfVqe3B3ZENGRATTOfbA3VfFhGRmxUSZxZhGanAKFdHI5WZzQYHfjAn2Pjlv5CbXbitWVdzuGGr30AtzUYsKsLEVXxDwCsQy4WTeJ7dA8S7OqIyKc/esZ1Hz7F062GWbj3CvpPn7eu9arpzV2QDkto0olt4ILU8NERERKTMmiSYP6vZ5BxSjk7tMYcabv03ZP5auD4g1OzxajMU/G9zXXxyS1IRJq5RMDnH7lV4Z6XfcPfKpDS9Yy3qewOw7+R5lv18jCVbDrPreOGZs1oebtzZKoikNo24IyLolp4WX0SkUmrcDizucPYQZGWYJwlFbuRSFmxbZM5ueHBd4fpadc3JNWJ/bxb4GtYp16AiTFynUVvYvQqvzKpVhBUorndsQeqvHDx9sbB3rIkvmefOsy/zqP24mu5udAuvz4CYYO5s1QCfWvpvKiJSYWp6Q8Mo8ya5B1NVhMm12ayw92uz8NqxFPLyr8+2uEFYT7PXq2V/qOHp2jilUtBfd+I6+ZNz+B39HsvGedBueJWdHvjq3rEPU35l5S/H+OmgOT2th5uFLi0CSWrTiLsiG+DrWcPFEYuIVCNNEgqLsKh7XB2N3GqO74AtH5o3VD53pHB9/VYQ+zuIvh/qBrsuPqmUVISJ6zTvjhEYjsfJdFg2Hn54A7qOh9g/VNli7OresaVbDnPi6CEe6d2BwDo6cyYi4hJNEiB1jjlDogjgnpuFZf0/zeu8Dv9UuMEzAKLvM3u9GrXVcEO5aSrCxHVq+WB77BsOLXmJJvs/wZJ1EJb+Cda8Dt2eNsdTu1fdHqGgOrV5oONtbN58Bn+vqll0iohUCiFx5s+jW+HyRXDTd3K1dWAtbmv/QZudy3Ez8sx1bh7QorfZ69Wid5U9USzOpSJMXMujNiea30PjpAm4b34fvp8GWb/CkidhzVTo9ox5I8MqXIyJiIiL+TUFn4aQfdTs9QhJcHVE4kw2G+z6Ar5/Aw6uwwJYAKNhDJbY35s9X96BLg5SqhrdXEhuDTU8IfGP8ORm6P0SeNeHzAPw2WiYEQc/fQDWPFdHKSIiVZHFAk3yb5WiIYnVh/UybP4QZnWEBb81Zzl0r4mt3QNs6z4X22NfQ+JIFWBSIVSEya2lphd0fALGboW7XwSvQDizD/47Cv4RZ96HQ8WYiIiUN3sRtt61cUjFy8mGtTPhzVhY/Ec4scOcWr7zn+BPaRj9p3Gpbqiro5QqTsMR5dZU0ws6jYEOD0PqP+HH6XB6Lyx6HL57Fbo/C1H3gpvumyUiIuXAftPmFDAM18YiFeP8SUh5y5yE5VKmuc6nASSOgg4PQW1fc53V6rIQpfpQESa3tpre0OVPEPeo+aX543Q4tRsWPlZYjLUerGJMRETKJjgG3GvChZPmCAypOs4cgLUzYNP7kHfRXBcQBp2fhDa/hRq1XRufVEsqwqRyqOUDXcdB/GPmWawfk+FkOnz6CHz7CvR4FiIHg5tG2IqI65w/f5433niD5cuXk5WVRWhoKCNGjKB///43PHbhwoVMmDCh2G3ff/899evXL+9w5UoetSA4FjJSsWSsByJcHZGU1dGf4Yc34edPwcjv3WrU1hx22GqATuCKS6kIk8qlVh1z+vr4EWYxtjYZTu6ETx6G+q+axVirgSrGRMQlxowZQ1paGuPHj6dZs2YsXbqUcePGYbPZGDBgQIkeY/LkyYSGOl6P4ufnVwHRShFN4iEj1VwaqQirlAwDDvxozra8e2Xh+rCeZvHVvJvu7SW3BBVhUjnVrgvdn4GEEbBuNqz9B5zYDv95EIJam8VYywEqxkTEab799lt++OEHpk6dSlJSEgCJiYkcPnyYV155hX79+uHufuMz7y1atCA6Orqiw5XiNEmAtTOwHEyFRsNcHY2Uhs0GO5fBD29ARv7kKhY3iBwEncdCo1gXBidSlIowqdxq+5oFV8LjsG4mrJsFx7fBx8OhQTT0+DO07K+zXnLryD0P2cfN5ewR/A7vBb9z5hTInv7gFWDeskEqnZUrV+Ll5UWfPn0c1t9zzz2MHz+eLVu20K5dOxdFJyVSMEPiie24XT7v2likZPJyIe1jc9jhyXRznXstaPsHc4KvAM1yKLcmFWFSNXj6wR0TzXuNrf2H2Tt2LA0++gM0bAM9JkBEXxVjUjGsl+H8Ccg+ll9gHbvq9yt+5mbbD3MHwgA2XvV4Hp6FBZmn/1W/Bzj+fuU23dTcpXbt2kVYWBgeHo6pNSIiwr69JEXYyJEjOX36NHXq1CE+Pp4nn3yS8PDwm4rJepOzvBUcd7PHV1pe9XHza4ol81e8M3dgtSa6OiKXqBTvf845LJvmY0mZheXcEQCMWnUxOjyCEf84+ASZ+91EGypF+yuQ2l+29pf0OBVhUrV4+kPP58zpZtfOMK8bO7oV/v0784LrHhMgvLeKMbkxmw0unimmoLqqqDp/HC6cKt1je3hCnQYY3vXJvnAJH7ccLBcz4eJpsOWZs3eduwjnDpfucWvWAa9iirOrC7cri7vafhq2W04yMzMJCQkpst7X19e+/XoCAwMZOXIksbGx+Pj4kJ6ezpw5cxg6dCgLFiygZcuWpY4pLS2t1MeU5/GVUTPvFtTL/JVGO+dx+OJxshokkFcrwNVhucSt+P575JwhaN9C6u//L+6XzZNaubXrcTz0Pk40TcJWwxt2HwZK+f1ZjFux/c6k9lds+1WESdXkFQB3/i8kPmFO3pEyB45shgVDoVE7sxhrcZeKserGMMyeqGILqmOQfcKxuLKV4sbgbh7gHQQ+9c37zvgE5f8s5veaPmCxYLNaSd+8mdjYWPNaIcOAnHNm8XfxNFw4nf/7mSt+P33FvwvWZQIG5J4zl8xfS/GiWMyeZIfC7eoirpiCLr8NVVVKSgrDhw8v0b6LFy+mVatWAFiu85pcbxtAt27d6Natm/3fcXFxdO/enQEDBvDmm28ya9asEsVzpejo6BJdh3Y1q9VKWlraTR9fmVk8fguLvsLnzC/4nPkFAKNRO4zwPhgtekODqCr92Ydb9P0/sx/L2hlYtnyIJe8SAEa9FhgdR+MefT/BHrUILqenuiXb70Rqf9naX3D8jagIk6rNux70mgQdR5v3GEv9JxzeBB8OgcYdzGLs9jurfEKt8vJyCq+zurK4Ol/McMDLF0r32F718ouroOsXV57+Ze9RsljMSWdq1wX/20p+nM0Kl7KKFmdXFm4Ov+cXdrnnAKOw0CsNtxpXFWgFhdsNeuIqyfVuzZs358UXXyzRvsHB5p9+fn5+xfZ2ZWVlAYU9YqUREhJC+/bt2bJlS6mPBXB3dy/TH1FlPb5Sirkfa70WHPvuHYLPbcVyZDOWw5uwHN4E37wEdRubIyrC+5gz7VWSz/TNuCXe/yNbzck2ti0Cw2aua9weujyFJaI/lgrsyb8l2u9Can/Ftl9FmFQP3oFw1wvQcQz8+CakzoVDG+CDeyEkHu6YAKF3qBi7ldis5jC/4nqpru7FupRZuseuWaeYHqtiiivv+pXjOis3d7PI8QqAemElPy4vt7AAK66Hzf57ZuHvF06DNQdsl80i9/zx0sXq4WkvyNw8/WlQOwJiY0v3GE4QFBTEkCFDSnVMeHg4S5cuJS8vz+G6sPR0c7KAFi1a3FQshmHgpiGjzhXchiMRD9IgNhb388dh15eQvgL2fA1nD8GGd8zFwxNCu5sFWXhvqNvI1ZFXDYYB+9eY08zvWV24/vZe5jTzzbooX0ulpyJMqhef+nD3i2Yx9sObsOFt834w7w+GJolmMda8u77cneH8Kfh1HUF7f8By6jO4cOKqXqwThWc9S8KtxjWKqquLqyCo6V1x7apMPGpCnQbmUhq5F67Rw3aD4ZOG1bze7ewhOHsICxDsvgFsL0EVONvaq1cvPv74Y7788kv69etnX79o0SKCgoKIiYkp9WMePHiQTZs20alTp/IMVUqjbjC0f8BcLl+E/d/DzuWQ/gWczTCLs/QV5r4N25iTQIX3huC2ut6ytGxW2LEUvn/DHLUC5jTzre8xp5kPbuPS8ETKk4owqZ7qNIA+L0HnJ80v+w3vwMF18N5AaNopvxjrdsOHkRKy2cybah9MgYOp5s9Tu3EHmlz3QIvZi3mjHiufIHOCCRXPzlHTy1x8G5f8GMOAnLMOPWy27FPsPA0RblUjFXXv3p3OnTszadIksrOzadq0KZ9//jlr1qzh1VdfdRjWMnHiRBYvXszKlStp3Nh8HR988EE6dOhAy5Yt8fb2Jj09nblz52KxWBg7dqyrmiVXquFpXk/c4i7zM31sW2ERlrHBnAjq6Fb49mVzGHP43RDeF0J7QC0fV0d/68rLgS3/Ni8bOLXbXOdRG9oOg06jwb+ZS8MTqQhVI/OJ3Kw6DaHvFPMM2/fTYOO78OuPMH8A3NbFLMaadXF1lJVPTjYc2lhYcGWkmtcsXcWo35IzNRriFxKBW52GRYsrr3rgrq+pKsFiMe/rV9vX/geVYbVycfNml4ZV3pKTk5k2bRrTp08nMzOT0NBQXn/9dfr37++wn81mw2q1YhiGfV14eDjLly/nnXfeIScnh4CAABITExk1ahTNmzd3dlPkRiwWaBhlLt2eNodM715p9pLtWW0O1f3pX+biXhOadS3sJfNr6urobw2XzsLGebB2JmQfNdfV9oP4xyD+cXP0ikgVpb9uRMAcbtLvFejyJ1jzOmyaDwe+h3f7mz1iPSbCbR1dHeWtyTAg66BZcP26ziy6jv1cdChhDW8IaQ9NEswlpAO2mnXZlz87YFUYjibi7e3Nc889x3PPPXfd/aZMmcKUKVMc1k2cOLEiQ5OK5lMfYn9vLnm5cOAHc8hi+nI4sx/2fGUuy56GoMj868j6QEgH87rO6uTcMUiZBevfgZz8E3R1GkHHJ8xhn7XquDY+ESdQESZypbqNoP9rVxRj78G+78wltIdZjDVNcHWUrpWXC0fTzOGbBcML82+U6cC3KTSJzy+64s1pna/u1aqmN4IUkSrOoyaE3WEufSbDyXRzyOLOFeZ35/FfzOX7183ZQ1vcDRF9IKyn2VtcVZ3aAz8mw+YPzQl+AAIjzNEo0UPM102kmlARJlIc3xBIeh26PAVrpsJP78Peb8wlrKdZjDWJc3WUznH+VH6xlV9wHd4E+fdosXPzgOCYwoKrSYJmCRMRAXPYYv0Ic+k81rwmcvdXZg/Z7lXm5DVb/20ubh5wWyfzOrLw3qWb7fRWdvgn8/rr7Z8VjpIIiTdPeIb31QQmUi1V2iLs/PnzvPHGGyxfvpysrCxCQ0MZMWJEkXH3xVm4cCETJkwodtv3339P/foagyz5/JrAgDfyi7HXzLN3e1aby+29zGIspL2royw/15hAowjPgMKCq2kiNGpbpe+VIyJSbrwCoM0Qc7FeNr9nC3rJTu0qHH3xxQSo18IsxiL6mt+5leGWGQUMwzxx+cMb5s8CLe42c2rTjppMSaq1SluEjRkzhrS0NMaPH0+zZs1YunQp48aNw2azMWDAgBI9xuTJkwkNDXVY5+fnVwHRSqXnfxv8Jhm6jofvXoXNC8wzmLtXmQmlxwRo3M7VUZZeCSfQoH7Lwmu5miSYZ2eVPEVEysa9hjn5U7Mu5u1TTu3Jv45shXlN2aldsHYXrJ1hDlO8vZfZc3T7nWYxdyuyWeGX/5q3gTmy2VxncYfo+8yewAatXRqeyK2iUhZh3377LT/88ANTp04lKSkJgMTERA4fPswrr7xCv379SnSH6xYtWhAdHV3R4UpV4t8MBv4jvxh7zZxSd9eX5hLexyzGGsW6OsrilWECDTz9XROziEh1Ui8MOo4yl0tZ5qiL9C/MHHPhFPz8qblY3Mx7Wxb0kgWGu/7E2OVLsOVD85qv03vNdR6e0G64OeGG/22ujU/kFlMpi7CVK1fi5eVFnz59HNbfc889jB8/ni1bttCuXSXslZDKIyAUBs0s7Bnb+lHhvWIi+kOPP7v+ppLlOYGGiIg4V21faD3YXGxW8z5k6SvMouz4NvN2Kr/+CKv+Zp4gDO9jFmW3dXHuBBeXsmD927BuljktP5gn7uJHmNPMe9dzXiwilUil/Etr165dhIWF4eHhGH5ERIR9e0mKsJEjR3L69Gnq1KlDfHw8Tz75JOHh4RUSs1RR9cJg8Gzo+jR89wqk/Qd2fm4uLZPMnrGGUc6J5fzJwmGFJZ1AIyS+dDfcFRER53NzN2fmbZoAvf4GZw6YvWPpK8zrx87sh5TZ5lKzjjkrY3gfc7h8Rd1r6+wRWDcTNsyD3HPmuroh5s2V2w7TzalFbqBSFmGZmZmEhIQUWe/r62vffj2BgYGMHDmS2NhYfHx8SE9PZ86cOQwdOpQFCxbQsmXLUsdkvcmptguOu9njK7sq037/5jBwFnR+Csua17D8/CmWHUthx1KMlgOwdXsWGkQWOeym22/Y4MROLBmpkJGK5eB6LKeLTqBheAZASDxGk3iMJgkQHFt0Ag0XvvZV5v2/SWp/2dpfXV83Efxvy7+h8WPmtb17vynsJTt/3JyFcPtngMUcUh7e2yzKGkSVfdjiyd3w45vmcHxrrrmufqv8aebvq1yTh4i4kMuLsJSUFIYPH16ifRcvXkyrVq0AsFznS+R62wC6detGt27d7P+Oi4uje/fuDBgwgDfffJNZs2aVKJ4rpaWllfqY8jy+sqtS7W8+itqB/QhOfx//w99g2bEE9x1LOB3cnSMRw7lUp3mRQ27Ufre8i3hnbsf79DZ8Tm/DO/MXPC5nF9nvos9tZAe05nxAFNn+rcnxDilMuKeB0zvLo4Xlrkq9/zdB7a/e7Rcpk1o+0CrJXGw2OPJT4eQeR7ZAxnpzWf2i2VNVUJA17wY1apf8eTI2wg/TYPtSwDDXNUk0ZzpscbemmRcpJZcXYc2bN+fFF18s0b7BwcGAOYNhcb1dWVnmrG4FPWKlERISQvv27dmyZUupjwWIjo4u0WQgV7NaraSlpd308ZVd1W1/LHQdhO34dizfvYLb9v8ScORb/I98h9F6MEbXZ6B+RPHtNwzIyjB7uQ6mmD+P/Yzlqgk0jBpe0Lg9Rn5PF43jqOnpRwBwi86ZVUTVff9LRu0vW/sLjheRfG5u0Li9udwxEc4ezi/IvjB7y85mwIa3zaWGF4T2MIuyFr2hbnDRxzMMcxbg79+A/WsK14f3Ne/x1TTROe0SqYJcXoQFBQUxZMiQUh0THh7O0qVLycvLc7guLD09HTBnPbwZhmHgdpNnctzd3cv0R1RZj6/sqmz7g6Ng6HtwbBt8MwXL9s+wbFsI2xaZwza6PI3Fdhn3oz/hfmhDqSbQsORPoFEVJoqvsu9/Can91bv9IhWmbiPo8JC5XL5oXj9WMGzx7CHYucxcwByuXjC5R/1I/A+txi11LBzLP9Hh5gHRQ6DTk8UOrxeR0nF5EXYzevXqxccff8yXX35Jv3797OsXLVpEUFAQMTExpX7MgwcPsmnTJjp16lSeoYqYGrSGoe+bsxV+MwV2LIW0/+D286fEWjxws+U67q8JNEREpDzV8Mwfitjb7OE6mlY4bPHQRvOeXkc2w7dTcHOvRag1J/84L2j/ICSOAr8mLmyASNVSKYuw7t2707lzZyZNmkR2djZNmzbl888/Z82aNbz66qsOZ1QnTpzI4sWLWblyJY0bm3/EPvjgg3To0IGWLVvi7e1Neno6c+fOxWKxMHbsWFc1S6qDhtHw2w/McfrfvIxl5+dYjFwMzwAsBQVXkwRo1BZqerk6WhERqYosFvM2KsFtoPszkH28cLbFPV9jyc0mr0Zd3DqNwi3h8Vv3xtAilVilLMIAkpOTmTZtGtOnTyczM5PQ0FBef/11+vfv77CfzWbDarViGIZ9XXh4OMuXL+edd94hJyeHgIAAEhMTGTVqFM2bF500QaTcBcfA7z7EenIP27el0apzEu4elfa/o4iIVGY+QdD2/5lLXg7WY9tJy8imTYeOoKHCIhWi0v7V5+3tzXPPPcdzzz133f2mTJnClClTHNZNnDixIkMTKTn/ZuT4ZJZ9ymAREZHy4FELGkZjO7rZ1ZGIVGmaT1RERERERMSJVISJiIiIiIg4kYowERERERERJ1IRJiIiIiIi4kQqwkRERERERJxIRZiIiIiIiIgTqQgTERERERFxIhVhIiIiIiIiTqQiTERERERExIlUhImIiIiIiDiRijAREREREREnUhEmIiIiIiLiRCrCREREREREnEhFmIiIiIiIiBN5uDqAys4wDACsVutNHV9w3M0eX9mp/Wr/lT+rG7W/bO0vOK7ge1gKKTeVjdqv9l/5s7pR+52TmyyGsleZ5ObmkpaW5uowRESqrejoaGrWrOnqMG4pyk0iIq51o9ykIqyMbDYbeXl5uLm5YbFYXB2OiEi1YRgGNpsNDw8P3Nw0uv5Kyk0iIq5R0tykIkxERERERMSJdOpQRERERETEiVSEiYiIiIiIOJGKMBERERERESdSESYiIiIiIuJEKsJEREREREScSEWYiIiIiIiIE6kIExERERERcSIVYRVo4cKFRERE2JfIyEi6dOnCU089xf79+x323bBhA3/5y1+45557iIqKIiIigoyMDNcEXk5K2n6r1cq8efN45JFH6NatGzExMfTt25fXXnuNs2fPuq4BFeTq1+XqJSUlxdUh3rQVK1YQERHBsmXLimz7zW9+Q0REBGvWrCmyrVevXgwePBiAr7/+mv/5n/9hwIABtG7dmoiIiAqPu7yUtf3Z2dnMmjWLYcOG0blzZ9q2bcuAAQOYM2cOOTk5zmhCmZTH+z9t2jQGDRpEfHw80dHR3Hnnnfz1r3/l0KFDFR5/daHcpNxUHOUm5aarKTdVbG7yuOkjpcQmT55MaGgoOTk5bNq0idmzZ5OSksLy5cvx9fUFYN26daxdu5ZWrVrh7e1Namqqi6MuPzdq/6VLl0hOTiYpKYkhQ4bg7+/PL7/8wqxZs/j666/59NNPqV27tqubUe4KXper3X777S6IpnzEx8djsVhYt24d/fr1s6/PzMwkPT0dLy8vUlJS6Nq1q33b0aNHOXjwIA899BAAK1euZMuWLbRq1YoaNWqwbds2p7fjZpW1/YcPH2b+/PkMHDiQBx98EC8vLzZu3MiMGTP48ccfmTdvHhaLxRVNK5HyeP/Pnj1L//79CQsLw9vbm927dzNr1ixWr17N0qVL8ff3d3q7qirlJuWm4ig3mZSblJsqOjepCHOCFi1aEB0dDUBCQgJWq5Xk5GRWrVrFvffeC8CoUaMYPXo0AG+//XaVSnQ3an/t2rX56quvHD7ACQkJBAcHM3bsWL744gsGDhzoqvArzJWvS1UREBBAixYtinx+169fj4eHB/fee2+Rs6nr1q0DzPcc4MUXX8TNzeykf+GFFypVoitr+0NCQli9ejVeXl727R07dsTT05NXXnmFjRs30qFDh4pvyE0qj/f/b3/7m8P2gtdlxIgRfPXVV9x3330V2ILqRblJuak4yk0m5SblJqjY3KThiC5Q8OV26tQp+7qC/9jVwdXtd3d3L/YMQps2bQDzbIRUHgkJCezbt4/jx4/b16WkpBAVFUX37t3Ztm0b2dnZ9m2pqam4u7vbv8Ar+/+FsrTfy8vLIckVqEz/F8r6/hcnICAAAA8PnTesSMpNyk1VmXKTctOtlpsq9yeqkioYT9+sWTPXBuIiJW1/wVmIyjwE4npsNht5eXkOi9VqdXVYZZaYmAjgcMYpJSWF+Ph42rVrh8ViYePGjQ7bIiMjqVOnjtNjrQgV0f7K9H+hvNqfl5fHpUuX+OWXX3jppZdo1qwZd911l3MaUU0pNyk3gXLTlduUm5SbKjI3qQhzgoIvtPPnz7NmzRpmzZpFXFwcPXv2dHVoTnEz7T927BhTp04lKiqKO+64w4nROs/9999P69atHZaqMAQkLi4ONzc3+xfdmTNn2LVrF3FxcXh7exMZGWn/4j5y5AgZGRn27v6qoLzbv2PHDubOnctdd91Fy5YtndKGsiiP9p84cYLWrVsTExPD4MGDsVqtvPfee3h7ezu9PVWZcpNyU3GUm5SblJuck5s0tsMJ7r//fod/h4WFMXPmzGoztKa07c/MzOSxxx7DMAzeeOONSj8E4FpefvllwsLCHNbdyhe2lpSvry8tW7a0j69ev3497u7utGvXDjC/CAu+6Ar2qUqJrjzbn5GRwciRI2nYsCEvvviiE6Ivu/Jov7+/P5988gm5ubns3buXuXPnMnz4cN5//32CgoKc2JqqTblJuak4yk3KTcpNzslNVfMb5Bbz8ssv88knnzB//nyGDh3Knj17GDdunKvDcprStD8rK4uHH36YY8eO8c4779CkSRMnR+s8YWFhREdHOyxRUVGuDqtcJCQksH//fo4dO0ZKSgqtW7e2nymKj49n+/btnDt3jpSUFDw8PGjfvr2LIy5f5dH+Q4cOMXz4cNzd3Zk/fz5+fn5ObsXNK2v7PTw8iI6Opn379gwZMoT58+eTkZHBnDlzXNGcKku5SbmpOMpNyk3KTc7JTSrCnKDgCy0xMZEXXniBIUOGsGbNGlasWOHq0JyipO3PysrioYceIiMjg3nz5lWK7m0pXsHZo9TUVFJTU4mLi7NvK/hSW79+PSkpKURHR1e5YWZlbf+hQ4cYNmwYAO+99x4NGzZ0UuTlo7zf/4YNGxIUFFTkHlZSNspNyk3VjXKTchPcOrlJRZgLPPPMM/j6+jJ9+nRsNpurw3G64tpfkOQOHjzI22+/TWRkpIujlLKIi4vD3d2dL774gl27dhEfH2/fVqdOHVq1asXixYs5dOhQlRruUaAs7T98+DDDhg3DZrMxf/58Gjdu7Ozwy6y83/8DBw5w9OhRbrvttooMu9pTblJuquqUm5SbbqXcVD0Gft9ifH19GTFiBK+++ipLlixh4MCBnD592n6xYHp6OgDfffcdAQEBBAQEOHxQKrur29+7d28eeeQRfvnlFyZOnIjVamXz5s32/QMCAmjatKnrAq4gu3btKnbGqaZNm9qnPa2sfHx8iIyMZNWqVbi5uRXp0o+Li2P+/PlA0THXhw4dIi0tDYBff/0VwH5munHjxpXiAvGbbf+pU6cYPnw4J06c4O9//zunTp1ymC68YcOGleLM4822f8eOHUyePJnevXvTpEkT3NzcSE9P591338XPz4+HH37Yqe2obpSblJtAuUm5SbkJnJObVIS5yLBhw/jggw+YOXMmSUlJ7Nq1i7Fjxzrs8/zzzwPmONX333/fFWFWmCvb37ZtW/sX29///vci+w4ePJgpU6Y4O8QKN2HChGLXv/jiiwwZMsTJ0ZS/hIQE0tLSaNWqFT4+Pg7b4uLiePfdd6lRowZt27Z12JaSklLktSn4v1GZPgs30/7du3dz8OBBwDwrf7XRo0czZsyYig28nNxM+wMDAwkKCmLevHmcOHGCvLw8GjZsSI8ePRg5ciTBwcHObka1o9yk3KTcpNyk3OSc3GQxDMMoU2tERERERESkxHRNmIiIiIiIiBOpCBMREREREXEiFWEiIiIiIiJOpCJMRERERETEiVSEiYiIiIiIOJGKMBERERERESdSESYiIiIiIuJEKsJEREREREScSEWYVDoLFy4kIiLCvkRGRtKlSxeeeuop9u/f7+rwAJg9ezarVq0qsj4lJYWIiAhSUlJcEJVp9erVjBw5kk6dOhEVFUV8fDwPPPAAn332GZcvX3ZZXFcr7rX685//TM+ePSv0eY8dO0ZycjLbt2+v0OcRkapFualslJuuT7mp6vFwdQAiN2vy5MmEhoaSk5PDpk2bmD17NikpKSxfvhxfX1+XxvbWW2/Ru3dvevXq5bC+devWfPTRR9x+++1Oj8kwDCZOnMjChQvp3r07f/7znwkODubcuXOkpKTw/PPPc+bMGR544AGnx1ZSo0aNYvjw4RX6HMePH2fGjBk0btyYVq1aVehziUjVo9xUOspNJaPcVPWoCJNKq0WLFkRHRwOQkJCA1WolOTmZVatWce+997o4uuL5+PgQGxvrkueeO3cuCxcuZMyYMYwePdphW8+ePXn00Uc5cOCAU2O6dOkStWvXLvH+TZs2rcBoRETKTrmpdJSbpLrScESpMgqS3qlTpxzWp6WlMXLkSOLj44mOjmbQoEEsW7bMYZ/Tp08zadIk+vXrR9u2benYsSPDhw9nw4YNRZ4nNzeXGTNm0LdvX6Kjo0lISGDYsGFs2rQJgIiICC5cuMCiRYvsw1KGDRsGXHvIx1dffcXQoUOJiYmhbdu2PPTQQ/z0008O+yQnJxMREcGuXbsYN24c7du3p1OnTkyYMIFz585d97W5fPkyc+fOJTQ0lCeeeKLYferXr0+HDh3s/87MzGTSpEl07dqVqKgo7rzzTqZNm0Zubq7DcTk5OUydOpWePXsSFRVF165def755zl79qzDfj179uTxxx/nyy+/ZNCgQURHRzNjxgwA9uzZwyOPPEJMTAwJCQn87//+L+fPny8SY3FDPiIiInjhhRdYvHgxffv2JSYmht/85jd8/fXXDvsdOHCACRMmcPfddxMTE0PXrl0ZOXIkO3futO+TkpLCfffdB8CECRPs719ycrJ9n5J8nkRECig3XZtyk3JTdaaeMKkyMjIyAGjWrJl93bp163j00UeJiYlh0qRJ1KlTh2XLlvHUU09x6dIl7rnnHsD8UgcYPXo0gYGBXLhwgZUrVzJs2DDeffddEhISAMjLy+PRRx9l48aNDB8+nMTERKxWK1u2bOHIkSMAfPTRRzzwwAMkJCQwatQowDzLeC1Llizh6aefpkuXLkydOpXc3Fzmzp1rf+4rkw/AmDFj6NevH/fddx/p6elMnToVMIfAXMvPP/9MZmYmQ4YMwWKx3PC1zMnJYfjw4Rw8eJAxY8YQERHBhg0bmDNnDtu3b2fOnDmAOYxk1KhRrFu3jhEjRtChQwd27txJcnIymzdv5qOPPqJmzZr2x922bRt79uzhj3/8IyEhIXh6enLy5EmGDRuGh4cHf/vb36hXrx5Llizh//7v/24YZ4FvvvmGtLQ0nnzySby8vJg7dy6jR49mxYoVNGnSBDCHcvj5+TF+/HgCAgLIyspi0aJF3H///SxatIjQ0FBat27N5MmTmTBhAn/84x/p0aMHAA0bNgRK/nkSESmg3KTcpNwkxTJEKplPP/3UCA8PNzZv3mxcvnzZyM7ONr777jujc+fOxh/+8Afj8uXL9n379OljDBo0yGGdYRjG448/bnTu3NmwWq3FPkdeXp5x+fJl44EHHjCeeOIJ+/pFixYZ4eHhxscff3zdGGNjY41nn322yPp169YZ4eHhxrp16wzDMAyr1Wp06dLFSEpKcoglOzvb6NixozF06FD7uunTpxvh4eHGP//5T4fHnDRpkhEdHW3YbLZrxvP5558b4eHhxoIFC64bd4EFCxYY4eHhxrJlyxzWz5kzxwgPDze+//57wzAM47vvvis2poLn++ijj+zr7rjjDqNVq1bG3r17HfZ99dVXjYiICGP79u0O6x966CGH18owDOPZZ5817rjjDof9wsPDjU6dOhnnzp2zrztx4oTRsmVL46233rpmG/Py8ozc3Fzj7rvvNl566SX7+q1btxrh4eHGp59+WuSYm/08iUjVp9yk3HQl5Sa5EQ1HlErr/vvvp3Xr1rRr145HH32UunXrMnPmTDw8zA7eAwcOsHfvXgYMGACYZwoLlm7dunHixAn27dtnf7wFCxYwePBgoqOjiYyMpHXr1qxdu5Y9e/bY91mzZg21atUqt3H9+/bt4/jx4wwcOBA3t8L/jt7e3tx9991s2bKFixcvOhxT3JCHnJycIkNdymLdunV4eXnRp08fh/UFZ9PWrl1r3+/K9QX69u2Ll5eXfb8rY23evLnDupSUFFq0aEHLli0d1iclJZU43oSEBIczuoGBgdSrV49Dhw7Z1+Xl5TF79mz69etHVFQUkZGRREVFsX//fof3+FpK+3kSkepJucmk3KTcJNen4YhSab388suEhYVx/vx5li1bxkcffcS4ceOYO3cuACdPnrTv9/LLLxf7GGfOnAFg3rx5TJkyhd/+9reMHTsWf39/3NzcePPNN9m7d699/9OnTxMUFOSQlMqi4Pnr169fZFtQUBA2m42zZ8/i6elpX+/n5+ewX8GQikuXLl3zeYKDg4HCYTE3kpmZSWBgYJHhIfXq1cPDw8M+RCYzMxMPDw8CAgIc9rNYLAQGBtr3K1BcOzMzMwkJCSmyPjAwsESxQtHXBMzXJScnx/7vKVOm8MEHH/DYY48RFxeHr68vFouF5557zmG/aynN50lEqi/lJpNyk3KTXJ+KMKm0wsLC7Bc8JyYmYrPZ+M9//sOKFSvo06cP/v7+ADz++OPcddddxT5GwZmvzz77jPj4eJ5//nmH7VdfgBsQEMDGjRux2WzlkuwKYjxx4kSRbcePH8fNzY26deuW+XmioqLw8/Pjq6++Yvz48Tcce+/n58eWLVswDMNh31OnTpGXl2eP28/Pj7y8PE6fPu2Q7AzD4OTJk/b3p0Bxz+vn52dPIlcqbl1ZfPbZZwwaNIhx48Y5rD9z5kyJXuPSfJ5EpPpSbio55SblpupMwxGlynjmmWfw9fVl+vTp2Gw2QkNDadasGTt27CA6OrrYpWCYgMVicbhIF2DHjh1s3rzZYV3Xrl3Jyclh4cKF142lZs2a1z37V6B58+Y0aNCApUuXYhiGff2FCxf48ssviY2NdTjTeLNq1KjBo48+yt69e/nHP/5R7D6nTp1i48aNAHTs2JELFy4Uuann4sWL7duv/PnZZ5857PfFF19w4cIF+/brSUhIYNeuXezYscNh/dKlS2/csFKwWCzUqFHDYd0333zDsWPHHNZd6+xtaT5PIiIFlJuuTblJuak6U0+YVBm+vr6MGDGCV199lSVLljBw4ECef/55HnvsMR555BEGDx5MgwYNyMrKYs+ePWzbto3p06cD0KNHD2bOnMn06dOJi4tj3759zJw5k5CQEKxWq/05kpKSWLhwIZMmTWLfvn0kJCRgGAZbtmwhLCyM/v37AxAeHk5qaiqrV6+mfv36eHt7ExoaWiRmNzc3nnnmGZ5++mkef/xxhg4dSm5uLm+//TZnz55l/Pjx5fb6FCS65ORk0tLSSEpKst8Qc/369Xz88ceMGTOG9u3bM2jQID744AOeffZZDh06RHh4OBs3buStt96ie/fudOrUCYDOnTvTpUsXXnvtNbKzs2nXrh07d+5k+vTpREZGMnDgwBvG9cADD/Dpp58yYsQI/vSnP9lnoLpyqE156NGjh32mqYiICLZt28bbb79tn12qQNOmTalduzZLliwhLCwMLy8vgoKCaNCgQYk/TyIiBZSbrk+5SbmpulIRJlXKsGHD+OCDD5g5cyZJSUkkJibyn//8h9mzZ/PSSy9x9uxZ/Pz8CAsLo2/fvvbjRo4cycWLF/nkk0+YO3cut99+O5MmTWLVqlWkpqba9/Pw8OCf//wnb731Fp9//jnz58/H29ubli1b0rVrV/t+f/nLX3j++ecZN24cFy9eJD4+nvfff7/YmAcMGICnpydz5szhqaeewt3dnZiYGN577z3atWtXbq+NxWJh8uTJ9OrVi48//tj+ehTE//TTT9svYq5Vqxbvvfce06ZNY+7cuZw5c4YGDRrw8MMPO9xM02KxMHPmTJKTk1m4cCGzZ8/Gz8+PgQMHMm7cuCJncItTv359/vWvf/H3v/+dSZMm4enpSa9evfjrX/9qn0a5PPzlL3/Bw8ODOXPmcOHCBSIjI0lOTubNN9902M/T05OXXnqJGTNm8Mgjj3D58mVGjx7NmDFjSvx5EhG5knLTtSk3KTdVVxbjyn5mERERERERqVC6JkxERERERMSJVISJiIiIiIg4kYowERERERERJ1IRJiIiIiIi4kQqwkRERERERJxIRZiIiIiIiIgTqQgTERERERFxIhVhIiIiIiIiTqQiTERERERExIlUhImIiIiIiDiRijAREREREREn+v/rmc4K+JZJcAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAHbCAYAAAAuxMAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClGElEQVR4nOzdeXyU1dn/8c89k30PCVsSEmXfAknYQUTcl6oVtfZp69JWra1YW/VX91p96iPqU9uq6CMubd1QUcQV3HBBQUACJOx7VghkmezrzPz+uJOQkACZyUwmy/f9es1rxnvLdSaYe64551zHcDqdTkRERERERMQlFl8HICIiIiIi0hMpmRIREREREXGDkikRERERERE3KJkSERERERFxg5IpERERERERNyiZEhERERERcYOSKRERERERETcomRIREREREXGDkikRERERERE3KJkSERERERFxg5Ip6bZyc3MZNWoUd911l69DERER0X1JRNrw83UA0jeMGjUKgLi4OFasWEFgYGCbY84880zy8vLYunUrfn6d/6e5d+9eXn/9ddauXcvBgwepra0lKiqKsWPHcs4553DJJZe0iqMpxuN55JFHmDdvXrv7nn32Wf7xj38AsHz5coYOHepWzCtWrGD9+vVs376dHTt2UFlZycUXX8z//u//unU9gMzMTF5//XXWrVvHkSNH8PPzIz4+ntNOO43rrruOgQMHtnte0/uxc+fO41676Xf2xRdfkJCQ4HaMHeXq77SJu++BiPReui91jO5L7evKWHQP696UTEmXys/P5z//+Q833njjSY8dOHAgH3/8MeHh4S7/nKeffpqFCxficDhISUnhsssuIzQ0lMLCQn744Qfuu+8+Fi9ezNKlS9ucO3/+/HavOWbMmHa3O51O3n77bQzDwOl0smTJEu68806XYwbz5rdjxw5CQkIYNGgQ+/btc+s6TXH97//+Ly+88AJ+fn7MnDmT888/n/r6ejZu3MhLL73E4sWLWbBgAeeff77bP6eruPM77W3vgYh4nu5LJ6b7ku/o/eohnCJdYOTIkc4pU6Y4p06d6kxLS3MWFRW1OWbu3LnOkSNHOuvr6zv1s5555hnnyJEjnXPmzHFu2rSp3WO+/vpr59VXX90mxpEjR7r887755hvnyJEjnffdd59zxowZzunTpztra2vdin3NmjXO/fv3Ox0Oh/P77793jhw50nn77be7da2nnnrKOXLkSOfcuXOdu3btarN/xYoVzuTkZOeYMWOcq1evbrO/I+9H0+8sJyfHrRg7yt3faWffAxHpvXRf6hjdl9rXFbHoHtYzaM6UdJmgoCB++9vfUlFRwcKFC096vDtj03Nzc1m4cCH+/v4sWrSIiRMntnvc6aefzgsvvNDh657IkiVLALjyyiu5+OKLKS4u5vPPP3frWtOnT+eUU07BMIxOxZSTk8Ozzz6Lv78/zz77LCNGjGhzzHnnncfdd9+N3W7nL3/5Cw6Ho1M/01vc/Z32pvdARLxD96WT033JN/R+9RxKpqRL/fznPycxMZE333yT/fv3e/z6S5cupb6+nnPPPZeRI0ee8NiAgIBO/7zCwkJWrlzJsGHDmDBhQvPY9bfeeqvT1+6MpUuX0tDQwFlnnXXCMfdXXnkl/fv358CBA6xbt64LI+w4d3+nvek9EBHv0X2pa+hvsmv0fvUcmjMlXcrf35/bb7+dW2+9lb/97W88/fTTHr3+Dz/8AMCMGTPcvsZTTz3VZlt8fHy7k3ybbpI//vGPAXNC6tixY/n+++/JyclhyJAhbsfRGRs2bABg1qxZJzzOz8+PadOm8eGHH5Kens706dPbHNPe+9GkrKysc4F2gLu/U0++ByLSe+m+1DV6032pJW/FontYz6FkSrrc+eefT2pqKp999hk//PADkydP9ti1CwsLATpV2aa9G+nUqVPb3LScjZN6rVYrl156afP2efPm8de//pUlS5Zw2223uR1HZzS9D4MGDTrpsU3HHD58uN39nv5g4Sp3f6eefA9EpHfTfcn7etN9qSVvxaJ7WM+hZEp84s477+SnP/0pjz76KG+99ZZLY7Hb+xbosssuIyEhAafTCdCpsd0nKnPa0vfff092djazZ89udZP80Y9+xKOPPsrSpUv5/e9/31xO90Rxu8NT70PTMcc7tiNlXzvKnffA3d9pZ9+D5557jk8//ZT9+/cTEBBASkoKt91220mH6YhIz6T7Uuu43dFX7kudiaWj9xZPvl/iXUqmxCdSU1M577zz+OSTT1i+fDkXXnhhh8893jd0CQkJDBgwgH379nHo0CFPhtuuN998E6DNN4PR0dGceeaZfPLJJ3z55Zecc845J43bHSe6Xv/+/Tv8PjQd079/f7ficIU774G7v9POvgfr1q3jZz/7GcnJyTidTp588kl++ctf8tFHHxEVFeVSLCLS/em+1Dpud/SV+1JndPTe0l3fL2lLyZT4zB133MHKlSv529/+xtlnn93h8070LdCkSZP4/vvv+f7777nyyis9EWa7WlZG+uMf/8gf//jHdo978803m29aHf1msaNO9j6sXbuW1atXn/B9sNvtrF27FoC0tDSPxtced94Dd3+nnX0PXnzxxVbHPfbYY0yePJn09HTOPPNMF1shIj2B7kud01fuS53R0XtLd32/pC1V8xOfSUxM5L/+67/Izc3l1Vdf9cg1582bh7+/P5988gl79uw54bF1dXVu/5x3332X+vp6xo0bxxVXXNHuIzo6mu+++86l4QaeMm/ePKxWK5999tkJ34d33nmHw4cPc+qppzJ16tQujLDj3P2devo9qKysxOFwEBER4XojRKRH0H3Je3rTfcmTjndv0fvVcyiZEp+6+eabiYiI4P/+7/+orKzs9PUSEhKYP38+9fX13HjjjWRmZrZ73DfffMP111/v9s9pWsPjL3/5Cw8//HC7jyuvvBKHw8Hbb7/t9s9x15AhQ/jNb35DfX09N910U7t/iD///HMefvhhrFYrDzzwABZL9/xz4O7v1NPvwcMPP8yYMWNITU3tfKNEpNvSfck7etN9yZOOd2/R+9VzaJif+FRUVBS/+c1vePzxxz12zZtuuomGhgYWLlzIFVdcQWpqKuPHjyc0NJTCwkJ++OEHDhw4wPjx4926/tq1a9m/fz8jR45kwoQJxz3uyiuv5Pnnn+edd95h/vz5WK3Wk177888/bx6mceTIEQA2bdrUvEBkdHQ0d955Z4fivOWWW6iuruZf//oXl156KaeddhrDhw+noaGBjRs3snnzZoKCgvjb3/7WqZK9XcHd36mn3oNHH32UDRs2sHjx4g79HkWk59J9qTXdl7znZPcWvV89g5Ip8blrrrmG119/3aPDDubPn88FF1zA66+/ztq1a1m6dCl1dXVERUUxevRorr/++lZlY13RtPDhyca+JyYmMnXqVNauXcvXX3/doXk227dv59133221LScnh5ycHMBcV6SjNy2LxcJdd93FhRdeyGuvvcb69etZs2YNVquV+Ph4fvWrX3Httdd2qOxqd+DO79QT78EjjzzCRx99xH/+8x+frc8iIl1L96WjdF/yjo7cW/R+9QyGs6n2ooiItPLXv/6Vjz/+mFdeeYVhw4b5OhwREekFdG/pXdQzJSLSjr/85S+8//77LFy4kIiIiObhLSEhIYSGhvo4OhER6Yl0b+l91DMlItKOUaNGtbt9/vz53HLLLV0cjYiI9Aa6t/Q+SqZERERERETcoBqKIiIiIiIiblAyJSIiIiIi4gYlUyIiIiIiIm5QMiUiIiIiIuIGlUZv5HA4aGhowGKxYBiGr8MREekznE4nDocDPz8/LJae/x3f2rVrueaaa9rd9+abb5KSktLha+neJCLiGx29NymZatTQ0EBmZqavwxAR6bOSk5MJCAjwdRgec9tttzFt2rRW20aMGOHSNXRvEhHxrZPdm5RMNWrKOJOTk7FarS6fb7fbyczMdPv8nk7tV/vVfrW/s38/e0OvVEtJSUku9UK1R/emzlH71X61X+339r1JyVSjpuETVqu1U//gOnt+T6f2q/1qv9rvLg1ja0v3Js9Q+9V+tV/td9fJ7k2962tAERGRbuKhhx5i7NixpKWl8etf/5offvjB1yGJiIiHqWdKRETEg8LDw7nmmmuYNm0aUVFRZGVl8eKLL3LNNdfw3HPPMXv2bJevabfb3Yql6Tx3z+/p1H61v+VzX6P2d679HT1PyZSIiIgHjR07lrFjxzb/9+TJkznnnHO4+OKLefzxx91KpjpbhKKvF7FQ+9X+vkzt9277lUyJiIh4WUREBGeccQZvvPEGNTU1BAUFuXS+ClC4R+1X+9V+tb+zfz9PRsmUiIhIF3A6nYB7hTZUgKJz1H61X+1X+71FBShERES8rLS0lK+++ooxY8YQGBjo63BERMRD1DMlIiLiQbfffjuDBw9m/PjxREdHk5WVxUsvvURRURELFizwdXgiIuJBSqZEREQ8aNSoUXz88ce88cYbVFVVERkZyaRJk3jssceYMGGCr8MTEREPUjIlIiLiQTfeeCM33nijr8MQEZEuoDlTIiIiIiIiblAyJSIiIiIi4gYlUyIiIiIiIm5QMiUiIiIiIuIGJVMeUFnbwPzFG/lsX5WvQxEREQFg+8EyrvvXevYU1/s6FBGRXkvJlAfklFSxfEsBr2eWN69wLyIi4kvf7DrCqj1FfLS70tehiIj0WkqmPODU2FCm+e0mqK6YA0XqnRIREd8bOTAcgL0l6pkSEfEWJVMeEGjbx5t+D/BswD/YmGPzdTgiIiKMj48EIL/cTkVtg4+jERHpnZRMeUJAKAApxh4y9x/ycTAiIiLQPzyQwZFBOIFt+WW+DkdEpFdSMuUJ4YOpCYzFajgpz9ro62hEREQASG7sncrMK/VxJCIivZPPk6k1a9Zw9913c/7555OSksLs2bP57W9/y5YtWzp0flFREXfddRfTpk1j4sSJXHXVVaxZs8bLUR/DMCAuBYAo2xbKazQ+XUREfC85PgKAzDz1TImIeIPPk6nFixeTl5fHNddcw6JFi7j33nspLi7uUFJUV1fHddddx5o1a7j33nt55plniImJ4frrr2fdunVd1AJTQOJkAMYb+9ico28ARUTE98Y3J1O6L4mIeIOfrwN44IEHiImJabVt9uzZnHvuuTz33HPMmDHjuOcuWbKEXbt28cYbb5CamgrAtGnTuPTSS3n88cdZsmSJV2NvyTnY/PkTjX18nF3CaSNiu+xni4iItGd8nDnM70BRFaXV9UQG+/s4IhGR3sXnPVPHJlIAoaGhDBs2jIMHD57w3M8//5xTTz21OZEC8PPz45JLLiEjI4OCggKPx3tcgycCMNQ4yNb9uV33c0VERI6jX2gAA0KsAGxV75SIiMf5PJlqT3l5Odu2bWPEiBEnPG737t2MGjWqzfambbt37/ZKfO0KG0BlQH8shpO63E04HFq8V0REfG9YP3MQSoaSKRERj/P5ML/2PPjgg1RXV3PTTTed8DibzUZkZGSb7U3bbDabyz/bbre7fE7TebXRowgtOMKw+t3sLihj+IAwt67VEzW9b+6+fz2d2q/2t3zuazrb/r76vnWVYdH+rMmtJTNXyZSIiKd1u2TqH//4Bx988AH3338/48ePP+nxhmG4te94MjMzXT6nyaDoUVDwLRMs+1j2XQZnnxri9rV6qs68f72B2q/292V9vf3d1bBoc56UilCIiHhet0qmnn76aZ599ln++Mc/8otf/OKkx0dFRbXb+1Raat4w2uu1Opnk5GSsVqvL59ntdg4cHmlew9jHt84IUlJOngz2Fna7nczMTLffv55O7Vf71X732990vnjH0MZkKru4CltVHVEhAT6OSESk9+g2ydTTTz/NU089xS233HLS4X1NRo4cya5du9psb9p2sjlX7bFarW5/GKqKMudqnWopYHd2LlbrRLeu05N15v3rDdR+tV/t77vt767CAiwkxYSQVVRFZl4ps0f093VIIiK9RrcoQLFw4UKeeuopfvvb3zJ//vwOn3f22Wezb98+Nm/e3LytoaGB999/n4kTJzJw4EBvhHtc9oAIGiKTAAgpyqS0Sov3ioiI7zUt3puheVMiIh7l82TqpZde4sknn2T27NmcccYZbNq0qdWjyT333MPYsWPJy8tr3nbFFVcwYsQIbr31Vj744ANWr17NH/7wB/bv388dd9zhg9aAJd4s0z7B2M/GnBKfxCAiItJS03pTKkIhIuJZPh/m9+WXXwKwatUqVq1a1Wb/zp07AXA4HNjtdpzOoyXHAwIC+Pe//83jjz/OX//6V6qrqxkzZgzPP/88U6dO7ZoGHGtwCmxbRrJlH+nZNs4YNcA3cYiIiDRq6plSEQoREc/yeTL1yiuvdOi4BQsWsGDBgjbbY2NjefTRRz0dltuccY09U5Z9vJ6lnikREfG9cY09U3m2agoraokNC/RxRCIivYPPh/n1OoPMohMJRiFZOdnYtXiviIj4WHiQH0P7hwLqnRIR8SQlU54WFIEzxqwiOKx+F7sPl/s4IBEREZgQr3lTIiKepmTKC4zGoX7Jxj42aKifiIh0A8kJUYB6pkREPEnJlDc0z5vaT3qWzbexiIiIABMS1DMlIuJpSqa8oalnyrKPjdnqmRIREd8bOzgCiwGHymo4XFbj63BERHoFJVPeMCgZp2FhkFFCRWEuxZV1vo5IRET6uNBAP4YPCAM01E9ExFOUTHlDYBhG7ChAvVMiItJ9jG8sQpGhoX4iIh6hZMpb4tMAc72pdCVTIiLSDTRX9FPPlIiIRyiZ8pamIhSq6CciIt1EU0W/jNxSnE6tgygi0llKpryluQjFfjbn2GiwO3wckIiI9HVjB0dgtRgUVtRySEUoREQ6TcmUtwwch9PiR6xRRnT9YXYc0uK9IiLiW8EBVkY0FqHQvCkRkc5TMuUt/sEYA8YAZhEKzZsSEZHuoGm9qS2aNyUi0mlKprypefHefaRr3pSIiHQDLedNiYhI5yiZ8qa4xop+xj42qGdKRES6gZYV/VSEQkSkc5RMeVOLnqmc4iqOlNf6OCAREenrRg8Ox99qUFxZR56t2tfhiIj0aEqmvGnAWLAGEGlUkWgc1rwpERHxuUA/KyMHhgOQqaF+IiKdomTKm/wCYOB4wBzqp3lTIiLSHTQVochQEQoRkU5RMuVtzetNqaKfiIh0D8nxUYB6pkREOkvJlLc1zZsy9pORW0pdgxbvFRER32rumcq1qQiFiEgnKJnytnizol+ydT91DQ1sO1jm44BERKSvGzkwnACrhbKaBrKLq3wdjohIj6VkyttiR4FfMGFUM9Q4qHlTIiLicwF+FsYMbixCoXlTIiJuUzLlbVY/GDwBgGRjv+ZNiYhIt5DcONRP86ZERNynZKortFhvSj1TIiLSHUxoLEKRoWRKRMRtSqa6QotkKr+0hkOlNT4OSERE+rqmnqkteaU4HCpCISLiDiVTXaExmRpvycKKXUP9RETE50YMCCPQz0J5bQMHiip9HY6ISI+kZKorxIyAgDCCqGWYkc8GDfUTEREf87NaGBsXAagIhYiIu5RMdQWLBQanADDRslc9UyIi0i1MiG9ab0rJlIiIO5RMdZW4FMCs6Lclr5Saertv4xERkT4vOSEKUEU/ERF3KZnqKo3zptL89lNvd7I1XzcuERHxrQlNRSjyS7GrCIWIiMuUTHWVxmRqlJGFPw2kZ9l8G4+IiPR5w/qHEexvparOzv7CCl+HIyLS4yiZ6ir9hkJQJP7OekYauSpCISLShyxZsoRRo0aRmprq61BasVoMxsebRSg0b0pExHVKprqKYTT3TiVb9pGeXYLTqSEVIiK9XUFBAY8++igDBgzwdSjtStbivSIiblMy1ZUak6kUyz4Ol9eSZ6v2cUAiIuJtDzzwAJMnT2bWrFm+DqVdTfOmVB5dRMR1Sqa6UmMyNSUgC0BD/UREern33nuPdevW8Ze//MXXoRzX+Mby6FvzS2mwO3wcjYhIz6Jkqis1JlOn2A8QSB0bs22+jUdERLymqKiI//mf/+H2229n0KBBvg7nuIbGhhIaYKWm3sGeIypCISLiCj9fB9CnRA6BkBisVUWMNrJJz+7v64hERMRLHnzwQU499VR+9rOfdfpadrt7axM2nXey88fHR7B2fwmbs0sY0T/UrZ/VHXW0/b2V2q/2t3zuazrb/o6ep2SqKzUVodjzOcmW/byRP4LqOjvBAVZfRyYiIh70ySefsHLlSpYtW4ZhGJ2+XmZmplfPH+hfC8CXm/cx3FrYqZ/VHXX2/evp1H61vy/zdvuVTHW1uDTY8znTArN4tcpJRq6NaUNjfB2ViIh4SGVlJQ899BBXX301AwYMoKysDID6+noAysrK8PPzIyQkpMPXTE5Oxmp1/Ys3u91OZmbmSc/PsRzk/V2bOVjrT0pKiss/p7vqaPt7K7Vf7Vf73W9/0/kno2SqqzXOm0rz2w9AeraSKRGR3qSkpITCwkJeeuklXnrppTb7p0yZwllnncUzzzzT4WtardZOfRg62fkpQ6IB2H6oHAcG/tbeNaW6s+9fT6f2q/1qv/far2SqqzUmU4PrsgimRhX9RER6mf79+/Pyyy+32b5o0SLWr1/P888/T3R0tA8iO76kmBDCg/wor2lgV0E54+IifR2SiEiPoGSqq0UMhrBBWCoOMdbIYmN2BE6n0yNj6kVExPcCAwOZNm1am+3vvvsuVqu13X2+ZhgGExIi+W5PEZm5pUqmREQ6qHf14/cUjb1TqX77KaqsI7u4yscBiYhIX5ccHwVAhhbvFRHpMCVTvtCYTJ0WkgNo8V4Rkb5gwYIFbNy40ddhHFdy4+K9mblKpkREOkrJlC80JlPjjX0ApGcrmRIREd+akGAmUzsOlVHb0DfXpRERcZWSKV9oTKZiarIJo4r0LJtv4xERkT4vITqYqBB/6u1Odh4q93U4IiI9gpIpXwjrD5FDMHAy3nKAHYfKqKht8HVUIiLSm5TmYXx6LwFVhzp0uGEYzUP9MjTUT0SkQ5RM+UpcCmDOm3I4ISPH5tNwRESkl9nyDpa1zzJ41ysdPqVpqJ/mTYmIdIxbpdF3795Neno6BQUF1NTUEB0dzfDhw5kyZQphYWGejrF3ikuF7R8wIzgbKswiFDOHx/o6KhER6S36jwYgrDijw6c0VfTLVEU/EZEO6XAyVVpayptvvsmbb75Jfn4+Tqez7cX8/Dj99NO5+uqrmTFjhkcD7XUa502NaNgDqAiFiIh42JCpODEIqszDXn4IouJPekpTz9SugnJq6u0E+Vu9HaWISI/WoWTq5ZdfZuHChQBceOGFTJ06lXHjxtGvXz8CAwMpLS0lJyeHTZs28cUXX/CrX/2KmTNn8uc//5mkpCSvNqDHGpwCQER1DhFUsDHHH4fDicWixXtFRMQDgqNg4HgoyMTIXgNRV5z0lMGRQcSGBVBYUcf2g2WkJkZ7P04RkR6sQ3OmXnnlFe6++26+/fZbHnjgAS644AISExMJCwvD39+f2NhYUlNT+eUvf8mrr77KJ598woABA1i+fLm34++5QvpB9KkApPlnYauqZ19hpY+DEhGR3sSZ1DhKJHtNh45vWYRCQ/1ERE6uQz1Ty5cvx8+v49OrEhMTeeSRR7DbtU7FCcWlQsl+zo3M46vCcaRnlzB8gOaciYiIZziHzIB1izCyV3f4nOT4SL7ceUQV/UREOqBDPVO7d+926+JWq8Zan1DjvKk0/wMAbNS8KRER8aTExp6pw9uhqrhDpyQnRAGq6Cci0hEdSqYuu+wy5s2bx+uvv055uRby85jGZCqpdhdgVvQTERHxmLAB1IQmYOCEnLUdOqWpCMXuw+VU1WkNRBGRE+lQMvWb3/yG4uJiHnroIU477TTuuOMOvv/+e2/H1vsNnghAcFU+MZSy+3AFZTX1Pg5KRER6k/KYCeaLrI4N9RsYEcSA8EAcTtiWX+bFyEREer4OJVN//OMf+fLLL1m0aBFz587l008/5Ze//CVnnXUWzzzzDAcPHvR2nL1TUATEjADgzMh8nE7YlG3zbUwiItKrVPRzLZmCo71TmjclInJiHUqmwKzwc/rpp/OPf/yDb7/9lnvvvZfIyEiefPJJzj77bH7961+zYsUK6uvVs+KS+DQA5obnARrqJyIinlXR1DN1cBPUdaxqbNPivVtU0U9E5IQ6nEy1FBERwS9+8QuWLl3KsmXL+NnPfsa2bdv44x//yOmnn+7pGHu3xnlTycZeQIv3ioiIZ9UFD8QZEQ+OBshd36FzmnumlEyJiJyQW8lUS6NHj+aSSy7hzDPPBMBms3X2kn1LYzI1qHI7YA7zczicvoxIRER6E8PA2VTVr4ND/cY3rjW190gFFbUqQiEicjwdXzzqGMXFxbz//vu888477NmzB6vVyty5c7niipOvsC4tDEoGw4J/1WGSAkrJqo1k9+EKRg0K93VkIiLSWyTOhC1vdziZ6h8eSFxkEPmlNWzNK2Xa0BgvBygi0jO5lEw5HA6++eYb3nnnHb766ivq6+s55ZRTuO2227jsssuIjY31Vpy9V0Ao9B8Nh7dxcWwBT+dHkp5domRKREQ8prlnKnc9NNSBX8BJz0lOiCS/tIZMJVMiIsfVoWRq//79vPPOO7z33nsUFhYSFBTEj370Iy6//HImT57s7Rh7v7hUOLyNmcHZPM1I0rNK+K+pib6OSkREeovYkRASA1VFkL8REqed9JTk+Eg+2Vqgin4iIifQoWTqggsuAGDChAnccsstXHTRRYSGhno1sD4lLhU2vcZIxx7gbDaoCIWIiHiSYUDiDNjxIWSv7lgylRAFQKaKUIiIHFeHkqlrr72WK664ghEjRng8gIqKCp555hl27NjBtm3bKCkpYf78+dxyyy0nPXfp0qXcfffd7e779ttv6d+/v6fD9Y44szx6P9tWwMm+I5WUVNYRHXryYRgiIiIdkjTTTKayVsNpfzzp4cmNRSj2F1ZSWl1PZLC/tyMUEelxOpRMHS9h2bdvHyUlJYwZM4aQkBC3ArDZbLz11luMHj2as88+myVLlrh8jUceeYShQ4e22hYVFeVWPD4xcBxY/LBUFzGjXxVrikPZmFPCmaMH+joyERHpLZJmms/Za8FhB4v1hIf3Cw0gITqY3JJqtuaVMnO45kWLiBzLrWp+y5Yt44knnuDIkSMAvP3224wbN45bb72VWbNm8ZOf/KTD14qPj2f9+vUYhkFxcbFbydSIESNITk52+bxuwz8IBoyFQxmc1+8ga4qHk55lUzIlIiKeMzAZAsKhthQKtsLgCSc9ZUJCJLkl1WQqmRIRaZfL60wtX76cu+66i7Fjx3L//ffjdB5dE2ncuHEsX77cpesZhoFhGK6G0fs0rjc1JSAL0OK9IiLiYVY/GDLVfN3BEunJ8VGAFu8VETkel3umFi1axLx58/if//kf7HY7Dz30UPO+oUOH8sorr3g0wI646aabKC4uJjw8nKlTp/L73/+ekSNHunUtu93eqfPcPd8YPBELkFS7EziLTTk2auvq8bN2el3lLtHZ9vd0ar/a3/K5r+ls+/vq++YTSTNh7xdmEYrpN5308AkJ5rypTFX0ExFpl8vJ1N69e7njjjva3RcVFYXNZutsTB0WGxvLTTfdREpKCmFhYezatYtFixZx1VVXsXjxYkaPHu3yNTMzMzsVk7vnB5eHMhYIOryJED+oqrPzwaoNnBrVsyb8dvb96+nUfrW/L+vr7e8RmuZNZa0Gp9Os8ncC4+PMZCq7uApbVR1RISqMJCLSksvJVHBwMOXl5e3uKygoIDIystNBddTpp5/O6aef3vzfU6ZMYc6cOVx88cX885//5Nlnn3X5msnJyVitJ56U2x673U5mZqbb52Mfi/O73+NXX8EFCTW8cyCIquCBpKT0jPWmOt3+Hk7tV/vVfvfb33S+dIG4NLAGQuURKNoLscNPeHhkiD+nxIRwoKiKzLxSZo/oIVVyRUS6iMvJVGpqKq+99hrnnXdem31Lly5l6tSpHgnMXQkJCUyaNInNmze7db7Vau3UhyG3z7cGw6DxkLeBMyMO8g6nsjGnlGtm9qwPZp19/3o6tV/tV/v7bvt7BP8gSJgMWd+Zj5MkUwDj4yM5UFRFRq6SKRGRY7k8Iefmm29m06ZNXHHFFbzyyisYhsGnn37KTTfdxA8//MBNN518DLa3OZ1OLJaeMdeolcYiFBMs+wAVoRARES9InGE+d7AIheZNiYgcn8sZR3JyMs8//zxVVVUsWLAAp9PJc889x/79+1m0aJHbhR88JScnh/T0dCZOnOjTONzSmEwNrtwOQFZRFYUVtb6MSEREepvm9aZcq+iXqYp+IiJtuLXO1PTp01m+fDnZ2dkUFhYSHR3Nqaee6nYQX3/9NdXV1VRWVgKwZ88eVqxYAcCcOXMIDg7mnnvuYdmyZXz22WfEx8cDcN111zF58mRGjx5NaGgou3bt4oUXXsAwDG699Va34/GZxmTKryCDkf1D2HWkivSsEs4dN8jHgYmISK8xZCoYFrBlQ2kuRCac8PDx8REA5NmqKaqoJSYssCuiFBHpEdxKppokJiaSmNj5AgkPPvggeXl5zf+9YsWK5mTqiy++ICEhAYfDgd1ub7Wu1ciRI1m+fDkvvfQStbW19OvXj+nTp/O73/2uU8mdz8SOAv8QqKvgvKQKdh2xkJ5tUzIlIiKeExgOgydC/kbIWgMTrjzh4eFB/gztH8q+I5Vk5pVyxqgBXRSoiEj316Fk6uOPP+bCCy906cIFBQXk5uYyadKkkx67cuXKkx6zYMECFixY0GrbPffc41JM3Z7VDwZNgJzvOS0km6c4RfOmRETE85JmNSZT3500mQKYEB9pJlO5SqZERFrq0Jyphx56iEsvvZQlS5ZQUVFxwmO3bNnCgw8+yHnnnceOHTs8EmSf0jjUb5RjDwAZuTbq7Q5fRiQiIr2Ni0UokhOiAMjQvCkRkVY61DP12Wef8dRTT/Hwww/z0EMPMXbsWMaOHUtMTAwBAQGUlpaSk5PDpk2bOHLkCCNGjOCpp55i9uzZ3o6/92lMpiJLthIZfAGl1fVsP1jGhMYbmYiISKc1JVOFO6GyEEJjT3i4KvqJiLSvQ8lUeHg499xzDzfffDNLly7l66+/ZtmyZVRXVzcfM2TIEGbPns3FF1/M9OnTvRZwr9eYTBmHMpg0JJyVu4pJzypRMiUiIp4TGgP9R8ORHZC9BsZcfMLDxw6OwGLAobIaDpfVMCAiqIsCFRHp3lwqQBEZGckvf/lLfvnLXwJQXl5OTU0NUVFR+Pv7eyXAPidmOASEQ105Z8XaWLkLNmTbuG6WrwMTEZFeJWmmmUxlrT5pMhUa6Mew/mHsPlxBZl4pZymZEhEB3FhnqqXw8HD69++vRMqTLBaISwFgamAWAOlZKkIhIiIeltT4LV2H502ZQ/0yNNRPRKRZp5Ip8ZLGZCqpdicWw1zbo6CsxrcxiYhI79I0b+pQBtSUnfTwCfGN86ZUhEJEpJmSqe6ocd5UwKFNjBwYDqh3SkREPCwyHqKSwOmA3HUnPbypol9mXmmrNR9FRPoyJVPdUWMyRcEWpg4JA9B6UyIi4nkuDPUbOzgCq8XgSHktBWW1Xg5MRKRnUDLVHUWfCkGRYK9jTlQhABvUMyUiIp6W1PH1poIDrIwYYH7Bl5Fr82JQIiI9h5Kp7sgwmnunJlr3A7Alr4zaBrsvoxIRkd6mqWcqbwPUn3xubvN6U5o3JSICuJFM/fd//zf79u3zRizSUlwaADFlW+kXGkCd3cHW/JNPEBYREemwfkMhdADY68yE6iSa5k2pop+IiMnlZGrZsmVcdNFF/PKXv+Tzzz/XJFRvaVq8N38jaYlRgIpQiIiIhxmGud4UQPbJh/q1rOin+7+IiBvJ1KpVq7jvvvs4cuQI8+fP58wzz2TRokUUFxd7I76+q6kIxeFtTEkIAVSEQkREvMCFIhSjBoXjZzEorqwjz1bt5cBERLo/l5OpkJAQfv7zn/Phhx/yr3/9i3HjxvHPf/6TM844g7vuuovMzExvxNn3RCZASCw4GpgVdggwi1Dom0AREfGopiIUOevA3nDCQ4P8rYwaZC7ZkamhfiIinStAMWPGDJ5++mm++OILUlNTee+99/jJT37ClVdeycqVKz0VY9/UogjFSPturBaDgrJa8ku1eK+IiHjQgLFmBdm6CnMB35NoKkKRoSIUIiKdS6ZqampYsmQJN910E2vXrmXYsGHcfPPN2O12br75ZhYuXOipOPumpsV7D2cwdnAEoHlTIiLiYRYrDJluvu7AUL/k+CgAtiiZEhFxL5nKzs7mkUce4fTTT+eBBx5g0KBBvPTSS3z44YfMnz+fpUuXcsMNN/Dqq696Ot6+pWneVMsiFJo3JSIintZchGLNSQ9t7pnKVREKERE/V0+4/vrrWb16NcHBwcybN4+rr76axMTENsfNnTuXRYsWeSTIPqspmTqygylTA/kP6pkSEREvaFmEwuEAy/G/ax05MJwAq4XS6npyiqtJjAnpoiBFRLofl5OpnJwc7r77bubNm0doaOhxjxsxYgQvv/xyp4Lr8yIGQ/hgKD/IlKBcALbml1FTbyfI3+rj4EREpNcYPBH8gqG6GAp3woAxxz00wM/CmMHhbM4tJSPPpmRKRPo0l4f5ffLJJ1x99dUnTKQAwsLCmDp1qtuBSaPG3qkB5dvoHx5Ig8OpledFRMSz/AJgyBTzdUfmTTUO9VNFPxHp6zpVgEK6QPPivZua501t0FA/EZFua/v27dx4442cccYZTJgwgalTp3LVVVfx3nvv+Tq0E0tsnDfVgWRqQmMRigwlUyLSx7k8zO/MM8/EMIx291ksFsLDw0lOTuaaa65h2LBhnQ6wz2tRhGLSxGg+2VqgeVMiIt1YWVkZgwYN4qKLLmLgwIFUV1fzwQcf8Kc//Ym8vDx+97vf+TrE9iW1SKacTnOJjuMYH2/2TG3JK8XhcGKxHP9YEZHezOVkaurUqaxbt47Dhw+TlpZGbGwsR44cYePGjQwYMIDBgwfz2Wef8d577/HKK6+QnJzsjbj7jqZkqmg3kweZv670bBtOp/O4Sa2IiPjOtGnTmDZtWqttc+fOJTc3l7feeqv7JlMJU8DiB+X5YMuC6FOOe+iIgWEE+lkor23gQFElQ/uHdV2cIiLdiMvD/E477TQCAgL47LPPePnll3niiSd45ZVX+PTTTwkICODss8/mk08+4ZRTTuGpp57yRsx9S2gsRJrVEsdbDuBvNSisqCWnuNrHgYmIiCuio6OxWrtx8aCAkKNf4J1kqJ+/1cLYOHP9Q83jFZG+zOVk6v/+7/+45ZZbGDx4cKvtcXFx3HzzzSxatIjw8HCuu+46Nm3a5Kk4+7a4FAACCjYxLs4cWqH1pkREujeHw0FDQwPFxcW89tprfPvtt9xwww2+DuvEklyZN6UiFCIiLg/zy8rKIiys/e78iIgI8vLyAIiPj6e6Wr0nHhGXCtvfb1y89xw25dhIzy7hx6nxvo5MRESO4y9/+QtvvvkmAP7+/tx777389Kc/detadru9U+d1+PyE6Vj5J86s1ThOcs64xp6pjFyb2/F5m8vt72XUfrW/5XNf09n2d/Q8l5OpuLg43n33XebMmdNm3zvvvNPcY2Wz2YiMjHT18tKelkUo5kbz0nf7VdFPRKSbu+mmm7jyyispLi5m5cqV/Pd//zfV1dX8+te/dvlamZmZnYqlo+db60KYiIFRvJct36+kIajfcY/1L68HzGRqw8aNWLvxPN7Ovn89ndqv9vdl3m6/y8nUr3/9a/785z/z05/+lPPPP5/Y2FgKCwtZsWIFmzdv5qGHHgJg7dq1jB8/3uMB90mNw/woOcCkgU4Adhwqp7K2gdBAl3+FIiLSBeLi4oiLiwNo/gLyiSee4LLLLqNfv+MnKe1JTk52a76V3W4nMzPTtfM3jYOCLYyPKIOxZx4/JoeTe778nOp6O5HxIxg+oPsVoXCr/b2I2q/2q/3ut7/p/JNx+ZP4T37yE5xOJ0899RQLFixo3h4bG8uDDz7IlVdeCZjfyAUEBLh6eWlPcDREnwol+xlUsYPBkUEcLK1hc66NmcNifR2diIh0wIQJE3jjjTfIyclxOZmyWq2d+jDk0vlJM6FgC9ac7yH58hNcE8bHR7D+QAlbD5YzanD3HY3S2fevp1P71X6133vtdymZstvtZGdnc8EFF/CTn/yEffv2YbPZiIqKYujQoa1KdcfG6kO+R8WnQcl+c95U0lw+yjjIxmwlUyIiPcXatWuxWCwMGTLE16GcWNJMWLcIstac9NDk+CjWHyghI7eUeWkJXRCciEj34lIy5XQ6ueiii3j22WeZM2eOFuXtSnGpsOUdyEsnLXEeH2Uc1OK9IiLd0P33309YWBjJycnExsZSUlLCihUr+Pjjj/n1r3/tcq9Ul0tsrOhXsAWqbRAcddxDkxNUHl1E+jaXkik/Pz9iY2NxOp3eikeOp7kIxSbSZkYBZnl0Ld4rItK9pKSksHTpUt59913Ky8sJCQlh9OjRPPbYY1x66aW+Du/kwgdCv2FQvBdy1sLI8457aHJ8FABb80tpsDvws7q84oqISI/m8pypiy66iGXLlnHGGWd4IRw5rkETAAPKchkXUUuAn4WSqnr2F2rleRGR7uTyyy/n8suPP9eoR0iaaSZTWd+dMJkaGhtKaICVyjo7e45UMHpQRBcGKSLiey4nU6NHj+bjjz/mmmuu4dxzz6V///5tekbOPfdcjwUojYIiIHYEFO4i4HAGE+Ij+SGrhPRsm5IpERHxrKSZsPGVky7ea7EYjI+PZO3+YjJzS5VMiUif43IydeeddwJQUFDAunXr2uw3DIPt27d3PjJpKy4VCnc1FqG4hB+yStiQVcIVkzTpV0REPCipcd5U/kaoq4KAkOMeOiGhMZnKK+XKyd28uIaIiIe5nEy9/PLL3ohDOiIuDTLeNJOpCdcCsDFbRShERMTDopIgPA7K8yF3PQydc9xDkxOiAMjIVREKEel7XE6mpk6d6o04pCOai1Ckk/Yjcz2PnQXllNfUEx7k78PARESkVzEMs3dqy9uQveaEydSEePN+tO1gGfV2B/4qQiEifYjbf/HKy8tZtWoV77//PqWl+jaqSwxKBsMCFQUMoISE6GCcTtiUY/N1ZCIi0ts0DfXL+u7Eh8WEEB7kR12Dg10F5V0QmIhI9+FWMrVw4UJmz57NDTfcwJ133klubi4A1157LYsWLfJogNJCQAj0H2O+zt/IpKRoANKzbL6LSUREeqemZCpnPTTUHfcwwzCYkGD2TmVqqJ+I9DEuJ1OvvfYaCxcu5IorruC5555rtebU3Llz+eqrrzwZnxyreajfRtISG5MpzZsSERFPix0Fwf2goRoObj7hoeMbh/plaPFeEelj3EqmrrvuOu677z5OO+20VvuSkpLIysryWHDSjrgU87llz1R2CQ6HFlIWEREPslggcYb5+iRD/SY0Lt6rnikR6WtcTqZycnKYPXt2u/tCQ0MpKyvrdFByAvFp5nP+RkYPDCPY30p5TQN7j1T4Ni4REel9mob6Za854WFNw/x2HCqjtsHu7ahERLoNl5Op8PBwCgsL292Xl5dHTExMp4OSExg4Hiz+UFWEX0Ve8w1MQ/1ERMTjmotQrAHH8ZOkhOhgokL8qbc72XVIX+6JSN/hcjI1Y8YMXnjhBaqqqpq3GYZBQ0MDixcvbjP0TzzMLxAGjjVf56U3D/XbkKVkSkREPGzQBAgIg9pSOLztuIcZhkFy87wpWxcFJyLiey4nU7///e/Jz8/noosuYsGCBRiGwauvvsqVV15JVlYWv/vd77wRp7TUbhEKm+/iERGR3snqB0Ma15fM6thQP82bEpG+xOVkKikpicWLFzN06FAWL16M0+nkvffeIzo6mtdff524uDhvxCkttUimUhOjANhzuAJb1fFL14qIiLglsWPrTSU3FqHIUDIlIn2InzsnDR8+nBdffJG6ujpKSkqIjIwkKCjI07HJ8TQnU5uICQ3g1NhQ9hdWsjHHxtxRA3wbm4iI9C4ti1A4nWAY7R7W1DO1q6Ccmno7Qf7WropQRMRn3Fq0t0lAQAADBw5UItXVBowFa6A5hr14X3Pv1EbNmxIREU+LnwTWAKgogOJ9xz1scGQQsWEBNDicbD+oyr4i0je41TOVm5vL8uXLyc/Pp6amptU+wzD4n//5H48EJ8dh9YdByZD3Q+O8qSksTc9jgyr6iYiIp/kHmQlV9hpzqF/MsHYPMwyD8fGRfLXzCJl5paQ2zukVEenNXE6mvvrqK+bPn4/D4aBfv34EBAS02m8cp/tfPCwutTmZmjThXAA2ZduwO5xYLfodiIiIByXNbEym1kDaNcc9bEJjMqV5UyLSV7icTP39738nLS2Nv//971pTypdaFKEYeU44YYF+VNQ2sKugnDGDI3wbm4iI9C5JM2HV305ehCIhClBFPxHpO1yeM5WVlcUNN9ygRMrXmpKpg5ux4mDiEHPir9abEhERj0uYCoYFbFlQmnfcw5qKUOw+XE513fEX+RUR6S1cTqbi4uJaLdgrPhI7EvxDoK4CivYwqXm9KSVTIiLiYUER5gK+YA73O46BEUEMCA/E4YRtB9U7JSK9n8vJ1G9+8xteeuklqqurvRGPdJTVDwZPNF/nbyQ1yUymNmrxXhER8Yakjq031dQ7pXlTItIXuDxnKjMzk6KiIs455xymTZtGdHTbaj333XefR4KTk4hLNb8hzN9I2pzLAdhfWElRRS0xYYE+Dk5ERHqVpJnw/TNmEYoTSI6P4vPthzVvSkT6BJeTqVdffbX59UcffdRmv2EYSqa6StO8qbx0IkP8GT4gjD2HK9iYbePssQN9G5uIiPQuiTPM5yPboaoYQvq1e1hzz1SekikR6f1cTqZ27NjhjTjEHU3J1KEMsDeQlhjFnsMVpGeXKJkSERHPCo2F2FFQuNMcFTH6onYPGx9vJlN7j1RQUdtAWKBbS1qKiPQILs+Zkm6k3zAICIeGGjiyg0mN86ZU0U9ERLyied7U6uMe0j88kMGRQTidsFW9UyLSy3UomVq/fj2VlZUnPa64uJi3336700FJB1ksEJdivs7fSFpjRb+M3FIa7A7fxSUiIr1TB4tQJDf2TmUqmRKRXq5DydQ111zD3r17m//b4XAwfvx4tm3b1uq4nJwc7r//fs9GKCfWYvHeYf3DiAjyo7rezo5D5b6NS0REep+mZOpgBtQe/z6jin4i0ld0KJlyOp1t/ruhoaHNdvGBFsmUxWKQmqihfiIi4iWRCRCVCE475Kw77mHJCVEAbFHPlIj0cpoz1dM1JVMFW6ChrnmonxbvFRERr0g8+byppmF++worKaup74qoRER8wufJVEVFBY899hi/+tWvmD59OqNGjeKpp57q8PlFRUXcddddTJs2jYkTJ3LVVVexZs2J18DoVaJPgaAosNfB4a2kJUUBSqZERMRLmob6ZR//XtsvNICE6GBAvVMi0rv5PJmy2Wy89dZb1NXVcfbZZ7t0bl1dHddddx1r1qzh3nvv5ZlnniEmJobrr7+edeuOP/ygVzGMVkP9UoZEYRiQU1zN4fIa38YmIiK9T1MylfsDNNQe97CmeVNavFdEerMOL/6wb98+rFYrAHa7vXnbsce4Kj4+nvXr12MYBsXFxSxZsqTD5y5ZsoRdu3bxxhtvkJpqJhTTpk3j0ksv5fHHH3fpWj1aXCrs+xLyNxI++VeMGhjOjkPlpGfZOH/8IF9HJyIivUnMcAjtD5VHIC8dkma0e1hyfBQfZx7S4r0i0qt1OJm6++6722z705/+1Oq/nU4nhmG4FICrx7f0+eefc+qppzYnUgB+fn5ccsklPPHEExQUFDBwYB9YvLZFzxRAamK0mUxllyiZEhERzzIMs3dq23tmifTjJFPqmRKRvqBDydQjjzzi7Tjcsnv3biZNmtRm+6hRo5r394lkKj7NfD68HeqrmZQUzeJ12aSrop+IiHhDYlMydfwiFOPjzGQqu7gKW1UdUSEBXRWdiEiX6VAyddlll3k7DrfYbDYiIyPbbG/aZrPZXL5m0xBGd89z9/xOCR2EJbQ/RuUR7PmbSUkYC0BGXinVtfUE+Hl/apxP298NqP1qf8vnvqaz7e+r71uP1jRvKmcd2BvA2vbjRGSIP0kxIWQVVZGZV8rsEf27OEgREe/r8DC/7upEwwTdGUKYmZnZmXA6fb67hocOJbLyCHnrP8R2ih/hAQbldQ6Wff0DI2O67ttAX7W/u1D71f6+rK+3v08ZOA4CI6C2DAoyjw43P0ZyfCRZRVVk5CqZEpHeqUcnU1FRUe32PpWWmuOz2+u1Opnk5OTmQhuusNvtZGZmun1+Zxm20+HwWhIshcSnpjIlcwMrdx6hMmgAKSmneP3n+7r9vqb2q/1qv/vtbzpfehCLFRKnw+5PIWvNcZOpCQmRfJhxUOXRRaTX6tHJ1MiRI9m1a1eb7U3bRowY4fI1rVZrpz4MdfZ8tyWYc8csBzeB1cqkU/qxcucRNuaWcn0XxuOz9ncTar/ar/b33fb3OUkzG5Op72DG79o9JDk+CoAMFaEQkV7K5+tMdcbZZ5/Nvn372Lx5c/O2hoYG3n//fSZOnNg3ik80afpWsHAn1FaQlhgNoCIUIiLiHYktFu91Ots9ZHx8BAB5tmqKKo6/JpWISE/VLZKpr7/+mhUrVvDll18CsGfPHlasWMGKFSuorq4G4J577mHs2LHk5eU1n3fFFVcwYsQIbr31Vj744ANWr17NH/7wB/bv388dd9zhk7b4TPggCI8DpwMOZTJxSCRWi8HB0hoOllb7OjoREelt4lLBLwiqiqCw7SgRgPAgf4b2DwUgU0P9RKQXcimZqqmp4ac//SmrVx+/FKo7HnzwQW699VbuueceAFasWMGtt97KrbfeSlFREQAOhwO73Y6zxbdfAQEB/Pvf/2batGn89a9/5aabbuLIkSM8//zzTJ061aMx9ggt1psKCfBj9KBwANKzbL6LSUREeie/AEiYYr7O+u64h02I13pTItJ7uTRnKigoiF27dnl8TPzKlStPesyCBQtYsGBBm+2xsbE8+uijHo2nx4pLhZ0fQX46AJOSotmaX8aGrBIumjDYx8GJiEivkzQTDqwyi1BM/lW7hyQnRLFsUz4Z6pkSkV7I5WF+qampZGRkeCMW6awWPVPA0XlT2Zo3JSIiXtC03lTWd8edN5WsnikR6cVcTqbuvPNO3nzzTZYtW0ZlZaU3YhJ3xaWYz0V7oKa0OZnaml9KTb0WxRQREQ9LmAIWPyjLA1t2u4eMi4vAMOBQWQ2Hy2q6OEAREe9yOZm66qqrOHToEHfffTeTJ08mNTWVtLS05sekSZO8Ead0RGgsRCaarw9uZki/YGLDAqm3O7XGh4iIeF5AKAxOMV9nr2n3kNBAP4b3DwNUhEJEeh+X15k677zzMAzDG7GIJ8SnQmk25G/EOPV00hKj+HRbAenZJUw+pZ+voxMRkd4maQbk/WAO9Zv403YPSU6IZPfhCjLzSjlrTB9atkREej2Xk6n2ikBINxKXCtveOzpvKinaTKZU0U9ERLwhaRasfsosQnEcE+IjWZqep3lTItLrdIt1psSDmopQ5B2t6AewIbukVVl5ERERj0icDhhQtBsqDrd7SHJCFAAZeaW6F4lIr+Jyz1STXbt2sXfvXmpr265o/uMf/7gzMUlnDJ5oPtuyoKqY5PhI/CwGR8pryS2pZki/EN/GJyIivUtwNAwYC4e3QtZqGPfjNoeMHRyBtfFeVFBWy6DIoK6PU0TEC1xOpqqrq/ntb3/L999/j2EYzd8wtZxHpWTKh4Kjod9QKN4H+RsJGn4W4+Ii2JxbSnp2iZIpERHxvKSZZjKVvabdZCo4wMqIAWHsOFRORq6NQZGDuj5GEREvcHmY3zPPPENeXh6vvvoqTqeTp59+mn/961+cc845JCUl8e6773ojTnHFsetNNQ71S8/SelMiIuIFSTPM56zvjnvIhITG9aZU0U9EehGXk6kvvviCG264gdRU8wP74MGDmTFjBk8++STjxo3j9ddf93iQ4qK4NPO5zeK9Nh8FJCIivVpi4+K9h7ZATfvJUtPivRkqQiEivYjLyVReXh5Dhw7FarViGAbV1dXN+y6++GK++OILjwYobmjumdoEHO2Z2nawjKq6Bh8FJSIivVbEYHOIOU7IXtvuIU1FKDJVhEJEehGXk6nw8HCqqqoAiImJISsrq3lfQ0ND8z7xocETAAPKcqHiMHGRQQyKCMLucOobQRER8Y6m3qnjDPUbPSgcP4tBcWUdebbqdo8REelpXE6mRo0axYEDBwCYNm0azz33HD/88AMZGRksXLiQ0aNHezpGcVVgOMSONF/nb8QwDNKSogBIz9a8KRERb1qzZg133303559/PikpKcyePZvf/va3bNmyxdeheVdSYzKV3f56U0H+VkYNCgdgi+ZNiUgv4XIydfnll1NZWQnAH/7wB6qrq7n66qu56qqryM/P56677vJ4kOKGY4tQJKoIhYhIV1i8eDF5eXlcc801LFq0iHvvvZfi4mKuuuoq1qw5/sK2PV5TEYq8dKhvv+epqQiFRkmISG/hcmn0Cy+8sPn1kCFD+OSTT5rLpKemphIVFeXJ+MRdcamQ8Ubbin7ZNpxOZ6tS9iIi4jkPPPAAMTExrbbNnj2bc889l+eee44ZM2b4KDIviz4VwgdD+UHI/QFOnd3mkOT4KBaTo4p+ItJruNwzdayQkBDOPPNM5s6dq0SqO4lvUdHP6WRcXAQBVgvFlXVkFWlem4iItxybSAGEhoYybNgwDh486IOIuohhHB3ql7W63UNa9kypCIWI9AYu90xJDzFwPBhWqCiA8oMERsSRnBDJhqwSNmSVcEpsqK8jFBHpM8rLy9m2bRvTp09363y73d6p89w931XGkOlYtryDM+s7HO38zGGxIQRYDUqr6zlQWEGilxeS7+r2dzdqv9rf8rmv6Wz7O3peh5Kp0aNHd3hYmGEYbNu2rUPHihcFhMCAMVCwxRy/HhFHWmIUG7JKSM8u4fJJCb6OUESkz3jwwQeprq7mpptucuv8zMzMTv38zp7fUUFV/RgHOLLXsin9B7C0/ZiRGOHHnpJ6PvhuM7OGBHdJXF3V/u5K7Vf7+zJvt79DydTNN9+sOTY9UVyKmUzlb4QxP2osQrFfi/eKiHShf/zjH3zwwQfcf//9jB8/3q1rJCcnY7VaXT7PbreTmZnp9vkuc07Aue4OrNUlpAwE4lPaHDItayt71uVQ7t+PlJRRXg2ny9vfzaj9ar/a7377m84/mQ4lU7fccovLAUg3EJcKG19tU4Ri56EyKmobCAvUKE8REW96+umnefbZZ/njH//IL37xC7evY7VaO/VhqLPnu/CTIHEG7PwYa85aSJzW5ogJQ6J4bV0OW/LKuuwDXte1v3tS+9V+td977e90AQrpxlqWR3c6GRgRRHxUMA4nbM6x+TQ0EZHe7umnn+app57illtucXt4X490kiIUyfFRgLnWlMOhIhQi0rO53DWxbNmykx7z4x//2I1QxOMGjgeLP1QXgy0bopNIS4omz1ZNelYJs4bH+jpCEZFeaeHChTz11FP89re/Zf78+b4Op2sltli81+EAS+vvbUcMDCPQz0J5bQNZxVWcqoJIItKDuZxMHW9R3pZzqpRMdRN+gTBwHBzcZPZORScxKTGKDzbnsyFbi/eKiHjDSy+9xJNPPsns2bM544wz2LRpU6v9KSkpPomrywyeAP6hUGODI9vN+1AL/lYLY+Mi2JhtIyPXpmRKRHo0l5OpL774os22kpISvvjiCz7++GP+/ve/eyQw8ZC41MZkKh3G/bh53tTGbBsOhxOLRYVFREQ86csvvwRg1apVrFq1qs3+nTt3dnVIXcvqD0Omwr4vzaF+xyRTABPiI9mYbSMzt5RLU+J9EKSIiGe4nEzFx7f9oxcfH8/48eNpaGjg5ZdfZsGCBR4JTjwgLhU2/Ku5CMWYwREE+Vsora5nX2ElwweE+ThAEZHe5ZVXXvF1CL6XNPNoMjX1hja7kxOigCwy8kq7PDQREU/yaAGKGTNmsHLlSk9eUjqruQjFZnA48LdamJAQBUB6lob6iYiIF7QsQuFsW2RiQkIkAFvzSrGrCIWI9GAeTaby8vKwWFQgsFsZMAb8gqC2FEr2AzSuNwXpmjclIiLeED/JLIBUcQiK97XZPax/GMH+Virr7OwvrPBBgCIinuHyML/169e32VZXV8fOnTt57rnnmDFjhkcCEw+x+sOgZMhdbw71ixlGWmIUABvUMyUiIt7gH2wmVDnfm1X9Yoa12m21GIyPj2D9gRIycksZPiDcR4GKiHSOy8nU1Vdf3apyH4CzsQt/5syZ3H///Z6JTDwnLvVoMpV8RXMRit2HKyitricy2N/HAYqISK+TNNNMprJWQ2rbBYvHx0c2J1Pz0hJ8EKCISOe5nEy9/PLLbbYFBgYSHx9PbKzWLeqWWi7eC8SGBZIUE0JWURWbcmzMGdnfh8GJiEivlDQTvn3iuIv3Ns2bylQRChHpwVxOpqZOneqNOMSbmpOpTeCwg8XKpMRosoqq2JBVomRKREQ8b8hUMCzmfN2yfIiIa7U7OT4KgG35ZTTYHfhZNedaRHoel/9y7d+/n3Xr1rW7b926dRw4cKCzMYmnxY4E/xCor4TC3QCkNq83pXlTIiLiBUGRMHC8+bqd3qmhsaGEBliprrez90hlFwcnIuIZLidTCxYsaHfhXjAXKtQaU92QxQqDJ5qvG4f6NRWh2JRtU1laERHxjqRZ5nP2mja7LBaD8fHmUL+MXFsXBiUi4jkuJ1OZmZlMmTKl3X1Tpkxhy5YtnQ5KvCAuzXxuTKZGDQwnNMBKeW0Duw+X+zAwERHptVquN9UOzZsSkZ7O5WSqvLyckJCQdvcFBQVRWqo/iN3SMUUo/KwWJg6JAiA9y+abmEREpHdLbFwu5fA2qCpuszu5cRH5jFx9dhCRnsnlZGrgwIFkZGS0uy8jI4P+/VXMoFtqSqYOZYC9AdDivSIi4mVh/c15uwDZ37fZPaFxmN+2g2XU2x1dGZmIiEe4nEydffbZLFq0iO+/b/1Hce3atTz//POcc845HgtOPKjfUAiMgIYaOLIdgEmNRSjStXiviIh4S1PvVNZ3bXYlxYQQHuRHXYODXQUaci4iPY/LpdFvvvlmvv32W375y19yyimnMGjQIA4dOsSBAwcYPnw4t9xyizfilM6yWMwiFAdWmUP9BiWT2liEYl9hJSWVdUSHBvg2RhER6X2SZkH6f9otQmEYBsnxkazeW0Rmbinj4iJ9EKCIiPtc7pkKDw/nzTffZP78+URGRpKfn09kZCS33HILb7zxBmFhYd6IUzzhmHlTUSEBDO0fCsDGHPVOiYiIFzQVocjfBLUVbXYnqwiFiPRgLvdMAYSGhnLzzTdz8803ezoe8aZjkimASYnR7DtSyYasEs4cPdBHgYmISK8VNQQih0BpDuSuh2FzW+2e0Lh4r5IpEemJ3F5uvLy8nFWrVvH++++rgl9PEd9YHv3QFmioBSCted6UzUdBiYhIr3eCEulN5dG3HyyjtsHelVGJiHSaW8nUwoULmT17NjfccAN33nknubm5AFx77bUsWrTIowGKB0UlQXA0OOrNMrUcrei3OddGgyopiYiINzQXoWibTCVEBxMV4k+93cmuQ22HAYqIdGcuJ1OvvfYaCxcu5IorruC5557D6XQ275s7dy5fffWVJ+MTTzKMo0P98tIBGDEgjPBAP6rq7Ow4pEpKIiLiBUmzzOe8H5pHRjRpKkIBkJFn6+LAREQ6x61k6rrrruO+++7jtNNOa7UvKSmJrKwsjwUnXnDMvCmLxSClsarfRq03JSIi3hA7AkJizeU5WszbbdI01C9Ti/eKSA/jcjKVk5PD7Nmz290XGhpKWVlZp4MSL2pOpjY1b2pebyrb1vXxiIhI72cYkHT89aaSG4tQZCiZEpEexq3S6IWFhe3uy8vLIyYmptNBiRc1JVOHt0F9NXB03tQGLd4rIiLe0jTUL6vtelNNPVO7CsqpqVcRChHpOVxOpmbMmMELL7xAVVVV8zbDMGhoaGDx4sVthv5JNxMRD6EDwGk3q/oBKYlRGAZkF1dxpLz2JBcQERFxQ1MRipy14GidMA2ODCImNIAGh5PtBzXCRUR6DpeTqd///vfk5+dz0UUXsWDBAgzD4NVXX+XKK68kKyuL3/3ud96IUzylZRGKxnHrEUH+jBwQDkC65k2JiIg3DEqGgHCoLYOCLa12GYbRvHjvFq03JSI9iMvJVFJSEosXL2bo0KEsXrwYp9PJe++9R3R0NK+//jpxcXHeiFM8qTmZSm/elJYUBSiZEhERL7FYIXG6+bq99aaaKvpp3pSI9CB+7pw0fPhwXnzxRerq6igpKSEyMpKgoCBPxybeckzPFEBqYjSL1+WwUYv3ioiItyTNgD2fmUUopv+21a7khCgAMtUzJSI9iFuL9jYJCAhg4MCBSqR6mrgU8/nITqg1F0hsqui3OddGXYMW7xURES9oWYSixTqV0LoIRXWdilCISM/QoZ6pZcuWuXTRH//4x26EIl0mfBCEx0F5PhzKgKSZDI0NJSrEH1tVPdsPljFxSJSvoxQRkd4mLhWsgVBVCIW7of/I5l0DI4IYEB7I4fJath0sZVJSPx8GKiLSMR1Kpu66664OX9AwDCVTPUF8GuzIN4f6Jc3EMAxSh0Tx5c4jpGeXKJkSERHP8wuEhCmQ9S1kr26VTIHZO/X59sNk5CqZEpGeoUPJ1BdffOHtOKSrxaXAjg9bzZualBTNlzuPsCGrhF/OOtV3sYmISO+VNNNMprJWw6TrWu1Kjo/i8+2HyVQRChHpITqUTMXHx3s7DulqTUUo8lpU9GtcvHdjts0HAYmISJ+Q1LjeVHsV/RrnTWWoCIWI9BBuVfMDqKioYNOmTdhsNqKjo5k4cSJhYWGejE28aXBjMlW8F6ptEBzFxCFRWAzIs1VzqLSGQZEqLCIiIh6WMBUMK5TmgC0bohKbd41vLI++90gFFbUNhAW6/TFFRKRLuFXN78UXX2T27NnccMMN3HHHHVx//fXMnj2bf/3rX56OT7wlNOboDezgZnNToB+jB0UAWm9KRES8JDDsaFXZrDWtdvUPD2RwZBBOJ2zLL+v62EREXORyMrVs2TIef/xxpkyZwhNPPMFrr73GE088wdSpU3nsscdcrvwnPtTOelPNi/dmKZkSEREvSWwc6pfddqhfcvPivbYuDEhExD0uJ1P//ve/+dGPfsSiRYu44IILmDRpEhdccAHPPfccF110Ef/5z3+8Ead4Q1ya+dwymWqcN6WeKRER8Zrm9aaOP29Ki/eKSE/gcjK1b98+Lrnkknb3XXLJJezdu7fTQUkXaadnqmnx3i15ZdQ2aNFEERHxgsTp5nPhLqg40mpXckIUgCr6iUiP4HIyFRQURGlp+3/gSktLCQpS0YIeY/BE89mWBZVFACT2CyEmNIA6u4MteRqvLiIiXhDSDwaMNV9nt5431TTMb19hJWU19V0dmYiIS1xOpiZNmsTTTz9NQUFBq+1Hjhxh4cKFTJ482WPBiZcFR0G/Yebrg2bvlGEYpCU1lUjXUD8REfGSpJnm8zFD/fqFBpAQHQzAFg31E5FuzuVk6rbbbqOwsJBzzz2Xm266ifvvv5+bbrqJc845h8LCQm677TZvxCne0l4RisZ5UxtUhEJERLzlBEUomudNaaifiHRzLidTI0aM4O233+ass84iMzOTpUuXkpmZyVlnncWSJUsYPny4y0FUVlby8MMPc9ppp5GcnMyll17KRx99dNLzli5dyqhRo9p9HDly5KTnCy2SqU3Nm9ISowCzCIXT6ez6mEREpPdr6pk6lAk1rZOm5PgoQIv3ikj359ZqeKeeeipPPPGEx4K45ZZbyMzM5Pbbb+eUU07hww8/5LbbbsPhcHDxxRef9PxHHnmEoUOHttoWFRXlsfh6tfi2Ff0mJEThZzEoKKslz1ZNQnSIj4ITEZFeKyIOok+BkgOQsw5GnNO8q2nelHqmRKS78/nS4l9//TXfffcdf/vb3/jRj34EwPTp08nPz+exxx7jwgsvxGq1nvAaI0aMIDk5uSvC7X0GTQAMKMuD8gIIH0hwgJWxcRFk5JaSnm1TMiUiIt6RNMtMprJWt5tMZRdXUVpVT2SIv48CFBE5MbeSqW3btvHBBx+Qn59PbW1tq32GYfDss892+FqfffYZISEhnH/++a22z5s3j9tvv53NmzeTlpbmTpjSEYFh0H8UHNkBBzdB+HmAOW8qI7eU9KwSLpkY59sYRUSkd0qaCZtea1OEIjLEn6SYELKKqsjMK+W0EbE+ClBE5MRcTqaWLVvG3XffjcVioV+/fvj7t/62yDAMl663e/duhg0bhp9f61BGjRrVvP9kydRNN91EcXEx4eHhTJ06ld///veMHDnSpTia2O3ura3UdJ675/uSMTgFy5EdOHJ/wDnsbABShpjfCm7IKu5Qm3py+z1B7Vf7Wz73NZ1tf19934SjRSjy06G+GvyDm3clx0eSVVRFRp5NyZSIdFsuJ1PPPvssc+bM4dFHHyUyMrLTAdhsNhISEtpsb7q2zWY77rmxsbHcdNNNpKSkEBYWxq5du1i0aBFXXXUVixcvZvTo0S7Hk5mZ6fI5njzfF/o7YkkEynZ8w95Is4cwsNL8cLMtv4y1GzYSaO1YktwT2+9Jar/a35f19faLG/oNhbBBUHEI8jbAKac175qQEMmHGQc1b0pEujWXk6nDhw/zwAMPeCSRanKi3qwT7Tv99NM5/fTTm/97ypQpzJkzh4svvph//vOfLg03bJKcnHzSOVrtsdvtZGZmun2+T8XWwZaniazcR8rEiWAYOJ1OBqz6isPltVhikkg5pd8JL9Gj2+8Bar/ar/a73/6m86UPMgxImgFb3zWH+rVIppor+imZEpFuzOVkasyYMW0W7O2MqKiodnufSkvNP56uJm0JCQlMmjSJzZs3uxWP1Wrt1Iehzp7vE3EpYFgxKg9jrSyAyHgAJiVFs3zLITbmlDF9WP8OXapHtt+D1H61X+3vu+0XNyXNOppMtTA+PgKAPFs1RRW1xIQF+iI6EZETcnmdqT/96U8sWrSIHTt2eCSAkSNHsnfvXhoaGlpt37VrF2BW6nOV0+nEYnG5aX2XfzAMGGu+bmfx3vRsLd4rIiJe0rTeVM46sB/9LBAe5M/Q/qEAZGq9KRHpplzumUpJSeHcc8/lsssuo3///m16jgzD4P333+/w9c4++2zeeustPv30Uy688MLm7e+++y4DBgxg4sSJLsWXk5NDeno6M2fOdOm8Pi8uBQoyzWRqjFmiPi0pCoCNjYv3ulpcRERE5KT6j4GgKKixwaHNED+pedeE+Ej2HakkM7eUM0YN8FmIIiLH43IytWjRIp577jn69etHXFxcm2p+rpozZw6zZs3iL3/5CxUVFSQmJvLRRx+xatUqHn/88eYhI/fccw/Lli3js88+Iz7eHIZ23XXXMXnyZEaPHk1oaCi7du3ihRdewDAMbr311k7F1efEpcLGV8yKSo3GxUUSYLVQWFFHdnEVSTGhPgxQRER6JYvFrOq3a7k51K9FMjU+PpJlm/LJUM+UiHRTLidTL7/8MpdffjkPPfSQx8bGP/XUU/z973/nySefxGazMXToUJ544gkuuuii5mMcDgd2ux2n09m8beTIkSxfvpyXXnqJ2tpa+vXrx/Tp0/nd737Hqaee6pHY+oy4VPM5fyM4nWAYBPlbGRcfwcZsG+nZJUqmRETEO5JaJFMzb2nePCEhCoAtSqZEpJtyOZmqrKzkRz/6kUcnGYeGhnLfffdx3333HfeYBQsWsGDBglbb7rnnHo/F0OcNHAcWf6guAVsWRJ8CmPOmNmbbSM+ycVlq2xL2IiIinZY0y3zOXgMOh9lbBYyLi8Aw4GBpDYfLaxgQHuTDIEVE2nK5SkNaWhp79+71RiziS36BMGi8+bpFEYpJSWYRig1ZKkIhIiJeMngi+IeYX+gdOVrgKjTQj+H9wwD1TolI9+RyMnXvvffyxhtv8Pnnn1NXV+eNmMRXWg71a9RU0W/HoTIqaxvaO0tERKRzrP6QMMV8nd26RHpyglnoSutNiUh35PIwv8svv5yGhgZuueUWDMMgKKh1l7thGGzYsMFjAUoXaieZGhQZRHxUMHm2ajbn2pg5LNZHwYmI9BwVFRU888wz7Nixg23btlFSUsL8+fO55ZZbTn5yX5U0C/Z/bc6bmnJ98+YJ8ZEsTc8jU8mUiHRDLidT5513nkpk91bNydSmVmPWUxOjyLNVk55VomRKRKQDbDYbb731FqNHj+bss89myZIlvg6p+0uaYT5nrW4uhASQ3FiEIiOvVMt0iEi341IyZbfb+c1vfkO/fv3arC8lvUD/0eAXBLVlULwPYocD5lC/DzMOkp5t8218IiI9RHx8POvXr8cwDIqLi5VMdUT8ZLMQUvlBKDkA/cyqvGMHR2C1GBwpr6WgrJZBkSpCISLdh0tzppxOJxdddBGbNm3yUjjiU1Z/GJRsvm6nCEV64+K9IiJyYoZhqAfFVQEhEJ9mvs46Om8qOMDKiAFmEYqMXJsPAhMROT6Xeqb8/PyIjY3VB+reLC4NctebydSEKwEYMziCQD8Ltqp69hVWMqyxspKIiHQNu93eqfPcPb+rGUOmY8lZiyPrO5wTftq8fXxcBDsOlbM5x8ZZo/t3+Ho9rf2epvar/S2f+5rOtr+j57k8Z+qiiy5i2bJlnHHGGa6eKj1BO0UoAvwsTEiIZP2BEtKzSpRMiYh0sczMTJ+e31UiGgYyAqjb/RVbW4yCiXZWAbB6Rw5n9q90+bo9pf3eovar/X2Zt9vvcjI1evRoPv74Y6655hrOPfdc+vfv32Yow7nnnuuxAKWLNSVTBzeDww4Wc3HmtKRoM5nKLuHKyUN8GKCISN+TnJyM1Wp1+Ty73U5mZqbb53e5mlNxrruXoMo8UoYNgvBBABgxNp7f+D1Z5TBx4sQOD6Hsce33MLVf7Vf73W9/0/kn43IydeeddwJQUFDAunXr2uw3DIPt27e7elnpLmJHgH8o1FdC4S4YMAY4ut5UepbNh8GJiPRNVqu1Ux+GOnt+lwntZy4gfygTa+5aGD8PgLHxUfhZDIor6yioqCc+Ktily/aY9nuJ2q/2q/3ea7/LydTLL7/sjTiku7BYzZXos1ebQ/2OSaZ2HS6nrKaeiCB/X0YpIiK9VdIsOJRpFqFoTKaC/K2MGhTO1vwyMnNtLidTIiLe4nIyNXXqVG/EId1JXOrRZCrlZwD0Dw8ksV8I2cVVbMq2cfrIjk8AFhER6bDEGbD2/yB7TavNExIi2ZpfRkZuKeePH+yj4EREWnM5mWpSXl7Opk2bKCkpYc6cOVp3qjdppwgFQFpiFNnFVaRnlyiZEhE5ia+//prq6moqK82CCXv27GHFihUAzJkzh+Bg9a60K2mm+VywFaqKIaQfAMnxUSwmh8y8Uh8GJyLSmlvJ1MKFC3n++eepqanBMAzefvttIiMjufbaa5k1axY33nijp+OUrtS0zsehTLDXm+tPYRahWLYpX4v3ioh0wIMPPkheXl7zf69YsaI5mfriiy9ISEjwVWjdW9gAiBkORXsgZy2MugAwe6YAMnJLcTqdWsdLRLoFlxbtBXjttddYuHAhV1xxBc8991yrNafmzp3LV1995cn4xBeiT4XASGiogSM7mjc3zZvamF2Cw6G1xkRETmTlypXs3Lmz3YcSqZNo6p1qsXjvyIHhBFgtlFbXk1Nc7aPARERacyuZuu6667jvvvs47bTTWu1LSkoiKyvLY8GJj1gsEDfRfJ2X3rx59KBwQgKslNc0sOdIhY+CExGRXi9plvncIpkK8LMwenA4ABl5Nh8EJSLSlsvJVE5ODrNnz253X2hoKGVlZZ0OSrqBduZN+VktTEyIAiA9q8QHQYmISJ+QOMN8PrgJ6o4u0pscbw7107wpEekuXE6mwsPDKSwsbHdfXl4eMTExnQ5KuoHjFaFIigJgg5IpERHxlqhEiEgARwPkrm/e3DRvKjNXyZSIdA8uJ1MzZszghRdeoKqqqnmbYRg0NDSwePHiNkP/pIdqSqYKtkJDbfPm5sV7s5VMiYiIlxgGJDX2TrUY6pccHwWYPVOauysi3YHLydTvf/978vPzueiii1iwYAGGYfDqq69y5ZVXkpWVxe9+9ztvxCldLSoJgvuBo95MqBqlNiZTe49UYquq81V0IiLS27VThGLEwDAC/SyU1zSQVVx1nBNFRLqOy8lUUlISixcvZujQoSxevBin08l7771HdHQ0r7/+OnFxcd6IU7qaYbQ71K9faABDY0MB2KgS6SIi4i1NRShy10OD+eWdv9XC2LgIADJybT4KTETkKLfWmRo+fDgvvvgidXV1lJSUEBkZSVBQkKdjE1+LS4W9X7SZN5WaGM2+wkrSs0uYO3qAj4ITEZFeLXYkhMRAVZFZiGLIVAAmxEeyMdtGZm4pl6bE+zZGEenzXO6Zuvvuu8nJyQEgICCAgQMHNidSeXl53H333Z6NUHznOEUoJiVp3pSIiHiZYRyt6pf1XfPm5Maqshmq6Cci3YDLydS7775LSUn7H6JLSkpYtmxZZ2OS7qIpmTq8HeqOjk1vqui3KduGXROARUTEW9pZb6qpot/WvFLdg0TE51xOpk6ktLSUgIAAT15SfCkiDkIHgNMOBVuaN48YEE5YoB+VdXZ2Hir3YYAiItKrNVX0y14LDjsAw/qHEexvpbLOzv5CLSAvIr7VoTlT69evZ+3atc3/vWTJEr755ptWx9TW1vLFF18wbNgwz0YovmMYEJ8Gu1aYQ/0ax6tbLQapiVGs2l1IenZJ82RgERERjxqYDAHhUFtqVpYdPAGrxWBcXAQ/ZJWQmVfK8AHhvo5SRPqwDiVTa9eu5emnnwbMNaWWLFnS7nFxcXH8+c9/9lx04ntxqUeTqRZSE6PNZCqrhF9MT/JRcCIi0qtZ/cwv8vZ+YQ71GzwBgOSESH7IKiEjt5TLUhN8HKSI9GUdSqauv/56fv7zn+N0Opk5cyYvvvgiY8eObXVMQEAAoaGhXglSfOg4RSjSEqMAFaEQEREvS5ppJlPZq2H6TcDReVOZuSpCISK+1aFkKigoqLli3xdffEH//v01N6qvGJxiPh/ZCbXlEGgOp2havPdAURWFFbVEB7tVZV9EROTEWhahcDrBMEiOjwJga34ZDXYHflaPTgEXEekwl//6xMfHK5HqS8IHQkQ84ISDGc2bI4P9GTEgDNDivSIi4kXxaWANhMojULQXgKGxoYQGWKmut7P3SKWPAxSRvszlZKq+vp5nnnmGCy+8kJSUFMaMGdPqcezwP+kFjjvUT+tNiYiIl/kFQsJk83XjelMWi8H4eHOoX0auzUeBiYh0cJhfS0888QT//ve/Of300zn77LPVS9UXxKXCjg/bXbz3zR9y2JClZEpERLwocYaZSGWthknXAua8qbX7i8nMK+XKyUN8HKCI9FUuJ1PLly/n5ptvZv78+d6IR7qj4/VMNS7em5Fro97u6OKgRESkz0iaCaswi1A0Sk6IAiBDRShExIdcHuZXWlrK5MmTvRGLdFdNyVTxXqi2NW8eGhtGZLA/NfUOdmjxXhER8ZYhU8Gwgi0bSnMBSG4c5rftYJm+0BMRn3E5mZoyZQo7duzwRizSXYX0g6jGtaQObmrebGlcvBcgXUUoRETEWwLDm9eYImsNAEn9QggP8qOuwcHuggofBicifZnLydR9993H22+/zaeffkpdXZ03YpLu6CRFKFTRT0REvKq5RPrRIhRNvVOZeTYfBSUifZ3Lc6YuvfRSGhoauPXWWzEMo3n9qSaGYbBhwwaPBSjdRFwqbFvWbhEKgI05Nq4bFemDwEREpE9InAFrnjaLUDRKTohk9d4iMnJLuWqKD2MTkT7L5WTqvPPOwzAMb8Qi3Vl8mvl8TDI1cUgUFgNyS6opqQ7zQWAiItInJM4wnwt3QmUhhMYyoXHx3sw8FaEQEd9wOZlasGCBN+KQ7m7wRPPZlg2VRRAaA0BYoB8jB4az41A5O4vqmevDEEVEpBcLjYH+Y+DIdsheA2MuZkKCOSJi+8EyahvsBPpZfRykiPQ1Ls+Zkj4qKBJihpuvD7Y/1G9nkebQiYiIFyU19k41FqFIiA4mKsSferuTXYdUhEJEul6Heqa2bt3q0kXHjRvnVjDSzcWlQtEeyNsIw89u3pyWGM1ra7NZm1dLZl4pKYn9fBikiIj0Wkmz4IeXmotQGIZZhGLV7kIy8mwkJ2juroh0rQ4lU5dffnmH5kk5nU4Mw2D79u2dDky6obhUyFzSZt7U7JGxRAb7U1BZz4+fWcOFyYO47ZxRDB+gOVQiIuJBTfOmDmVATRkERTAhwUymMnNLYZpvwxORvqdDydQjjzzi7TikJzhOefQB4UEs+90MHliyjlU5NXyceYgVWw5xxaQEbj17JPFRwT4IVkREep3IeHPdQ1sW5K6D4Wc3l0fPyFURChHpeh1Kpi677DJvxyE9waAJYFigPB/KD0H4oOZdif1CuHVaFHddOoy/f7GHz7YV8NYPuSzbmM/Ppydy89zhxIYF+jB4ERHpFZJmmclU1mozmUqIAmBXQTk19XaC/FWEQkS6jgpQSMcFhkHsKPN1/qZ2Dxk1KJznr5nM0t/NZMbQGOrsDv713QFOf+xL/vbpTspq6rsuXhER6X2OKUIRFxlETGgADQ4nOw6V+zAwEemLlEyJa44z1O9YaYnRvH7DNF799TQmJkRSVWfnqZV7mP3ol/zf13uprrN3QbAiItLrJM0yn/N+gPoaswhFY+GJzFyb7+ISkT5JyZS4pjmZSj/poYZhcNqIWJbdPIv/+0UawweEUVpdz4LlO5jz+Je8+n0W9XaHlwMWEZFepd9QCB0A9jrI2wDABM2bEhEfUTIlrmnZM+V0dugUwzA4f/xgPvnD6fzvlROJjwrmcHkt9y3bwll/+5plG/OwOzp2LRER6eMMA5Jmmq+zVwM0z5vKzFMyJSJdS8mUuGbQeLD4QeURKMtz6VSrxeCKSQmsvGMOD14yjtiwQLKLq/jDm5u48J+r+GxbAc4OJmgiItKHNQ31yzKTqQmNw/x2FZRrGLmIdCklU+Ia/2AYMMZ8fZJ5U8cT6Gfl2pmn8M2fzuD/nTeKiCA/dhaUc8PLPzDv2dWs3lvowYBFRKTXaSpCkbMO7A0MjAhiQHggDidsO6jeKRHpOkqmxHUdLEJxMiEBftw8dzir/nQmvztjGMH+VjZm2/jZ82u5+sW1ZGgisYiItGfAWAiKhLoKcwFfjvZOad6UiHQlJVPiOg8lU00iQ/z50/mj+fpPZ3DNjCT8rQardhdyydPfcdMrG9hzWKVuRUSkBYsVhkw3XzcO9Rsf31TRT8mUiHQdJVPiOjeKUHTEgPAgHrp0PCtvP4N5afEYBqzYeohz//4Nt7+1mZziKo/9LBER6eGai1CY60019UypCIWIdCUlU+K6AWPBGgDVJVBywOOXH9IvhCd+ksInfzid88YNxOGEd9JzOfNvX/GX97dypLzW4z9TRER6mJZFKByO5p6pPUcqqKxt8GFgItKXKJkS1/kFwsBx5msPDfVrz8iB4Tx39WSW3TyL04bHUm938u/VBzj9sS95/JMdlFbXe+1ni4hINzd4IvgFQ3UxFO5iQHgQgyODcDpha36Zr6MTkT5CyZS4Jy7NfPZiMtUkZUgUr14/jdevn8bEIVFU19tZ+OVeZj+6kme+2qMyuCIifZFfAAyZYr7O+g6A5ObFe20+CkpE+holU+IeDxeh6IiZw2NZ9ruZLLp6EiMHhlFW08BjK3Zy+uNf8sqaA9Q1OLosFhER6QYSG+dNHbPelOZNiUhXUTIl7mlKpg5uBkfXJTGGYXDuuEEsv/V0nvjJRIb0C+ZIeS33v7eVs574iqXpudgdWvhXRKRPSGqRTDmdJCdEAaroJyJdR8mUuKf/aPALgtoyKN7X5T/eajGYl5bAF7edwX9fOo7+4YHkFFdz21ubueCf3/DJ1kM4PVhpUEREuqGEKWDxg/J8sGU1D/PbV1hJWY3m1YqI9ymZEvdY/WDQBPN1frrPwgjws3D1jFP4+v+dwZ3njyYy2J9dBRX85pUNXPbMalbvKfRZbCIi4mUBIUdHSmStoV9oAAnRwQBs0VA/EekCSqbEfT6YN3U8IQF+/PaMYXzzp7ncPHcYwf5WNuXY+NkLa/n5C9+zKcfm6xBFRMQbmof6mUUomudNaaifiHQBJVPivm6UTDWJDPbn/503mm/+NJfrZp6Cv9Xguz1F/Hjhd9z48g/sKij3dYgiIuJJxxShaFpvSkUoRKQrdItkqrKykocffpjTTjuN5ORkLr30Uj766KMOnVtUVMRdd93FtGnTmDhxIldddRVr1qzxcsQCQHxjefSDm8HRvcqT9w8P5C+XjGPl7WdwxaQELAZ8uq2A8/7xDbe9tYmc4ipfhygiIp6QOA0woHgvlBcwIT4KUDIlIl2jWyRTt9xyC8uWLWP+/Pk8//zzJCcnc9ttt/HBBx+c8Ly6ujquu+461qxZw7333sszzzxDTEwM119/PevWreui6PuwmOEQEAb1VVC4y9fRtGtIvxD+98qJfPKH07lg/CCcTlianseZf/uKP7+3hcPlNb4OUUREOiM4GgaON19nr24uQpFVVKXF3UXE63yeTH399dd89913PPDAA/z0pz9l+vTp/PWvf2XWrFk89thj2O3H7/FYsmQJu3bt4h//+AeXXHIJs2bN4sknn+SUU07h8ccf78JW9FEWq7kCPWAc3OTbWE5ixMBwnv3FJN6fP4vZI2Kptzt5eU0Wpz/2JY+u2EFplW64IiI9VtIM8zlrDZEh/iTFhAAqQiEi3ufzZOqzzz4jJCSE888/v9X2efPmcfjwYTZv3nzccz///HNOPfVUUlNTm7f5+flxySWXkJGRQUFBgdfilkbdcN7UiUxIiOKVX09j8Q3TSU2MoqbewbNf7eW0x1ay8Ms9VNU1+DpEERFxVVLreVPJzfOmynwVkYj0ET5Ppnbv3s2wYcPw8/NrtX3UqFHN+090btNxrp4rHtKYTBkHe0Yy1WTGsBiW/nYmz18zmVEDwymvaeDxT3Zy+mNf8Z/VB6hr6LqFiEVEpJOailAUbIFq29GKfuqZEhEv8zv5Id5ls9lISEhosz0yMrJ5/4nObTrO1XOP50TDCjtynrvn91gDJ2AFOLQFHA09rv1njoplzogYPsw4yD++2E12cTUPvL+V51ft4/dnDufHKXFYLcZJr9Nnf/+N+nL76+0OCstrOFTRwN7DZWBYcDjB4XTicDhxOMHucOJ0Nr52tnjduN3udOJw0PjaPNfpdGJ3NF6n8fiW12x1/cZjnI3XPPb1cc9vtd18NmNqfO1s8bpxu73xGs4WP9fhcJIQWEtycuf+foq4LXwg9BtmFqHIWUty/GSgMZkaG+Xb2ESkV/N5MgVgGMf/sHqifZ09tz2ZmZkun+PJ83scp5OJfqH4NVQSXH6AzMxu8U/KZUnA43Mj+GK/P0u2VZBbUs2f3snkyU+38V/jw5kWH9ihf0997vd/jN7Q/nqHk7JaR/OjtKbxucW2lo+KeufRk5f33UWig/wMLtuc0aEvH/qCyspK/vGPf7B8+XJKS0sZOnQoN954IxdddJGvQ+u9kmaayVTWd4yffSYAebYaSms10kBEvMfnn3yjoqLa7UEqLTW75tvrefLEuceTnJyM1Wp1+Ty73U5mZqbb5/dklq2TYf/XhNh2Mvy0y3p0+yenwe8vtvPK2mye+3ofueX1PL7GxoT4SO44dwSzhse2e15f/v1D925/Tb2d4so6iirrKG7zqKeosrZxfz3FlXVU1Lo+b84wINBi4OdnxWKA1WJgGIb52jAwLAZWAyyGud1qMV9bGo+xGAYWS9vXVqPFdRqvaW3vnJbntrPf2rjdsBx93d45reI+tg2N2yxNr1tcB6cD/4pDpEyc0Km/n73JLbfcQmZmJrfffjunnHIKH374IbfddhsOh4OLL77Y1+H1TkkzYeMrkLWG8HP8Gdo/lH1HKtlXUs8cX8cmIr2Wz5OpkSNH8uGHH9LQ0NBq3tSuXWap7REjRpzw3KbjWurIucdjtVo79WGws+f3SHGpsP9rQkt39Yr2hwVb+e0Zw/n59CSe/2YfL367n4y8Uq751w/MHBbDHeeNIi0xut1ze0P7O6Mr2l9V10BRxdGEqLCitvl1UavnWoor6qisc30ImcWAfqEBxIQG0i80gH5hAcSEBjRuC6Bf4/bYMHNbeKCVzIzNpKSk9Mnfv91uZ9Omoj7/779JU5Xav/3tb/zoRz8CYPr06eTn5/PYY49x4YUX6n3yhqYiFPnpUFdFcnwk+45UsmJPFTMPlTO2cf0pERFP8nkydfbZZ/PWW2/x6aefcuGFFzZvf/fddxkwYAATJ0484bkPPvggmzdvbj6uoaGB999/n4kTJzJw4ECvxy80F6GIOvQd7PgIxl5sflXfw0UE+XP7uaO4duYpLPxyD699n83qvUXMe2Y154wdyB3njmLUoHBfh9mjOZ1OKmobjiZAFa2ToaLKulaJU1FlLTX1rg/Z8bMYZlIUGkBMmJkMxTQlRmGtE6SY0AAig/3NHpcO0pwfaelEVWpvv/12Nm/eTFpamo+i68WikiAiHsryIHc9M4aeynub8vnhYC0XPvUd4+MjuDwtgUtT4ukXGuDraEWkl/B5MjVnzhxmzZrFX/7yFyoqKkhMTOSjjz5i1apVPP74483f3t1zzz0sW7aMzz77jPj4eACuuOIKXn/9dW699VZuv/12YmJieP3119m/fz//+te/fNmsvmXoHJwRcfiX5cOSqyEuDc68D4ad2SuSqtiwQB64eBzXzx7KPz/fxdsbcvlsWwGfby/gxynx/PHskcRHBfo6zG7B6XRSWl3fmPzUUlTRoreo4miC1LInyZ3KiQFWS4vE6Ggy1PTfTdtiwswEKSLIz605lCLu6EiVWleTKRVH6hhjyHQsW9/BceA7rjh9FlFBVv719XbSD9WxJa+MLXnbePij7cwd1Z95afGcMbI/AX4+L2zsNX3t938stV/tb/ns7vkn4/NkCuCpp57i73//O08++SQ2m42hQ4fyxBNPtJqo63A4sNvtOJ1HJ3sHBATw73//m8cff5y//vWvVFdXM2bMGJ5//nmmTp3qi6b0TcHROG5cxeFl9zMoaxlGfjq8Og+SZsGZ9x9dTLGHi48K5rErJnLj6cP4+2e7+CjzIO9uzOODzflcNTmBEcG1VO4twjCMo5XPHMdUTDu2WtqxVdGcNFZba7+qWqvrNR3XVHHN0cHjWv5cT8XncFJSUU3F0k+ptztP/mYeI8jfcnRIXWiLIXVhgc2vWw61CwtUciTdV2eq1B6PiiN1TKxlCElAxbZP2R15Hv2BP82MpqzWwbc51Xx1oJq9JQ18tv0wn20/TESAwWmJwcw9JZhTo3rv35W+8vs/HrVf7fcmw9kyO+nDzDH/m9ye89DZ83u65vaPiMe6+p+w/kWw15o7h51l9lTF965hLZm5pfzvpzv5etcRX4fS7YQEWNskQ81J0bFD7cICCAnoFt/ruE3//+vvZ0vnnXceQ4YM4YUXXmi1/fDhw8yePZvbb7+dG2+8sUPXanpvVBypgw5vx/rcLJx+wTj+tB871jbt31VQztKN+SzbmM+RitrmU0cNDGNeWjyXToyjf3jvGG3Q537/x+jL7bc7nJRU1rB9+3YmjB9HUIA//hbDpSHsPV1nf/9N55/s3tSzP8FI9xPaH85/BGbcDN88Dhtfhb1fmI/RP4K598LAsb6O0iOSEyL5z6+msnZfEU9/uYf9BTZCgoOwWiztVmhrtyKaxWhTgc2sotb69dHKaUerr53wuOYKb61fN8XQdE6b447zcywGRyvJtapEZ/43Tie5B/YyI3U8/SOCCfLvWzctkZa8UWlWxZE6aOBYCO6HUV2MtWCLOeyc1u0fExfFvXFR3Hn+aFbtKWweur2zoIJHlu/ksU92MWdkfy5PS+CsMQN6xd+zPvP7P46e3n6Hw0l5TQPFVeYQ+ZLKOoqrjnmurMdWdfS/bdX1NHeXvHe4+VpWi4G/1cDfYsHfz4K/1cDPYiGgxWt/PwsBLV77Wwz8rce+bntegJ8Fv3aPbed1i2MD2nvtZyHAar5uqi7rLm///pVMiXdEJsDF/4RZt8JXj0LGm7DjQ7NARfIVcMbdEDPM11F6xLShMUxOiupV36y7ym63E1iaTVxUcJ9sv0hLnalSK51ksZhV/XZ8CFnfNSdT7fGzWpg7agBzRw2gtKqeDzPzeXtDLhuzbazccZiVOw4TEeTHJSlxXJ6WQMqQqF47DFC6jtPppLy2oTEBqqOkykyEShpflzQnTPXNiVFJVR0OD40jszvMofk1OKD25Md3B4aBmfxZm5IwM9k7XkJmPgwC/CxMi6kjxcvxKZkS7+o3FOY9B6f9Eb58GLa/D5lLYMtSSP05nP4niBri6yhFRDymM1VqxQMSZ5jJVPYamHFLh06JDPHn59OS+Pm0JPYeqWBpei5L0/M4WFrDq99n8+r32QzrH8rlkxKYl5rAoMggLzdCegKn00llnb1VYtQyOTraa9S0z9ze4GZmFBboR3SIH0OC6xkSVEW8fyUD/Srobymnn1FGpKOMcHsJwfU2AmqL8asppr6+Dr/AELBYcVr8cRh+OC1+OAx/nBY/7IYVh+GHwzBf2w0/HJivG7Bix48Gw0oDfjRgbmtwWqnHSr3TQgN+1Dmt1DktNDit1Dot1Dmt1Dut1DrM17UOi/lwms81Dgu1divVDgu1DoNau4Uqh4Uau4Vqu7nfjvkzwMDphDq7gzo74OJyJ0WDA7n2PLfe7g5TMiVdY8BouOoVyN9kJlW7P4X0l2HzGzD5V3DabRCuUvbSQ5UfIrA8G2qGQkhUr6hiKe7raJVa8ZKm9aay14DT9Wqhw/qH8f/OG81t54xizd4i3knPZfmWg+w9UsljK3by+Cc7OW14LFdMSuDcsYMIDtDvs7eorrO3SYBaDatrTIaak6PKeursrv8bA3NucXRIADEhfsQH15EQUMlg/0oGWCuINcqIpoxwh43QBhtBdSX41xRhqSqCqiKoru/wzwkAqDn63936X6uVNgE6DStYzcTPafHHaVjN14Yfjsbk0GExk0EHjcmgYaXB8MNuBFAQfw4w16thK5mSrhWXAj9fAtnfw8q/woFVsPb/zMRq6o3msMCQfr6OUuTEnE44uBl2Loddy7Ee3Mx4gK8A/xAIHwRhg8zn8MHmFwXhg1tvDwxX0tWLdaRKrXjJoAkQEAY1pXB4u9uXsVoMThsRy2kjYnno0nEszzzE2xtyWXegmFW7C1m1u5DwQD8umjCYyyclMDkpWsMAu5nCilr22+qp3FNIaY39mOSovk3SVOvGUh0AgX4WYkIDiGpMjuKCa0nwr2SQXzn9LRWNvUalhNlthNSXEFBXgrWqCKoKoaQQit0o3R0QDqExEBJrzldvfh3bvM0eFMXOXbsZNWIYVhxgrwdHPdgbGp/rwdFgPrrDPtr22BlOOzTYcff/rDCjBrjJzbM7RsmU+EbidLj2A9j3Faz8b8jbAN/9A354ySxeMf13EBTh6yhFjqqvgf3fwM6PYdcnUJ7fvMuJgcMvBGtDJdRXQfE+83Ei/qHtJ1nHJl+BWhi6JwoNDeW+++7jvvvu83UofY/VD4ZMhb0rMbJXg/+UTl8yPMifn0wZwk+mDCG7qIp30nN5Jz2X3JJq3lifwxvrczglJoR5aQnMS4snITrEAw0RV9Q22NmSV8bG7BI2ZttIzy7hYGlTl0xRh68TYLUQHepPdEhjBdoQK/GBNWavkaWcWEs50c5SIhylhNrNXiO/6iKoLDSTI1sxON1IjgIjWiRCsRASYz6H9m/c1iJxCokB/w4MNbXbqT5sQHwK9IQecYfdzQSt3jz3mH0OewPZNQMZ5+WwlUyJ7xgGDJsLQ8+AXSvMnqqCLfDVI7D2OTjtDzDlBgjQTUl8pOKwmTjtXA77vjQTpSb+oea/31EX4Bh2Npt255EydgTWqiNQUQDlB6G86fkQVBwyn8sPQW0Z1Fe6kHQNavEYDGEtkq3wQUq6RI6VNBP2roSs1TC888lUS4kxIfzxnJHcetYI1h0o5p0NuXyceZADRVU88dkunvhsFzOGxnD5pAQuGD+I0EB91PI0p9NJfmkN6VlHE6dt+WVthtxZDIgItDAgMqR5aY7oYCvxAdUM8qugv6WMfkY5Uc5SwhpKCakvxq+2GKOyRa9RfrFbw0UJijympyi2nWSp/9HXfr2jHH+nWKzmw0PvhdNup37TJo9c60T0f7j4nmHAqAtgxHmw7V348n+gaA989mdYsxBm3wGTrtUfGvE+pxMOb2scvrcCcn+g1bCDiHgYeb757/WU2Ue/GbTbgTwICIXgiJNXqqyrPJpYtUyyyg+ZyVdFwTFJ117zcSIBYe0nWccmX4FhnXmHRHqGRHPelJHzPQz7vVd+hMViMH1oDNOHxvDgpeNYseUQ76TnsnpvEWv2mY8/v7eFC8YP5vJJ8Uw/NaZPrfHjSTX1djLzStmYXUJ6lpk8HS5vW4ouNiyA1MRo0hLCmBOwk+El31KZv4Mo/3qMqiIzOaouob3hZCcVFNWipyjmmCTpmG0hMeAX0Ol2S8+gZEq6D4sFxl8OYy41S6l/vQBs2bD8/8HqJ2HOnTDxv8whHCKe0lAHWd/CzhWwa7n5b66lwSkw6kIYdb45F8MTcyICQs2Ey5WkqznJOtg6+aooMJOuugooruhY0tUqyRrUOgFrntOlpEt6sPhJYA3AqCggsDIPSPXqjwsJ8Gsc4pdAnq2ad9NzeXtDLgdaDAmMjwrm8rR45qUlcEpsqFfj6cmcTie5JdWkZ7fudTq2Ap6fxWBsXASpQ6JIS4omNSGSIeUbMba+Dhveh8ojQGMBhvYE92uRELWce9TOELuQfmD1927DpcfSp1Lpfqx+Ztn05Csh/T/wzf9CaQ68P9+cV3XG3TBunpl8ibijqtisKLlzOez5AurKj+7zC4JT55i9TyPPh4jBvouzo0lXbcXR3qz2hhU2PerKzaSraI/5OOHPDj9mTtexvV6NyZiSLumO/IPMhCp7DdH5X4Hj/C6bMxIfFcz8M0dw89zhpGeX8PaGPD7cnE+erZonV+7hyZV7mHJKNJenJXDhhMFEBPXtD+lVdQ1k5JY2J04bs20UVrTtdeofHkhaYhRpidGkJkaTHB9JsL8FctfDllfhi2Xm378mwdE4Rv+I3PooEkamYAkfcLQnKbifvpgVj9G/JOm+/AJg6g2Q8nP44UVY9YT5AfCdX5uvz7zX7DFQ9STpiMLdZvGInSsg5/vWY+BDB8DI88x/T0PnmElMTxIYZj46nHQdbH9YYdM8r7py81FU3qGkyxI+iITIFEh5zmNNEum0pFmQvYb4nS/h/NtSGHEujL4Qhp3VJQWODMNgUlI/JiX144GLx/LptgLe2ZDLqt1HWH+ghPUHSnjg/a2cP34Ql6clMGt4LNZePgzQ6XSSVVTVqtdpx6Fy7Mf0OvlbDcbGRZKWGGUO20uMIj4q2KyW6HRC/kb4ailsXWZ+2dokMBLG/Mj8wnXoHJxYOLJpE/HjUnpGAQbpkZRMSfcXEAIzb4FJ18H3z8Lqp+DwVnjjZ+Y3j2feB0PnKqmS1uwNZtK0c7n5OHb428DxjfOfLoS41L7R09nhpKvcTKpa9W4dPDqssOl1XQXUlWMUlRNTdtCstKQPLNJdTP8tjvJD2Ld9gH+NDTLfMh/WAHPO4+gLYeQFEBnv9VCC/K1cMjGOSybGUVBWw7sb83hnQy67D1fw3qZ83tuUz6CIIC5Li+fytASGD+gdPb6VtQ1szrGxMcdmFovIsVFcWdfmuEERQaQlNfU6RTEuLpIg/xZ/S5xOs0DVlqWwdSmUHDi6LyDM/Ds+fh4MO7P1/Gq7G1X1RFykZEp6jsBwmPMnmHK9mVCt/T+zpPorl5nfQJ55PyTN8HWU4ks1pbDnc7P3afenUGM7us/iD6fONj88jTofohJ9Fma3FxhuPmKHn/i4xqTLXprHtvxKxll0S5FuJDQW58VPkpFwLSkx9Vh3L4cdH5tfrOz9wnx8dLs5L3L0RebQ3oHjvf7F3MCIIG6aM4zfnD6UjNxS3knP5b1N+Rwqq+HZr/by7Fd7mTgkiismJXDJhDgiQ3rGMECn08m+wsrmHqf0rBJ2FZRzTKcTAVYL4+MjmofrpSVFMTgyuP2LHt5hJk9blkLR7qPb/YLNv+Pj5sGIc8D/OOeLdAHd+aTnCekHZz8A039rDvf74UXI+g7+dT4MP9vsqYrz7mRj6UaK95uV93YuN/8dOBqO7gvuZw7fG3m++Y2l1i7zrKakK/pU6m2bfB2NSPsMKyROglNnwbl/hSO7Gof8fgw56+DgJvPx5cMQmWgmVaMvNL+k82LRAcMwmDgkiolDorj3ojGs3H6Yd9Jz+XLnETbn2NicY+O/P9jGOWMHcvmkeE4f0R8/a/fpQS+vqWdTjq05edqUY8NWVd/muPioYFJbDNcbGxdBoN8JerCL9h7tgTq87eh2a6CZOI2fZ/5N72nDsaXXUjIlPVfYALhgAcycD988DhtfNXsl9nwOYy6GuffCgDG+jlI8zWE3S5bvWm72QB3Z3np/7MjG4hEXmAt3WjTsTERa6D/SfJz2hxZryX0Me7+E0mxY95z5CIw0P7yPvtD8oi4o0mshBfpZuSB5MBckD+ZIeS3vbcrjnfQ8th8s46PMg3yUeZDYsEAuS43j8kkJjB7UtV8MORxO9h6paFUkYtfhcpzH9DoF+lmYkBDZPFwvNTGagREdWFy2JOtoD9ShjKPbLf4w/CyzB2rUBfpCTLolJVPS80UmwMX/hFm3wlcLIOMt2P4BbP/QrAh4xl0nnyMi3VtthbkA564V5gefqsKj+wyruUBnU/U9/a5FpKPCBkDa1eajrgr2fQU7PzK/qKkqhC1vmw+LP5xy2tHhgJEJXgupf3gg188eyvWzh7I1v5R3NuTx3qY8CitqeX7Vfp5ftZ9xcRHmMMCJccSEeX4NxtKqejbmlLTqdSqvaWhz3JB+wWbi1FiefPSgCAL8Oth7VpoHW981k6i8DUe3G1azENC4eWYxieBoD7VKxDuUTEnv0W8ozFsEp/3RXPh3+/vmZOMt70DqL8z5Vl68AYqHleYeHb63/xuwt5i0HBgJI842Jx0PP0s3WxHpvIAQsxdq9IVHe8B3fmT+DSrcBfu+NB8f32GuOdeUWHlq/bl2jIuLZFxcJHdfOJqvdh7hnQ25fLGjgK35ZWzN38bDH21n7ugBXDEpgbmjBnQ8kWnB7nCy+3C5mTg1FonYc7iizXHB/lYmJEQ2D9dLSYxiQHgHep1aKi+Abe+ZCVT2mqPbDYs5rHL8PBhziVm+XKSHUDIlvc+AMXDVK2bp1JUPw57PzPWqNi+Gyb+C2beb30ZK9+JwmPMWdq0wh9wcymy9P/pU84PLqAsgcYYWUBQR77FYIXGa+TjnISjcczSxyv7eHIp2KAO+egQihxz925R0mrmsh4f5Wy2cM3Yg54wdSEllHe9vzued9Fwyckv5bFsBn20roF9oAJdMjOOKSQmMi4swy4i3o6Syjk05jUUiskvYnFNKRW3bXqdTYkKaE6fUxGhGDwp3b85WZRFsf88cwpf1XetlKRJnmD1QYy8117UT6YGUTEnvFZcKv3gbstbAyr9C1rdmBcD0l2Hab2Dm781iFuI79dWw7+uj858qDrXYacCQaWbFppEXQP9RKn8vIr4ROxxibzWHk1cWtphntdJc52jdIvMRGGHOsxrVOM8qOMrjoUSHBnDtzFO4duYp7Coo550Nuby7MY/D5bX8e/UB/r36AKMGhnPFpAQuHD+Q/bZ6tq3NZmNuKZuybewrrGxzzdAAKxOHRJHauChuypCozg0frC4xh9pvXWr+jXe2KFEeP9nsgRr74y4pSy/ibUqmpPdLmgHXfWiOhV/53+bY7G//DutfhBnzzaqAmtTadcoLGuc+rTAnfDdUH90XEGZW3Rt1gbnApoZ6iEh3ExoLqT83H01fCDXNs6o8bA4t3/IOWPzMoWtNwwG9sBzDyIHh3H3hGP7feaNYtaeQdzbk8um2AnYWlPPwx9t5+OOmAj1Frc4b2j+U1CFmWfLUIdGMGhTe+QWDa8rMBHPLUjPJdLSo7Dd4otkDNe4yiE7q3M8R6WaUTEnfYBgwbC4MPcMcpvHlw+YCgF/9j9lbddofYeoNWqvCG5xOKNhqvu+7lreeaAwQkdA4ROZ8cyFNP89PphYR8Qr/xvWORp1vDlXO23B0OOCRHbD/a/Ox/E8wMNmcjzXqAnNtKw/2tPtZLcwdNYC5owZQWl3Phxn5vLMhl/RsG8F+BmlJ/ZiUZK7rlDIkiuhQDw1FrKs027r1Xdj9Gdhrj+4bMA7GX2YmUSoMJL2YkinpWwyjcdX782Hbu2ahiqI98Nn9sGYhnH4HpF3rlTHvfUpDLRz4tjGBWmEOg2kpLs0cBjPq/C5ZJFNExOssFhgyxXyc/RdzvaSdHzfOs1oDBZnm4+tHISL+6DyrU0736D0nMtifn09L4ufTkiipqGH3ji1MSk3F+v/bu/Oops78f+DvhKACKouIeFxGQYksKW4QN6riimJxt7/fHHDcqYVxRB1rbafguI715xQcRIpVtB5Hq+hXLdXWpUf7rUTF0VIExXWEKiKCgMiW3N8ft4lEomKAROH9Ouce7HMvyfMkIe9+7n3uvRb1dJuIyqfiTdF/TRKnO1afXeDoJhZPXhPFqdlETQCLKWqapFLAaxLgHgT88m/gx3Xi/UWSFwP/Gw0MWQq88z5gwT+R2rIofwzJ5X8DWUfFKR4V1a4GJbMSjwrKA8Sb6LZyNls/iYhMoo0rMCBcXJ7kA1m/n2d1/SRQlAOcTxCXZq2eXZ20+4h6vTppaytLWNTHzqqqcvF7/df9YnFY/fvdvqtYPHlOBNp5cucYNTn8P0Vq2ixk4mXTFVPEC1OcXi8WVf/zoXhe1ZBlYkBI35y7zpucIADlReLNLUtyf18eAMX3dW3S4nvwfpAJCapdpamls1g4yQOAroPFyw4TETVFNm2Anv9XXCrLxKl/2qNWJbm/32/pwLP75vUYKxZX5jy/SF0png+WniReTKL88bN1tp3E85+8Jtb7lEWitw2LKSJAPE/Hdw7Q84/insKfNorT//bPEv89dLlYFDSmwKgq/70Y0hZJ96v9+7nCqarspQ+lfVWEdgpItOc/te/VtItQIiJDLFuIO5rcRgFjN4q38bj6LZCZDORlALfPiMvRj8TzjnqMEQur9j0b/jtVoxaf+9ckIOMw8PTRs3Wt2osFlOdEoGPfxpWHRHXAYoqoumbWwMA/A33+BKRsBs5uEi9U8e//A3ToA/h/ArgMfXNDRKMRw09bCBXnGi6OSnKBssLXe+zmtuL9uVq2q/FTbdMW6Q/U8Ow/sv7m5RMRNXZSKdCxj7gM+xvw6KZ4tOrqd8Cdn4EH6eJyer1YzMgDAPlYoGs9XqxHoxHP6UpPEm+o+yTv2TqbtuI9oDwniveE4g4yohpYTBEZ0qK1eN6U7xzg52hAtUW8StPOCeJNGYd9CnTuZ7r+lJdUK4TuGy6OtEeZqt/P41UsmhksjvQXJ3F52ZUO1WpUFl+q8zCJiJo0Bxeg/4fiUvpIvNDD1WTg+gmg+B5w4StxadYS6Dbs9/OsRr7+PRMFAcg+Lx6BunJQfGwtK3vA/T1xCt8fBvHcYaJX4F8I0ctYO4hXZVJ+APz0/8QQu/MT8NUooNsIwH+5eHNgY6grxT2AxS+ZXqf9WVnzJosv77ej4SKplbN+Wwu7N/coGxFRU2btAHi/Ly6VZeL0O+15VsX3xKNIV/7n2XlW8gCxuHLoavjxBEGcUpieBKQf1L/KanNbwD1QPALlMhiwsDTJEIkaAxZTRLXRqh0QsE68ye/p9cB/vgau/yAu7uOAdz8StxMEcW9ijYLo+SNIuUBp/suf83nNWr5gmp2zfpuNI4OQiKgxsWwhXumv+whgzAbg3iWxsMpMFqcBas+zOvYx0Nb99/OsxgLO78Cq6AYkJ4+ItwMpuPXsMZu1FIsvr4nizdJ5jz8io7CYInoddp2A96KBgQuAH9cCad8AGYchzTgCRQtHSL8t1L/r+6tIZYCN06uPINk4Ac1bNtiwiIjoLSGVAh16i4v/J0DB7d/Ps0oGbv+veBGLvAzgzAZIm7WER/XLmFtaixe+8JwoFma8UT1RnbGYIjJGG1dg0peAXwRwahUkGYfRrKzaSbtW9q84B+n3f1vZ84ReIiIynn0XoN8H4vK0AMj6QSysso5DUlEMjdQSku6jIFFMFG9Y38zG3D0malRYTBHVhZM7MO1rqB9cw7W083DrNQgWrZ05XYKIiEzPyh54Z6q4VJVDff9X/JL9BO/4DOSVVokaCHeJE9WHNq4otesB2HZkIUVEROYnaw607wmNJY9EETUkFlNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREZgMUVERERERGQEFlNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREZgMUVERERERGQEFlNERERERERGYDFFRERERERkBJm5O/CmEAQBAKBWq436fe3vGfv7bzuOn+Ov/rOp4fjrNn7t72m/h+kZZlPdcPwcf/WfTQ3Hb5pskghMLwBARUUF0tLSzN0NIqImS6FQoFmzZubuxhuF2UREZF6vyiYWU7/TaDSoqqqCVCqFRCIxd3eIiJoMQRCg0Wggk8kglXL2eXXMJiIi86htNrGYIiIiIiIiMgJ3ARIRERERERmBxRQREREREZERWEwREREREREZgcUUERERERGREVhMERERERERGYHFFBERERERkRFYTBERERERERmBxVQtJCUlQS6X6xYPDw8MGjQICxcuxO3bt/W2vXDhApYvX46JEyfCy8sLcrkc2dnZ5ul4Pant+NVqNbZt24ZZs2bh3Xffhbe3NwICAvD555+jqKjIfANoIM+/Ls8vKpXK3F002tGjRyGXy5GcnFxj3XvvvQe5XI4zZ87UWDd8+HBMmDABAHDq1Cn89a9/xbhx4+Dp6Qm5XN7g/a4vdR1/SUkJNm/ejODgYAwcOBC9evXCuHHjEB8fj/LyclMMoU7q4/3fuHEjxo8fD19fXygUCgwbNgyffvopcnJyGrz/TQWzidlkCLOJ2fQ8ZlPDZpPM6N9sgtasWQMXFxeUl5fj4sWLiIuLg0qlwnfffQdbW1sAQEpKCs6ePQt3d3fY2Njg3LlzZu51/XnV+MvKyhATE4PAwEBMmTIF9vb2uHLlCjZv3oxTp05h//79aNGihbmHUe+0r8vzunXrZobe1A9fX19IJBKkpKRgzJgxuvbCwkJcu3YN1tbWUKlU8PPz0627f/8+7t69ixkzZgAAfvjhB1y+fBnu7u6wtLREenq6ycdhrLqO/7fffkNiYiKCgoLwpz/9CdbW1khNTcWmTZvw888/Y9u2bZBIJOYYWq3Ux/tfVFSEsWPHwtXVFTY2Nrh+/To2b96MkydP4siRI7C3tzf5uBorZhOzyRBmk4jZxGxq6GxiMfUaunfvDoVCAQBQKpVQq9WIiYnB8ePHMWnSJADA/PnzERYWBgDYunVrowqsV42/RYsWOHHihN4HUalUon379liwYAGOHTuGoKAgc3W/wVR/XRoLBwcHdO/evcbn9/z585DJZJg0aVKNvZspKSkAxPccAFauXAmpVDz4vWLFircqsOo6/o4dO+LkyZOwtrbWre/fvz+srKzwj3/8A6mpqejbt2/DD8RI9fH+f/bZZ3rrta/L3LlzceLECUyePLkBR9C0MJuYTYYwm0TMJmYT0LDZxGl+daD9ksrPz9e1af9Am4Lnx29hYWGwon/nnXcAiHsH6O2hVCpx69YtPHjwQNemUqng5eWFwYMHIz09HSUlJbp1586dg4WFhe6L+G3/W6jL+K2trfXCSutt+luo6/tviIODAwBAJuN+vIbEbGI2NWbMJmbTm5ZNb/cnysy08827dOli3o6YSW3Hr90r8DZPLXgZjUaDqqoqvUWtVpu7W3XWr18/ANDbA6RSqeDr64vevXtDIpEgNTVVb52HhwdatWpl8r42hIYY/9v0t1Bf46+qqkJZWRmuXLmC1atXo0uXLhgxYoRpBtFEMZuYTQCzqfo6ZhOzqSGzicXUa9B+MT158gRnzpzB5s2b4ePjA39/f3N3zSSMGX9ubi42bNgALy8vDB061IS9NZ2pU6fC09NTb2kMUyt8fHwglUp1X1gFBQXIysqCj48PbGxs4OHhofsCvnfvHrKzs3WH0RuD+h5/ZmYmEhISMGLECPTo0cMkY6iL+hh/Xl4ePD094e3tjQkTJkCtVmPHjh2wsbEx+XgaM2YTs8kQZhOzidlkmmziXIvXMHXqVL3/dnV1RWxsbJOZsvK64y8sLMScOXMgCAL++c9/vvWH1l9k3bp1cHV11Wt7k0/grC1bW1v06NFDN//4/PnzsLCwQO/evQGIX2jaLyztNo0psOpz/NnZ2QgNDYWzszNWrlxpgt7XXX2M397eHvv27UNFRQVu3ryJhIQEhISEYOfOnXBycjLhaBo3ZhOzyRBmE7OJ2WSabGqc3yANZN26ddi3bx8SExMxbdo03LhxAxEREebulsm8zvgfP36MmTNnIjc3F1999RU6depk4t6ajqurKxQKhd7i5eVl7m7VC6VSidu3byM3NxcqlQqenp66PTe+vr7IyMhAcXExVCoVZDIZ+vTpY+Ye16/6GH9OTg5CQkJgYWGBxMRE2NnZmXgUxqvr+GUyGRQKBfr06YMpU6YgMTER2dnZiI+PN8dwGi1mE7PJEGYTs4nZZJpsYjH1GrRfTP369cOKFSswZcoUnDlzBkePHjV310yituN//PgxZsyYgezsbGzbtu2tOGxMhmn35pw7dw7nzp2Dj4+Pbp32y+n8+fNQqVRQKBSNbvpWXcefk5OD4OBgAMCOHTvg7Oxsop7Xj/p+/52dneHk5FTjHkhUN8wmZlNTw2xiNgFvTjaxmKqDJUuWwNbWFtHR0dBoNObujskZGr82rO7evYutW7fCw8PDzL2kuvDx8YGFhQWOHTuGrKws+Pr66ta1atUK7u7uOHjwIHJychrVNAqtuoz/t99+Q3BwMDQaDRITE9GhQwdTd7/O6vv9v3PnDu7fv48//OEPDdntJo/ZxGxq7JhNzKY3KZuaxoTqBmJra4u5c+di/fr1OHz4MIKCgvDo0SPdSXHXrl0DAJw+fRoODg5wcHDQe8Pfds+Pf9SoUZg1axauXLmCjz/+GGq1GpcuXdJt7+DggM6dO5uvww0kKyvL4BWSOnfurLvc5tuqZcuW8PDwwPHjxyGVSmscKvfx8UFiYiKAmnOSc3JykJaWBgD473//CwC6PcUdOnR4K06ENnb8+fn5CAkJQV5eHlatWoX8/Hy9y1Q7Ozu/FXsCjR1/ZmYm1qxZg1GjRqFTp06QSqW4du0atm/fDjs7O8ycOdOk42hqmE3MJoDZxGxiNgGmySYWU3UUHByMXbt2ITY2FoGBgcjKysKCBQv0tomKigIgzuPcuXOnObrZYKqPv1evXrovqFWrVtXYdsKECVi7dq2pu9jgli1bZrB95cqVmDJliol7U/+USiXS0tLg7u6Oli1b6q3z8fHB9u3bYWlpiV69eumtU6lUNV4b7d/G2/RZMGb8169fx927dwGIe8mfFxYWhvDw8IbteD0xZvyOjo5wcnLCtm3bkJeXh6qqKjg7O2PIkCEIDQ1F+/btTT2MJofZxGxiNjGbmE2mySaJIAhCnUZDRERERETUBPGcKSIiIiIiIiOwmCIiIiIiIjICiykiIiIiIiIjsJgiIiIiIiIyAospIiIiIiIiI7CYIiIiIiIiMgKLKSIiIiIiIiOwmCIiIiIiIjICiykym6SkJMjlct3i4eGBQYMGYeHChbh9+7a5uwcAiIuLw/Hjx2u0q1QqyOVyqFQqM/RKdPLkSYSGhmLAgAHw8vKCr68vpk+fjkOHDqGystJs/Xqeodfqo48+gr+/f4M+b25uLmJiYpCRkdGgz0NEjQuzqW6YTS/HbGp8ZObuANGaNWvg4uKC8vJyXLx4EXFxcVCpVPjuu+9ga2tr1r5t2bIFo0aNwvDhw/XaPT09sWfPHnTr1s3kfRIEAR9//DGSkpIwePBgfPTRR2jfvj2Ki4uhUqkQFRWFgoICTJ8+3eR9q6358+cjJCSkQZ/jwYMH2LRpEzp06AB3d/cGfS4ianyYTa+H2VQ7zKbGh8UUmV337t2hUCgAAEqlEmq1GjExMTh+/DgmTZpk5t4Z1rJlS/Ts2dMsz52QkICkpCSEh4cjLCxMb52/vz9mz56NO3fumLRPZWVlaNGiRa2379y5cwP2hoio7phNr4fZRE0Vp/nRG0cbXvn5+XrtaWlpCA0Nha+vLxQKBcaPH4/k5GS9bR49eoTIyEiMGTMGvXr1Qv/+/RESEoILFy7UeJ6Kigps2rQJAQEBUCgUUCqVCA4OxsWLFwEAcrkcpaWlOHDggG66R3BwMIAXT6U4ceIEpk2bBm9vb/Tq1QszZszAf/7zH71tYmJiIJfLkZWVhYiICPTp0wcDBgzAsmXLUFxc/NLXprKyEgkJCXBxccGHH35ocJu2bduib9++uv8uLCxEZGQk/Pz84OXlhWHDhmHjxo2oqKjQ+73y8nJs2LAB/v7+8PLygp+fH6KiolBUVKS3nb+/P+bNm4fvv/8e48ePh0KhwKZNmwAAN27cwKxZs+Dt7Q2lUom//e1vePLkSY0+GppKIZfLsWLFChw8eBABAQHw9vbGe++9h1OnTultd+fOHSxbtgwjR46Et7c3/Pz8EBoaiqtXr+q2UalUmDx5MgBg2bJluvcvJiZGt01tPk9ERFrMphdjNjGbmjIemaI3TnZ2NgCgS5cuuraUlBTMnj0b3t7eiIyMRKtWrZCcnIyFCxeirKwMEydOBCB+OQNAWFgYHB0dUVpaih9++AHBwcHYvn07lEolAKCqqgqzZ89GamoqQkJC0K9fP6jValy+fBn37t0DAOzZswfTp0+HUqnE/PnzAYh7/V7k8OHDWLx4MQYNGoQNGzagoqICCQkJuueuHiIAEB4ejjFjxmDy5Mm4du0aNmzYAECcWvIiv/76KwoLCzFlyhRIJJJXvpbl5eUICQnB3bt3ER4eDrlcjgsXLiA+Ph4ZGRmIj48HIE7PmD9/PlJSUjB37lz07dsXV69eRUxMDC5duoQ9e/agWbNmusdNT0/HjRs38MEHH6Bjx46wsrLCw4cPERwcDJlMhs8++wxt2rTB4cOH8fe///2V/dT68ccfkZaWhj//+c+wtrZGQkICwsLCcPToUXTq1AmAOEXCzs4OixYtgoODAx4/fowDBw5g6tSpOHDgAFxcXODp6Yk1a9Zg2bJl+OCDDzBkyBAAgLOzM4Daf56IiLSYTcwmZhMZJBCZyf79+wU3Nzfh0qVLQmVlpVBSUiKcPn1aGDhwoPDHP/5RqKys1G07evRoYfz48XptgiAI8+bNEwYOHCio1WqDz1FVVSVUVlYK06dPFz788ENd+4EDBwQ3Nzdh7969L+1jz549haVLl9ZoT0lJEdzc3ISUlBRBEARBrVYLgwYNEgIDA/X6UlJSIvTv31+YNm2ari06Olpwc3MTvvzyS73HjIyMFBQKhaDRaF7Yn2+//VZwc3MTdu/e/dJ+a+3evVtwc3MTkpOT9drj4+MFNzc34aeffhIEQRBOnz5tsE/a59uzZ4+ubejQoYK7u7tw8+ZNvW3Xr18vyOVyISMjQ699xowZeq+VIAjC0qVLhaFDh+pt5+bmJgwYMEAoLi7WteXl5Qk9evQQtmzZ8sIxVlVVCRUVFcLIkSOF1atX69p/+eUXwc3NTdi/f3+N3zH280REjR+zidlUHbOJXoXT/Mjspk6dCk9PT/Tu3RuzZ89G69atERsbC5lMPHB6584d3Lx5E+PGjQMg7rnTLu+++y7y8vJw69Yt3ePt3r0bEyZMgEKhgIeHBzw9PXH27FncuHFDt82ZM2fQvHnzepv3fuvWLTx48ABBQUGQSp/9WdnY2GDkyJG4fPkynj59qvc7hqYSlJeX15hCUhcpKSmwtrbG6NGj9dq1e7fOnj2r2656u1ZAQACsra1121Xva9euXfXaVCoVunfvjh49eui1BwYG1rq/SqVSbw+ro6Mj2rRpg5ycHF1bVVUV4uLiMGbMGHh5ecHDwwNeXl64ffu23nv8Iq/7eSKiponZJGI2MZvo5TjNj8xu3bp1cHV1xZMnT5CcnIw9e/YgIiICCQkJAICHDx/qtlu3bp3BxygoKAAAbNu2DWvXrsX777+PBQsWwN7eHlKpFF988QVu3ryp2/7Ro0dwcnLSC5e60D5/27Zta6xzcnKCRqNBUVERrKysdO12dnZ622mnKpSVlb3wedq3bw/g2XSTVyksLISjo2ONaRdt2rSBTCbTTT0pLCyETCaDg4OD3nYSiQSOjo667bQMjbOwsBAdO3as0e7o6FirvgI1XxNAfF3Ky8t1/7127Vrs2rULc+bMgY+PD2xtbSGRSPDJJ5/obfcir/N5IqKmi9kkYjYxm+jlWEyR2bm6uupO7O3Xrx80Gg2++eYbHD16FKNHj4a9vT0AYN68eRgxYoTBx9DuiTp06BB8fX0RFRWlt/75E00dHByQmpoKjUZTL6Gl7WNeXl6NdQ8ePIBUKkXr1q3r/DxeXl6ws7PDiRMnsGjRolfOTbezs8Ply5chCILetvn5+aiqqtL1287ODlVVVXj06JFeaAmCgIcPH+reHy1Dz2tnZ6cLg+oMtdXFoUOHMH78eEREROi1FxQU1Oo1fp3PExE1Xcym2mM2MZuaMk7zozfOkiVLYGtri+joaGg0Gri4uKBLly7IzMyEQqEwuGgPv0skEr2TUQEgMzMTly5d0mvz8/NDeXk5kpKSXtqXZs2avXRvnFbXrl3Rrl07HDlyBIIg6NpLS0vx/fffo2fPnnp7/oxlaWmJ2bNn4+bNm/jXv/5lcJv8/HykpqYCAPr374/S0tIaN3c8ePCgbn31n4cOHdLb7tixYygtLdWtfxmlUomsrCxkZmbqtR85cuTVA3sNEokElpaWem0//vgjcnNz9dpetDf1dT5PRERazKYXYzYxm5oyHpmiN46trS3mzp2L9evX4/DhwwgKCkJUVBTmzJmDWbNmYcKECWjXrh0eP36MGzduID09HdHR0QCAIUOGIDY2FtHR0fDx8cGtW7cQGxuLjh07Qq1W654jMDAQSUlJiIyMxK1bt6BUKiEIAi5fvgxXV1eMHTsWAODm5oZz587h5MmTaNu2LWxsbODi4lKjz1KpFEuWLMHixYsxb948TJs2DRUVFdi6dSuKioqwaNGient9tIEVExODtLQ0BAYG6m6MeP78eezduxfh4eHo06cPxo8fj127dmHp0qXIycmBm5sbUlNTsWXLFgwePBgDBgwAAAwcOBCDBg3C559/jpKSEvTu3RtXr15FdHQ0PDw8EBQU9Mp+TZ8+Hfv378fcuXPxl7/8RXfFpOpTWOrDkCFDdFdGksvlSE9Px9atW3VXQ9Lq3LkzWrRogcOHD8PV1RXW1tZwcnJCu3btav15IiLSYja9HLOJ2dRUsZiiN1JwcDB27dqF2NhYBAYGol+/fvjmm28QFxeH1atXo6ioCHZ2dnB1dUVAQIDu90JDQ/H06VPs27cPCQkJ6NatGyIjI3H8+HGcO3dOt51MJsOXX36JLVu24Ntvv0ViYiJsbGzQo0cP+Pn56bZbvnw5oqKiEBERgadPn8LX1xc7d+402Odx48bBysoK8fHxWLhwISwsLODt7Y0dO3agd+/e9fbaSCQSrFmzBsOHD8fevXt1r4e2/4sXL9adrNu8eXPs2LEDGzduREJCAgoKCtCuXTvMnDlT76aKEokEsbGxiImJQVJSEuLi4mBnZ4egoCBERETU2KNqSNu2bfH1119j1apViIyMhJWVFYYPH45PP/1Ud/ne+rB8+XLIZDLEx8ejtLQUHh4eiImJwRdffKG3nZWVFVavXo1NmzZh1qxZqKysRFhYGMLDw2v9eSIiqo7Z9GLMJmZTUyURqh/3JSIiIiIiolrhOVNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREZgMUVERERERGQEFlNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREb4/8ogsSB++ZNgAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHbCAYAAAD8lMpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgg0lEQVR4nOzdeXyU5bn/8c8zk33fFwIJEHYIhEVWAXEBW2ytdT1tXU+ttkI91bZqq8fq71Stra1HoBaOWncqtoo7LrhRQTZZwg4BwpIFsu/bzPz+eDIhIQnJJJNMJvm+X695zeRZZq570Ny5nue+r9twOBwOREREREREpE0WTwcgIiIiIiLS2ylxEhERERERaYcSJxERERERkXYocRIREREREWmHEicREREREZF2KHESERERERFphxInERERERGRdihxEhERERERaYcSJxERERERkXYocRIREREREWmHEifxWidOnGDkyJHce++9ng5FRERE/ZJIH+fj6QBEAEaOHAnAgAEDWLNmDf7+/i2OufDCCzl58iS7d+/Gx6fz/+k6P8tisfDJJ5+QlJTU6nHf/va3yczMBODvf/87M2fObHFMRkYGr776Kps2beL06dP4+PiQlJTE+eefz0033UR8fPw5Y2jLo48+yve//30A3njjDe67775zHm+xWNi7d2+b+1evXs0999wDwP/8z/9w9dVXn/P93CkzM5NXX32VjRs3kpOTQ01NDREREYwZM4ZLLrmE7373u63+e3f2uxURcQf1S831hX7J2cb9+/e3eYzz33Tt2rUMHDiw05+lPqxvUuIkvUp2djYvvPACP/nJT9o9Nj4+nvfff5/Q0FCXP8fHx4f6+nreeOMNFi9e3GL/1q1byczMbDzubA6Hgz/96U8888wz+Pj4MHPmTC699FLq6urYtm0bzz33HCtXruSxxx7j0ksvbTOORYsWtbp99OjRzV63ddyWLVv4+uuvmTNnTpufkZOTw//8z/8QFBREZWVlm8d1h6VLl7Js2TLsdjvp6elcccUVBAcHk5+fz5YtW7j//vtZuXIlb7zxRuM57vpuRUTcQf2Sqa/0S91NfVjfpsRJeo3w8HAMw2D58uVcddVVREVFnfN4X19fUlNTO/VZ0dHRxMTE8MYbb3DHHXdgsTQftfrPf/4TX19fZsyYwZdfftni/GXLlvHMM8+QlJTE8uXLGT58eLP9H374Ib/61a+46667CA8PZ8aMGa3G0VrneLbRo0c367CauvbaawG45pprWt3vcDi47777iIiI4JJLLuG5555r9/Pc5emnn2bJkiUkJibyv//7v0yYMKHFMV9++SXPPPNMs23u+m5FRLpK/VLrvLVf6gnqw/o2zXGSXiMgIICf/vSnlJeXs2zZsnaP7+pY8quuuors7Gy++uqrZtvLy8tZs2YNF154IdHR0S3OO378OE8//TS+vr48/fTTLX4pAixYsID77rsPm83G7373O+x2e6diPJcDBw6wfft24uPjueCCC1o95sUXX+Trr7/m0UcfJSgoyO0xtOXEiRMsW7YMX19fVqxY0WrSBDBnzpxmiVNv+W5FRED9kqt6c7/UE3rLv4N0HyVO0qv88Ic/JDk5mddee40jR45062d95zvfITAwkNdff73Z9nfeeYfKykquuuqqVs974403qK+v56KLLjrnmPCrr76a2NhYjh49yqZNm9waO8Brr70GmB2t1WptsT8zM5MnnniCG264gfPOO8/tn38ub7zxBnV1dcyfP58RI0ac81g/P79m5/WG71ZExEn9Usf15n6pJ/SWfwfpPhqqJ72Kr68vd999N3feeSdPPPEES5cu7bbPCg0NZcGCBbz33nsUFhY2DsF4/fXXGTBgAOeffz7vv/9+i/O2bt0KwKxZs875/j4+PkybNo13332Xb775hunTp7c4ZsmSJS22JSUlNU7AbUt1dTVvv/02Foul1Qm19fX1/OpXvyIxMZG77rrrnO/VHbZs2QLg8hAEd363IiLuoH6pb/RLTbXWRqfS0tJOv6/6sL5PiZP0OpdeeikTJ07k448/ZsuWLUyZMqXbPuvqq69m9erVvPXWW9x8883s3buX3bt3s2jRohbjy53y8/MBSEhIaPf9ncecOnWq1f2tdcBTp05tt4P64IMPKC0t5YILLiAxMbHF/mXLlrF3715effVVAgIC2o3T3ZzfkatVg9z53YqIuIv6Je/vl5rqruRXfVjfp8RJeqV77rmH6667jj/84Q+sWrUKwzA6fG5rV5KuuOKKVsuKTpkyhSFDhvDPf/6Tm2++mVWrVmGxWLjyyivbfH+HwwHQoZicx7R17LlKop6LcziEcxJuUzt37mT58uXcfPPNTJw4sVPv7+TKd9mUK99RZ89r7btdvnw5H330EUeOHMHPz4/09HTuuuuudocLioi0R/3SufX2fqmpjpQjb6qjfYs7/x2kd1LiJL3SxIkTWbBgAR9++CEffPAB3/72tzt8bltXy9r6pXrVVVfxxz/+kQ0bNvDuu+8yc+ZMBgwY0Ob7x8bGcvjwYXJzc9uNxXlMbGxsB6Nv36FDh9i2bRsJCQnMnTu32T7nUIjBgwfzX//1X13+LFe/S6e4uLgOf0dNdfW73bRpEz/4wQ9IS0vD4XDw1FNPcfPNN/Pee+8RERHhUiwiIk2pX2qbN/RLXdHRvsXT/w7S/VQcQnqtX/7yl/j6+vLEE09QW1vb4fP279/f4jFt2rQ2j7/iiivw9fXl3nvvpbS0tM3Jt06TJ08GYP369ec8zmazsXHjRgAmTZrU4fjb849//ANoffJtZWUlR48eJTMzk7S0NEaOHNn4cHY2999/PyNHjuT3v/99u5/l6nfp5PyOvv76a5fa1tXv9tlnn+XKK69kxIgRjBw5kscff5zCwkK++eYbl+IQEWmN+qXWeUO/1BUd7Vs8/e8g3U+Jk/RaycnJ/Md//AcnTpzg5Zdf7rbPiY6O5oILLiA3N5fIyEguuuiicx7//e9/H6vVyscff8yhQ4faPO5f//oXp06dYsiQIUydOtUtsdbU1DROvm2tI/Xz8+Oqq65q9TFmzBjA/MV+1VVXdXm4xLl8//vfx9fXlw8//PCc3xHQ7I8Pd3+3FRUV2O12wsLCXG+EiMhZ1C+15C39kju11bd48t9BeoaG6kmvdscdd7B69Wr+9re/des44HvuuYfvfe97xMXFNSuP3ZpBgwZx22238de//pXbb7+dv/3tbwwbNqzZMZ988gm///3vsVqtPPjgg21O6HXVBx98QElJCfPmzWt18m1AQECbV+yWLFnCnj17uOKKK1qteOROAwcOZNGiRfzlL3/hJz/5Cf/7v/9LWlpai+OcC+C++OKLgPu/29///veMHj3aazpjEen91C815y39kju11bd48t9BeoYSJ+nVIiIiuO222/jjH//YrZ8zaNAgBg0a1OHjFy9eTFVVFX//+9+5/PLLOf/88xk2bBj19fVs27aNHTt2EBAQwBNPPOHWVcFXrVoFtL0ie29y++23U19fz7JlyxqvJI4bN47g4GDy8/PZsmULR48eZdy4cc3Oc9d3+4c//IGtW7eycuXKVtcTERHpDPVLzXlTv+QO7fUtnvp3kJ6hxEl6vRtuuIFXX321RZUbT7JYLNx77718+9vf5pVXXmHz5s1s2LABq9VKUlISt9xyCzfeeGOHSpJ2VGZmJlu3bm118m1vtWjRIr71rW/x6quvsnHjRt544w1qa2uJiIhg1KhR/PjHP+byyy9vdo47vttHH32U9957jxdeeMGlPzxERDpC/ZLJG/ulruhI3+KJfwfpOYbDWTtRRKQP+J//+R/ef/99XnrpJVJTUz0djoiI9AHqWwR0x0lE+pDf/e53vP322yxbtoywsDBOnz4NQFBQEMHBwR6OTkREvJH6FnHSHScR6TNGjhzZ6vZFixaxePHiHo5GRET6AvUt4qTESUREREREpB0er4FYXl7O448/zi233ML06dMZOXIkS5YsafXYuro6/v73v/Od73yH8ePHM2XKFK677jotbikiIiIiIt3K43OciouLWbVqFaNGjeLiiy/m9ddfb/U4m83GokWL2Lp1Kz/+8Y+ZOHEiVVVV7Nq1i6qqqh6OWkRERERE+hOPJ05JSUls3rwZwzAoLCxsM3F66aWX+PLLL1m5ciXp6emN2y+44IKeCVRERERERPotjydOHV11+8UXX2TKlCnNkiYREREREZGe4PHEqSNycnI4efIkF154IX/+85/55z//SXFxMUOGDOHHP/4xV1xxhUvvZ7fbqa+vx2KxdDhxExGRrnM4HNjtdnx8fLBYPD7NttdQvyQi4jkd7Zu8InHKy8sD4M033yQhIYEHHniA0NBQVq1axb333ktdXR3XXHNNh9+vvr6ejIyM7gpXRETakZaWhp+fn6fD6DXUL4mIeF57fZNXJE52ux2AmpoaVqxYQVJSEgCzZs3iyiuvZNmyZS4lTs5McsyYMVitVpfjsdls7Nmzp9Pnezu1X+1X+9X+rv7+1N2m5pzfR1paWqe/14yMjE6f7+3UfrVf7e+/7YeufwfO89vrm7wicYqIiABg6NChjUkTmPOjzj//fJYvX05BQQHR0dEdej/nMAg/P79Of7ldOd/bqf1qP6j9an/Xfn9qOFpzzu/DarV26b+rrp7v7dR+tV/t77/th65/B+31TV5xyS85OZnAwMBW9znX71UnLCIiIiIi3cUrEicfHx8uuugiDh8+zIkTJxq3OxwO1q1bR3JyMlFRUR6MUERERERE+rJeMVTviy++oKqqioqKCgAOHTrEmjVrAJg7dy6BgYHceeedfPnll/z4xz9m8eLFhISE8Prrr7Nv3z6efPJJD0YvIiIiIiJ9Xa9InB566CFOnjzZ+POaNWsaE6e1a9cycOBAkpOTeeWVV3jiiSd44IEHqK+vZ/To0Tz99NPMmzfPU6GLiIiIiEg/0CsSp08//bRDx40YMYLly5d3czQiIiIiIiLNecUcJxEREREREU9S4iQiIiIiItIOJU4iIiIiIiLtUOIkIiIiIiLSDiVOIiIiIiIi7VDiJCIiIiIi0g4lTiIiIiIiIu1Q4iQiIiIiItIOJU6uOrUXyytXEly0x9ORiIiIAGDs+hepm34D1aWeDkVEpM9S4uSqzM8wDn9G3OF/eToSERERAIyMVUTkfY2x721PhyIi0mcpcXJVzAgAgkoOeTgQERERk6OhbyI3w7OBiIj0YUqcXJU4HgD/ihNQW+7hYERERIAEs28ycnd6OBARkb5LiZOrQuJwhCZi4IC8XZ6ORkREBEdD4kTuLrDbPBuMiEgfpcSpMxLSADA0JEJERHqD6GHYrAEYdRVQeNjT0YiI9ElKnDrBEW8mTmhIhIiI9AYWK1VhQ83XOTs8G4uISB+lxKkTHI1jyXXHSUREeofK8OHmi5ztHo1DRKSvUuLUGYkTzOdTe6G+1rOxiIiI0DRx0mgIEZHuoMSpM8IHUe8bimGvg9N7PR2NiIgIlWHDzBc5O8Dh8GwwIiJ9kBKnzjAMKsNSzde6siciIr1AdehgHBZfqC6GkuOeDkdEpM9R4tRJVc4hESoQISIivYDD6gexo8wfVCBCRMTtlDh1UmW4c0iEEicREekdHA2LtKtvEhFxPyVOndSYOOVmaLFBERHpHZwL4eqOk4iI2ylx6qTq4GQcPoGgxQZFRKSXcC6XoWHkIiLup8SpsyxWiB9jvtaVPRER6Q3ixwEGlOVA+SlPRyMi0qcoceoCXdkTEZFexS8YYrSek4hId1Di1BUJaeazOicREektnIu052z3aBgiIn2NEqcuaHbHSYsNiohIb6DRECIi3UKJU1fEjQHDCpUFUHrS09GIiIg0ueOk+bciIu6kxKkrfAKaLDaoK3siItILOIeRFx2FqmJPRiIi0qcoceqqRA2JEBGRXiQoCiKSzde5GZ6NRUSkD1Hi1FUJWqVdRER6Gc1zEhFxO48nTuXl5Tz++OPccsstTJ8+nZEjR7JkyZJznuNwOPjhD3/IyJEjefjhh3so0jbojpOIiPQ2ienms+Y5iYi4jccTp+LiYlatWkVtbS0XX3xxh8555ZVXyMrK6ubIOsg5lrzkOFQWejYWEREROHNRT4mTiIjbeDxxSkpKYvPmzbz88svcdddd7R5/4sQJnnjiCR588MEeiK4DAsIhcoj5Wh2UiIj0Bs7KevkHoLbSs7GIiPQRHk+cDMPAMIwOH//f//3fzJo1i0suuaQbo3KRhuuJiEhvEpoAwXHgsEPebk9HIyLSJ3g8cXLF66+/zs6dO3nggQc8HUpzKhAhIiK9jfOuU65GQ4iIuIOPpwPoqLy8PP7whz/wq1/9ivj4eLe8p81m69J5jefHj8MKOHJ2YO/ke3qTFu3vZ9R+tb/pc3/T1fb31+/NIxLHw6GPNYxcRMRNvCZxevDBBxk1ahTXXHON294zI6Nr61s4z/epsTIBoOAQO7dswO4T2PXgvEBXvz9vp/ar/f1Zf2+/V3DecdJoCBERt/CKxGnNmjWsW7eOV199lbKysmb76urqKC0tJTAwEF9fX5feNy0tDavV6nI8NpuNjIyMZuc71idglOcyPt4Cg9Jdfk9v0lr7+xO1X+1X+zvffuf50gOcw8hP7QFbHVhd6yNFRKQ5r0icDh48SH19fat3m1atWsWqVatYtmxZh8uZO1mt1i794dPs/MTxcDAX66ndMHhmp9/Tm3T1+/N2ar/ar/b33/Z7hcjB4B8ONSVwet+Z5TNERKRTvCJxuuKKK5g6dWqL7TfccAMXX3wxN9xwA8OHD/dAZE0kjIeDH2ksuYhIH7Bhwwbefvtttm3bRm5uLqGhoYwbN4477riDcePGNR5377338uabb7Y4f8iQIaxZs6YnQ27JMMyLekfXmX2TEicRkS7pFYnTF198QVVVFRUVFQAcOnSoscOZO3cuAwcOZODAga2eGx8fz7Rp03os1japJLmISJ+xcuVKiouLueGGGxg2bBiFhYX8/e9/59prr+WZZ55hxowZjccGBATwwgsvNDs/ICCgp0NuXeKEhsRpJ0z0dDAiIt6tVyRODz30ECdPnmz8ec2aNY2J09q1a9tMmnoV5yTcvD1QXws+fp6NR0REOu3BBx8kOjq62bbZs2czf/58li9f3ixxslgspKen93CEHdRYIEKjIUREuqpXJE6ffvppp87bv3+/myPpgogUCAiH6oax5M47UCIi4nXOTpoAgoODSU1NJScnxwMRdZKzQERuBtjtYPGq5RtFRHqVXpE49QmGYXZQR9eZw/WUOImI9CllZWXs2bOH6dOnN9teXV3NrFmzKCwsJDY2losvvpif//znREREuPwZbltf0ClyKBafQIy6CmynD0CMh+cDdxOtr6b2N33ub/p7+6Hn1hhU4uROzsRJY8lFRPqchx56iKqqKm6//fbGbaNGjWLUqFGNBYo2bdrECy+8wIYNG/jnP/9JcHCwS5/hrvUFmxoZOoSQoj1kbXyHoqQLu/T+vV1/L3Wv9qv9/V13fwdKnNxJBSJERPqkJ598knfeeYcHHnigWVW9m266qdlxs2bNYsyYMfz85z/n9ddfb7G/Pe5cX9DJyJkBW/Yw2L+ElN46F6uLtL6a2q/299/2Q8+tMajEyZ2ck3A1llxEpM9YunQpTz/9NL/4xS/40Y9+1O7xl1xyCUFBQWzfvt3lz3Lr+oJODX2TJXcn9PE/qvr7+mJqv9rfn9sP3f8d6C97d4oeDj4BUFsOhYc9HY2IiHTR0qVLWbJkCYsXL242RK89DocDS2+5eNZ4UW8nOByejUVExIv1kt/qfYTVB+LHmq9zVfpVRMSbLVu2jCVLlvDTn/6URYsWdfi8NWvWUFVVxYQJE7oxOhfEjQaLD1QVQclxT0cjIuK1NFTP3RLGw8mtZoGIcVd6OhoREemE5557jqeeeorZs2dzwQUXtBh2l56ezsmTJ7n77rtZuHAhycnJGIbB5s2beeGFFxg+fDhXX321Z4I/m4+/mTzlZph9U0SypyMSEfFKSpzcTQUiRES83meffQbAunXrWLduXYv9+/fvJyQkhJiYGP7+979TUFCAzWYjKSmJ66+/nttvv52goKCeDrttCRMaEqcdMPoyT0cjIuKVlDi5W9NV2h0Oc30nERHxKi+99FK7x4SHh7N06dIeiMYNEifA9pd1UU9EpAs0x6kTymvq294ZNxYMK1QWQGl2zwUlIiLSFudoiBzNvxUR6SwlTi76aHcuEx7+hDWZla0f4BsAsSPN17qyJyIivUH8OMCAshwoP+XpaEREvJISJxcVVtQCsP54ddsHJTiv7ClxEhGRXsA/BKKHma/VN4mIdIoSJxdNTokE4GBhLXU2e+sHqUCEiIj0No3rOWm4nohIZyhxclFqbAhhAT7U2mBvTlnrBzUtECEiItIbaJ6TiEiXKHFykcViMCnZvOu09VhR6wclpJnPJcehsrCHIhMRETmHxot6Gg0hItIZSpw6YXJKBADfZBW3fkBAOEQONl9ruJ6IiPQGzvm3RUegusSzsYiIeCElTp3gnOe0NasIh8PR+kEqECEiIr1JUBSEJ5uvczM8G4uIiBdS4tQJ45PCsRqQV1bDiaKq1g9SgQgREeltNM9JRKTTlDh1QqCflSERvgB809Y8p8R081mdk4iI9Baa5yQi0mlKnDppVIyZOG052laBiIarevkHobaih6ISERE5B1V9FRHpNCVOnTQqxg+ALVltJE6h8RASDzggb3fPBSYiItKWxot6+6G20rOxiIh4GSVOnTQy2rzjtD+3lLLqutYPStBYchER6UVCEyA4Dhx2OLXH09GIiHgVJU6dFBVoZWBkIHYHbD9e3PpBKhAhIiK9iWE0KRCx3aOhiIh4GyVOXTA5OQLowDwnTcIVEZHeQgUiREQ6RYlTFzRdz6lVzs7p1B6wtTGcT0REpCdpGLmISKcoceoCZ+K07VgR9TZ7ywMiB4N/ONhq4fS+ng1ORESkNbqoJyLSKUqcumB4XAih/j5U1NrYn1fW8gDDgIQ087WGRIiISG+gi3oiIp2ixKkLrBaD9IZ5Tm0P11OBCBER6UWaFYhQ3yQi0lFKnLpoSkoUoAIRIiLiRTTPSUTEZUqcumjK4A4WiMjdCfZW5kGJiIj0tKZ9k4iIdIhPZ046ePAg33zzDXl5eVRXVxMZGcmwYcM477zzCAkJcXeMvdqEQRFYDDhZXEVOSRWJ4YHND4gZAT4BUFsORUcgOtUzgYqIiDg1DiPPMC/qWXQdVUSkPR1OnEpKSnjttdd47bXXyM7OxuFwtHwzHx/mzJnD9ddfz4wZM9waaG8V4u/D6MQwdmeXsjWriMvGn5U4WX0gbgxkf2MOiVDiJCIinhY9HHwCzYt6hYchZpinIxIR6fU6lDi9+OKLLFu2DIBvf/vbTJ06lbFjxxIVFYW/vz8lJSUcP36c7du3s3btWm655RZmzpzJf//3f5OSknLO9y4vL+evf/0r+/btY8+ePRQVFbFo0SIWL17ceIzNZuPFF1/k3//+NwcPHqSkpIQBAwZw0UUX8ZOf/ISwsLAufAVdNyUlkt3ZpWw5WsRl4we0PCBxvJk45e6Ecd/v+QBFRESasvpAwjg4sRlytitxEhHpgA7dm3/ppZe47777+Pe//82DDz7It771LZKTkwkJCcHX15eYmBgmTpzIzTffzMsvv8yHH35IXFwcH3zwQbvvXVxczKpVq6itreXiiy9u9Zjq6mqWLFlCUlISv/nNb1ixYgXXXHMNq1at4j/+4z+orq52rdVuNnmwWSCizXlOKhAhIiK9TYKqvoqIuKJDd5w++OADfHw6Ph0qOTmZRx99FJvN1u6xSUlJbN68GcMwKCws5PXXX29xTEBAAGvXriUyMrJx27Rp00hMTOTOO+/kww8/5PLLL+9wfO7mXAh3T04plbX1BPmd9V0lppvPOTvA4TBLwYqIiHiSs0CEKuuJiHRIh+44HTx4sFNvbrVa2z3GMAyMdhIJq9XaLGlyGj/evFqWm5vbqfjcJSkikMTwAGx2B9uPF7c8IH4MGFaozIeynB6PT0REpIWmazm1Mm9ZRESa61DidMUVV/D973+fV199lbKysu6OqcO+/vprAIYN8/zYbOddp62trefkG2hW1wMN1xMRkd4hbgxYfKCqEEpOeDoaEZFer0Pj72677TbeeustHn74Yf7whz9wySWXcNVVVzF9+vTujq9NeXl5PPHEE4wbN4558+Z16j06MpTwXOc1PX9ScgTv7sxh89HCVt/XSEjDcnov9uztOIZd0qnP7S1aa39/ovar/U2f+5uutr+/fm+9ko8/xI6GvAxzuF7EIE9HJCLSq3UocfrFL37Bf/3Xf7Fu3TreeOMNPvroI9577z0GDBjAlVdeyRVXXEFiYmJ3x9qouLiYW2+9FYfDwZNPPomlk+tPZGRkdCmOpueHVNcBsOVoAd9s24blrOGHcbZoBgEl+9dxOMy7Eyenrn5/3k7tV/v7s/7e/j4jcYKZOOXuhNGXeToaEZFercMVHwzDYM6cOcyZM4fS0lLefvtt3njjDZ566imWLVvG9OnTufrqq7nooovw9fXttoBLSkq45ZZbyMvL44UXXmDQoM5fIUtLS+vQPKyz2Ww2MjIymp0/zmbnd1+upbLWRvCAYYyMD21+UkQ57HmaiKos0tPTOx1zb9Ba+/sTtV/tV/s7337n+dJLJI6H7ahAhIhIB3S8VF4TYWFh/OhHP+JHP/oR+/bt41//+hfvvvsuv/jFL4iIiGDDhg3ujhMwk6abb76ZEydO8PzzzzNq1KguvZ/Vau3SHz5Nz7daraQPimB9ZgHbjpcwZkBE84MHmNWLjJLjWGtKICiq05/bW3T1+/N2ar/ar/b33/b3GY2V9TT/VkSkPZ0b49bEqFGj+O53v8uFF14ImMPouoMzaTp+/DjPPvssY8aM6ZbP6Yop5yoQERgBEQ2LAefqaquIiPQC8eMAA8qyofy0p6MREenVOnXHCaCwsJC3336bf/3rXxw6dAir1cq8efO46qqrXH6vL774gqqqKioqKgA4dOgQa9asAWDu3LkYhsF//ud/smfPHn7zm99gs9nYvn174/lRUVEkJyd3tiluM8mZOB1rYyHcxPFQnGWOJR86twcjExERaYV/CEQPg4KDkLsDhrW+EL2IiLiYONntdr788kv+9a9/8fnnn1NXV8fgwYO56667uOKKK4iJielUEA899BAnT55s/HnNmjWNidPatWuBMxORf//737c4/4orruCxxx7r1Ge706SUSAwDsgoqOV1WQ2yof/MDEibA3nc0JEJERHqPxPFm4pSjxElE5Fw6lDgdOXKEf/3rX7z11lvk5+cTEBDAZZddxpVXXsmUKVO6HMSnn37a7jH79+/v8ud0t7AAX0bGh7Ivt4ytWYVcOu6sSoNapV1ERHqbxAmw61+6qCci0o4OJU7f+ta3ABg/fjyLFy9m4cKFBAcHd2tg3mpySiT7csvYcrSolcSpYZX2goNQWwl+QT0foIiI9DkvbMjipX/n8+rQahIjXeyfExr6Jl3UExE5pw4Vh7jxxht55513WLVqFddcc42SpnOYfK55TqEJEBwHDjvk7e7hyEREpK/akFnAkeJ63tmZ4/rJztEQRUegusS9gYmI9CEdSpzuu+8+hg8f3mL74cOH2bp1K5WVlW4PzFtNSTHLjO86WUJ1na3lAc67Trm6siciIu7hvGi34XCh6ycHRUF4w5qIqvoqItKmTpUjX716NXPmzGHhwoX86Ec/4siRIwDceeedrFq1yq0BeptBUYHEhvpTZ3Ow80QrV+4ah0RoLLmIiLjHzNRoADYdKaTOZnf9DbSek4hIu1xOnD744APuvfdexowZwwMPPIDD4WjcN3bsWD744AO3BuhtDMNoXM9pS1YrV/5UIEJERNxsdEIoIb4GFbW21i/atUd9k4hIu1xOnFasWMH3v/99/va3v3Httdc22zd06FAOHTrktuC8lXPIxDdZrcxzcg7VO7UHbHU9GJWIiPRVFovB2Dg/ADZk5rv+Bs7RELm64yQi0haXE6fMzEwWLlzY6r6IiAiKi4u7GpPXaywQkVXU7I4cABGDwT8MbLVwuveXWBcREe8wPs5cO/CrQwWun+y843R6n1n1VUREWnA5cQoMDKSsrKzVfXl5eYSHh3c5KG83dkA4/j4WiirryDxd0XynxQIJaeZrXdkTERE3Gddwx2nrsaLWixOdS2gCBMeaVV9P7emG6EREvJ/LidPEiRN55ZVXWt5JAd544w2mTp3qlsC8mZ+PhQmDIgDY2to8JxWIEBERN0sKtRIX6k9tvb31oeLnYhia5yQi0g6XE6c77riD7du3c9VVV/HSSy9hGAYfffQRt99+O1u2bOH222/vjji9jnO43pajrc1zUuckIiLuZRhGY3W9r7oyz0l9k4hIq1xOnNLS0vi///s/Kisreeyxx3A4HCxfvpwjR46wYsUKRowY0R1xep0p51oIt3Etpwywd6JsrIiISCtmDDXXElyf2YV5ThpGLiLSKp/OnDR9+nQ++OADjh07Rn5+PpGRkQwZMsTdsXk15x2nw6crKKyoJSrY78zOmBFg9YfaMnOl9uhUD0UpIiJ9yYyh5h2nnSdKKKuuIzTAt+MnOy/q5e02q75aXThXRKQf6NQCuE7JyclMmjRJSVMrIoL8GBYXApjV9Zqx+kL8GPO1ruyJiPQ6GzZs4L777uPSSy8lPT2d2bNn89Of/pRdu3a1OHb37t3cdNNNTJw4kSlTprBo0SKOHz/ugaghKTKQlOggbHYHm460Msf2XCKHgH+4qr6KiLShQ4nT+++/7/Ib5+XlsXXrVpfP60smJ59jIVwViBAR6bVWrlzJyZMnueGGG1ixYgW//e1vKSws5Nprr2XDhg2Nx2VmZnL99ddTV1fHk08+ySOPPMLRo0f5wQ9+QGGhi4mLmzjnObk8XM8wzlR91TwnEZEWOpQ4Pfzww1x++eW8/vrrlJeXn/PYXbt28dBDD7FgwQL27dvnliC91eTB51oIVwUiRER6qwcffJAXX3yRH/zgB0ydOpVLL72U5557joiICJYvX9543FNPPYWfnx/Lly9n7ty5zJ8/n+XLl1NUVMSzzz7rkdhnpsYA8NWhThSI0DwnEZE2dWiO08cff8ySJUv4/e9/z8MPP8yYMWMYM2YM0dHR+Pn5UVJSwvHjx9m+fTunT59m+PDhLFmyhNmzZ3d3/L2as0DEjhMl1NTb8PexntnZtHNyOMwrfSIi0itER0e32BYcHExqaio5OTkA1NfX8/nnn3P55ZcTEhLSeFxSUhLTpk3jk08+4Ve/+lWPxew0vWGe077cMgrKa4gO8e/4yYmqrCci0pYOJU6hoaH85je/4Y477uCNN97giy++YPXq1VRVVTUeM2jQIGbPns13vvMdpk+f3m0Be5MhMcFEBftRWFHLrpOljQUjAIgbA4YFKk5DWS6EJXouUBERaVdZWRl79uxp7OOOHTtGdXU1I0eObHHsiBEj+Oqrr6ipqcHf34XExQ1iQ/0ZGR/K/rwyvj5cyMLxLvQvjRf1Gqq+Wro0FVpEpE9xqapeeHg4N998MzfffDNgdiLV1dVERETg66vqO2czDINJyZF8sjePrVmFzRMnvyCzut7pfeZdJyVOIiK92kMPPURVVVXjeoXFxcUAREREtDg2IiICh8NBSUkJcXFxHf4Mm83Wqdic5zmfZ6RGsT+vjH8fPM2lYzv++UQOxeITgFFbji3/IEQP61Q8Pe3s9vc3ar/a3/S5P+rqd9DR8zpVjtwpNDSU0NDQrrxFnzdlsDNxamWeU8J4M3HK2QkjFvR8cCIi0iFPPvkk77zzDg888ADjxo1rts84x1Drc+1rTUZGRqfiO/v8BKMagM/3ZrN9cJ1L7zEyZAghxXvJ+vodipLmdSmentbV78/bqf1qf3/X3d9BlxInaV/jQrhZRTgcjuadaOIEyFgFOds9E5yIiLRr6dKlPP300/ziF7/gRz/6UeN2552moqKWF8aKi4sxDIOwsDCXPistLQ2r1dr+gWex2WxkZGQ0nj90ZB2Pr19LTrmNuMEjGRAR2OH3MrKnw9a9DPYvISU93eVYPOHs9vc3ar/a35/bD13/Dpznt0eJUzcblxSOn9VCfnktWQWVDI4JPrPTOQlX1YtERHqlpUuXsmTJEhYvXtw4RM8pOTmZgIAADhw40OK8AwcOkJKS4vL8JqvV2qU/fJznR4ZYSRsYwY7jxWw8WsxVk0PaP9lpQDpsBUteBnjZH2Fd/f68ndqv9vfn9kP3fwea9dnNAnytjEsyrzhuOXu4nnO9jOJjUNXKUD4REfGYZcuWsWTJEn7605+yaNGiFvt9fHyYN28eH3/8cbOlOrKzs9m4cSOXXHJJT4bbwpn1nFwsS57QpLKew+HmqEREvJcSpx4wZXAUQMt5ToGREJFsvs7VuFQRkd7iueee46mnnmL27NlccMEFbN++vdnDafHixY0FI7744gs+/vhjbrvtNiIjI7nllls81wDOJE4bMgtwuJIAxY0Biw9UFULpyW6KTkTE+2ioXg+Y3DjPqZVV5BPGm3eccnbCkDk9HJmIiLTms88+A2DdunWsW7euxf79+/cDkJqayksvvcSf/vQn7rzzTqxWK9OnT2fZsmVERUX1aMxnm5IShZ/VQk5JNUfyKxga28Hher4BEDsa8jLMu07hA7s3UBERL+Fy4vT//t//44c//CFDhw7tjnj6JGfidCCvnJLKOsKDmpRuT5wA+97VPCcRkV7kpZde6vCx48aN4/nnn+++YDop0M/KxOQINh4pZH1mQccTJzDn4DoTp1ELuy9IEREv4vJQvdWrV7Nw4UJuvvlmPvnkE9du//dTMSH+DGkoCvHNsbOG6zkXG9Qq7SIi4mazhsUAnZjn1Ng36aKeiIiTy4nTunXruP/++zl9+jSLFi3iwgsvZMWKFRQWtjIMTRpNSj5TlrwZ5yTc/ANQW9nDUYmISF/WdJ6T3e7Chc6mBSJERAToROIUFBTED3/4Q959913+/ve/M3bsWP73f/+XCy64gHvvvVeLb7VhymAzcdpy9jyn0AQIjgWHHU7t8UBkIiLSV40fGEGQn5Wiyjr25ZZ1/MSEcYABZdlQfrrb4hMR8SZdqqo3Y8YMli5dytq1a5k4cSJvvfUW11xzDVdffTWffvqpu2LsE5wL4W4/XkydzX5mh2Hoyp6IiHQLPx8LU4eYRSpcGq7nHwrRqebrXPVNIiLQxcSpurqa119/ndtvv52NGzeSmprKHXfcgc1m44477mDZsmXuitPrpcaGEB7oS3WdnT3Zpc13aiFcERHpJmfWcypw7UTNcxIRaaZTidOxY8d49NFHmTNnDg8++CAJCQk899xzvPvuuyxatIg33niDW2+9lZdfftnd8Xoti8VgUnIE0Mo8JxWIEBGRbjIz1SwQsfFwQfMRD+3RaAgRkWZcTpx+/OMfc+mll/LPf/6Tyy+/nDVr1vC3v/2NmTNnNjtu3rx5FBUVtfEu/VObC+E6O6e8PWCr6+GoRESkLxuTGEZ4oC8VtTZ2nijp+InOi3oaDSEiAnQicTp+/Dj33XcfX375Jb/97W9JTk5u9bjhw4fz4osvtvt+5eXlPP7449xyyy1Mnz6dkSNHsmTJklaP3b17NzfddBMTJ05kypQpLFq0iOPHj7vaBI9xrue0JauweRn3yCHgFwq2GrO6noiIiJtYLAYzhjqr67kwz8mZOBUehmoXEi4RkT7K5cTpww8/5Prrryc4OPicx4WEhDB16tR236+4uJhVq1ZRW1vLxRdf3OZxmZmZXH/99dTV1fHkk0/yyCOPcPToUX7wgx94TSn0CQMj8LEY5JXWcKKo6swOiwUS0szXGksuIiJuNnNYJ+Y5BUVB+CDzde6ubohKRMS7dKk4hDskJSWxefNmXn75Ze666642j3vqqafw8/Nj+fLlzJ07l/nz57N8+XKKiop49tlnezDizgv0szJ2QBjQ2kK4KhAhIiLdwznPaUtWEdV1to6fqHlOIiKNfFw94cILL8QwjFb3WSwWQkNDSUtL44YbbiA1NbXd92vrvZqqr6/n888/5/LLLyckJKRxe1JSEtOmTeOTTz7hV7/6Vccb4UGTU6LYcaKELUeLuDw96cwOFYgQEZFukhobTFyoP6fKavgmq4iZw2I6dmLiBNj/ni7qiYjQiTtOU6dOxeFwkJeXR1JSEhMmTGDAgAHk5eVhs9lITEzk448/5sorr3TbYrjHjh2jurqakSNHttg3YsQIsrKyqKmpcctndbczC+G2USAiNwPsLlQ9EhERaYdhGMxqSJZcGq6XqDtOIiJOLt9xOv/889m+fTsff/wxiYmJjduzs7O55ZZbuPjii3nssce4/vrrWbJkCStWrOhykMXFxQBERES02BcREYHD4aCkpIS4uDiX3tdmc2G4Qivndeb89IHmUL39uaUUV9QQGtDwTxA1DIvVH6OmFFvBYYga0qnYekJX2t8XqP1qf9Pn/qar7e+v31tvMCM1mje3neSrzHx+ScsLka1yjoY4vR/qqsA3sPsCFBHp5VxOnP72t7+xePHiZkkTwIABA7jjjjv461//yhVXXMFNN93EI4884rZA4dzD+joy5O9sXb0j1tnz44KsnKq08cYXW5kQ79+4fVRICsElBzj69dsUD5jbpdh6grvuKHortV/t78/6e/u9kXMh3J0nSiirriM0wLf9k0ITISgGKvPNJTMGTu7mKEVEei+XE6esrKxm84yaCgsL4+TJk4A5/6iqqqrV41zlvNPU2rpQxcXFGIZBWFiYy++blpaG1Wp1+TybzUZGRkanz59xYAdv7cih2CeK9PThjduNE9Ng2wGGBJThSE93+X17Slfb7+3UfrVf7e98+53nS88bGBlESnQQWQWVbDpSyEWj49s/yTDMu06ZayF3hxInEenXXE6cBgwYwJtvvsncuS3viPzrX/9qvBNVXFxMeHh41yMEkpOTCQgI4MCBlmscHThwgJSUFPz9/Vs589ysVmuX/vDp7PlThkTz1o4cvjlW0vz8Aemw7SUseTvBC/4g6+r35+3UfrVf7e+/7fdWM1OjySqoZH1mQccSJziTOGmek4j0cy4Xh/jP//xP1qxZw3XXXcfzzz/Pu+++y/PPP891113Hxx9/zI9//GMANm7cyLhx49wSpI+PD/PmzePjjz+mvLy8cXt2djYbN27kkksuccvn9JQpDQvhbjtWRL2tSSGIBGdlPVUvEhER95uRqgIRIiKd5fIdp2uuuQaHw8GSJUt47LHHGrfHxMTw0EMPcfXVVwNw++234+fn16H3/OKLL6iqqqKiogKAQ4cOsWbNGgDmzp1LYGAgixcv5qqrruL222/n1ltvpba2lqeeeorIyEhuueUWV5vhUSPiQwn196Gspp79eWWMHdBwZy5+LBgWqDgFZbkQmuDZQEVEpE+ZMdSc57Q3p5SC8hqiQzowWsNZICJvD9jqwNqBuVEiIn2QS4mTzWbj2LFjfOtb3+Kaa67h8OHDFBcXExERwdChQ5sVaIiJ6eAaEcBDDz3UODcKYM2aNY2J09q1axk4cCCpqam89NJL/OlPf+LOO+/EarUyffp0li1bRlRUlCvN8DirxSA9OYJ1B/PZmlV0JnHyC4Lo4ZC/37zrpMRJRETcKDbUn5HxoezPK+Prw4UsHJ/Y/kkRg8E/DGpKzep6Ce4ZTSIi4m1cSpwcDgcLFy7k6aefZu7cuR1a4LYjPv300w4dN27cOJ5//nm3fKanTUmJYt3BfLYcLeKGGYPP7EgcbyZOuTtgxHyPxSciIn3TjNRo9ueVsT4zv2OJk8VirjWY9W9zIVwlTiLST7k0x8nHx4eYmBgcDkd3xdNvOBfC3Xr2QrjOIREaSy4iIt1AC+GKiHSOy8UhFi5cyOrVq7shlP5lwqAILAacLK4ip6RJ2fYEZ+ekAhEiIuJ+U4dEYTHgSH4F2cUdXDYkUcWLRERcLg4xatQo3n//fW644Qbmz59PbGxsi8Vn58/XELP2hPj7MDoxjN3ZpWzNKuKy8Q2rsSekmc/FWVBVDIERngpRRET6oPBAX9IGRrDjeDEbMgu4cvLA9k9yXtTL3Ql2uzl8T0Skn3E5cbrnnnsAyMvLY9OmTS32G4bB3r17ux5ZPzAlJZLd2aVsOVrEZeMHmBuDoiA8GUqOQW4GDJnt2SBFRKTPmZkazY7jxXyVmd+xxClmBPgEQG05FB2BaPfMcRYR8SYuJ04vvvhid8TRL00eHMULG7Jamec0viFx2qnESURE3G5majRPf57JhswCHA5Hi5EjLVh9zCUzTm6FnO1KnESkX3I5cZo6dWp3xNEvTW5YCHdPTikVNfUE+zf8cyROgH3vahKuiIh0iykpUfhZLeSUVHO0oJIhMcHtn5Q4oSFx2gnjruz+IEVEeplOD1IuKytj3bp1vP3225SUlLgzpn4jKSKQxPAAbHYHO04Un9mhAhEiItKNAv2sTEyOAOCrQ/kdOylBlfVEpH/rVOK0bNkyZs+eza233so999zDiRMnALjxxhtZsWKFWwPs65x3nbYebTJcz1n2Nf8A1HWw4pGIiIgLZqaaZck3dLQsubOyXu5O0LIkItIPuZw4vfLKKyxbtoyrrrqK5cuXN1vTad68eXz++efujK/Pm9KQOG1pOs8pNBGCYsBhg7w9HopMRET6slnDogFYn5mP3d6BRChuDBhWqCyA0pPdHJ2ISO/TqcTppptu4v777+f8889vti8lJYWsrCy3BdcfTE6JAuCbY0VnOi7DOHPXKVdDIkRExP3GD4wgyM9KUWUd+3LL2j/BNwDiRpuvNZRcRPohlxOn48ePM3t265XegoODKS0t7XJQ/cnoxFCC/KyUVddz8FT5mR2Niw0qcRIREffz87Fw3mDz4t36TM1zEhFpj8uJU2hoKPn5rf+CPXnyJNHR0V0Oqj/xsVpIHxQBwJaswjM7VCBCRES62Znhei7Oc1LiJCL9kMuJ04wZM3jmmWeorKxs3GYYBvX19axcubLF8D1p35RWC0Q0dE6n9oCt3gNRiYhIX+csELHxcAF1Nnv7JzQtECEi0s+4nDj9/Oc/Jzs7m4ULF/LYY49hGAYvv/wyV199NVlZWfzsZz/rjjj7tEmtFYiIHAJ+oVBfbVbXExERcbPRiWGEB/pSUWsj42QHlhZJGAcYZnGIig4O7xMR6SNcTpxSUlJYuXIlQ4cOZeXKlTgcDt566y0iIyN59dVXGTBgQHfE2adNSonEMOBYYSWnyqrNjRZLQweFruyJiEi3sFoMZgxtGK7XkfWc/EMhOtV8reF6ItLPdGodp2HDhvHss8/yzTff8MUXX7B161aee+45UlNT3R1fvxAW4MvI+FAAvslqZbieOicREekmM12d56QCESLST3UqcXLy8/MjPj6egIAAd8XTbzkXwt3SdJ6TCkSIiEg3c85z2pJVRHWdrf0TNM9JRPopn86cdOLECT744AOys7Oprq5uts8wDB555BG3BNefTE6J5JWNx5rPc2pcyynDXKXdMDwTnIiI9FmpscHEhfpzqqyGb7KKmDks5twnJOqOk4j0Ty4nTp9//jmLFi3CbrcTFRWFn59fs/2G/rjvlCkNC+Huzi6hus5GgK8VYkeB1Q9qSqDoKEQN8WyQIiLS5xiGwczUaFZvz2Z9ZkH7iVNCwx2nwsNQXQoBYd0fpIhIL+By4vSXv/yFSZMm8Ze//EVrNrnRoKhAYkP9OV1Ww84TJUwdEgVWX3OV9pwd5pAIJU4iItINZg6LYfX2bL7KzOeXjDz3wcHREDYQSk+YIyIGz+qZIEVEPMzlOU5ZWVnceuutSprczDCMxvWcmi2EqwIRIiLSzWammn36zhMllFXXtX+C5jmJSD/kcuI0YMCAZovfivtMbm0hXBWIEBGRbjYwMojkqCBsdgebjxa2f4LmOYlIP+Ry4nTbbbfx3HPPUVVV1R3x9GuNidOxIhwOh7lRV/VERKQHzGooS/7VoQ6UJW8cDaG+SUT6D5fnOGVkZFBQUMAll1zCtGnTiIyMbHHM/fff75bg+puxA8Lx97FQXFlH5ukKhsWFQPxYwIDyPCjLg9B4T4cpIiJ90IzUGFZuOt6x9ZycoyFO74O6KvAN7N7gRER6AZcTp5dffrnx9Xvvvddiv2EYSpw6yc/HwoRBEWw6UsjWrEIzcfILhpjhkH/AvOsUeomnwxQRkT5oxlDzjtPenFIKK2qJCvZr++CwARAUA5X5cGoPJE3uoShFRDzH5cRp37593RGHNJiSEsmmI4VsOVrEteclmxsTJ5iJU84OGK7ESURE3C821J+R8aHszytjQ2YBC8cntn2wYZjznDI/NfsmJU4i0g+4PMdJulfTeU6NEjQJV0REut+Mhup66zPz2z9Y85xEpJ/pUOK0efNmKioq2j2usLCQf/7zn10Oqj9zJk6HT1dQWFFrbnRWL1KBCBER6UazGha/3eDKPCdd1BORfqJDidMNN9xAZmZm4892u51x48axZ8+eZscdP36cBx54wL0R9jMRQX7m3CZga1bDXSdn51R0FKpLPBOYiEg/Ul5ezuOPP84tt9zC9OnTGTlyJEuWLGlx3L333svIkSNbPC699FIPRN11U4dEYTHgcH4FOSXtVM913nHK2w22Dqz9JCLi5To0x6mxNHaTn+vr61tsF/eYkhLJoVPlbMkq5JIx8RAUBeGDoOR4wyrt53s6RBGRPq24uJhVq1YxatQoLr74Yl5//fU2jw0ICOCFF15osc0bhQf6kpYUzo4TJaw/VMCVkwe2fXDkEPALhdoycx5u/NieC1RExANcLg4h3W9SSiT/2Hycb7LOmudUctwcS67ESUSkWyUlJbF582YMw6CwsPCciZPFYiE9Pb3ngutmM4fFmIlTZjuJk8ViDiXP+socrqfESUT6OBWH6IWmNMxz2nGihJp6m7mxcRKuxpKLiHQ3wzAwDMPTYXjEzCYFItodWaICESLSj3hV4rRnzx5+9rOfcf755zNhwgQuvfRSli5dSlVVO+OwvcyQmGCig/2orbez62SpuVEFIkREeqXq6mpmzZrF6NGjmTNnDg8//DDFxcWeDqvTpqRE4We1kFNSzdGCynMfrAIRItKPdHio3uHDh7FarQDYbLbGbWcf010OHTrEddddx5AhQ/jNb35DZGQkW7Zs4a9//Su7d+/m6aef7rbP7mmGYTApJZKP9+SxNavQrLTXuEr7fq3SLiLSS4waNYpRo0YxfPhwADZt2sQLL7zAhg0b+Oc//0lwcLBL7+fsX13lPK+z5zflZ4WJyeFsPFLEvw+cIjkyue2D48dhBRy5O7HX14Hhmeux7my/N1L71f6mz/1RV7+Djp7X4cTpvvvua7Ht17/+dbOfHQ5Htw1teOedd6ipqWHJkiUkJ5u/xGfMmMHp06d57bXXKCkpITw8vFs+2xMmNyZODfOcwgZAUDRUFmiVdhGRXuKmm25q9vOsWbMYM2YMP//5z3n99ddb7G9PRkZGl+Lp6vlOg4Pq2Ai8/81hxvgXtn2g3cZEix+W2nL2fvU+NSHnmBPVA9zVfm+l9qv9/V13fwcdSpweffTRbg2iI3x9fQEICQlptj00NBSLxdK4v69wznPamlV0JiFNGA+HPzPHkitxEhHplS655BKCgoLYvn27y+empaU1ju5whc1mIyMjo9Pnn60+oojXdm9kf6GN8eMnYLG0fVHU2DYOsr9hTGQdjrHpXf7sznB3+72N2q/29+f2Q9e/A+f57elQ4nTFFVe4HIC7fe973+OFF17gd7/7Hb/61a+IjIxk8+bNvPbaa/zwhz8kKCjI5ffsDUMi2jImIQQ/q0F+eS2HT5cxODoYI2E8lsOfYc/ejsODt2P7+y1htV/tb/rc3/TUcAhv53A4sFhcH7ZmtVq79IdPV893mpgSRZCflcLKOg6ermTMgLC2D06cANnfYMnLgPFXdfmzu8Jd7fdWar/a35/bD93/HXhNOfKBAwfyj3/8g0WLFnHxxRc3br/++uv57W9/26n37C1DItoyJMKH/QV1vLluJ/MGBxJZHcZQoOrw1+zrxJVMd+vvt4TVfrW/P+vv7T+XNWvWUFVVxYQJEzwdSqf5+Vg4b3AUXxw4zfrM/PYTJ1DxIhHp87wmcTpx4gQ//elPiY6O5qmnniIqKoodO3bw9NNPU1lZySOPPOLye/aWIRFtmZ2zj/3/PsppRyjp6eNgUAh88/8IKj9K+vhxYPHMP19/vyWs9qv9an/3D4foDb744guqqqqoqKgAzCJFa9asAWDu3LkUFhZy9913s3DhQpKTkzEMg82bN/PCCy8wfPhwrr76ak+G32WzhkXzxYHTbMgs4Mezh7Z9YGKTynoOB/TTMu4i0vd5TeL0xBNPUF5ezurVqxuH5Z133nlERkbym9/8hu9973tMnTrVpffsLUMi2nLekGie+fdRth0vNj8nZjj4hWDUlmMtOgxxo7vtszuiv98SVvvVfrW/b7f/oYce4uTJk40/r1mzpjFxWrt2LaGhocTExPD3v/+dgoICbDYbSUlJXH/99dx+++2dGkLem8xMjQFg45FC6m12fKxtDD2MGwuG1SxeVJoN4Uk9GKWISM/xmsRp7969pKamtuiI0tLSADh48KDLiVNvN7mhQMSBvHJKKusID/KF+HFw/GuzQISHEycRkb7s008/bfeYpUuX9kAknjE6MYzwQF9KqurYebKEScmRrR/oGwCxo+DUbvOukxInEemjvGYB3Li4OA4dOtQ4ZMLJWbUoPj7eA1F1r5gQf4bEmGuAfHOsoSx54yrtWmxQRES6j9ViMGNoNAAbMgvOfbDmOYlIP+BS4lRdXc11113H+vXruyueNt14440UFRVxyy238P7777Nhwwb+9re/8eijjzJs2DDmzJnT4zH1BOcVvi1ZDetoOMeSq3MSEZFuNnOYmTh9dSj/3Ac2neckItJHuZQ4BQQEcODAAY+Ma7/ooot4/vnnCQkJ4ZFHHuH222/nzTff5LrrruPll1/Gz8+vx2PqCVMGn1nPCTDXcgIzcXI4PBSViIj0BzNTzcRpS1YR1XXnKCXfOBpCF/VEpO9yeY7TxIkT2blzJ9OmTeuOeM5p+vTpTJ8+vcc/15OcC+FuP15Mnc2Ob+wosPhCdQkUZ0HkYM8GKCIifVZqbAhxof6cKqvhm2NFjQUjWogfZz6XnoCKfAhu4zgRES/m8hyne+65h9dee43Vq1e3mG8k7pcaG0J4oC/VdXb2ZJeCj9+ZohC6siciIt3IMIzGu07rD51jnlNAGESlmq81XE9E+iiXE6drr72W3Nxc7rvvPqZMmcLEiROZNGlS42Py5MndEWe/ZbEYTEqOAMyhEoAKRIiISI9x3mVan9nBeU6agysifZTLQ/UWLFiAocXtetSUwVF8tv8032QV8Z/nDzETp20vqXMSEZFu5ywQseNECWXVdYQG+LZ+YOIE2P2mLuqJSJ/lcuL02GOPdUcccg7O9Zy2ZBXicDgwnAUiNFRPRES62cDIIJKjgjhWWMnmo4VcOKqN5T9UIEJE+jivWcepP5swMAIfi0FeaQ0niqogfixgQHkulJ/ydHgiItLHdWieU0JD4lSYCdWlPRCViEjPcvmOk9OBAwfIzMykpqamxb7vfe97XYlJzhLoZ2XsgDB2nChha1YRgyYmQfQwKDhoXtkbfrGnQxQRkT5s5rAY/rH5OF+dayHc4GgIG2hW1svbBSkzey5AEZEe4HLiVFVVxU9/+lO+/vprDMPA0bCWUNN5T0qc3G9ySlRj4vS9iUnmkIiCg5CzXYmTiIh0qxlDzTtOe3NKKayoJSq4jbUTE8ebiVPODiVOItLnuDxU769//SsnT57k5ZdfxuFwsHTpUv7+979zySWXkJKSwptvvtkdcfZ7zoVwz1TWU/UiERHpGbGh/oyMDwXg68PnuOukeU4i0oe5nDitXbuWW2+9lYkTJwKQmJjIjBkzeOqppxg7diyvvvqq24OUMwUi9ueWUlZdByoQISIiPWhGwzynrw6doyx5Y9+kynoi0ve4nDidPHmSoUOHYrVaMQyDqqqqxn3f+c53WLt2rVsDFFN8WAADIwOxO2DbseIzV/WKjkB1iUdjExGRvs9ZIGLDueY5Ofum0/ugrroHohIR6TkuJ06hoaFUVlYCEB0dTVZWVuO++vr6xn3iflMa7jptzSqCoChzEi5A7i4PRiUiIv3BtKHRWAw4nF9BTklV6weFDYCgaHDY4NTung1QRKSbuZw4jRw5kqNHjwIwbdo0li9fzpYtW9i5cyfLli1j1KhR7o5RGkweHAU0JE7QZCy5hkSIiEj3Cg/0JS0pHDhHWXLD0DwnEemzXE6crrzySioqKgD4r//6L6qqqrj++uu59tpryc7O5t5773V7kGJy3nHadqyIeptdBSJERKRHzUiNAWD9uYbraZ6TiPRRLpcj//a3v934etCgQXz44YeNpcknTpxIRESEO+OTJkbEhxLq70NZTT37cssYpwIRIiLSg2YNi+ZvX2SyITMfh8PRbCmSRs47TrqoJyJ9jMt3nM4WFBTEhRdeyLx585Q0dTOrxSA9OQKAb44VnbnjpEm4IiLSA6akROFrNcguqeZoQRtzmhsTp11gq+u54EREulmXEyfpWVNSzHlOW44WQVgSBEY1TMLd4+HIRESkrwv0szIx2Rw2vj6zjbLkkUPALxRsNZB/oAejExHpXh0aqjdq1KjWb8e3wjAM9uzRH/HdxbkQ7tasojOTcA9/Zo4lT5rk4ehERKSvm5Uaw6Yjhaw/VMAPp6W0PMBigYQ0OLbeHEoeP7bngxQR6QYdSpzuuOOODidO0r0mDIrAYsDJ4ipySqpITBxvJk4aSy4iIj1g5rBo/vIJbDhcgN3uwGJpY57TsfXmRb30/+j5IEVEukGHEqfFixd3dxzSQSH+PoxODGN3dilbs4q4TAUiRESkB00YGEGQn5XCilr255UxOjGs5UGq+ioifZDmOHkhZ1nyLUeLzkzCzdsNdpsHoxIRkf7Az8fCeQ3rCn51qI15Tk3XcrLbeygyEZHu5XI58tWrV7d7zPe+971OhCIdNXlwFC9syDLnOV02E3yDoa4C8g9CnBYgFhGR7jUzNZovDpxmQ2YBP549tOUBMSPBJwBqy6DoCESn9nyQIiJu5nLi1NYCt03nQClx6l7OO057ckqpqLMTnJAGx782h0QocRIRkW42a5i5EO7GI4XU2+z4WM8awGL1gbgxkP2NOc9JiZOI9AEuJ05r165tsa2oqIi1a9fy/vvv85e//MUtgUnbBkQEkhgeQE5JNTtOFDMzcbyZOOXsgPHXeDo8ERHp40YnhhEe6EtJVR07T5YwqaFEeTOJE8zEKXcnjPt+zwcpIuJmLs9xSkpKavEYN24cd955J/Pnz+fFF1/sjjjlLJMb7jptPVoEjQUidngwIhER6S+sFoPpQ815ThsyC1o/KFF9k4j0LW4tDjFjxgw+/fRTd76ltKGxQERWUfPqRQ6HB6MSEZH+wjlcr82FcJsWiFDfJCJ9gFsTp5MnT2KxqFBfT5jSUNHom2NF2GNGgcUXqkug+JiHIxMRkf5gZmo0YFZ4ra5rpapr3FgwrFCZD6XZPRydiIj7uTzHafPmzS221dbWsn//fpYvX86MGTPcEpic26iEUIL8rJRV13OwoJaRcaPNO065OyGylZXcRURE3Cg1NoS4UH9OldXwzbEiZqbGND/ANwBiR8Gp3WbfFJ7kmUBFRNzE5cTp+uuvb1ZBD8DRcAt+5syZPPDAA+6JTM7Jx2ohfVAE6zML2JJVyMjE8WbHlLMDRn/H0+GJiEgfZxgGM1OjWb09mw2ZBS0TJzCHkp/abfZNI7/V80GKiLiRy4lTa8Uf/P39SUpKIiamlV+a0m2mpESyPrOArUeL+OHgCcDL5lhyERGRHjAzNYbV27P56lA+d88f2fKAxAmwY6X6JhHpE1xOnKZOndodcUgnTG6Y57QlqwhmNCkQISIi0gNmDjPnOe04UUJ5TT0h/mf9WaGqryLSh7hcyeHIkSNs2rSp1X2bNm3i6NGjXY1JOmhicgSGAccKKzkdPBwwoCwHyk97OjQREekHBkYGkRwVhM3uYNORVsqSJ6SZz6UnoKKNsuUiIl7C5cTpsccea3URXIDPPvuMxx57rMtBSceEBfgyMj4UgK05tWdWZs/VlT0REekZzup66w+1khgFhEHUUPO1+iYR8XIuJ04ZGRmcd955re4777zz2LVrV5eDOpctW7Zw6623ct555zF+/Hjmz5/PsmXLuvUzezPnQrhbjhY1WTNDnZOIiPSMmY3rObW1EK76JhHpG1xOnMrKyggKCmp1X0BAACUlJV0Oqi3vvPMO119/PaGhofzhD39gxYoV3HrrrY1V/fqjKYObLITbOJZc85xERKRnzBhq3nHak1NKYUVtywPUN4lIH+FycYj4+Hh27tzJzJkzW+zbuXMnsbGxbgnsbHl5efz3f/831157Lb/73e8at0+fPr1bPs9bTE42C0Tszi6h9uJx+IEKRIiISI+JDfVnRHwIB/LK+fpwAd9OS2x+gO44iUgf4fIdp4svvpgVK1bw9ddfN9u+ceNG/u///o9LLrnEbcE19frrr1NZWcmtt97aLe/vrQZFBRIb6k+dzcEu+2BzY+FhqC71aFwiItJ/ONdwWp+Z33KnM3EqzFTfJCJezeU7TnfccQf//ve/ufnmmxk8eDAJCQnk5uZy9OhRhg0bxuLFi7sjTjZv3kxERASHDx/mZz/7GQcPHiQ8PJxLLrmEX//614SEhLj8njabrVOxOM/r7PnuNjk5gjW789iQ42Bi2ACM0mxsOTsheUa3fF5va39PU/vV/qbP/U1X299fv7e+bmZqNM+vP9p6gYjgGAhLgtKTkLcLUlqOWBER8QYuJ06hoaG89tprPP/886xbt47s7GwiIyNZvHgxN954I8HBwd0RJ3l5eVRVVXHnnXdy2223kZ6eTkZGBkuWLOHgwYO8+uqrGIbh0ntmZGR0Kaaunu8uCT6VAHyakcUPAwcTUZpN9pb3OVUY2K2f21va7ylqv9rfn/X39ktz04ZGYzHgcH4FOSVVJIaf1f8kjDcTp5ydSpxExGu5nDgBBAcHc8cdd3DHHXe4O542ORwOampqWLRoET/5yU8AmDZtGr6+vjzyyCNs2LCh1XlX55KWlobVanU5FpvNRkZGRqfPd7voYp7f8TWZxXZCzz8f8taTZC1kQHp6t3xcr2t/D1P71X61v/Ptd54vfUt4oC9pSeHsOFHChswCvj9pYPMDEifAgQ80z0lEvFqnEicwq+tt376doqIi5s6dS3h4uDvjaiEiIgKA888/v9n2OXPm8Mgjj7B7926XEyer1dqlP3y6er67pA2MxN/HQnFVHadCRpEIWPIyoJtj6y3t9xS1X+1X+/tv+6WlGakx7DhRwleH2kicQMWLRMSruVwcAmDZsmXMnj2bW2+9lXvuuYcTJ04AcOONN7JixQq3Bug0cuTIVrc7S5FbLJ1qSp/g52NhwqAIALbUNHRWp/dBfY3nghIRkX5l1jCzLPmGzPyWy4QkNpQkP7UX6qp7ODIREfdwOdt45ZVXWLZsGVdddRXLly9v9stx3rx5fP755+6Mr9H8+fMB+PLLL5ttd/48YcKEbvlcbzGlYSHcL3P9ITAS7PVwao+HoxIRkf5iSkoUvlaD7JJqsgoqm+8MS4KgaHDY1DeJiNdyeajeK6+8wk033cSvf/3rFtWRUlJSyMrKcltwTZ1//vnMmzePZcuWYbfbSU9PZ9euXSxdupR58+YxZcqUbvlcbzG5IXHaeqzYHBJx+HNzLPmAiR6NS0RE+odAPysTkyPZdKSQrzLzGRzTpFiUYZgFIg5/ZvZNSZM8F6iISCe5fMfp+PHjzJ49u9V9wcHBlJZ23xoNTz75JDfeeCOrVq3i1ltvZeXKldx000089dRT3faZ3sKZOB3Or6Aqepy5Uau0i4hID5rVuJ5TK2XJNc9JRLxcp8qR5+e3ssAdcPLkSaKjo7scVFsCAgL45S9/yS9/+ctu+wxvFRHkx7C4EA6dKueQdShpoM5JRKSTysvL+etf/8q+ffvYs2cPRUVFLFq0qNW1Cnfv3s0f//hHduzYgdVqZfr06dxzzz0MGjTIA5F71sxh0fzlE9iQWYDd7sBiabJMiHOekyrriYiXcvmO04wZM3jmmWeorDwzftkwDOrr61m5cmWLqnfSc5zznNZXDjA35O0GuxabFBFxVXFxMatWraK2tpaLL764zeMyMzO5/vrrqaur48knn+SRRx7h6NGj/OAHP6CwsLAHI+4dJgyMINDXSmFFLfvzyprvTEw3n/N2g62+x2MTEekqlxOnn//852RnZ7Nw4UIee+wxDMPg5Zdf5uqrryYrK4uf/exn3RGndMCkhsRpbW4I+AZBXSUUHPJwVCIi3icpKYnNmzfz8ssvc9ddd7V53FNPPYWfnx/Lly9n7ty5zJ8/n+XLl1NUVMSzzz7bgxH3Dn4+FqYOiQJaGa4XOQT8QqG+GvIPeCA6EZGucTlxSklJYeXKlQwdOpSVK1ficDh46623iIyM5NVXX2XAgAHdEad0gPOO0/bscuzxznlOGhIhIuIqwzAwDOOcx9TX1/P5558zf/58QkJCGrcnJSUxbdo0Pvnkk+4Os1eamWoO2V9/6Kxh/RYLJKSZrzWUXES8UKcWwB02bBjPPvsstbW1FBUVER4eTkBAgLtjExcNiQkmOtiPgopa8kNGEccmM3Eaf42nQxMR6XOOHTtGdXV1q+sMjhgxgq+++oqamhr8/f09EJ3nzGwoELHxSCH1Njs+1ibXaBPHw7H1Zt804ToPRSgi0jmdSpyc/Pz8iI+Pd1cs0kWGYTApJZKP9+Sxl8HEga7qiYh0k+LiYgAiIiJa7IuIiMDhcFBSUkJcXFyH3/PsZT5cPa+z57vTyPhgwgN9KamqY8fxItIbFmgHMOLTsACO7O3Y3Rhrb2q/J6j9an/T5/6oq99BR8/rUOK0evVqlz78e9/7nkvHi/tMbkic1pUlMhfMkuQOh7mGhoiIuN25hvS1N9zvbBkZGV2Kpavnu8uoKAsbT8K//r0LRp8ZxhhY6scYwJ69g+3bvgHD5RkD59Rb2u8par/a399193fQocTp3nvv7fAbGoahxMmDnPOc3suN4LcWH4zqYig5DhHJng1MRKSPcd5pKioqarGvuLgYwzAICwtz6T3T0tKwWq0ux2Kz2cjIyOj0+e52aVUWG0/u5WiVP+np6Wd22Mbi+PcirPUVpKdEQNRQt3xeb2t/T1P71f7+3H7o+nfgPL89HUqc1q5d63IA4hnjksLxs1rIqbBTO3Ak/vm7zbHkSpxERNwqOTmZgIAADhxoWSHuwIEDpKSkuDy/yWq1dukPn66e7y6zR8QCe9maVUSdHQJ8G2KyWiF+DGRvw3pqF8QOd+vn9pb2e4rar/b35/ZD938HHbpHnpSU5NJDPCfA10rawHAAsgNHmBtzNM9JRMTdfHx8mDdvHh9//DHl5eWN27Ozs9m4cSOXXHKJB6PzrNTYEOJC/ampt/PNsbPuyCVOMJ9V9VVEvEyni0OUl5ezfft2iouLiYyMZMKECc3KsYrnTE6JZGtWERm2ZIaACkSIiHTCF198QVVVFRUVFQAcOnSINWvWADB37lwCAwNZvHgxV111Fbfffju33nortbW1PPXUU0RGRnLLLbd4MnyPMgyDmanRrN6ezYbMgsZKewAkjDefdVFPRLxMpxKnZ599lqVLl1JdXY3D4cAwDAICAvj5z3/OzTff7O4YxUWTG+Y5fVaSyHdBnZOISCc89NBDnDx5svHnNWvWNCZOa9euZeDAgaSmpvLSSy/xpz/9iTvvvBOr1cr06dNZtmwZUVFRngq9V5iZGsPq7dmszyzg7qY7EtPN55wdKl4kIl7F5cRp9erV/PGPf2TOnDlcccUVxMXFcerUKVavXs3jjz9OZGSkikN4mDNx+qggFkeAgVGWDeWnISTWw5GJiHiPTz/9tEPHjRs3jueff757g/FCMxoWwt1xvJjymnpC/Bv+5IgfA4YVKvOhLAfCBngwShGRjnO5Dujzzz/PZZddxooVK/jWt77F5MmT+da3vsXy5ctZuHAhL7zwQnfEKS6ICfFnSEwwFQRSFTrY3JirseQiItJzBkUFkRwVRL3dweYjhWd2+AZCbMOiwZrnJCJexOXE6fDhw3z3u99tdd93v/tdMjMzuxyUdN2kZPOuU5ZfqrlBw/VERKSHzWy46/TVofzmOxoLRKhvEhHv4XLiFBAQQElJSav7SkpKCAgI6HJQ0nVTBpuJ07bahjLkKhAhIiI9zDlcb31mQfMdjQUidMdJRLyHy4nT5MmTWbp0KXl5ec22nz59mmXLljFlyhS3BSed51wId21xvLlBV/VERKSHOavp7ckppaii9swO5x0nXdQTES/icnGIu+66i+uuu4758+czY8YMYmNjOX36NF9//TU+Pj4sXbq0O+IUF6XGhhAe6Mu2qhSwAoWZUF0KAa6tYi8iItJZsaH+jIgP4UBeORsOF/DttERzR0Ka+VxyHCoLIah/VyAUEe/g8h2n4cOH889//pOLLrqIjIwM3njjDTIyMrjooot4/fXXGTZsWHfEKS6yWAwmp0RSSBjl/g13nfJ2eTYoERHpd5x3ndZnNpnnFBAGUUPN1xquJyJeolPrOA0ZMoQ///nP7o5F3GxySiSf7jvFYZ9UxtfkmcP1UmZ6OiwREelHZqZG8/z6o63Pcyo8bCZOqfM8E5yIiAtcvuMk3sO5ntOmqiRzg8aSi4hID5s2NBqLAYdPV5BbUn1mR2NlPd1xEhHv0Kk7Tnv27OGdd94hOzubmpqaZvsMw+Dpp592S3DSNRMGRuBjMdhUPZAf+6ECESIi0uPCA31JSwpnx4kS1mfm8/1JA80diQ2V9XRRT0S8hMuJ0+rVq7nvvvuwWCxERUXh6+vbbL9hGG4LTrom0M/K2KRwdh8fbG44vRfqa8DH36NxiYhI/zIjNaYhcSo4kzglNNxxKjgENWXgH+q5AEVEOsDlxOnpp59m7ty5/OEPfyA8PLw7YhI3mpwcyXPHY6i0hhFkK4VTe2FAuqfDEhGRfmRmajR/+yKT9YfycTgc5kXWkFgIHQBl2ZC7C1JmeDpMEZFzcnmO06lTp7jhhhuUNHkJcyFcg/3GEHODxpKLiEgPO29wFL5Wg+ySarIKKs/s0DwnEfEiLidOo0ePbrH4rfRezoVwN1c3DI3QWHIREelhgX5WJiab/VGz6nqa5yQiXsTlxOnXv/41K1asYN++fd0Rj7hZXFgAg6IC2WUfbG5QgQgREfGAmanRAHzVdD0n3XESES/i8hyn9PR05s+fzxVXXEFsbGyLIXuGYfD222+7LUDpusnJkWQUDTZ/yNsFdhtYrB6NSURE+pdZw2J48pODfJ1ZgN3uwGIxzLWcAE7vg7pq8A3wbJAiIufg8h2nFStWsHz5ciIjIxkwYAARERHNHpr71PtMHhzFEUci1YY/1FVCQaanQxIRkX5mwsAIAn2tFFTUsj+vzNwYPhACo8BeD6f2eDZAEZF2uHzH6cUXX+TKK6/k4YcfxmrVXQtvMCUlEjsW9tpTmGgcMIdExI7wdFgiItKP+PlYOG9IFF8eOM36zAJGJ4aBYZjD9Q5/Zs5zSprk6TBFRNrk8h2niooKLrvsMiVNXmREfCih/j5k2FLMDbkaSy4iIj1vVsM8pw3N5jk1DNfTPCcR6eVcTpwmTZpEZqaGenkTq8UgPTmC3Y7B5gYViBAREQ+YmRoDwMbDhdTb7ObGxgIR6ptEpHdzOXH67W9/yz/+8Q8++eQTamtruyMm6QZTUqLYbXfecdoJDodnAxIRkX5nzIAwwgN9KaupJ+NkibkxoSFxytsFtnrPBSci0g6X5zhdeeWV1NfXs3jxYgzDICCgeQUcwzDYunWr2wI8l9dff53777+foKAgtm3b1iOf6a2mDI5kmWMQ9VjxqSqCkhMQMcjTYYmISD9itRhMHxrFh7vzWJ9ZYK7tFDUU/EKgthwKDkLcaE+HKSLSKpcTpwULFmAYRnfE4pK8vDz+8Ic/EBcXR3l5uafD6fXSB0VQb/hywD6QMZYscyy5EicREelhM1NjGhKnfO6YNwwsFkhIg2MbzL5JiZOI9FIuJU42m43bbruNqKgoj5cdf/DBB5kyZQoRERF8+OGHHo3FGwT7+zA6MYzdp1LMxCl3J4y+zNNhiYhIPzNrmFkgYsvRIqrrbAT4Ws15Tsc2mPOcJlzn4QhFRFrn0hwnh8PBwoUL2b59ezeF0zFvvfUWmzZt4ne/+51H4/A2U1IiVSBCREQ8KjU2hNhQf2rq7Ww7VmxuTFBlPRHp/Vy64+Tj40NMTAwODxYWKCgo4JFHHuHuu+8mISGhS+9ls9m6dF5nz/eUickRvPL1YAAcuTuw97P2u4var/Y3fe5vutr+/vq9yRmGYTAzNZq3tmezPjOfGanRZyrr5e4Eu90cvici0su4PMdp4cKFrF69mgsuuKAbwmnfQw89xJAhQ/jBD37Q5ffKyMjw6Pk9LbDSxl5HMgBGaTa7Nn5OvX9Ep9/P29rvbmq/2t+f9ff2S9fMSo1pSJwKuBsgdiRY/aGmFIqPmgUjRER6GZcTp1GjRvH+++9zww03MH/+fGJjY1sUi5g/f77bAmzqww8/5NNPP2X16tVuKVCRlpbWqYV8bTYbGRkZnT7fk0L+XcbhqgSGWnIZF2OH1HSX38Ob2+8Oar/ar/Z3vv3O86V/m9GwEO6O48WU19QT4u8L8WMge5s5XE+Jk4j0Qi4nTvfccw9gVrXbtGlTi/2GYbB3796uR3aWiooKHn74Ya6//nri4uIoLS0FoK6uDoDS0lJ8fHwICgrq8HtardYu/eHT1fM9YUpKJHv2DmYouVhP7YIRl3T6vbyx/e6k9qv9an//bb90zaCoIAZFBXK8sIrNRwqZNyrOnOeUvc2cgzv2Ck+HKCLSgsuJ04svvtgdcbSrqKiI/Px8nnvuOZ577rkW+8877zwuuugi/vrXv3ogOu8xJSWS3bsHc5n1axWIEBERj5mVGsM/Co+zPjPfTJyc85xUIEJEeimXE6epU6d2Rxztio2NbTVpW7FiBZs3b+b//u//iIyM9EBk3mXK4Cged6QA4MjdiedX5BIRkf5oRmo0/9h8nK8OFZgbmiZODgf0gjUjRUSacjlxciorK2P79u0UFRUxd+7cbl/Xyd/fn2nTprXY/uabb2K1WlvdJy2NSgjlsE+q+UNBJtSUgX+oZ4MSEZF+Z2ZqDAB7ckopqqglMn4sGFaozIeyHAgb4OEIRUSa61S9z2XLljF79mxuvfVW7rnnHk6cOAHAjTfeyIoVK9waoLiXj9VC8qAUchxRGDggd5enQxIRkX4oNtSfEfEhAHx9uAB8AyFmhLlTQ8lFpBdyOXF65ZVXWLZsGVdddRXLly9vtqbTvHnz+Pzzz90ZX7see+wxtm3b1qOf6e2mpESy224O1yNXnZOIiHiG867TV5n55gbNcxKRXqxTidNNN93E/fffz/nnn99sX0pKCllZWW4LTrrH5MFR7HYMNn/QVT0REfGQmQ1lyddnOuc5jTefdVFPRHohlxOn48ePM3v27Fb3BQcHN5YJl95rYnIEexoSp7qT2z0ai4iI9F/ThkZjMeDw6QpyS6p1x0lEejWXE6fQ0FDy8/Nb3Xfy5Emio6O7HJR0r7AAX6qjxgJgzd8P9TUejkhERPqj8EBfxiWZxaXWZ+ZDQpq5o+Q4VBZ6MDIRkZZcTpxmzJjBM888Q2VlZeM2wzCor69n5cqVLYbvSe80cMhIih3BWBx1cMr9CxaLiIh0hHOe0/rMAggIh8gh5g7ddRKRXsblxOnnP/852dnZLFy4kMceewzDMHj55Ze5+uqrycrK4mc/+1l3xCluNmVIFLvtg80fNJZcREQ8xDnPaUNmgVlwyjlcT32TiPQyLidOKSkprFy5kqFDh7Jy5UocDgdvvfUWkZGRvPrqqwwYoHUXvMHk5DMFIupP6qqeiIh4xpTBkfhaDU4WV5FVUHmmQITuOIlIL9OpBXCHDRvGs88+S21tLUVFRYSHhxMQEODu2KQbDYoK5Lj/MLBB1bFtaAlcERHxhCA/HyYmR7LpSCHrMwsY3FggQnecRKR3cfmO03333cfx48cB8PPzIz4+vjFpOnnyJPfdd597I5RuYRgGPklm5xRQsAfsNg9HJCIi/ZVzuN5XmfmQ0JA4FRyCmjIPRiUi0pzLidObb75JUVFRq/uKiopYvXp1V2OSHjJw2HiqHH742qugINPT4YiISD/lLBDxdWYB9qAYCB0AOCB3l2cDExFpwuXE6VxKSkrw8/Nz51tKN5o0OIa9jmQA7BpLLiIiHpI+KIJAXysFFbUcOFWmhXBFpFfq0BynzZs3s3HjxsafX3/9db788stmx9TU1LB27VpSU1PdG6F0m7EDwvknQ5jEIUoObyVy/NWeDklERPohPx8L5w2J4ssDp/nqUAGjEifAgTUqECEivUqHEqeNGzeydOlSwJwb8/rrr7d63IABA/jv//5v90Un3crPx0JZ5Bgo+ZiaE9s8HY6IiPRjs1Kj+fLAaTZk5vOfU52V9XTHSUR6jw4lTj/+8Y/54Q9/iMPhYObMmTz77LOMGTOm2TF+fn4EBwd3S5DSfQIHTYQSCC3aCw4HGIanQxIRkX7IOc9p4+FC6r+TZv6Bcnov1NeAj79HYxMRgQ4mTgEBAY2V89auXUtsbKzmMvURg0ZNpi7DSrCtBEpOQMQgT4ckIiL90JgBYYQF+FBaXU9GWSgTAyOhqghO7YEBEz0dnoiI68UhkpKSlDT1IROHJnDIkQRA2dFvPByNiIj0V1aLwYyGsuTrDxdC43pOmuckIr2Dywvg1tXV8X//93+8++67ZGdnU1NT02y/YRjs2bPHbQFK94oI8mOj/zBG1x3j1IFNhKZf7umQRES8xsaNG7nhhhta3ffaa6+Rnp7eswF5uZmpMXy4O48NmQXckTweDn+ueU4i0mu4nDj9+c9/5vnnn2fOnDlcfPHFuvvUB9TGjIOcT7Fl66qeiEhn3HXXXUybNq3ZtuHDh3soGu/lXAh389FCaqek4Qe64yQivYbLidMHH3zAHXfcwaJFi7ojHvGAkMGTIAciS/d5OhQREa+UkpKiu0tuMCwuhNhQf06X1bDbPoSJAHm7wVYPVpf/ZBERcSuX5ziVlJQwZcqU7ohFPGTwuOkAxNpPU1N6ysPRiIhIf2UYRuNdp89Oh4BfCNRXQcFBD0cmItKJxOm8885j3z7dmehLBg9I4BgJAGTt+trD0YiIeJ+HH36YMWPGMGnSJP7zP/+TLVu2eDokr+VMnL46XAQJaeZGzXMSkV7A5fve999/Pz/72c8YMGAAF1xwgeY49QGGYXAqeCTJFbkUZW6Gmd/1dEgiIl4hNDSUG264gWnTphEREUFWVhbPPvssN9xwA8uXL2f27NkuvZ/NZutUHM7zOnt+bzJ9SCQAO44XUzN9LP7HNmDP3oZj3FVtntOX2t8Zar/a3/S5P+rqd9DR81xOnC6//HLq6+u58847MQyjcX0nJ8Mw2Lp1q6tvKx5mi0+Dw19g5GZ4OhQREa8xZsyYZgvCT5kyhUsuuYTvfOc7/PGPf3Q5ccrI6Nrv4K6e31vEBVs5VWFjQ2EYFwAVhzZwIG57u+f1lfZ3ltqv9vd33f0duJw4LViwAMMwuiMW8aDIoVPgMMRV7MfhcOjfWESkk8LCwrjgggv4xz/+QXV1dYsLjOeSlpaG1Wp1+TNtNhsZGRmdPr+3ueDILlZtOcGBoAlcAISUZ5I+YTwYrc8w6Gvtd5Xar/b35/ZD178D5/ntcTlxeuyxx1wORnq/5LHT4RNIduRwLOc0KQPiPB2SiIjXcjgcAC5fhLJarV36w6er5/cWs4bFsGrLCd7NCecnVj+MmjKspcchaug5z+sr7e8stV/t78/th+7/DlwuDiF9U0BkIgWWaCyGg8O7VSBCRKSzSkpK+Pzzzxk9ejT+/v6eDscrzWgoEJGRW0l9zGhzowpEiIiHdeiO0+7du11607Fjx3YqGPGsotBRRJd8RdmRrYAKRIiItOfuu+8mMTGRcePGERkZSVZWFs899xwFBQUaodEFcaEBjIgP4UBeOdmBI0hmh7kQ7tjveTo0EenHOpQ4XXnllR0abuCcG7N3794uByY9zxgwHkq+wvf0Lk+HIiLiFUaOHMn777/PP/7xDyorKwkPD2fy5Mk8/vjjjB8/3tPhebWZqTEcyCtne30KyQC5uuMkIp7VocTp0Ucf7e44pBeIHX4e7H2aQTWHKKmsIzzI19MhiYj0aj/5yU/4yU9+4ukw+qQZqdE8v/4oawrjzDEQOTvA4QAVLxIRD+lQ4nTFFVd0dxzSC4QNmQLACOM464/kccHYgR6OSERE+qvpQ6OxGPBpYSyOQAtGxWkoy4WwRE+HJiL9lIpDyBkRyVRaQ/EzbGTt11pcIiLiOeGBvoxLCqcaf8pCGqrp5ezwbFAi0q8pcZIzDIOyCLN6UWXWNg8HIyIi/Z2zut5BS0PipHlOIuJBSpykGb+B6QCEFu2hzmb3bDAiItKvzUqNAeCriiRzg+44iYgHubwArqds2LCBt99+m23btpGbm0toaCjjxo3jjjvuYNy4cZ4Or88IHzIZdsBIjrAnu5QJgyI8HZKIiPRTUwZH4ms1WF+ZxM/90FpOIuJRXnPHaeXKlZw8eZIbbriBFStW8Nvf/pbCwkKuvfZaNmzY4Onw+gzLgHQAxhhZbDla4NlgRESkXwvy82FiciR77CnmhpJjUFno2aBEpN/ymjtODz74INHR0c22zZ49m/nz57N8+XJmzJjhocj6mJjh1Fn8CbbXcPzQTpid6umIRESkH5uZGs2mI4Wc9h1AbF22Oc9p6AWeDktE+iGvueN0dtIEEBwcTGpqKjk5OR6IqI+yWKmOMgtE1J/YgcPh8HBAIiLSn81smOe0oy7Z3KB5TiLiIV5zx6k1ZWVl7Nmzh+nTp3fqfJvN1qXzOnt+bxcwMB3ytzOw5hDHCsoZGBnUbH9fb3971H61v+lzf9PV9vfX7006L31QBIG+Vr6pS+Fi3681z0lEPMarE6eHHnqIqqoqbr/99k6dn5GR0aXP7+r5vVWMPYoUYIxxlDe+3MGclMBWj+ur7e8otV/t78/6e/ul5/j5WDhvSBS7Dw02N+iOk4h4iNcmTk8++STvvPMODzzwQKer6qWlpWG1Wl0+z2azkZGR0enze704O+z8M2MtR/nQEUp6evPvt8+3vx1qv9qv9ne+/c7zRVwxMzWaZw4MNn8oOAQ15eAf4tGYRKT/8crEaenSpTz99NP84he/4Ec/+lGn38dqtXbpD5+unt9rJaRhN6xEU8axY5lYrRNaPazPtr+D1H61X+3vv+2XnjUrNYbHCCfPEUm8UQR5uyC5c8P0RUQ6y2uKQzgtXbqUJUuWsHjx4k4P0ZN2+AZgjx4BQED+Lsqq6zwckIiI9GdjBoQRFuBDhn2wuUHD9UTEA7wqcVq2bBlLlizhpz/9KYsWLfJ0OH2aT1I6AGM4yrZjxR6NRURE+jerxWD60Gh2OwabG1QgQkQ8wGsSp+eee46nnnqK2bNnc8EFF7B9+/ZmD3GzhPEAjLUcZUtWkYeDERGR/m7WsBh2646TiHiQ18xx+uyzzwBYt24d69ata7F///79PR1S35ZoJk5jLFm8qMRJREQ8bGZqNCsaEifH6b0Y9TXg4+/ZoESkX/GaxOmll17ydAj9S0IaAAONfA4fO0a97Tx8rF5zg1JERPqYYXEh1IYkUVQXQqS9HE7tgQETPR2WiPQj+ktYWhcQjiNyCABD6jPZl1vm4YBERKQ/MwyDmcNi2G1PMTdonpOI9DAlTtImo2G43ljjKFs1XE9ERDxsZmo0uxzmRT3NcxKRnqbESdrWWCAiS4mTiIh43MzUGPY0zHOyZStxEpGepcRJ2pZoLnyrO04iItIbDIoKIj9slPlD3i6w2zwbkIj0K0qcpG0NidNQI4ei4iJySqo8HJCIiPR3yalpVDj8sdqqIf+gp8MRkX5EiZO0LSQOQhKwGA5GGcfYclR3nURExLNmDI9lj8NZIELD9USk5yhxknNLPLMQrobriYiIp81IjW5cCLf6+DbPBiMi/YoSJzm3BFXWExGR3iMuNID8EHOeU0XWVg9HIyL9iRInObcmd5z25JRSUVPv4YBERKS/Cxk8CYCggj3gcHg4GhHpL5Q4ybk1FIgYZTmBxV7HjuPFno1HRET6vaFjJ1Pj8CHQXg5FRz0djoj0E0qc5NwiUiAgHF/qGW6c0HA9ERHxuGmpiRxwDAKg6LCG64lIz1DiJOdmGE0Wwj3KFiVOIiLiYeFBvmQHjgDg1P6NHo5GRPoLJU7SvobEaYyRxTfHirDbNZ5cREQ8y9EwB9ehkuQi0kOUOEn7Gjqn8dYsyqrrOXiq3MMBiYhIfxc/YioAceX7cNjtHo5GRPoDJU7SvoYCEWMsWRjYNc9JREQ8buSE6dgcBlGUcPLEUU+HIyL9gBInaV/0cPAJINBRxWAjj63Hij0dkYiI9HNBwWFk+5oFIg5nbPBwNCLSHyhxkvZZfSB+LGAuhPvNMd1xEhERzyuPNPum8qPfeDgSEekPlDhJxzSprHessIqiapuHAxIRkf4uOMVcCDe4cDcOLYQrIt1MiZN0TEOBiKkBJwDYl1/nyWhERERIHDUdgBGOwxwrrfdwNCLS1ylxko5pKBAxkiOAgxd2lPKnjw6QcaJEV/lERMQjfJPMi3oDjXwO5hR4OBoR6et8PB2AeIm4sWBYCakvJsW3mKzKSJ7+4jBPf3GYpIhAFoxN4NJxCUxOicRqMTwdrYiI9AeBEZQEDCS8+gTVufuBSz0dkYj0YUqcpGN8AyB2JJzaw3tXhfLM4XD2VwTw+f58ThZX8dxXR3juqyPEhPhxyZgEFoyNZ2ZqDH4+uqkpIiLdx5GQBkdPEFR8iHqbHavV6umQRKSPUuIkHZcwHk7tIahwD7OT57M4PZ06O3x54DRrdufyyZ488strWbnpGCs3HSM0wIeLRsVx6bgE5oyIJchP/7mJiIh7hQ2ZAkc/YARH+P0H+/j+pEFMGBiOYWj0g4i4l/6SlY5LHA87/4GRmwFh8wEI8LUyf2wC88cmUGez8/XhAtbsyuXD3Xnkl9ewens2q7dnE+BrYe6IWC4dl8CFo+IJD/T1cGNERKQvsAww5+CONY5y54ZjvLjhGAlhAcwfG8+CsQlMHRKFr1WjH0Sk65Q4Scc1FIggdyeMaLnb12ph9vBYZg+P5eHLx7HtWBFrduWyZncuJ4qq+HB3Hh/uzsPHYjBzWAyXjk3gkjHxxIb692w7RESk72jom1ItOVwxNpyPDpaTW1rNixuyeHFDFhFBvlw0Kp4FY+OZMyKWAF8N5RORzlHiJB2XkAaAUXIca23JOQ+1WgymDI5iyuAofrtwNLuzS/lwdy5rduVy8FQ5Xx44zZcHTvPb1RmclxLFgnHmvKiBkUE90RIREekrQuJwhCRglOfyRNwH1F14Hf8uieXDPXl8svcUhRW1/OubE/zrmxME+lqZOyKWBePiNfpBRFymxEk6LiAcIgdD0VGCSjKBuR06zTAMxiWFMy4pnLvnj+TQqXI+3J3LR7tz2XGihE1HC9l0tJD/9+4e0pLCuXRcAgvGJjAsLqRbmyMiIn2DI3kGxp43sWxYiv+GpVwUNpCLRizAdvV8tljSWbO/mI9253GyuIo1u82RED4Wgxmp0cwfm8CCMfHEhQV4uhki0sspcRLXJIyHoqNE5P4bqq6AkBiX32JYXAjD4oZxx7xhnCyu4qOGO1GbjxaScbKEjJMl/PHD/QyLC+HShjLnYweEaaKviIi0ynHZk2RZk0mu3otx5EsoPQFbnsW65Vmm+QQybegF/PdF89kfNpP3sgw+3J3Lgbxy1h3MZ93BfB5YvYuJyREsGGteuBsSE+zpJolIL6TESVyTNAn2vk3c0dU4/vSWObZ8yBwYOheSZ4Cfa51NUkQgN88aws2zhpBfXsMne/JYszuXrw7lc+hUOUtPHWLpZ4dIigjk0nFmEjUpWWtFiYhIE/6h5A++nIHpD2K11cDRdXBgDRz4EEpPwoEPMA58wChgVEIad0+4lOy4ObyTn8CaPafZdqy48fHYB/sYER/SmETpwp2IOClxEtdMvgl7WS41uz8gsDwLcrabj/VPgcUXBk01E6khc2HgFLB2fPx4TIg/101N5rqpyZRW1/HZvlOs2ZXL5/tPc7K4imf/fYRn/32EmBB/LhkTz6XjEpgxNFprRYmIyBl+QTBigflwOCBvl5lAHfgQTmyG3AzIzWAAf+S2oBhuGz6f4qkXsqZ6DO/tL2dDZgEH8so5kHeIJZ8ealzkfcHYeKYMjtKFO5F+TImTuCYwEsf8R9gTdw3pqfFYs76CI1/CkS+g5DhkfWU+Pn8UfIMhZeaZO1LxaWDpWJITFuDL5elJXJ6eRFWtjS8PnubDXbl8vNcsc950raiLR5slZ+eOiCXQT9WSRESkgWGYhY0S0mDOL6EiHw5+DAc/hENroTIfdrxKxI5Xuc7iw3UpM6lacAnrLJP511F/vjhwutki79HBfmafM85c5F0V+kT6FyVO0nmhiTDhWvPhcEDhYTOBOvyFOUyisgAOfWw+AAKjYMjshjtSF0B0qtmptSPQz9o4ZKK2vmGtqN25fNSwVtSb207y5raTBPhauGCEueDuvFFxqpYkIj2ioqKCJ598kg8++ICSkhKGDh3KT37yExYuXOjp0ORswTGQ/h/mw1YHxzY03I1aAwWH4MiXBB75kvnA/KhU6mfMZ1vgNFadGshH+4ooqKjltS3HeW3LcYL9rFwwKo4FYxOYNzKW0AD1OSJ9nVclTuqcejHDMBOh6FSYcgvY7XBqt5lEHfkCstZDVSHsect8AIQlmUP6nHekwga0+zF+PhbmjIhlzohY/t/l4/jGuVbUrtxm1ZJ8rQYzU2O4dJy5VlRMiNaKEpHusXjxYjIyMrj77rsZPHgw7777LnfddRd2u53vfOc7ng5P2mL1bbiQNwcW/B4KMs8kUVlfQWEmPpue5jye5jz/MP4w6kIORczkzbIxvHmgltzSat7bmcN7O3Pws1qYOSyaBWPV54j0ZV6VOKlz8iIWy5nhETMXmVf2Tn5jJlFHvoTjG80JuzteNR8A0cPNBGrIHBg8G4KizvkRVovBeYOjOG9wFPc3rBXlXHD30Klyvjhwmi8OnOa3b2YwZXAUl45NYMG4BJIiAnvgCxCR/uCLL77gq6++4oknnuCyyy4DYPr06WRnZ/P444/z7W9/G6tVw7m8QnQqzPiZ+agugczP4OBHZjJVmY9l72pGsJp7MPh10hRy0+aypnYCLx0J5XB+JZ/vP83n+0/zmzczmJIS2ThSYlCU1icU6Su8JnFS5+TlrL6QPM18zP011FbC8a8b7kh9aRaYKDhoPjY/AxiQOL7hjtRcSDl3xb6ma0X9csGZtaI+3J3LzhMlbDpSyKYjhTz87h7GDwxnQUOZ89RYrRUlIp338ccfExQUxKWXXtps+/e//33uvvtuduzYwaRJkzwUnXRaQDiM/Z75sNsh+5szVfpyd2Kc3Eziyc3cDNwclkTJpHmss0zm+ZxktpysYfPRIjYfLeJ/3tvLmMQwM4kaF8/I+FBV6BPxYl6TOKlz6mP8giD1QvMBUFUER786c0fq9D7I2WE+nBX7Bp535o5U0hTw8Wvz7ZuuFXWiqJKPdptlzjcfLWTniRJ2njDXihoeF9K44K5KzoqIqw4ePEhqaio+Ps2705EjRzbuV9/k5SwWs0rswClw4f1QcvLMnajDn0PpScL3vMxlvMxlPgFUj5rFNwHTeKVwFB8c92FPTil7ckr5yycHSIkOaqzQN3FQJBZV6BPxKl6TOHVH52Sz2ToVi/O8zp7v7bql/X5hMOJb5gOgLBfj6Do48gXG0S8xSk7AsfXm4/NHcfgGQ/J0HEPm4Bg8xxwSaLResS8xzJ8bZyRz44xkc62ovaf4cHceGw4XcPBUOQc/dZacDWDB2HgWjElgYnJEmyVn9e/v+fY7HA7q7Q7qbQ3Pdjs2u4M6m4N6m71hm6Nhm516W8Prs44zt5n7Gs+znTmu8f2bvGddvY1Tp0uJOrYbAwO7w4EDzGeHWSel5bYzP9sdQNNj7Oazo2Ff0/PPbGs4j7OOaXwPcND8vc+8R5P34cz7NY8THPa2Ym6+DQO+OyyQtLSu/f7sK4qLixk4cGCL7eHh4Y37XaF+qXN6tP0hCTDxBvNRVwVZ/8Y4+BHGwQ8xSk4QcHQtM1nLTKA+aTQHwmeyuiKNF0/EkVVQyYovD7Piy8PEhvhz8eg45o+NY/qQri2toX///tN+h8Psw2ptdmrr7dTZ7FTV1nOyrJ7AnBIwLNjsjsb+xu4w+ziHA2wNfYPdbu5repx5jKPhGBqOMX922BvOdZ531vs4+xyb3YzPZm84z/kZdhs4bGC34bDVYzjMZ3NbPQ67DaPxmHqw2zEc9WCvx3DYG57PHGM0vJfhOPNw+AQwbMwU0rr4O7Q9hsPhcHTqE3rYggULGDhwIM8++2yz7adOnWL27Nncdddd3HbbbR16L5vNxvbt27shSukWDgd+ldmE5W8jNP8bQvO34Vtb0uyQet8wymLSKY2ZSFnMJGqCB7Zbsa+i1s7WnBq+PlnNttwaapv8PxPhb2Fqkj/TkgIYF+eHTx+8Kmh3OKizQ53NTB7qbDQ8O6i3Q23D9nq7g1obZtJgc1Brp+GXYvPnerv5R3Z9wy/S+hbHmL9snc/m8c3PO/sYmx3qG36BN3v2it9afYUDH2z4UY8v9VixMz45lsXTIrv0runp6X1iePWCBQsYNGgQzzzzTLPtzr7p7rvv5ic/+Um776N+qQ9wOAgoO0J43tdE5H1NcNEeDOyNu+t8w8gMmcwntom8VDiGvPozc5+CfA0mJ5p9TnqCH4Fan7BXMBMJs2+sd/aD9jN9Z739TL9ZZz/TT9bZneeceX328fX2Ju/X0P/W2x3U19vBXofFXovVVoPVXoPFUYePrQaroxZfRx1+1OJPHQHU4m+Yz37UY8WGD3ashg0rdnywY8GOD7bGZyt289HmMXaszuMMe8MxZ/adeZ/mxzh/bnZ+w8Ni9Eyn/WHcfxIz7Yddeo/2+iavueMEnHMYVWeGWKWlpXWq47bZbGRkZHT6fG/nmfZPBBqqJzrs2E7txWi4G0XWenxqS4nM+ZLInC/NQ8IGmHeiBs/BMWROmxX7ZgE/h4a1ovL5aE8ea/edori6no8OV/HR4SrCAny4cFQcC8bGM3tYDH5WOt1+e8MdkJp6e+PVopr6s54bttfW284cV9d0u73N7WfOtzX87KCm3tbis2ptdupsfS/78LEY+FgN89liOfPaasFqMfBt+tpqYG04zvna12LB2nCOb8NxPpYz7+FjMbAYUJB/mvi4OKxWCwZgMQwMw/w9ZDHMnN3S8DvJ0rit4ZjGbQYGDqzUYbXX4+Oow8dR3/BzHdaGny2OOqz22sbXPo56LHZzm9VRh8VRj9Veh8XZ0TrqsNjNY53bLI376zCa/Gw4n221jfsMex2GreG1zTz/bKcDFhKe9nyXfn/2FREREa3eVSopMS/uOO88dZT6pc7pPe2fCHwfAHtlAcahtXDoI4xDn+BbU8qoos8YxWfc4WuleMBk1lvO47nTI9haEcO6Y9WsO1aNv4+F2cNiuGRsHBeNiiMyqO1h6U69p/3dy2Z3UFFTT2l1HWXV9ZRW11NWXU9JZQ0HjhwjOi7BvPDXpI8178o4mv3c2G827T/Pem2rr8Ow1eDvaEhSDPPZn1oCqMPfqDUTl7P2+VOHv1FHaCvJjXnMmeNbPd+ob9lwAy/7i73j7FixG1YchgWH4XPmtcWnYZu12QOL87VP42ssVhx+ISQOm8WoLv4ObY/X/DO4u3MCsFqtXfoF09XzvZ3n2m+FAePNx6zFZsW+7G1nSp8f34hRmo2x8x+w8x/mKdHDzCITQ+e2WrEvJNDKt8cP4NvjB1Bbb2fD4QLW7Mrl4z255JfXsnp7Nqu3ZxPoa2X28BjsVaWEHtpNrc3RJJmxNf7CralrLTGy9epkxc/Hgn/Dw89qwd/Xip/V0rjdr+HhazGoKCslJjoSX6v1TNLhTDSsDQlIY3JyJjHxsZrnNz3e12omL9azznMmKi0ToeYJkTOxsVqM1i+gOBzmfyO2GqivbXiuAVvtWc9N97d9nL2+htPGSWJt4Vjq6hreu7bhHOejYZutpsnrujPv49xmr+v5f+guchgW6v0j+/3vP6cRI0bw7rvvUl9f32wo+YEDBwAYPny4S++nfqlrelX7Q+Ng4n+YD1udWU32wBo48BFG/n4iT21iIZtYCFTHprAzaBori8fybskQPtl3ik/2ncJqMZg6OIoFY+OZPzaBAe1Uhe1V7T+Lw+Ggqs5mJjxVdQ1JT5PnKvPZTIjqGo8ra3JceY2ZVFixEUYFEUYFEZQTbpQTRiWlTZMZagk9V8LSbJ/5c9NkxtfH5vG/kh2GD3YffxxWf/AJwOETAL4BGD4BGL6BWHzNZ7vVj8KSCqJi47BYfMBiJhWNz0aT1y1+9jGnOpx9XuM258/WM+c7jz17W+P7Ws76ubVtVjAs5oVEN3xXNpuNo9u3d/v/A16TOLm7c5I+xOoLg6aaj7m/MsecH/v6zGK8OdvNhQ0LDsGWZ4GGleSHzjUX4k2eDv5nquv5+ViYOyKWuSNi+Z/vjWNrlrlW1Ie7zbWiPtqT13BkVZdD9/Ox4G+14O9raZKkWBuTlMaEpZVExr8DxzR9n8b3beXzfK1tJB2tcA4pSk+f0PovJ1u968lJbWcTm3Md3+Q8N7IA8QBH3Pq2JsMCVn+w+pn/XTuffc7e1vTRZJtPa9t9W3nPto71P+s8v4bPPnOe3WGQvWMHcd3QfG908cUXs2rVKj766CO+/e1vN25/8803iYuLY8KECR6MTnoNqy8MPt98zP8fc8H4Ax+ZidTRfxNQlsXUsiymAn8KDeZw2FTeqRrPq4Wj2HDYwYbDBfzunTNVYReMjWdYXGiPNqG23t6Y2JxJbsyEp7SthKemeUJUf9Y4ax/qCaeCCKOcCMobniuIMcpJbXjt3BduVBDhV06kUU6YUdmjbTcTF3+MhsQFnyaPxp/9wSfQfPYNbOPn1s5rsu+s9zasPnQkBXDYbGRt305kejr00sS5r/CaxEmdk3SYbyCkzjMfAFXF5mKGzjtSp/dB7k7zsX5JQ8W+KWfuSDWp2Ge1GEwdEsXUIVE8cJm5VtQX+09x4mQ2KYOSCPC14udjbZGkND5brWclKWeO87Naer6Kn90OdZVQWwo15VBWAbXOR7n5XFd55nXT7Q0PS005Y8qLsXxlaT2pcdjbj8OTDOuZRMTH30wWfPzaeG56nPlst/iSl19M/ICBWHz920lKWkt02k5KsHhBh9cPJl+7Yu7cucyaNYvf/e53lJeXk5yczHvvvce6dev44x//2Guv/ouHRQ2F6bebj5oyszpfw90oa8Uphhd8xl18xl0BcCpsLJ/ZJ/JS4Wh2nhjcWBV2aGxw41pR4xLPvbSG3e6gvLa+WVJTWlVHWU3zRKe08Q6Qc9uZ7dV1bf9u96OOcMob7wBFGOUMNMoJp4JIo4wIKgi3lhNhNY+JslQQTjnBXb0A6R8OgRE4AiMpq7MQGhmH4RvgYuLSTgJk9cewaM6ZmLwmcVLnJJ0WGAGjFpoPgLI8s+T5kc/h8JdQcgyObTAfXzwGvkGQPKPhjtRcSBgPFkvjWlGjE0LYvr2U9PQh3fvfXX1ti6Sl2c91bWxv9ZzKM+d0kQF0fAlho1PJybmTmq4c1/XkxGGzkb19O3G6sicNlixZwl/+8heeeuopiouLGTp0KH/+859ZuHChp0MTb+AfCqO/Yz7sdsjZduZuVM524kp3cy27udYPKv3j2Ow7mZXFY/ji9Fie/ryCpz/PJCHMn1GRBhEHd551R8h8Lq+ppyOlwAKoaUh8zDs98U2TIZ9ywiknxlpJtMXcH045oY5y/B3VXfgCDHPdrMDIM4+gqOY/t/YIiACr+Wes3Wbj4PbtfabojPReXpM4gToncZPQeBh/tflwOKDo6JlhfUe+hMp8yFxrPsD8BT34/IY7UhdAxJDm79d4F6eNpKXVfW0lRE3u9nTr/BcD/ELMRYUbH2f/3Po+mzWQzKwTpI4cg9U38NwJi8Wn3eqGIt4uODiY+++/n/vvv9/ToYi3s1ggabL5mHcflOaYa0Yd/AgyPyOo5hRzaz5grs8H2Pz82BeQzpvl41hTNoHPS2MhKxtwENSYAJWTYjQMgbNUEG2pINankhhrZeNdnzDKCbGXEWQrxdfRshhMqxqWPmjGsJjJTEeSnsAo86JmYKSZNHnD3XYRvCxxUuckbmcYEDXEfEy+yUyCTu89M6zv6Ffm4rx73zEfgCUkgbF2C5ZP6912F+ecrP5tJDYdS3RavPYNMocfdDahsdkoq9wOyem64yIi0p3CEmHyjeajrhqy/m0uvHtgDdbiY4yt3MRYyybu94cin1j8LXb860qwOlqpzObkAM6xG4tPBxKfVh7+YWbiJ9KHeVXiJNLtLBaIH2s+ZvzMLHSQva1hWN8XcHwTRnkuAa2da1jOJCbtJjAdTHR8gxuHIoiISD/mGwDDLjYf33ocTu9vmBf1IY7jXxNZf7r58RbfVu7+NLnT09ojKMrsgzRSQKRV+otM5FysPjDoPPMxx6zYZzu5jYMHDzF87ESsgaFnEh2fAHU2IiLS/QwD4kaZj/P/C3t5PofWv82wsZOxhkSbSZBvkPokETdT4iTiCt9AGDSNigJ/iB+joWoiIuJ5gZGUR0+AhHHql0S6kQajioiIiIiItEOJk4iIiIiISDuUOImIiIiIiLRDiZOIiIiIiEg7lDiJiIiIiIi0Q4mTiIjI/2/v3oOiuu44gH8XViOg4SEijo8a0F15bBEUFhWiEl8YDBBfnemAVRGJgVpRa4hNA1ZFaxwboIgEo2gcB6PoqCGaoGa0U1kUK6X4IoBWSIKIICLyWm7/YPbWFXBRYFfh+5nZcTz3LPd37l7ud87dswsREZEOnDgRERERERHpwIkTERERERGRDpw4ERERERER6cCJExERERERkQ6cOBEREREREenAiRMREREREZEOnDgRERERERHpwIkTERERERGRDlJDF2AIgiAAANRq9Us9X/O8l33+647j5/if/re34fg7N37N8zTXYWrBXOocjp/jf/rf3qa3jx/QXzZJhF6YXg0NDcjLyzN0GUREvZZCoUDfvn0NXcYrg7lERGR4urKpV06cmpub0dTUBCMjI0gkEkOXQ0TUawiCgObmZkilUhgZcbW4BnOJiMhwOppNvXLiRERERERE9CJ4u4+IiIiIiEgHTpyIiIiIiIh04MSJiIiIiIhIB06ciIiIiIiIdODEiYiIiIiISAdOnIiIiIiIiHTgxImIiIiIiEgHTpyekZ6eDrlcLj4cHR3h5eWFVatW4fbt21p9L1++jPXr1+P999+Hs7Mz5HI5SkpKDFN4F+no+NVqNfbs2YOlS5fi7bffhouLC3x9ffHZZ5+hurracAPoJs8el2cfKpXK0CW+tFOnTkEulyMjI6PVtvfeew9yuRwXLlxotW3atGkIDAwEAJw7dw5//OMfMWfOHDg5OUEul3d73V2ls+OvqanBzp07ERQUhEmTJsHV1RVz5sxBcnIy6uvr9TGETumK13/Hjh0ICAiAh4cHFAoF3nnnHXzyyScoLS3t9vp7C2YTs6ktPTWbmEvMpVc1l6SdenYPFhsbCzs7O9TX1+PKlStISkqCSqXCt99+C3NzcwBAVlYWLl68CAcHB5iZmSE7O9vAVXcdXeOvq6tDfHw8/Pz8MH/+fFhaWuLatWvYuXMnzp07hyNHjqBfv36GHkaX0xyXZ40aNcoA1XQNDw8PSCQSZGVlYfbs2WJ7VVUVbt26BVNTU6hUKnh7e4vbfvnlF9y9exeLFy8GAHz//ffIzc2Fg4MD+vTpg/z8fL2P42V1dvw//fQTUlNT4e/vj9/97ncwNTVFTk4OEhIS8M9//hN79uyBRCIxxNA6pCte/+rqarz77ruwt7eHmZkZfvzxR+zcuRNnz57FyZMnYWlpqfdx9VTMJmZTW3paNjGXmEuvai5x4tSO0aNHQ6FQAACUSiXUajXi4+ORmZmJuXPnAgBWrFiB8PBwAMDu3bt7VDjpGn+/fv1w5swZrRNPqVRiyJAhWLlyJU6fPg1/f39Dld9tnj4uPYWVlRVGjx7d6vy9dOkSpFIp5s6d2+quZVZWFoCW1xwANm7cCCOjljewN2zY8FoFVGfHP2zYMJw9exampqbi9gkTJsDExAR//etfkZOTg/Hjx3f/QF5SV7z+n376qdZ2zXEJDQ3FmTNnMG/evG4cQe/CbGI2taWnZRNzibn0quYSl+p1kOaCVFFRIbZpfiF7g2fHb2xs3OZs/de//jWAlpk/vT6USiWKi4tx7949sU2lUsHZ2RmTJ09Gfn4+ampqxG3Z2dkwNjYWL7yv++9CZ8ZvamqqFU4ar9PvQmdf/7ZYWVkBAKRS3p/rTswmZlNPxVxiLr2KufR6n1V6pFkfPnLkSMMWYiAdHb9mxv+6Lg/Qpbm5GU1NTVoPtVpt6LI6zdPTEwC07u6oVCp4eHjAzc0NEokEOTk5WtscHR0xYMAAvdfaHbpj/K/T70JXjb+pqQl1dXW4du0aNm/ejJEjR2L69On6GUQvxWxiNgE9M5uYS8wl4NXLJU6c2qG5CD1+/BgXLlzAzp074e7uDh8fH0OXphcvM/6ysjJs374dzs7OmDp1qh6r1Z8FCxbAyclJ69ETlke4u7vDyMhIvEBVVlaioKAA7u7uMDMzg6Ojo3jB/fnnn1FSUiK+Hd4TdPX4b9y4gZSUFEyfPh1jxozRyxg6oyvGX15eDicnJ7i4uCAwMBBqtRr79u2DmZmZ3sfTkzGbmE1t6YnZxFxiLr2KucQ1FO1YsGCB1v/t7e2RmJjYa5advOj4q6qqsGzZMgiCgL/97W+v/Vvk7dm6dSvs7e212l7lD1h2lLm5OcaMGSOuGb506RKMjY3h5uYGoOUCprlAafr0pIDqyvGXlJQgLCwMtra22Lhxox6q77yuGL+lpSUOHz6MhoYGFBUVISUlBcHBwdi/fz9sbGz0OJqejdnEbGpLT8wm5hJz6VXMpZ55BekCW7duxeHDh5GamoqFCxeisLAQkZGRhi5Lb15k/A8fPsSSJUtQVlaGL7/8EsOHD9dztfpjb28PhUKh9XB2djZ0WV1CqVTi9u3bKCsrg0qlgpOTk3hXxsPDA9evX8ejR4+gUqkglUoxbtw4A1fctbpi/KWlpQgODoaxsTFSU1NhYWGh51G8vM6OXyqVQqFQYNy4cZg/fz5SU1NRUlKC5ORkQwynx2I2MZva0lOzibnEXHrVcokTp3ZoLkKenp7YsGED5s+fjwsXLuDUqVOGLk0vOjr+hw8fYvHixSgpKcGePXtei7d/qW2aOzXZ2dnIzs6Gu7u7uE1zMbp06RJUKhUUCkWPW4LV2fGXlpYiKCgIALBv3z7Y2trqqfKu0dWvv62tLWxsbFr9jSHqHGYTs6k3YS4xl4BXK5c4ceqgtWvXwtzcHHFxcWhubjZ0OXrX1vg1wXT37l3s3r0bjo6OBq6SOsPd3R3GxsY4ffo0CgoK4OHhIW4bMGAAHBwccOzYMZSWlvao5RAanRn/Tz/9hKCgIDQ3NyM1NRVDhw7Vd/md1tWv/507d/DLL7/gV7/6VXeW3esxm5hNPRlzibn0quVS71gU3QXMzc0RGhqKbdu24cSJE/D398eDBw/ED63dunULAHD+/HlYWVnByspK6wV+3T07/pkzZ2Lp0qW4du0aPv74Y6jValy9elXsb2VlhREjRhiu4G5SUFDQ5jcVjRgxQvyay9dV//794ejoiMzMTBgZGbV6y9vd3R2pqakAWq8jLi0tRV5eHgDgv//9LwCId4CHDh36WnxI+WXHX1FRgeDgYJSXl2PTpk2oqKjQ+mpoW1vb1+Iu38uO/8aNG4iNjcXMmTMxfPhwGBkZ4datW9i7dy8sLCywZMkSvY6jt2E2MZuAnptNzCXm0quWS5w4vYCgoCAcOHAAiYmJ8PPzQ0FBAVauXKnVJyYmBkDL2sv9+/cbosxu8/T4XV1dxQvSpk2bWvUNDAzEli1b9F1it4uKimqzfePGjZg/f76eq+l6SqUSeXl5cHBwQP/+/bW2ubu7Y+/evejTpw9cXV21tqlUqlbHRvO78TqdCy8z/h9//BF3794F0HL3+1nh4eGIiIjo3sK7yMuM39raGjY2NtizZw/Ky8vR1NQEW1tbTJkyBWFhYRgyZIi+h9HrMJuYTT05m5hLzKVXKZckgiAIL/1sIiIiIiKiXoCfcSIiIiIiItKBEyciIiIiIiIdOHEiIiIiIiLSgRMnIiIiIiIiHThxIiIiIiIi0oETJyIiIiIiIh04cSIiIiIiItKBEyciIiIiIiIdOHEivUhPT4dcLhcfjo6O8PLywqpVq3D79m1DlwcASEpKQmZmZqt2lUoFuVwOlUplgKpanD17FmFhYZg4cSKcnZ3h4eGBRYsW4fjx42hsbDRYXc9q61h99NFH8PHx6db9lpWVIT4+HtevX+/W/RBRz8Js6hxm0/Mxm3oeqaELoN4lNjYWdnZ2qK+vx5UrV5CUlASVSoVvv/0W5ubmBq1t165dmDlzJqZNm6bV7uTkhLS0NIwaNUrvNQmCgI8//hjp6emYPHkyPvroIwwZMgSPHj2CSqVCTEwMKisrsWjRIr3X1lErVqxAcHBwt+7j3r17SEhIwNChQ+Hg4NCt+yKinofZ9GKYTR3DbOp5OHEivRo9ejQUCgUAQKlUQq1WIz4+HpmZmZg7d66Bq2tb//79MXbsWIPsOyUlBenp6YiIiEB4eLjWNh8fH4SEhODOnTt6ramurg79+vXrcP8RI0Z0YzVERJ3HbHoxzCbqrbhUjwxKE1QVFRVa7Xl5eQgLC4OHhwcUCgUCAgKQkZGh1efBgweIjo7G7Nmz4erqigkTJiA4OBiXL19utZ+GhgYkJCTA19cXCoUCSqUSQUFBuHLlCgBALpejtrYWR48eFZdsBAUFAWh/OcSZM2ewcOFCuLi4wNXVFYsXL8a//vUvrT7x8fGQy+UoKChAZGQkxo0bh4kTJyIqKgqPHj167rFpbGxESkoK7Ozs8OGHH7bZZ9CgQRg/frz4/6qqKkRHR8Pb2xvOzs545513sGPHDjQ0NGg9r76+Htu3b4ePjw+cnZ3h7e2NmJgYVFdXa/Xz8fHB8uXL8d133yEgIAAKhQIJCQkAgMLCQixduhQuLi5QKpX485//jMePH7eqsa3lEHK5HBs2bMCxY8fg6+sLFxcXvPfeezh37pxWvzt37iAqKgozZsyAi4sLvL29ERYWhps3b4p9VCoV5s2bBwCIiooSX7/4+HixT0fOJyIiDWZT+5hNzKbejO84kUGVlJQAAEaOHCm2ZWVlISQkBC4uLoiOjsaAAQOQkZGBVatWoa6uDu+//z6AlgsxAISHh8Pa2hq1tbX4/vvvERQUhL1790KpVAIAmpqaEBISgpycHAQHB8PT0xNqtRq5ubn4+eefAQBpaWlYtGgRlEolVqxYAaDlbl57Tpw4gTVr1sDLywvbt29HQ0MDUlJSxH0/HRgAEBERgdmzZ2PevHm4desWtm/fDqBleUh7/vOf/6Cqqgrz58+HRCLReSzr6+sRHByMu3fvIiIiAnK5HJcvX0ZycjKuX7+O5ORkAC1LLFasWIGsrCyEhoZi/PjxuHnzJuLj43H16lWkpaWhb9++4s/Nz89HYWEhPvjgAwwbNgwmJia4f/8+goKCIJVK8emnn2LgwIE4ceIE/vKXv+isU+OHH35AXl4efv/738PU1BQpKSkIDw/HqVOnMHz4cAAtyxwsLCywevVqWFlZ4eHDhzh69CgWLFiAo0ePws7ODk5OToiNjUVUVBQ++OADTJkyBQBga2sLoOPnExGRBrOJ2cRsojYJRHpw5MgRQSaTCVevXhUaGxuFmpoa4fz588KkSZOE3/72t0JjY6PYd9asWUJAQIBWmyAIwvLly4VJkyYJarW6zX00NTUJjY2NwqJFi4QPP/xQbD969Kggk8mEQ4cOPbfGsWPHCuvWrWvVnpWVJchkMiErK0sQBEFQq9WCl5eX4Ofnp1VLTU2NMGHCBGHhwoViW1xcnCCTyYQvvvhC62dGR0cLCoVCaG5ubreeb775RpDJZMLBgwefW7fGwYMHBZlMJmRkZGi1JycnCzKZTPjHP/4hCIIgnD9/vs2aNPtLS0sT26ZOnSo4ODgIRUVFWn23bdsmyOVy4fr161rtixcv1jpWgiAI69atE6ZOnarVTyaTCRMnThQePXoktpWXlwtjxowRdu3a1e4Ym5qahIaGBmHGjBnC5s2bxfZ///vfgkwmE44cOdLqOS97PhFRz8dsYjY9jdlEunCpHunVggUL4OTkBDc3N4SEhODNN99EYmIipNKWNz/v3LmDoqIizJkzB0DLHTnN4+2330Z5eTmKi4vFn3fw4EEEBgZCoVDA0dERTk5OuHjxIgoLC8U+Fy5cwBtvvNFl69SLi4tx7949+Pv7w8jo/79CZmZmmDFjBnJzc/HkyROt57S1HKC+vr7VMpDOyMrKgqmpKWbNmqXVrrlrdfHiRbHf0+0avr6+MDU1Ffs9Xetbb72l1aZSqTB69GiMGTNGq93Pz6/D9SqVSq07p9bW1hg4cCBKS0vFtqamJiQlJWH27NlwdnaGo6MjnJ2dcfv2ba3XuD0vej4RUe/EbGrBbGI20fNxqR7p1datW2Fvb4/Hjx8jIyMDaWlpiIyMREpKCgDg/v37Yr+tW7e2+TMqKysBAHv27MGWLVvwm9/8BitXroSlpSWMjIzw+eefo6ioSOz/4MED2NjYaAVJZ2j2P2jQoFbbbGxs0NzcjOrqapiYmIjtFhYWWv00yw3q6ura3c+QIUMA/H/JiC5VVVWwtrZutXRi4MCBkEql4vKRqqoqSKVSWFlZafWTSCSwtrYW+2m0Nc6qqioMGzasVbu1tXWHagVaHxOg5bjU19eL/9+yZQsOHDiAZcuWwd3dHebm5pBIJPjTn/6k1a89L3I+EVHvxWxqwWxiNtHzceJEemVvby9+6NbT0xPNzc34+uuvcerUKcyaNQuWlpYAgOXLl2P69Olt/gzNHabjx4/Dw8MDMTExWtuf/RColZUVcnJy0Nzc3CUBpamxvLy81bZ79+7ByMgIb775Zqf34+zsDAsLC5w5cwarV6/WuZbcwsICubm5EARBq29FRQWamprEui0sLNDU1IQHDx5oBZQgCLh//774+mi0tV8LCwvxwv+0tto64/jx4wgICEBkZKRWe2VlZYeO8YucT0TUezGbOo7ZxGzqzbhUjwxq7dq1MDc3R1xcHJqbm2FnZ4eRI0fixo0bUCgUbT40b6FLJBKtD4oCwI0bN3D16lWtNm9vb9TX1yM9Pf25tfTt2/e5d9k03nrrLQwePBgnT56EIAhie21tLb777juMHTtW647ey+rTpw9CQkJQVFSEv//97232qaioQE5ODgBgwoQJqK2tbfWHEo8dOyZuf/rf48ePa/U7ffo0amtrxe3Po1QqUVBQgBs3bmi1nzx5UvfAXoBEIkGfPn202n744QeUlZVptbV3l/RFziciIg1mU/uYTcym3ozvOJFBmZubIzQ0FNu2bcOJEyfg7++PmJgYLFu2DEuXLkVgYCAGDx6Mhw8forCwEPn5+YiLiwMATJkyBYmJiYiLi4O7uzuKi4uRmJiIYcOGQa1Wi/vw8/NDeno6oqOjUVxcDKVSCUEQkJubC3t7e7z77rsAAJlMhuzsbJw9exaDBg2CmZkZ7OzsWtVsZGSEtWvXYs2aNVi+fDkWLlyIhoYG7N69G9XV1Vi9enWXHR9NOMXHxyMvLw9+fn7iHxm8dOkSDh06hIiICIwbNw4BAQE4cOAA1q1bh9LSUshkMuTk5GDXrl2YPHkyJk6cCACYNGkSvLy88Nlnn6GmpgZubm64efMm4uLi4OjoCH9/f511LVq0CEeOHEFoaCj+8Ic/iN9c9PQylK4wZcoU8RuK5HI58vPzsXv3bvFbiTRGjBiBfv364cSJE7C3t4epqSlsbGwwePDgDp9PREQazKbnYzYxm3orTpzI4IKCgnDgwAEkJibCz88Pnp6e+Prrr5GUlITNmzejuroaFhYWsLe3h6+vr/i8sLAwPHnyBIcPH0ZKSgpGjRqF6OhoZGZmIjs7W+wnlUrxxRdfYNeuXfjmm2+QmpoKMzMzjBkzBt7e3mK/9evXIyYmBpGRkXjy5Ak8PDywf//+NmueM2cOTExMkJycjFWrVsHY2BguLi7Yt28f3NzcuuzYSCQSxMbGYtq0aTh06JB4PDT1r1mzRvwg7RtvvIF9+/Zhx44dSElJQWVlJQYPHowlS5Zo/YFCiUSCxMRExMfHIz09HUlJSbCwsIC/vz8iIyNb3Slty6BBg/DVV19h06ZNiI6OhomJCaZNm4ZPPvlE/MrcrrB+/XpIpVIkJyejtrYWjo6OiI+Px+eff67Vz8TEBJs3b0ZCQgKWLl2KxsZGhIeHIyIiosPnExHR05hN7WM2MZt6K4nw9Pu5RERERERE1Ao/40RERERERKQDJ05EREREREQ6cOJERERERESkAydOREREREREOnDiREREREREpAMnTkRERERERDpw4kRERERERKQDJ05EREREREQ6cOJERERERESkAydOREREREREOnDiREREREREpMP/AFHwDaHzR2klAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAHaCAYAAAAQZpgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmqUlEQVR4nOzdeXxU9b3/8deZyb6vJGQhCxBCIAFUSFARUUBbqtbtZ69WS221qKBtvdaqtbd6b1uq1loELdSlahUVVFyquKDiyuICBCIECEtISCArCdln5vfHJCEhAWaSTGaSvJ8P85jMOed75vOdYE4+c77fz9ew2Ww2RERERERExGVM7g5ARERERERksFPiJSIiIiIi4mJKvERERERERFxMiZeIiIiIiIiLKfESERERERFxMSVeIiIiIiIiLqbES0RERERExMWUeImIiIiIiLiYEi8REREREREXU+IlIiIiIiLiYl7uDkCkv+Xm5vLCCy+wYcMGDh8+jJeXF/Hx8Zx99tnMnTuXmJiYLm3GjBnT6bm3tzdBQUHExcWRkZHBhRdeyJlnnonJ1P1nGW3td+zY0b5txYoV/O53v2PatGk88cQT3ba78cYbWbt2Lffffz9XXXVVt7F0Z9WqVYwdO7bL9t27d7N8+XI2btxIcXExdXV1BAUFkZKSwpQpU7j44osZNWrUKc/fF3bv3s0LL7zA+vXrOXjwII2NjYSFhZGRkcGsWbO4+OKL8fX17dKuJz8/ERFPpuuSe69L3b0XxzvvvPMoKipizZo1JCQk9Pi1dA0b2gybzWZzdxAi/cFms/HQQw/xxBNP4OXlxZlnnklaWhrNzc18++23bNmyBX9/fxYuXMiFF17YqW3bL+X58+cDYLFYqKmpYefOnXzzzTc0NzeTlZXFQw89RFJSUpfXPtEv9ZtuuokPP/yQ3//+91xzzTWd9r3wwgvcd999nHvuuSxduvSEsXTnRz/6EdHR0Z36/ve//51//OMf2Gw2srKyyMzMJDg4mJqaGvLy8tiyZQtWq5W//e1vfO973zvl+9kbixcvZsmSJVitViZOnEhmZiaBgYGUlZXx1VdfsXfvXsaNG8err77aqQ89/fmJiHgiXZc847rUH4mXrmECgE1kiHj00UdtaWlpthkzZtjy8/O77F+9erUtMzPTNnbsWNsXX3zRaV9aWpotLS2t2/MePnzYduutt7afu7y8vMsxJ2pfVlZmy8nJsU2YMMG2e/fu9u0FBQW2CRMm2LKzs22HDx92OJYT+fvf/25LS0uznXfeebbNmzd3e0xxcbHtD3/4g+2ll15y6tzOeuyxx2xpaWm26dOn2zZt2tTtMWvXrrVde+21nbb15ucnIuKJdF3yjOuSI/HPmDHDlpaWZissLOzRa+gaJjabzabES4aE/fv32zIyMmzjxo2zbd++/YTHvfDCC7a0tDTb7NmzbRaLpX37qX4pWywW249//GNbWlqa7U9/+lOX/Sdr//7779vS0tJsl112ma25udnW3Nxsu/zyy21paWm2999/36lzdWffvn22jIwM2/jx4ztdRE+kubnZ4XM7q7Cw0DZu3DjbuHHjbDt27DjpsY2Nje3f9/bnJyLiaXRd8ozrks3m+sRL1zBpo+IaMiS8+uqrtLS0cP755590LPqVV15JdHQ0e/fuZcOGDQ6f32QycfPNNwPw5ptvOhXbzJkzufzyy9m6dStLlixhyZIl5ObmctlllzFz5kynztWdtr5feOGFpKamnvJ4Ly/XTf189dVXaW5uZvbs2aSlpZ30WB8fn07tXPnzExHpb7ouecZ1qT/oGiZtBva/ZBEHff311wCcddZZJz3Oy8uL7Oxs3nrrLb755htycnIcfo3TTz8dLy8vysvLOXDggFNjwO+++27Wr1/fPmY+Pj6ee+6556RtHn300W63+/r6cuONN7Y//+abbwDIzs52OB5X+eqrrwCYOnWqU+364+cnItKfdF3yjOtSRyeKH+DIkSM9Pq+uYdJGiZcMCWVlZQDExsae8ti2Yw4dOuTUa/j4+BAaGkp5eTkVFRVOXeCCgoK45ZZbuOuuuwD4wx/+QFBQ0EnbLF68uNvtwcHBnS5wbX0fNmxYl2N3797N22+/3Wnb8OHDueKKKxyO3RltsThbtak/fn4iIv1J1yXPuC51dKL4e0vXMGmjxEuGBFtr8U7DME55bNsxjhzbVxoaGvjnP//Z/vzdd9/lnHPOOWmbk1Vf6uhkfd+zZ0+XC81pp53m0AWuu08GL7300pNe2J35OfS0XXc/v6VLl/Lee++xZ88efHx8mDhxIr/+9a9POdxRRMRVdF3yjOtSR45UNezI0WuLp/+spf8o8ZIhITo6moKCAkpKSk55bNsxHcveOqKpqYnq6moAwsPDnWr74IMPUlBQwHXXXcfGjRtZuXIlM2fOZMaMGU6dpztRUVEUFBRQWlraZd/MmTPbLzQHDhzg/PPPd/i83X0yOGXKlJNe4IYNG+bwz6Gj3v78NmzYwNVXX01mZiY2m41Fixbx05/+lP/85z+EhYU5FYuISF/Qdckzrku94ei1pT9+1jIwqLiGDAmnn346AF988cVJj7NYLKxfvx6wf8LmjK+++oqWlhaioqJITEx0uN1nn33G888/T1paGnfccQcPPPAAPj4+3HvvvVRWVjoVQ3fa+rFu3bpen6ujHTt2dPk61Xj9tp+Ds7H09uf35JNPcvnll5OWlsaYMWN44IEHqKioaJ9nICLS33Rd8ozrUm84em3pj5+1DAxKvGRIuOyyyzCbzbz//vvs2rXrhMe98sorHDp0iJSUFKZMmeLw+a1WK48//jgAP/jBDxxuV1VVxV133YWXlxcPPvggPj4+pKWlcdttt3H48GH+8Ic/OHyuE2nr+7vvvktBQUGvz9fbWLy9vXn33XdP+nMA+ye1Hdv15c/v6NGjWK1WQkJCnO+EiEgf0HXJM65LfelE1xZX/6xl4FDiJUNCYmIiv/jFL2hubmbevHnd/uL74IMP+OMf/4jZbOZ//ud/MJkc+9+jvLycX/3qV2zYsIG4uDh+8YtfOBzXH/7wBw4dOsQvf/lL0tPT27dff/31nHHGGaxevZq33nrL4fN1JykpiV/84hc0NTVxww03sGXLlm6Pq6mp6dXrOCIhIYH58+fT3NzMjTfeSG5ubrfHffLJJ/z85z9vf97XP78//vGPjB07lkmTJvW+UyIiPaDrkmdcl/rSia4trvxZy8CiOV4yZCxYsID6+nqefvppLrnkEs4++2xGjRpFS0sL3377LZs3b8bPz4+//vWvJyx33jZx12q1UlNTw86dO/n6669pbm4mKyuLhx56iIiICIfiWbVqFe+88w6TJ0/m+uuv77TPZDKxcOFCLr74Yu6//34mT57cpRLgycrezpw5k7Fjx7Y/v/XWW7FarSxdupQrr7ySrKwsMjMzCQ4Oprq6mv3797Nu3ToMw2gfEuEq8+bNo6WlhSVLlnDFFVcwadIkxo8fT2BgIGVlZXz11Vfs3buX8ePHd2rXFz8/gL/85S98/fXXLF++HLPZ7NK+ioicjK5LnnFd6gunurb01TVMBjbD1lZqRWSI2LJlC88//zwbN26krKwMs9lMfHw806ZN4yc/+Um35V6PX/DQ29ubwMBA4uPjycjIYPbs2Zx99tkn/ISqrX3bhOHi4mIuvvhibDYbb7zxBvHx8d22W7FiBb/73e+YNm0aTzzxRLexdOfPf/4zl112WZftu3bt4sUXX2T9+vUUFxfT0NBAUFAQycnJTJ48mR/+8IeMGjXqlOfvC7t37+aFF15oj6WpqYmwsDDS09O54IILuOSSSzototymJz+/Nn/+85/5z3/+wzPPPMPIkSNd2T0REYfpuuTe69Lx70V32qoarlmzpkuxDmeuLb25hsnAp8RLRIaE//u//+Ptt9/mueeeU9IlIiJ9QtcWcYaGGorIoPeHP/yBN954gyVLlhASEsLhw4cBCAgIIDAw0M3RiYjIQKRrizhLd7xEZNA70TCY+fPns2DBgn6ORkREBgNdW8RZSrxERERERERcTLUqRUREREREXEyJl4iIiIiIiIsp8RIREREREXExJV4iIiIiIiIupnLyTrJarbS0tGAymTAMw93hiIgMKTabDavVipeX1wkXhh2KdG0SEXEPZ65LSryc1NLSQm5urrvDEBEZ0jIzM/Hx8XF3GB5D1yYREfdy5LqkxMtJbZlsZmYmZrPZ6fYWi4Xc3Nwetx/ohnr/Qe+B+q/+96b/be11t6szXZt6R/1X/9V/9b8/rktKvJzUNoTDbDb36h9nb9sPdEO9/6D3QP1X/3vTfw2n60zXpr6h/qv/6r/631OOXJf0kaGIiIiIiIiLKfESERERERFxMSVeIiIiIiIiLqbES0RERERExMWUeImIiIiIiLiYEi8REREREREXU+IlIiIiIiLiYkq8REREREREXEyJl4iIiIiIiIsp8RIREREREXExJV4iIiIiIiIupsRLRERERETExbzcHUBtbS2PPfYY27dvJy8vj8rKSubPn8+CBQs6HTdmzJgTniMlJYXVq1ef9HWuvfZaNmzY0GX72WefzZNPPtmz4EVERERERBzg9sSrqqqKl19+mfT0dGbOnMmKFSu6Pe6ll17qsm3z5s386U9/YtasWQ69VmJiIg899FCnbcHBwc4H3Rv7vmDUuj/AiKUQPap/X1tERKQbxrolJOethcznwWx2dzgiIoOS2xOv+Ph4Nm7ciGEYVFRUnDDxmjhxYpdtL730EoZhcMUVVzj0Wn5+ft2epz8Z298k9PBXWL99Fmbf79ZYREREAIxvnyOyLB/L/i9h1Ax3hyMiMii5fY6XYRgYhuF0u9raWlavXs3kyZNJSkpyQWQuEmUfMmmUbHFzICIiIq0iRwNglG51cyAiIoOX2xOvnnr77bepq6vjyiuvdLjN/v37mTJlChkZGcycOZO//e1vNDQ0uDDKrmyxmfZvSnLBZuvX1xYREemOLWa8/RslXiIiLuP2oYY9tXLlSkJCQrjgggscOv60007je9/7HqmpqTQ2NvLJJ5/wxBNP8PXXX/Pss89iMjmXg1oslp6EjSVyDCbDhFFXhqWqEELie3Segartfevp+zcYDPX3QP1X/zs+9rS99K22DwWNklw3RyIiMngNyMRr586dbN68mWuuuQZfX1+H2vzqV7/q9Hz69OnEx8fzl7/8hTVr1jhcoKNNbm7PL04ZQUn41+xhzxevUx17Zo/PM5D15v0bLIb6e6D+q//iQWJaR2OU7YCWRvBy7NoqIiKOG5CJ18qVKwGcGmbYnYsvvpi//OUvbNq0yenEKzMzE3MPKj9ZLBZqvh2Nf80eUv1rsLm52Ed/s1gs5Obm9vj9GwyG+nug/qv/vel/W3vpY6EJtHgH4dVcC4d3wPAsd0ckIjLoDLjEq6mpiddff51x48YxduzYPjmns8MMAcxmc4//aKoLHUXkgfcwlW4dsmV7e/P+DRZD/T1Q/9X/odx/j2MY1IeMIrh8k30OshIvEZE+N+CKa3z44YdUVlY6XEL+ZF577TUAJkyY0OtzOaMu1F49ioOb+/V1RURETqQuZKT9G83zEhFxCY+447V27Vrq6+s5evQoALt27WL16tWAfS6Wv79/+7ErV67Ez8+Piy666ITny8jIYPLkyTzzzDMAfPXVVzz++OPMmjWLxMTE9uIaL7/8Mjk5OZx33nku7F1XdSGtCycfOQBHyyEwsl9fX0RE5Hh1oa3XJiVeIiIu4RGJ13333UdRUVH789WrV7cnXmvWrCEhIQGAgwcP8vnnn3PxxRcTHBx8wvNZLBasVmv78+joaMxmM4899hiVlZUYhkFSUhK33nor119/fY+GGvaG1TsQW0QqRkUBlGyGkf2b+ImIiByvPqRD4mWzQQ/W2BQRkRPziMTrww8/dOi44cOH8913353yuB07dnR6npSUxLJly3oUW1/7dGcZf1xTziuxYwmpKLAPN1TiJSIyaHz33Xf87W9/Iz8/n4qKCvz8/EhJSeHqq6/mkksuaT/ut7/9bfuQ945SUlLaP3zsTw3BI7CZvDEaq6FqP4Qn9XsMIiKDmUckXkPJJzsPs7OimY3hiZwPcHCLu0MSEZE+dOTIEWJjY5kzZw4xMTHU19fz5ptv8pvf/IaioiJuvvnm9mP9/Pzah8V33OYONpM3RI+xL6JckqvES0Skjynx6mdjYuxDJNfXJ7QmXiqwISIymGRnZ5Odnd1p24wZMzhw4AAvv/xyp8TLZDIx0YOWFbHFZGK0JV5jf+DucEREBpUBV9VwoMuMDwXgnbJh9g0Vu6HhiBsjEhGR/hAeHu75JfRjx9sfS7e6Nw4RkUFIiVc/GxkdiI8ZCpuCaAmMtW/UBU5EZNCxWq20tLRQUVHB888/z2effcYNN9zQ6ZiGhgbOOussxo4dyznnnMP9999PVVWVewLGfscLgBINgxcR6WsaatjPvMwmUsO82V7ezOHgdIYfLbHP80o6092hiYhIH/rDH/7ASy+9BIC3tzf33HMPP/rRj9r3p6enk56ezujR9rUdN2zYwDPPPMOXX37JypUrCQwMdPo1LRZLj2Jta2eJGosZoGo/lqMV4Bfao/MNNO397+H7N9Cp/+p/x8ehprf9d6adEi83GBlhT7x2GKkM52PN8xIRGYTmzZvHlVdeSUVFBR9++CH/+7//S319PT/72c8AmDt3bqfjzzrrLDIyMrj11ltZsWJFl/2OyM3t3RpcubsKGe8fg299Kbs+W0Vt1IRenW+g6e37N9Cp/+r/UNYf/Vfi5QYjw70BWF+XwLmgIR0iIoNQXFwccXFxAEyfPh2Ahx9+mEsvvZSIiIhu28yaNYuAgAA2bdrUo9fMzMzs0Twyi8VCbm4umZmZeO84HfLfZnRwPTYPKvzhSh377/Hz8FxA/Vf/1f+e97+tvSOUeLlBW+K1uiKGO83Aoe+guQG83VNCWEREXC8rK4sXX3yRwsLCEyZeADabDZOpZ1OwzWZzr/5wMpvNGMOzIP9tTIe2wRD7I6y3799Ap/6r/+q/a/uv4hpuEBdsJtDHzJ7mMFr8wsFmgUN57g5LRERcaP369ZhMJhITE094zOrVq6mvr2fCBDcO8WurbKjRGCIifUp3vNzAZBiMjw9h/Z5KyoLSiW340j7PK/40d4cmIiK9dO+99xIUFERmZiZRUVFUVlayevVq3n77bX72s58RERFBUVERt99+O3PmzGHEiBEYhsHGjRt55plnGD16NFdeeaX7OhDbWtnw0HZoaQIvH/fFIiIyiCjxcpPx8aGs31PJTlMqsXypTxZFRAaJiRMn8uqrr/Laa69RU1NDQEAA6enpPPDAA1xyySUABAUFERUVxdNPP015eTkWi4X4+HiuvfZa5s2bR0BAgPs6EJYEviHQeATKdhxLxEREpFeUeLlJ20LK6+oTmAaqbCgiMkhcfvnlXH755Sc9JjQ0lMWLF/dTRE4yDHuyte9zKNmqxEtEpI9ojpebZMaHAPB+ZYx9Q+k2sLS4MSIREZFWbclWydAuLy0i0peUeLlJUkQAwX5e7GwZhsU7EFoaoCzf3WGJiIh0SLw0DF5EpK8o8XITwzDISgjFhonyoDH2jbrAiYiIJ+h4x8tmc28sIiKDhBIvN8qMDwNgpynVvkHzvERExBNEp4PJCxqqoPqAu6MRERkUlHi50YQEe4GNDQ0J9g0HdcdLREQ8gJcvRLWNxtA8LxGRvqDEy40yWxOvNVWx9g0lW8BqdWNEIiIirVRgQ0SkTynxcqP4MH8iAn3YbonDava1r5lSucfdYYmIiKjAhohIH1Pi5UaGYZAZH0oLXlQEjrJv1AVOREQ8QVviVbrVvXGIiAwSSrzcLKt1uOFuswpsiIiIB2lLvCr3QkO1W0MRERkMlHi5WWa8PfFa35Bo36ACGyIi4gkCIiCktfhT6Tb3xiIiMggo8XKzrIQwAD6qbi2wcXCz1kwRERHPoAIbIiJ9RomXm8WE+BId7EuedQQ2wwx1ZVBz0N1hiYiIqMCGiEgfUuLlZoZhkBUfSiM+VAUk2zdqnpeIiHgC3fESEekzSrw8QNt6Xru8Rto3aJ6XiIh4gtjx9sdD34Gl2b2xiIgMcEq8PEBbZcON7QU2dMdLREQ8QFgy+ASDpQnK8t0djYjIgKbEywNkxocB8ElNnH2DxtKLiIgnMJmO3fXScEMRkV5R4uUBooN9iQv1Y5s1yb6huhDqKtwblIiICGiel4hIH1Hi5SEyE0KpIYBqfw03FBERD6LES0SkTyjx8hBt63kVtBfYUOIlIiIeoGPipXUmRUR6TImXh8iMtxfY+Kqx9Y6X5nmJiIgniB4LhhnqK+BIsbujEREZsJR4eYi2xOvT2tYCG7rjJSIinsDbD6LH2L/XcEMRkR5T4uUhwgN9SIzwZ5s12b6hfDc01rg1JhEREUDzvERE+oASLw+SFR9GOaHU+gwDbFCy1d0hiYiIQExbSXkNgxcR6SklXh4ks3Uh5T3eqfYNusCJiIgn0B0vEZFe83J3ALW1tTz22GNs376dvLw8KisrmT9/PgsWLOh03G9/+1tee+21Lu1TUlJYvXq1Q6/1xRdf8Pe//53t27fj5+fHjBkzuOOOO4iMjOyTvvRWVus8r42NI8hkneZ5iYiIZ2hLvCr32IfB+wa7Nx4RkQHI7YlXVVUVL7/8Munp6cycOZMVK1ac8Fg/Pz+eeeaZLtscsWHDBm644QamT5/OY489Rnl5OQ899BBz587llVdewcfHp1f96AvjWhOvdXXxXO8DHNQdLxER8QCBURAcBzXFULoNRuS4OyIRkQHH7YlXfHw8GzduxDAMKioqTpp4mUwmJk6c2KPXeeCBB0hOTmbRokV4edm7nZCQwH/913+xcuVKrr766h6dty+F+nuTEhXI1rIU+4bD30FLI3j5ujcwERGR2Ex74lWSq8RLRKQH3D7HyzAMDMNw6WuUlpaSm5vLJZdc0p50AZx22mkkJyfzwQcfuPT1nZEZH0oxkTR4hYK1BQ7luTskERGRDvO8NBpDRKQn3H7HyxkNDQ2cddZZVFRUEB0dzcyZM7n11lsJCws7abv8/HwAxowZ02XfmDFj+Oabb5yOxWKxON2mY7sTtc+MD+GNzcUUeI0ko+UbrEXfYovJ6tFreaJT9X8oGOrvgfqv/nd87Gl7cQMV2BAR6ZUBk3ilp6eTnp7O6NGjAfucrWeeeYYvv/ySlStXEhgYeMK2VVVVAISGhnbZFxYW1r7fGbm5vbvwnKi9X10TABsb4sngG8q3fsh+04RevZYn6u37NxgM9fdA/Vf/ZYBpS7xK88DSAuYB8yeEiIhHGDC/NefOndvp+VlnnUVGRga33norK1as6LK/Oyca0tiToY6ZmZmYzWan21ksFnJzc0/YfnRjC79f+wFfNSXxEx+Iaikmoofz2jzRqfo/FAz190D9V/970/+29uIG4SngEwRNtVC+E4aNdXdEIiIDyoBJvLoza9YsAgIC2LRp00mPaxuK2N2draqqqm7vhJ2K2Wzu1R9NJ2ofEmBmVHQQ2w4nA2CUbsOMbdB9stjb928wGOrvgfqv/g/l/g9IJhPEjIPC9fbhhkq8RESc4vbiGr1ls9kwmU7ejbS0NAB27NjRZV9+fn77fk+RmRDKHlssTeYAaGmwf7IoIiLibiqwISLSYwM68Vq9ejX19fVMmHDyOVAxMTFkZWXx5ptvdpqYvWnTJvbs2cOsWbNcHapTsuJDsWFin1drWXktpCwiIp6gPfHa6t44REQGII8Yv7Z27Vrq6+s5evQoALt27WL16tUATJ8+nYqKCm6//XbmzJnDiBEjMAyDjRs38swzzzB69GiuvPLKTufLyMhg8uTJnRZb/u///m+uv/56brvtNq6++mrKy8v561//SlpaGpdffnn/ddYBmQlhAHzdlMRottkXUp7wI/cGJSIiDvnuu+/429/+Rn5+PhUVFfj5+ZGSksLVV1/NJZdc0unYbdu28eCDD7J582bMZjM5OTnceeedJCYmuin6U+hY2dBmAxcvByMiMph4ROJ13333UVRU1P589erV7YnXmjVrCA4OJioqiqeffpry8nIsFgvx8fFce+21zJs3j4CAgE7ns1gsWK3WTtuys7NZtmwZixYtYt68efj7+3Puuefym9/8Bh8fH9d30gkZw0Mwmwy+akrkR97ojpeIyABy5MgRYmNjmTNnDjExMdTX1/Pmm2/ym9/8hqKiIm6++WYAdu/ezbXXXsvYsWN55JFHaGxsZNGiRVx99dW8/vrrREREuLkn3RiWAYYJ6sqgpgRChrs7IhGRAcMjEq8PP/zwlMcsXrzY4fN1N5cL7JUQzzrrLIfP4y7+PmZGDwtiW2myfUPJFrBa7RObRUTEo2VnZ5Odnd1p24wZMzhw4AAvv/xye+K1aNEifHx8WLp0KUFBQQCMGzeOCy64gCeffJI77rij32M/JW9/iEqDw9vtd72UeImIOEx/yXuorIRQdtriaTG8ofEIVO11d0giItIL4eHh7ZUcW1pa+Pjjj5k9e3Z70gUQHx9PdnY2H3zwgbvCPDUV2BAR6RGPuOMlXWUmhPHyV14UeieT0rTTPs8rItXdYYmIiIOsVitWq5UjR47wzjvv8Nlnn3HvvfcCsH//fhoaGhgzZkyXdmlpaXz++ec0Njbi6+vr1Gt2LCDVk3aOtDeGjcPECqwHt2Dr4et5Gmf6Pxip/+p/x8ehprf9d6adEi8PlRVvX1vsm6YRpLDTPs9r3A/dG5SIiDjsD3/4Ay+99BIA3t7e3HPPPfzoR/ZCSW3rSratM9lRWFgYNpuN6upqhg0b5tRr9nZxaUfaB9f6kwY07f+abadYR3OgGeqLc6v/6v9Q1h/9V+LlodKHB+NtNvi2eQSXe6MhHSIiA8y8efO48sorqaio4MMPP+R///d/qa+v52c/+1n7McZJqgKebN+JZGZm9mhhaovFQm5urmPta+Ng/Z34Hi1iYsYo8Ak6+fEDgFP9H4TUf/Vf/e95/9vaO0KJl4fy9TKTHhvC1uIOa3mpdK+IyIARFxdHXFwcYF8aBeDhhx/m0ksvbb/TVVlZ2aVdVVUVhmEQEhLi9GuazeZe/eHkUPvQ4RAUi1FbgrlsByRO6fHreZrevn8Dnfqv/qv/ru1/jxKvnTt38s0331BaWkpDQwPh4eGMGjWKyZMnd5okLL2TmRDKq0WJWDFhOnpYpXtFRAawrKwsXnzxRQoLCxk3bhx+fn7k5+d3OS4/P5+kpCSn53f1q9hM2FViH40xiBIvERFXcjjxqq6u5qWXXuKll16iuLgYm83W9WReXpxzzjlce+21TJ06tU8DHYqy4kN5AV+KvBJJbNlnv+ulxEtEZEBav349JpOJxMREvLy8mDFjBu+//z533HFH+4eWxcXFrF+/nrlz57o32FOJzYRd79tLyouIiEMcSryeffZZlixZAsD3v/99pkyZwrhx44iIiMDX15fq6moKCwvZtGkTa9as4frrr+fMM8/k97//PUlJSS7twGCWmWAvsLGpZQSJ7LN/sjjmQjdHJSIiJ3PvvfcSFBREZmYmUVFRVFZWsnr1at5++21+9rOftS+MvGDBAq644grmzZvHDTfcQFNTE4sWLSI8PJzrr7/ezb04hfaS8kq8REQc5VDi9dxzz3HXXXcxZ84cvL29u+yPiooiKiqKSZMm8dOf/pT9+/fz+OOP88477zBv3rw+D3qoSIsJxsfLxKbmJC7y/tR+x0tERDzaxIkTefXVV3nttdeoqakhICCA9PR0HnjgAS655JL240aOHMlzzz3HQw89xG233YbZbCYnJ4clS5a0J2ceKzbL/li6DSwtYNaUcRGRU3HoN+U777yDl5fjv1RHjBjBn//85yG7HkBf8TabyBgewraiZPuGg6psKCLi6S6//HIuv/xyh44dP348//rXv1wbkCtEpIB3IDQfhYrdEN11PTIREenM5MhBO3fu7NHJh3JllL6SlRBKnrV1uGb1fqircG9AIiIiJjPEjLN/r+GGIiIOcSjxuvTSS7nssst44YUXqKmpcXVM0kFmfChHCKTE3FpUQ+t5iYiIJ4gdb3/UdUlExCEOJV6/+MUvqKio4P777+fss8/mv//7v1m3bp2rYxMgKyEMgM0tI+wbNM9LREQ8gQpsiIg4xaHE61e/+hUfffQRy5YtY8aMGbz33nv89Kc/5fzzz+exxx7j4MGDro5zyBoZHYi/t5nNLa3DDZV4iYiIJ2grsFGy1b1xiIgMEA4lXgCGYXDOOefwyCOP8Nlnn3HPPfcQGhrKokWLmDlzJj/72c9YvXo1zc3Nrox3yPEymxgXF8I2W4p9gwpsiIiIJxiWAYYJjh6CmlJ3RyMi4vEcTrw6CgkJ4cc//jGvvvoqq1at4uqrryYvL49f/epXnHPOOX0d45CXlRDGNmuy/Un5LmisdWs8IiIi+ARA5Cj79xpuKCJySj1KvDpKT0/n4osv5rzzzgOgqqqqt6eU42QlhFJGKOWmSMAGpRrWISIiHqB9npdGY4iInEqPVzysqKjgjTfe4JVXXmHXrl2YzWZmzJjBFVdc0ZfxCZCZEArAFksSM4xy+zyvETlujkpERIa82EzY+orueImIOMCpxMtqtfLJJ5/wyiuv8PHHH9Pc3ExycjK//vWvufTSS4mKinJVnENaSmQgQb5e9sTL6xvN8xIREc+gyoYiIg5zKPHas2cPr7zyCq+//jplZWX4+fnxgx/8gMsvv5wzzjjD1TEOeSaTwfj4ELbtTbZvUGVDERHxBG2VDct3QdNR8Al0bzwiIh7MocTre9/7HgBZWVksWLCAOXPmEBioX679KSshjP8UJNufHP4OWhrBy9etMYmIyBAXNAwCh9krG5bmQeJkd0ckIuKxHEq8fvKTn3DFFVcwevRoV8cjJ5AZH8oyojhiBBNirYFDeRA3yd1hiYjIIFBV10Tp0ZaeNY7NhN1r7AU2lHiJiJyQQ1UN77rrrm6TroKCAr7++mvq6ur6PDDpLCshFDDYamlbSFnzvEREpG/84t/fctvqMooq651v3DbPSxV3RUROqkfl5FetWsU555zDnDlz+PGPf8yePXsAuO2223j55Zf7NECxGxERQIifF1va1vPSPC8REekjZhM0W+GTnWXON1aBDRERhzideL3zzjv89re/JSMjg3vvvRebzda+b9y4cbzzzjt9GqDYGYZBVkIYeW2Jl9ZMERGRPpKdEgHAhr0VzjduK7BRug2slj6MSkRkcHE68Vq2bBmXXXYZ//jHP7jqqqs67UtNTWXXrl19Fpx0lpkQylZbsv1JyVZd4EREpE+0JV7rCyo6faDqkMiR4OUPzXVQUeCC6EREBgenE6/du3czZ86cbveFhYVRVVXV25jkBLLiQ9lji6UeP2iph7Kd7g5JREQGgUmJYXiboLSmkb3lTs7bNpkhZpz9e43GEBE5IacTL39/f2pqarrdV1paSmhoaK+Dku5lJYZhw8Q2a1uBDc3zEhGR3vP1NjM6whuAdQXlzp9A87xERE7J6cRr0qRJPP/8890ORXj11VeZMmVKnwQmXcWF+hEZ6MPWtsRLnyyKiEgfGTfMB1DiJSLiKk4nXrfccgubNm3iiiuu4LnnnsMwDN577z3mzZvHV199xbx581wRp2AvsJGZEMq2tnleuuMlIiJ9ZFy0PfHq0TwvJV4iIqfkdOKVmZnJP//5T+rq6li4cCE2m42lS5eyZ88eli1bRlpamivilFZZ8aFsay8pvwWcvTiKiIh0Iy3SBx+zQcmRBvY5O89rWAZgQG0p1B5ySXwiIgOdV08a5eTk8M4777B//37KysoIDw8nJSWlr2OTbmQmhPG4LYEmvPBprIbKvRCh915ERHrH12wwMTGMDXsrWVdQTnJUoBONg+zVDct32e96jTrfdYGKiAxQPVpAuc2IESM47bTTlHT1o6yEUJrxYoc1wb5B87xERKSPTGktK695XiIifc+hxOvtt992+sSlpaV8/fXXTreTk4sJ8WNYsC9bra3JruZ5iYhIH8luT7w0z0tEpK85lHjdf//9XHLJJaxYsYLa2tqTHrt161buu+8+LrjgArZv394nQUpnWSqwISIiLjApMQwfs4mSIw3sr3Bynldslv1RiZeISLccmuP1/vvv8+ijj/LHP/6R+++/n4yMDDIyMoiMjMTHx4fq6moKCwvZtGkThw8fZvTo0Tz66KNMmzbtlOeura3lscceY/v27eTl5VFZWcn8+fNZsGBB+zEWi4Vnn32Wzz77jJ07d1JdXU1cXBznn38+N954IyEhIad8nWuvvZYNGzZ02X722Wfz5JNPOvI2eIzM+DA+3p5sf3Jws73AhmG4NSYRERn4/H3MrfO8KlhXUE5SpBPzvNrueJXvhKY68AlwTZAiIgOUQ4lXcHAwd999N7fccguvvvoqa9euZdWqVdTX17cfk5iYyLRp07jooovIyclxOICqqipefvll0tPTmTlzJitWrOhyTENDA48++ig/+MEPuPLKKwkPDycvL4/HH3+cjz76iFdeeQU/P79TvlZiYiIPPfRQl74NNFkJoTxuG4EFE+ajh6GmBEKGuzssEREZBLJTI1oTrwqumjzC8YZBMRAYDUcPw6HvIOF01wUpIjIAOVXVMDQ0lJ/+9Kf89Kc/BaCmpoaGhgbCwsLw9vbuUQDx8fFs3LgRwzCoqKjoNvHy8/NjzZo1hIeHt2/Lzs5m+PDh3Hbbbbz77rtccsklp3wtPz8/Jk6c2KM4PUlmQigN+LLbOpw0U5G9wIYSLxER6QM5qZE8+uEu1hWUY7PZMBwdUWEYEDMeCj6yX5eUeImIdNKrqobBwcFER0f3OOkC+6LAp/qlbjabOyVdbbKy7OPJS0pKevz6A1FUkC/xYf5stanAhoiI9K3TRoTjbTY4WN1AYUX9qRt0pAIbIiIn1KN1vDzFunXrABg1apRDx+/fv58pU6ZQW1tLXFwcc+bM4aabbnJomOLxLBaL0206tutp+zbj40PYtj2Jy8yfYSvejLWX5+svfdX/gWyovwfqv/rf8bGn7cV12uZ5bWxdz2tEpBNztdoKbJRudU1wIiID2IBNvEpLS/nrX//K+PHjmTFjximPP+200/je975HamoqjY2NfPLJJzzxxBN8/fXXPPvss5hMzt38y83t3ad5vW0fZRxlW+sdr6b9G9m6aVOvztffetv/wWCovwfqv/ovnisnNbI98fp/kxMdb9h+x2srWK3g5LVVRGQwG5CJV1VVFTfccAM2m41HHnnEoaTpV7/6Vafn06dPJz4+nr/85S+sWbOGWbNmORVDZmYmZrPZqTZg/7Q2Nze3x+3b1AaVsWBrKQC+9aVMHJME/l2HY3qavur/QDbU3wP1X/3vTf/b2otrZadE8ig9mOcVOQq8/KD5KFTugciRrg1URGQAGXCJV3V1Nddffz2lpaU888wzJCY68UnccS6++GL+8pe/sGnTJqcTL7PZ3Ks/mnrbfkJiOEcIZJ91GEmmQ5gPbYXUc3t8vv7W2/4PBkP9PVD/1f+h3H9Pd1pSGN5mg+LWeV4ODzc0e8GwDCj+xl5gQ4mXiEi7ATUGoLq6mp/+9KccOHCAp59+mvT09D45r7PDDD1BWIAPIyICOiykvMWt8YiIiN2XX37JXXfdxYUXXsjEiROZNm0aN910E1u3dp739Nvf/pYxY8Z0+brwwgvdFPkxAT5eTEgIA2DdnnLnGqvAhohIt5y+4/W///u/XHPNNaSmproinhNqS7oKCwt56qmnyMjI6PU5X3vtNQAmTJjQ63O5Q2ZCKFu3JfN98wZVNhQR8RDLly+nqqqK6667jlGjRlFRUcHTTz/NVVddxRNPPMHUqVPbj/Xz8+OZZ57p1L4nBZ9cISc1kq/2tc7zOqMn87yUeImIdOR04rVq1SpeeOEFcnJyuOaaazj//PMdH/t9AmvXrqW+vp6jR48CsGvXLlavXg3Y52IZhsHPfvYz8vLyuPvuu7FYLGzqUEwiIiKCESOOLfKYkZHB5MmT2y9mX331FY8//jizZs0iMTGxvbjGyy+/TE5ODuedd16v4neXrPhQvtyabH9SojteIiKe4H/+53+IjIzstG3atGnMnj2bpUuXdkq8TCaTx64vmZMayeKPdrG+oMK5eV5tlQ2VeImIdOJ04vXpp5/y2muvsXz5cubPn8/w4cP5r//6L6644goiIiJ6FMR9991HUVFR+/PVq1e3J15r1qwBjlXA+uMf/9il/aWXXsrChQvbn1ssFqxWa/vz6OhozGYzjz32GJWVlRiGQVJSErfeeivXX3/9gBxqCPY7Xv+0tq7lVbYTGmvBN8i9QYmIDHHHJ10AgYGBjBw5koMHD7ohop45LSkML5NBUVU9ByrrSYxwcJ5XTOuIlJqDcLQMAqNcF6SIyADidOIVEBDANddcwzXXXMOXX37J888/z9///ncWL17M97//fa655hoyMzOdOueHH354ymN27Njh8PmOPzYpKYlly5Y5FdNAMD4+lDJCKbWFEWNUQek2GJHt7rBEROQ4NTU15OXlkZOT02l7Q0MDZ511FhUVFURHRzNz5kxuvfVWwsLC3BNoBwE+XkxIDOPrfZV8WVDueOLlGwwRqVBRYL/rNfLUS76IiAwFvapqOHXqVKZOnUpJSQl33nknr7/+Oq+//jrjx4/npptuGrBD+AaKED9vUqMC2VqdQoz5W/s8LyVeIiIe57777qO+vp558+a1b0tPTyc9PZ3Ro0cDsGHDBp555hm+/PJLVq5cSWBgoNOv09uFqY9vPyU5nK/3VbJudxmXT4pz+HymmPEYFQVYD27GlnxOj2LqT1rYXP3v+DjUqP+9678z7XqVeDU0NPDmm2/y/PPPs337dkaNGsWFF17Ihx9+yC233ML8+fO55ZZbevMScgqZCaFsq0rifL6FEhXYEBHxNI888ghvvvkm9957L+PHj2/fPnfu3E7HnXXWWWRkZHDrrbeyYsWKLvsd0ds1zo5vH21rBODTHSVs2mTtrkm3Yq1RxAOV333KXv9pvYqpPw31NeLUf/V/KOuP/vco8dq/fz/PP/88r732GrW1tZxzzjn85je/4cwzzwRg/vz5PPzww/z73/9W4uViWQlhbNjSOs9LlQ1FRDzK4sWLefzxx/nVr37Fj3/841MeP2vWLAICAjoVkHJGbxemPr59WlMLf/psDYfrrEQlpZEQ7uBww8BDsOMpIpoOEOahxUM60sLm6r/6r/739venI5xOvH7+85/zxRdf4O/vz2WXXca1117bqaJgmxkzZgzKeVWeJishlKfb1vI6tB1aGsHL160xiYiIPel69NFHWbBgQachhqdis9l6XPSptwtTH98+2N9MVkIo3+yvYsPeKpKigh07UZx9mRajbCdmaxN4+/c4pv401Bf2Vv/Vf/Xftf13+jd7YWEhd911F5988gn33HNPt0kXwOjRo3n22Wd7HaCcXMbwEIqJosoWCNZmOPSdu0MSERnylixZwqOPPspNN93E/PnzHW63evVq6uvrPWp9yZxUe5XG9XsqHG8UPBwCIsFm0XVJRKSV03e83n33XYeOCwoKYsqUKU4HJM4J9PVi1LBgtlUkc5Z5m309r7iJ7g5LRGTIeuqpp1i0aBHTpk3j3HPP7TJscOLEiRQVFXH77bczZ84cRowYgWEYbNy4kWeeeYbRo0dz5ZVXuif4buSkRvLYx7tZV1DueCPDsC+kXPCxvbJh/Gkui09EZKDoVXEN8QyZ8WFsLU/mLLZpnpeIiJt99NFHgH3dy08//bTL/h07dhAUFERUVBRPP/005eXlWCwW4uPjufbaa5k3bx4BAQ7OpeoHpyeF42UyOFBZT2FFneNl5TsmXiIi4nzidd55551w9XqTyURwcDCZmZlcd911jBw5stcByqllJYTy9aZk+5ODW9wai4jIUPfcc8+d8pjQ0FAWL17cD9H0XqCvF5kJoXy7v4r1eyqcWEi5dU1PJV4iIkAP5nhNmTIFm81GaWkp8fHxTJgwgbi4OEpLS7FYLAwfPpz333+fyy+/fMiXpewvmQmhbGstsGEryQXr0FyHQUREXKNtnpdTww1jWxOv0m1gdbwUvYjIYOV04nX22Wfj4+PD+++/z7PPPsvDDz/Mc889x3vvvYePjw8zZ87k3XffJTk5mUcffdQVMctxMoaHsN+Io87mi9FSD2U73R2SiIgMIscKbDiReEWNBrMvNNVA1V7XBCYiMoA4nXj94x//YMGCBQwfPrzT9ri4OG655RaWLVtGcHAwc+fO7fE6JOIcP28zo2JCybMl2TeUaLihiIj0nTOSwjGbDAor6jlQWedYI7M3DBtr/17DDUVEnE+89u3bR1BQULf7QkJCKCoqAiA+Pp76+vreRScOy4oPZas12f5EBTZERKQPBfp6kRkfCsD6AifKysdqnpeISBunE6+4uDhee+21bve98sor7XfCqqqqCA0N7V104rCO87yUeImISF/r2TyvLPujEi8REeerGv7sZz/j97//PT/60Y+48MILiYqKoqysjNWrV7N582buv/9+ANavX8/48eP7PGDpXlZCKC+03vGylWzBsNns66iIiIj0gZzUCP6xdjfrnJnnpTteIiLtnE68/t//+3/YbDYeffRRFi5c2L49KiqK++67r33Rx3nz5uHj49N3kcpJjYkNZp9pBE02Mz4N1VC1D8KT3R2WiIgMEmckR7TP8yqqqic+zP/UjWLG2R+PFMHRcgiMdG2QIiIezKnEy2KxsH//fr73ve/x//7f/6OgoICqqirCwsJITU3ttL5XVFRUnwcrJ+brZWbk8HB2HEok09hrH26oxEtERPpIUOs8r02FVawvKOey0xJO3cgvBMJToHIPlOZC6rkuj1NExFM5NcfLZrMxZ84cvv32WwzDYOTIkZx++umMHDnyhIsqS//JjA9lW3uBDVU2FBGRvpWdGgE4O8+rddpByVYXRCQiMnA4lXh5eXkRFRWFzWZzVTzSC1kJoWy1pdifqMCGiIj0sWMFNpypbKgCGyIi0IOqhnPmzGHVqlUuCEV6KzM+jDyrfS0vm9byEhGRPta2ntf+ijqKqxxcMkYFNkREgB4U10hPT+ftt9/muuuuY/bs2URHR3cZZjh79uw+C1AcNzomiAJzMhabgbm2FGpKIDjW3WGJiMggEeznzfj4UDYXVrF+TzmXTnJgnldb4lW2A5obwNvPtUGKiHgopxOvO++8E4DS0lI2bNjQZb9hGHz33Xe9j0yc5m02kRI3jIKSOEYbRfZ5Xkq8RESkD+WkRrC5sIp1uyscS7xC4sE/HOor4fB2iJvo8hhFRDyR04nXs88+64o4pI9kxYey9WAyoymyz/NK091HERHpOzkpkSxdW+D4el6GYb/rtecT+3BDJV4iMkQ5nXhNmTLFFXFIH8lMCGPbhmQuNX8OJSqwISIifeuM5HBMBuwrr+NgdT3DQx1Yzys261jiJSIyRDldXKNNTU0Nn376KW+88QbV1dV9GZP0QlZCKNtsyQDYVNlQRET6WLCfN5nxoQCsd7S6oQpsiIj0LPFasmQJ06ZN44YbbuDOO+/kwIEDAPzkJz9h2bJlfRqgOGdkdBAF5lQAjKr99jH1IiIifehYWXkHhxvGtK7lVboVtCSNiAxRTidezz//PEuWLOGKK65g6dKlndb0mjFjBh9//HFfxidOMpsMRsTHsd8abd+ghZRFRKSPOb2QclQamH2g8QhU7XNhZCIinqtHidfcuXP53e9+x9lnn91pX1JSEvv26Requ2UlhLUPN0TreYmISB87IzkCkwF7W+d5nZKXD0Sn27/XcEMRGaKcTrwKCwuZNm1at/sCAwM5cuRIr4OS3slKCGWrNcX+RPO8RESkj4W0rucFzszzyrI/KvESkSHK6cQrODiYsrKybvcVFRURGRnZ66CkdzLjQ9lmSwLApqGGIiLiAm3zvNY7WlZeBTZEZIhzOvGaOnUqTzzxBHV1de3bDMOgpaWF5cuXdxl+KP0vOTKQvd6j7U/K8qHpqHsDEhGRQSenfZ6XKhuKiDjC6cTr1ltvpbi4mDlz5rBw4UIMw+Df//43V155Jfv27ePmm292RZziBJPJYHh8EodsYRjYoGSru0MSEZFBpm2e156yo5RUN5y6QWxrZcPqQqhzMFkTERlEnE68kpKSWL58OampqSxfvhybzcbrr79OeHg4L7zwAnFxca6IU5xkn+eVbH+iAhsiItLHQvy8GRfXOs/LkeGGfqEQZh8GT6k+EBSRocerJ41GjRrFk08+SVNTE5WVlYSGhuLn59fXsUkvZCaEstWWzHlsgoOb3B2OiIgMQjmpEeQWVbOuoJxLJsafukFspr2cfEkupJzj+gBFRDxIjxZQbuPj40NMTIySLg+UFR/GttY7XlYV2BARERdoL7Dh9Dwv3fESkaGnR3e8Dhw4wDvvvENxcTENDZ3HdRuGwZ/+9Kc+CU56LjHCn/0+rQU2Dn0HLU32dVRERET6yBnJERgGFJQdpfRIAzEhp/ggVgU2RGQIczrx+vjjj5k/fz5Wq5WIiAh8fDr/MW8YhlPnq62t5bHHHmP79u3k5eVRWVnJ/PnzWbBgQZdjt23bxoMPPsjmzZsxm83k5ORw5513kpiY6NBrffHFF/z9739n+/bt+Pn5MWPGDO64445BWQLfMAyiEkZRVRhImPUoHP4Ohk9wd1giIjKIhPp7My4uhK1FRxwbbtiWeB3erg8ERWTIcXqo4d/+9jdOO+00Pv30Uz777DM+/PDDTl9r1qxx6nxVVVW8/PLLNDU1MXPmzBMet3v3bq699lqam5t55JFH+NOf/sTevXu5+uqrqag49RCHDRs2cMMNNxAZGcljjz3GPffcwxdffMHcuXNpampyKuaBIjPh2HBDLaQsIiKukJNi//DSobLyoYn2IhvWZnvyJSIyhDh9x2vfvn08+uijfXaXKD4+no0bN2IYBhUVFaxYsaLb4xYtWoSPjw9Lly4lKCgIgHHjxnHBBRfw5JNPcscdd5z0dR544AGSk5NZtGgRXl72bickJPBf//VfrFy5kquvvrpP+uNJshJC2WZL5iy2geZ5iYiIC+SkRvLEZ3scq2xoGBCbBXs/tQ83HJ7l+gBFRDyE03e84uLiOi2e3FuGYZxyeGJLSwsff/wxs2fPbk+6wJ60ZWdn88EHH5y0fWlpKbm5uVxyySXtSRfAaaedRnJy8inbD1RZCWHtJeWtxZvcGouIiAxOk1Na53kdPsqhI46s56V5XiIyNDmdeP3iF7/gqaeeor6+3hXxdGv//v00NDQwZsyYLvvS0tLYt28fjY2NJ2yfn58P0G37MWPGtO8fbIaH+lHsby+wYSvdClaLmyMSEZHBJtTfm4zhIQCs2+PAcEMlXiIyRDk91DA3N5fy8nJmzZpFdnY24eHhXY753e9+1yfBtamqqgIgLCysy76wsDBsNhvV1dUMGzbspO1DQ0O7bd+23xkWS8+SmLZ2PW3vrOC4dOr2+xLQUo/l0A6I7pp89qf+7r8nGurvgfqv/nd87Gl78Sw5qZFsK7YX2Lh4QtzJD+6YeNls9uGHIiJDgNOJ17///e/27//zn/902W8YRp8nXh3P3ZN9pzrG2UqMYE9Ae6O37R0V5d3Id7YRnG7sZN/6t6hM6L87lSfTX/33ZEP9PVD/1X8ZPHJSI3nysz2sK3BgnlfUGDB5Q2M1VO2H8CTXBygi4gGcTry2b+//KkRtd7oqKyu77KuqqsIwDEJCQk7Zvrs7W1VVVd3eCTuVzMxMzGaz0+0sFgu5ubk9bu+sct9DbM1P5nTTTpJ9q0iaONHlr3ky/d1/TzTU3wP1X/3vTf/b2nuyL7/8kjfeeINvv/2WkpISgoODGT9+PLfccgvjx4/vdGxvl0nxFFOSO8zzqmlgWPBJ1vPy8oHodCjNhdKtSrxEZMjo0QLK/W3EiBH4+fl1OxcrPz+fpKQkfH19T9g+LS0NgB07djB9+vQu7dv2O8NsNvfqj6betnfUhBHhfGBLBsB2cIvH/KHXX/33ZEP9PVD/1f/B2v/ly5dTVVXFddddx6hRo6ioqODpp5/mqquu4oknnmDq1KnAsWVSxo4dyyOPPEJjYyOLFi3i6quv5vXXXyciIsLNPXFcaIB9nte24iOsL6jgIkeGG5bm2ocbps/pnyBFRNzMoeIaGzdu5OjRo6c8rqKigpUrV/Y6qON5eXkxY8YM3n//fWpra9u3FxcXs379embNmnXS9jExMWRlZfHmm292mh+wadMm9uzZc8r2A1lMiB8H/e2Jpe3gZvt4ehERcZn/+Z//4dlnn+Xqq69mypQpXHjhhTz11FOEhYWxdOnS9uM6LpMyffp0Zs+ezdKlS6msrOTJJ590Yw96Jrt9PS8HhhuqwIaIDEEOJV7XXXcdu3fvbn9utVoZP348eXl5nY4rLCzk3nvvdTqItWvXsnr1aj766CMAdu3axerVq1m9enV79cQFCxZQX1/PvHnzWLt2Le+//z6/+MUvCA8P5/rrr+90voyMDH7yk5902vbf//3fFBQUcNttt/HFF1/w5ptv8stf/pK0tDQuv/xyp2MeSAISMmmymfFqOmIfTy8iIi7T3TqXgYGBjBw5koMHDwK9XybFE+Wk2u/QOZd4aY1JERk6HBpqaDvuLonNZqOlpaXL9p667777KCoqan/elnQBrFmzhoSEBEaOHMlzzz3HQw89xG233dY+Fn7JkiVdhmNYLBasVmunbdnZ2SxbtoxFixYxb948/P39Offcc/nNb36Dj49Pn/TDU41LjCK/IJHxxl44uFnj6UVE+llNTQ15eXnk5OQAp14m5fPPP6exsfGkw+i7486Ku6ePCMUwYPfho5RU1REdfJLYozMwA1Ttx3K0Avycn2vdl1RtVP3v+DjUqP/9V23XI+Z4ffjhhw4dN378eP71r3+d8rgdO3Z0u/2ss87irLPOcia0QSEzIZRt1mTGm/baP13MuNjdIYmIDCn33Xdf+6gN6P0yKSfi7oq7yaFe7Klq4eWPv+GsRP+THjvePwbf+lJ2fbaK2qgJvXrdvuLphVtcTf1X/4ey/ui/RyRe4lqZ8aH83ZbMVUBL0bf6oYuI9KNHHnmEN998k3vvvbdLVcPeLpNyPHdX3J1e9B17vthHqTWEiRPHnfRY047TIf9tRgfXY1PFXbdS/9V/9b9/qu3qb/AhICrIl0OBY6AJrMUaTy8i0l8WL17M448/zq9+9St+/OMft2/v7TIpJ+LuirtTR0bxry/2sX5v5anPMzwL8t/GdGgbeMgfe4O52qYj1H/1X/13bf8dTrwKCgrag2kby1hQUNDlGPFMfglZWHcb+NQfgppSCI5xd0giIoPa4sWLefTRR1mwYEH7EMM2vV0mxVNlp9jX89p1qJbDNY0nn+elyoYiMsQ4nHjdddddXbb95je/6fTcZrP1aGiEuN6YEbEU7BrOKKPYPs8rePCW0BcRcbclS5bw6KOPctNNNzF//vwu+zsuk3LHHXe0VzZsWyZl7ty5/Rxx3wgL8CE9NoTvDh5hw54K5mQNP/HBsa3DLg9vh5Ym+8LKIiKDmEOJ15///GdXxyEulhUfxlZbMqMohoObYLQSLxERV3jqqadYtGgR06ZN49xzz2XTpk2d9k9snc+0YMECrrjiCubNm8cNN9xAU1MTixYt6naZlIEkJzWC7w4eYV1B+ckTr7Ak8A2BxiNQln8sERMRGaQcSrwuvfRSV8chLpYZH8qj1hR+aP6C5gOb8HZ3QCIig1TbmpSffvopn376aZf9bZV3nVkmZSDJTonk6c/3nno9L8OwDzfc97l9uKESLxEZ5FRcY4gIDfCmLHgMNICleLMSLxERF3nuueccPtbRZVIGkuwUe9K481AtZbWNRAWdYp5XW+LFf/VPgCIibmJydwDSf7zjJwLgV1sI9V0raYmIiPRWeKAP6bHBAKwvqDj5we0FNlRxV0QGPyVeQ8jopAQKrdH2J6oiJSIiLpKTGgnA+j2nGG7YsbKhzebiqERE3EuJ1xCS2VpgA4CDm90ai4iIDF5tidcp53lFp4PJCxqqoPqA6wMTEXEjJV5DyPj4ELZZkwFoKPzWvcGIiMigNaV1nld+qX2e1wl5+dqTL9BIDBEZ9JxKvBoaGvjRj37EF1984ap4xIWC/bwpD7Ff4CxFm9wbjIiIDFoRHeZ5bdjj4Dyv0q0ujkpExL2cSrz8/PzIz8/HbDa7Kh5xsbYCG/5H9kDTUfcGIyIig5bDww1jWsvIq8CGiAxyTg81nDRpElu26JfjQJWUPJJDtjBMWKF0m7vDERGRQSon1T7c0PHKhhpqKCKDm9OJ15133slLL73EqlWrOHpUd0wGmgkJoWyzJtmfqMCGiIi4yJQU+x2vHaU1lJ9snldb4lW5FxqqXR+YiIibOJ14XXXVVZSUlHDXXXdxxhlnMGnSJE477bT2r9NPP90VcUofyYgLYZstBYD6/d+4ORoRERmsIgJ9GBPjwDyvgAgISbB/r5EYIjKIeTnb4IILLsAwDFfEIv0gwMeLypB0qIPmos34uzsgEREZtHJSI9hRWsO6gnK+lzn8xAfGZsKRA/bhhkln9l+AIiL9yOnEa+HCha6IQ/qROX4i7ITAqh3Q0gRePu4OSUREBqGc1Eie+XIf6xyZ55X/jgpsiMigpnW8hqCElHSqbQGYbS1weLu7wxERkUGqbT2vHaU1VBxtOvGBKrAhIkOA03e82uTn57N7924aG7tOmP3hD3/Ym5jExTITwthmTeZMcx62g5swhme5OyQRERmEIoN8SYsJIr+0lg17yrlw/AmGG7YlXoe2g6UZzN79F6SISD9xOvGqr6/npptuYt26dRiGgc1mA+g070uJl2cbOzyE50nmTPI4uu9bgk67zt0hiYjIIJWTGkl+aS3rCipOnHiFJYFPMDTVQNlOiMno3yBFRPqB00MNH3vsMYqKivj3v/+NzWZj8eLFPP3008yaNYukpCRee+01V8QpfcjP20x58FgAmg986+ZoRERkMHNoIWWTCWLbFlLWcEMRGZycTrzWrFnDDTfcwKRJkwAYPnw4U6dOZdGiRYwbN44XXnihz4OUvucVPwGAwMrtYLW4ORoRERms2uZ5bS+podKheV4qsCEig5PTiVdRURGpqamYzWYMw6C+vr5930UXXcSaNWv6NEBxjdiRmdTbfPCx1kP5bneHIyIig1RUkC+jhwUBsP5k63mpwIaIDHJOJ17BwcHU1dUBEBkZyb59+9r3tbS0tO8Tz5aZEEmeLQkA28HNbo5GREQGM4eGG3ZMvFrnj4uIDCZOJ15jxoxh7969AGRnZ7N06VK++uortmzZwpIlS0hPT+/rGMUFxsQGs92WAkDNnq/dHI2IiAxmDiVe0WPBMEN9BRwp7qfIRET6j9OJ1+WXX87Ro0cB+OUvf0l9fT3XXnstV111FcXFxfz2t7/t8yCl7/l4magItSfJTSqwISIiLpSd6sA8L28/iB5j/17DDUVkEHK6nPz3v//99u8TExN5991320vLT5o0ibCwsL6MT1zIFDcB8iGwIs8+rKPDkgAiIiJ9pW2e185DtWzYW8EF42K7PzA2Ew7l2ROvMRf2b5AiIi7m9B2v4wUEBHDeeecxY8YMJV0DTEzqJJpsZvwtR6Bqv7vDERGRQaztrpdD87xKdcdLRAafXideMnCNS4pmpy0BAKsKbIiIiAsdm+d1ksqGMVrLS0QGL4eGGqanp2M4OAzNMAzy8vJ6FZT0j9HDglhFCuPYR3XBV4RnXOzukEREZJDKTrEnXttLjlBV10RYgE/Xg9rueFUUQGMN+Ab3Y4QiIq7lUOJ1yy23OJx4ycDhZTZRGTIWaj+msXCTu8MREZFBLDrYl1HDgth1qJb1e04wzyswCoLjoKYYSrfBiJz+D1RExEUcSrwWLFjg6jjETUxxE1sLbGxzdygiIjLI5aRG2BOvglMU2Kgptg83VOIlIoOI5ngNcZEjJ2G1GQQ3l0FNqbvDERGRQaxtuKFjCylv6YeIRET6j9Pl5FetWnXKY374wx/2IBRxh3HJcRTYhjPKKMZSvBnzmNnuDklERAaptsqG3zkyz0sFNkRkkHE68TrRAskd54C5KvH67W9/y2uvvXbC/S+99BITJ07sdt+rr77KXXfd1e2+zz77jOjo6L4IccBJjQ7iHSOFURRTufsropR4iYiIiwwL9mNkdCC7Dx9lw54KZnc33LC9pHweWFrA7PSfKiIiHsnp32Zr1qzpsq2yspI1a9bw9ttv87e//a1PAuvOzTffzI9+9KMu2+fNm4ePjw+ZmZmnPMef//xnUlNTO20byuuPmU2GvcBGzec0FH7j7nBERGSQy0mNZPfho6w/UeIVngI+QdBUC+W7YFh6/wcpIuICTide8fHx3W4bP348LS0tPPvssyxcuLBPgjveiBEjGDFiRKdtGzZsoLKykptuugmz2XzKc4wePdqhBG0oMYZnQQ0ElKvAhoiIuFZ2aiTPr99/4nleJpN9Pa/Cdfbhhkq8RGSQ6NPiGlOnTuXDDz/sy1Oe0sqVKzEMg8svv7xfX3cwiRh1hv2xqRjqq9wbjIiIDGo5KfZ5XnkHj1Bd19z9QbFtCymrwIaIDB59mngVFRVhMvVfocSamhreffddpk6dSmJiokNt5s2bx9ixY5kyZQrz588nPz/fxVF6vrGpyRywRQHQUqyLnIiIuM6wED9SowOx2WDD3oruD1KBDREZhJwearhx48Yu25qamtixYwdLly5l6tSpfRKYI9566y0aGhq44oorTnlsVFQU8+bNY+LEiQQFBZGfn8+yZcu46qqrWL58Oenpzg1lsFgsPYq5rV1P27tCQqgva41UEijjcP56hiWf5bLX8sT+97eh/h6o/+p/x8eetpeBLSc1koLDR1lXUM6sjJiuB3RMvGw26FDAS0RkoHI68br22ms7VTAEsNlsAJx55pnce++9fROZA1auXElYWBizZs065bHnnHMO55xzTvvzyZMnM336dC666CL+/ve/8/jjjzv12rm5vfsUrrft+1qJbwo0bqB8++cUDzvP5a/naf13h6H+Hqj/6v9gVltby2OPPcb27dvJy8ujsrKS+fPns2DBgk7Hnahab0pKCqtXr+6vcPtdTmokL6zfz/o9J5jnNSwDDBPUlUFNCYQM798ARURcwOnE69lnn+2yzdfXl/j4eKKiovokKEds376drVu3ct111+Hj0806IA5ISEjg9NNPZ/PmzU63zczMdKiYx/EsFgu5ubk9bu8qu7ZPhp0vEd2wh6gTlOTvC57a//401N8D9V/9703/29p7uqqqKl5++WXS09OZOXMmK1asOOGxfn5+PPPMM122DWZt87y2FR+hur6ZUH/vzgd4+0NUGhzebr/rpcRLRAYBpxOvKVOmuCIOp61cuRKAK6+8slfnsdlsPZqXZjabe/VHU2/b97XIUZNhJ0Q17sdsaQSfAJe+nqf13x2G+nug/qv/g7n/8fHxbNy4EcMwqKioOGniZTKZTrgG5WA1LMSP1KhACsqOsnFPBTNPNNzw8HZ7gY00rTEpIgOf0xnHnj172LBhQ7f7NmzYwN69e3sb0yk1NTXx5ptvkpWVRVpaWo/PU1hYyDfffMOECRP6MLqBacyo0Ry2hWLGSpMKbIiI9IphGF2G5Utn2amRACcuK68CGyIyyDh9x2vhwoUkJyd3e+fro48+Ys+ePfzjH//ok+BO5IMPPqCqqorbb7+92/133303q1at4v33329fd2zu3LmcccYZpKenExgYSH5+Pk888QSGYXDbbbe5NN6BICEigM+NVKL5lkP5G0lIznF3SCIiQ0JDQwNnnXUWFRUVREdHM3PmTG699VbCwsKcPtdAKvw0JTmM5Rv282VBefevO2wcZsBWshWri+NS0Rv1v+PjUKP+91/RJ6cTr9zc3BMO75s8eTJvvvmms6d02sqVKwkICOD73/9+t/utVisWi6W96AdAWloa77zzDk899RSNjY1ERESQk5PDzTffTEpKistj9nSGYVAenA4131K//xt3hyMiMiSkp6eTnp7O6NGjAfvIkWeeeYYvv/ySlStXEhgY6NT5BlLhp6B6+x8r3xUf4fMN3xDo03kQjlcjTACo2M2Wr77E6uXv8pgGwvxBV1L/1f+hrD/673TiVVNTQ0BA9/N//Pz8qK6u7nVQp/LUU0+ddP/ChQtZuHBhp2133323K0MaHIZnQc1y/Mu2ujsSEZEhYe7cuZ2en3XWWWRkZHDrrbeyYsWKLvtPZaAVfkr+8hP2ltfRGJLAWenDuuy3fRGLUVtCVqwZEia6LA4VvVH/1X/1vz+KPjmdeMXExLBlyxbOPPPMLvu2bNlCdHS0s6cUDxGWOhnyIaahAFqawKtn1SJFRKTnZs2aRUBAAJs2bXK67UAr/DR1ZCR7y+vYsLeSWeO6qVwYmwm7SjAf2gZJrl8ndLAXfTkV9V/9V/9d23+ni2vMnDmTZcuWsW7duk7b169fzz//+U+H1tQSz5SWPo4jtgC8aaHxYJ67wxERGbJ6WnF3oMlpL7BR0f0BKrAhIoOI03e8brnlFj777DN++tOfkpycTGxsLCUlJezdu5dRo0Z1WRxSBo7YUH++NqVwhm0bB3esJzlxortDEhEZclavXk19ff2QqLibnWJPvLYVV3OkoZkQv+PW81LiJSKDiNOJV3BwMC+99BL/+te/+PTTTykuLiY8PJwFCxbwk5/8xOmJwOI57AU2xsKRbdTvU4ENEZHeWLt2LfX19Rw9ehSAXbt2sXr1agCmT59ORUUFt99+O3PmzGHEiBEYhsHGjRt55plnGD16dK/XqRwIYkP9SI4MYG95HV/treC89OPW84rNsj+WbgNLC5id/rNFRMRj9Og3WGBgILfccgu33HJLX8cjbmaNyYQjK/Er2+buUEREBrT77ruPoqKi9uerV69uT7zWrFlDcHAwUVFRPP3005SX20uqx8fHc+211zJv3rwTFrIabHJS7fO81hV0k3hFpIB3IDQfhYrdED3GPUGKiPSBHn90VFNTw6ZNm6isrGT69OmEhob2ZVziJuEjJ8NOiK3fCVYLmIbuJEsRkd748MMPT3nM4sWL+yESz5aTGsmLGwu7X0jZZIaYcXBgg324oRIvERnAejRzd8mSJUybNo0bbriBO++8kwMHDgDwk5/8hGXLlvVpgNK/UtMnUm/zwZ8G6kry3R2OiIgMctmpEQBsLbLP8+pC87xEZJBwOvF6/vnnWbJkCVdccQVLly7ttEjxjBkz+Pjjj/syPulnw8IC2WVKBuDg9vXuDUZERAa94aH+JEcGYLXB13srux4QO97+qMRLRAa4HiVec+fO5Xe/+x1nn312p31JSUns27evz4IT9ygLTgfgqApsiIhIP2irbtjtcMO2AhtKvERkgHM68SosLGTatGnd7gsMDOTIkSO9Dkrcyxpjv8j5HtZFTkREXC9npH24YbeJ17AMMExw9BDUlPZzZCIifcfpxCs4OJiysrJu9xUVFREZGdnroMS9QlNPByC2bid0GEoqIiLiCm13vHKLqqk5fp6XTwBEjrJ/r7teIjKAOZ14TZ06lSeeeIK6urr2bYZh0NLSwvLly7sMP5SBJ2XsGTTbzIRSQ82hPe4OR0REBrm4MH+SWud5fdXtPK+2Ahtb+jcwEZE+5HTideutt1JcXMycOXNYuHAhhmHw73//myuvvJJ9+/Zx8803uyJO6UeRYSHsNSUCUJS3zs3RiIjIUJCd0jrccE9387xU2VBEBj6nE6+kpCSWL19Oamoqy5cvx2az8frrrxMeHs4LL7xAXFycK+KUfna4rcDGXhXYEBER18tJbSuwUdF1pxIvERkEerSA8qhRo3jyySdpamqisrKS0NBQ/Pz8+jo2cSPLsCw4shqfsq3uDkVERIaA7NbEa2vrPK9gP+9jO9sqG5bvgqaj4BPohghFRHqnRwsot/Hx8SEmJkZJ1yB0rMDGDjdHIiIiQ0F8mD8jIgKwWG18te+4eV5BwyAoBrDBoe/cEp+ISG85dMdr1apVTp30hz/8YQ9CEU+SlJGN9V2DaCqoPnyA0OgEd4ckIiKDXE5qBPsr6lhXUM6MMcM674wZD7Wl9gIbCWe4J0ARkV5wKPH67W9/6/AJDcNQ4jUIhIaFs98UxwhbEYV56widfoW7QxIRkUEuOyWSl786wPoTzfPavUbzvERkwHIo8VqzZo2r4xAPdCgonRE1RdTs/QaUeImIiItlp9orG+YWVVPb2EKQb4c/U1RgQ0QGOIcSr/j4eFfHIR7IMiwTatbgc0gXORERcb2E8AASI/wprKjnq70VnNtxuGFbgY3SbWC1gMnsniBFRHqox8U1amtr+eyzz3jrrbf4/PPPqa2t7cu4xAMEtxbYiKnLd3MkIiIyVOSknKCsfORI8PKH5jqoKHBDZCIivdOjcvJPPvkkixcvpqGhAZvNhmEY+Pn5ceutt/LTn/60r2MUN0nMyIH3IcFWQnnZISKjhp26kYiISC9kp0ay4usDrD9+IWWTGWLGQdFX9gIbUaPdE6CISA85fcdr1apVPPjgg0yePJmHH36Y559/nocffpgpU6bwwAMPOF0BUTxXcPgwSgx7srV/23o3RyMiIkNBdop9nteWA9UcbWzpvFPzvERkAHM68frXv/7FD37wA5YtW8b3vvc9Tj/9dL73ve+xdOlS5syZwzPPPOOKOMVNDgWmAVCz92s3RyIiIkNBYkQACeH+3a/n1Z54be3/wEREesnpxKugoICLL764230XX3wxu3fv7nVQ4jmah9knM3urwIaIiPSTnNS2eV7HDTdsK7ChO14iMgA5nXj5+flRXV3d7b7q6mr8/Px6HZR4jtDU0wAYdnSHmyMREZGh4oSJV0wGYEBtCdQe6v/ARER6wenE6/TTT2fx4sWUlpZ22n748GGWLFnCGWdoNfnBJH7sVACSbQcoLe9mQUsREZE+1jbPK/f4eV4+gfbqhqC7XiIy4Dhd1fDXv/41P/rRj5g9ezZTp04lOjqaw4cPs27dOry8vFi8eLEr4hQ38Y+Ip9III5wq9uZ9Rcy02e4OSUREBrnEiADiw/wpqqrn632VnJMWfWxnbCaU77InXqPOd1+QIiJOcvqO1+jRo1m5ciXnn38+ubm5vPrqq+Tm5nL++eezYsUKRo0a5Yo4xV0Mg9LAMQDU7Nno5mBERGSoOPE8L1U2FJGBqUfreKWkpPDwww/3dSzioZqjx0PterwOqYqUiIj0j5zUCF755oAKbIjIoOH0HS8ZeoJSTgdgWO12bDabm6MREZGhoO2O15YD1dQ1dZjn1XbHq3wnNNe7ITIRkZ7p0R2vvLw83nzzTYqLi2lsbOy0zzAMHn/88T4JTjxDXHo2fAgjbfsprqghPjLE3SGJiMggd/w8r2mjW+d5BcVAYDQcPQyH8iD+dPcGKiLiIKcTr1WrVnHXXXdhMpmIiIjA29u7037DMPosOPEMvtEjqTUCCeIoe7/7mvizZ7g7JBERGQKyUyN49Zsi1hWUH0u8DMN+12v3h/bhhkq8RGSAcDrxevzxx5k+fTp/+ctfCA0NdUVM4mkMg0MBowk6uomqgq9BiZeIiPSDnNTI1sTruOVMOiZeIiIDhNNzvA4dOsR1112npGuIaYq2j6n3OrTFzZGIiMhQMbV1ntfmwqrO87xiVNlQRAYepxOvsWPHdlk8WQa/oOTTAIiu3aECGyIi0i8Swv2JC/WjxWrjm31Vx3a0l5TfClarW2ITEXGW04nXb37zG5YtW8b27dtdEc8JrV+/njFjxnT7tWnTplO2Ly8v57e//S3Z2dlMmDCBq666ii+//NL1gQ8SMWOyAUiz7WV/ea2boxERkaHAMIzu1/OKHAVeftB8FCr3uCk6ERHnOD3Ha+LEicyePZtLL72U6OjoLkMODcPgjTfe6LMAj/frX/+a7OzsTttGjx590jZNTU3MnTuXI0eOcM899xAZGcnzzz/Pz3/+c55++mmmTJnisngHC+9hY2jEhyCjgQ3bt5B09lnuDklERIaAnNRIXv22qHPiZfaCYRlQ/A2UbIHIke4LUETEQU4nXsuWLWPp0qVEREQQFxfXpaqhqyUlJTFx4kSn2qxYsYL8/HxefPFFJk2aBEB2djaXXHIJDz74ICtWrHBBpIOM2YtDAaNIrMvjyJ6vQYmXiIj0g7Y7XpsP2Od5Bfi0/ukSm9maeOXCuEvdGKGIiGOcTryeffZZLr/8cu6//37MZrMrYupzH3zwASkpKe1JF4CXlxcXX3wxDz/8MKWlpcTExLgxwoGhMToT9uVhKlWBDRGRk6mtreWxxx5j+/bt5OXlUVlZyfz581mwYEGXY7dt28aDDz7I5s2bMZvN5OTkcOedd5KYmOiGyD1PYoR9nldxdQPf7Kvi7NFR9h2xKrAhIgOL04nX0aNH+cEPfuC2pOv+++/n17/+NX5+fkyaNImbbrqJM84446Rtdu7cyemnd13nY8yYMe37nU28LBaLU8cf366n7d0pYMQk2PcS0TXbaW5uwWRyfs22gdz/vjLU3wP1X/3v+NjT9p6uqqqKl19+mfT0dGbOnHnCkRW7d+/m2muvZezYsTzyyCM0NjayaNEirr76al5//XUiIiL6OXLPYxgG2amRvPZtEev3lHdIvLLsjyVb3ReciIgTnE68TjvtNHbv3s3UqVNdEc8JBQcHc91115GdnU1YWBj79u3jySef5LrrrmPp0qVMmzbthG2rqqq6LX/ftq2qqsrpeHJze/cJW2/bu4OvLZQ4YAx7eOezr4gP6fkw04HY/7421N8D9V/9H8zi4+PZuHEjhmFQUVFxwsRr0aJF+Pj4sHTpUoKCggAYN24cF1xwAU8++SR33HFHf4btsXJSI3jt+HleMRmAATXFcLQMAqPcFp+IiCOcTrzuuecebr31VmJjYznnnHPw8fFxRVxdZGRkkJGR0f78jDPOYNasWVx00UU8+OCDJ028wP6JWU/2nUhmZmaP7vpZLBZyc3N73N6tWsbS8tl8IoxavL1MTs+1gwHe/z4y1N8D9V/9703/29p7OkeuKy0tLXz88cdccskl7UkX2JO27OxsPvjgAyVerdrmeW0qrKK+yYK/jxl8gyEiBSoK7MMNR85wc5QiIifndOJ1+eWX09LSwoIFCzAMAz8/v077DcPg66+/7rMATyYkJIRzzz2XF198kYaGhi6xtAkLC+v2rlZ1dTVAjxaDNpvNvfqjqbft3cIcQIl/KrH1Ozmy92vM03peDXJA9r+PDfX3QP1X/4dy/wH2799PQ0ND+7D3jtLS0vj8889pbGzE19fXDdF5lhERAQwP9eNgdQPf7K/krFEd5nkp8RKRAcLpxOuCCy7o0R0iV2lbzPdkMaWlpZGfn99le9u2U5Wjl2Mao8ZB4U5MJSqwISLSG20fCIaFhXXZFxYWhs1mo7q6mmHDhjl8zsE8/zg7JYJVm4r5YlcZOSnhABjDxmPKex3rwS3YehH7QOi/K6n/6n/Hx6GmP+ceO5V4WSwWfvGLXxAREdGju0R9rbq6mo8//pixY8ee9BPBmTNnct9997F582YmTJgA2Id4vPHGG0yYMEEVDZ0QkHQaFK4iqnY7LRYrXman1+AWEZEO+nIo/GCefzzcXAfAh1v3c170UQBC6gIZDTTu20jepk29fg1P7n9/UP/V/6GsP/rvVOJls9mYM2cOjz/+ONOnT3dVTN26/fbbGT58OOPHjyc8PJx9+/bx1FNPUV5ezsKFC9uPu/vuu1m1ahXvv/8+8fHxAFxxxRW88MIL3Hbbbdx+++1ERkbywgsvsGfPHp5++ul+7cdAFzFqMnwG6exl9+GjjIkNdndIIiIDUtudrsrKyi77qqqqMAyDkJAQp845mOcfhyUe5fGvP2V3ZQtjMjLt87yODIMNd+NXW8jEcWPA279H5x4I/Xcl9V/9V//7Z+6xU4mXl5cXUVFR7cP7+tOYMWN4++23efHFF6mrqyM0NJTTTz+dBx54gKysrPbjrFYrFoulU4w+Pj7861//4sEHH+T//u//qK+vZ+zYsfzzn/9kypSez1MaiszDM7FiMNyoYOPu3YyJnejukEREBqQRI0bg5+d3wqHwSUlJTs/vGszzj1Ojg4kN8aPkSANbio5w5qgoCEuAgEiMunLM5fkQf1qvXsOT+98f1H/1X/13bf+dnuM1Z84cVq1axbnnnuuCcE7sxhtv5MYbbzzlcQsXLux0B6xNVFQUf/nLX1wR2tDiG0ylbyKRjfupKvgazpro7ohERAYkLy8vZsyYwfvvv88dd9zRXtmwuLiY9evXM3fuXPcG6GEMwyAn1T7Pa11BuT3xMgx7gY2Cj6F0a68TLxERV3I68UpPT+ftt9/muuuuY/bs2URHR3cZgz579uw+C1A8T330eDiwH6Nks7tDERHxWGvXrqW+vp6jR+3zkXbt2sXq1asBmD59Ov7+/ixYsIArrriCefPmccMNN9DU1MSiRYsIDw/n+uuvd2f4Hik7NbI18ao4trEt8SoZ2vNTRMTzOZ143XnnnQCUlpayYcOGLvsNw+C7777rfWTisQJGTIIDbxNZs4NmixVvFdgQEenivvvuo6ioqP356tWr2xOvNWvWkJCQwMiRI3nuued46KGHuO222zCbzeTk5LBkyRIiIiLcFbrH6rieV0OzBT9vM8S2TjdQ4iUiHs7pxOvZZ591RRwygISPnAxfQAZ7yC+tYVyc+ytcioh4mg8//NCh48aPH8+//vUv1wYzSCRHBhAT4kvpkUa+2V/JmSOjIGa8fWfJVrBawaQPA0XEMzmdeKkYhRjD7SX5k02lvLLngBIvERHpF/Z5XpG83jrc8MyRURA1Gsy+0FQDVXshItXdYYqIdKvHHwvV1NTw6aef8sYbb1BdXd2XMYmnC4ig2icWgIqCr90cjIiIDCVtww3XFZTbN5i9YdhY+/cabigiHqxHideSJUuYNm0aN9xwA3feeScHDhwA4Cc/+QnLli3r0wDFM9VHjrN/c3CLewMREZEhJTvFPvetbZ4XYC+wAUq8RMSjOZ14Pf/88yxZsoQrrriCpUuXdlova8aMGXz88cd9GZ94KP8R9pK9UbXbaWyxuDkaEREZKlKiAhkW7EtTi5Vv91fZN6rAhogMAD1KvObOncvvfvc7zj777E77kpKS2LdvX58FJ54rJMWeeI1lLztKatwcjYiIDBVt87ygw3BD3fESkQHA6cSrsLCQadOmdbsvMDCQI0eO9Doo8XxG3EQARhlFbN1X6t5gRERkSOmSeMW0Dn8/UgR1FSdoJSLiXk4nXsHBwZSVlXW7r6ioiMjIyF4HJQNA8HCOekfgZVgp3/2Nu6MREZEhJDvVPs/r27Z5Xn4hEJ5i36m7XiLioZxOvKZOncoTTzxBXV1d+zbDMGhpaWH58uVdhh/KIGUY1EdkAGBTgQ0REelHqVGBRLfO89pUWGXfqOGGIuLhnE68br31VoqLi5kzZw4LFy7EMAz+/e9/c+WVV7Jv3z5uvvlmV8QpHsivtcBGdO0O6ptUYENERPqH5nmJyEDkdOKVlJTE8uXLSU1NZfny5dhsNl5//XXCw8N54YUXiIuLc0Wc4oECk+yJV4axh7yDmtsnIiL9J6d1uKESLxEZKLx60mjUqFE8+eSTNDU1UVlZSWhoKH5+fn0dm3g4I24CAOlGIS/uP8zpSeFujkhERIaKtjte3+y3z/Pya0u8ynZAcwN46+8SEfEsTt/xuuuuuygsLATAx8eHmJiY9qSrqKiIu+66q28jFM8VlkyjORBfo5lDe/QJo4iI9J/UqECigjrM8wqJB/9wsLbA4e3uDk9EpAunE6/XXnuNysrKbvdVVlayatWq3sYkA4XJRF1Eawnf4s3ujUVERIYU+zwv+3DD9QUVYBgabigiHs3pxOtkqqur8fHx6ctTiofzTZwIQFTtdo42trg3GBERGVK6FtjIsj+WbnVTRCIiJ+bQHK+NGzeyfv369ucrVqzgk08+6XRMY2Mja9asYeTIkX0boXi0gKTT4RsYZ9rLtuIjTEmJcHdIIiIyRByb51XZeZ6X7niJiAdyKPFav349ixcvBuy39lesWNHtcXFxcfz+97/vu+jE87V+uphh7OPFwgolXiIi0m9GRtvneZXVNrK5sIrsjomXzWYffigi4iEcSrx+/vOfc80112Cz2TjzzDN58sknycjI6HSMj48PgYGBLglSPFhUGi0mX4KsDZTszYNzRrk7IhERGSIMwyA7NYL/bDnI+j0VZJ+bBmYfaDwCVfsgPNndIYqItHNojpefnx/h4eFERESwZs0aJk+eTHh4eKcvJV1DlNmLuvB0AKxFKrAhIiL9q9M8L7M3RNuvSRpuKCKexuniGvHx8SqgIZ34JEwCYNjRHVTXN7s5GhERGUqmtlY2/HpfJY0tlmMFNpR4iYiHcXoB5ebmZv75z3/y1ltvUVxcTGNjY6f9hmGQl5fXZwGK5/NLnAibIcPYy7aias4cFeXukEREZIgYGR1EVJAPZbVNbC6sZooKbIiIh3I68Xr44Yf517/+xTnnnMPMmTN190tg+AQAxpv28PKBKiVeIiLSbwzDIDslkv/kHmRdQTlTRirxEhHP5HTi9c4773DLLbcwf/58V8QjA9GwDKyGmQhqKdy7C1CBDRER6T85qRH8J/cg6/eUw1nj7RurC6GuAgJUbVdEPIPTc7yqq6s544wzXBGLDFTeftSHjgbAWvytm4MREZGhpq3Axtf7Kmn0CoKwJPuO0m1ujEpEpDOnE6/Jkyezfft2V8QiA5h3wkQAYuryqTza5N5gRERkSBk1LIjIQB8amq1sOVANmuclIh7I6cTrd7/7HStXruS9996jqUl/YItdW2XDccZecouq3RyNiIgMJYZhHCsrv7tclQ1FxCM5PcfrkksuoaWlhdtuuw3DMPDz8+u03zAMvv766z4LUAaI4faL3DjTXl4rquactGg3ByQiIkNJdus8r3V7yllwtu54iYjncTrxuuCCCzAMwxWxyEDWOqwjzqigYN9eVGBDRET6U8d5Xk0/zMAH4PB2aGkCL1VgFhH3czrxWrhwoSvikIHON5j6kBT8j+zBUrQZmOnuiEREZAgZPSyIiEAfKo42saUmmDP8QqGh2p58tY7KEBFxJ6fneImciFf8RACG1+VzuKbx5AeLiIj0Ifs8L3vp+HV7KjTPS0Q8jkN3vLZtc64c67hx43oUjAxs3vET4bvXGGfaS25RFeelx7g7JBERGUKyUyJ5O7eEdQUVzE/IhL2fKvESEY/hUOJ1+eWXOzSvy2azYRgG3333Xa8DkwGorcCGsYfXD1Qr8RIRkX7VcZ5Xy6Tx9j9ySre6NSYRkTYOJV5//vOfXR2HDAaxEwBIMZWyc38xkObeeEREZEjpOM8r35REBkDJFrDZQIXBRMTNHEq8Lr30UlfHcUpffvklb7zxBt9++y0lJSUEBwczfvx4brnlFsaPH3/Stq+++ip33XVXt/s+++wzoqNV+rxPBEbSFBiHz9Fimos2Y7NNVwVMERHpNyaTQXZKBO9sLWFtRSQZJm97gY3qQggb4e7wRGSIc7qqobssX76cqqoqrrvuOkaNGkVFRQVPP/00V111FU888QRTp0495Tn+/Oc/k5qa2mlbWFiYiyIemszxEyG/mPiGnZQeaSQ21O+UbURERPpKTmok72wt4Yu9R7hpWLp9jldJrhIvEXG7AZN4/c///A+RkZGdtk2bNo3Zs2ezdOlShxKv0aNHk5mZ6aoQBTDHTYD8txlv2suWA1XEhsa6OyQREY+1fv16rrvuum73vfTSS0ycOLF/AxoEslsrG361txLrpPGY2hKv9DlujkxEhroBk3gdn3QBBAYGMnLkSA4ePOiGiKRbw+3zvMYZe/lPUTWzxynxEhE5lV//+tdkZ2d32jZ69Gg3RTOwpQ0LJjzAm8q6Zor8RpEIqmwoIh5hwCRe3ampqSEvL4+cnByHjp83bx4VFRUEBwczZcoUbr31VtLSelYAwmKx9KpdT9t7vGHjMAOjjCLy9pVisYzqtHvQ998BQ/09UP/V/46PPW0/2CQlJenuVh+xz/OKZPW2Er5qTGhNvLa4OywRkYGdeN13333U19czb968kx4XFRXFvHnzmDhxIkFBQeTn57Ns2TKuuuoqli9fTnp6utOvnZvbu0/PetveY9lsjPMOxa+5mvrCTXz7bUC3BTYGbf+dMNTfA/Vf/RdxlZzUCFZvK2F1WRSXAlTth/oq8A9zb2AiMqQN2MTrkUce4c033+Tee+89ZVXDc845h3POOaf9+eTJk5k+fToXXXQRf//733n88cedfv3MzEzMZrPT7SwWC7m5uT1uPyBsOw32fESyZS/Dkq8nPty/fdeQ6P8pDPX3QP1X/3vT/7b2g83999/Pr3/9a/z8/Jg0aRI33XQTZ5xxhtPn0WgMuynJ4QB8sr8FW0QiRnUhloNbIOmsbo8fbP13lvqv/nd8HGr6cyTGgEy8Fi9ezOOPP86vfvUrfvzjH/foHAkJCZx++uls3ry5R+3NZnOv/mjqbXuPFj8R9nzEeGMP2w7WMCIqqMshg7r/Dhrq74H6r/4P5f63CQ4O5rrrriM7O5uwsDD27dvHk08+yXXXXcfSpUuZNm2aU+fTaAw7q81GkI9BbZOFA+YEEimk6Ot3OVwZeNJ2g6X/PaX+q/9DWX/0f8AlXosXL+bRRx9lwYIFpxxieCo2mw2TydRHkUm72CwAMkx7ebeomu9lDndzQCIinikjI4OMjIz252eccQazZs3ioosu4sEHH3Q68dJojGPOzPuW9/JKORg0nsSKL0nwqiD+BPPoBmP/naH+q//qf/+MxBhQideSJUt49NFHuemmm5g/f36vzlVYWMg333zDmWee2UfRSbvWyoZjjUIeLixzczAiIgNLSEgI5557Li+++CINDQ34+Tm+HqJGYxwzdWQk7+WV8kVdPFMAU+lWOEXfBlP/e0L9V//Vf9f2f8AkXk899RSLFi1i2rRpnHvuuWzatKnT/rZqUHfffTerVq3i/fffJz4+HoC5c+dyxhlnkJ6eTmBgIPn5+TzxxBMYhsFtt93Wzz0ZAsJTsHgH4dtcS23Rd9hsZ3VbYENERLpns9kA9LuzF3JS7cvQvHUokl+agMPboaUJvHzcG5iIDFkDJvH66KOPAPj000/59NNPu+zfsWMHAFarFYvF0n7RAkhLS+Odd97hqaeeorGxkYiICHJycrj55ptJSUnpnw4MJSYTxvAs2P8FKU272FdeR3LUycfVi4iIXXV1NR9//DFjx47F19fX3eEMWGNiggkL8GZXXQQtIcF4NdVAWT7Enrwgl4iIqwyYxOu5555z6LiFCxeycOHCTtvuvvtuV4QkJ2EaPgH2f8E40162FFUr8RIR6cbtt9/O8OHDGT9+POHh4ezbt4+nnnqK8vLyLtcycY7JZDAlOYL38kop9R9NfNM39oWUlXiJiJsMmMRLBpjWeV7jTHv54EAVF0+Ic3NAIiKeZ8yYMbz99tu8+OKL1NXVERoayumnn84DDzxAVlaWu8Mb8HJS7fO8tllGEE9r4sV/uTssERmilHiJawxvrWxo7ONvhZVuDkZExDPdeOON3Hjjje4OY9Bqm+e19kgss01AyRb3BiQiQ5pqqYtrRI3BavYl2Kinujgfq9V26jYiIiJ9KD02mFB/bzY1j7BvKN0KNl2PRMQ9lHiJa5i9MGLs4+hTWwooKDvq5oBERGSoMZkMpqREsNMWj8XwgvpKOFLk7rBEZIhS4iUuY7QONxxv2kNuUZV7gxERkSEpJzWSJrwp8mq961Xi2EKnIiJ9TYmXuE5bgQ1jL1sOVLs5GBERGYpyUiMA+LYpwb5BiZeIuIkSL3Gd1jte40x7yS2scm8sIiIyJI2NDSHU35stLW13vFRgQ0TcQ4mXuM6wcdgMM5FGDWUH99Jisbo7IhERGWJMJoPJyRHk2ZLsG3THS0TcRImXuI63H0SPAWCUZTe7Dte6OSARERmKclIj+M7aeserci80aPi7iPQ/JV7iUsbwiYDmeYmIiPvkpEZSRTAHbfZ1vSjd5t6ARGRIUuIlrtVe2XAvuUq8RETEDcYODyHEz4utVg03FBH3UeIlrtVW2dC0hy1FSrxERKT/mU0GU1IiNc9LRNxKiZe4VusiynFGBSUHD9DUogIbIiLS/3JSI8jTHS8RcSMlXuJafiHYIkYCkGYtYOchFdgQEZH+l5N67I6X7dB3YGl2c0QiMtQo8RKXM9rW8zL2kqvhhiIi4gZjh4dQ7TucIzZ/DEsjlO10d0giMsQo8RLXa53nNd6kxEtERNzDPs8riu80z0tE3ESJl7herP2OV4axl9yiI24ORkREhqqc1Mhj63mVbHFvMCIy5CjxEtdrveOVaiqhuLSUJovNzQGJiMhQlN2hsqFNd7xEpJ8p8RLXC4zCFhIPwCjrPvZXt7g5IBERGYoy4kLY52Uv+GQp3gI2fRAoIv1HiZf0C6N9ntcedlWqkpSIiPQ/s8kgLCmLFpsJr8ZKqDno7pBEZAhR4iX9o3We1zjTPnZXKPESERH3OGPUcHbZ7KMwVGBDRPqTEi/pH613vMYZuuMlIiLuk50a0T7Py3pQBTZEpP8o8ZL+0bqW12ijiEPVddQ3WdwckIiIDEUZw0PYbUoBoGbvN26ORkSGEiVe0j9C4iEgEi/DSppRSN5BlZUXEZH+52U2QWym/YmGGopIP1LiJf3DMI4NNzTt5Z5V21jy0S52ltZgU1UpERHpR8NGnw5AaH0hNNa4ORoRGSqUeEn/aS2wkWnsZeehWh58dwez/vYJ5/11LX9++zu+3leB1aokTEREXGtS+igO2iIAsBzc6uZoRGSo8HJ3ADKEtN7xmhNRhO3McXzw3SE+31XOnrKjLP2kgKWfFBAV5MusjGHMzohl6shI/LzNbg5aREQGm4zhIXxOMsOpoDR/IzGJU9wdkogMAUq8pP+0Jl7BtQX86PThXJOTTG1jC2t3HOa9vBI+3H6IstpGlm8oZPmGQgJ9zJw7Zhizx8Vw7phhhPp7u7kDIiIyGHiZTRwJTYcj33Bk7zfEuDsgERkSlHhJ/wlPweYThKmpFktZPgzPJMjXizlZw5mTNZymFivr95Tz3rZS3ssrofRII//JPch/cg/iZTKYOjKS2eNimTU2hthQP3f3RkREBjDfxImw7QV8y/LcHYqIDBFKvKT/mForSe3/EmPDUsi5GYaNtRfeAHy8TEwbHc200dHcd/E4couqeS+vhPe2lbLzUC2f7izj051l3LtqKxMSw5idEcMF42IYGR2E0XoOERERRyRmZMM2GN5UgKVF60uKiOsp8ZJ+ZUvIxtj/JaZvn4Nvn4PQREi7ANIuhOSzwdsfAJPJYEJiGBMSw7jjgnQKDtfyXl4p720r4dvCKja3fj347g5SowKZNS6G2RmxTEoMw2RSEiYiIic3esx4jtr8CDQa2LFjC6A5xSLiWkq8pF/ZzrmDfTUwoiEPY88nUF0IG5+wf3n5Q+q5kDYbRl8AofHt7VKjg5g3PYh500dy6EgDH3x3iPfySvhiVzkFZUdZuraApWsLiA72ZebYGGaPi+HMkZH4eulCKiIiXXl5eVHgN5K0xm0Ubd9A6Mip7g5JRAY5JV7Sv7z9KUu+mISJv8dsaYQ9n8DOdyH/XThSBPnv2L/APixxdOvdsPjTwGRPooaF+HF19giuzh5BTUMza/MP8962Uj7afojDNY0s37Cf5Rv2E+Trxbljopk9LpZzx0QT4qfiHCIickxT1Dgo2kZT0WZQ4iUiLqbES9zHJwDGXGj/stmgdBvkr7YnYQc2Qkmu/evThyAgEkbPtn+NOh/8QgEI9vPmB1lx/CArjqYWK+sKytvnhR2qaeStLQd5a8tBvM0GU0dGMTsjhlkZMcSEqDiHiMhQF5J8GhS9TGj1dqw2rSMpIq6lxEs8g2FA7Hj71zn/DUfLYNcH9iRs1xqoK4fNy+1fJi8YMfXY3LDIUWAY+HiZOCctmnPSorn/4vFsPlDVPi9s9+GjfJJ/mE/yD/O7VVuZmBjG7NZ5YaOGBbm79yIi4gZx6ZPhcxht28vHVc2c5u6ARGRQG1CJ19GjR3nkkUd45513qK6uJjU1lRtvvJE5c+acsm15eTkPPvggH330EQ0NDaSnp/PLX/6SqVM1tMAjBUbBhB/ZvyzNULj+2N2wsnzY+6n9673fQXiKPQFLmw1JZ4GXLyaTwaQR4UwaEc6dF6az61At7+fZy9R/u7+KTYX2rwdW7yA1OpDZGbHMHhfDxAQV5xCR/tWba5v0jlfsOKyYiDKOsO9gibvDEZFBbkAlXgsWLCA3N5fbb7+d5ORk3nrrLX79619jtVq56KKLTtiuqamJuXPncuTIEe655x4iIyN5/vnn+fnPf87TTz/NlClasd6jmb3tFQ+Tz4bZ/wcVBZD/nn1u2N7PoHIPrH/c/uUT1Fqg40L7sMRg+7KYo4YFMWpYEDeday/O8f53pby3rZQvdpdRcPgo/1i7m3+s3c2wYF9mZcQwe1wsU1Mj8fEyubfvIjLo9fTaJn3A25+qgGQi6gpoKN3p7mhEZJAbMInX2rVr+fzzz/nrX//KD37wAwBycnIoLi7mgQce4Pvf/z5mc/cV7FasWEF+fj4vvvgikyZNAiA7O5tLLrmEBx98kBUrVvRbP6QPRKRCzjz7V2MNFHxsvxO28z2oLYXtb9m/AOImHUvChk8Ek4lhIX5ck53ENdlJHGloZu2Ow7yXZy/OcaimkefX7+f59fsJ9vXi3PRhzM6I4dwx0QSrOIeI9LHeXNukj8RmQkEBgUd2caS+mfAgvd8i4hoDJvF6//33CQgI4MILL+y0/bLLLuP2229n8+bNnHZa96OzP/jgA1JSUtqTLrCXkb344ot5+OGHKS0tJSYmxqXxi4v4BsPYi+xfViuUbLYnYfmrofjbY18f/xmCYmD0LHsilnou+AYT4ufNRRPiuGhCHI0tFr7cXc57eaW8n1fK4ZpG3txczJubi/E2G5w5MorZ42KYNTaGYSrOISJ9oDfXNukboSmnQcHrjLLtY9L/rSHEz4vEiABGRASQGBFAYrg/Ca3P48P88fNWYiYiPTNgEq+dO3cycuRIvLw6hzxmzJj2/Se6OO3cuZPTTz+9y/aObZ1NvCwWi1PHH9+up+0HOpf3PybL/jXtDqgtxdj1PsbO96DgY4zaUvj23/Dtv7GZvCH5LGyjZmMbfQFEpOBlwLRRkUwbFcl9PxjL5gPV9iGJeaXsKatjbf5h1uYf5p7XtjIpMZRZGTHMGjuM1GjninPo38Dg6b/VaqPZaqPFYqXZYqXZYjvusfP3LVYbDU0t7CluoNTrIIbJhM0GNpsNG2C12bDZaK+u1vZ92z5sYD3u+PZt2I7ts2/GZmvdxrHt1uP2H/8aHePpuO/YsfbXsh/X8TXsjxzXxtpaKK7t3GYTnBnVTGYvf4cOFr25tknfMMdlATDetA+AIw0tbCs+wrbiI90eHxPiS2K4PRFLaE3M2pK0mBA/zJonLOKRbB2ucWBrfW6jpaUFi7V/ri0DJvGqqqoiISGhy/bQ0ND2/Sdr23acs21PJDc31+k2fdl+oOu//o+H0eMxUucTVJFLaOmXhJauw6+u2J6MFXwM791NfdAIqodlUx0zldqI8WDywgBmx8DsmBAOHAlgQ3EDG4oa2VnRzLeF1XxbWM0D7+YTH2xmSrwf2fG+jAz3xmQ4dtHVv4HO/bfZbFhs0GK10WK1P1qs2BMbK1hsx7Yf/2hpf966zdbdvuMfu75ex0fL8du7OaelN9WnP6/qRWMbJmyYsGLG2uXR3GGf2ehuv7Xb9h2P7f68HbYZtlMc230MLZjYHDebkeEaugu9u7Z1Rx8K9kB0BmYgySgh98dmSrzi2NsUyr7qFg5U1nOgop7CyjoKK+upa7JQeqSR0iONfLWvssupvM0GcWH+jAj3JyE8gMQIfxLC/Uls/T7M3xvDwWtEfxrSP38GTv9tNhvNFhuNLRYamq00NFuob7Z/39RYT3N9LS31R7A01mJrqMHaWAtNtdgaazCa6jA112JuPoq55SheLXV4W47iY6nD11JHiKWBvW+DgQ2j/dpmw7B/jIYB7d8DGK0fEB7b3/b8WLu2Y9qOO3ZM6/7Wsx173vGctB9D67mMDufqGNOx47rf1xaXyTh2XEfewBhbIPnG86RNOsfpn4sz/24GTOIFnPSX1al+kfWmbXcyMzN7NO7eYrGQm5vb4/YDnXv7PwX4GdhsWMp3Yex8F2PX+7D/S/xr9+Nfu5/YghXYfEOwjTwPRs3GNmomBEYxEfhB61lKjzSw5rtDvJdXypcFFRTVWHht+1Fe236UmGBfZo4dxqyMGLJTIrotzjEQ/w00tVipa2qhrsn+S/5oo/2xrslCXVML9U1t31taj2k57hgL9a3t65os1DU0gsmr/S5Q250hz2HDGwt+NNm/jEZCae7wvPOXb4d9gaZmAkzN+BtN+BvHHtv2+9CMydqMlwnMWDA6JkA2e4LS/mWzHPf82PcDWZF3E9GZV/bqd+hg0pfXJ30o2DOZflH4NJQRvPIqgoFRGDT7RtDkP4ymgBiaoobRlDCMKu9hFNsi2WeJZH+9P6V1Vg4dtXDoqIXDdRaaLTb2ldexr7wOKO/yOv5eBsMCzcQEmjs/BnkxLMCMr5d7k7Kh+vNv42z/ba0fyDVZbDRZbDS2PjZZ6PD98V/24y0tTRjNdZha6jG31GG21OFtqcfL0oC3pQ4faz3e1np8rfX42erxtzXgZ2sgkHoCjQYCsX/FGPUE0oCv0dL7N8CT804X/6/hQzOF+wqoM0Jc+joDJvEKCwvr9pO/6upqgG7vaPVF2xMxm829+qO5t+0HOrf3Pybd/nX2bdBQDbs/bC/QYdSVY+StgrxVgAEJZxxbMyxmPHHhgVx7ZgrXnplCdX0zH++wJ2Efbz9EaU0jz28o5PkNhQT7ejEjfRizx8UwPa1rcY6+fg+sVht1zfZEqK6xcwLUKRlqOpYw1R33fX2ThaMdEqm271usrkiKmk55hI/ZhJfZwNtkEGRuIcjcTKCphSBza4Jj2JOcAKMZf1Mz/jThbzTh1ynRaX20NeFDIz7WJnxsjXjbGvGyNuJta8LL2oiXpQGztRGzpRGztQHD1gfJzbEPB7ty9QXOMIPJfNyjqcNzUzfbTnRshzad2p7s2O63W00+VPqeRqy7fwd4iL6+PulDwZ6x+jzEkbWPEmythiNFGC31+DSW49NYDlXftR83Ashq/d7mEwQh8RCdgG1UAtbgBKp8Yjhoi2RvSwT5dSHsr26isLKewop6Dtc2Ut9iY191C/uqu/8jOSrIh8RwfxIjAjrdKUsM9yc2xA8vs2sq7Q72n39Ti5WaxhZqG1qoaWimtrGFmoaW9scj9c3sLTpISFgkDS1WGlvsd5Mamq00tFhobGrB0tyIqaX1jlFzHV4tR/G21HVJhIKMegJoIMhoYBgNrd/bk6Njx9XjYzhxETBwOPFowpsGUwANhj9N5gCazAE0mwNo8QrE4hWAxTsQq3cQNp9A8AnG8AnE5hPIocoaYmOHYzKbMDDAMOwvaZjsa61itP2H0brNaN/edmzb9237wcDA1nps+3lb99nbmuznaT2X/dtj5zaM1n/zbds6nMt+iOnYsabWxw7HGx3Of+y4tqMMDJMJq8XCrj37Off0yS7/QHDAJF5paWm89dZbtLS0dBoLn5+fD8Do0aNP2rbtuI4caStDgF8ojLvU/mW1QNE39uIcO9+Fklw4sNH+9eH/2S+yo2fbE7GU6YT6B3DJxHgumRhPY4uFL3aX8942e3GOstpG3thczBubi/ExmzhzVCSzM2KZPjqSmkYrRZX1NFpsnRKckydEx+4aHT3+DlJTCw3Nrr8L4m02CPDxIsDHjL+PmUAfL/x9zAQc932wl5UIo5Ywo5ZQWw3BthqCrEcItBzBp7maoxUHiQr2x8vWhNnSgMnSiNnSgGFpwNTSgNHSAC0NGM310Po9Ftz0aZwB3v7g5XeSRz/w8u/86B3Q7bEWkw+79+5j5Kg0zGavEyQ2J0p4Omw3TCdPeDyUzWKhcdMmd4fhMXpzbeuOPhTsoYyL2dk0gokTJ2I2maCuHKoLofoAVLU+Vnd4PHoYo6kWynZA2Q77MCYgqvUrE+z/jwYPh9AESE+kJTieCu9hlBDNnuYI8utD2VVjorCinsKKOmoaWyirbaKstolvC6u7hOhlMhge5mefTxYe0J6ctc0viwz06fUwRk/7+VusttbkqEOy1NDCkeOe1zQ0U9Phecc2RxpaaGqx4E8j4dQSbtQSZtS0fn/s8WzjKEGtSVGQYU+YAo0GgqgngEa8j0+UzK1fvdRi8m1PjFq8A7F6BWL1CbQn9j5BmHyDMHyDMfkF4+UXjNk/GG//YLz8QzB8g8En0L6Ujq/9eB+zNz6AM/dtLBYLmzZtYsLEiR718+8vFosFr6JD/fLvf8AkXjNnzuTll1/mvff+f3t3HtXUmb8B/MnClqhARMC61IISWTK4AW7UpVqXYtHWZc6ZA451rdVxXDqtXX4Fx3Ws4xQcVIqj2LE9thU92lr39tQ5U6Kl1aG4KypgRRTCviW5vz9CbgkERSCsz+ecewLvfWPeNwl5/N77JjmByZMni+0HDx6Eu7s7AgMDH3vd6OhoXLx4Ueyn1+tx+PBhBAYG8hMN6TdSGdAryLS98D6Qn2X6mPprx00fW1+QBaTsNm1yR6BPaNXZsAlwcOmNMWp3jFG7Y93UAPycocOJS/dxIi0b6Q+L8d3VHHx3NafajT2wyRQkEkBhJ4OTvRxKBxmc7KoKIwe5+LPCQQ5F9Z/tTf2UDlXFk/lnOwmUQhGUhkI46fMhL9MBpblASW61yzzTz4VVP5fkApXFTx7orw2coFReu8h5bFFUj8vH7ZPZVx2JayIGAwqLLwDPDQA6YMCRpcZkG9mIRAIo3UzbMwOt96ksBQruAbq7VcWYuTDL+O13Q4UpMwqygAwt5ADcqzbzWTM4dAGce0Hw6YkK5TPItfPAfYkb7lSqcK3MGWlFSmTklSMzrxQVBmNVkVYKa8sYFfYysRDrWVWYmYoy05kzpUPz/ZdPEEwHFU1nlSpRUKMgKiyrfsbptyKqsMYZqZKK2kfbJDCiM0qgqiqaXCRFcEUhXCVFeE5SBBUKqxVWRXCRFUElK4SDpLJJ5maUOcJo30ksjCQOVcWRY2dIqtrMRZB4Kf5cVShVa5fL5G3nP+PUaG3msR41ahRGjBiBqKgoFBUVoXfv3vj6669x9uxZbN68WaxQ33nnHRw6dAgnT55Ejx49AADTp0/Hp59+imXLlmHlypXo2rUrPv30U6Snp2P37t0tOS1q7Zx7AEPmmLbKUtMXNl87ZirE8jOAGydN29FVgLufqQjrNwHSnkEY/KwrBj/rircn9sfNnCIcTzN9QuLFDB0AwF4uhdJeBkXVmSJl1Vkk8xklRY2fnezlFn3q6u9oJ7V+1LOytEbBVO2yQGd9X5kOaOiSO4kUcHQBFCrASSVeGh2dkZ1bCI+efSC1t35WqPal4rdCS9ZmXraInqi+2UatjJ0T0NXbtFljNALFOdYLMnOxVpoLlBcAD9IgeZAGBwDdqzax3JPIgC49IHj3QKmiB3RVZ8zuGFxxrdwVvxR2wY18AfcLylBSYcC17CJcyy6yOiSV0l78ePxeVWfNzIWZR2d7sV9ZpeExZ5MqfyuYrLVVK5zqs0JdDr1F8eQhKUJ/saAqhKvcVDx1lRaaVlGgCJ1RBFlD3+cqtauRSa6AoiuMjq64l1eCZ55TQ+rQ+TGFUydIpTK03jUF1Nq1qf/BxMbGYuvWrYiJiYFOp4OXlxf+/ve/46WXXhL7GI1GGAyGqo+KNLG3t8eePXuwefNmrF27FqWlpfD19cXHH3+M4ODglpgKtUV2TqbvAes3Hpj8IfDgctWSxBNAhhZ4cMm0/Wer6cW87zjAZyIk3mPR112Fvu6d8caYvigpq8Avqf/D4EEDG/afKqMBKNX9VhzlVyuWzGecqp+NMv+uL2vE3JXVQsqykKrdVvW7g7PVJW+CwYB7Fy7AfcAAnvEhQv2yjdoYqRTo7GHaetb+OhsAQEVxjSWMNZY1FmQBRj2QfxeS/LtQAFAAeAaAxRcMOLrA2LsXSp26Q2fvgWyJG+7ou+J6uQvSirvgfzoH5JUakFtcgdziCvHgn8VwJYDCToKKpOOoaNAHHQlwQjlUKEQvialYcpUUQiUthoddMbpJi+EmK4IriuCMquXnhnw4GksacFtV7JSAoiugcLXMJIXK1O6kqr3PobPVFQyCwYDsCxfQnblENtamCi+lUon33nsP7733Xp19Nm7ciI0bN9Zqd3Nzw6ZNm2w5POpIJBLAw8+0ha4wFTc3TpsKsRsnTQVP6hemTSIDeoX8tiRR1c/0PS+CAJQX1bF0r2YBVe2yrPba/3qTyk2FkUVIuVppq1FIyR2a7r4jIgv1yTZqh+yVQDe1abPGaACKsi3PktVc1liWD5TpIC3TQYlUKAH0QI3CTGoHo2ePqsLME9kSN9w1qHCj3AW/FDvj53wl8vV2KKowf+y2EV1Qgh4OpXjGvgSe8hK4y4vhJisW37vbRShA56r37TpW5sOhUgeZsY4PTBLwhPfoSgAnFytFU80De10ts4m5RG1Qmyq8iFothQr43QzTZtADmeeqliSeAHIuA3f/a9pOfQBpJ09oKishPVpoeg9AQzl0sQwla2ejLI72uZqu0wq/Q4aIiGqQyoAuz5i2XnWszikrqPs9ZroMoPAeYKyEVHcbSt1t64WZHDB0VqEUTnASSiAtz//tU10rq7b6ktnXkUFdreRTVZujs2muRB0ACy+ipiaTA88ON23j1wB5d6o+oOMYkH4WkqL7sLfob29ZHFktoGoWV66AjF9AS0TUoTl2ARyrVl9YY9ADhb/WLsyqL2msKIKsNBedal7XvlO1s1B1FE0188q+Ew/uET0GCy8iW3N9Fgieb9oqimHIuoCrt+5CPWAYZJ3cTMtNGFRERNTUZHLApZdpw7Da+wUBKNPBkHsXN9JS0FcTBFmnblxiTmQjLLyImpO9Eug9FKW5jqYg5Jt4iYiopUgkpiLLswuK7utNn87LXCKyGX4iJhERERERkY2x8CIiIiIiIrIxFl5EREREREQ2xsKLiIiIiIjIxlh4ERERERER2RgLLyIiIiIiIhtj4UVERERERGRjLLyIiIiIiIhsjIUXERERERGRjbHwIiIiIiIisjEWXkRERERERDbGwouIiIiIiMjGWHgRERERERHZGAsvIiIiIiIiG5O39ADaGkEQAAAGg6FB1zdfr6HXb+s6+vwB3gecP+df/bKh1ze/FpMJs6lxOH/Ov/plR8P5N18uSQSm11OpqKhAampqSw+DiKhD02g0sLe3b+lhtBrMJiKillWfXGLh9ZSMRiP0ej2kUikkEklLD4eIqEMRBAFGoxFyuRxSKVfLmzGbiIhaxtPkEgsvIiIiIiIiG+PhQiIiIiIiIhtj4UVERERERGRjLLyIiIiIiIhsjIUXERERERGRjbHwIiIiIiIisjEWXkRERERERDbGwouIiIiIiMjGWHg1saSkJKjVanHz8/PDyJEjsXz5cty+fdui748//oh3330Xr7zyCgICAqBWq5GZmdkyA28i9Z2/wWDA7t27MXfuXDz//PMIDAzEpEmT8OGHH6KgoKDlJmAjNe+XmptWq23pITbYsWPHoFarcfTo0Vr7Xn75ZajVapw9e7bWvnHjxmHatGkAgG+//RZ/+ctfMGXKFPj7+0OtVtt83E2lsfMvKirC9u3bERERgREjRmDgwIGYMmUK4uPjUV5e3hxTaJSmePy3bt2KqVOnIjg4GBqNBi+88ALef/99ZGVl2Xz8HQWzidlkTXvNJuYSc6m15pK8UdemOm3YsAFeXl4oLy/HTz/9hB07dkCr1eKbb76Bs7MzACA5ORk//PADfH19oVQqce7cuRYeddN50vzLysoQGxuLsLAwzJgxA66urrh06RK2b9+Ob7/9FgcOHICjo2NLT6PJme+Xmvr27dsCo2kawcHBkEgkSE5OxuTJk8V2nU6Ha9euQaFQQKvVIjQ0VNx3//59ZGRkYM6cOQCAkydP4uLFi/D19YWdnR3S0tKafR4N1dj537t3D4mJiQgPD8cf//hHKBQKpKSkYNu2bfjvf/+L3bt3QyKRtMTU6qUpHv+CggK89NJL8Pb2hlKpxI0bN7B9+3acOXMGX331FVxdXZt9Xu0Vs4nZZE17yybmEnOpteYSCy8b6devHzQaDQAgJCQEBoMBsbGxOHXqFF599VUAwOLFi7FkyRIAwK5du9pVuD1p/o6Ojjh9+rTFEzckJATdu3fHsmXLcPz4cYSHh7fU8G2m+v3SXqhUKvTr16/W8/f8+fOQy+V49dVXax01TU5OBmB6zAFg7dq1kEpNJ+DXrFnTpgKusfPv2bMnzpw5A4VCIe4fNmwYnJyc8Le//Q0pKSkYMmSI7SfSQE3x+H/wwQcW+833y4IFC3D69GlMnz7dhjPoWJhNzCZr2ls2MZeYS601l7jUsJmYX9AePXoktpn/oDuCmvOXyWRWjxb87ne/A2A68kBtR0hICNLT0/HgwQOxTavVIiAgAKNGjUJaWhqKiorEfefOnYNMJhNfuNv630Jj5q9QKCzCzawt/S009vG3RqVSAQDkch4ftCVmE7OpvWIuMZdaYy617WdVG2JeH9+nT5+WHUgLqe/8zUcc2uryhicxGo3Q6/UWm8FgaOlhNdrQoUMBwOLoklarRXBwMAYNGgSJRIKUlBSLfX5+fujcuXOzj9UWbDH/tvS30FTz1+v1KCsrw6VLl7B+/Xr06dMH48ePb55JdFDMJmYT0D6zibnEXAJaXy6x8LIR84tYcXExzp49i+3btyMoKAhjx45t6aE1i4bMPzs7G1u2bEFAQADGjBnTjKNtPjNnzoS/v7/F1h6WdwQFBUEqlYovcHl5ebh+/TqCgoKgVCrh5+cnvmD/+uuvyMzMFE/ntwdNPf8rV64gISEB48ePR//+/ZtlDo3RFPPPycmBv78/AgMDMW3aNBgMBuzduxdKpbLZ59OeMZuYTda0x2xiLjGXWmMucQ2HjcycOdPid29vb8TFxXWYZTNPO3+dTof58+dDEAT84x//aPOn+OuyadMmeHt7W7S15jeo1pezszP69+8vrpk+f/48ZDIZBg0aBMD0Amh+gTP3aU8B15Tzz8zMxKJFi+Dp6Ym1a9c2w+gbrynm7+rqii+//BIVFRW4desWEhISEBkZiU8++QTu7u7NOJv2jdnEbLKmPWYTc4m51BpzqX2+grQCmzZtwpdffonExETMmjULN2/exIoVK1p6WM3maeafn5+P1157DdnZ2fjXv/6FXr16NfNom4+3tzc0Go3FFhAQ0NLDahIhISG4ffs2srOzodVq4e/vLx4VCg4OxuXLl1FYWAitVgu5XI7Bgwe38IibVlPMPysrC5GRkZDJZEhMTISLi0szz6LhGjt/uVwOjUaDwYMHY8aMGUhMTERmZibi4+NbYjrtFrOJ2WRNe80m5hJzqbXlEgsvGzG/iA0dOhRr1qzBjBkzcPbsWRw7dqylh9Ys6jv//Px8zJkzB5mZmdi9e3ebOH1N1pmPFJ07dw7nzp1DUFCQuM/8Ynb+/HlotVpoNJp2t4SssfPPyspCREQEAGDv3r3w9PRsppE3jaZ+/D09PeHu7l7rO6aocZhNzKaOhLnEXAJaVy6x8Gomb775JpydnRETEwOj0djSw2l21uZvDraMjAzs2rULfn5+LTxKaoygoCDIZDIcP34c169fR3BwsLivc+fO8PX1xaFDh5CVldWulnOYNWb+9+7dQ0REBIxGIxITE9GjR4/mHn6jNfXjf+fOHdy/fx/PPvusLYfd4TGbmE3tGXOJudTacqljLOpuBZydnbFgwQJs3rwZR44cQXh4OHJzc8U3/V27dg0A8P3330OlUkGlUlk8Qdq6mvOfMGEC5s6di0uXLuGdd96BwWDAhQsXxP4qlQq9e/duuQHbyPXr161+UlTv3r3Fjyltqzp16gQ/Pz+cOnUKUqm01in7oKAgJCYmAqi9jjorKwupqakAgLt37wKAeAS6R48ebeJN3g2d/6NHjxAZGYmcnBysW7cOjx49svhob09PzzZxlLGh879y5Qo2bNiACRMmoFevXpBKpbh27Rr27NkDFxcXvPbaa806j46G2cRsAtpvNjGXmEutLZdYeDWjiIgI7Nu3D3FxcQgLC8P169exbNkyiz7R0dEATGtPP/nkk5YYps1Un//AgQPFF7R169bV6jtt2jRs3LixuYdoc6tXr7bavnbtWsyYMaOZR9P0QkJCkJqaCl9fX3Tq1MliX1BQEPbs2QM7OzsMHDjQYp9Wq61135j/NtrSc6Eh879x4wYyMjIAmI6+17RkyRIsXbrUtgNvIg2Zv5ubG9zd3bF7927k5ORAr9fD09MTo0ePxqJFi9C9e/fmnkaHw2xiNrXnbGIuMZdaUy5JBEEQGnxtIiIiIiIieiK+x4uIiIiIiMjGWHgRERERERHZGAsvIiIiIiIiG2PhRUREREREZGMsvIiIiIiIiGyMhRcREREREZGNsfAiIiIiIiKyMRZeRERERERENsbCi9qEpKQkqNVqcfPz88PIkSOxfPly3L59u6WHBwDYsWMHTp06Vatdq9VCrVZDq9W2wKhMzpw5g0WLFmH48OEICAhAcHAwZs+ejcOHD6OysrLFxlWTtfvq7bffxtixY216u9nZ2YiNjcXly5dtejtE1L4wmxqH2fR4zKb2R97SAyB6Ghs2bICXlxfKy8vx008/YceOHdBqtfjmm2/g7OzcomPbuXMnJkyYgHHjxlm0+/v7Y//+/ejbt2+zj0kQBLzzzjtISkrCqFGj8Pbbb6N79+4oLCyEVqtFdHQ08vLyMHv27GYfW30tXrwYkZGRNr2NBw8eYNu2bejRowd8fX1teltE1P4wm54Os6l+mE3tDwsvalP69esHjUYDAAgJCYHBYEBsbCxOnTqFV199tYVHZ12nTp0wYMCAFrnthIQEJCUlYenSpViyZInFvrFjx2LevHm4c+dOs46prKwMjo6O9e7fu3dvG46GiKjxmE1Ph9lEHRWXGlKbZg66R48eWbSnpqZi0aJFCA4OhkajwdSpU3H06FGLPrm5uYiKisLkyZMxcOBADBs2DJGRkfjxxx9r3U5FRQW2bduGSZMmQaPRICQkBBEREfjpp58AAGq1GiUlJTh48KC45CQiIgJA3cs5Tp8+jVmzZiEwMBADBw7EnDlz8PPPP1v0iY2NhVqtxvXr17FixQoMHjwYw4cPx+rVq1FYWPjY+6ayshIJCQnw8vLCG2+8YbVPt27dMGTIEPF3nU6HqKgohIaGIiAgAC+88AK2bt2KiooKi+uVl5djy5YtGDt2LAICAhAaGoro6GgUFBRY9Bs7diwWLlyIEydOYOrUqdBoNNi2bRsA4ObNm5g7dy4CAwMREhKC//u//0NxcXGtMVpbzqFWq7FmzRocOnQIkyZNQmBgIF5++WV8++23Fv3u3LmD1atX48UXX0RgYCBCQ0OxaNEiXL16Veyj1Woxffp0AMDq1avFxy82NlbsU5/nExGRGbOpbswmZlNHxjNe1KZlZmYCAPr06SO2JScnY968eQgMDERUVBQ6d+6Mo0ePYvny5SgrK8Mrr7wCwPRCDgBLliyBm5sbSkpKcPLkSURERGDPnj0ICQkBAOj1esybNw8pKSmIjIzE0KFDYTAYcPHiRfz6668AgP3792P27NkICQnB4sWLAZiOJtblyJEjWLVqFUaOHIktW7agoqICCQkJ4m1XDxwAWLp0KSZPnozp06fj2rVr2LJlCwDT8pa6/PLLL9DpdJgxYwYkEskT78vy8nJERkYiIyMDS5cuhVqtxo8//oj4+HhcvnwZ8fHxAExLRBYvXozk5GQsWLAAQ4YMwdWrVxEbG4sLFy5g//79sLe3F//dtLQ03Lx5E6+//jp69uwJJycnPHz4EBEREZDL5fjggw/QtWtXHDlyBH/961+fOE6z7777DqmpqfjTn/4EhUKBhIQELFmyBMeOHUOvXr0AmJZpuLi4YOXKlVCpVMjPz8fBgwcxc+ZMHDx4EF5eXvD398eGDRuwevVqvP766xg9ejQAwNPTE0D9n09ERGbMJmYTs4msEojagAMHDgg+Pj7ChQsXhMrKSqGoqEj4/vvvhREjRgh/+MMfhMrKSrHvxIkThalTp1q0CYIgLFy4UBgxYoRgMBis3oZerxcqKyuF2bNnC2+88YbYfvDgQcHHx0f4/PPPHzvGAQMGCG+99Vat9uTkZMHHx0dITk4WBEEQDAaDMHLkSCEsLMxiLEVFRcKwYcOEWbNmiW0xMTGCj4+P8PHHH1v8m1FRUYJGoxGMRmOd4/n6668FHx8f4bPPPnvsuM0+++wzwcfHRzh69KhFe3x8vODj4yP85z//EQRBEL7//nurYzLf3v79+8W2MWPGCL6+vsKtW7cs+m7evFlQq9XC5cuXLdrnzJljcV8JgiC89dZbwpgxYyz6+fj4CMOHDxcKCwvFtpycHKF///7Czp0765yjXq8XKioqhBdffFFYv3692P6///1P8PHxEQ4cOFDrOg19PhFR+8dsYjZVx2yiJ+FSQ2pTZs6cCX9/fwwaNAjz5s1Dly5dEBcXB7ncdPL2zp07uHXrFqZMmQLAdETQvD3//PPIyclBenq6+O999tlnmDZtGjQaDfz8/ODv748ffvgBN2/eFPucPXsWDg4OTbZOPz09HQ8ePEB4eDik0t/+BJVKJV588UVcvHgRpaWlFtextpyhvLy81jKWxkhOToZCocDEiRMt2s1HzX744QexX/V2s0mTJkGhUIj9qo/1ueees2jTarXo168f+vfvb9EeFhZW7/GGhIRYHLl1c3ND165dkZWVJbbp9Xrs2LEDkydPRkBAAPz8/BAQEIDbt29bPMZ1edrnExF1TMwmE2YTs4kej0sNqU3ZtGkTvL29UVxcjKNHj2L//v1YsWIFEhISAAAPHz4U+23atMnqv5GXlwcA2L17NzZu3Ijf//73WLZsGVxdXSGVSvHRRx/h1q1bYv/c3Fy4u7tbBFFjmG+/W7dutfa5u7vDaDSioKAATk5OYruLi4tFP/NyibKysjpvp3v37gB+W/LyJDqdDm5ubrWWfnTt2hVyuVxc/qLT6SCXy6FSqSz6SSQSuLm5if3MrM1Tp9OhZ8+etdrd3NzqNVag9n0CmO6X8vJy8feNGzdi3759mD9/PoKCguDs7AyJRIL33nvPol9dnub5REQdF7PJhNnEbKLHY+FFbYq3t7f4puWhQ4fCaDTiiy++wLFjxzBx4kS4uroCABYuXIjx48db/TfMR7gOHz6M4OBgREdHW+yv+SZalUqFlJQUGI3GJgk48xhzcnJq7Xvw4AGkUim6dOnS6NsJCAiAi4sLTp8+jZUrVz5xLb2LiwsuXrwIQRAs+j569Ah6vV4ct4uLC/R6PXJzcy0CThAEPHz4UHx8zKzdrouLixgc1Vlra4zDhw9j6tSpWLFihUV7Xl5eve7jp3k+EVHHxWyqP2YTs6kj41JDatPefPNNODs7IyYmBkajEV5eXujTpw+uXLkCjUZjdTMvAZBIJBZvtAWAK1eu4MKFCxZtoaGhKC8vR1JS0mPHYm9v/9ijfGbPPfccPDw88NVXX0EQBLG9pKQEJ06cwIABAyyOKDaUnZ0d5s2bh1u3buGf//yn1T6PHj1CSkoKAGDYsGEoKSmp9UWbhw4dEvdXvzx8+LBFv+PHj6OkpETc/zghISG4fv06rly5YtH+1VdfPXliT0EikcDOzs6i7bvvvkN2drZFW11HaZ/m+UREZMZsqhuzidnUkfGMF7Vpzs7OWLBgATZv3owjR44gPDwc0dHRmD9/PubOnYtp06bBw8MD+fn5uHnzJtLS0hATEwMAGD16NOLi4hATE4OgoCCkp6cjLi4OPXv2hMFgEG8jLCwMSUlJiIqKQnp6OkJCQiAIAi5evAhvb2+89NJLAAAfHx+cO3cOZ86cQbdu3aBUKuHl5VVrzFKpFG+++SZWrVqFhQsXYtasWaioqMCuXbtQUFCAlStXNtn9Yw632NhYpKamIiwsTPySyvPnz+Pzzz/H0qVLMXjwYEydOhX79u3DW2+9haysLPj4+CAlJQU7d+7EqFGjMHz4cADAiBEjMHLkSHz44YcoKirCoEGDcPXqVcTExMDPzw/h4eFPHNfs2bNx4MABLFiwAH/+85/FT46qvoymKYwePVr8hCi1Wo20tDTs2rVL/FQos969e8PR0RFHjhyBt7c3FAoF3N3d4eHhUe/nExGRGbPp8ZhNzKaOioUXtXkRERHYt28f4uLiEBYWhqFDh+KLL77Ajh07sH79ehQUFMDFxQXe3t6YNGmSeL1FixahtLQUX375JRISEtC3b19ERUXh1KlTOHfunNhPLpfj448/xs6dO/H1118jMTERSqUS/fv3R2hoqNjv3XffRXR0NFasWIHS0lIEBwfjk08+sTrmKVOmwMnJCfHx8Vi+fDlkMhkCAwOxd+9eDBo0qMnuG4lEgg0bNmDcuHH4/PPPxfvDPP5Vq1aJb0R2cHDA3r17sXXrViQkJCAvLw8eHh547bXXLL7gUiKRIC4uDrGxsUhKSsKOHTvg4uKC8PBwrFixotaRWmu6deuGf//731i3bh2ioqLg5OSEcePG4f333xc/8rgpvPvuu5DL5YiPj0dJSQn8/PwQGxuLjz76yKKfk5MT1q9fj23btmHu3LmorKzEkiVLsHTp0no/n4iIqmM21Y3ZxGzqqCRC9fPJRERERERE1OT4Hi8iIiIiIiIbY+FFRERERERkYyy8iIiIiIiIbIyFFxERERERkY2x8CIiIiIiIrIxFl5EREREREQ2xsKLiIiIiIjIxlh4ERERERER2RgLLyIiIiIiIhtj4UVERERERGRjLLyIiIiIiIhs7P8B9SzzblpLHZsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0JklEQVR4nOzdeXhU5fn/8ffMZF/IzpaQhC2sYUvYVMAFcUGlbtWvbam2aq2AVv3+6t6q7beitmoFtKJV64ZLRUQUFHFDRSBhC2vYErKwZV/JMjO/P04SEwiQSSacJPN5XVeukDPnnLmfAXLmnvM8921xOp1OREREREREPIzV7ABERERERETMoGRIREREREQ8kpIhERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPJKSIRERERER8UhKhkRERERExCMpGRIREREREY+kZEhERERERDySl9kBiGdLS0vj7bffZt26dRw9ehQvLy9iYmKYNGkSN954I1FRUSccM2jQoNOed8mSJQwZMqTFxzz++ONcddVVTfbt3bs3K1aswNfX94T9zz//fHJycti2bRteXs3/N3rhhRd49tlnAVi+fDn9+vU7bdyteT3a0969e3n77bdZu3YtBw8epKqqitDQUIYOHcqFF17IFVdc0ezr09w4oqOjOeecc7jxxhvp0aPHGR2HiEhL6brUVEe5LtW/Brt27TrpPvWvwapVq4iJiWnV8+j65XksTqfTaXYQ4nmcTid///vfefnll/Hy8uKss84iISGBmpoaNm7cyJYtWwgICODpp5/mvPPOa3Js/S/E2bNnn/T8119/fZNf0Kc7ZurUqQ0XqcYXqHvuuYdbb731hP1Pd9FxOp1MnTqVnJwcnE4nv/nNb7j33ntPGm9bXo/2Mn/+fBYsWIDD4WDUqFEkJiYSGBhIXl4eKSkpZGRkMGzYMBYvXuzSOPz9/Zk7dy4XX3zxGRmHiEhL6Lp04v4d6brU3smQrl8ezClignnz5jkTEhKc5513njM9Pf2Ex1esWOFMTEx0Dhs2zLlx48YmjyUkJDgTEhJcej5XjklISHCOHTvWOW7cOOeYMWOc+fn5J+xz3nnnORMSEpw1NTXNnuPbb791JiQkOB966CHnxIkTnRMmTHBWVVWd9Dnb8nq0h+eff96ZkJDgnDJlinPTpk3N7vPNN984f/WrXzXZ1tJxDBkyxPnDDz+0S+wiIq2h61JTHe261JLXq/41yMrKcvn8un55Lq0ZkjMuKyuLF154AW9vb1544QUGDhx4wj4XXXQR999/PzU1Nfz5z38+4zH6+fnx+9//nrKyMhYsWODy8e+//z4A1157LZdffjkFBQV88cUXze7b0V6P7OxsFixYgLe3NwsXLmTkyJHN7jd58mRefvnlhp9dGYfdbueRRx7B4XC02zhERFqqo/0ebo4nX5fam65fnk3JkJxxixcvpra2lgsuuOCUc6avvfZaoqKi2LlzJxs3bjyDERp+8YtfEBsby7vvvsv+/ftbfFxeXh5ffvkl/fv3Z8SIEQ1zvt97771m9+9or8fixYupqalh2rRpJCQknHJfHx+fJse5Mo6MjAzWrVvntrhFRFqro/0ePhlPvS61N12/PJsKKMgZl5qaCsDZZ599yv28vLwYP348y5YtIyUlhdGjRzd5fN68ec0e5+vr2+x86pMdEx0d3XBhaMzb25t77rmHO++8k3/84x/Mnz//lPHWq08mfvaznwHGPOehQ4fy448/kpWVRZ8+fZrs767Xw11SUlIAmDhxokvHtWYcGzZsYMKECa0LVETETXRd6tjXpcZO9hoDlJSUtOqcun55NiVDcsbl5eUB0LNnz9PuW7/P4cOHT3jsZBeB4ODgk150mjtm3LhxzV50AC6++GJGjx7NypUrSUlJITk5+ZTxOp1O3n//fWw2GzNmzGjYftVVV/HXv/6V999/n7vvvrvJMe56PdylPh5XK+a0ZhxHjhxxMToREffTdaljX5caa2kC6ApdvzybkiE545x1BQwtFstp963fp6qq6oTHTlVR5mRac8y9997L9ddfzxNPPMF77713yrh//PFHDhw4wKRJk5okE5dddhlPPPEEixcv5o477mhS6cddr8fxmvv07MorrzxthR1X4mntcfX7NN73xRdf5PPPP2f//v34+PgwatQo7r777tNO1RMRaStdlzr2damxllSTa6wl15a2Xr+kc9OaITnj6kuLHjp06LT71u8THh7erjGdyujRo7nooovYsmULy5cvP+W+7777LsAJn+iFhYVx/vnnc/ToUb766qsmj7XX6zF//vwTvo6/SDSne/fuLY6nsdaMo3GZ2XXr1nHDDTfwzjvv8J///AebzcZNN91EUVGRS3GIiLhK16WOfV1qi5ZcW9p6/ZLOTcmQnHFJSUkA/PDDD6fcz263s3btWgCGDRvW7nGdyv/+7//i7e3NP/7xD6qrq5vdp3FlnrvuuotBgwY1+frss8+Any5M9drr9di1a9cJX+PHjz/tcfXx/Pjjj6fdt7njXBnHmDFjGrb/+9//5uqrryYhIYFBgwbx5JNPUlBQwIYNG1yKQ0TEVboudezrUlu05NrS1uuXdG5KhuSMu+qqq7DZbKxcuZI9e/acdL8PPviAI0eOEBoayqRJk85ghCeKjY3lf/7nf8jOzubNN99sdp8PP/yQmpoahg0bxjXXXNPsV1hYGN9//32TT8I62utx1VVX4e3tzWeffXbKeIAmF2BXx9G3b1/GjRt30v3Ky8txOBx069bN9UGIiLigo/0ebglPui65U3PXFndfv6STMa3DkXi0Z5991pmQkOC84IILnLt37z7h8ZUrVzpHjBjhTEhIcL733ntNHjsTze0mTZp0wvbCwkJncnJyQ+O745vbXXTRRc6EhATn5s2bT3ruv//9786EhATns88+22R7W16P9vDCCy80NJ/bsmVLs/s013S1peNoSdO6O+64wzljxgxnbW1t6wciItJCui517OuSu5qunuza4s7rl3QuKqAgppgzZw6VlZW8+uqrzJgxg3POOYcBAwZQW1vLxo0b2bx5MwA333wz1157bbPnOFV5zalTpzJkyBC3xhwaGsrvfvc7nnrqqRMeW7t2Lfv37ychIYERI0ac9BzXXnstL730Eh988AGzZ8/GZrMB7nk93Om2226jtraWBQsWcM011zB69GiGDx9OYGAgeXl5pKSkkJGRwfDhw5sc15Jx+Pn58Y9//OOUpbufeOIJUlNTWbRoUcNrJCLSnnRd6tjXJXc41bXFXdcv6XwsTmddCQ0RE2zevJm3336b9evXc/To0YZpV1FRUTz55JOcddZZJxxzqoZo9R5//PEmi0Xrj2lJ1Z5BgwbRo0cPvv322xMeq66u5uKLL26YTrBt2za8vLy45557WLZsGQ8++CAzZ8485flnzpzJ2rVreeGFFzj//PObPNaa16M97d27l7fffpu1a9eSm5tLdXU1oaGhDB48mIsuuogZM2Y0abxab8uWLbz11lusX7+evLw8bDYb0dHRTJo0iV//+tenLF/6+OOP88knn/Cf//yH/v37t+fwREROoOtSx7wuteT1qq8mt2rVqhMq1LX02tKW65d0TkqGpEMpKyvjhhtuYO/evfzzn/9k6tSpZodkKk97Pf7617/y6aef8sYbbygREpEOwdN+D59OZ3w9dG2RU1EyJB3OwYMHufbaaykqKuL5559n8uTJZodkKk95PR555BGWLl3KggULGDBgQMP2gIAAAgMDTYxMRDydp/webqnO9Hro2iKno2RIOqSdO3eycuVK/Pz8+PWvf93sVCxP4gmvx8mmmcyePZs5c+ac4WhERJryhN/Drugsr4euLXI6SoZERERERMQjqc+QiIiIiIh4JCVDIiIiIiLikZQMiYiIiIiIR1IyJCIiIiIiHsnL7ADcxeFwUFtbi9VqxWKxmB2OiIjHcDqdOBwOvLy8sFr1GVtjujaJiJijpdemLpMM1dbWkpaWZnYYIiIeKzExscOW1zWLrk0iIuY63bWpyyRD9RlfYmIiNpvN5ePtdjtpaWmtPr6z0/g1fo1f42/r70/dFTqRrk1to/Fr/Bq/xt/e16YukwzVTz+w2Wxt+gfT1uM7O41f49f4Nf7W0jSwE+na5B4av8av8Wv8rXW6a5M+xhMREREREY+kZEhERERERDySkiEREREREfFISoZERERERMQjKRkSERERERGPpGRIREREREQ8kpIhERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPJKSIRERERER8UhKhkRERERExCMpGRIREREREY/kZXYAHYLTiWXpbHoe84VRo8yORkRE2mjNmjUsXbqUjRs3cujQIYKDgxk+fDizZs1i+PDhpzx28eLF3H///c0+9t133xEVFdUeIZ/gYHEl93+Qxlnda3VpEhFpJ0qGAKpKsG5+m95YcFQ9AgGhZkckIiJtsGjRIoqKipg5cyYDBgygoKCAV199leuuu46XX36ZiRMnnvYcjz/+OP369WuyLTQ0tJ0iPtGmA0V8nX6Ug/ne/PaSM/a0IiIeRckQgF8Izm7RWEpy4OBm6D/F7IhERKQN/vznPxMREdFk26RJk5g2bRovvvhii5KhgQMHkpiY2F4hntbQ3t0A2FtYQ1WNnQCbzbRYRES6Kq0ZqhedBIAlJ9XkQEREpK2OT4QAAgMD6d+/PwcPHjQhItfFhgcQGeRDrQPSckvMDkdEpEvSnaE6zt5jsOxYqmRIRKSLKi0tZfv27UyYMKFF+992220UFBQQHBzMuHHjuOOOO0hISGjVc9vt9lYdNyY2lM+3HyFlfwHJcWGtOkdnVv+6tfb16+w0fo2/8XdP09bxt/Q4JUN1nNHJxh9ylQyJiHRFjz76KJWVldx2222n3C8yMpLbbruNUaNGERQURHp6OgsXLuS6665j0aJFDB482OXnTktLa1XMvbwrAfh62wEmhJa26hxdQWtfv65C49f4PVl7j9/0ZGjt2rXMnDmz2cfeffddRp2pEjq9RuDEiqX0IJTkQrfeZ+Z5RUSk3T377LN8/PHHPPzww6etJjd58mQmT57c8PPYsWOZMmUKl19+Of/85z954YUXXH7+xMREbK1Y82MPzec/m9ezp8jByJEjsVgsLp+jM7Pb7aSlpbX69evsNH6NX+Nv/fjrjz8d05OhenfffTfjx49vsm3gwIFnLgCfICq7xRNQsg9yUpUMiYh0EfPnz+eFF17grrvu4pe//GWrzhETE0NSUhKbN29u1fE2m61VF/PEmDB8rFBYUcOBwmP0iwpq1fN3dq19/boKjV/j1/jbb/wdJhmKi4s7c3eBTqI8dIiRDGWnwJDLTY1FRETabv78+cybN485c+acdnrc6TidTqzWM1t3yMfLSv9wb3bk1ZCSWeixyZCISHtRNblGykPr5oGriIKISKe3YMEC5s2bx+9//3tmz57dpnNlZWWxYcMGRo4c6aboWm5QhA8AqRmFZ/y5RUS6ug5zZ+ixxx7j7rvvxs/Pj9GjR/P73/+e5OTkMxpDedgQ4w+5G8FhB6vn3pIUEenMXnnlFZ577jkmTZrEueeey6ZNm5o8Xj8T4YEHHmDJkiWsXLmS6OhoAG688UaSk5MZPHgwgYGBpKen8/LLL2OxWLjzzjvP7EAK9jM0HJYAqQeUDImIuJvpyVBwcDAzZ85k/PjxhIaGkpmZyb///W9mzpzJiy++yKRJk1w6X1vK7x0LjsPpHYClugz74R3QfUirztUZqXyjxt/4u6fR+M9M+dIz6auvvgJg9erVrF69+oTHd+3aBYDD4cBut+N0OhseS0hIYPny5bzyyitUVVURHh7OhAkTuP322+nbt++ZGQDA/m+x/edyLo29kr9xLXuOlFFUUU1ogM+Zi0FEpIszPRkaOnQoQ4cObfg5OTmZCy+8kMsvv5ynnnrK5WSoTeX3LDbKug0kOH8zWT8uIT+2qvXn6qRUvlHj92Qaf9cZ/xtvvNGi/ebOncvcuXObbHvggQfaIyTX2WsAiMr7kf5RN7L3aDmpmYVcMKSHyYGJiHQdpidDzenWrRvnnnsu77zzDseOHcPPz6/Fx7a2/F5ZZTW7dm4jYOAkyN9MrO0IfUwu6HAmqXyjxq/xa/ztXb5UXBSTjBMLvhUHmTzIwd6jkKJkSETErTpkMgQ0TFlwtadCa8rv1dgdTH32e0J9HKy4JAkAa+4G8MA3RSrfqPFr/Bq/dBB+IRA1CI7u5PzATF6lO6mZWjckIuJOHbKaXHFxMV9//TVDhgzB19e33Z/P7nBSWFHN7oIaDgUNMzYe3g7VFe3+3CIiIifjjBkLwDCHscZpc1YR1bUOM0MSEelSTE+G7rnnHv7+97+zYsUK1q5dy3vvvcd1111Hfn4+f/zjH89IDH7eNob17gbAugJ/COoJTjscbF1zPREREbeoS4bCCjYTFuBNVa2DbbnFJgclItJ1mJ4MDRo0iO+++46HHnqIm266iWeeeYYBAwawaNEizjrrrDMWR1JcKAApmUUQU1fSOyfljD2/iIjI8ZzRddej3I2Miw0G0FQ5ERE3Mn3N0K233sqtt95qdhgkx4XxyveZpB4ogqQxsHOZmq+KiIi5IhOo9Q7Cq6aMqRF5fIaV1MxCbnat0KqIiJyE6XeGOoqkuDAAdh0upSxqlLExW8mQiIiYyGKlPNToeTfOaw9gVJRr3BdJRERaT8lQncggX3oG2XA6YWNtPGCB4gNQdsTs0ERExIOVhxm9+GLKtuJts3C0tIqsgkqToxIR6RqUDDUyOMIbgHW5tUY5U9BUORERMVVZXTJky1nP8OgQAFIPFJgZkohIl6FkqJHBkT4ArM8ogGij3xDZKqIgIiLmKQ8bghMLFGUypbcxPS4lQ0UURETcQclQI0PqkqFNWUXYe48xNurOkIiImMjhHdQwW2FyQAaginIiIu6iZKiR3sE2Qv29OVbjYI/3YGNjzgZwqMGdiIiYp77E9uCanYBR7KfkWI2ZIYmIdAlKhhqxWiwN/Ya+K4kCLz+oKoaCveYGJiIinq2u+WrAkQ3ERQQYxX4OFJkbk4hIF6Bk6Dj1JbZTssqg1yhjo9YNiYiIiZx1yRA5Gxhb33w1Q0UURETaSsnQcZJijWRofUYhzmitGxIRkQ4gMgH8QqC2kgvCjgJGvyEREWkbJUPHSYzuho/NSl5ZFXkhicbGHN0ZEhERE1msULduaIx1N2AU+6m1a02riEhbKBk6jq+3jcQYo4/D+tp+xsZDW6HmmIlRiYiIx+szDoDuxWkE+3lRUW1n56FSk4MSEenclAw1IznemCq3+og/BESCowYOpZkclYiIeLS6dUOW7HWMqZvSnaJ1QyIibaJkqBnJceEApGQW/dR8VVPlRETETDHJgAUKM5jUq675qtYNiYi0iZKhZtRXlNt9pIzKHqONjSqiICIiZvILaWi+erb/PgA2KBkSEWkTJUPNCA/0oX9UIAA7bQnGRpXXFhERs9VNlRtQtR2b1UJu8TFyiypNDkpEpPNSMnQS9VPlvi7rY2wo3A8VmpstIiImqiui4J2bytBe3QBNlRMRaQslQydRX0Thh5xaiBhgbNRUORERMVOMkQw1br6qqXIiIq2nZOgkkuONO0Obs4ux91LzVRER6QAaNV89N/QIACmZmrUgItJaSoZOIj4igIhAH6prHeQEDjU2at2QiIiYyfpT89WRpAOw42Ap5VW1ZkYlItJpKRk6CYvF0jBVLqW++WpOKjidJkYlIiIer27dUEjeJqJD/bE7nGzKKjI3JhGRTkrJ0CnUF1H4PD8KbD5QWWAUUhARETFLjHFniOx1Da0gUrVuSESkVZQMnUL9naG1B8pw9hxhbMzWuiERETFR3TQ5CjM4p5cDUEU5EZHWUjJ0CsN6h+DrZaWwoobi8LpkSEUURETETP6hEDUYgPHeRvPVjZmF2B2axi0i4iolQ6fg42VlZJ9QAHbaBhobc1REQURETFbXfLVPeRqBPjZKq2rZfaTU5KBERDofJUOnMbZuqtw3ZbHGhoNboLbaxIhERMTj1RVRsOakMjq2rthPhqbKiYi4SsnQadQXUVhxMBD8QsFeBYe3mhuUiIh4tvrmq7kbSKprvqoiCiIirlMydBpjYsOwWGB/fgXVPUcbG7VuSEREzBSZAL4hUFPBlG6HATVfFRFpDSVDpxES4E1Cd+NTtwP+dc1XlQyJiIiZrFaISQJgqH0XVgtkFVRypOSYyYGJiHQuSoZaIKlu3VBqbV9jQ7aKKIiIiMnqpsr5HUplUM9ugKbKiYi4SslQC9QXUfi0MNrYkL8bKovMC0hERKSPUVHOaL4aCqjfkIiIq5QMtUB9EYUfDoIjNN7YmLvBvIBEREQaNV89q6fRY0h3hkREXKNkqAViwvzp0c2XGruTgtDhxkatGxIRETM1ar461msvANtyizlWYzcxKBGRzkXJUAtYLJaGu0M7bIOMjdlKhkRExGR1zVcjCzfTPdj40G5zVpG5MYmIdCJKhlooKc5YN/RtWR9jQ04qOJ0mRiQiIh6vrvmqJXs9yXXrW7VuSESk5ZQMtdDYeOPO0JLDkTitXlB+BIqzTI5KREQ8Wt2dIXI3kNzHqCi3QcmQiEiLeZkdQGcxpFcwAT42jh6Dqpgh+OWlGSW2Q2PNDk1ERI6zZs0ali5dysaNGzl06BDBwcEMHz6cWbNmMXz48NMen5+fz1NPPcVXX33FsWPHGDx4MH/4wx+YOHHiGYjeBZGDjOarVcWcE3wIgNQDhTgcTqxWi8nBiYh0fLoz1EJeNiujY0MBOBAwxNioIgoiIh3SokWLyMnJYebMmSxcuJAHH3yQgoICrrvuOtasWXPKY6urq7nxxhtZs2YNDz74IM8//zwRERHcfPPNrFu37gyNoIUaNV/tX7UdP28rRRU17MsrMzkwEZHOQXeGXJAUF873e/JJqelPAigZEhHpoP785z8TERHRZNukSZOYNm0aL7744inv8Lz//vukp6fzzjvvMHr0aADGjx/PjBkzeOqpp3j//ffbNXaXxYyDvV9iy0lhZMwI1u4vICWjkAHdg82OTESkw9OdIRckx9U3X+1lbMjdBPZa8wISEZFmHZ8IAQQGBtK/f38OHjx4ymO/+OIL+vbt25AIAXh5eXHFFVewZcsWDh8+7PZ426Sh+epPRRTUb0hEpGWUDLlgdGwoVgt8XxSOwycYaivhyHazwxIRkRYoLS1l+/btDBw48JT77d69m0GDBp2wvX7b7t272yW+VmtovrqfCT0cgJIhEZGW0jQ5FwT7eTO4Zze2HyyhIGQ4kUfXGFPleo0wOzQRETmNRx99lMrKSm677bZT7ldUVERISMgJ2+u3FRUVufzcdnvrGqHWH3fK432CsUYOwpK3i5HOdMCbfXnlHCmpJCLQp1XP21G0aPxdmMav8Tf+7mnaOv6WHqdkyEVj48PYfrCEHbaBTGIN5KRA8k1mhyUiIqfw7LPP8vHHH/Pwww+3qJqcxXLySmyneuxk0tLSXD7GlePj/PsRyS7Kt60gptuVZJfUsvibDYzt7dem5+0o2vr6dXYav8bvydp7/EqGXJQUH85/1mTyTXkskwByNpgdkoiInML8+fN54YUXuOuuu/jlL3952v1DQ0ObvftTXFwM0Oxdo9NJTEzEZrO5fJzdbictLe20x1ucF0HWcnrWHODshJ68m5JNgTWMUaNOnO7XmbR0/F2Vxq/xa/ytH3/98aejZMhFY+sWpy7L781DPsCRHVBVCr6q2iMi0tHMnz+fefPmMWfOnNNOj6uXkJBAenr6Cdvrt51uzVFzbDZbm97MnPb42AkAWHI3MvbCbrybAhsOFHWZN1Btff06O41f49f422/8KqDgol4h/kSH+nPIEUpVQC/ACbkbzQ5LRESOs2DBAubNm8fvf/97Zs+e3eLjpk6dyr59+9i8eXPDttraWpYuXcrIkSPp0aNHe4TbNvXNV2sqmBhkNF/dklNMVa1nrjUQEWkpJUOtkFRXYvuA/1Bjg/oNiYh0KK+88grPPfcckyZN4txzz2XTpk1Nvuo98MADDB06lJycnIZt11xzDQMHDuTOO+/k448/5ocffuAPf/gD+/fv53//939NGE0LNGq+2rtsKxGBPlTXOtiaU2JyYCIiHZumybXC2Pgwlm7OJaW2HwNZBdkpZockIiKNfPXVVwCsXr2a1atXn/D4rl27AHA4HNjtdpxOZ8NjPj4+vPbaazz11FP89a9/pbKykiFDhvDSSy8xbty4MzOA1qhrvmrJXs+YuNGs3H6Y1MyChg/wRETkRK1Khnbv3s2GDRs4fPgwx44dIywsjAEDBjB27FiCgoLcHWOHkxQXDsCKomj+x4KKKIiIdDBvvPFGi/abO3cuc+fOPWF7ZGQkTzzxhLvDal/1zVez1pE86l5Wbj9MSkYht042NywRkY6sxclQcXEx7777Lu+++y65ublNPkVrOJmXF5MnT+ZXv/oVEydObFVA77//Pg899BABAQFs3Ngx1+IM6hlMsK8X66picfpbsZTmQkkudOttdmgiIuKpmjRfNdYKbThQiNPpbFU5cBERT9CiZOj1119nwYIFAFx66aWMGzeOYcOGER4ejq+vL8XFxWRlZbFp0yZWrVrFb37zG8466yz+9Kc/ERcX1+JgDh8+zBNPPEH37t0pKytr3YjOAJvVwui4ML5Nr6UwcADhZenGuiElQyIiYhb/UKOQQt4uhjrS8bHZyCurJjO/gvjIQLOjExHpkFpUQOGNN97g/vvv57vvvuPPf/4zl1xyCbGxsQQFBeHt7U1kZCSjR4/mpptu4s033+Szzz6je/fuLF++3KVg/vznP5OcnMzZZ5/dqsGcScl1c7B32BKMDVo3JCIiZqubKuedm0JijNEPKSWz0MyIREQ6tBYlQ8uXL+dnP/sZ3t7eLTppbGwsjz/+OLfcckuLA/noo49Yt24djzzySIuPMVNyXb+hb8v7GBtUUU5ERMwWU1fgIWt9w4d2qZkFJgYkItKxtSgZ2r17d6tO3tIGSfn5+fztb3/jnnvuoWfPnq16rjNtVJ9QbFYLX5fXTQPM3QgO9XMQERET9alLhnI3kNzHaAaeqjtDIiIn1aI1Q1deeSVDhw7lmmuu4fLLLyc4ONitQTz66KP07duXG264oc3nsttbl5DUH9fS431tFob16sbWnBhqbf54VZdhP7wdug9t1fObzdXxdzUav8bf+Lunaev4PfV165Dqm69WFTM2wGi+mn64jOKKGkICWja7Q0TEk7QoGfrd737HRx99xGOPPcYTTzzBhRdeyDXXXMOECRPaHMBnn33Gl19+yZIlS9xS7SYtLe2MHR8bUMMWrOyz9SPBvo2sHz8iP7a6Tc9vtra+fp2dxq/xezJPH3+XUN98de+XhOZvpG/kQPbnlbPhQCHnDe5udnQiIh1Oi5Khu+66iz/84Q+sXr2axYsX8/nnn/PJJ5/Qu3dvrr76aq688kp69erl8pOXl5fz2GOP8atf/Yru3btTUmJ0yq6pqQGgpKQELy8vAgICWnzOxMTEFk/Pa8xut5OWlubS8Rd7HWLZ7k1stgwmgW3E2o7QZ9Qol5+7I2jN+LsSjV/j1/hbP/7646WDqGu+SvZ6kuLGsT+vnNRMJUMiIs1pcZ8hi8XC5MmTmTx5MiUlJSxdupTFixfz3HPPsWDBAiZMmMC1117LBRdc0OJCC4WFheTl5fHKK6/wyiuvnPD42LFjueCCC3j++edbPCCbzdamNzOuHD+ubwQAX5X14VpvsOZugE7+Rqqtr19np/Fr/Bq/546/y4hp1Hx14kP8NzWbFBVREBFpVouToca6devGL3/5S375y1+yc+dOPvjgA5YtW8Zdd91FaGgoa9asadF5oqKieP3110/YvnDhQtavX89LL71EWFhYa0I8I7p38yM2PIANBf3BGzi8HaorwKfld7JERETcKibJ+F64n3FRxnquTVlF1NgdeNtaVDdJRMRjtCoZamzw4MFcccUVVFRUsHjxYoqKilp8rK+vL+PHjz9h+4cffojNZmv2sY4mOT6MxQXllHlHElSTBwc3Q9xEs8MSERFP5R/W0Hw1/th2Qvy9Ka6sYXtuCSP7hJodnYhIh9Lqj4gKCgp47bXXuPzyy/n5z3/ORx99xHnnnceCBQvcGV+HlxwXDlh+ar6ao+arIiJisrrmq9acFJIa+g2pxLaIyPFcSoYcDgdff/01c+bMYcqUKcydO5eamhruvvtuvv76a55//nnOP//8Ngc1d+5cNm7c2ObznAn1zVdXV8QaG7KVDImIiMnqm69mr1cyJCJyCi2aJrd//34++OADPvroI/Ly8vDz8+Oyyy7j6quvJjk5ub1j7NAGRAUR4u/N+qr+4APkbDA7JBER8XT1zVdzUkk6x+gNmJJZgNPpdEsbCxGRrqJFydAll1wCwIgRI5gzZw7Tp08nMDCwXQPrLKxWC0lxYazb2RcnFizFB6DsCASphKmIiJgkchD4doOqEkb55OJltXC4pIrswkr6hKvIj4hIvRZNk/v1r3/Nxx9/zHvvvcfPf/5zJULHSY4Po4wADvrUTZXLSTU3IBER8WxWK0QbVeX8DqUwLDoEgA0HNFVORKSxFiVD999/PwMHDjxh+759+0hNTaWiosLtgXUmRhEFSKnpb2zQuiERETFbn0brhmKNdUMpGUqGREQaa1U1uSVLljB58mSmT5/OL3/5S/bv3w/AnXfeyXvvvefWADuDETEheNssrK2ONzbozpCIiJitvohC1rqGYj8pKqIgItKEy8nQ8uXLue+++xg6dCgPP/wwTqez4bFhw4axfPlytwbYGfh520iMDmGTY4CxIWcDOBzmBiUiIp6tUfPVsXXNV3cdKqH0WI2JQYmIdCwuJ0MLFy7kqquu4l//+hfXXXddk8f69evHnj173BZcZ5IcH84uZww1Fh+oKoaCvWaHJCIinqy++SoQVZxGn3B/HE7YlFVkblwiIh2Iy8nQ3r17mT59erOPhYaGUlRU1NaYOqXkuDBq8WKXVeuGRESkg6hrvkrWOq0bEhFphsvJkL+/P6Wlpc0+dvjwYUJCQtocVGdU39Tux6p4Y0OOkiERETFZ4+ar8UaxHzVfFRH5icvJ0OjRo3nrrbearBWqt3jxYsaNG+eWwDqbiCBf+kUGNlo3pCIKIiJispi6O0M5qST3MZqvbjxQiN1x4jVcRMQTuZwMzZo1i02bNnHNNdfwxhtvYLFY+Pzzz7nttttISUnhtttua484O4Xk+DA2OeuSoUNboeaYuQGJiIhnixpsNF+tqSCBAwT7elFebWfnoRKzIxMR6RBcToYSExN56aWXqKioYO7cuTidTl588UX279/PwoULSUhIaI84O4XkuHCynZEUW0PAUQOH0swOSUREPFmj5qu2nPWMig0FNFVORKSeV2sOmjBhAsuXL+fAgQPk5eURFhZG37593R1bp2P0cbCQWtuf860bjHVD9YtXRUREzNBnHOz7CrJTSI47l9W780jNLGTmxHizIxMRMV2rmq7Wi42NZcyYMUqE6vSNDCQi0IeN9n7GBq0bEhERszUUUWjUfFUV5UREgBYmQ59++qnLJz58+DCpqZ6VDFgsFsbENVo3pPLaIiJitvrmqwX7GBlRi9UCOUWVHCrWulYRkRYlQ4899hgzZszg/fffp6ys7JT7bt26lUcffZSLLrqInTt3uiXIzmRsfBibHXV3hgr3Q0WBuQGJiIhna9R8NejIRob06gZASqauTyIiLVoztHLlSubNm8f//d//8dhjjzF06FCGDh1KREQEPj4+FBcXk5WVxaZNmzh69CgDBw5k3rx5TJo0qb3j73CS4sIpIYgMehNPrjFVbuCFZoclIiKeLGYs5O2CrHUkx13NttwSUjMLuWxEb7MjExExVYuSoeDgYB544AFmzZrF4sWL+eabb1iyZAmVlZUN+/Tp04dJkyZx+eWXM2HChHYLuKMbHt0NXy8rqfZ+xNtyjalySoZERMRMfcbCpjchez1jRt3Mf9ZkqqKciAguVpMLCQnhpptu4qabbgKgtLSUY8eOERoaire3d7sE2Nn4etkYGRPK5qz+XG37TkUURETEfPVFFHJSSb7CmCa3LbeEiupaAnxaVVhWRKRLaFM1ueDgYKKiopQIHScpPoxNjroiCjmp4FSnbxERMVGj5qvRVfvoFeKH3eFkc1ax2ZGJiJiqTcmQNG9sfBg7nbFU4wWVBUYhBREREbM0ar5K9nqS4owS26kqoiAiHk7JUDsYExtGNd5sc8QbG7I1VU5EREzWp26qXNZPyVCK1g2JiIdTMtQOQgN8SOgRxCZHf2OD1g2JiIjZGjdfjQsHYENmIQ6HpnKLiOdSMtROkuLCGyVDar4qIiIma9R8dUi3Kvy9bZQcq2XP0VP3DxQR6cqUDLWT5LgwNjvrkqGDW6C22tyARETEs/mHQWQCAF4HUxnVJxSAlAxNlRMRz+VyMvSXv/yFffv2tUcsXcrY+HAynD0pdAaBvQoObzU7JBER8XT1U+Wy1pEcX79uSEUURMRzuZwMLVmyhOnTp3PTTTfxxRdf4FTZ6Gb1CfcnKtiPzVo3JCIiHUWfscb3JhXldGdIRDyXy8nQ6tWreeihhzh69CizZ8/m/PPPZ+HChRQU6JOlxiwWC2PjG02VUzIkIiJma2i+uoHRMcFYLJCZX8HR0ipz4xIRMYnLyVBAQAC/+MUvWLZsGa+++irDhg3jn//8J+eeey733XcfaWlp7RFnp5QUF87G+jtD2SqiICIiJmtovlpOSMluEroHA7o7JCKeq00FFCZOnMj8+fNZtWoVo0eP5qOPPuLnP/851157LV9++aW7Yuy0kuPC2FKfDOXvhsoiU+MREfEUZWVlPPnkk/zmN79hwoQJDBo0iHnz5rXo2MWLFzNo0KBmv44ePdrOkbezJs1X15EUr+arIuLZ2pQMHTt2jPfff5/bbruNtWvX0r9/f2bNmoXdbmfWrFksWLDAXXF2SkN7d6PSO4xMR3djQ+4GcwMSEfEQRUVFvPfee1RXVzN16tRWnePxxx/n3XffbfIVGhrq3kDN0Kj5arLWDYmIh/NqzUEHDhzgrbfe4sMPP6SsrIzJkyfzxz/+kbPOOguA2bNn8/TTT/Pmm28ya9YstwbcmXjbrIzqE8rmrP7EccRYN9T/fLPDEhHp8qKjo1m/fj0Wi4WCggLef/99l88xcOBAEhMT2yE6k8XUF1FYR9IUIxnamlPCsRo7ft42EwMTETnzXE6Gbr75Zn744Qf8/f256qqr+NWvfkVsbOwJ+5133nksXLjQLUF2ZmPjw9iUOYArbGsgW0UURETOBIvFYnYIHVdMsvG9YB+xvhVEBvmSV1ZFWk4xY+PDzY1NROQMc3maXFZWFvfffz/ffvstDz74YLOJEBifqL3++uttDrCzS4oPZ1NDee0UUClyEZFO4bbbbmPIkCGMGzeO2bNnk56ebnZI7tGo+aolJ6Vhqpyar4qIJ3L5ztBnn33Wov2CgoIYN26cywF1NaNjQ9lOPDVOG97lR6E4C0KbTyBFRMR8kZGR3HbbbYwaNYqgoCDS09NZuHAh1113HYsWLWLw4MEun9Nut7cqlvrjWnv8yViik7HmpeM4sI4xsb9gxbZDpGYUYLfHu/V52qq9xt9ZaPwaf+Pvnqat42/pca1aMyQt183Pm749I9mRH8sIy36jxLaSIRGRDmvy5MlMnjy54eexY8cyZcoULr/8cv75z3/ywgsvuHzOtradcHfbikhnT+KAsp1fEjxoGgDr9h1l48aNHXKKoae37dD4NX5P1t7jdzkZOv/880/6i9JqtRIcHExiYiIzZ86kf//+bQ6wK0iOC2Pz0f6MsO43iigMv8rskERExAUxMTEkJSWxefPmVh2fmJiIzeZ6cQK73U5aWlqrjz+p3j6w5WmCS3bzs0mjeOTbrympdhASM5B+UUHue542arfxdxIav8av8bd+/PXHn47LydC4ceNYt24dR44cYcyYMURGRnL0qPFpUvfu3enVqxcrV67ko48+4o033uialXhclBwfxrfrBvArvjCSIRER6XScTidWa+s6Uthstja9mWnr8SfoMQx8u2GpKsG/aDcjY0JZl1HAxuwSBvYMcd/zuInbx9/JaPwav8bffuN3+bf6Oeecg4+PDytXruT111/n6aef5o033uDzzz/Hx8eHqVOn8tlnnxEfH9/iBnddXXJ8OJucxl0yZ+4msNeaG5CIiLgkKyuLDRs2MHLkSLNDcQ+rFaLHGH/OXseY+n5DKqIgIh7G5WToX//6F3PmzKFXr15Ntvfu3ZtZs2axcOFCgoODufHGG9m0aZO74uzUokP9qQzuS4nTH0ttJRzZbnZIIiJd3jfffMOKFSv46quvANizZw8rVqxgxYoVVFZWAvDAAw8wdOhQcnJyGo678cYbmT9/Pl988QVr1qzhP//5DzfccAMWi4U777zTlLG0i5gTm6+mZBaYGJCIyJnn8jS5zMxMgoKan0/crVu3hgtKdHR0w8VGIKlvJFu29+Mc2zZjqlyvEWaHJCLSpT366KNNkpz6RAhg1apVxMTE4HA4sNvtOBu1PUhISGD58uW88sorVFVVER4ezoQJE7j99tvp27fvGR9Hu+lTlwxlryPpIiMZ2nu0nMLyasICfUwMTETkzHE5GerduzcffvghU6ZMOeGxDz74oOGOUVFRESEhHW/esVmS48LYtG0A57DN6DeUfJPZIYmIdGlffvnlafeZO3cuc+fObbLtgQceaK+QOpZGzVfDKKV/VCB7j5az4UAhFwzpYW5sIiJniMvJ0G9/+1v+9Kc/cf3113PxxRcTGRlJXl4eK1asYPPmzTz22GMArF27luHDh7s94M4qOT6MZxwDAHBmp9LxCpeKiIhHqW++mpcO2etJiuvF3qPlpGQqGRIRz+FyMvTzn/8cp9PJvHnzmnyaFhkZyaOPPsq1114LGJ27fXx0m73e4J7d2O09yPjh6E6oKgXfYHODEhERzxYzri4ZWkdy3E28l5KtIgoi4lFcSobsdjsHDhzgkksu4ec//zn79u2jqKiI0NBQ+vXr16T/UGRkpNuD7cxsVguxsfFkH4gkxpIHuRuh7+TTHygiItJe+oyFTW9C1jqSpt8NwObsIqprHfh4ta6MuIhIZ+LSbzqn08n06dMbOlT379+fpKQk+vfv3yE7Vnc0yXHhbHb0M35QvyERETFbzFjje84G+oX7EhbgTVWtg225xebGJSJyhriUDHl5eREZGdmk6o60XHJ8GJvq1g2RnWJuMCIiIlGDwScYasqxHNlBUn2/oUxNlRMRz+DyPfDp06ezZMmSdgil6xvVJ5Q0jGTInq07QyIiYjKrDWKSjD9nryMpLhyAFK0bEhEP4XIBhcGDB/Ppp58yc+ZMpk2bRlRU1AlT5KZNm9bi8+3YsYNnnnmG9PR0CgoK8PPzo2/fvtxwww3MmDHD1fA6tEBfL2p7jMSeb8FWdhBKcqFbb7PDEhERTxYzDvZ9DdkpJI++CoDUA4U4nU5NgReRLs/lZOjee+8F4PDhw6xbt+6Exy0WCzt27Gjx+UpKSujZsyfTp0+nR48eVFZW8vHHH/PHP/6RnJwcbr/9dldD7NAS+/YiPa8PQywHjHVDSoZERMRM9c1Xs9aReFkI3jYLR0uryCqoJDYiwNzYRETamcvJ0Ouvv+7WAMaPH8/48eObbDvvvPPIzs7mvffe63LJUHJcOBvX9meI9YCxbmjI5WaHJCIinqyh+epe/KqLGB4dwsYDRaRkFigZEpEuz+VkaNy4ce0RxwnCwsLIz88/I891JiXHh/EP5wBu4Ctqs1Jc/wsQERFxp+OarybHxdYlQ4VcNSbG7OhERNpVq5sIlJaWsnr1apYuXUpxcdtLcDocDmpraykoKOCtt97iu+++45ZbbmnzeTuaHt38OBw8zPghdyM47OYGJCIiUl9iO3tdQ0W5DaooJyIeoFU3JhYsWMBLL73EsWPHsFgs/Pe//yUkJIRf//rXnH322dx6660un/ORRx7h3XffBcDb25sHH3yQ66+/3uXz2O2tSy7qj2vt8a4Ij0ukfKcvgbXl2A9vh+5D2/05T+dMjr8j0vg1/sbfPU1bx++pr1uXEjMWNr1lNF8dZ6wN3nW4lOLKGkL8vU0OTkSk/bicDL311lssWLCAG264gUmTJvG73/2u4bHzzjuPzz//vFXJ0G233ca1115LQUEBX375JX/5y1+orKzkt7/9rUvnSUtLc/m53Xl8S3S3VZLm7McEyw6yfvyI/Njqdn/OljoT4+/INH6N35N5+vg9Wn0RhZwNRAXYiIsIIDO/go0HCjl3UHdzYxMRaUetSoZuvPFG/vjHP57waWBcXByZmZmtCqR379707m1UVpsyZQoATz/9NFdeeSXh4eEtPk9iYiI2m83l57fb7aSlpbX6eFf49yrl2y0DmGDdQR/LYfqMGtWuz9cSZ3L8HZHGr/Fr/K0ff/3x0onVN1+tLoWjRvPVzPwKNmQqGRKRrs3lZCgrK4tJkyY1+1hgYCAlJSVtDgpgxIgRvPPOO2RlZbmUDNlstja9mWnr8S0xuGcIL3sNBKA6KxX/DvTm60yMvyPT+DV+jd9zx+/R6puv7vvamCoXN5XFG3JI0bohEeniXC6gEBwcTF5eXrOP5eTkEBER0eagANauXYvVaqVPnz5uOV9HYrVaINooZepbsBOqK0yOSEREPF5M3VS57PUkxxkfQm7KKqLW7jAxKBGR9uXynaGJEyfy8ssvc8EFF+Dr6wsYjVZra2tZtGgR55xzjkvne/jhhwkKCiIxMZHIyEgKCwtZsWIFn376Kb/97W9duivUmfQfMIhD2WH0pBAOboK4s8wOSUREPFmj5qsDZwQR7OdF6bFadhwsJTEmxNzYRETaicvJ0B133ME111zD9OnTmTp1KhaLhTfffJMdO3aQm5vLs88+69L5Ro0axeLFi/nwww8pLS0lICCAwYMH8+STTzJjxgxXw+s0kuPC2OzoT09bCs7sFCxKhkRExEzRScb3gr1YKwsYExvGN+lHSc0sUDIkIl2Wy9Pk4uLiWLRoEf369WPRokU4nU4++ugjwsLCePvttxuKILTU1VdfzVtvvcWPP/7Itm3bWL9+PW+88UaXToQARvYJZQsDAKjcv87kaERExOMFhEOEsZ7VmCpn9BvSuiER6cpa1WdowIAB/Pvf/6a6uprCwkJCQkLw8/Nzd2xdmp+3jZLwEVD8Ds6cVLPDERERMabK5e82mq/GG2tbU5UMiUgX5vKdocZ8fHzo0aOHEqFW6tZ/HA6nhcDKXCg7YnY4IiLi6WLGGt+z1zOqTyg2q4WDxcfILao0Ny4RkXbSqjtD2dnZLF++nNzcXI4dO9bkMYvFwt/+9je3BNfVJfbrw56U3iRYciAnFQZdYnZIIiLiyRo1Xw3wsjC0VzfScopJySzkilB/c2MTEWkHLidDX3/9NbNnz8bhcBAeHo6Pj0+Txy0Wi9uC6+qS48P40jGABGsOxzLW4adkSEREzNS4+eqR7STFhZGWU0xqRgFXjHRtTbCISGfgcjL0zDPPMGbMGJ555hm39RTyVJFBvmQHDoGqb6jYtxZNNhQREVMd13w1Of4SXvshQ0UURKTLcnnNUGZmJrfccosSIXepa74akLcZHGpsJyIiJmvUfDWprqLcjoMllFfVmhiUiEj7cDkZ6t27NxUVFe0Ri0eKGTSGSqcPfvYyyN9jdjgiIuLp6osoZK2jV4g/0aH+OJywKavI1LBERNqDy8nQ7373O1555RUqK1VZxh3G9O3BVmc8ALVZKeYGIyIiEmPMWKBgL5TnN9wdSsnQVDkR6XpcXjOUlpZGfn4+F154IePHjycsLOyEfR566CG3BOcJ+kcF8qY1gbGkU5j+A1FjbjA7JBER8WT1zVfzd0NOCsnxg1i6OZeUzAKzIxMRcTuXk6E333yz4c+ffPLJCY9bLBYlQy6wWCxURI2Co8uM8toiIiJmq2++mrWOMYMnALDpQBF2hxObVVVjRaTrcDkZ2rlzZ3vE4dGC+k+AoxBWmg41x8BbdeVERMREMWNh01uQvY7B5wYT6GOjtKqW9MOlDOnVzezoRETcxuU1Q+J+gwcPJc/ZDS9qcR7aYnY4IiLi6Ro1X/WyOBkdW7duSCW2RaSLaVEytH79esrLy0+7X0FBAf/973/bHJSnGR4TyhbnAAAK0teYHI2IiHi8huarZQ3NVwE2KBkSkS6mRcnQzJkz2bt3b8PPDoeD4cOHs3379ib7ZWVl8fDDD7s3Qg/g62XjcLfhAJTtXWtyNCIi4vGsNogeY/w5a91PFeVUREFEupgWJUNOp/OEn2tra0/YLq1niU4CIDBvk7mBiIiIwE9T5bLXMzo2FKsFsgoqOVJyzNy4RETcSGuGOoieQ84CILI6B8rzTY5GREQ8XsxPyVCwnzeDehqFE7RuSES6EiVDHcTIgfHsdfQCoHSfpsqJiIjJ6puv5u+BigKS4kIBSFUyJCJdiJKhDiIs0Id9voMBOLLje5OjERERj1fffBUgez3JceGA7gyJSNfS4j5D+/btw2azAWC32xu2Hb+PtF5l1EjI/UrNV0VEpGNo1Hw1afQkALblFFNZbcffx2ZycCIibdfiZOj+++8/Ydsf//jHJj87nU4sFnWmbq3A/hMgF6JKtoHTCXotRUTETI2ar8ac70+Pbr4cLqliS3YR4/tFmB2diEibtSgZevzxx9s7DgH6Dx9P1bdedKOEqqN78e0+wOyQRETEk8WMNb7nbMDidJAUF8anaYdIySxUMiQiXUKLkqErr7yyveMQIK57GFstfUlkNzlbV9PvfCVDIiJiou5D6pqvltY1Xw3n07RDKqIgIl2GCih0IBaLhaMhiYCar4qISAfQuPlq9nqS65qvpmYW4nCo16CIdH5KhjoYS4yar4qItFVZWRlPPvkkv/nNb5gwYQKDBg1i3rx5LT4+Pz+f++67j/HjxzNy5Eiuu+461qxZ044Rd2D1zVez1jO0dzf8vK0UV9awL6/M3LhERNxAyVAH02PoOQDEVO3BUVNlcjQiIp1TUVER7733HtXV1UydOtWlY6urq7nxxhtZs2YNDz74IM8//zwRERHcfPPNrFu3rp0i7sAamq+uw9tmZWRMKAApGZoqJyKdn5KhDmbgoESKnEH4UkPOrvVmhyMi0ilFR0ezfv163nzzTe6++26Xjn3//fdJT0/n2Wef5YorruDss8/mueeeIz4+nqeeeqqdIu7Ajmu+mhxvTJVTvyER6QqUDHUw3l42MvyM5quHt6v5qohIa1gslla3evjiiy/o27cvo0ePbtjm5eXFFVdcwZYtWzh8+LC7wuwcTtJ8dYOSIRHpAlxKho4dO8b111/PDz/80F7xCFARNQoAp5qvioiccbt372bQoEEnbK/ftnv37jMdkvnqS2xnrWN0bCgA+/LKyS/TdG4R6dxa3HQVwM/Pj/T0dGw2dZ1uT0H9x0P2y/Qo2Wp2KCIiHqeoqIiQkJATttdvKyoqcvmcdru9VbHUH9fa493FEp2MdfPbOLPWEXyujYHdg9h9pIz1+/O5cGiPdnvejjJ+s2j8Gn/j756mreNv6XEuJUMAo0ePZsuWLYwfP97loKRl+o6cDN9ArDOHvKNHiIzqbnZIIiIe5VRT7Foz/S4tLa0t4bT5+LbyLw9mKODIWs+mjanEBdrZDSxPSSeq+mC7P7/Z4zebxq/xe7L2Hr/LydC9997L7bffTlRUFBdeeCGBgYHtEZdHCw7vSa61J70dh9i/5VsiL7jG7JBERDxGaGhos3d/iouLAZq9a3Q6iYmJrZpVYbfbSUtLa/XxbuNIxLnmLmzVZYzq7ceFzh58sX8r2ce8GTVqVLs9bYcZv0k0fo1f42/9+OuPPx2Xk6HrrruOmpoa7r//fu6//378/PyafEpmsVhITdVal7Y62m04vYsOGc1XlQyJiJwxCQkJpKenn7C9ftvAgQNdPqfNZmvTm5m2Ht9mNhtEJ8H+b7DlpjCu73UApOWUUOsEX6/2jc308ZtM49f4Nf72G7/LydBFF13U6go90nLWmGQo+oLAvM1mhyIi4lGmTp3Ko48+yubNmxk5ciQAtbW1LF26lJEjR9KjR/utkenQ+oyD/d9A1nrik24iItCH/PJqtuYUk1RXYU5EpLNxORmaO3due8Qhx+kx9GzYCv2qdlBZVYu/r8t/VSIiHu2bb76hsrKS8vJyAPbs2cOKFSsAmDJlCv7+/jzwwAMsWbKElStXEh0dDcA111zD22+/zZ133sk999xDREQEb7/9Nvv37+fVV181bTyma9R81WKxkBQXxufbD5OSUahkSEQ6Lb3D7qCiBiRTi41ISwmpO7eTNHKE2SGJiHQqjz76KDk5OQ0/r1ixoiEZWrVqFTExMTgcDux2O06ns2E/Hx8fXnvtNZ566in++te/UllZyZAhQ3jppZcYN27cGR9Hh3Fc89X6ZChV/YZEpBNrdTKUnp7O3r17qao6scfAz372s7bEJIDFJ4Ac3/7EVaVzdOd3oGRIRMQlX3755Wn3mTt3brMzHiIjI3niiSfaI6zOKyAcIgYYyVD2epLjjd5DqZmFOJ1OTaEXkU7J5WSosrKS3//+9/z4449YLJaGT9Ma/xJUMuQelVEjITsdZ7YKUoiISAcQM64hGRo+eSo+Niv55dVk5FfQN1LVZUWk87G6esDzzz9PTk4Ob775Jk6nk/nz5/Pqq69y4YUXEhcXx4cfftgecXqkoP4TAOheuhWHw3mavUVERNpZH+NuEFnr8PWykRhjlBnXVDkR6axcToZWrVrFLbfcwujRowHo1asXEydO5LnnnmPYsGG8/fbbbg/SU/Uceg4AQ537SD+kC42IiJisvohCTio47CTHhQGQmllgYlAiIq3ncjKUk5NDv379sNlsWCwWKisrGx67/PLLWbVqlVsD9GReUQmUWwLxt1SzZ+t6s8MRERFP130I+ARDdRkc2UFSXTKUkqEP7ESkc3I5GQoODqaiogKAiIgIMjMzGx6rra1teEzcwGolr9swACr2/mhyMCIi4vGsNogeY/w5e11DMrT7SBlFFdUmBiYi0jouJ0ODBg0iIyMDgPHjx/Piiy+SkpLCli1bWLBgAYMHD3Z3jB7NGpMEgL+ar4qISEcQU79uaD0RQb4NhRM2HigyLyYRkVZyORm6+uqrGxrY/eEPf6CyspJf/epXXHfddeTm5nLfffe5PUhPFjnkbAASanZxqPiYydGIiIjH6/NT81Xgp6lyWjckIp2Qy6W1L7300oY/9+nTh88++6yhzPbo0aMJDQ11Z3wezz/OuOgMtOTw2Z4sLkkaaHJEIiLi0ervDNU1X02OC+O/qdlaNyQinVKrm67WCwgI4Pzzz3dHLNKc4B4U+fQgtPowh3euASVDIiJipibNV1NIipsIwObsImrsDrxtLk86ERExjX5jdQIVUUYZc2eOmq+KiEgHEPPTVLn+UUGE+HtzrMbB9twSc+MSEXFRi+4MDR48GIvF0qITWiwWtm/f3qagpKmgfuMhZwW9S7dRVlVLkG+bb+iJiIi0Xp+xsPltyFqH1WohKS6ML3ceISWzkJF9Qs2OTkSkxVr0rnrWrFktTobE/boNmACrYaR1D5sOFHHOwEizQxIREU92XPPV+mQoNbOA357T19zYRERc0KJkaM6cOe0WwJo1a1i6dCkbN27k0KFDBAcHM3z4cGbNmsXw4cPb7Xk7lV4jsWOlp6WQj9N3cs7Ac8yOSEREPFn3IeAT1Kj5ai8AUjMLcTqd+gBVRDoN09cMLVq0iJycHGbOnMnChQt58MEHKSgo4LrrrmPNmjVmh9cx+ARSHGwUTijft9bkYERExOMd13x1ZEwoXlYLh0uqyC6sNDc2EREXuLz4ZMmSJafd52c/+1mLz/fnP/+ZiIiIJtsmTZrEtGnTePHFF5k4caKLEXZN1pgk2LGLoLzN1NodeKlaj4iImClmHOz/FrLW45/8G4ZFh7A5q4jUzEL6hAeYHZ2ISIu4nAydrKlq41viriRDxydCAIGBgfTv35+DBw+6Gl6X1W3ABNjxNsMcu9l5qJTh0SFmhyQiIp6sofnqegCSYsMakqGfjY42MTARkZZzORlatWrVCdsKCwtZtWoVn376Kc8880ybgyotLWX79u1MmDChzefqKqwxyQAkWvfxwf6jSoZERMRcDc1XdxvNV+PDeOX7/aRkqvmqiHQeLidD0dEnftoTHR3N8OHDqa2t5fXXX2fu3LltCurRRx+lsrKS2267zeVj7XZ7q56z/rjWHt/uwgditwUQZK8gK30T9onurdbT4cffzjR+jb/xd0/T1vF76uvm8Y5rvpocNxmAXYdKKD1WQ7Cft8kBioicnlsb1kycOJE//OEPbTrHs88+y8cff8zDDz/cqmpyaWlpbXr+th7fnnoHDKBX6RbsB9axcWN8u1Tr6cjjPxM0fo3fk3n6+KUVYsbVJUPr6J4wjT7h/mQVVLLxQBGTE6LMjk5E5LTcmgzl5ORgtbZ+Yf/8+fN54YUXuOuuu/jlL3/ZqnMkJiZis9lcPs5ut5OWltbq488E+5EpsHYLA2t30z1+MNFh/u47dycYf3vS+DV+jb/1468/XjxQo+arYKwbyiqoJDWzUMmQiHQKLidD69evP2FbdXU1u3btalP1t/nz5zNv3jzmzJnTqulx9Ww2W5vezLT1+PZkixsHa2GUdS8bsoqJjQxy/3N04PGfCRq/xq/xe+74pRXq1w3VN1+ND2fJplxStW5IRDoJl5OhX/3qVydMz3I6nQCcddZZPPzwwy4HsWDBAubNm8fvf/97Zs+e7fLxHiM6CYAESxbv78tRtR4RETFX96FNmq8mx8UCsPFAodpAiEin4HIy9Prrr5+wzdfXl+joaCIjI10O4JVXXuG5555j0qRJnHvuuWzatKnJ46NGjXL5nF1WSDTH/Lrjd+wIJftTgXFmRyQiIp6svvnq/m8hez0JY4YR7OtFaVWt2kCISKfgcjI0bpx734B/9dVXAKxevZrVq1ef8PiuXbvc+nydnSUmCfYsJ7wojeLKGkL8Va1HRERMVN98NXs9tuSbGBUbyurdeWw4UKhkSEQ6PJeTof3793P06NFmk6J169bRvXt34uPjW3y+N954w9UQPJpv3DjYs5yRlj1sPFDIuYO6mx2SiIh4svrmq3VFFJLjwlm9O4+UjEJmTow3Ly4RkRZweTLv3Llzm228CsZdnrb2GJLTqFs3NMq6l5QMLVAVERGTNdN8FVARBRHpFFxOhtLS0hg7dmyzj40dO5atW7e2OSg5hd6jcWIhxpLH7n17zY5GREQ8XX3zVYDsFEb2CcVqgZyiSg4WV5obm4jIabicDJWWlhIQENDsY35+fhQXF7c5KDkFv25UhycAYM3dQI3dYXJAIiLi8ervDmWvI8jXiyG9ugG6OyQiHZ/LyVCPHj3YsmVLs49t2bKFqCg1WWtvPrHJAAx17mZbbonJ0YiIiMerT4Ya1g0ZU+U0nVtEOjqXk6GpU6eycOFCfvzxxybb165dy0svvcSFF17otuCkeZYYIxkaZdlDSkaBydGIiIjHqy+ikLMBHHbGxGndkIh0Di5Xk5s1axbfffcdN910E/Hx8fTs2ZNDhw6RkZHBgAEDmDNnTnvEKY3VFVEYad3H2/vzuXlSP5MDEhERj9bQfLUUju4kOd64Lm0/WEJFdS0BPi6/3RAROSNcvjMUHBzMu+++y+zZswkJCSE3N5eQkBDmzJnDO++8Q1BQUHvEKY11H4rd5kc3SwVHMrfhdDrNjkhERDxZffNVgKx1RIf60yvED7vDyaasIlNDExE5lVZ9VBMYGMisWbOYNWuWu+ORlrB5Y+k1ErLXEle5gwMFFcRFBJodlYiIeLJGzVdJvomkuDCWbTlIakYhZ/WPNDs6EZFmuXxnqF5paSmrV69m6dKlqiBnAmsfY7HqKOte1muBqoiImO245qtJ9euGDugaJSIdV6uSoQULFjBp0iRuueUW7r33XrKzswH49a9/zcKFC90aoJxEw7qhvaRmqoiCiIiYLNoo7tPQfDUuHIANmYU4HJrOLSIdk8vJ0FtvvcWCBQu45pprePHFF5usVznvvPP4+uuv3RmfnExdMjTEksmm/YdNDkZERDxeYASE9zf+nJ3CkF7B+HvbKDlWy+4jZebGJiJyEq1Khm688UYeeughzjnnnCaPxcXFkZmZ6bbg5BRCY3EEROFjseOXt43C8mqzIxIREU9XP1Uuez1eNiuj+oQCkKIZDCLSQbmcDGVlZTFp0qRmHwsMDKSkRE1AzwiLBWuMcXdolHWPejmIiIj56puvZtc1X41XvyER6dhaVVo7Ly+v2cdycnKIiIhoc1DSQnXzs0dZ95KiC42IiJit4c5QKjjsPxVR0DVKRDool5OhiRMn8vLLL1NRUdGwzWKxUFtby6JFi06YOiftqK6nw0iLiiiIiEgHcFzz1dGxYVgskJlfwdHSKrOjExE5gcvJ0B133EFubi7Tp09n7ty5WCwW3nzzTa699loyMzO5/fbb2yNOaU5dMhRvPcyB7Cyqau0mByQiIh7tuOarIf7eJHQPBnR3SEQ6JpeTobi4OBYtWkS/fv1YtGgRTqeTjz76iLCwMN5++2169+7dHnFKc/zDcEYMAGCIYw9bc9TvSURETNawbmg9AEkN64Y0g0FEOh6v1hw0YMAA/v3vf1NdXU1hYSEhISH4+fm5OzZpAUt0MuTvYZR1D+szCkmq6+sgIuLpysvLefbZZ1m+fDnFxcX069ePW2+9lenTp5/yuMWLF3P//fc3+9h3331HVFRUe4TbdcQ0bb6aHBfG22sPaG2riHRIrUqG6vn4+NCjRw93xSKtEZMMW95hpGUvb2UUwhSzAxIR6RjmzJlDWloa99xzD/Hx8Sxbtoy7774bh8PB5ZdfftrjH3/8cfr169dkW2hoaDtF24XU3xmqa75aX0Rha04xx2rs+HnbTAxORKSpFiVDS5YscemkP/vZz1oRirRKfREF617uzsjH6XRisVhMDkpExFzffPMN33//Pf/4xz+47LLLAJgwYQK5ubk8+eSTXHrppdhsp35TPnDgQBITE89EuF1LffPVgr2Qk0rsgKlEBvmSV1ZFWk4xY+M1g0FEOo4WJUP33Xdfi09osViUDJ1JPRJx2nwIt5fR7Vg2e4+WM6B7kNlRiYiYauXKlQQEBHDxxRc32X7VVVdxzz33sHnzZsaMGWNSdB6gzzgjGcpah2XghSTHhbFi2yFSMgqVDIlIh9KiZGjVqlXtHYe0lpcPlp4jICelocS2kiER8XS7d++mf//+eHk1vcwNGjSo4fHTJUO33XYbBQUFBAcHM27cOO644w4SEhLaLeYuJWYsbF7UpPnqim2H6ooo9Dc3NhGRRlqUDEVHR7d3HNIWMcmQk8LouiIK142NNTsiERFTFRUVERMTc8L2kJCQhsdPJjIykttuu41Ro0YRFBREeno6Cxcu5LrrrmPRokUMHjzY5Xjs9ta1Pqg/rrXHm6Z3MjbAmZ2Co6aaUTHG656aWUhtbW2Lp3N32vG7icav8Tf+7mnaOv6WHtfqAgplZWVs2rSJoqIiwsLCGDlyJEFBuiNhiugkwFg39Lqq9YiIAJzyDfepHps8eTKTJ09u+Hns2LFMmTKFyy+/nH/+85+88MILLseSlpbm8jHuPP6Mc9oZZfPDVl3Gzu8+ojaoLz5WKKyo4dPvUokOdu3tR6cbv5tp/Bq/J2vv8bcqGfr3v//N/PnzOXbsWMOCfT8/P+644w5uuukmd8cop1OXDA2zZJKdV0xeWRWRQb4mByUiYp7Q0NBm7/4UFxv92OrvELVUTEwMSUlJbN68uVXxJCYmnrZgQ3PsdjtpaWmtPt5M1q1jIWM1Q4JKcI4ZzcjUtazPKKTCvyejRp141645nXn87qDxa/waf+vHX3/86bicDC1ZsoSnnnqKyZMnc+WVV9K9e3eOHDnCkiVLePLJJwkLC1MBhTMtvB/4h+FbWchgywFSMgq5eHhPs6MSETFNQkICy5Yto7a2tsm6ofT0dMCoFOcqp9OJ1epyr3IAbDZbm97MtPV4U/QZBxmrseZsgLG/JSkunPUZhWzIKuL68XEunapTjt+NNH6NX+Nvv/G7/Fv9tdde47LLLmPhwoVccsklJCUlcckll/Diiy8yffp0/vOf/7RHnHIqFkvD3aFR1j3q8i0iHm/q1KlUVFTw+eefN9n+4Ycf0r17d0aOHOnS+bKystiwYYPLx3m0+uar2T81XwVj3ZCISEfh8p2hffv2cffddzf72BVXXMHs2bPbHJS0QnQy7PmCUda9vJGhC42IeLYpU6Zw9tln88gjj1BWVkZsbCyffPIJq1ev5qmnnmr4lPGBBx5gyZIlrFy5sqFY0I033khycjKDBw8mMDCQ9PR0Xn75ZSwWC3feeaeZw+pc6puv5qU3ab6692g5heXVhAX6mBiciIjB5WTIz8+vYc718YqLi/Hz82tzUNIK9XeGLHu4L1ddvkVE5s2bxzPPPMNzzz1HUVER/fr14+mnn2b69OkN+zgcDux2O06ns2FbQkICy5cv55VXXqGqqorw8HAmTJjA7bffTt++fc0YSud0XPPVsIEX0j8qkL1Hy0nNLGTq0B5mRygi4noylJSUxPz58xk3bhw9evz0i+zo0aMsWLCA5ORktwYoLVSXDPW3HsS/upTNWUWM7xdhclAiIuYJDAzkoYce4qGHHjrpPnPnzmXu3LlNtj3wwAPtHZrnaNR8lYEXkhQXxt6j5aQoGRKRDsLlZOjuu+/m+uuvZ9q0aUycOJGoqCiOHj3Kjz/+iJeXF/Pnz2+POOV0AiMgLB4KMxhh3U9KZqGSIRERMdfxzVfjwnkvJZsNWjckIh2Ey8nQwIED+e9//8u8efNYu3YtRUVFhIaGcsEFFzB79mxNITBTdDIUZjDKsoeUDBVREBERk9WvG8pOBYedpHhj3dDm7CKqax34eLWuOp+IiLu0qs9Q3759efrpp90di7RVdBJs/W9D81WHw4nV2rIu3yIiIm7XfSh4B0J1KRzdRb/uQwgL8KawooatucWMiQ0zO0IR8XD6SKYriTHWa4227qXkWA27j5SZHJCIiHg0mxdEjzH+nL0Oi8XSUFVOU+VEpCNo1Z2h7du38/HHH5Obm0tVVVWTxywWCy+88IJbghMX9RwBVi8iHcVEk0dKZgGDegabHZWIiHiyuuarZK2HpBtJigvnix1HSMko5OZJZgcnIp7O5WRoyZIl3H///VitVsLDw/H29m7yuMWiaVmm8faDHsPh4CZGWfeSkjGKX7jY5VtERMStjm++WrduKCWzEKfTqfcNImIql5OhF154gSlTpvDEE08QEhLSHjFJW8Qkw8FNjLTu5Y1MFVEQERGTHdd8NTE6BG+bhbyyKg4UVBAXEWhufCLi0VxeM3TkyBFmzpypRKijqus3NNq6h6yCSg6XHDM5IBER8Wj1zVcBclLx87YxPNp4D5GqdUMiYjKXk6EhQ4Zw+PDh9ohF3CHaKKKQaM3Ai1pSMnShERERk9XfHcqq7zf001Q5EREzuZwM/fGPf2ThwoXs3LmzPeKRtooYAL4h+FFFgiWbFE2VExERs/Wp7ze0HoCkuHAAUvWBnYiYzOU1Q6NGjWLatGlceeWVREVFnTBdzmKxsHTpUrcFKC6yWiF6NOz7uq6IwkizIxIREU9XX0QhJxUcjoby2ulHSimurCHE3/sUB4uItB+X7wwtXLiQF198kbCwMHr37k1oaGiTL60l6gDqpsqNtOxl+8ESyqtqTQ5IREQ8Wn3z1aoSOLqTqGBf4iICcDph4wHdHRIR87h8Z+j111/n6quv5rHHHsNms7VHTNJWdUUUxnrvxV7pZFNWEWcPiDQ5KBER8Vj1zVczVhsltnsMJSkujMz8ClIzCzl3UHezIxQRD+XynaHy8nIuu+wyJUIdWV0yFO/MJpBKFVEQERHz9ambKpdVv26oroiCrlEiYiKXk6ExY8awd+/e9ohF3CW4B4T0wYqTEdZ9KqIgIiLmO775al0RhU1ZRdTaHWZFJSIezuVk6MEHH+Sdd97hiy++oLq6uj1iEneouzs0yrKXjQeKsDucJgckIiIeLcZYz1rffHVg9yC6+XlRWWNnx8FSc2MTEY/l8pqhq6++mtraWubMmYPFYsHPz6/J4xaLhdTUVLcFKK0UnQTbl5DktY8XqmrZeaiEYb1V3EJEREwSGAnh/aBgH+RswDpwKmPiwvh611FSMgtIjNE1SkTOPJeToYsuugiLxdIesYg71X0CN8ZrL1QZc7KVDImIiKlixhnJUPY6GDiVpNj6ZKiQm87ua3Z0IuKBXEqG7HY7v/vd7wgPD3dbCe2ysjKef/55du7cyfbt2yksLGT27NnMmTPHLef3WL1GgsVGuD2fHhSQklnIr8+KNzsqERHxZH3GwpZ3IMtYN5QUbxRR2JCpIgoiYg6X1gw5nU6mT5/Opk2b3BZAUVER7733HtXV1UydOtVt5/V4PoFGXwdglHUPqRkqoiAiIiY7rvnqqD6h2KwWDhYfI6eo0tzYRMQjuZQMeXl5ERkZidPpvsX40dHRrF+/njfffJO7777bbecVIMYoojDato9cXWhERMRsxzVfDfDxYmivbgCk6EM7ETGBy9Xkpk+fzpIlS9wWgMVi0Rqk9lJXUe5sv/2ALjQiImKy+uar0FBiu77fkKbKiYgZXC6gMHjwYD799FNmzpzJtGnTiIqKOiGZmTZtmtsCdJXdbm/Tca09vkPqNRobkGDfgxUH6/cXcFliz2Z37ZLjd4HGr/E3/u5p2jp+T33dpJVixkLGaqP5atKNJMeH8doPGaQoGRIRE7icDN17770AHD58mHXr1p3wuMViYceOHW2PrJXS0tJMPb5DcdoZZfPH117JAEsO3+30YVPsqXtDdanxt4LGr/F7Mk8fv5whfeqbr64HfroztONgCWVVtQT5uvzWRESk1Vz+jfP666+3Rxxuk5iYiM1mc/k4u91OWlpaq4/vqKxpSZD5HaOse3i/pA/9Bw8j2M/7hP266vhbSuPX+DX+1o+//niRFokZa3zP2wWVhfQKCSM61J+coko2HSjinIGR5sYnIh7F5WRo3Lhx7RGH29hstja9mWnr8R1OjJEMneOfyXtlsDmnlCkJUSfdvcuN30Uav8av8Xvu+OUMadx8NTvV6DcUF0ZOUSWpmYVKhkTkjHK5gEK90tJSVq9ezdKlSykuLnZnTOJO0Ubz1STbPgCV2BYREfPVl9iuK6KQXNdvKCVT1ygRObNalQwtWLCASZMmccstt3DvvfeSnZ0NwK9//WsWLlzo1gCljeoqyvWq3o8/x1ifoQWqIiJisj51U+Xqmq+OiTWSoY0HirA73Ne+Q0TkdFxOht566y0WLFjANddcw4svvtik59B5553H119/7XIQ33zzDStWrOCrr74CYM+ePaxYsYIVK1ZQWaneOG0SEg3BvbA67Qy3ZLApq4gau8PsqERExJMd13x1cM9gAn1slFXVkn641NzYRMSjuLxm6K233uLGG2/kj3/84wnlVOPi4sjMzHQ5iEcffZScnJyGn+sTIYBVq1YRExPj8jmlkegk2LmMCb4ZrD82mO25JYzsE2p2VCIi4qmOa77q1WMoo2PD+G5PHimZhQypa8QqItLeXE6GsrKymDRpUrOPBQYGUlJS4nIQX375pcvHiAvqkqHJARnMOwYpmYVKhkRExDz1zVczVhsltnsMJSnOSIZSMwr41YQ4syMUEQ/h8jS54OBg8vLymn0sJyeHiIiINgclbhZjFFEYZN8NQKoWqIqIiNnqS2zXFVGo7zek5qsicia5nAxNnDiRl19+mYqKioZtFouF2tpaFi1axDnnnOPWAMUNeo0CLHSrOkgkxazPKGyy1ktEROSMq2++mmU0Xx0dG4rVAtmFlRwuOWZiYCLiSVxOhu644w5yc3OZPn06c+fOxWKx8Oabb3LttdeSmZnJ7bff3h5xSlv4dYOowQAkee3haGkVWQUqTCEiIiY6rvlqsJ83g3oaa4VSdXdIRM4Ql5OhuLg4Fi1aRL9+/Vi0aBFOp5OPPvqIsLAw3n77bXr37t0ecUpb1ZXYntrNKIO+Xv2GRETETPXNV8FovgokxYUCkKI2ECJyhrhcQAFgwIAB/Pvf/6a6uprCwkJCQkLw8/Nzd2ziTjFJsOlNkr2M5qspmYVcnaQqfSIiYqKYcVCwz1g3NHAqyXHhvPnjAa1tFZEzxuU7Q/fffz9ZWVkA+Pj40KNHj4ZEKCcnh/vvv9+9EYp7RBtFFGIqd2LBoQuNiIiY77jmq/VFFLblllBZbT/ZUSIibuNyMvThhx9SWNj87evCwkKWLFnS1pikPXQfCl7+eNeU0s9ykPTDZRRVVJsdlYiIeLL6dUN1zVdjwvzp0c2XWoeTzdlFpoYmIp7B5WToVIqLi/Hx8XHnKcVdbF7QexTw07qhDQc0J1tEREzUfdhPzVfzdmGxWBruDqmIgoicCS1aM7R+/XrWrl3b8PP777/Pt99+22SfqqoqVq1aRf/+/d0bobhPdBIcWMOUwExeLB7P+oxCzh/cw+yoRETEUzVuvpq1DroPISkunE/TDtUlQ33NjlBEurgWJUNr165l/vz5gNFT6P333292v969e/OnP/3JfdGJe9VVlBtsTwcgVdV6RETEbDFjjWQoex0k/ZrkRneGHA71xBOR9tWiZOjmm2/mF7/4BU6nk7POOot///vfDB06tMk+Pj4+BAYGtkuQ4iZ1yVBYaTq+VLM5u4iqWju+XjaTAxMREY91XPPVob274edtpbiyhr155SYGJiKeoEVrhvz8/AgLCyM8PJxVq1YxduxYwsLCmnwpEeoEQmMhMAqLo5aJATlU1TrYmlNidlQiIu2ivLyc//u//+Occ84hMTGRGTNm8Mknn7To2Pz8fO677z7Gjx/PyJEjue6661izZk07R+yhjmu+6m2zMjImFNC6IRFpfy4XUIiOjlaRhM7KYmm4O3RxWA6ASmyLSJc1Z84clixZwuzZs3nppZdITEzk7rvv5uOPPz7lcdXV1dx4442sWbOGBx98kOeff56IiAhuvvlm1q1bd4ai9yDNNF9Njjemym04UGRSUCLiKVxuulpTU8NLL73EsmXLyM3NpaqqqsnjFouF7du3uy1AcbPoZEhfUdd89RzWZxRy62SzgxIRca9vvvmG77//nn/84x9cdtllAEyYMIHc3FyefPJJLr30Umy25qcIv//++6Snp/POO+8wevRoAMaPH8+MGTN46qmnTrpuVtogZuwJzVdhL6mZhdzQv5vZ0YlIF+ZyMvT000/z2muvMXnyZKZOnaq7RJ1NjHFnKKZiBwAbMgtxOrVAVUS6lpUrVxIQEMDFF1/cZPtVV13FPffcw+bNmxkzZkyzx37xxRf07du3IREC8PLy4oorruDpp5/m8OHD9OihSpxuFTMWtrwL2ca6odGxoQBk5FdQfEzT8EWk/bicDC1fvpxZs2Yxe/bs9ohH2ltv4+LvV5pJT68yDpUHsT+vnLhwf5MDExFxn927d9O/f3+8vJpe5gYNGtTw+MmSod27d5OUlHTC9sbHKhlys/oiCtlG89XQAB8Gdg9i95EyduXXMMXc6ESkC3M5GSouLiY5Obk9YpEzwT8UIgZC/m6uiDrMwoNBpGQUKhkSkS6lqKiImJiYE7aHhIQ0PH6qY+v3c/XYk7Hb7S4f0/i41h7faUQOxuodiKWqGPvh7dB9CGNiQ9l9pIwdedVdf/wn4TF//yeh8Wv8jb+39vjTcTkZGjt2LDt37mTChAkuByUdRHQS5O9mckAmC+lPSmYBV4/pbXZUIiJuZbFYWvVYW49tTlpamsvHuPP4ziCh20CC8zeRtWYx+XHT6WmtBOCT3RX0WrKWaf0DTI7QPJ7w938qGr/G355cToYeeughbr/9dnr37s25556rNUOdUUwybHmHIY5dwPmkqPmqiHQxoaGhzd7BKS4uBmj2zo87jj2ZxMTEkxZsOBW73U5aWlqrj+9MLAXnwfebiLUeos+oUQxLdLC7YjOfbj3MixtKKPMK4eHLhuBtc7kQbqflSX//zdH4Nf62jL/++NNxORmaMWMGtbW13HnnnVgsFvz8/Jo8brFYSE1NdfW0ciZFG/Pkwwq3Ak725ZWTX15tbkwiIm6UkJDAsmXLqK2tbbJuKD09HYCBAwee8tj6/RprybEnY7PZ2vRmpq3Hdwqx4+F7sGanQN14n7t+FKHvfM+ibWW8tS6LvXnlPP+LJMIDPeuDWI/4+z8FjV/jb8/xu5wMXXTRRa2aIiAdSI9EsPliPVbIuZGlfJ3XjQ2ZhUSZHZeIiJtMnTqV9957j88//5xLL720YfuHH35I9+7dGTly5CmPffTRR9m8eXPDfrW1tSxdupSRI0eqeEJ7ia5bj1zXfBX/MCwWC1cPCWLKqATufm8zP+4r4Ir53/Hyr5MZ3FMlt0W6mqKKarZkF5OWU8y23GLifCoYNap9n9PlZGju3LntEYecSV4+0GsEZK/n4rBcvs7rRkpmIZf0MjswERH3mDJlCmeffTaPPPIIZWVlxMbG8sknn7B69Wqeeuqphk8ZH3jgAZYsWcLKlSuJjo4G4JprruHtt9/mzjvv5J577iEiIoK3336b/fv38+qrr5o5rK4tKArC+kLhfshJhQFTGx6aOqQ7H846m5v/k8KBggquev4Hnv75KC4e3tPEgEWkLUqP1bA1p4Qt2UVsySkmLbuYAwUVTfaJDfHif9s5DpeTIekiopMge31d89XBpB4o4pJefqc9TESks5g3bx7PPPMMzz33HEVFRfTr14+nn36a6dOnN+zjcDiw2+1N+q35+Pjw2muv8dRTT/HXv/6VyspKhgwZwksvvcS4cePMGIrn6DPOSIay1jdJhgASegTz0ayzmfX2Bn7Ym89tb6Zy19QE5pw/AKtVM1ZEOrKK6lq255awJbu4IfnZd7S82X37RgaSGB3C8N7BxFkL2j22FiVD27Ztc+mkw4YNa1UwcgbVTUfoU7kDuJStOcVU2X3NjUlExI0CAwN56KGHeOihh066z9y5c5ud8RAZGckTTzzRnuFJcxqar65r9uGwQB9e/804/vrJDl77IYNnvkhn1+ES/n7tSAJ89PmuSEdwrMbOzkOlpGUX1SU/xew+UorDeeK+MWH+jIgJITE6lBExIQzvHUJIgDdgFEDYtKm43eNt0W+Oq6++ukXrhJxOJxaLhR07drQ5MGlndUUUfI5upVeQlYNlDvYW1DDe5LBERMSDHdd8tTleNiuPXDGMwT2DefijrXyadoj9eRW8NDOJmDDPLb8tYoYau4Ndh0pJyyluuOuz61Aptc1kPj26+TIiJpQR0SEkxoSQGB1CRJD5H8S3KBl6/PHH2zsOOdPC+xmLUysLmdGnkH/tDmFnvirKiYiIiboPA+9AqCo2CilEJJx01+vHxdK/exC/fzOVHQdLmDH/e174ZRLj+oafwYBFPIfd4WTPkTK2ZBc1JD/bD5ZQXXviBxcRgT4kxoQ0SX56dOuYyzFalAxdeeWV7R2HnGkWi7FuaM8XTA7I5F+MYGdejdlRiYiIJ7N5GTMXMlZD1rpTJkMAY+PD+Wj2Odz6egrbcku44aUfeWzGcG4YH3uGAhbpmhwOJxn55Q3T3NJyitiaU0Jljf2Efbv5eTEiJpTEmBBGxoSQGBNK7xC/TlN9WhNsPVl0Muz5gsH2dGAEW49Us3zrIS4bGW12ZCIi4qliko1kKHsdjPrlaXePDvXnv7edxf/+dzOfbDnIAx+mseNgCX+6fKhHNWgVaS2n00l2YeVPxQ2yi9maU0xpVe0J+wb62BgeHWKs84kJZWRMCLHhAZ0m8WmOkiFPFp0EQFhhGmNib2bDgSJmL9rEsi2HeGzGMLp30NuZIiLShcXUrxtKafEh/j425v/PaIb26sZTn+3ijR8z2X2k1CMbtIqcitPp5FDJsSaJT1pOMUUVJ84O8vO2Mqy3sbZnRN2Ut36RgV2ueqOSIU9WlwxZ8nfz5h8S+NNH21iyq4IV2w7xw948Hr5sKNckxXTqbF9ERDqZmLHG96M74VjLK0lZLBZmnTeAgd2DuOvdTfy4r4AZC77jpZlq0Cqe62hpFWk5P1V125JdTF5Z1Qn7+disDOkVbKzziTamvA3sHoSXB9xdVTLkyQIjGhrc+R7dzP8MD+OmqaO4b/FW0nKK+X//3cLSzbn87cpE+oSrQk9Xdaj4GE9/vovNGfn02bqBqGA/ooJ8iAr2JTLIl8j670E+BPl6KTkWkfbVpPlqChDh0uHThvVk8e1nc8vrPzVofea6UVw0TA1apWsrLK8mLae4rriBkQAdLD52wn42q4WEHsF163uM5CehZxC+XjYTojafkiFPF50Ehfux5KRC8FQG9wzmw9vP4t/f7efplems3p3HRc9+yx8vGsTMifFd7taoJ6uxO3j1+/3884vdlFcbCyJ35R855TG+XtafkqQgX6KCfRr+bPxsJE2Rwb4EK3ESkdaqa75qyV4PIRe7fPignk0btP7ujVTuvtBo0KrfS9IVlB6rMRKf7GK21CU/WQWVJ+xnscCAqKC64gbGHZ+hvbrh5+2ZiU9zlAx5uphk2PpfLDkbYLDR7dvLZuV3U/ozbVhP7v1gC+v2F/DIx9v5eMtBnrh6BAO6B5kctLTVD3vy+NPSbew5UgbAqD4hnNsbwntEk19eQ15ZVd1XtfG9tIryajtVtQ6yCyvJLjzxF+7xfLysRNXdUWouWWrYFuRLN38lTiLSSF3z1dYmQ2A0aP3Pb8bxf3UNWp9emc7OQ2rQKp1PRXUtOw/XVXXLLmJLTjH7jpY3u2/fyMAma3yG9e5GoK/+vZ+KXh1PV7duiNxUGNS0QVbfyEDeuWUCb687wNzlO0nNLOTSf67mzqkDuXVyP1Xp6YQOFlfy10928MmWgwCEB/pw3yWDuXJkL7Zs2cyoUbHYbM1/WlRRXUteaTVHGxKlKvJKjWTpaGlVkwSqrKqW6loHOUWV5BS1IHGyWY9Lko5PoH66CxXi763ESaSrq2++mpMKQ5tvvtoS3mrQKp1MfWW3tfsLWLsvj7W788j+7xc008OUmDB/o6pbdCgjYkIYHh1CiL/3mQ+6k1My5Ol6jgCrF5byo/hUHj7hYavVwi8nxHH+4O488GEaX+86ylOf7eKTLQd58poRDI8OMSFocVV1rYNXvt/Pc6t2U1Ftx2qBX06I454LBxES4I3dfmLfgOMF+HgRG+FFbMTp30Acq7E3JEjG9+pGyVLTJKq0qpZqu4Pc4mPkNjO3+XjeNgsRgb5EBvvU3Xlquq4pqu7nqLrESVM7RTqh7sPAOwBLVQl+ZZnAmDadrr5B621vqEGrdCxOp5N9eeWs3VfAuv35rNtf0Oy1sGc3v7r1PSENzUxVKdE9lAx5Om8/6DEcDm4isGgn0Px0hN6h/rx641iWbMrh0Y+3s/1gCTMWfM+tk/tx5wUDNfe0A/tudx5/XrqVvXW31MfEhvLYjOHtmsj6edvoEx7QosIbx2rsP03Ja5JAGdsa7kSVVlFyrJYau1EW9FDJ6RMnL6uFiKCm65rqk6jGa5/CArxwOJv52E1EzGHzgt5jIPM7Agt3AG1v/j42Ppylc87hlv+ksP1gCb942WjQ+j/j1KBVzhyHw8muw6Ws21/A2rrkJ6+susk+3jYLI2JCGRsXSqi9kCvOGUXvsECTIu76lAyJsW7o4Ka6C87JWSwWrhwdw6SBUfx56TY+2XKQF77ey2dbD/HENSMYG69P2DqS3KJK/vrJdj5NOwRARN2UuKvHxHSouyV+3jZiwgJaNGWlqtZOfln1CdPyjjaTRBVX1lDrcHK4pIrDJSeWET2etxXivllNfGQQfSMDiIsIpG9kIHERAfQO8e9Qr5mIR+gzFjK/I/TQD+Cww0mm8LoiOtSf//5+Iv/v/S18knaQ+xcbDVofvkwNWqV91NodbD9Ywtp9BazdX8D6jAKKK5v29PH1sjI6NpTxfSMY3zec0bFh+PvYsNvtbNq0iR7q+9iulAwJRCfD+pcJKNrZot0jg3xZcMMYrhh5iIeXbGVfXjk/f3ENMyfE8f8uHkyQFuqZqqrWzsur9zP/yz1U1hhT4mZOjOeuCxM6/VxiXy8bvUP96R3qf9p9q2sd5Jc3nZJ3tHFhiEYJVWFFDTUO2HO0nD3NLEr18bISGx5AfEQg8REBxEcGGn+ODKBXiD82JUoi7pdwMXz3DKGHf8D5zvVwzb/BP6zNpw3w8WL+DaMZ8lUwf/88ndfXZLL7cBkLfjFG046kzaprHWzJLjLW/OwvIDWjoKFia70AHxtJcWFM6BfBuL7hjIgJ8diy1h2B3rVKQxGFoMLtODe+Ack3tuiwi4b1ZEK/CP72yQ7eTcniP2sy+WLHEf52VSJTEqLaMWA5mW/Tj/LI0m3syzPe0CfHhfHojGEM6+15a7t8vKz0CvGnV8jpE6dj1TV8+eMGArrHk1VYyf68CjLzy9mfX05WQQXVtQ72HClrqL7X5HlsVmIjAowkKSKQuMhA+kbU3VEKVaIk0mqxE3D8bCEsnYN17ypYeC5c/zb0GNbmU1ssFmafP5CEHsHc9e4m1uzLZ8aC73h55lgG9Qxue+ziMSqr7WzMKqxb81PAhgOFVNU2LfrRzc+LcX3DGdc3nPF9IxjWu5tHNDPtLJQMCUQOxDH0SqzbP8Sy7E7IWQ+X/h28T/8mMsTfmyeuGcHlI3tz3+ItZBdW8utX1nH1mBgevmwIoQH6lO1MyCmq5C8fb2fFNmNKXGSQL/dfMpirxkSr8loLeNus9Aj0YtTAyBOq6dkdTnKLKsnILycjr/zERMl+6kSpT7h/3XS7QOKVKIm4xJl4DbsKYMiWv2IpzICXp8KMBTD8Krecv75B682vryeroJKrnv+eZ64bxTQ1aJWTKKuqJSXDSHzW7S9gc3YRNfama04jAn3qEp9wxvWNYHDPYE217sCUDAlYLDiveokcRzi9d72KZeObcHAz/Px1CO/XolOcMzCSz++azN8/S+fVH/bzwYZsvkk/yl9mDOOSxF7tPADPVT8lbt6XuzlW48BmtTBzYhx3XZhAN7/OPSWuo7BZLQ3FICYNbHrH8/hEKSO/ou57OVkFlVTbHew9Wt5QvKKx5hKl+rtLSpREflIZMgDHb7/E9uHNsO9r+O9NcHATXPBnsLZ9atGgnsEsnXUOt7+1gTX78rn1jVTuuTCB2WrQKkBRRTXrMwpZtz+ftfsL2JpTfEKZ657d/Bjf76c7P/2jAvVvpxNRMiQGi5VDA39Bz+TLsC2+BQ6lwYvnwpX/gsGXtugUAT5e/OnyoUwf0Yt7P9jCniNl/P6tDVwyvCePzhhG92AtAHSnr3cd4dGPt7O/bkrcuPhwHp0xjCG9upkcmedocaJUlyRl5pezP6/liVJ84ySpbp2SEiXxSAHh8IsPYNWj8MNz8P0/4eAWuOYV47E2Cgv04fXfjuOvy7bznzWZ/GNlOjsPlfLUtSPUoNXDHC2tqrvrYyQ/uw6Xcnyx0djwgIY7P+P7RtAn3F/JTyem/+HSVN8p8Ltv4f0bIXsdvPM/cM7dcN6DRqnTFkiKC+OTO85h/pd7eOHrvSzfeogf9ubz0PQhXJMUo18YbZRdWMFflm3ns21GX6ioYF8evHQIM0b11mvbgTRNlJo+Vp8oZeZXsD+/nMy6u0ktSZS8bcZ5jel2gU0q3ylRki7N5gXT/gK9R8FHs2HfV7BwClz3FvQa0ebTe9usPDpjOIN7deNPH23lk7SD7M8r56VfJxPdgqIt0jnlFlXWlbk2Sl3va+b3bv+oQMb3i6ib9hbeorWo0gJOJ1QUQHFW3Ve28VV0AIqzsZbk0idyAox6pV3DUDIkJwqJhhs/gZUPw9p/wXdPQ04KXP0KBLWsMIKvl417pg3ikuHGXaK0nGL+33+38PGWg/ztyuHq/N0Kx2rsvPTtPhZ8vadhStyNZ8Xzh6kDCdaUuE6lcaJ0zsDIJo+dLFHKyK/gQL6xRmnf0fJmL9hKlMQjDL8aIgfBu7+Awgz49zS4Yh6MuNYtp/+fcbH0jwri92+msv1gCVfM+45//SpJ7SO6AKfTyYGCioYy1+sy8skqqGyyj8UCg3t2a0h8xvUNJzLI16SIO7naaijNrUtw6pOdAz8lPcXZUFNx0sMtgJ9fVruHqWRImuflA5c8AX3GwUdzYP+38OIkuPY1iJ3Q4tMM7d2ND28/i5e/28/TK9P5Nv0o0575lnsvHsyvJsRpQWELfbXrCI8s3UZmvvFLY1zfcP4yY7j7qh4dK8G3PAecI91zPmm10yVKB4sryciraLpOKb+8xYmSUR7cKAte/+cewUqmpZPpORxu+Qo+uBn2roLFNxvriKY+2uJZDKcyrm84H80+m1tfNxKiG15Sg9bOyOl0sudImZH41N35Ob7vnM1qYXjvbozvF8G4+HCS48NU/KmlKosaJTZ1d3eKGt3hKT0ItKCheVBPCIkxvkL7QEgfCInBHhzN7twqRrXzMJQMyakNvxp6DId3fwl56fDadJj2Vxh/m/HxSQt42azcNqU/04b24L4P0liXUcCfl27j4825PHHNCPpHBbXzIDqvrIIKHlu2nZXbjSlx3YN9eXD6EK4Y6aYpcQ4HpL6CdeWfGV5dhnNNOMROhLiJxvdeI8GmN8odhc1qaWhQe7JEKTO/gv0N65OMyneZdeXBT5UoDY7w5t3hDgLc0NhS5IwICIdfvA9f/tWYwbBmPhzaAte8CoGRpz/+NGLCAk5o0LrzYAkPqUFrh2V3ONl5qKShzPW6jAIKyqub7ONtszCqT2jdXZ8IkuLC1B+xOQ67kcw03NXJapT01CU7VSWnP4+X30+JTkgMhMQ2SnpioFs0eJ3kzpvdDoc2uXVYzYbY7s8gnV/UILjlS1h6B2xbDCvug6y1xrQE35bfmegXFcQ7t07grbWZzF2+k5TMQi7552ruvGAgt07up4tLI8dq7Lz4zT6e/3oPVbXGlLjfnB3PHRe4cUpcYYYx7z5jNRbAiRVLZQHs+sT4AvDyh5hkiDvLSI5ixoKvkteOqHGidPaAExOlQyXHGirdNa58V58o7cqvpqyqlgBfJb/SiVhtMPXPxgc3S243ZjEsPBeue9NYW9RG9Q1aB38ZzD9WpvOfNZmkHy7j+V+MIUwNWk1XY3ewNae4ocz1uowCSo/VNtnHz9vKmNiwhkpvo2ND8fPWhz5UlTW6q9No6lr9nZ2SHHDaT3+egIiGOzmExjZKeuru8ARGtvjDc7MoGZKW8Q02qvbEToDPHoBtH8KhrcYFp/vgFp/GarXwq4nxnD+kBw8sTuOb9KM89dkuPk07yBNXj2B4tOc1Bz3eqh2HefTj7RwoMKbETegXzmMzhpPQw01T4hwOWP8yfPEI1JSDlz+OC/7EJttoRvYAW/Y6yFwDB9bAsSLIWG18AVhsxkLl2Ik/fbVwHZmYx2a1EB3qT3So/wmJksPhJKewnL27dhChN3fSWQ37mfHB3Ts3QME+eOUiuPyfMPL6Np/aYrEw54KBJPQM5u66Bq1XqEGrKY7V2NmSXdxQ6S01s5CK6qZv2IN8vUiKC2N8P6PaW2J0KD5eHvZhq8MB5Ud+upPTeOpafeJTWXj681i9jDs3DUlOn0bT2WKNx3w6/xrwDpEMlZeX8+yzz7J8+XKKi4vp168ft956K9OnTzc7NGnMYoHxv4Neo4xqc/m74aXz4YrnIPEal04VHerPazeN5cONOTy2bDvbckuYseB7bpvSjznnD/TIT20O5Ffw2LJtfLHjCAA9uvny4PShXD6il/uqxOXvhaVzIPN74+e4s+GKeThD43Fu2gQxo4wpcmffafwyzdsFmT/AgR+N5Kg4C3I3Gl8/Pm+cI2LAT4lR3EQI69vhPwWSn1itFnqH+nPE18PeLEjX032IsY5o8S2w+3P48HeQu8moQOeG6b4XDevJB7efxS2vp6hB6xlSUV3LlsNVfPXFbtZnFLIxq4jqWkeTfUL8vZuUuR7SKxivrj7TpObYcVPWsppUYaMkB+zVpz+PX8hP09YaT12rv6sT1N0tvbw6ug6RDM2ZM4e0tDTuuece4uPjWbZsGXfffTcOh4PLL7/c7PDkeLHjjfLbH/zGmJLwwW+NaXPT/s8ovNBCFouFq8bEMGlgFI8s3cYnaQdZ8JVRivvJq0eQ7CGVe47V2Hnh67288M1eqmsdeFkt/Pacvsy5YKD75jE7HLDuRfjiUaitBO9AuPBRSP4tWK3GvNzjWa3Gm4vuQ2Dsb41tRVk/JUYH1sCR7ZC/x/ja+IaxT1BP4w5ifXLUY7hH/DIVkQ7APxT+5134+nH49klY+4LRN+/a19xyF3twz258NOscZjVq0Pq/0xKYdZ4atLrLkdJjfLH9CCu3H+L7PXlU253AT3cxIoN8jcSnrslpQvfgrlmMqbIIMn+k+75vsRx530hw6pOe8qOnP95iheDejRKcRklO/c9+6ksIHSAZ+uabb/j+++/5xz/+wWWXXQbAhAkTyM3N5cknn+TSSy/FpgW9HU9QFPxqCXz1f7D6H7BuoXG34NrXjP9gLogK9mXBL8Zw+dZDPPzRVvYdLefaF9fw64nx/L+LBhHYhRc2frH9MI8u29ZQ2vOs/hE8NmMYA7q7cepF3h74aBZk/Wj8HD8JZsyHsHjXzxXax/iqL2FbUQBZ6+BA3d2jnA1Qdgi2LzG+AHyCjaqE9clRdBJ4q0eDiLQTqxXOf9BYR/ThbZD5XV0/ojeM3z9tFF7XoPUvy7bz+ppM/v55OjsOlfLUNWrQ2lp7jpSxcvthPt9+iE1ZRU2anEb6WzlnUE+j2lvfcPpFBnbNxLOiwPiQMeN7Y2r6oTRsOOlzsv29A5tUXjthzU5wb7dUVvQEpr9KK1euJCAggIsvvrjJ9quuuop77rmHzZs3M2bMGJOik1Oy2uCCPxmL6j/8HWSvhxcnw9X/hv7nuXy6i4f3ZGK/CP76yXbeT83mtR8yWLn9MI9flcjkhK61LiUzv5xHP97OlzuNKXE9u/nx0GVDmJ7oxilxDrsxle3Lv0LtMfAJggsfg6SbjDcL7hAQDoMuNr4AaiqNhKg+OTqwFqpLjdK3e1cZ+1i9offonyrW9Rnvlg7yIiJNDLkMIlfBO78wpnW/cglc9gyM/kWbT+1ts/LYjOEM7lnXoHXLQfYfVYPWlnI4nGzMKmpIgI6vcjmyTyjThvbggsFRlOXsZvToEV3vg/GKAmPKesZ3RgJ0eCvHl6F2hg+g0Dea0PhErKGxjQoV9AG/UE1JdxPTk6Hdu3fTv39/vLyahjJo0KCGx11JhuzNTfdx4bjWHt/ZtWn8A6bBzV9h/e+NWA5twfnGlTjPfQDnOXcZt2ldEORrZe5Vw7lsRE8eXLKN7MJKZr6yjqvHRPPgpYMJ8W+fSldn6u+/strOv77dx8LV+6mudeBtM6rEzTq3P4G+XjgcjtOfpCXy0rEunY0lJwUAZ98pOC57zvgF6nSeMC3ObeO3+kCfCcbX2RgJ2eFtWLKMqXWWrB+xlB2G7HXG1/f/NOKLGowzdiL0mYgzdoLLdxfbSv//2zZ+T33dpBOIGgS3rDLuEO36FD663ZjFcNHfXJrWfTI3jI9lQHc1aG2JYzV21uzN5/Pth1i5/Qh5ZT/1+/G2WZjYP5JpQ3tw4dAe9OjmBxi/WzbldpE3/GVHjeSnPgE6sv3EfSITIP4cYz1v/Dk4AqLYv2kTo0aNgq6WDHYgpidDRUVFxMSc+MYnJCSk4XFXpKWltSmeth7f2bVl/JYxTxC7dR6RBz7F8vX/UbR9FRmj78Pu4/qc1CBg7rnBvJ1mYfmeCj7YkMOq7Qe5ZXQ3JsT4tTrG02mvv3+n08n63Cpe3VTKkQrjjeOI7j78dnQ3YrpVsnvHVvc8kcNOj33v0XvXa1gcNdi9Asga+nvyYy+FjHwg/5SHt9u/f59xMGAc9L8Dn4pcggq2ElyQRlB+Gn7lWViO7sRydCekvgpAlX93ysITG76OBce5nFi3hv7/e/b4pYvyC4Hr3oJvn4Kv/wbrXzI+hb/2PxDco82nr2/Qesvrqeyoa9D6lxnDuV4NWimuqOHLXYdZuf0wX+862qTyW7CvF+cN7s6FQ3tw7qAo97WN6CjKjtTd9fnOSICO7jxxn6ghEH/2TwlQUPemj+uDpjPC9GQIOOW0IFenDCUmJrbqVqrdbictLa3Vx3d2bht/0ngcm97EsvyPhB75kZFr78BxzWtGBbpWmJgMKZmFPPDhVvYeLeepNUVcPKwHj1w+lKjgkzTpaoX2/PvPyC/nsWU7+Ca9CICeIX48dOlgLh7Ww73zno/swPrxHCy5GwBw9r8Apj9Dn5CYk885rnNm//2PBn6qFGkvPwpZa7EcWIPlwI9waAu+lUfwzVlFRI4xtc7pFwp9xuOMnYizz3hjmp3NfWWg9f+/beOvP16kw7Ja4dx7jXVEi28x1mYsnGK0h4hJbvPpY8IC+OD3E/nf9zfzadoh7lucxs5DpTw4fYjH9dDLKapk5bZDfL79MGv3F2B3/DT1q2c3Py4c2oNpw3owvm9E1yp5XXKw0bS374ypmcfrPsxIfOLPNpIfNzQHlrYzPRkKDQ1t9u5PcXEx8NMdopay2WxtejPT1uM7O7eMP+nXRrO792ZiKczA9uolcOlTMGZmq+a3ju8XySd3TGL+l3t44Zu9rNh2mDX7Cnj4sqFcPSbarQmFO//+K6vtPP/1Hl78Zh/VdmNK3M2T+jHn/AHuXWRrr4Xvn4VvnjBKafqGwMWPYxl1AzYXXxtT/v136wnDZhhfYDSCy15ft+boB8hOwXKsCHZ/hmX3Z8Y+Xn4QnWxUrYubCDHj3FIVR///PXv84gEGXWyU337nBqN1wKuXwPR/GNenNgrw8WLBDWOY9+Uenl6Zzms/ZJB+uJQFN3TtBq1Op5MdB0sb1v9syy1p8vigHsENCVBidEjXKX5QnFOX/Kw21vwU7D1uBwv0HA5x59Td+TlL62M7KNOToYSEBJYtW0ZtbW2TdUPp6ekADBw40KzQpC16jYRbv4YPfw/py+HjO4zy25f+vVUNuvy8bfzvRYO4JLEnf/zvFrbllvC/729m6eZc/nblcGLCOk7TL6fTyWfbDvOXZdvJKTKqxE0aGMkjVwyjf1SQe5/s8Daj6/rBTcbPAy+Cy5+Fbr3d+zxnkm+QUYCjvgiHvQYObmlUlGENVOQbFaIyv4PVGFPoegz/qWJd7EQIVu8PEWlG5ICf1hHtXGb0XsvZAJc8AV5tm3FgsVi444KBJPQI5u73NvHD3nxmLPiel2Ymd6kGrbV2B+szCuvW/xwmu7Cy4TGrBZLjwpk2zFj/ExcRaGKkblR0wEh6Muvu/BRmNH3cYoWeI36a8hY3EfzDTAlVXGN6MjR16lTee+89Pv/8cy699NKG7R9++CHdu3dn5MiRJkYnbeIfBte/bdy1+PIvsOkt403tz/8DEf1bdcphvUNYMutsXlq9j2e/2M236Ue56JlvufeSwfxyfJzpvQb2HS3jkY+382260QMgOtSfhy8bwkXDerr30zB7DXz3DHzzJDhqjKoylzwBI67retVlbN4Qk2R8nTXHKACRt/un5CjzByjKhENbjK91LxrHhfU1PomLnQCxZxn/5rraayMireMbDD9/A7572qi4mfqq8eHSz1+Hbr3afPqLh/ckPtJo0HqgoIKrnv+eZ68fzYVD275GySwV1bV8m36Uz7cf5sudRyiqqGl4zNfLyqSBUUwb1oMLBncnIsh909hN4XQa15X6Sm+Z3xnJUGMWm/HBb3zdnZ/YCcb6NOl0TE+GpkyZwtlnn80jjzxCWVkZsbGxfPLJJ6xevZqnnnpKUzY6O6sVJt1t9Hb472/gcBosPA+ufAEGTz/98c3wtlm5/dwBXDSsJ/d9sIX1GYX86aNtfLw5l7lXj3D/3ZcWqKiuZcFXe3jp2/1U2x342KzcOrkfs84bgL+Pm/8NH9xiVEQ6VLdGY9ClRrlYT7kTYrFAVILxlXSjsa0kt64R7I+QucZYHF243/ja9JaxT2DUT81gYycan+CpB4OI57JaYfL/Gm9oP/itUeFy4RQjSYod3+bT1zdovf2tVH7cV8Ctb6Rwz4Wdq0FrXlkVq3YYBRBW786jqvaniqdhAd5cMMS4+zNpYGTn7rHkdELBvrppb3Xrfkqym+5jsUH0mIZKb/QZr6alXUSH+Jc7b948nnnmGZ577jmKioro168fTz/9NNOnt+7NsnRA/abAbavh/RuN6XLv3ABn/wHOf7jVb0j7RwXx7q0TeXNtJk8s38n6jEIu+edq/jB1ILdO6ofXGVi06nQ6WbH1EH9Ztp3c4mMATEmI4pErhtE30s1TA2qrjQa3q/8OjlrjztslT0HiNbrj0a03DL/a+AKjc3f2euOu0YEfISfV6Ni942PjC4yGdX3GGneNYsbhVeWAqhKjIazN2+ijJSJd38ALjXVE7/7SKHf82nS49EmjJ1sbf7eGB/rwxm/H89jH23njR6NB685DpTx1zUj3f1DmJvvzylm5/RCfbztM6oHCJg1Q+4T7M21oT6YN7UFSXNgZuc62C6cT8vca633qE6DS3Kb7WL1PTH58z/yHrdL+OkQyFBgYyEMPPcRDDz1kdijSnrr1hhs/gZV/MpqBfv+s8Sb1mldOLCfZQlarhZkT4zl/cHce+HAr36Yf5ckVu/g07SBPXD2CYb3b75b13qNlPLJ0G6t35wHGlLg/XT6UaUPdXCUOIHcTfDSrrikbMORymP50q1+3Ls8/1HiDM/BC4+eaY8a6qvrkKOtHOFYM+76GfV9jA0YCfN7oHBarcTG0+RgJu82n7uf6Lx+w1m23eTf9s83btWOb7O+G4z09ORZxVUR/+O1K4/fs9iWw7C6jH9Glf2/zOiJvm5W//Gw4Q3oZDVqXbTnI/rxyFs7sGA1aHQ4nW3KKGxKg3UfKmjyeGB3SUABhUI/gTnNXqwmnE/LSm5a6LjvcdB+bj1GYp77SW59x4NNF1jvJKXWIZEg8iM0bLn4cYsYai1YzVsO/JsG1rxmLDVspJiyA/9w0lv/f3p3Hx3S2jx//zCSWJDQRkUjFlpA9jS2Lfa09Yvd8v30SVVuq1INudKPVouppiVqjivr2RyvUvrcPWgnioRFBrBVrhFiCLDPn98eRkSEIk32u9+s1L68558zMfc9M5nKdc933vergBT5ff5QjF27RY/YfRLR2ZVS7+lQsV3Bn4NIzsonceZJFe06TpVMob6klopUrb7YphJK47Ax1XNCeb0DRgXVVNTj79JL/8D6PchUflMgFq/f1ekhJfJAc7UU59yea25eMH6PoQZeh3kobreUzkinj5EmrtcAFB/CfB5TMs9VCFLoKldRY9MdM2DEJDi6FK0dhwLICmZTmf4Nq4VbNhjeXHyTh4i1CZ+9h3j8b06QYFmjNzNaz93QqWxMusz3xClduPfyds9RqCHatSkcfJzp4OfFyCUjYnpuiqOv65E5+0lOMj7GooP5fJGeqa5cAtTJAmB1JhkTx8O0NTj6wIkyd3vSHbtDxcwge8cL/yddoNPRt7EIrdwcmrk1gY/xlvvvtFJuPXOarvq/QuLZpAUdRFDbGX2byhqNcelAS19ajGp+G+FCnoEviQL1qtuYt9T/toCZAXb+WdQkKglarfv+cfCBwKHqdjkP/jaOBnw8Wik4tQ9RlqhNV6DIfuZ+lTlqhy1SnNddlPriflY/jswrwuXId/yh9tnrLvvf4vjxoACdAl/452JbimQiFMJVGAy3+BdX91HGuFw7A/NbqxD+1m5n89EGuVVk7sjlDlhzg2OXb/M/CGCb39GVAQOEv0Hrrfha/HbtqWAD1Tka2YZ9NeQvaeDrS0duJNh6O2FqVsgVQ9Xq1xDFnqutzf6qzjuZmWVG92pMz1XWNxuqJMmH2JBkSxaeaBwzdCetGw5FfYMsEdTxRj9kmDUp0rFyROa81ZvORS3y0JoFTKen0nbeXgU3r8G4nD2wqPP/X/uRVtSRuz0m1JM6lihWfhvjQwcux4EsGsu7Df6aqZycVvTrwv9sM8A4t2NcRxjQWarAsbZO2KMqDhCl38pSPpCzXfX1WJieuZVK/Uumd6UqIAlWvvbo8xIp/quXJS0Kg81QIGGLyVXmXKtZEj2jGuJWH2XTkMu+viifx0m0+6uZV4GNwLt28x/ajV9h69Aoxp1PJ0j0cAFStcgW1/M3biaZuValgWYp++/Q69XM5+4eaAJ37A+7dMD6mnLWa/NRpoSZANRqZXPIoyiZJhkTxqlAJ+kSpAxO3TICjvz4sS3D0MumpO/s6E+xalckbEvklLpkf/jzL9sQrTOntR8v61fL1HOkZ2czamcT3e848LIlr7caINm4FWnpncH6/WrN+7bh637cvdPkKbKoW/GuJskGjeVj6xoutt6XodKQfOlSgzRKi1LOvC4O3qiXdR1bBxnfUcUTd/m3yFYXcC7R+s11doDXp6m1m/49pC7QqisKJK3fU8T9Hr/BX8k2j/fUcKxkSIH8Xu2JfjiLf9Dq48tfDmd7+/lMd95lbORu1FLpOc6jTEpwbgGXZXexWFBxJhkTx02ggaBi83BB+HgipSbCwHYTMglf6mfTUdtbl+bqfPz38X2Z8dDzJN+4Rtmgf/Rq78FE3b2yt8y4FUBSFDfGXmLw+kcu31JK49p6OfBLiXTgLyGXdg9++gL3fPbga5KhOl+3VveBfSwghRP6Ut4E+i+DlRrDtY3Wq/qtHYcCPYOti0lNrtRpGd6iPR3V1gdY/TqoLtEYNbIK7U/4XaNXpFeLO3WBrwmW2JV7hXOpdwz6NBhrVqkJHb3UKbNdiWHrihaX9jSZhDW6HN6DdmgAZt433l6/8IPl5UPbm7P/gpJAQz0eSIVFy1AyA4bvU9R5O/w7RQ9SyuU5fmHxpu5V7NbaOacX0LcdZsvcsP8cl8/uJFD4P9aWzr/H6PCev3uaTXxP485Rab1zL3ppPQ7xp71VIJUR/x6rrBqWeVO+/MkAtx7Au+kG1QpQV6enpfPvtt2zatImbN2/i6urKsGHD8rVkQ3R0NOPHj89z3549e6hWLX9XlkUZodFAs5FQ3Rd+HqReHZrfWp1soW5Lk58+Z4HWIUvUBVp7ffcHM//RkA5PWaD1XqaOPSevsTXhMjuOXeV6eqZhX3lLLS3qOdDR24n2Xk5Uq1yKSsNuXlBn8zsSDRcOoAXscvZVsFUnWsqZ6lrWihMFRL5FomSxcYB/RsPvU2DXdNi/UA08/ZeYfBbOpoIlE3v40O0VZ95f9RenU9KJ+DGObn7OfNLdk3tZeqZsOsYPf54jW69QwVJd3HV4a9fCKYnLvKuufB4zB1CgsjN0/xY8Ohf8awlhZkaNGkV8fDzjxo2jTp06rF+/nrFjx6LX6wkJCcnXc0yZMgVXV1ejbXZ2doXQWlEquLZ5MI7oNXXR66Wh6sm6oAiTxxF5Vn+JtSNb8OaPccSeuc7QZQd4p6MHw1vWMRxzPT3TsADqrqQU7mc9XADV1qoc7T0dedXbiVbu1V5obGyxuX1ZLZE/Eq0ue2CgQanTgmRrX15u1h+Ll/1l/TdRKErRX4swG1oLaPeROs1l9DB1Np95LdWxRfXam/z0AXXs2fh2S2btSGL+rtNsiL/EnpPXsFB0XL+vBpcOXk58GuJNTfsXG4PxTOf+VMcGXT+t3m/wmhpUraoUzusJYUb+85//8McffzBjxgy6d1dLTYODg7l48SJfffUVXbt2xSIfE2XUr18fPz+/wm6uKE2q1IY3tqoT/8SvhM0fqOvAhXxr8rTM9jbl+XHIwwVap285ztGLN6mmTWfa/lgOnLuBPtcCqDXsrAzr/wTUsadcaVoA9U4KJP4KR1arkx+Q0zEN1Gqqzjjr1QO9tQNXDx3iZWdJhEThkWRIlFzunWD4f2BlOFw6DD/2gbYToOU76tTIJqhYzoL3OnvS1c+Z9375i6OXbgFqSdykHj609SykxUwz02H7JNi3APVq0MvQY9bDxUGFECbbtm0b1tbWdO5sfJW1d+/ejBs3jsOHD9OoUaNiap0o9cpbQ+8F6uxkWz6Ev/6fOo7oH8vBzrQpsnMWaPV0rsynvyawIf6y0X5v55cMCZC380ulawHU9FQ4tk69AnR2tzo+NodLoJoAeYcar+mk0xV9O4XZkWRIlGxV6qhn4Ta9BweXqJMMnN+nBqICGFPjW8OWX0c258e9Z/n7fDLv9grGumIhzT5zZjesHQk3zqr3G4VDx8lQ0bZwXk8IM5WUlISbmxuWlsYhzsPDw7A/P8lQREQE169fp3LlygQGBvL222/j7u5eKG0WpYxGA8FvgpMv/Pw6XP7r4Tgi19YmP/1rQbWpV60SH66OpyJZ9Ap0paOPc+FVKxSWezcgcT0krFbHAiu5kpuXGz1IgHqCXc3iaqEQkgyJUqBcRfXqSc0g2DAWTm57uAheDdPP7paz0BLetDaHrG5QoTDGBmXcge2fwv4o9f5LLmp/CqDkTwjxuLS0NFxcHh9jaGtra9j/NA4ODkRERNCgQQMqVarEiRMnWLBgAQMGDOCnn37C09Pzuduke8Ez3DmPe9HHl3Ylvv+1msGQnWh/Dkdz6RDKsp4o7SeiBL9l8jiiJrXt2DiqGfHx8fj51cTCwqLkvg+53b+F5vhGNIlr4NRvaHItDK1UfwXFuxeKd0+15DDHE/pV4j//Qib9N63/+X2cJEOi9Gj4mroq+MpwuHEGvu+krsHT+HWTg06hOf07/DoKbv6t3m88CF79zKRFZYUwJ7GxsYSHh+fr2DVr1uDlpa5P9rTyoWeVFrVq1YpWrVoZ7gcEBNC6dWtCQkKYOXMmc+fOzVd7couPj3/uxxTk40u7kt5/TcMp1LL4FofkLWi2f8L1xN85+8o7KJamrUeUo6T3X5t9F9vLe7G/+DsvpexDmysBuvuSKzec23Dj5TZkVHpwkuLcDfWWTyW9/4VN+l+4/ZdkSJQuzq+os/mseROOb4T1/1LL5rrNUOu4S4r7t2DbJxC3WL1vWwtCI9XZiIQQ+Va3bl0mT56cr2OdnZ0Bdca3vK7+3LypLtKYc4Xoebi4uNC4cWMOHz783I8F8PPzy9ekDY/S6XQPrgy82ONLu1LV/0b/h/7AIjRbJ2B/YSdVsq+i77fM+ArIcyrR/c9MR5O0Fc3R1XByO5rs+4ZdioO74QpQhWoeVAeqP/mZnqhE978ISP9N63/O459FkiFR+ljZwYDl8OdM2PEZHP4/tV67/1Ko6lbcrYOTO2Dt23ArWb0fMAQ6TIQK+V9ETwihcnR0pF+/51t82d3dnfXr15OdnW00bujEiROAOkvci1AUBe0LTt5iYWFh0n9mTH18aVdq+h88HJzVCgbNlSNYLGoHfb8Ht3YmPW2J6X/WPUjapo4BOrEZsh4u8Iq9mzoGyKc3GkevAp3cocT0v5hI/wu3/6VoHkYhctFqocUYCP8VbKrBlSOwoI06ULO43L8Jv46EH3uriVCVOjBwvXrVShIhIYpMhw4duHv3Llu3bjXavnr1ahwdHfH393/u5zx//jwHDx58occKM1O7GQz7D9RorE4g8GMf2PMtKMozH1oiZWfAsY2waihMrwcrwyAhWk2EqtRRY/Hw3TAqTl0Ww8m75JauC5EHuTIkSre6rdQf4Z9fVxdrW/EaNB8N7T4p2pWpTzxYd+L2RfV+UAS0/wTK2xRdG4QQALRu3ZrmzZszceJE7ty5Q61atdiwYQO7d+9m+vTpRmcYJ0yYwJo1a9i2bRs1atQA4PXXX6dJkyZ4enpiY2PDiRMniIqKQqPRMHr06OLqlihNbGvAoE2wYRz8d5k6ic6lQxD6XemIC9mZ6pjXhGg4tgEybj3cZ1sLfHqCTy94uaEkPqLUk2RIlH4vOcPr62HbpxDzHfwxE5Lj1NKEyk6F+9r3bsDmCWqpHoC9qxrsajcr3NcVQjxVZGQk33zzDbNmzSItLQ1XV1f+/e9/061bN6Pj9Ho9Op0OJddZe3d3dzZt2sT3339PRkYG9vb2BAcHM2LECOrWrVvUXRGllWUF6BGpznq68T21tCzlOAz4sWSUdD9KlwVndqkJUOJ6uJ/2cF/ll9Xkx6cXuDSRBEiUKZIMibLBohx0/hJqBqilauf2wPxW0G9x4SUmxzfBun/BncuABpq+BW0/LFkTOQhhpmxsbPjoo4/46KOPnnrc1KlTmTp1qtG2CRMmFGbThDnRaKDJG+Doo5aXXT0KC9tCn0UlY7FtvQ7O7lEToKNr4d71h/sqOalrAPn0Upe2MHGxcyFKKkmGRNni00tdBG/FPyHlGPzQXZ3Kuqnpaz4Y3L0Omz+Av1ao96vWg9A5UCuoYJ5fCCFE2VIrSB1HtDIckvfB8n7q+JqW44r+KoteB3/HPEiAfoX0lIf7rB3AO1SNpbWbgdZ8B+0L8yHJkCh7HOrDkB3qtNvxP8PWD+F8rFq+Zur6PonrYf0YSL8KGi00HQltJ0A5qwJpuhBCiDIqp6R70/vqsgs7P1fHEfWcW/iT7Oj1kLxfTYAS1jyoaHjAqgp49VBngqvdomjH2wpRAsg3XpRNFSpB74Xqpf3N4yFxrVqe0H+ZOtPN80pPhU3vwZFf1PsOHtBzjlo7LYQQQuSHZQUI+VadeGDjO5C4Dq4lwT/+r+DHESkKXIhTxyolrHm43ANARVvwDAHfXlC3tVpqLoSZkmRIlF0aDQQOVYPOyoGQehKi2kPITHilf/6fJ2GNGrTSU9SrQc1HQ+sPoFzBrCwuhBDCzDQeCE4+D0u6F7SFPgvBvZNpz6so6tWmhNXqLe3vh/vKVwbPbuoVINe2YFnetNcSooyQZEiUfS5NYPguWDUYTv8G0UPVeunOU9SzdE9yJ0VNgo6uUe87equldjUaFUmzhRBClGEuTdRxRD8PhL/3wv8NgDbjodW7zzdZgaKoa+3lJEDXTz/cV84GPLqoCZBbezmJJ0QeJBkS5sGmKvxzFfxnmno7sAgu/hf6LwW7msbHKopaV73xXbibChoLaDlWDVBPS56EEEKI51HZCcLXwpYJsH8h/P4lXDoMveY9e4zr1UQ4Eq0mQKlJD7dbWqlXmHx7Q/2OMqZViGeQZEiYD62FOtlBjSbq1aGLB9Xpt/sshLpt1WPuXIXN76p13KDOTBf6HbzcoNiaLYQQogyzLA/dvlZLutePgeMbYGE7dRyR/SPjiK4lPUyAUhIfbreooE7V7dsb3DuXjoVdhSghJBkS5se9o1o2tzJcra3+sS+aVu9hf9sC7fa56kKqWkv1SlCLsVJXLYQQovA1fA0cvdRxRKlJakLUcy7l0xU0e3aq02BfiX94vEV5qNdBnQbbo0vhz0gnRBklyZAwT1Vqwxtb1PWC4haj3TUNw7ry1f3UqU6r+xVnC4UQQpibGo0ejCN6Hc7twWLlPzGKRFpLcGv3IAHqClZ2xdNOIcoQSYaE+SpXUZ3itGYgyvoxKLpsaP0e2pZjZZpRIYQQxaNSNQhfA1s/hti5KBot1G2Nxrc3eHYHa/vibqEQZYokQ0I0+F/0dVqRcOQIPk1fBQtZcVsIIUQxsigHXaaia/AaR85cxTeoDRYSm4QoFM8xd6MQZVhlZ7KsqhV3K4QQQoiHHL3JrmBX3K0QokyTZEgIIYQQQghhliQZEkIIIYQQQpglSYaEEEIIIYQQZkmSISGEEEIIIYRZkmRICCGEEEIIYZYkGRJCCCGEEEKYJUmGhBBCCCGEEGZJkiEhhBBCCCGEWZJkSAghhBBCCGGWJBkSQgghhBBCmCVJhoQQQgghhBBmSZIhIYQQQgghhFmSZEgIIYQQQghhliQZEkIIIYQQQpgly+JuQEFRFAUAnU73Qo/PedyLPr60k/5L/3P/a26k/6b1P+dxOb/D4iGJTaaR/kv/c/9rbqT/RRObNEoZiV6ZmZnEx8cXdzOEEMJs+fn5Ub58+eJuRokisUkIIYrXs2JTmUmG9Ho92dnZaLVaNBpNcTdHCCHMhqIo6PV6LC0t0Wql+jo3iU1CCFE88hubykwyJIQQQgghhBDPQ07hCSGEEEIIIcySJENCCCGEEEIIsyTJkBBCCCGEEMIsSTIkhBBCCCGEMEuSDAkhhBBCCCHMkiRDQgghhBBCCLMkyZAQQgghhBDCLJlFMhQdHY2Hh4fh5u3tTYsWLRgzZgxnz541OvbAgQN8+OGH9O7dG19fXzw8PEhOTi6ehheQ/PZfp9OxePFiBg8eTKtWrfD396dLly58/fXX3Lp1q/g6UEgefV8evcXGxhZ3E1/Y5s2b8fDwYOPGjY/t69GjBx4eHuzevfuxfR06dKBXr14A/Pbbb7z33nuEhITg4+ODh4dHobe7oJja/zt37jB37lzCwsJo3rw5DRs2JCQkhAULFpCRkVEUXTBJQXz+33zzDT179iQwMBA/Pz/at2/Pxx9/zIULFwq9/eZCYpPEprxIbJLY9CiJTYUbmyxf+JGl0JQpU3B1dSUjI4ODBw8yb948YmNj2bRpE7a2tgDExMSwd+9evLy8sLGxYd++fcXc6oLzrP7fv3+fyMhIunfvTr9+/ahSpQpHjx5l7ty5/Pbbb6xatYqKFSsWdzcKXM778qh69eoVQ2sKRmBgIBqNhpiYGLp27WrYnpaWxokTJ7C2tiY2NpaWLVsa9l2+fJnz588zaNAgALZt28bhw4fx8vKiXLlyJCQkFHk/XpSp/b948SJLliwhNDSU119/HWtra+Li4pg9ezZ//vknixcvRqPRFEfX8qUgPv9bt27RrVs33NzcsLGx4eTJk8ydO5edO3eyfv16qlSpUuT9KqskNklsyovEJpXEJolNhR2bzCoZql+/Pn5+fgAEBQWh0+mIjIxk+/bt9OnTB4ARI0YwcuRIABYtWlSmAs6z+l+xYkV27Nhh9EUKCgrC2dmZ0aNHs2XLFkJDQ4ur+YUm9/tSVtjb21O/fv3Hvr/79+/H0tKSPn36PHZ2MSYmBlA/c4DJkyej1aoXjz/77LNSFXBM7b+Liws7d+7E2trasL9p06ZYWVnx1VdfERcXR5MmTQq/Iy+oID7/Tz/91Gh/zvsybNgwduzYQd++fQuxB+ZFYpPEprxIbFJJbJLYBIUbm8yiTO5Jcn5kUlNTDdty/sDMwaP9t7CwyDOjfuWVVwA1OxelR1BQEGfOnOHq1auGbbGxsfj6+tK6dWsSEhK4c+eOYd++ffuwsLAw/JCW9r8FU/pvbW1tFGxylKa/BVM//7zY29sDYGlpVufRipzEJolNZZnEJolNJS02le5vlIly6q3r1KlTvA0pJvntf05WXpovzT+NXq8nOzvb6KbT6Yq7WSYLDg4GMDoDExsbS2BgII0aNUKj0RAXF2e0z9vbm8qVKxd5WwtDYfS/NP0tFFT/s7OzuX//PkePHuXLL7+kTp06vPrqq0XTCTMlsUliE0hsyr1PYpPEpsKMTWaVDOX8sKSnp7N7927mzp1LQEAA7dq1K+6mFYkX6f+VK1eYMWMGvr6+tG3btghbW3T69++Pj4+P0a0slCYEBASg1WoNPzg3btwgKSmJgIAAbGxs8Pb2NvyAXrp0ieTkZMNl6LKgoPt/7NgxoqKiePXVV/H09CySPpiiIPqfkpKCj48P/v7+9OrVC51Ox9KlS7GxsSny/pRlEpskNuVFYpPEJolNRRObzKrWoX///kb33dzcmDNnjtmUfDxv/9PS0hg6dCiKovDtt9+W+kvTTzJt2jTc3NyMtpXkAYj5ZWtri6enp6H+dv/+/VhYWNCoUSNA/UHK+cHJOaYsBZyC7H9ycjIRERFUr16dyZMnF0HrTVcQ/a9SpQq//PILmZmZnD59mqioKMLDw1m2bBmOjo5F2JuyTWKTxKa8SGyS2CSxqWhiU9n8BXmCadOm8csvv7BkyRIGDBjAqVOnGDt2bHE3q8g8T/9v3rzJG2+8wZUrV/j++++pWbNmEbe26Li5ueHn52d08/X1Le5mFYigoCDOnj3LlStXiI2NxcfHx3DmJDAwkMTERG7fvk1sbCyWlpY0bty4mFtcsAqi/xcuXCA8PBwLCwuWLFmCnZ1dEffixZnaf0tLS/z8/GjcuDH9+vVjyZIlJCcns2DBguLoTpklsUliU14kNklskthUNLHJrJKhnB+W4OBgPvvsM/r168fu3bvZvHlzcTetSOS3/zdv3mTQoEEkJyezePHiUnHZVeQt52zKvn372LdvHwEBAYZ9OT8u+/fvJzY2Fj8/vzJX/mRq/y9cuEBYWBgAS5cupXr16kXU8oJR0J9/9erVcXR0fGwNHGEaiU0Sm8yNxCaJTVByYpNZJUOPevfdd7G1tWXWrFno9fribk6Ry6v/OcHm/PnzLFq0CG9v72JupTBFQEAAFhYWbNmyhaSkJAIDAw37KleujJeXF2vWrOHChQtlqgwhhyn9v3jxImFhYej1epYsWUKNGjWKuvkmK+jP/9y5c1y+fJnatWsXZrPNnsQmiU1lncQmiU0lKTaZR0HyE9ja2jJs2DCmT5/OunXrCA0N5fr164ZBXSdOnABg165d2NvbY29vb/SBlXaP9r9Tp04MHjyYo0ePMmHCBHQ6HYcOHTIcb29vT61atYqvwYUkKSkpzxl6atWqZZiusbSqVKkS3t7ebN++Ha1W+9il5oCAAJYsWQI8XpN74cIF4uPjAfj7778BDGdqa9SoUSoG8r5o/1NTUwkPDyclJYUvvviC1NRUo2mOq1evXirOxL1o/48dO8aUKVPo1KkTNWvWRKvVcuLECX744Qfs7Ox44403irQf5kZik8QmkNgksUliExRNbDLrZAggLCyM5cuXM2fOHLp3705SUhKjR482OmbSpEmAWse4bNmy4mhmocnd/4YNGxp+YL744ovHju3VqxdTp04t6iYWuvHjx+e5ffLkyfTr16+IW1PwgoKCiI+Px8vLi0qVKhntCwgI4IcffqBcuXI0bNjQaF9sbOxj703O30Zp+i68SP9PnjzJ+fPnAfUs9aNGjhzJqFGjCrfhBeRF+u/g4ICjoyOLFy8mJSWF7OxsqlevTps2bYiIiMDZ2bmou2F2JDZJbJLYJLFJYlPRxCaNoiiKSb0RQgghhBBCiFLIrMcMCSGEEEIIIcyXJENCCCGEEEIIsyTJkBBCCCGEEMIsSTIkhBBCCCGEMEuSDAkhhBBCCCHMkiRDQgghhBBCCLMkyZAQQgghhBDCLEkyJIQQQgghhDBLkgyJFxYdHY2Hh4fh5u3tTYsWLRgzZgxnz54t7uYBMG/ePLZv3/7Y9tjYWDw8PIiNjS2GVql27txJREQEzZo1w9fXl8DAQAYOHMjatWvJysoqtnY9Kq/36oMPPqBdu3aF+rpXrlwhMjKSxMTEQn0dIUTZIrHJNBKbnk5iU9ljWdwNEKXflClTcHV1JSMjg4MHDzJv3jxiY2PZtGkTtra2xdq2+fPn06lTJzp06GC03cfHhxUrVlCvXr0ib5OiKEyYMIHo6Ghat27NBx98gLOzM7dv3yY2NpZJkyZx48YNBg4cWORty68RI0YQHh5eqK9x9epVZs+eTY0aNfDy8irU1xJClD0Sm56PxKb8kdhU9kgyJExWv359/Pz8AAgKCkKn0xEZGcn27dvp06dPMbcub5UqVaJBgwbF8tpRUVFER0czatQoRo4cabSvXbt2DBkyhHPnzhVpm+7fv0/FihXzfXytWrUKsTVCCGE6iU3PR2KTMFdSJicKXE7wSU1NNdoeHx9PREQEgYGB+Pn50bNnTzZu3Gh0zPXr15k4cSJdu3alYcOGNG3alPDwcA4cOPDY62RmZjJ79my6dOmCn58fQUFBhIWFcfDgQQA8PDy4e/cuq1evNpRLhIWFAU8uRdixYwcDBgzA39+fhg0bMmjQIP773/8aHRMZGYmHhwdJSUmMHTuWxo0b06xZM8aPH8/t27ef+t5kZWURFRWFq6srb731Vp7HVKtWjSZNmhjup6WlMXHiRFq2bImvry/t27fnm2++ITMz0+hxGRkZzJgxg3bt2uHr60vLli2ZNGkSt27dMjquXbt2DB8+nK1bt9KzZ0/8/PyYPXs2AKdOnWLw4MH4+/sTFBTEJ598Qnp6+mNtzKsUwcPDg88++4w1a9bQpUsX/P396dGjB7/99pvRcefOnWP8+PF07NgRf39/WrZsSUREBMePHzccExsbS9++fQEYP3684fOLjIw0HJOf75MQQuSQ2PRkEpskNpkzuTIkClxycjIAderUMWyLiYlhyJAh+Pv7M3HiRCpXrszGjRsZM2YM9+/fp3fv3oD64wowcuRIHBwcuHv3Ltu2bSMsLIwffviBoKAgALKzsxkyZAhxcXGEh4cTHByMTqfj8OHDXLp0CYAVK1YwcOBAgoKCGDFiBKCedXuSdevW8c4779CiRQtmzJhBZmYmUVFRhtfOHQQARo0aRdeuXenbty8nTpxgxowZgFqa8SRHjhwhLS2Nfv36odFonvleZmRkEB4ezvnz5xk1ahQeHh4cOHCABQsWkJiYyIIFCwC1vGHEiBHExMQwbNgwmjRpwvHjx4mMjOTQoUOsWLGC8uXLG543ISGBU6dO8eabb+Li4oKVlRXXrl0jLCwMS0tLPv30U6pWrcq6dev4/PPPn9nOHL///jvx8fG8/fbbWFtbExUVxciRI9m8eTM1a9YE1BIDOzs7xo0bh729PTdv3mT16tX079+f1atX4+rqio+PD1OmTGH8+PG8+eabtGnTBoDq1asD+f8+CSFEDolNEpskNok8KUK8oFWrVinu7u7KoUOHlKysLOXOnTvKrl27lObNmyuvvfaakpWVZTi2c+fOSs+ePY22KYqiDB8+XGnevLmi0+nyfI3s7GwlKytLGThwoPLWW28Ztq9evVpxd3dXVq5c+dQ2NmjQQHn//fcf2x4TE6O4u7srMTExiqIoik6nU1q0aKF0797dqC137txRmjZtqgwYMMCwbdasWYq7u7uycOFCo+ecOHGi4ufnp+j1+ie2Z8OGDYq7u7vy008/PbXdOX766SfF3d1d2bhxo9H2BQsWKO7u7sqePXsURVGUXbt25dmmnNdbsWKFYVvbtm0VLy8v5fTp00bHTp8+XfHw8FASExONtg8aNMjovVIURXn//feVtm3bGh3n7u6uNGvWTLl9+7ZhW0pKiuLp6anMnz//iX3Mzs5WMjMzlY4dOypffvmlYftff/2luLu7K6tWrXrsMS/6fRJClH0SmyQ25SaxSTyLlMkJk/Xv3x8fHx8aNWrEkCFDeOmll5gzZw6WluqFx3PnznH69GlCQkIA9cxZzq1Vq1akpKRw5swZw/P99NNP9OrVCz8/P7y9vfHx8WHv3r2cOnXKcMzu3bupUKFCgdV9nzlzhqtXrxIaGopW+/DPwsbGho4dO3L48GHu3btn9Ji8LsVnZGQ8VoJhipiYGKytrencubPR9pyzS3v37jUcl3t7ji5dumBtbW04Lndb69ata7QtNjaW+vXr4+npabS9e/fu+W5vUFCQ0RlOBwcHqlatyoULFwzbsrOzmTdvHl27dsXX1xdvb298fX05e/as0Wf8JM/7fRJCmCeJTSqJTRKbxNNJmZww2bRp03BzcyM9PZ2NGzeyYsUKxo4dS1RUFADXrl0zHDdt2rQ8n+PGjRsALF68mKlTp/KPf/yD0aNHU6VKFbRaLTNnzuT06dOG469fv46jo6NRcDBFzutXq1btsX2Ojo7o9Xpu3bqFlZWVYbudnZ3RcTmX+u/fv//E13F2dgYelms8S1paGg4ODo+VLVStWhVLS0tD6UZaWhqWlpbY29sbHafRaHBwcDAclyOvfqalpeHi4vLYdgcHh3y1FR5/T0B9XzIyMgz3p06dyvLlyxk6dCgBAQHY2tqi0Wj46KOPjI57kuf5PgkhzJfEJpXEJolN4ukkGRImc3NzMwxMDQ4ORq/X8/PPP7N582Y6d+5MlSpVABg+fDivvvpqns+RcyZo7dq1BAYGMmnSJKP9jw6UtLe3Jy4uDr1eXyBBJ6eNKSkpj+27evUqWq2Wl156yeTX8fX1xc7Ojh07djBu3Lhn1mbb2dlx+PBhFEUxOjY1NZXs7GxDu+3s7MjOzub69etGQUdRFK5du2b4fHLk9bp2dnaGH/Pc8tpmirVr19KzZ0/Gjh1rtP3GjRv5eo+f5/skhDBfEpvyT2KTxCZzJmVyosC9++672NraMmvWLPR6Pa6urtSpU4djx47h5+eX5y3n8rVGozEaTAlw7NgxDh06ZLStZcuWZGRkEB0d/dS2lC9f/qlnw3LUrVsXJycn1q9fj6Iohu13795l69atNGjQwOjM24sqV64cQ4YM4fTp03z33Xd5HpOamkpcXBwATZs25e7du48tzrdmzRrD/tz/rl271ui4LVu2cPfuXcP+pwkKCiIpKYljx44ZbV+/fv2zO/YcNBoN5cqVM9r2+++/c+XKFaNtTzqb+TzfJyGEyCGx6ckkNklsMmdyZUgUOFtbW4YNG8b06dNZt24doaGhTJo0iaFDhzJ48GB69eqFk5MTN2/e5NSpUyQkJDBr1iwA2rRpw5w5c5g1axYBAQGcOXOGOXPm4OLigk6nM7xG9+7diY6OZuLEiZw5c4agoCAUReHw4cO4ubnRrVs3ANzd3dm3bx87d+6kWrVq2NjY4Orq+libtVot7777Lu+88w7Dhw9nwIABZGZmsmjRIm7dusW4ceMK7P3JCTiRkZHEx8fTvXt3w8J2+/fvZ+XKlYwaNYrGjRvTs2dPli9fzvvvv8+FCxdwd3cnLi6O+fPn07p1a5o1awZA8+bNadGiBV9//TV37tyhUaNGHD9+nFmzZuHt7U1oaOgz2zVw4EBWrVrFsGHD+Ne//mWYsSd3CUhBaNOmjWFmHg8PDxISEli0aJFhNp4ctWrVomLFiqxbtw43Nzesra1xdHTEyckp398nIYTIIbHp6SQ2SWwyV5IMiUIRFhbG8uXLmTNnDt27dyc4OJiff/6ZefPm8eWXX3Lr1i3s7Oxwc3OjS5cuhsdFRERw7949fvnlF6KioqhXrx4TJ05k+/bt7Nu3z3CcpaUlCxcuZP78+WzYsIElS5ZgY2ODp6cnLVu2NBz34YcfMmnSJMaOHcu9e/cIDAxk2bJlebY5JCQEKysrFixYwJgxY7CwsMDf35+lS5fSqFGjAntvNBoNU6ZMoUOHDqxcudLwfuS0/5133jEMNq1QoQJLly7lm2++ISoqihs3buDk5MQbb7xhtCieRqNhzpw5REZGEh0dzbx587CzsyM0NJSxY8c+dkYzL9WqVePHH3/kiy++YOLEiVhZWdGhQwc+/vhjw/SvBeHDDz/E0tKSBQsWcPfuXby9vYmMjGTmzJlGx1lZWfHll18ye/ZsBg8eTFZWFiNHjmTUqFH5/j4JIURuEpueTGKTxCZzpVFyX3cVQgghhBBCCDMhY4aEEEIIIYQQZkmSISGEEEIIIYRZkmRICCGEEEIIYZYkGRJCCCGEEEKYJUmGhBBCCCGEEGZJkiEhhBBCCCGEWZJkSAghhBBCCGGWJBkSQgghhBBCmCVJhoQQQgghhBBmSZIhIYQQQgghhFmSZEgIIYQQQghhlv4/NZCbKNopV+IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9J0lEQVR4nOzdd3hUZfo38O+ZSSY9mXRILxBCCSSQQgsoYkVwLau+7qrouooC6uo2UNfyc1eUXRugK9a1gIoiIgqCiHSSAEkINUB6AumT3qa8f5xMSMyE5EymJt/PdXlNmHOek/uB3Zzcc57nvgWdTqcDERERERERWYTM2gEQERERERENJ0zCiIiIiIiILIhJGBERERERkQUxCSMiIiIiIrIgJmFEREREREQWxCSMiIiIiIjIgpiEERERERERWRCTMCIiIiIiIgtiEkZERERERGRBTMKIiIiIiIgsyMHaARBJodFo8PXXX2Pz5s3Izc1FU1MTPD094efnh4kTJ2LOnDm46qqrus4fM2YMAODMmTM9rqN/vy8vvfQSbrnlFpN+3w0bNuDpp59Gamoq3nvvPYPf98EHH8Tu3bvxwgsv4I477hjQ38nKlStx/PhxFBQUoLa2Fs7OzggKCsLcuXPxu9/9Dt7e3gO6zq+dP38e69atQ1paGi5cuIC2tjYolUqMGzcOV199NRYsWAAnJyejrm1uxsSek5ODdevWIT09HZWVlXBwcEBwcDBmzpyJhQsXIjAw0EqzISJbxvtSb7wvXdLXv3d3c+bMQWlpKXbu3ImQkBCjvg/vYfZH0Ol0OmsHQTQQGo0GDz30EPbu3QtPT0/Mnj0bI0aMQF1dHQoLC3H06FHExcVh/fr1XWP6u9ktWbLE4PeaO3cuxo4da/Lv+/DDD+Pnn3/GP/7xD/zud7/rcWzdunV4/vnnccUVV+Cdd94Z8N/LhAkTMG7cOERHR8PX1xctLS3IysrC8ePHERAQgC+++AJBQUEDvh4ArF69GmvWrIFWq0V8fDzi4uLg5uaGqqoqHD58GAUFBRg/fjw2btwo6bqWIDV2nU6Hf//733jvvffg4OCA6dOnIyYmBh0dHcjMzMSxY8fg4uKCFStW4LrrrrPy7IjIlvC+ZBjvS5eYOwnjPcyO6YjsxKZNm3QxMTG6BQsW6Orr63sdV6lUuv379/d4LyYmRhcTE9Pr3L7eN/f3raqq0k2dOlU3adIk3fnz57vez8vL002aNEmXkpKiq6ysHFBceq2trQbff/XVV3UxMTG6f/zjH5Ku99Zbb+liYmJ0s2fP1mVlZRk8Z/fu3bq7775b0nUtwZjYV61apYuJidFdeeWVutzc3F7nb9u2TRcXF6cbO3as7sCBA2aLnYjsD+9LhvG+dMlA/l2vvPJKXUxMjK64uFjy9XkPs1/cE0Z24+jRowCAm2++GR4eHr2Oe3l5Yfr06Tb9fX19ffF///d/aGlpwV/+8heo1Wqo1Wr85S9/QUtLC1588UX4+flJiq+vpRfXX389AKC4uHjA1yopKcGaNWvg6OiItWvXYtKkSQbPmzVrVo+lK2lpaRgzZgxWrVpl8Pw5c+Zgzpw5A47DGMbEXlxcjLfffhuOjo54++23MXr06F7nX3vttVi2bBk0Gg2ee+45aLVas86DiOwH70uG8b5kGbyH2TcmYWQ3fHx8AAAFBQV2/X3nzp2LW2+9FcePH8eaNWuwZs0a5OTk4JZbbsHcuXNN8j0A4OeffwbQ/z6D7jZu3IiOjg5cc801iImJuey5CoViUPGZmjGxb9y4EWq1GlddddVl/55++9vfwt/fHwUFBUhPTzdp3ERkv3hfkma43ZfMjfcw+8bCHGQ3rr32Wrz77rv4/PPP0djYiKuuugoTJkxAaGio0dc09AlZcHBwj83P5vi+y5cvR1paWtca++DgYDz11FNGXw8A3n//fTQ3N6OhoQHHjx/HkSNHMG7cODz44IMDvsbhw4cBANOmTRtULNZgTOxHjhwBAMyYMeOy5zk4OCAlJQVbtmzB0aNHMXXqVOMDJaIhg/elyxvu96Xu+noiBwD19fVGXZP3MPvGJIzsRmxsLP7973/jxRdfxHfffYfvvvsOAKBUKpGcnIzbbrsNs2fPlnTN1atX93ovOTm5x83OHN/X3d0dixcvxrJlywAAzz33HNzd3SVd49c++OADVFVVdf151qxZWLFihaQqVPrx9lhFyZjY9WNGjBjR77n6cyoqKoyIjoiGIt6XLm+435e6M/TvOli8h9k3JmFkV6677jpcddVVSEtLw5EjR3Dq1CkcOXIE27dvx/bt23Hrrbfin//8JwRBGND1LletyJzft7W1Fe+++27Xn3/88UfMmjXL4LmGPj27+eabe1VQ2r9/PwDxh3JmZib+/e9/46abbsI777yD8ePHD+h6us5iqQOdhzkMdL6/ZkzsUsboz+l+7jvvvIPt27cjPz8fCoUC8fHxeOKJJ/pdMkNEQwfvSyLely5vINURuxvI/WWw9zCyLiZhZHccHR0xc+ZMzJw5E4BYqvfHH3/EU089ha+//hpz5swx6Rp2c3zflStXIi8vD/fccw8yMjLw1VdfYe7cubjyyit7ndvXp6J9/fD38/PD1VdfjfHjx+Oaa67B3/72N2zZsmVA1wsICEBeXh4uXrw4oHmYg9T56hkTu7+//4DH6M/x9/fvei89PR133XUX4uLioNPp8Oabb+K+++7D999/D6VSOeA4iMi+8b7E+5KpDeT+Mth7GFkXkzCye3K5HDfccANyc3Px9ttv49ChQ2a52Znq++7btw+fffYZYmJi8Je//AUFBQW49dZb8cwzz+C7777rtUxjoJ+K/lpQUBBGjRqFU6dOoaampmsj9+WuN2XKFBw6dAiHDh3Cb3/72wF/L5lMrPGjVqsNHm9oaDBYwcsQY+drTOxTpkxBWloaDhw4cNkxGo0GaWlpAIDJkyd3vf/+++/3OO+VV15BYmIijh49avdVt4jIeLwvGTbc7kuDMZD7y2DvYWRdrI5IQ4abmxuAS4/nbfH7qlQqLFu2DA4ODli5ciUUCgViYmLw2GOPobKyEs8995xJY9Ov/ZbL5QM6/5ZbboGjoyN+/PFHnDt37rLntre3d33t6ekJAAY/jSssLDR607EUxsR+yy23QC6XY8eOHZcd8/XXX6OiogKRkZFITk7u87ympiZotdquvw8iGt54X+ptON2XTMnQ/cXU9zCyLCZhZDe2bNmC/fv3G+xxUVlZiQ0bNgAAEhMTbfb7Pvfcc6ioqMDjjz+O2NjYrvfvv/9+JCYmYtu2bT2WaPTn/PnzqKys7PW+VqvFa6+9hurqaiQkJMDLy2tA1wsJCcGSJUvQ0dGBBx98EDk5OQbP27NnDx544IGuP0dFRcHd3R07d+5EdXV11/utra148cUXBzyfwTAm9tDQUDz00EPo6OjAokWLDN7EfvrpJ/zzn/+EXC7Hs88+2/XpqiH//Oc/MXbsWCQkJJhmUkRk03hf6o33JfMwdH8x9T2MLIvLEcluZGdn4+OPP4a/vz8mT57ctRa7pKQEu3fvRmtrK6666ipcd911Nvl9N23ahK1btyIpKQn3339/j2MymQwrVqzAggUL8MILLyApKWlAlaD27t2LlStXIjExEWFhYVAqlaiqqkJGRgaKi4vh7+8v+WazaNEiqNVqrFmzBrfddhsSEhIwYcIEuLm5oaqqCocPH0ZBQQEmTJjQNcbR0RH33XcfVq1ahd/85je4+uqroVarceDAAQQEBCAgIEBSDMYyJvalS5eipaUFH374IW666SbMnDkTo0aNglqtRmZmJrKzs+Hs7Iz//Oc/ly2R/PLLL+PIkSNYv379gD/hJSL7xvtSb7wvmd7l7i+muoeR5Qk6Sz8jJzLShQsX8PPPP+PAgQM4d+4cKisr0d7eDqVSibFjx+LGG2/E/Pnze3zKo29e+Ov13H29b67vW1ZWhgULFkCn02Hz5s0IDg42+L02bNiAp59+GqmpqXjvvff6jS03Nxfr16/H0aNHcfHiRTQ0NMDFxQURERG44oorcPfddxtdIOL8+fNYt24d0tLSUFZW1jXn2NhYXHvttbjpppt6NMbU6XR477338MUXX+DixYvw8/PDDTfcgKVLl2LevHkALjXqNDepsQPAsWPH8NlnnyEjIwNVVVWQy+UIDg5Gamoq7r333suWAH7ppZfw/fff43//+x+io6PNPT0ishG8L/XG+1JPA/l31VdH3LlzZ69iHwO9vwzmHkbWwSSMiGgQXnzxRfzwww/45JNPmIAREZHJ8P4ytHE5IhGRkZ577jls3rwZa9asgaenZ9c+CFdX166N8URERFLx/jL08UkYEZGR9MtMfm3JkiVYunSphaMhIqKhgveXoY9JGBERERERkQWxTiUREREREZEFMQkjIiIiIiKyICZhREREREREFsQkjIiIiIiIyIJYon6QtFot1Go1ZDIZBEGwdjhERMOGTqeDVquFg4NDj6a0xHsTEZG1DPTexCRskNRqNXJycqwdBhHRsBUXFweFQmHtMGwK701ERNbV372JSdgg6TPcuLg4yOVyyeM1Gg1ycnKMHm/vOH/On/Pn/Af785NPwXrjvWlwOH/On/Pn/M19b2ISNkj6ZR5yuXxQ/0Md7Hh7x/lz/pw/528sLrfrjfcm0+D8OX/On/M3Vn/3Jn58SEREREREZEFMwoiIiIiIiCyISRgREREREZEFMQkjIiIiIiKyICZhREREREREFsQkjIiIiIiIyIKYhBEREREREVkQkzAiIiIiIiILYhJGRERERERkQUzCiIiIiIiILIhJGBERERERkQUxCSMiIiIiIrIgJmFEREREREQWxCTMiprb1ViyPhM78pqtHQoREREA4NSFeiz8MAPnajqsHQoR0ZDFJMyKimqasfV4OdblNECn01k7HCIiIuw7W4W956qxObfJ2qEQEQ1ZTMKsKNLPDQq5gPp2HYprW6wdDhERESYEewEATlW28wNCIiIzYRJmRU4OcowL8gQAZBWrrBsMERERgIQwJRzlAmpatSiq4QeERETmwCTMyiaFKAEAWcV11g2EiIgIgLOjHHGdT8MyCmusHA0R0dDEJMzK4kPFGx2fhBERka1IjvAGAGTk11o5EiKioYlJmJXFhyoBiNWo2tQa6wZDREQEIDHCBwCQUcgkjIjIHJiEWVmotws8nWRo1+hwoqze2uEQEREhMVwJAUBhdTMq6lutHQ4R0ZDDJMzKBEFAjI8jACCrSGXdYIiIiAB4ODsiQukAAEgv4L4wIiJTYxJmA0b7iklYJveFERGRjRjrpwAApOczCSMiMjUmYTZA/yQss4hr74mIyDaM82cSRkRkLkzCbMAoH0cIAlBS24LKhjZrh0NERISxfuIHhGfKG6BqbrdyNEREQwuTMBvg6ijDKH93ACxVT0REtkHpLEeknyt0OuBwAVdqEBGZEpMwG3GpXxhvdEREZBuS9KXqWZyDiMikmITZCH2/sExWSCQiIhuR1Nm0OY37woiITMrB2gGQKKEzCTtWUgeNVge5TLBuQEREJFljYyPeeustnD59GidPnkRtbS2WLFmCpUuX9jt248aNWLZsmcFj+/btg7+/v6nD7VdyZxJ2vLQOze1quCr4awMRkSnwp6mNGBXgDjeFHI1tapyraMSYER7WDomIiCRSqVT48ssvERsbi7lz52LDhg2Sr/HSSy8hKiqqx3tKpdJEEUoTrHRBkJczyupakVmkwoxRflaJg4hoqGESZiPkMgETQ5Q4mFeNzKJaJmFERHYoODgYGRkZEAQBNTU1RiVho0ePRlxcnBmik04QBCRF+uDbrDKk59cwCSMiMhHuCbMh8WFKAKyQSERkrwRBgCAMreXkyZFicQ72CyMiMh0+CbMhCSzOQUQ07C1atAg1NTXw8PBAcnIyHn30UcTExBh1LY1GM6hxGo0GUzo/IMwsrkVLWwcUDkP/89vu8x+OOH/Ov/vrcDPY+Q90HJMwG6J/EpZb0YDGNjXcnfjPQ0Q0XPj5+WHRokWIj4+Hu7s7cnNzsXbtWtxxxx1Yv349YmNjJV8zJydnUDHl5ORAp9PBUyGgvl2Lb3YfxhhfxaCuaU8G+/dn7zh/zn84M/f8+Vu+DQnwcEaw0gWlqhYcK1ZhOtfeExENG7NmzcKsWbO6/pyUlITZs2dj/vz5eOONN/D2229LvmZcXBzkcrnkcRqNBjk5OV3jU04cxY5TFVA5+iE+Pqr/C9i5X89/uOH8OX/O3/j568f3h0mYjUkIU6JU1YJMJmFERMNeSEgIpkyZguzsbKPGy+XyQf0SpR+fEuWLHacqcLhQhUeG0S9lg/37s3ecP+fP+Ztv/kN/YbedYdNmIiLqTqfTQSaz7u1aX5wjo6AGGq3OqrEQEQ0FTMJsTEKY2Bgzq7gWOh1vdEREw1lxcTGOHj2KSZMmWTWOcSM94aaQo6FVjTMXG6waCxHRUMDliDZmfJAnHOUCqhrbUVLbglAfV2uHREREEuzevRstLS1oamoCAJw7dw7btm0DAMyePRsuLi5Yvnw5Nm3ahB07diA4OBgAsHDhQiQmJiI2NhZubm7Izc3Fe++9B0EQ8Nhjj1ltPgDgIJdhcrg39p6tQnp+NcYFeVo1HiIie8ckzMY4O8oxbqQnskvqkFmsYhJGRGRnnn/+eZSWlnb9edu2bV1J2M6dOxESEgKtVguNRtNjxUNMTAy2bt2KDz74AG1tbfDx8cHUqVPxyCOPIDIy0uLz+LWUSB/sPVuFjIJaLJxh/XiIiOyZ3SZhBw8exObNm5GZmYmLFy/Cw8MDEyZMwOLFizFhwoTLjt24cSOWLVtm8Ni+ffvg7+9vjpAHLD5UieySOmQVqbBgUpBVYyEiIml+/vnnfs9ZsWIFVqxY0eO95cuXmyskk0iKEPeFpeXXQKfTDbmm1ERElmS3Sdj69euhUqlwzz33YNSoUaipqcGHH36IO+64A++99x6mTZvW7zVeeuklREX1LLWrVCrNFPHAJYR5438HC5FZXGvtUIiIiAAAk0KVUMhlqGpsQ0F1MyL93KwdEhGR3bLbJOzZZ5+Fr69vj/dSU1NxzTXX4J133hlQEjZ69GjExcWZK0SjJXQ2bT5RVo82tQZODsO3PCgREdkGZ0c54kOVSC+oQXp+NZMwIqJBsNvqiL9OwADAzc0N0dHRuHDhghUiMp0wH1f4uCnQrtbi1AVWoSIiItuQFClW8E3P50oNIqLBsNsnYYY0NDTg5MmTmDp16oDOX7RoEWpqauDh4YHk5GQ8+uijiImJMep7azSaQY379fhJIV7YdaYSRwqqERfkYdS17UFf8x8uOH/Ov/vrcDPY+Q/XvzdrSo70xZpd55FeUG3tUIiI7NqQSsKef/55tLS0YNGiRZc9z8/PD4sWLUJ8fDzc3d2Rm5uLtWvX4o477sD69esRGxsr+Xvn5OQYG7bB8YEOLQCAX3IKEO+qGtS17cFg//7sHefP+Q9nw33+9mRymBIyASiuacGFuhaM9HKxdkhERHZpyCRhr7/+Or777js888wz/VZHnDVrFmbNmtX156SkJMyePRvz58/HG2+8gbffflvy94+Li4NcLn3vlkajQU5OTq/xje5V+PzEYRQ2CoiPj5d8XXvR1/yHC86f8+f8jZ+/fjxZjoezI8YHeSGntA7p+TW4KT7Y2iEREdmlIZGErV69Gm+//Tb+9Kc/4fe//71R1wgJCcGUKVOQnZ1t1Hi5XD6oX6J+PT4+TCwFXFTTAlWLGr7uTkZf2x4M9u/P3nH+nD/nP3znb2+SInyQU1qHjAImYURExrLbwhx6q1evxqpVq7B06dJ+lyH2R6fTQSazjb8SLxdHjApwBwBkFausGwwREVGn5EjxQ8L0/BorR0JEZL9sI+Mw0po1a7Bq1So8/PDDWLJkyaCuVVxcjKNHj2LSpEkmim7w4kOVAJiEERGR7UiKECsk5pY3orap3crREBHZJ7tdjvjBBx/gzTffRGpqKq644gpkZWX1OK7fR7V8+XJs2rQJO3bsQHCwuGxi4cKFSExMRGxsLNzc3JCbm4v33nsPgiDgscces/BM+pYQpsRXR0qQWaSydihEREQAAF93J4wKcMe5ikZkFNTgmvEjrB0SEZHdsdskbNeuXQCAvXv3Yu/evb2OnzlzBgCg1Wqh0Wig0+m6jsXExGDr1q344IMP0NbWBh8fH0ydOhWPPPIIIiMjLTOBAUgIFT9tzC5WQavVQSYTrBwRERGRuC/sXEUj0vOZhBERGcNuk7BPPvlkQOetWLECK1as6PHe8uXLzRGSdOp2CLtfgUeHP4D4XodjAt3h4ihHQ5sa5ysbMTpw6PYLIyIi+5ES6YP16UXIKOC+MCIiY9j1njC7V5UL2d6VCM/+j8HDDnIZJoZ4AQCXJBIRkc1I6izOcbysHk1taitHQ0Rkf5iEWZN3OHSCDE4t5UDDBYOnxIcpAQCZLM5BREQ2IljpgmClCzRaHY4W1Vo7HCIiu8MkzJqcPAD/seLXpUcMnqLfF5bJmxwREdmQFJaqJyIyGpMwK9MFTwEACH0lYZ1PwnLLG7jkg4iIbEYSkzAiIqMxCbO2kEQAgFB62ODhQE9nBHk5Q6sDjpXUWTIyIiKiPumbNmcWq9Cm1lg5GiIi+8IkzMp0wWIShrJMQGP4SVdCWOeSxGIuSSQiItsQ5ecGP3cF2tVa5PBDQiIiSZiEWZtfDDQObhA6moGKkwZPiQ9VAgCyWCGRiIhshCAISIoQn4alcUkiEZEkTMKsTZChSRkrft3HksSEbhUSuzedJiIisiZ9EsZ+YURE0jAJswFN3p0VEksMJ2ETgr3gIBNQ2dCGsrpWC0ZGRETUN/2+sMMFtdBo+SEhEdFAMQmzAY3e48QvSjIMHnd2lGPsSE8ALFVPRES2Y+xIT3g4OaCxTY1TF+qtHQ4Rkd1gEmYDmvXLEatygRaVwXO4L4yIiGyNXCZgSoRYPIql6omIBo5JmA1QOymh844U/9BPv7DMYpVlgiIiIhoA/b4wJmFERAPHJMxGdJWq72NfmL5MfU5pHdrVWkuFRUREdFkpkZeKc7B4FBHRwDAJsxXBU8TXPvaFRfi6QunqiHa1Fqcvct09ERHZhrgQLzg5yFDd1I7zlU3WDoeIyC4wCbMRupDOJ2GlhwEDnyQKgtC1LyyT+8KIiMhGODnIu+5PLFVPRDQwTMJsReAEQO4EtNQCNXkGT+kqzsF9YUREZEP0SxK5L4yIaGCYhNkKuQIIihe/7mNJon5fGMvUExGRLUliEkZEJAmTMFvST3GO+BAlAKCguhm1Te0WCoqIiOjyJod5Qy4TUKpqQamqxdrhEBHZPCZhtkS/L6yPJ2Fero6I8ncDwCWJRERkO9ycHDAhyBMAkMGnYURE/WISZktCksTX8uNAe7PBUxJCuSSRiIhsT3LnksQ0JmFERP1iEmZLvEIA90BAqwYuZBs8JZ5Nm4mIyAbpmzazQiIRUf+YhNkSQbj0NKy0j6bN3SokarVsiklERLZBn4Sdq2hEVWOblaMhIrJtTMJsTT/7wmJHeMDZUYaGVjXyqtgUk4iIbIO3mwIxge4AgMN8GkZEdFlMwmxNPxUSHeQyTAxWAuC+MCIisi3JXaXqeX8iIrocJmG2JigBEGRAfSlQX2bwFP2+MFZIJCIiW6JfkpheUG3lSIiIbBuTMFvj5A4EjBe/7uNpmH5fWGaRyjIxERERDYD+SdjJsno0tHZYORoiItvlYMygs2fP4ujRoygvL0drayu8vb0xatQoJCUlwd3d3dQxDj8hiUB5jrgvbNyCXocTwsQy9acv1qO5XQ1XhVH/jERERCY10ssFYT6uKKppxpHCWlwxJsDaIRER2aQB//ZeV1eHL774Al988QXKysqg0/WuzOfg4IBZs2bh7rvvxrRp00wa6LASkggc+RAoPWLw8AgvZ4zwdMbF+lbklNQhJcrXwgESEREZlhThg6KaZmQU1DAJIyLqw4CSsI8//hhr1qwBANxwww1ITk7G+PHj4ePjAycnJ9TV1aG4uBhZWVnYuXMn7r//fkyfPh3/+Mc/EB4ebtYJDEldZeqPAho1IO/9z5QQpsTW4xeRWaxiEkZERDYjJdIHXx8tQTqbNhMR9WlASdgnn3yCZcuWYd68eXB0dOx13M/PD35+fkhISMB9992HoqIivP3229i6dSsWLVpk8qCHPN/RgJMX0FYHVJwARk7qdUp8qJiEZXFfGBER2ZCkzn1h2cV1aO3QwNlRbuWIiIhsz4CSsK1bt8LBYeD7jsLCwvDSSy9Bo9EYHdiwJpMBwZOBvF3ivjADSZh+X1hmMcsAExGR7YjwdYW/hxMqG9qQzdUaREQGDag64tmzZ426uFzOT7+Mpl+SWGJ4X1hcsBfkMgHl9W24UNdiwcCIiIj6JggCkjtL1WewaTMRkUEDSsJuvvlm3HLLLVi3bh0aGhrMHRMB3ZKwDIOHXRRyxI7wAMBS9UREZELV5yF8+wicGoqMvoS+VH0a94URERk0oCTsoYceQk1NDV544QXMnDkTf/7zn3Ho0CFzxza8hSSKr9VngRbDSw4TOps2ZxZxSSIREZnImR8gO/Y5Rp791OhL6Js2Hy2shVqjNVVkRERDxoCSsD/96U/YtWsX1q5diyuvvBLbt2/Hfffdh6uuugpvvfUWLly4YO44hx9XH8AnSvy6j1L18aHivrCsYpWFgiIioiFvRBwAwKM6CzDQjmYgxozwgKezA5raNTh5od6EwRERDQ0DSsIAcY33rFmz8Prrr2Pfvn146qmn4OXlhTfffBNz587FH/7wB2zbtg0dHR3mjHd46VqSeNjgYf2TsGMldejgJ41ERGQKIcnQyRVQtFYBtflGXUIuE5DY+TSMpeqJiHobcBLWnaenJ37/+99j48aN2LRpE+666y6cPHkSf/rTnzBr1ixTxzh89bMvLNLXDZ7ODmhTa3HmIvfqERGRCShcgeApAAChYK/Rl9HvC2MSRkTUm1FJWHexsbFYsGAB5syZAwBQqVSDveSAHDx4EMuWLcN1112H+Ph4pKam4uGHH8bx48cHNL66uhp///vfkZKSgkmTJuGOO+7AwYMHzRy1RJ03QZQcNrgkRCYTEK8vVc99YUREZCK68JniFwX7jL5GUrcKiVqtccsaiYiGKqOTsJqaGnz00UeYP38+br/9dnz77be48sorsWbNGlPG16f169ejtLQU99xzD9auXYunnnoKNTU1A0qm2tvbsXDhQhw8eBBPPfUU3nrrLfj6+uKBBx5Aenq6ReIfkMAJgIMz0KoCqs8bPCU+VAkAyOS+MCIiMhFdRCoAQCjcb/S+sLhgLzg7ylDb3IHzlY2mDI+IyO4NvAMzAK1Wiz179uDrr7/GL7/8go6ODkREROCJJ57AzTffDD8/P3PF2cuzzz4LX9+eDSBTU1NxzTXX4J133sG0adP6HLthwwbk5ubi888/R0JCAgAgJSUFN910E1auXIkNGzaYNfYBc1AAI+OB4kPikkS/Ub1O0e8Ly2KZeiIiMpWQRGhljpA1XgSqzwF+oyVfQuEgw+Qwbxw4X420/BqMDvQwQ6BERPZpQE/C8vPz8e9//xuzZ8/Gww8/jH379uHGG2/Ep59+im3btuGPf/yjRRMwAL0SMABwc3NDdHR0v9Uaf/rpJ0RGRnYlYADg4OCABQsW4NixYygvLzd5vEbTl6rvY19YfIgSAJBX1QRVc7uFgiIioiHNwRlN3uPFr/P3GH2ZJDZtJiIyaEBPwq6//noAwMSJE7F06VLMmzcPbm5uZg3MGA0NDTh58iSmTp162fPOnj2LKVOm9Hp/zJgxXccDAwMlfW+NRiPp/F+P63N80GTIAehKDkNr4BxPZzkifF1RUN2Mo4U1mB3jb1Qc1tLv/Ic4zp/z7/463Ax2/sP1781SGvzixTL1BfuApD8YdY2UbsU5dDodBEEwYYRERPZrQEnYvffei9tuuw2jR0tfjmBJzz//PFpaWrBo0aLLnqdSqeDl5dXrff17xhQXycnJkTxmIOMdW1wxEQDKc5B9+BB0Ds69zgl316KgGtiWcRpezaWDisNaBvv3Z+84f85/OBvu87dVDb6TxC8K9on7woxIoBLCvOEgE3ChrhUltS0I9XE1cZRERPZpQEnYsmXLDL6fl5eH2tpajB07Fq6u1v3B+vrrr+O7777DM888gwkTJvR7/uU+jTPmk7q4uDjI5XLJ4zQaDXJycvoer9NBlzYSQsMFTArQAWHxvU65srUQuwtP4WKHC+Ljex+3Zf3Of4jj/Dl/zt/4+evHk3k0KcdC5+AMoakCqDwDBMRKvoaLQo64EC9kFqmQnl/DJIyIqJOkwhx6mzZtwquvvorKykoAwFdffYXx48fjsccew4wZM3D77bebNMj+rF69Gm+//Tb+9Kc/4fe//32/5yuVSoNPu+rq6gDA4FOy/sjl8kH9EnXZ8cFTgNNbIC87AkTO7HV4Sri4Py67pA4ymcwul3sM9u/P3nH+nD/nP3znb6t0cgUQmgLk7wYK9hqVhAFAcoQPMotUyCiowa1TQkwcJRGRfZJcon7r1q34+9//jnHjxuGZZ56Brlvp2vHjx2Pr1q0mDbA/q1evxqpVq7B06dJ+lyHqxcTEIDc3t9f7+vdsbtllV9PmwwYPx470gJODDHUtHcivarJgYERENJTpwmeIX7BpMxGRSUlOwtauXYtbbrkF//3vf3HHHXf0OBYVFYVz586ZLLj+rFmzBqtWrcLDDz+MJUuWDHjc3LlzkZeXh+zs7K731Go1Nm/ejEmTJkkuymF2/SRhjnIZ4oLFp3eZLFVPREQmoovo1rRZqzXqGonhPhAEsYpvZUObCaMjIrJfkpOw8+fPY968eQaP9bXMzxw++OADvPnmm0hNTcUVV1yBrKysHv/pLV++HOPGjUNp6aWCFfoiI4899hi+++47HDhwAI8//jjy8/Px5z//2SLxSxIUDwhyoKEMqDNceEPfLyyzuNZycRER0dAWNBlwdAWaq4HK00ZdwsvVEWM6e4SxVD0RkUjynjAXFxc0NDQYPFZeXm7Ufipj7Nq1CwCwd+9e7N3be5nEmTNnAIgNpjUaTY9lkwqFAh999BFWrlyJF198ES0tLRg7dizeffddJCcnWyR+SRRuQOA44GIOUHoY8ArudUp8qDeAfGQVqyweHhERDVH6fWF5u8QliYHjjLpMcqQPTl9sQHp+DW6IG2niIImI7I/kJCwhIQGfffYZrr322l7HNm7caLEk5pNPPhnQeStWrMCKFSt6ve/n54eXX37Z1GGZT0iSmISVZADjbup1WP8k7NSFBrS0a+Ci4CZ3IiIygchUMQnL3wOkPGTUJZIjffDxwULuCyMi6iR5OeLixYuRlZWF2267DZ988gkEQcD27duxaNEiHD58eMDFMUiifvaFjfRyRoCHEzRaHY6X1VkwMCIiGtIiZomvhfuN3heWHCEW5zh1sR51LR2mioyIyG5JTsLi4uLw7rvvorm5GStWrIBOp8M777yD/Px8rF27FjExMeaIk4ITxdeyLEDT+wYmCMKlfWFF3BdGRGQNjY2NeOWVV3D//fdj6tSpGDNmDFatWjXg8dXV1fj73/+OlJQUTJo0CXfccQcOHjxoxogHICgecHQDWmqBihNGXSLA0xkRvq7Q6YCjhbxHERFJTsIAYOrUqdi6dSu2b9+OdevWYevWrfjxxx+RkpJi6vhIz3cU4OwFqFuAcsM3QXFfGLgvjIjISlQqFb788ku0t7dj7ty5ksa2t7dj4cKFOHjwIJ566im89dZb8PX1xQMPPID09HQzRTwAckcgfJr4df7gS9WncUkiEZFxSZheWFgYJk+ejMjISFPFQ32RyS49DSvJMHjKpSdhKsvEREREPQQHByMjIwOffvopnnjiCUljN2zYgNzcXLz++utYsGABZsyYgTfffBMRERFYuXKlmSIeoIhU8bVgn9GXSOpcksgKiUREA0zCfvjhB8kXLi8vx5EjRySPo8sI0SdhhveFTQzxgkwALtS14mJdqwUDIyIiQFwaLgiCUWN/+uknREZGIiEhoes9BwcHLFiwAMeOHUN5ebmpwpROn4QV7gO0GqMukRLpCwA4VqJCa4dx1yAiGioGlIS98MILuOmmm7BhwwY0NjZe9tzjx4/j+eefx7XXXovTp43rKUJ90BfnKDWchLkqHDBmhCcAIIv9woiI7MrZs2cxZsyYXu/r3zt79qylQ7pk5CRA4QG01omVeo0Q6uOCQE8ndGh0XLFBRMPegErU79ixA6tWrcI///lPvPDCCxg3bhzGjRsHX19fKBQK1NXVobi4GFlZWaisrMTo0aOxatUqpKammjv+4SV4ivhafQ5orgFcfXqdkhCmxKkL9cgsUuG6CezFQkRkL1QqlcFem/r3VCqV5GtqNMY9cdKPuzRegCx8GoSz26HN3wNdYJxR102K8MaWYxeRlleF5AilUdewhN7zH144f86/++twM9j5D3TcgJIwDw8PLF++HIsXL8bGjRuxe/dubNq0CS0tLV3nhIaGIjU1FfPnz8fUqVONCpr64eoD+EQDNeeB0iPA6Kt7nRIfqsS6tCJksjgHEZHdudxSRmOWOebkGPfUytD4QMdIhACoP/Y9zjvPMOp6I+XNAICfc4qQ6nP5lTW2YLB/f/aO8+f8hzNzz19Ss2YvLy/cd999uO+++wAADQ0NaG1thVKphKOjo1kCpF8JSRKTsJLDBpOwyZ3FOXJK6qDWaOEgH1TtFSIishClUmnwaVddndj70dBTsv7ExcVBLpdLHqfRaJCTk9NzfCCAk+/AS3UC8RMnADJJv0IAAFxGNuDdzP04W6vB+LiJcLTRe5TB+Q8jnD/nz/kbP3/9+P5I/wnajYeHBzw8PAZzCZIqJBE49nmfFRKj/Nzh4eyAhlY1zpQ3YHyQ9Js2ERFZXkxMDHJzc3u9r39v9OjRkq8pl8sH9UtUj/FB8YCTF4S2OsgrTgDBkyVfL3aEF7xcHFHX0oHT5U2ID1UaHZslDPbvz95x/pw/52+++dvmR1DUt+7FObTaXodlMqHrpsaNz0RE9mPu3LnIy8tDdnZ213tqtRqbN2/GpEmTEBgYaMXoAMjkQPh08esC4/qFyWRCV6n69PxqU0VGRGR3mITZm8DxgIOzWKGq+pzBUxKYhBERWc3u3buxbds27Nq1CwBw7tw5bNu2Ddu2bevaS718+XKMGzcOpaWlXeNuu+02jB49Go899hi+++47HDhwAI8//jjy8/Px5z//2Spz6SWys+DWoJo2ewMA0tm0mYiGsUEtRyQrkDsCQQlA0UHxaZh/TK9T4jv3hbFMPRGR5T3//PM9kit9AgYAO3fuREhICLRaLTQaDXQ6Xdd5CoUCH330EVauXIkXX3wRLS0tGDt2LN59910kJydbfB4G6fuFFR0ENGpALv3XiOTOfmEZBbXQanWQyYzrq0ZEZM+YhNmjkETxBliSAcTf1etwfKj4KeP5yibUNXfAy5VFU4iILOXnn3/u95wVK1ZgxYoVvd738/PDyy+/bI6wTCNwAuCsBFpVwIUs8X4k0fggT7g4ylHX0oHcigbEdva3JCIaTrgc0R4Fd970+ijO4eOmQLivKwAgu0RloaCIiGjIk8mAiJni1/l7jLqEo1yGKeHih4UZXJJIRMOU5CTs//7v/5CXl2eOWGig9MU5yk8C7U0GT+G+MCIiMgv9ksSCfUZfIjlSLM6RxiSMiIYpyUnYpk2bMG/ePNx333346aefeqxnJwvxCgY8ggCdBijLMniKvkIi94UREZFJ6Z+EFR0CNB1GXUJfITGjoIa/RxDRsCQ5Cdu7dy+efvppVFZWYsmSJZgzZw7Wrl2Lmhp+mmVRIVPE1z6WJCaEiUs9MotVvMEREZHpBIwDXHyAjiag9KhRl0gIU8JRLqC8vg1FNc0mDpCIyPZJTsJcXV3xu9/9Dlu2bMGHH36I8ePH44033sAVV1yBv//97wPqEE0m0L1fmAFjR3pC4SCDqrkDBdW8wRERkYnIZEDEDPFrI/uFOTvKMTFECYCl6oloeBpUYY5p06Zh9erV2LlzJxISEvDtt9/i9ttvx29/+9sBVYeiQdAnYcUZgIEnXQoHGSYEiRWnuCSRiIhMKmKW+GpkEgZc2hfGJIyIhqNBJWGtra3YsGEDFi1ahLS0NERHR2Px4sXQaDRYvHgx1qxZY6o46ddGxgOCHGi8CNSXGjyla0kii3MQEZEp6Zs2F6UB6jajLpHcbV8YEdFwY1QSVlRUhJdeegmzZs3Cs88+ixEjRuCDDz7Ali1bsGTJEmzcuBF//OMf8emnn5o6XtJTuAKB48Wv+9gXdqk4h8oyMRER0fDgHwu4+gHqFqP3hU2J8IYgAAXVzaiobzVxgEREtk1yEvbAAw/guuuuw1dffYWbbroJ27Ztw3//+19Mnz69x3lXXnklamu5DM6s9EsSSwzvC0sIUwIATpbVo7VDY6GgiIhoyBOES1USjVyS6OnsiLGdjZrT+TSMiIYZyUlYcXExli1bhj179uCpp55CWFiYwfNGjx6Njz/+eNAB0mX0k4QFK13g5+4EtVaHE2V1FgyMiIiGPP2SRCObNgPcF0ZEw5fkJOzHH3/E3XffDTc3t8ue5+7ujuTkZKMDowEISRRfL2QZ7NUiCELX0zDuCyMiIpPSN20uyQA6jFtOyCSMiIarQRXmICvziQaclYC6FSg/bvAUJmFERGQWfjGAe6B4D+qjXUp/9E2bz5Q3QNXcbsroiIhsmoPUAXPmzIEgCAaPyWQyeHh4IC4uDvfccw+io6MHHSBdhkwmPg0795O4JDEoodcpLM5BRERmod8XdvxroGDfpT1iEvh7OCHK3w15lU04XFCLueMCzRAoEZHtkfwkLDk5GTqdDuXl5QgODsakSZMQFBSE8vJyaDQajBw5Ejt27MCtt97Kxs2W0LUvzHCFxIkhSsgEoFTVwupTRERkWvrEK38Q/cJYqp6IhiHJSdjMmTOhUCiwY8cOfPzxx3j11VfxySefYPv27VAoFJg7dy5+/PFHREREYNWqVeaImboL7twX1kcS5u7kgJhADwBAJp+GERGRKembNpekAx0tRl1Cvy8sjfvCiGgYkZyE/fe//8XSpUsxcuTIHu8HBQVh8eLFWLt2LTw8PLBw4UJkZWWZKk7qS/Bk8bUmD2g2fAPjvjAiIjIL32jAYySgae/zw8D+6PeFHS+tQ3O72pTRERHZLMlJWGFhIdzd3Q0e8/T0RGlpKQAgODgYLS3GfSpGErj6AL6jxa/7KFV/aV8Y+7YREZEJde8XZuSSxBBvFwR5OUOt1fHDQiIaNiQnYUFBQfjmm28MHvv666+7npCpVCp4eXkNLjoamJDLL0lMCPMGABwrqYNao7VUVERENBzoS9Ub2bRZEAQksVQ9EQ0zkpOwP/zhD9i2bRvuvPNOfPTRR9iyZQs++ugj3HnnndixYwceeOABAEBaWhomTJhg8oDJAH0S1keJ4FH+7vBwckBzuwa55Y0WDIyIiIY8fdPmksNAe7NRl2C/MCIabiSXqL/99tuh0+mwatUqrFixout9Pz8/PP/88/jtb38LAFi0aBEUCoXpIqW+dVVIPAJotWLp+m5kMgETQ72w/1w1sopVGBfkaYUgiYhoSPKOBDyDgfpSoDgNiL5S8iX0FRIzi2vRrtZC4cA2pkQ0tElKwjQaDYqKinD99dfj9ttvR15eHlQqFZRKJaKionr0D/Pz8zN5sNSHgPGAgwvQVgdUnwX8x/Q6JSHUG/vPVSOzqBZ3pYRZIUgiIhqSBEFcknjsc3FJohFJ2KgAd/i4KVDT1I6c0jpMCfc2Q6BERLZD0kdNOp0O8+bNQ2ZmJgRBQHR0NKZMmYLo6Og+GziTBcgdLjVq7mNfGJs2ExGR2eiXJBbsM2q4IAhI7Ey82C+MiIYDSUmYg4MD/Pz8oNPpzBUPGaurOEcfFRI7y9Sfq2xEfWuHhYIiIqJhQV8hsfQI0Gbc3mPuCyOi4UTyout58+Zh06ZNZghFmsbGRrzyyiu4//77MXXqVIwZM2bAzaE3btyIMWPGGPyvsrLSzJGbSde+MMNJmJ+7E0J9XKDTAceK6ywYGBERDXneEYBXGKBVA8WHjLqEPgnLKKiBRssPe4loaJNcmCM2NhY//PAD7rnnHlxzzTXw9/fvtRTxmmuuMVmAfVGpVPjyyy8RGxuLuXPnYsOGDZKv8dJLLyEqKqrHe0ql0kQRWpj+SVjFCfFTSKfevdwSQr1RXNOCzKJazBzNPXtERGRCkalA1mfiksRRcyUPHzfSE24KORpa1ThzsYFFpIhoSJOchP3tb38DAJSXlyM9Pb3XcUEQcOrUqcFH1o/g4GBkZGRAEATU1NQYlYSNHj0acXFxZojOCjyDLlWnupB1aWlINwlhSmzOLkMm94UREZGpRcwUkzAjmzY7yGWYEuGDPbmVSM+vZhJGREOa5CTs448/NkcckrEQiAEhicDJUrE4h4EkrHtxDp1Ox79DIiIyHX3T5rJMoK0BcPKQfInkCG/sya1ERkEtFs6INHGARES2Q3ISlpycbI44rGLRokWoqamBh4cHkpOT8eijjyImJsaoa2k0mkGNM3Z8d0LQZMhOfgtdcQa0Bq43JtAdCrmAmqZ25Fc2ItzXddDfc7BMOX97xPlz/t1fh5vBzn+4/r3ZLGWouDestgAoOgSMvlryJZIjfQEAafk1/LCQiIY0yUmYXkNDA7KyslBbW4vZs2fDy8vLlHGZlZ+fHxYtWoT4+Hi4u7sjNzcXa9euxR133IH169cjNjZW8jVzcnIGFdNgxwOAW7MSsQDUBQdxLDNT7N3yK+FeDjhb04HN+7ORGuYy6O9pKqaYvz3j/Dn/4Wy4z39IiZgpJmH5e4xKwiaGeEEhl6GqsQ0F1c2I9HMzfYxERDbAqCRszZo1ePfdd9Ha2gpBEPDVV1/By8sL9957L2bMmIEHH3zQ1HGa1KxZszBr1qyuPyclJWH27NmYP38+3njjDbz99tuSrxkXFwe5XC55nEajQU5OjtHje+iIge7Qk3Bsq0F8lD/gFdLrlBmlp3D2QCFqZF6Ijx83uO9nAiadvx3i/Dl/zt/4+evHkw2JmAVkfio2bTaCs6Mc8aFKpBfUID2/mkkYEQ1ZkpOwzz77DGvWrMFdd92F1NRUPPTQQ13HrrzySmzfvt3mkzBDQkJCMGXKFGRnZxs1Xi6XD+qXqMGOFy/iAQROAC5kQV52BPAJ73VKQpg3PjpQiOySepv6pc8k87djnD/nz/kP3/kPKfr9yBeygdY6wFn6KpmkSO/OJKwWdySFmThAIiLbILlP2GeffYaFCxfi6aefxsyZPYs/hIeHo7Cw0GTBWZpOp4NMJvmvxLb007R5cpg3AOBkWR1aO7ifgoiITMgrGPCJAnRaoPCgUZfQ7wtLL6g2ZWRERDZFcsZRXFyM1NRUg8fc3NxQX18/6KCsobi4GEePHsWkSZOsHcrg6Js2lxpOwkK8XeDnrkCHRocTZfb5b0VERDZMXyXRyCWJk8OUkAlAcU0LLtS1mDAwIiLbITkJ8/DwQFVVlcFjpaWl8PX1HXRQA7V7925s27YNu3btAgCcO3cO27Ztw7Zt29DSIv7gXr58OcaNG4fS0tKucQsXLsTq1avx008/4eDBg/jf//6Hu+66C4Ig4LHHHrNY/GahT8LKsgB1e6/DgiD0KFVPRERkUpGde66NTMI8nB0xPkhcxpieX2OqqIiIbIrkPWHTpk3De++9h6uuugpOTk4AxF/s1Wo11q9f32uJojk9//zzPZIrfQIGADt37kRISAi0Wi00Gg10Ol3XeTExMdi6dSs++OADtLW1wcfHB1OnTsUjjzyCyEg770viEwW4eAMttUB5DhA8pdcpCWHe+OlUBTKLagHY+XyJiMi2dO0LOybei1y8JV8iKcIHOaV1yCiowU3xwSYOkIjI+iQnYY8++ihuu+02zJs3D3PnzoUgCPj0009x6tQplJWV4fXXXzdDmIb9/PPP/Z6zYsUKrFixosd7y5cvN1dI1icIQHAicG4HUHLEYBLGJ2FERGQ2HiMA39FA9Vmg8AAQO0/yJZIjffDB/nw+CSOiIUvycsTw8HCsX78eUVFRWL9+PXQ6Hb799lt4e3tj3bp1CAoKMkecJIV+SWJJhsHDE0O8IAhASW0LKhvaLBgYERENC5H6fWH7jBqeFCE+Pcstb0RtU++l9URE9s6oPmGjRo3C+++/j/b2dtTW1sLLywvOzs6mjo2MFdL59KuPJMzD2RGjA9yRW96IrGIVrh4XaMHgiIhoyIuYCRz+AMg3bl+Yr7sTRgW441xFIzIKanDN+BEmDpCIyLoGVY9doVAgMDCQCZit0S9BrM0HmgwXUUkIFT9lFPeFERERmZC+QmJ5DtBs3JLC5EgfACzOQURDk1FPwkpKSrB161aUlZWhtbW1xzFBEPCvf/3LJMGRkVy8Ab8YoCoXKD0CxFzb65T4MCW+OFyMzCKV5eMjIqKhzT0A8I8FKk8DhfuBsfMlXyI5wgfr0oqQUcAkjIiGHslJ2C+//IIlS5ZAq9XCx8cHCoWix3FBEEwWHA1CSJKYhJVkGEzCEsKUAIBjJSpotDrIZfx3IyIiE4qYKSZh+XuNS8I6n4QdL6tHU5sabk5GfW5MRGSTJP9Ee+211zB58mS89tprFu0JRhIFTwGyPutzX9joAA+4KeRoatfgbEUDYkd4WjhAIiIa0iJSgYz3jO4XFqR0QbDSBaWqFhwtqkXqaH8TB0hEZD2S94QVFhbij3/8IxMwW6evkFh6FNBqex2WywRMDFECALK4JJGIiExN3y+s4mSf+5P7k8J9YUQ0RElOwoKCgtDc3GyOWMiUAsYBjq5AW724LNEA/ZJE7gsjIiKTc/MT70WA8aXqmYQR0RAlOQl76KGH8MEHH6ClpcUc8ZCpyB2AoATx6z6WJLJpMxERmZW+SqKRSxL1+8Iyi1VoU2tMFRURkdVJ3hOWk5OD6upqXH311UhJSYG3t3evc55++mmTBEeDFJIoVqUqyQAm393rcHznk7DcigY0tHbAw9nRwgESEdGQFpkKpL9j9JOwKD83+LkrUNXYjpySOiRG+Jg4QCIi65CchH366addX3///fe9jguCwCTMVnTtCzti8HCAh3PXpudjJXWYMcrPgsEREdGQFz4DgCBWSWysEEvXSyAIApIifLD1+EWk5dcwCSOiIUNyEnb69GlzxEHmEJwovlacBNoaACePXqckhClRqmpBVrGKSRgREZmWqw8QOEFs2lywF5hwq+RL6JMw9gsjoqFE8p4wsiOeIwHPEECnBcoyDZ6SECYuJ80sqrVkZERENFxE6veFGbckUb8v7HBBLTRanamiIiKyqgElYRkZGWhqaur3vJqaGnz11VeDDopMKKTzaVjJYYOHuxfn0Ol4cyMiIhPTl6rPN644x9iRnvBwckBjmxqnLtSbMDAiIusZUBJ2zz334Pz5811/1mq1mDBhAk6ePNnjvOLiYjzzzDOmjZAGR78vrI8kbHyQJxzlAqoa21FSy4qXRERkYuHTAQhA9Vmg/oLk4XKZgCkR4qoNlqonoqFiQEnYr5+Q6HQ6qNVqPjmxB11PwjIAA/9ezo5yjBvpCUAsAUxERGRSLt7AyIni14X7jbpEMvuFEdEQwz1hQ93ISYDMAWiqAOqKDZ7CfWFERGRW+n5h+XuMGp7cWRUxo6CGHwAT0ZDAJGyoc3QBRsSJX/fTtDmzSGWZmIiIaHgZZNPmuBAvODnIUN3UjvOV/e9RJyKydUzChoPgyxfnSOhs2nyyrB5tao2FgiIiomEjfBogyICaPKCuVPJwJwd51weGLFVPREPBgJOwvLw8nDhxous/Q+/l5eWZLVAahK7iHIafhIX5uMLHTYF2jRYny1h5ioiITMzZS1weDxhdqj6F+8KIaAgZcLPmZcuW9Xrvr3/9a48/63Q6CIIw+KjItPTFOS4cA9RtgINTj8OCICA+VImfT1cgq1jVtUeMiIjIZCJSxZ6VBXuASXdIHp7EJIyIhpABJWEvvfSSueMgc/KJAlx8gJYa4OJxIGRKr1MSOpOwzCIV7pthhRiJiGhoi0gFDrxp9JOwyWHekMsElKpaUKpqQbDSxcQBEhFZzoCSsJtvvtnccZA5CYL4NOzsdnFJooEkLL5zX1gWy9QTEZE5hE8DBDlQWwCoigFlqKThbk4OmBDkieySOmTk1yA4Idg8cRIRWQALcwwX+n1hpYaLc0wKVUIQgKKaZlQ1tlkwMCIiGhacPICgBPFrI6sk6vuFpXFJIhHZOSZhw0X3ps0GeDo7ItrfHQCQxVL1RERkDhEzxVcjlyQmRej3hVWbKiIiIqtgEjZcBE0WX2sLgMZKg6ckdJb/5ZJEIiIyi0h902bjnoTpk7DzlU1ctUFEdo1J2HDhogT8xohf97EkUV8VMbO41kJBERHRsBI6FZA5AHVFQG2h5OHebgqMCfQAABxmvzAismNMwoaTrn5hhpMwfSPM7OI6aLQ6CwVFRETDhpP7pZUZRu4LS4oUPzBMz+cHhkRkvyQlYa2trbjzzjtx4MABc8VD5tTPvrCYQHe4KuRobFPjfGWjBQMjIhoampqa8M9//hMzZ85EXFwcbrrpJnz//ff9jtu4cSPGjBlj8L/KSsNLyO3WIJckJkf6AgDSC7gvjIjs14CbNQOAs7MzcnNzIZfLzRUPmZM+CSs9Cmg1gKznv6ODXIa4YC+k5dcgq0iFmM4lH0RENDBLly5FTk4OnnzySURERGDLli144oknoNVqMX/+/H7Hv/TSS4iKiurxnlKpNFO0VhKRCuz9j1icQ6cT26hIkNy5L+xkWT0aWjvg4exojiiJiMxKUhIGAAkJCTh27BhSUlLMEQ+Zk/9YwNENaG8AqnKBgLG9TkkI80Zafg0yi2txe5K0Hi5ERMPZ7t27sX//fvznP//BjTfeCACYOnUqysrK8Morr+CGG27o90PM0aNHIy4uzhLhWk9oCiBzBOpLgNp8wCeq/zHdjPByRpiPK4pqmnGksBZXjAkwU6BEROYjeU/Y3/72N3zxxRfYtGkTmpqazBETmYvcAQjuXIvfx5JE/b6wTJapJyKSZMeOHXB1dcV1113X4/1bbrkFFRUVyM7OtlJkNkbhemllxiCrJGawOAcR2SnJT8LuuOMOdHR0YNmyZVi2bBmcnZ0hdFtKIAgCjhw5YtIgyYSCp4iboUsygMn39DqcEKYEAOSWN6CxTQ13J8n/EyEiGpbOnj2L6OhoODj0/Lk5ZsyYruOTJ0++7DUWLVqEmpoaeHh4IDk5GY8++ihiYmKMjkmj0QxqnLHj+yOEz4Cs6CC0+Xuhi/+95PFJ4Up8fbQEaXk1ZonR3PO3dZw/59/9dbgZ7PwHOk7yb9jXXnttj6SL7Ew/FRIDPZ0RrHRBqaoFx0pUmB7tZ8HgiIjsl0qlQkhISK/3vby8uo73xc/PD4sWLUJ8fDzc3d2Rm5uLtWvX4o477sD69esRGxtrVEw5OTlGjTPV+L54qEcgBoD63M/IycyUvC/MrUUNAMgqrkX6kUwo5Ob5vcRc87cXnD/nP5yZe/6Sk7AVK1aYIw6yFP0SkIpTQFsD4NS7+EZ8qBKlqhZkFTMJIyKS4nIfUl7u2KxZszBr1qyuPyclJWH27NmYP38+3njjDbz99ttGxRMXF2dUMS2NRoOcnByjx/erYwx06cuhaK1GfJgH4DtK0vBJOh389/2CysY2wCcc8ZE+Jg3P7PO3cZw/58/5Gz9//fj+cK3ZcOMxAvAKBeqKxSqJUbN7nZIQpsT3ORe4L4yISAKlUmnwaVddXR2AS0/EBiokJARTpkwZ1F4yuVw+qF+iBju+7wu7AyHJQOE+yIsOAAFjJF8iOdIH3+dcwJEiFaaN8jd9jDDj/O0E58/5c/7mm7/RSVhubi7Onz+Ptra2Xsd+85vfDCYmMreQRDEJK8kwmITpi3NkFaug0+m4/JSIaABiYmKwZcsWqNXqHvvCcnNzAYiVD6XS6XSQySTX0LIPETOBwn3iPuXE+yQP1ydhafk1WGKG8IiIzElyEtbS0oKHH34Yhw4dgiAI0Ol0AHous7BEEtbY2Ii33noLp0+fxsmTJ1FbW4slS5Zg6dKlAxpfXV2NlStXYteuXWhtbUVsbCwef/xxTJs2zcyR24CQJODEN0Cp4QIqE4K94CATUNnQhlJVC0K8XS0cIBGR/Zk7dy6+/PJLbN++HTfccEPX+9988w0CAgIwadIkSdcrLi7G0aNHMX36dFOHahsiU4HdK8QKiUb0C9NXSDxaWAu1RgsH+RBNVoloSJL8E+utt95CaWkpPv30U+h0OqxevRoffvghrr76aoSHh+Obb74xR5y9qFQqfPnll2hvb8fcuXMljW1vb8fChQtx8OBBPPXUU3jrrbfg6+uLBx54AOnp6WaK2IZ0FefIEG98v+LsKMfYkZ4AWKqeiGigZs+ejRkzZuC5557Dl19+iUOHDuGZZ57B3r178Ze//KVrWcvy5csxbtw4lJaWdo1duHAhVq9ejZ9++gkHDx7E//73P9x1110QBAGPPfaYtaZkXsGJgIMz0FQBVJ2VPHzMCA94OjugqV2DkxfqzRAgEZH5SH4StnPnTvzxj39EQkICAGDkyJEYP348pk2bhieffBLr1q3DCy+8YPJAfy04OBgZGRkQBAE1NTXYsGHDgMdu2LABubm5+Pzzz7vmkZKSgptuugkrV66UdC27NGKi2CizqRJQFQLeEb1OSQhTIqe0DlnFKsyfFGT5GImI7NCqVavw2muv4c0334RKpUJUVBReffVVzJs3r+scrVYLjUbTtZIEEJcybt26FR988AHa2trg4+ODqVOn4pFHHkFkZKQ1pmJ+js7ih4IFe4GCPYC/tFL8cpmApAgf7DxdgfT8GkwMUZonTiIiM5D8JKy0tBRRUVGQy+UQBAEtLS1dx+bPn4+dO3eaNMC+CIJg9F6ln376CZGRkV0JGAA4ODhgwYIFOHbsGMrLy00Vpm1ydAZGxIlf91GqXt8vLLOo1kJBERHZPzc3Nzz99NPYt28fjh8/js2bN/dIwACxyvCZM2d6lLNfvnw5vv/+exw9ehQnTpzA3r17sXLlyqGbgOlFdlaENLZpc2dVxPR8Nm0mIvsi+UmYh4cHmpubAQC+vr4oLCxEYqJY9lytVncds2Vnz57FlClTer3fvaFmYGCgpGvaakPMvgjBiZCVHYW2OB26cTf3Oh4XJC5HPF5Wj5a2DigczLPWng0BOf/ur8MN52+ZhphkwyJSxdeCfUbtC0vuTMIyCmqg1eogk7GQFBHZB8lJ2JgxY1BQUIBZs2YhJSUF77zzDsLDw6FQKLBmzRqjG0pakkqlMlgqeCANNftiqw0x++Kj9kMkgObcPTgTmNXruE6ng7tCQGO7Fpv3HMEoH0ezxsOGgJz/cMb5D+/5D2vBkwEHF6C5Cqg8DQSMlTR8QpAXnB1lqG3uwPnKRowO7N37kojIFklOwm699VYUFhYCAB5//HHcdddduPvuuwEAnp6eWLt2rWkjNBNjG2r2xWYbYvYlzAvI/BfcGs4jfsJYwMGp1ylTjh3G7twqNLsEID4+3CxhsCEg58/5c/7mbohJNszBCQhLAfJ+EZckSkzCFA4yTA7zxoHz1UjLr2ESRkR2Q3IS1r3sbmhoKH788ceucvUJCQlQKpWmjM8sTN1QE7Dhhph98YsGXH0hNFdDXnlS7B32K5PDfLA7twrZJXVmj40NATl/zp/zp2EqIlVMwgr2AikPSh6eFOGDA+erkVFQg99PNc8HhkREpmZ0s2Y9V1dXzJkzxxSxWExMTExX88zuBtNQ0+4Iglge+OyPYql6A0lYvL44R7HKsrEREdHw0X1fmFYLSGxOndKtOIdOpzO6aBcRkSUNy86Gc+fORV5eHrKzs7veU6vV2Lx5MyZNmiS5KIfd6t4vzID4znK/hdXNqGlqt1BQREQ0rARPBhzdgJYaoOKk5OEJYd5wkAm4UNeKktqW/gcQEdmAAT0Ji42NHfAnS4Ig4ORJ6T9EjbF79260tLSgqakJAHDu3Dls27YNgNg008XFBcuXL8emTZuwY8cOBAcHAwBuu+02rFu3Do899hiefPJJ+Pr6Yt26dcjPz8eHH35okdhtgv7pVx9l6r1cHRHt74bzlU3IKq7FnNhhkpwSEZHlyB2BsKnA+Z3i07AREyQNd1HIERfihcwiFdLzaxDq42qmQImITGdASdjixYtt8vH+888/j9LS0q4/b9u2rSsJ27lzJ0JCQgw2xVQoFPjoo4+wcuVKvPjii2hpacHYsWPx7rvvIjk52eLzsJrgyQAEsWFzYwXgHtDrlPhQbzEJK1IxCSMiIvOImNmZhO0Fpi6SPDw5wgeZRSpkFNTg1ikh/Q8gIrKyASVhS5cuNXccRvn555/7PWfFihVYsWJFr/f9/Pzw8ssvmyMs++HsBfiPEcsClxwGYm/odUpCmBJfHy3hvjAiIjIffdNmI/eFJUf64J09eWzaTER2Y1juCaNuupYk9rEvLFQJAMgqVkGr1Rk8h4iIaFBGxgMKd6BVBZQflzw8MdwHggDkVTWhoqHV5OEREZma5OqImzZt6vec3/zmN0aEQlYRkgRkfgqUGt4XFjvCA86OMjS0qpFX1YhRAezBQkREJiZ3AMKmAed2iEsSR06UNNzL1RFjAj1w+mIDDhfU4oa4kWYKlIjINCQnYX//+98Nvt99zxiTMDsS3PkkrPQooNUAsp69ehzkMkwMViK9oAaZRSomYUREZB6RqWISlr8XmLZY8vCUSB+cvtiA9PwaJmFEZPMkJ2E7d+7s9V5tbS127tyJH374Aa+99ppJAiMLCRgrlgZubxT3hgWO73VKQlhnElaswm8TQ60QJBERDXn6fmGFBwx+KNifpEgf/O9gIfeFEZFdkJyE6cu8//q9CRMmQK1W4+OPPzZYCINslEwuVkks2CsW5+gjCQOAzCKVZWMjIqLhY8REwMkTaKsDLh4DghIkDU+OEJs2n7pYj7qWDni5OJojSiIikzBpYY5p06YNqGIh2Zj+mjaHegMAzlysR3O72lJRERHRcCJ3AMKni1/n75U8PMDTGRG+rtDpgKOFtSYOjojItEyahJWWlkImsaws2YB+mjaP8HLGSC9naHXAsZI6CwZGRETDin5JYsE+o4YnR4pPw9K4JJGIbJzk5YgZGb2flrS3t+PMmTN45513MG3aNJMERhakL85ReRporQecPXudEh+qxIW6i8gqVmFqlK+FAyQiomEhYqb4WngA0KjFp2MSJEX44MvDJcgoYBJGRLZNchJ2991396iECAA6ndg/avr06XjmmWdMExlZjkcgoAwDVEVA2VEg6opepySEKbH1+EVkFnGJBxERmcmIOMDZC2itAy5kAyFTJA1PiRQ/JDxWokJrhwbOjtKKexARWYrkJOzjjz/u9Z6TkxOCg4Ph5+dnkqDICoITxSSsJMNgEqbfF5ZZpIJOp+uViBMREQ2aTA6EzwTOfC8WjJKYhIX6uCDQ0wnl9W3ILFJhWjRXbhCRbZKchCUnJ5sjDrK2kCTgxMY+94XFBXtBLhNQ0dCGC3WtCFK6WDhAIiIaFiK6JWEzH5c0VBAEJEf64rvsMqTn1zAJIyKbJbmKRn5+PtLT0w0eS09PR0FBwWBjImvoqpB4GOhcXtqdi0KOsSPFRs0sVU9ERGYTqe8XdhDQdEgenhwhrtzgvjAismWSk7AVK1YYbNgMALt27WKPMHs1Ig6QOQLNVUBtgcFT4kOVAICsYu4LIyIiMwkYD7h4Ax1NQFmW5OHJnfvCjhTWokOjNXFwRESmITkJy8nJQVJSksFjSUlJOH78+KCDIitwdAZGThS/7mNJYkK3fWFERERmIZMB4TPErwv2SB4+OsAdXi6OaOnQ4Hgp26oQkW2SnIQ1NDTA1dXV4DFnZ2fU1fEHnt3SL0ksNZyExYcpAQA5pXX8dJGIiMwncpb4akTTZplMQFKE2C+MSxKJyFZJTsICAwNx7Ngxg8eOHTsGf3//QQdFVtK1L6x3LzgAiPR1g5eLI9rUWpy+0GDBwIiIaFjRN20uTgPU7ZKHp3Q2bU5n02YislGSk7C5c+di7dq1OHToUI/309LS8O677+Lqq682WXBkYcGdpYAvHAM6WnsdlskETOK+MCIiMjf/WMDVF+hoFvtXSpQUqX8SVguttnexKSIia5OchC1evBhBQUG47777cP3113e9Lly4EEFBQVi6dKk54iRL8I4AXP0AbQdw0fDTzoTOJIz7woiIyGxkMrFUPWDUksTxQZ5wVchR19KB3Aqu3CAi2yM5CfPw8MAXX3yBJUuWwMvLC2VlZfDy8sLSpUvx+eefw93d3RxxkiUIQs9S9QYkdO4LyyxWWSYmIiIanvRLEgukJ2GOchkmh3WWqueSRCKyQZKbNQOAm5sbFi9ejMWLF5s6HrK2kClA7tY+94Xpy9TnVzWhtqkd3m4KCwZHRETDRo99YW2Ag5Ok4cmRPth3rgpp+TW4e1qE6eMjIhoEyU/C9BoaGrB3715s3ryZFRGHkn6ehCldFYjycwMAZJWoLBQUERENO/5jALcAQN3a5z3pcrpXSNTpuC+MiGyLUUnYmjVrkJqaij/+8Y/429/+hpKSEgDAvffei7Vr15o0QLKwoMkABKCuCGgoN3hKV9Nm7gsjIiJzEYRL+8IK9kkenhCmhKNcQHl9G4pqmk0cHBHR4EhOwj777DOsWbMGt912G955550eny5deeWV+OWXX0wZH1masycQMFb8uo9+YdwXRkREFtGVhEnfF+bsKMfEECUAlqonIttjVBK2cOFCPP3005g5c2aPY+Hh4SgsLDRZcGQl+lL1fe4LEzc7ZxerWPqXiIjMR9+0uTjdYOuU/iSzXxgR2SjJSVhxcTFSU1MNHnNzc0N9ff2ggyIr62dfWOxIDzg5yFDX0oH86iYLBkZERMOK7yjAfQSgaevzg8HLSe62L4yIyJYYVaK+qqrK4LHS0lL4+voOOiiyMn0SVnoU0Gp6HXaUyzAxxAsA+4UREZEZ9dgXJn1J4pQIbwgCUFDdjPJ66U/SiIjMRXISNm3aNLz33ntobr60yVUQBKjVaqxfv77XEkWyQ/5jAIU70NEEVJwyeEpXcY7iWgsGRkREw06kvl+Y9OIcns6OGDvCEwCXJBKRbZGchD366KMoKyvDvHnzsGLFCgiCgE8//RS//e1vUVhYiEceecQccZIlyeRA8GTx6z6WfyR0NsHkkzAiIjIrfb+wkgygo0XycP2+MC5JJCJbIjkJCw8Px/r16xEVFYX169dDp9Ph22+/hbe3N9atW4egoCBzxEmW1rUk0fC+MP2TsNMXG9DS3nvJIhERkUn4RAEeQYCmXWzcLFEKi3MQkQ1yMGbQqFGj8P7776O9vR21tbXw8vKCs7OzqWMjawpOFF/7KM4x0ssZgZ5OKK9vQ05pXdcnjURERCYlCOKSxGNfiEsSo66QNDyxszjHmfIGqJrboXRVmCFIIiJpjGrWrKdQKBAYGMgEbCgK6UzCKs8ArXW9DguCwH1hRERkGfriHPnSi3P4ezghyt8NOh1wuID3KyKyDQN6ErZp0yZJF/3Nb35jRChkU9wDAGU4oCoUqyRGX9nrlIQwb/x4opz7woiIyLz0+8JKjwDtTYDCTdLw5Agf5FU2IaOgBnPHBZohQCIiaQaUhP39738f8AUFQWASNlSEJIlJWMlhw0lY55MwJmFERGRW3hGAVyhQVyzuC4ueI2l4cqQPPs8oRhr3hRGRjRhQErZz505zx0G2KCQROP5VnxUS40K8IJcJuFjfigt1LRjp5WLhAImIaFjQ9wvLXi8uSZSYhCV17gs7XlqH5nY1XBVGbYknIjKZAf0UCg4ONnccZIv0FRJLMgCdTrwJduOqcMCYQA+cvFCPrCIVRsYxCSMiIjOJSBWTMCOaNod4uyDIyxllda3ILFJhxig/MwRIRDRwRhfmaGxsxL59+7Blyxbs378fjY2NpoyLbMGIOECuAFpqgNp8g6fEhykBAFnFKsvFRUREw4++OEfpUaBN2u8cgiAgiaXqiciGGPU8/v3338fq1avR2toKnU4HQRDg7OyMRx99FPfdd5+pYyRrcXACRkwUe4WVHBZ7tfxKQqgS69KKuC+MiIjMyzscUIYBqiKg6BAweq6k4cmRPvg2q4xJGBHZBMlJ2KZNm7By5UrMmjULN998MwICAlBRUYFNmzbhlVdegbe3t8UKczQ1NeH111/H1q1bUVdXh6ioKDz44IOYN2/eZcdt3LgRy5YtM3hs37598Pf3N0e49ikkqTMJywAm3t7rcELnk7BjpSqoNVo4yAfV9YCIiKhvEbOArE+Bgj3Sk7DOfWGZxbVoV2uhcOD9ioisR3IS9tFHH+HGG2/Ev//97x7vX3/99fjzn/+M//3vfxZLwpYuXYqcnBw8+eSTiIiIwJYtW/DEE09Aq9Vi/vz5/Y5/6aWXEBXV8+mOUqk0U7R2KiQRSEOfTZuj/Nzh4eyAhlY1Tl9swIRgL8vGR0REw0dkamcStk/y0FEB7vBxU6CmqR05pXWYEu5thgCJiAZG8sdAeXl5WLBggcFjCxYswPnz5wcd1EDs3r0b+/fvx7PPPos777wTU6dOxYsvvogZM2bglVdegUaj6fcao0ePRnx8fI//HB0dLRC9HdEX57h4DOho6XVYJrvUtDmT+8KIiMic9PvCyrKA1npJQwVBQFKEmHhxSSIRWZvkJMzZ2Rl1dXUGj9XV1cHZ2XnQQQ3Ejh074Orqiuuuu67H+7fccgsqKiqQnZ1tkTiGPGUY4OYPaNXAhWMGT9H3C8vivjAiIjInrxDAOxLQaYCig5KH60vVZxQwCSOiS3Q6Hc5XNmJdWhGe2nQcWRfbzP49JS9HnDJlClavXo3k5GQEBl7qOl9ZWYk1a9YgMTHRpAH25ezZs4iOjoaDQ88pjBkzpuv45MmTL3uNRYsWoaamBh4eHkhOTsajjz6KmJgYo+IZyJO3y40zdrwlyIITIeRuhbY4Dbrg3v++E0PEJYiZRbWS52EP8zcnzp/z7/463Ax2/sP1723Yi0wVK/YW7AVirpU0NCXSF4CYhGm0OshlQj8jiGgo0mp1OFvRiLT8aqTl1SAtvwZVjZcSr4QRCiy87jIXMAHJSdgTTzyBO++8E9dccw2mTZsGf39/VFZW4tChQ3BwcMDq1avNEWcvKpUKISEhvd738vLqOt4XPz8/LFq0CPHx8XB3d0dubi7Wrl2LO+64A+vXr0dsbKzkeHJyciSPMeV4cxohC0YwANWJnch3ntHruLxNCwDIq2rCvvSjcFdI3+xsy/O3BM6f8x/Ohvv8SaKIVODox2LTZonGjvSAm0KOhlY1zlxswLggTzMESES2RqPV4dSFeqTn1yAtvxrp+TWobe7ocY7CQYaEUCWSI7wR5yZtubMxJCdho0ePxldffYVVq1YhLS0NKpUKSqUSV111FZYsWYLIyEhzxGmQIPT9Cdbljs2aNQuzZs3q+nNSUhJmz56N+fPn44033sDbb78tOZa4uDjI5XLJ4zQaDXJycowebxFe9cDp9+DddA5e8fEGTwnfvweF1c3QeocifvTAq0vaxfzNiPPn/Dl/4+evH0/DTESq+HrxGNCiAlyUAx7qIJdhSoQP9uRWIj2/mkkY0RCl1mhxoqy+60lXRkEN6lvVPc5xcZRjSrg3kiN9kBLpg0mhSjg7yqHRaJCVlWX2GI3qExYZGYlXX33V1LFIolQqDT7t0u9X0z8RG6iQkBBMmTLF6L1kcrl8UL9EDXa8WYUmAhAg1JVA3lwJeIzodUpCqBKF1c04VtKAK2N7H++PTc/fAjh/zp/zH77zJ4k8RwK+o4Dqc+K+sDHXSxqeHOGNPbmVyCioxcIZlvvgmIjMp12tRU6pCoc6lxYeKahBU3vPJetuCjkSI3yQEuWDlEhfxAV7WbVVhVFJmC2IiYnBli1boFare+wLy83NBSA+sZNKp9NBJmPfkF6cPICAcUDFCbFU/dgbe52SEOaNTVllyCyutUKAREQ0rETMFJOw/L3Sk7DOfWFp+TXQ6XSXXTlDRLaptUODrGJV1/LCI4W1aO3Q9jjH09mh8ymXL1KifDBupKdN9bM1Kgk7efIkvvvuO5SVlaGtrWf1EEEQjFrOJ9XcuXPx5ZdfYvv27bjhhhu63v/mm28QEBCASZMmSbpecXExjh49iunTp5s61KEhZEpnEpbRRxKmBABkFat4UyMiIvOKSAWOfCQ2bZZoYogXFHIZqhrbUFDdjEg/N9PHR0Qm1dKuwdGiWqTlVeNQfg2yilVoV/dMunzcFEiO8BETrygfxI7wtOniO5KTsE2bNmHZsmWQyWTw8fHp1VfLUr98z549GzNmzMBzzz2HxsZGhIWF4fvvv8fevXuxcuXKrqUty5cvx6ZNm7Bjxw4EBwcDABYuXIjExETExsbCzc0Nubm5eO+99yAIAh577DGLxG93QpLEjdB9NG2OHeEJhYMMquYO3tSIiMi8uvaFHQeaawBXnwEPdXaUIz5UifSCGqTnV/N+RWSDGtvUOFwgLi1Mz6/BsRIVOjS6Huf4uTshJcoHUyN9kBLli1H+7pDZcNL1a5KTsLfffhuzZ8/Gyy+/LHnflamtWrUKr732Gt58802oVCpERUXh1Vdfxbx587rO0Wq10Gg00Oku/cPFxMRg69at+OCDD9DW1gYfHx9MnToVjzzyiEULi9gVfdPmsqOARg3Ie/5PR+EgQ1ywF44U1iKzqJY3NSIiMh+PQMAvBqjKBQoPGFyhcTlJkd6dSVgt7kgKM1OQRDRQdS0dXUlXWl41jpfVQ6PtmXSN9HJGSmfClRLpg0g/N7teeSU5CauoqMCzzz5r9QQMANzc3PD000/j6aef7vOcFStWYMWKFT3eW758ublDG3r8xgBOnkBbPVB5ChgR1+uU+FAljhTWIqtYhVsm924fQEREZDIRqWISVrBXchKWHOmLNbvOI72g2kzBEdHl1Da1iwlXZ/XCUxfroeuZcyHUxwUpkb5IjvTB1EhfhPq42HXS9WuSk7CxY8eivLzcHLGQLZPJgKAEIH+3uC/MQBKm3xeWWaSybGxERDT8RKYCh98HCvZJHjo5TAmZABTXtOBCXQtGermYIUAi0qtsaOvqz5WWV4Mz5Q29zon0c+t80iUW0whSDu3/X0pOwv76179i2bJlGDt2rFFNjcmOhSR1JmGHgcT7ex2OD1UCAE5dqEdrhwbOjiw5TUREZhI+U3wtPw40VQNuvgMe6uHsiPFBXsgprUN6fg1uig82U5BEw9PFulak5Vd3loyvRl5lU69zRge4dyVcKZE+CPB0tkKk1iM5CYuPj8c111yDm2++Gf7+/r2WJQqCgM2bN5ssQLIh+n1hfRTnCFa6wN/DCZUNbTheWofEiIFvlCYiIpLE3R/wHysukS/cB4y7SdLw5EgfJmFEJlJc09y1nystvwZFNc09jguCWMQtpbMxcnKkD3zdnawUrW2QnIStXbsW77zzDnx8fBAUFNSrOiINYSGJ4mvVGaBFBbgoexwWBAEJoUpsP1mOzCIVkzAiIjKvyFQxCSuQnoQlRfjg/X35yCioMVNwREOTTqdDQXUz0jv3c6Xl16BU1dLjHJkAjA/y6iqkkRThDaWrwkoR2ybJSdjHH3+MW2+9FS+88EJXGXgaJtz8AO8IoLYAKD0CjLqq1ynxYWISllWssnR0RERW19TUhNdffx1bt25FXV0doqKi8OCDD/ao2tuX6upqrFy5Ert27UJraytiY2Px+OOPY9q0aRaI3E5FzATS14pNmyVKivAGAOSWN6K2qR3ebvwFkcgQnU6H85WNnUsLxdYO5fU9+wQ7yATEhXh1NUZODPeGhzMf1FyO5CSsqakJN954IxOw4Sok6bJJWEKoeFPLLKq1cGBERNa3dOlS5OTk4Mknn0RERAS2bNmCJ554AlqtFvPnz+9zXHt7OxYuXIj6+no89dRT8PX1xWeffYYHHngAH374IZKTky04Czui3xdWeQporBSXKA6Qr7sTRgW441xFIzIKanDN+BFmCpLIvmi1OhSoOpB9sBAZBbVIz69BdVN7j3MUchniQ5VIiRKXFk4J94arQnJaMaxJ/tuaPHkyzp8/z0/mhquQJCBng1gh0YCJIV6QCUBZXSvK61sROMw2WRLR8LV7927s378f//nPf3DjjWLJ9KlTp6KsrAyvvPIKbrjhhj4/wNywYQNyc3Px+eefIyEhAQCQkpKCm266CStXrsSGDRssNg+74uYLBE4Qi3MU7gPG3yxpeHKkD85VNCI9n0kYDW86nQ4nyurx1ZESbM4uQ01TO4BLLRycHGSYHObdVUgjIUzJAmyDJDkJe+qpp/Doo49ixIgRmDVrFhQKPr4fVoI794WVZAA6nbjTshs3JwfEBHrg9MUGZBapcN0E3tSIaHjYsWMHXF1dcd111/V4/5ZbbsGTTz6J7OxsTJ482eDYn376CZGRkV0JGAA4ODhgwYIFePXVV1FeXo7AwECzxm+3ImaKSVj+XulJWIQP1qUVcV8YDVuVDW34NqsUXx0pwemLl8rGO8sFJEX6YGq0H1IifRAX4gUnByZdpiQ5Cbv11luhVquxdOlSCIIAZ+eeTzoEQcCRI0dMFiDZmBFxgNwJaKkFavIA3+hepySEKXH6YgOyipmEEdHwcfbsWURHR8PBoeetdcyYMV3H+0rCzp49iylTpvR6v/tYJmF9iEgF0v4rNm2WKDlSLCB1vKweTW1quDlxORUNfe1qLX4+XY6vjpRg15lKaLRil2SFgwzXjAvELQlBcGssQeLkBG4/MiPJP22uvfbaIdWtmiRyUAAjJwEl6WKpekNJWKg31qcXc18YEQ0rKpUKISEhvd7Xt3JRqVSXHfvrli8DHXs5Go1mUOOMHW9RoVMhgwChKheaujLAfeDJaqCHAsFKZ5SqWnG4oBozR/kBsLP5mwHnP/Tmr9PpcPJCA74+WorN2WWobe7oOhYf6oVbE4Ixb+JIeLk4QqPRICendEjNX4rB/vsPdJykJEyj0eChhx6Cj4+PwZsFDRMhiZ1JWAYw6Y5eh+PDlACAYyV1UGu0cJDLLBwgEZF1XO5Dyv4+wBzM2L7k5OQYNc5U4y1lrGc0XOvPoXD3Z6gNniNp7CgvoFQFfHfoFNwbPXocs5f5mwvnb//zr2vVYE9RK3YVtKCwTt31vrezDLPDXXBlhAtCPB0A1CD/TM9luUNh/oNh7vlLSsJ0Oh3mzZuHt99+G7NnzzZXTGTrQrrtCzNglL87PJwc0NCmRm55I8YFeVowOCIi61AqlQafWNXV1QHAZT+8HMzYy4mLizNqOZH4SXiO0eMtTai4Gkg7hwgUIzw+XtLYazqKsbvwBIpbFYjvHGtv8zc1zt++59+u1mLXmUpsPFqKX3KroO623PDqsQG4dXIwZkT79vkhub3Pf7AGO3/9+P5ISsIcHBzg5+cHnU4nOSAaQkKSxNfy40BHC+Do0uOwTCZgUqgS+85VIbO4lkkYEQ0LMTEx2LJlC9RqdY99Ybm5uQCA0aNHX3as/rzuBjL2cuRy+aB+iRrseIuJmg2kvQ1Z4X5AYrxTo8UliJnFdVDr0KP4gN3M30w4f/uZf/fqht9mlf5quaESt00JwfyJQfByHXjvLnuavzmYe/6S14nNmzcPmzZtMkMoZDe8QgG3AECrBi5kGzwlPlQJAMgqUlkuLiIiK5o7dy6am5uxffv2Hu9/8803CAgIwKRJky47Ni8vD9nZl36mqtVqbN68GZMmTWJRjv6ETQMEGVB9Dqi/IGlolJ8b/NwVaFdrkVNSZ6YAicyjqrEN7+3Nw/Vv7MWNq/bhowMFqG3uQICHEx6aHYWfnpiFTYtn4PdTwyUlYGR+kgtzxMbG4ocffsA999yDa665Bv7+/r3Wql9zzTUmC5BskCCIT8POfC8uSQyb2uuUhM59YZnFKsvGRkRkJbNnz8aMGTPw3HPPobGxEWFhYfj++++xd+9erFy5susT1eXLl2PTpk3YsWMHgoODAQC33XYb1q1bh8ceewxPPvkkfH19sW7dOuTn5+PDDz+05rTsg4sSGDERuJAlVkmcePuAhwqCgKQIH2w9fhFp+TVIjPAxW5hEpiAuN6zAhsMl+OVMxaXlhnIZrh4fiNumhCB1lB/35Ns4yUnY3/72NwBAeXk50tPTex0XBAGnTp0afGRk20ISLyVhBuifhJ2raERdSwe8XPjpCxENfatWrcJrr72GN998EyqVClFRUXj11Vcxb968rnO0Wi00Gk2Ppf0KhQIfffQRVq5ciRdffBEtLS0YO3Ys3n33XSQnJ1tjKvYnMtWoJAwQS9VvPX4R6fk1WHylecIjGqwTZXWdyw31zZRFk7qWG46E0pX9e+2F5CTs448/NkccZG/0+8JKDPeE83V3QpiPK4pqmnGsRIXU0f4WDI6IyDrc3Nzw9NNP4+mnn+7znBUrVmDFihW93vfz88PLL79szvCGtohU4MAqsWmzREmdT7+OFNZ29UwisgVVjW34NqsMXx0pwakL9V3vB3g44ebJwbhtcghGB3pc5gpkqyQnYfxEjgAAQQni+vv6EqC+DPAM6nVKfKgSRTXNyCxiEkZERGYWNg0Q5EBtPlBXAnj17tnWl7EjPbuq+p66UI+xI9zNGCjR5emXG351pAS7TnO54VBldGv4hoYGZGVloba2FrNnz2bfsOHGyR0IGCdWSCw5DIxb0OuUhDAlNmeXIYv7woiIyNycPYGgeKD0CFCwD5h054CHymUCpkR445czlUjPr2ESRlbB5YbDi1FJ2Jo1a/Duu++itbUVgiDgq6++gpeXF+69917MmDEDDz74oKnjJFsUkigmYaV9JWHeAIDMolrodDqjm40SERENSMRMMQnL3yspCQPEfWH6JOzeaWFmCpCop+rGNmwysNzQ38MJtyQE49YpIYjhcsMhSXIS9tlnn2HNmjW46667kJqaioceeqjr2JVXXont27czCRsughOBIx+JT8IMGDvSAwq5DLXNHSiqaUa4r5tl4yMiouElYhaw/w2gYI/kocmd+8IyCmrYD5XMqkOjxa7T4nLDn3+93HBc53LD0VxuONQZlYQtXLgQf/3rX6HRaHocCw8PR2FhocmCIxunL85Rlglo1IC85/+cnBzkGB/sicwiFTKLVEzCiIjIvMKmivvCVEVAbSHgHT7goXEhXnBykKG6qR15VU1mDJKGq5PdmilXd19uGOIlLjecFMTlhsOI5CSsuLgYqampBo+5ubmhvr7e4DEagvxiACdPoK0eqDgJjJzY65T4UCUyi1TIKlbhNwnBVgiSiGyRTqdDeX0rWtVaa4dCQ4mTOxA8WWyfUrBPUhLm5CBHfKgSafk1yCioRSw7q5AJVHerbniSyw2pG8lJmIeHB6qqqgweKy0tha+v76CDIjshk4k3u7xfxBuegSQsIcwbH+4vQGZRreXjIyKrE5OtNuSWN+BsRSPOljd0fd3QqoaPswwHE7RdjYyJBi0itTMJ2wsk/E7S0JRIn0tJ2GgzxUdDHpcb0kBITsKmTZuG9957D1dddRWcnJwAiA2a1Wo11q9fj5kzZ5o8SLJhIUmdSdhhIOkPvQ4ndDZtPnmhHq0dGjg78hctoqGov2TLELlMwGhfR/4iQqYVmQrse1V8EqbTARKKQiVFXtoXdvdopZkCpKGqr+WGEzuXGy7gckPqRnIS9uijj+K2227DvHnzMHfuXAiCgE8//RSnTp1CWVkZXn/9dTOESTarq2lzhuHD3i7wc1egqrEdJ8rqMSXc24LBEZGpGZtshfu6IibAAzGB7hgVKL6Gebvg1PFjFp4BDXmhKYDMEagrBmoLAJ/IAQ+dHOYNuUxAqaoVlc2a/gfQsFfT1I5NmaW9lhv6uTvhlsnBuHVyCMaM4HJD6k1yEhYeHo7169fjpZdewvr166HT6fDtt98iJSUF//73vxEU1LtpLw1hwYnia/VZoKUWcOmZZAmCgPhQb/x0qhyZRbVMwojshD7ZOlvRgNxyMdk6W9GI3PIGyclWpJ8bnBx6PwX/dXEnIpNQuAHBU4DiQ+LTMAlJmJuTAyYEeSK7pA4nK9txtRnDJPvVodHilzOV+OpIMX4+XYEOzaXlhnPHBeC2KSGYNdqfT/npsozqEzZq1Ci8//77aG9vR21tLby8vODs7Gzq2MgeuPkC3pFAbb7Ym2XU3F6nJIQp8dOpcjZtJrJBlki2iCwuMrUzCdsLTL5b0tDkSB9kl9Thg6x6+I0owu+mRkAuY59LAk5dEJcbbso0vNxw/sQgeLtxuSENjOQkbNmyZXjkkUcQGhoKhUKBwMDArmOlpaVYvXo1XnrpJZMGSTYuJElMwkoOG07COveFZRapLBsXEXUZbLI1OtAdo5lskb2ImAnsWSk2bZa4L+yB1Cjszq1Ebnkj/rH5JNZnlOD5BeOR3LlfjIaXmqZ2fJslLjc8UcblhmQ6kpOwb775Bv/v//0/hIaG9jpWW1uLTZs2MQkbbkKSgJwv+2zaHBfiBUEASlUtqGhoRYAHn5oSmYtOp0NFg7hnK7e8Eee6JV31TLZouAhJBuQKoKEMqMkDfKMHPDTQ0xnfLZ6OV745iA2nWnDqQj1uf+cgFkwKwvIbxmKEF+9hQ12HRouMsla8cyITu85cWm7oKBe6qhtyuSENllHLEftSV1cHhYKPYYedkCnia0mGwU8cPZwdERPggTPlDcgqUuGa8SOsECTR0MJki+gyFK7inuWiA+KSRAlJGAA4yGW4YZQbHro+Ca/9dA6fZxRhc3YZfjpVjsVXjsIfZkay2u8Q1NqhwaeHCvHf3edR1cjlhmReA0rCMjIykJaW1vXnDRs2YM+ePT3OaWtrw86dOxEdLe0HHQ0BgXGA3AloVQHV5wG/Ub1OiQ9V4kx5AzKLmYQRSTGYZGt0gDtiAj0wOtADowPcEeXPZIuGkchUMQnL3wtMWWjUJXzdFHjpljj8LiUMz24+gSOFtVj54xl8ebgYz8wbh6vGBkCQsNSRbJNGq8PGoyV4/aezKFW1AACUTjLcmhSG2xPDuNyQzGJASVhaWhpWr14NQKx2t2HDBoPnBQUF4R//+IfpoiP74KAAguKB4jTxaZiBJCwhTIkvDhcji/vCiAzqnmydLW/ssXeLyRaRESJSgd0vG9Uv7NcmBHvhq0XTsCmrFC/9cBqF1c144OPDmB3jj3/MH4dof3cTBk6WotPpsONkOVb+eAZnKxoBACM8nfHonGhEy6uQODmWjeTJbAaUhD3wwAP43e9+B51Oh+nTp+P999/HuHHjepyjUCjg5uZmliDJDoQkiUlY6WEg/v/1OpwQJpamP1aigkarY6UpGtZ0Oh0Kq5ux92wFdh+rQ03aIZyraGSyRWRKIUniKo3Gi0D1OcBv9KAuJwgCbk4IwdXjRmD1z+fw/r487M6txHWv78H9MyKxZM4oeDg7mih4Mre0vGq8vO00jnZ+OOzl4ohHrojGvdMj4CgDsrKqrRsgDXkDSsKcnZ27StDv3LkT/v7+3PtFPQV32xdmwKgAd7gp5Ghq1+BsRQNiR3haMDgi66tsaMOB81XYf64K+89Vdy15EYlfM9kiMiFHZyA0WdwTlr9n0EmYnruTA/5+fSzuSArFC9+dwK4zlXhnTx42ZpZi2fWx+E18MGT8oNFmnSyrxys/nsYvZyoBAM6OMtw/IxIPzY6Gl4uYRLOHIVmC5MIcwcHB5oiD7F1Ikvh68TjQ3ixuiu5GLhMwKVSJA+erkVmkYhJGQ15jmxrp+dXYd7YaB85X4fTFhh7HFXIZEsKUCHFuw8y4aMSO9GKyRWRqEaliElawD0j6g0kvHennhg/vS8bPp8vxwncnUVDdjCe+zManhwrx/IIJiAvxMun3o8Epqm7Gf3acwbdZZQDE30vuTArFY1eNRoAnK16S5UlOwjo6OvDuu+9iy5YtKCsrQ1tbW4/jgiDg5MmTJguQ7IRXCOA+Qlz2cSEbCJ/W65T4ziQsq0iF/5ccZoUgicynXa1FVrGq80lXFbKKVVBrdV3HBQEYN9ITM0f5YcYoPyRF+EAhB7KyshA/KYj7DojMIWKm+GqCfWF9mRMbiBmj/PDBvgKs+vksjhapsGDNPtyZFIo/XzMGvu5OJv+eNHCVDW1Y9fNZrEsr6vqZPH9SEJ64OgaRftxGQ9YjOQl79dVX8dFHH2HWrFmYO3euVZclNjU14fXXX8fWrVtRV1eHqKgoPPjgg5g3b16/Y6urq7Fy5Urs2rULra2tiI2NxeOPP45p03onDzQAggCEJAKnt4hLEg0kYfp9YZnFtZaOjsjktFodzpQ3YP+5Kuw7V4X0/Bo0t/dcwhLu64rp0X6YOcoP06J94fOr0sZc8kJkZiGJgIMz0FQBVJ4BAmLN8m2cHOR4+Ipo3JwQjBVbT2FTVhnWpxdjy7ELeOLqGPx+ajgc2VPKoupbO/Dunjy8vy+/62fzrBh//PXaMZgQzKeUZH2Sk7CtW7di8eLFWLJkiTnikWTp0qXIycnBk08+iYiICGzZsgVPPPEEtFot5s+f3+e49vZ2LFy4EPX19Xjqqafg6+uLzz77DA888AA+/PBDJCcnW3AWQ0j3JMyA+FAlAOBsRSMaWju4gZnsTnFNs/ik63w1DpyrQnVTe4/jvm4KTB/lh5mjfDE92g+hPq59XImILMLBCQhNAfJ3i8sSzZSE6Y3wcsbrdybg91PD8ezmEzhRVo/nvzuJ9elFeG7+eEwf5WfW70+Xen2t2XUOtc0dAIBJoUr87boxmB7Nv3+yHZKTsLq6OiQmJpojFkl2796N/fv34z//+Q9uvPFGAMDUqVNRVlaGV155BTfccEOfy3s2bNiA3NxcfP7550hISAAApKSk4KabbsLKlSv7LMFP/dDvCys5bPCwv4cTQrxdUFLbgmMldZjBmxHZuJqmdhw8X41956pw4HwVCqubexx3VciREumDGZ1LDMcEenBDPpGtiUi9lIQl/9Ei3zIxwgebl8zEFxnFWPnjaeSWN+Ku99Jw/YQReGreWIR48wMaU1NrtNiYWYrXd+SirK4VABDt74a/XDsG144fwX5uZHMkJ2FJSUk4ffo0pk6dao54BmzHjh1wdXXFdddd1+P9W265BU8++SSys7MxefJkg2N/+uknREZGdiVgAODg4IAFCxbg1VdfRXl5OQIDA80a/5A0Mh4QZEBDGVBXCnj1LuKSEOaNktoWZBbVMgkjm9PSrkF6QQ0OdC4xPHmhHrpL27oglwlICFV2JV3xoUooHLjEiMimRaYCuyDuC9NqAZll/j8rlwm4KyUMN8SNwGs7cvHJoUJsPX4RP5+uwMNXRGPR7Gg4O3Iv6GDpdDps7+z1da6z19dIL2f8aW4MbpkcDAcuAyUbJTkJe/rpp/HII48gKCgIV1xxhdX2hJ09exbR0dFwcOg5hTFjxnQd7ysJO3v2LKZMmdLr/e5jpSZhxu7t0I8bEntDHFwgCxgHofw4NMXpgPuCXqdMCvbEd9llyCyqhUajGVrzNwLnb935qzVa5JTWi8sLz1chs0iFdo2uxzljAt0xPdoXM6J9kRTpA3en7j9zdIOK3drzt7bBzn+4/r2RREGTAUdXoLkaqDwNBI7rf4wJKV0VeP6mCbgzOQzPbT6BtPwavP7TWWw4XIJnbhzLpzSDcKiz11dmt15fi6+Mxj3TIpjgks2TnITddNNNUKvVeOyxxyAIQlf/MD1BEHDkyBGTBdgXlUqFkJCQXu97eXl1Hb/cWP15Usf2JScnR/IYU463FWHOkfDHcVRm/oDStt4VEN1axT00GfnVyMzM7LrxDJX5G4vzt8z8dTodSho0OFbehpyKdpyoaEezumfS5ecqw8QAJ0wMVGBCgALeznIAbUBrGc6dKjNLXPz3H97zJzNzUIj7wvJ2iUsSLZyE6Y0d6YnPH5yK73Mu4F/fn0KpqgWLPj2KGaN88ez88YgJ9LBKXPboeGkdVv54BrtzxV5fLo5y/GFmJP44K6qr1xeRrZOchF177bU284nN5eLoL8bBjDUkLi7OqBLTGo0GOTk5Ro+3NYJwLVD4HQI7iuEfH9/r+NgODf6x+yfUt2nhFz4GQV5OQ2r+Ug21f3+pLDH/C3WtOHC+uuu/ioaebTWULo6YGuWDGdG+mD7KF+E+rhb7Gcd//8HNXz+eqF+RqWISlr8HSHnIamEIgoAbJwZhTmwA/vvLefx3Tx72n6vG9W/sxb3TIvDY3NFMIi6jsLoJ/9mei83Z4gdiDjIB/y85DEvnjGKvL7I7kpOwFStWmCMOyZRKpcEnVnV1dQBg8EmXKcb2RS6XD+qXqMGOtxmhYmVJoSwLcmgBec+biatcjnFBXsguViG7tB6hPiMADKH5G4nzN93865o7cDCvurOKYRXyKpt6HHdykCFZX0wj2g/jgjwht3IxDf77D+/5kwVEzBJfC/dbdF9YX1wVDnjimjH4bWIo/m/LSWw/WY4P9ufj26xS/PW6MfjtlFAW+emmoqEVq3aew/r0S72+FnT2+opgry+yU5KTMFsRExODLVu2QK1W99gXlpubCwAYPXr0Zcfqz+tuIGOpH76jAScvoK0OKD8BBMX3OiUhVInsYhUyi1S4MW6E5WOkIaW1Q4MjhbVdTZJzSuvQrUcyZAIwMUSJGaN8MWOUHyaHeXOvANFwExQPOLoBLbVAxQlgRJy1IwIAhPq4Yu09idiTW4nnvzuB85VN+NvXOfgsrQjPLRiPyZ39NYer+tYOrN0t9vpq6RD3gM6O8cdf2OuLhoABJWEnTpyQdNHx48cbFYwUc+fOxZdffont27fjhhtu6Hr/m2++QUBAACZNmnTZsc8//zyys7O7zlOr1di8eTMmTZrEyoiDIZMBIVOA8z8DpYcNJ2FhSnx0AMgqVlk8PLJ/Gq0OJ8rqxLLx56qRUVCDNrW2xznR/m6YOcoP00f5YWqUL5f3EA13ckcgfBpw7icgf6/NJGF6s2L8se3xWfjfgQK8/tNZHCupwy1vHcCtk0Pwt+vHIMBjeC21a+3Q4JODhVjzyzmoOnt9xYcq8bfrYjEt2tfK0RGZxoCSsFtvvXVAeyR0Oh0EQcCpU6cGHVh/Zs+ejRkzZuC5555DY2MjwsLC8P3332Pv3r1YuXJl19KW5cuXY9OmTdixYweCg8WS6bfddhvWrVuHxx57DE8++SR8fX2xbt065Ofn48MPPzR77ENecKKYhJUcBpIe6HU4IVT8ZO9kWX2vX56Jfk2n0yG/qgn7z1dj/9kqHMyrRl1LR49zAj2dMCPar6t0/Aiv4fULCxENQESqmIQV7AOmPWLtaHpxlMvwQGoUFsQHYeW2M9hwpARfHy3Bjycu4tGrRmHh9Mgh3xJDrdHi66MleP2ns7jQ2etrVIA7/nLtGFwzLtBmahIQmcKAkrCXXnrJ3HEYZdWqVXjttdfw5ptvQqVSISoqCq+++irmzZvXdY5Wq4VGo4GuW7MfhUKBjz76CCtXrsSLL76IlpYWjB07Fu+++y6Sk5OtMZWhpatpc4bBw6E+LvBxU6CmqR2nLtRbMDCyFxUNrThwrrNJ8rmqrsabeh5ODpjaWTZ+5mg/RPu78+ZMRJcXkSq+Fu4DtBpAZpvLkgM8nLHyt5Pwu6nheHbzCWQXq/CvH07j84xiPDt/PGbH+Fs7RJPT6XT48cRFrPzxDM537uMN8nLG41fH4JYE9vqioWlASdjNN99s7jiM4ubmhqeffhpPP/10n+esWLHCYDERPz8/vPzyy+YMb/gKSRRfq88BzTWAq0+Pw4IgNrzdeboCmcUqJLhaIUayKQ2tahwuFAtp7D9Xhdzyxh7HFXIZJocrMbPzSVdcsBdvykQkzchJgMIDaK0DLuYYXC5vS+JDlfjm4en46mgJXtl2GnmVTbj3g3TMHRuIf9w4DmG+Q+PmeeB8FV7edgbZnVsUlK6OWHLlKPx+ajj379KQZreFOciGufoAPtFAzXmg9Cgwem6vU+I7k7Ds4jokjLFCjGRVOp0OueWN+OFYGbZlV+Pc1zuh6VZNQxCA8UGeXRUMkyJ84KLgzZiIBkHuAIRPB87+KC5JtPEkDABkMgG3J4biugkj8OZPZ/HRgQL8dKoce85W4sHUKDxyZTRcFfb5q9zx0jq88uMZ7OnW6+uBVLHXl6cz9/GSiXW0Aq0qoEUlFuhp7Xw18GdZeyO8/eYABlotmZJ9/j+XbF9IopiElWQYTMISOis+ZRWrgDGscDQc6HQ6nCirx9bjF7A15yLyqnqWjo/wdcX0UX6YOcoP06J84e2msFKkRDRkRczsTML2AtOXWDuaAfN0dsTTN47DncmheP67k9h7tgqrd53DV0dKsHzeWMyfONJulmQXVDXh39vPYMuxCwDEXl93pYRhyZxRw64ACUmk1YhPsvtIni792cAxdcuAv40AwLtdDuBJ08+hGyZhZB4hScCxL/rcFzYx1AuCABTXtqCu1d3CwZGlaLU6ZJWosO34RWw9fgHFNZd+CCocZEgd5YsYtzbceWU8wv08rBgpEQ0Lkfp9YQcAjVp8OmZHRgV44OP7k7H9ZDn+b8tJlNS24NH1mfj0YCGeWzAe44I8rR1inyrqW/HGzrP4IqO4q9fXTfFBePLqMUNmaSUNgE4HtDUMPHnqfqxtkHUEBBng7AW4eAPOSvHVRdntz+LXGicvFDR4Y+Lgvlu/7OunD9kP/b6w0iMGG2N6OjtilL87zlY0IremA7OtECKZh0arw5HCWvyQcwE/nrjYVeEKAJwdZbhyTACumzACc2ID4OooQ1ZWFkK8eQMmIgsYMfFSL8uLx4DgydaOSDJBEHDt+BGYHeOPd/fkYc0v55BeUIMbV+3F71LC8cTVMTa1kqCupQPv7D6PD/bno7VDrIh8xRix19f4IK6EsVsdrb0Tpsss8euRTOk0g/veCo/OhEl52WSq1zGFx8AatWs00GZlDS7GAWASRuYROAFwcBb/D1dzHvDr3QA7IUwpJmHVHb3Hk11Ra7RIy6/B1uMXsO14Oaoa27qOuSnkmDM2EDdMGIHZY/x77F/QaAb5g5iISAqZXNwXlrtVXJJoh0mYnrOjHEuvGo1bpoTgXz+cwvfHLuCTQ4X47lgZnrxmDO5KDoNcZr0liq0dGvzvQAHe+uV8V1uRyWFK/PW6WEyNYq8vm9WignDqO4zIPQKhYoO4/M/QUyp1az8X6ofcyUDy5H2ZxEp/zEvs+zcEMAkj85A7AiPjgeJD4pJEA0lYfKg3vjxcggMlrfjycAmmj/JDmI+r3axrH+7a1VrsP1+FbTkXsf3kRdQ2X0qmPZ0dMHdcIK6fMBKpo/1Y4YqIbEdkqpiE5e8FZjxm7WgGLVjpgjV3TcbvU6rx/HcncPpiA57ZdBzr0orw/ILxSI706f8iJqTWaPHVEbHX18V68Rf10Z29vq5mry/bVXoUOPw+kPM1ZOoWBA9kjCAbePL066dUji7mmondYBJG5hOSeCkJi7+r1+GpUT4QBOBiowbLvjkOABjp5YypUb6YGuWDaVF+CPVx4Q9sG9LaocHes1XYmnMBO06Vo6FV3XXM29UR144fgesmjMD0aL8h31SUiOyUvl9Y0UG73BfWl2nRvtiydCY+SyvCf7afwakL9bj9nYNYMCkIy28Ya/Ym9jqdDtuOX8TK7WeQ163X15+ujsEtk0Os+lSO+tDeDBz/Cjj8AVCW2fW2zj8WVS7R8A2OhszNp+9Ea6DL+8igofGTh2yTfl9YyWGDh6P83bFx0TR89ssxFDQrkF2iwoW6VnyTWYpvMksBiD/AxaTMF9OifRHizaTM0prb1fjlTCW2Hr+In0+Vo6n90hJCfw8nXDs+EDdMGInkSB/27iIi2xc4QfxFslUFXMi6dK8aAhzkMtw7PQLzJwXh39vPYH16ETZnl+GnU+VYfOUo/GFmpFlWJhw4V4WXt51GdkkdAPFDuSVzRuN3KWFcCWGLKk4DRz4EstaL+yMBQK4Axv0GSLwf2uAkFGVnwyc+HpDz389cmISR+YQkia/lJ4D2JkDh1uuUiSFe0E7wQHx8PNo1wNGiWhzKq8ahvGpkFatQVteKjZml2NiZlAUrXZAS5SMmZVG+CPVhQQdzaGjtwM+nK7A15yJ+ya3o2kwNiE8rr5swAtdPGIkp4d78dJOI7ItMJpaqP70FyN8zpJIwPR83Bf51cxzuSg7Dc5tP4HBhLVb+eAZfHi7GM/PG4aqxASb5QDOnpA6v/Hgae89WAQBcFXI8kBqFP6ZGwoO9vmyLuh04tRk4/CFQuO/S+94RwJT7gITfA25+4nvcr20RTMLIfDyDAY+RQMMFoCwLiJhx2dNdFHKxOe8o8YdAc7saRwtVPZKyUlULNh4txcajl5Iy/fLFqUzKBqWuuQM7TpVj2/EL2JNbhXbNpcQr1McFN0wYiesmjMCkECVkTLyIyJ5FpIpJWME+IPUJa0djNhOCvbBh0TR8m1WGf/1wCoXVzXjg48OYHeOPf8wfh2h/41rE5Hf2+vq+s9eXo1zA71LCsfjKUfD3cDLlFGiwaguBIx8BmZ8ATWJjbAgyIOZ6IOl+IGoOlxRaCZMwMh9BED9hPPUdUHq43yTs11wVDpg52g8zR19Kyo4U6p+U1SC7Myn7+mgJvj5aAgAI8XbpWr44NcqHpc/7Ud3Yhu0ny7H1+EUcOFfV1bsFAKL83HB9nPjEa3yQJ5eBEtHQETFTfC06BGg6hky1NUMEQcBvEoIxd1wg1uw6h/f25mF3biWue30P7p8RiSVzRg34qVV5t15fGq0OggD8Jj4Yf5obw15ftkSrAc7uEAttnN0BoPPe7j4CmHIvMPlewGtApTfIjJiEkXkFdyZhfTRtlsJV4YDU0f5IHe0PQEzKDhdcWr54rKQOJbUt+OpICb46IiZloT4umBrZmZRF+yJYyWo8FfWt+PHERfyQcxFp+dXolndhTKBHV+IVE+jOxIuIhqaAcYCLD9BSI1aFC0uxdkRm5+7kgL9dF4vbE0Px4paT2Hm6Au/sycPGzFIsuz4Wv4kP7nOVQ11zB/675zw+7Nbra05sAP5y7RiMHWm7DaKHnYZyIPNj4Mj/gLriS+9HXQEk/gEYc/2Q/sDB3jAJI/PS7wsrzhC7pJvwl3pXhQNmxfhjVoyYlDW1qXG4sGdSVlzTguKaEmz4VVI2LVpMzIKGSVJWqmrBtuMXse34BRwurIWuW+I1IdgT108YiesnjECUkUtTiIjsin5f2KnNYr+wYZCE6UX6ueH9hUnYdboCL2w5ifyqJjzxZTY+PVSI5xdMQFzIpQbKrR0afLKvAG936/U1Jdwbf7su1uKl76kPOp34v+GM98UlttrOqsUu3kD874DE+wHfaOvGSAYxCSPzCooHBDnQeBGoLwW8Qsz2rdycHDA7xh+zO5OyxjZx+eLB82JSllPaOykL83EVy+F3JmUjvYZOUlZY3YStxy9i6/GLyC5W9TiWEKbE9Z3FNbiPjoiGpYjUS0nYrD9bOxqLuzI2ANNH+eLD/QVYtfMsjhapsGDNPtyRGIpH50RjR14zHtm2B+UNbQCAmEB3/PXaWJMV9aBBaqkVqxse/gCoPnvp/ZBkIOkPwLib2IvLxjEJI/NSuAGB44CLOWKpejMmYb/mbiApO1xQg0N5NTiYV43jpXUo+v/t3XlclXXe//HXOSwKqCAiYqAiKChLuLG4m2mpaWplzm8abTentO5smsammdG5K2ua7kobM8fGrPEum7LuMrV9MVPc0nDLDUzcRREVRZbr98eXc+AoGgqcI/B+Ph7XA/1e18X5fs85nM/5XNd3OZrPz0fzeWeNScraNPM33Rejg2tlUrbj0EmWbtzP4owDbN6f5yy32SC5TTCDE8O4Pj6s3twBFBG5oLaO9cLSoagAvOvfhBINvL0Y3zeakZ3DeWbJVt7/YS9vr97D26vLurKFB/kxaWAMIzqHazZcT7OsskWVN74HRWYxbHwbwdW3mrteYYmeraNUmpIwqXkRyaVJ2GqIH+GxajRq4E2/2FD6xYYCZhr2NeUm+sjIzmV3Tj67c/JZsMYEoMhm/uUm+mhW44tdXirLsvjp4AkWZ5iuhtsOnnTu87LbSIsKZlBCS66Pb0Fo4yur7iIiHtW8A/iHQP4R88W2TXdP18hjWjRpyAujO3Fbamv+8uEmNu3Lo4mvjQcHxjKmeyQNvLVWlEedPQUZ/zF3vfZvKCsPjTczHF49Gho09lz95LIoCZOaF5FsPjgusGizpzRu6MM1saFcUz4pKzfRR8be42Tl5JOVk++8Ktg2JMA5HX5aVDNaNHF/YmNZFhv35rFk436WbDxA5pFTzn0+XjZ6tgthcEIYA+PCCA7wdXv9RERqBZvNjAvb/IHpkliPkzCHbpHBfDihF2uycig8lEn35Ei8tFiv5xzaYr4/bXgbCkp7t3g1MBe0u90NrVKqday9uJeSMKl5jsk59q+/oqcCbtzQh2s6hHJNB5OU5Z0pdHZfXFnafTHzyCkyj5zirVUmKYsKCSC13DplNZWUlZRY/LAnl6WliVf2sdPOfb7edvq0b86QxDCu7diCQL8r8/kVEbnitO1tkrDMb6Hv7z1dmyuCl91GtzZNWX9st6erUj8VFcDmD03y9fP3ZeVN25ruhp1ug4BmnqufVBslYVLzgqOhYSCcOQ4HN8JVnT1do0pp0tCH/h1a0L9DC8AkZaszjzq7L27ad5xdR06x68gp3lr1M2CSsrTSST7S2gYTWoWkrLjEYk3WUZZsPMDSjQc4kHfGuc/Px4trOjRnUEJL+ncIpVED/SmLiFyyyD7mZ/ZqKDwDPuq2LR5yNLN0UeV/my6yYCY2ix1sJtpo20+LKtcx+uYmNc9uN+uF7fzCdEmsJUnYuZo09OHaji24tqNJyo6fLpeUZeawaV+eMyn73/TSpKx5AGlRzege1YzUqOBfHJdVVFzCyl1HWbJxP59sOsCRk2ed+xo18ObajqEMTgijb0wofr7qIiIiUiUh7aFRCzh5EPauKVvEWcQdiotg+6dmoo0dX+BcVLnxVaWLKo+FJld5tIpSc5SEiXtEJJclYSn3ero21SLQz4cBcS0YEOealK0oHVO2eX8euw6fYtfhsqQs2pGURTcjtW0zgv29KSyx+Pqnw3yy+SCfbT7IsfxC52M0aejNwLgwhiSG0bNdCA19lHiJiFQbx7iwje9B5jIlYeIeJw7AujfMna+8vWXl0f3NWK+YQeClr+h1nV5hcY+IbuZn9mrP1qMGnZeU5ReyKsvcKVuxM4ctB/LYefgUOw+fYn56WffFA8fzyS886Pw9wQG+XB/fgkEJLeke1Qxfb3U/EBGpMZG9TRKW9Z2nayJ1mWVB5jdmUeWfFpdbVDkYOv8Gut6hRZXrGSVh4h7hXc3Pozsh/yj4B3u2Pm4Q6O/DwLgWDCxNynLzz7Iqs2yijy0HTPdFgOaNGjA4MYxBCWGkRAbj7aXES0TELSJL1wvLXgWFp7XArVSv/KOw/n9h7VzI2VFW3irNTLQRN1xjEespJWHiHv7B0Kyd+QDKXgMx13m6Rm4X5O/LdfFhXBcfBpikbHVmDoeys7i1fzI+PvpzFBFxu2bR0LglnNhvemu07ePpGkltZ1nmu86a12DjQiguMOW+jcyaXt3ugrAEz9ZRPE7f+sR9wruZJGxv/UzCzhXk70v/DqGsP7MPu13rfEgdYFlQfBYK8+FsfunPU+X+f8rlp63gJE3OBAKdPF1zqc9sNnM3LOMdMy5MSZhcroKT5n205l9wIKOsvEWiWVQ5cZQWVRYnJWHiPhHd4Me36/S4MJErXkmJSYoKT5dLisonSxUlTRc6Nv/8cqu40lWxA9H2BlgD7wEtCCueFNnLfHnOWubpmkhtdHBT6aLKC+DsCVPm1QASbjITbUR006LKch4lYeI+jkWbs9eaL4Ja70KkYkVnTXJTeLrCO0gVJkLnHXuBZKno9C8/fnWw+4CvP/iUbr7+4BNQVuYbQIm3H1mE08auUCQe1tYxLmyN+TvxauDZ+siVr/AMbP4/k3ztWVlWHhxduqjyr+vF+He5fIp84j4t4sHbDwqOm26JzWM8XSMR9yspNt1Usr7DnvUdHQ9sx77cck2WHLNm1bQLJUgXSJpcyn38zjnmnGO9fH7x4a3iYo6tX08bNzRV5KKatoUmEZCXDXvSyxZxFjnX0V2wZq5ZVPn0UVNm84ION5hFlSP76CKzVIqSMHEfLx+4qhP8vMJ0SVQSJvVBSTEc3Gimv85cBru/NxciABvgf7Fz7d7nJDeXkSxdKGny9tMXBREHx3phP75tuiQqCZPyiotg21Iz0cbOL8vKm4SbqeU7j4EmLT1WPamdlISJe0V0K0vCOt/m6dqIVL+SkrKkK+s72L0czuS6HuPbGNr0oKRND3aeaEBUh6vxatioXNLkZ/7t7euRJojUS217lyZhWi9MSuXtgw3zYe08OLGvtNAG7a41XQ7bX69FleWy6Z0j7uUcF7bGs/UQqS4lJXBos7l67ki8Kky6upsr7ZG9ICwJvLyxiovJW78eWnfSxBQinuZYL2zvWjh70rN1Ec+xLNj1NVGr/wf7ohVlkw35NytdVPlOCG7r2TpKnaAkTNwrvJv5eWiTmTTASwsUSi1TUgKHt5R2L/zW3Ok6fcz1GN9G0DrNfKmL7A0tk3S1tJ44deoUL774IkuWLOH48eNERUUxbtw4brjhhl88d+HChUyePLnCfd999x3Nmzev7upKeU3bQGBrOP6zGRdGM0/XSNypuBA2vgfLp+N1aBNNHeWtu5sZDuNuBG9N2CLVR98KxL0Cw6HxVea2/r4foFV3T9dI5OJKSuDw1tK7XN9C1vKywdgOPgEm6WpbPun65YkppO6ZOHEiGRkZPPLII0RGRrJo0SImTZpESUkJw4YNq9TvmDZtGlFRUS5lQUFBNVBbOU/b3rB+Pras5dDsRk/XRtyh4ITpbrjyFTMxC2D5BHA4fADNrn8Ur5aJHq6g1FVKwsT9IrrBlg/NuDAlYXKlsaxySVdpF8P8HNdjfPxL73T1MgP4r+qkpEv45ptvWL58Oc8//zxDhw4FIC0tjX379vG3v/2NIUOG4FWJbqft27cnMVFf/DwisjQJ271MSVhdd+IgpM+C1a85J0siIBTSxlPS+Q72/JRFs9A4z9ZR6jQlYeJ+ziRM48LkCmBZcPgn1zFd+Udcj/H2K5d09YarOmvSDDnPZ599hr+/P4MGDXIpv+mmm3jkkUfYsGEDXbp08VDtpFIie5mf+9Zjvzrfs3WRmnFkO3w/HTa8DcVnTVmzdtBjIlz9K/BpCMWVX3Re5HIpCRP3c07Osdp8ARZxJ8syQTjr27Kk69Rh12O8/aB1armkq4uSLvlF27dvJzo6Gm9v19AaGxvr3F+ZJGz8+PEcPXqUxo0bk5KSwoMPPkhMzOUt6VF8mV8mHedd7vm1VuOrsDeNxHYsi0Y5GRQXp3q6Rh5RJ1//PenYv58B25Zgw3z3sCKSKen+IMQOBlvpkh3FxXWz/ZdA7a9a+yt7npIwcb+WnczChicPQt5eT9dG6jrLMouDZy0z63RlfQenDrke490QWqWYroWRvSC8iwZgyyXLzc0lIiLivPLAwEDn/osJCQlh/PjxdOrUiUaNGrFt2zZmz57N6NGjeeutt+jQocMl1ykjI+OSz6nO82ujNo06EnIsi9YZL3E4bwc5EddR6Fc/J0Wp9a+/VULgwRWE7XibRsc2OYtzW/TgQLtfcSo4Ac4AG36s8PRa3/4qUvtrtv21NgnTDFS1mK8/hCXA/g3YslcDmupVqpFlQc5O1+6FJw+4HuPVoDTp6m0G4od3VdIlLtLT0xk7dmyljv3ggw/o2LEjADab7YLHXWwfQJ8+fejTp2yR4OTkZPr27cuwYcN46aWXeOWVVypVn/ISExMrNQ7tXMXFxWRkZFz2+bVa8ESst5bR4PQBwre+xlU/zYWoflhJv8aKHWIu2tRxtf71LzqDLeMdbCv+gS1nOwCWly9W4q1YaQ/QuHksjS9yeq1vfxWp/VVrv+P8X1JrkzDNQFXLhXeD/Rtg31poriRMqsCy4Ogu16TrxH7XY5xJV2n3wvCupt+/yAW0bduWJ598slLHtmzZEjDxo6K7XcePm0H/jjtilyIiIoKuXbuyYcOGSz4XwMvLq0pfoqp6fq3UtifFD29mzycv0+bod9h+/h52folt55fQMAgSR0Hn20p7dVw8sa7tat3rf/oYrPkXpL9qetsANAiE5LuwpY7H1jjskn5drWt/NVP7a7b9tTIJ0wxUdUBEMqx5DVv2Gmh+i6drI7WJM+n6rlzStc/1GC9fiEgpWxw5IllJl1yS0NBQRo0adUnnxMTEsGjRIoqKilzGhW3btg0wMedyWJaF3W6/rHPlMvk2IqfVIFoN+wNex3fD+v+F9W+ZKcxX/9NsofEmGbt6NASEeLrG9dvxbDPF/NrXyxbabhIOab+FLrdDwyYerZ5IRWplEqYZqOoAx+Qc+zdgSyr0bF3kymZZcCzL9U7XuWMJ7T7mPdW2d7mky88j1ZX6a8CAAbzzzjt8+umnDBkyxFn+/vvvExoaSlJS0iX/zj179rBu3Tp69OhRnVWVSxEcBf2fgH6TIfMb+OHfsGURHNoEnzwOn/0ZYgZB599Au4FamN2dDm6C5dNh47tQUmTKQuOgx4OQcLMmVJIrWq38pNAMVHVAUCT2hkHYzuTil7eL4uL6mTTX29e/VIXttyzI/RnbbpNw2XZ/h+2cpMuy+0B4V6w2PbEie5tlD3z8z/3lNV39KtPr754ZqNylb9++9OzZkylTpnDy5Elat27Nxx9/zLJly3juuedcemg8/vjjfPDBB3z22WeEh4cDcMcdd9CtWzc6dOhAQEAA27ZtY86cOdhsNh566CFPNUsc7F4Q3d9sp4/Bxvfgh/mwbx1sXWS2gFBIGg2dfgOhlz6RilSCZZmLcstfgh2fl5VH9oaeD0G7AXW+m6jUDbUyCdMMVHVDu8YxBJ5ZRcCxzfWy/eXV9/b/lP4ZjXPW0+jIBhrn/ECD066zF1o2L04FdeRESBInmnXmZNM4LMfg+OPA8W3ur3Q1qu+vf11q/4wZM3jhhReYPn06ubm5REVF8T//8z/nTRpVUlJCcXExVrllOmJiYliyZAn/+te/KCgoIDg4mLS0NO6//37attXY2SuKX1NIvsdsBzfD+vnw4wIz8+r3M8wW3s10V0y4GRpe+nhAOUdxkVlj9PvpsO8HU2azQ8cboeeDZqyvSC3i8SRMM1DV3xlobMevgcOraJTzI2HDnsDL28fTVXK7evv6nziALWsZ1q6vKNr+NQ1Ou85eaNm94aouWG16YUX2hIgU/HwD8ANCPVPjGlFvX/9S7pqByp0CAgJ44okneOKJJy563DPPPMMzzzzjUvb444/XZNWkprSIg+ufggFTYPun5u7Y9k9g7xqzLZ0MHYdBp9ugbV/Q+L5LczbfJLkrXjZd08HMUNn5N9D9AdNdVKQW8ngSphmoquf8Wql1CgDB+7/BerEjtra9oW0fE6SatatX3Qnq/Ot/Jg92L4ddX8Oub+DwFucuL8ydLlt4F9OdJLIXtlap0KAR9eUdUOdf/19Q39svdYSXD3S4wWwnD5k7Yz/MN593Gf8xW2Br6PT/oNOvoWmkp2t8ZTuVYyZAWTUb8nNMmV8wpIyDlHs1GYrUeh5PwjQDVT0W2YeSuJFYPy3B6/RR2Px/ZgNo3LJ0Dac+ZmvaxrN1lUtTVAB7VplB7Lu+hr3rwCo/fscGLa+mJLIPO0vCier3a7z81F1HROqIRqHQYyJ0n2DGjP0wHzLeheM/wzfPmi2yt7k7Fncj+AZ4usZXjqOZsOIfZgKUotOmLKiNeS4736bnSuoMjydhl0MzUNUR3r5YN7/G+nVr6NS8GK/dy82X9j2rzDpPGe+YDcwHsOMuWdvecIlrfUgNKymBAz+WJV27V5QFT4fgKPP6RfUzr6V/MFZxMXnr14NvIw9UWkSkhtlsZqxSeFfTZXHrxya52PV16Yyvy2Dxo5Aw0kzm0SqlXvUCcbF3nRnvtfn/wCoxZS07mfFeHYdr1kmpc2rlO1ozUNUxdm9o1Q0ie0DfR6HwdOldlG/Ntnct5O6GH940G0BIbNldsshe4B/s2TbUN461unZ9bRKvzGVw+qjrMQHNSxOuvhDVF4Jae6KmIiJXBh8/SLzFbLl7YMPbsP7fZpzTujfM1qy96aqY9P+gSUtP17jmWRbs+AKWv2gSUofoa81Mh2371N+kVOq8WpmEgWagqtN8/MyX9qi+5v8FJ8ydlcxvTFJ2IAOO/GS21f8EbBCWWHanrE13aNDYo02ok04eMuO5Mr82P4/vcd3v28gkxI67XaEdFTxFRCoS1MpcdOz9CPz8vemuuPkDyNkOX0yFL//bTLXe6TaIHQzeDTxd4+pVXGim+F8+3ay3BuaCbMLNphtnWKJn6yfiBrU2CdMMVPVIg8YQc53ZAPKPmkkeHHfKDm81XeEO/GhmT7J5ma4fjjtlrVK0cO/lKDgBWcvLuhge2uy63+5jnltH0hXexQxMFxGRyrHbzcWryF4w5G+w6QMzE+DPK8xMi9s/NdPhJ95qZgNsebWna1w1BSfMHb8VMyEv25T5BEDXOyDttyY5Faknam0SJvWYf7CZ7rfjMPP/Ewcg67uyO2XHsiB7ldmW/R28GpQmC6VJWXhXJQsVKToL2avLuhjuXQslRa7HhCWWdjHsZ+44aoC0iEj1aNAYuowx25EdJhnb8Dac2AerXjVbWKIZO5Y4CgKaebrGlXfiIKTPgjWvwRkzkzUBoZA2HrrdZRJNkXpGSZjUfo3DyvrZAxzbbfqWO+6UndhfNgD6q6fMVbc23cuSsrCrwV4Pp8cuKYGDG8uSrt3fQ2G+6zFNI8vGdbXtoymBRUTcIaQdDPgL9H8Cdn5lxo5t/dh0x1/6GHz6hOmm2Pk3ZvzUlTppxZHtZrKNDW9D8VlT1qwd9HgQrh4NPg09Wz8RD7pC/2pFqqBpG7N1/o0Z9Juzo+wumWMCiR2fmw2gYaDrdPjNO9TdsUxHM8tNpvFt2dorDv4hZiyeYzINrWMjIuI5di9oP8Bs+UfNNPfr/w37N8CWD83WKAySfmViXsjlLdFT7X5ON8nX1o+B0jH5ESlmso3YIVqwWgQlYVLX2WwmKIW0h+R7zN2fQ5vK7pLt/t50jdi6yGxgZvVzzrzY20ytXluTspOHy8Z0ZX4DuT+77vcJgMieZXe7QuMUHEVErkT+wZA6zmwHNpruij8ugJMHzOyCy180iU7n2yD+JmjYxL31KymBbUvMZBt7VpaVxw4xyVfrNPfWR+QKpyRM6he73fSpD0uE7g9AcZG5oui4M/TzSjh12MzatPE9c06TiLKkrG0fCAz3bBsupuCkSSwdSdfBja777d4QkVyWdIV3BW9fT9RUREQuV1gCDJoGA6bCtqUmIdv+Wdl46CV/gLjhJiFr06tmL64VFZhkcPl0M7sjgJev6W7YYyI0j625xxapxZSESf3m5Q0RXc3We5IJJtlryu6UZa82Mzht+F+zAQRHu94pa9Tcc/UvOgt715ROHf+Nqe+5k2m0SChLutr0gAZaGFlEpE7w9oW4G8124oBJhn6Yb5Zw+fFtswW1MWuPdfp19a7XeDoX1vzLTLhx8qApaxAIyXdB6ngzXltELkhJmEh53g1M97zInnDNZDh7ytwdcyRl+9fD0Z1mWzvXnBMaX5aUtekBfkE1Vz9Hd8pdpV0Md38PhadcjwlqbZKuqH4Q2cezSaKIiLhH4zDT7a/Hg+Zi4vp/w8aFkLsbvp4GXz9j4lTn35jZhS936Zbj2bDyFVj7Opw9acqahEPa/dD1dq3TKVJJSsJELsY3ANpdazYwV/52f28SsqxlprvfoU1mS38FbHZo2aksKWudVvVp3I9llSVdmd9C/hHX/f7NzGM57nYFa8FxEZF6y2aDVslmu36aGe/8w79Lu92Xbg2aQMJNZrr7iG6VG/d8cJPpcrjx3bIeF6FxJvGLv0ld20UukZIwkUvhFwQdhpgN4NQR1+nwc3bAvnVmW/6iWdA4Ihnals6+GJFs7rZdzKkj5nc5xnUdy3Ld7+Nv7rg5kq4WCZpMQ0REzufrD1ffarZju2HDW2b8WO7P5k7W2tchJNaMHbv6V9C4hev5lmXi0fLpsOOzsvLI3ib5ajeg9k5cJeJhSsJEqiIgBOJHmg3g+N6ypGzXN2Y82c/fm+2bZ8HbD1qnlt4p6wstErEXnTbBLWuZOedghutj2LxKJ9PoaxKv8G664igiIpemaRvo9wfo83vY/Z0ZO7b5/8z4sc/+DJ9PhfYDTXfFttcQtO9r7Gsegf0/mPNtduh4I/R80EzqJCJVoiRMpDoFhpv1WpJ+Za4gHsssu0uW+a2ZeXHX12YD7L6NSCo8g906ZzKN0PiypKtND/WxFxGR6mG3l3WZH/I32PS+SciyV5mZFrctxW73JtrR5dDbz9wp6/6AWbJFRKqFkjCRmmKzmYAVHAVd7zBJ2eGtZsHozG8gaxm2M8exAVZgK2yOyTTa9oFGoZ6tu4iI1H0NA0186noHHN5muipueBvbyQMU+TTB3n089tT7TK8PEalWSsJE3MVmg9COZksdByXFFB/YxOYdWcT1GIKXt/4cRUTEQ5rHwMCp0P9PFB/cwo978kjqlgZeXp6umUidpNH8Ip5i94IW8ZwNCNfAZhERuTJ4eUOLOCzvhp6uiUidpiRMRERERETEjZSEiYiIiIiIuJGSMBERERERETdSEiYiIiIiIuJGSsJERERERETcSEmYiIiIiIiIGykJExERERERcSMlYSIiIiIiIm6kJExERERERMSNlISJiIiIiIi4kZIwERERERERN1ISJiIiIiIi4kZKwkRERERERNxISZiIiIiIiIgbeXu6ArWdZVkAFBcXX9b5jvMu9/zaTu1X+8v/rG/U/qq133Ge43NYyig2VY3ar/aX/1nfqP3uiU02S9GrSs6ePUtGRoanqyEiUm8lJibi6+vr6WpcURSbREQ865dik5KwKiopKaGoqAi73Y7NZvN0dURE6g3LsigpKcHb2xu7Xb3ry1NsEhHxjMrGJiVhIiIiIiIibqRLhyIiIiIiIm6kJExERERERMSNlISJiIiIiIi4kZIwERERERERN1ISJiIiIiIi4kZKwkRERERERNxISZiIiIiIiIgbKQmrQQsXLiQ2Nta5xcXF0atXLx5++GGysrJcjl2zZg1//OMfuemmm0hISCA2Npbs7GzPVLyaVLb9xcXFzJ07l7vvvps+ffqQlJTE4MGD+fvf/05eXp7nGlBDzn1ezt3S09M9XcXLtnTpUmJjY1m8ePF5+2688UZiY2NZtmzZefsGDBjAyJEjAfjqq6/4/e9/z7Bhw4iPjyc2NrbG611dqtr+kydP8sorrzBmzBh69uxJ586dGTZsGLNnz6agoMAdTaiS6nj9X3jhBUaMGEFKSgqJiYlce+21/OlPf2Lv3r01Xv/6QrFJsakiik2KTedSbKrZ2OR92WdKpU2bNo2oqCgKCgpYt24ds2bNIj09nSVLlhAYGAjAypUrWbFiBR07diQgIIBVq1Z5uNbV55faf+bMGWbMmMHQoUMZNWoUTZs2ZfPmzbzyyit89dVXvPfeezRs2NDTzah2juflXO3atfNAbapHSkoKNpuNlStXMmTIEGd5bm4u27Ztw9/fn/T0dHr37u3cd+DAAfbs2cOdd94JwGeffcaGDRvo2LEjPj4+bNq0ye3tuFxVbf++ffuYN28ew4cP54477sDf35+1a9fy8ssv8/333zN37lxsNpsnmlYp1fH65+XlccMNNxAdHU1AQAA7duzglVde4csvv2TRokU0bdrU7e2qqxSbFJsqothkKDYpNtV0bFIS5gbt27cnMTERgNTUVIqLi5kxYwaff/45N998MwD3338/EyZMAOC1116rU4Hul9rfsGFDvvjiC5c3cGpqKi1btuShhx7ik08+Yfjw4Z6qfo0p/7zUFcHBwbRv3/689+/q1avx9vbm5ptvPu9q6sqVKwHzmgM8+eST2O3mJv1f//rXWhXoqtr+iIgIvvzyS/z9/Z37u3fvjp+fH3/7299Yu3Yt3bp1q/mGXKbqeP3/8pe/uOx3PC/jxo3jiy++4JZbbqnBFtQvik2KTRVRbDIUmxSboGZjk7ojeoDjwy0nJ8dZ5vjDrg/Obb+Xl1eFVxCuvvpqwFyNkNojNTWVzMxMDh065CxLT08nISGBvn37smnTJk6ePOnct2rVKry8vJwf4LX9b6Eq7ff393cJcg616W+hqq9/RYKDgwHw9tZ1w5qk2KTYVJcpNik2XWmxqXa/o2opR3/6yMhIz1bEQyrbfsdViNrcBeJiSkpKKCoqctmKi4s9Xa0qS0tLA3C54pSenk5KSgpdunTBZrOxdu1al31xcXE0btzY7XWtCTXR/tr0t1Bd7S8qKuLMmTNs3ryZp59+msjISAYOHOieRtRTik2KTaDYVH6fYpNiU03GJiVhbuD4QDt16hTLli3jlVdeITk5mf79+3u6am5xOe0/ePAgzz//PAkJCVxzzTVurK373HrrrcTHx7tsdaELSHJyMna73flBd+zYMbZv305ycjIBAQHExcU5P7j3799Pdna283Z/XVDd7d+6dStz5sxh4MCBdOjQwS1tqIrqaP/hw4eJj48nKSmJkSNHUlxczBtvvEFAQIDb21OXKTYpNlVEsUmxSbHJPbFJfTvc4NZbb3X5f3R0NDNnzqw3XWsutf25ubnce++9WJbFiy++WOu7AFzIs88+S3R0tEvZlTywtbICAwPp0KGDs3/16tWr8fLyokuXLoD5IHR80DmOqUuBrjrbn52dzfjx4wkLC+PJJ590Q+2rrjra37RpU959913Onj3Lrl27mDNnDmPHjuXNN98kNDTUja2p2xSbFJsqotik2KTY5J7YVDc/Qa4wzz77LO+++y7z5s1j9OjR7Ny5k0mTJnm6Wm5zKe0/fvw4d911FwcPHuRf//oXrVq1cnNt3Sc6OprExESXLSEhwdPVqhapqalkZWVx8OBB0tPTiY+Pd14pSklJYcuWLZw4cYL09HS8vb3p2rWrh2tcvaqj/Xv37mXs2LF4eXkxb948goKC3NyKy1fV9nt7e5OYmEjXrl0ZNWoU8+bNIzs7m9mzZ3uiOXWWYpNiU0UUmxSbFJvcE5uUhLmB4wMtLS2Nv/71r4waNYply5axdOlST1fNLSrb/uPHj3PnnXeSnZ3N3Llza8XtbamY4+rRqlWrWLVqFcnJyc59jg+11atXk56eTmJiYp3rZlbV9u/du5cxY8YA8MYbbxAWFuammleP6n79w8LCCA0NPW8NK6kaxSbFpvpGsUmxCa6c2KQkzAMeffRRAgMDmT59OiUlJZ6ujttV1H5HkNuzZw+vvfYacXFxHq6lVEVycjJeXl588sknbN++nZSUFOe+xo0b07FjRz744AP27t1bp7p7OFSl/fv27WPMmDGUlJQwb948wsPD3V39Kqvu13/37t0cOHCANm3a1GS16z3FJsWmuk6xSbHpSopN9aPj9xUmMDCQcePG8dxzz/HRRx8xfPhwjh496hwsuG3bNgC+/fZbgoODCQ4Odnmj1Hbntv/666/n7rvvZvPmzTz++OMUFxezfv165/HBwcG0bt3acxWuIdu3b69wxqnWrVs7pz2trRo1akRcXByff/45drv9vFv6ycnJzJs3Dzi/z/XevXvJyMgA4OeffwZwXpkODw+vFQPEL7f9OTk5jB07lsOHD/PUU0+Rk5PjMl14WFhYrbjyeLnt37p1K9OmTeP666+nVatW2O12tm3bxuuvv05QUBB33XWXW9tR3yg2KTaBYpNik2ITuCc2KQnzkDFjxjB//nxmzpzJ0KFD2b59Ow899JDLMVOnTgVMP9U333zTE9WsMeXb37lzZ+cH21NPPXXesSNHjuSZZ55xdxVr3OTJkyssf/LJJxk1apSba1P9UlNTycjIoGPHjjRq1MhlX3JyMq+//jo+Pj507tzZZV96evp5z43jb6M2vRcup/07duxgz549gLkqf64JEyYwceLEmq14Nbmc9oeEhBAaGsrcuXM5fPgwRUVFhIWF0a9fP8aPH0/Lli3d3Yx6R7FJsUmxSbFJsck9sclmWZZVpdaIiIiIiIhIpWlMmIiIiIiIiBspCRMREREREXEjJWEiIiIiIiJupCRMRERERETEjZSEiYiIiIiIuJGSMBERERERETdSEiYiIiIiIuJGSsJERERERETcSEmY1DoLFy4kNjbWucXFxdGrVy8efvhhsrKyPF09AGbNmsXnn39+Xnl6ejqxsbGkp6d7oFbGl19+yfjx4+nRowcJCQmkpKRw++238+GHH1JYWOixep2roufqD3/4A/3796/Rxz148CAzZsxgy5YtNfo4IlK3KDZVjWLTxSk21T3enq6AyOWaNm0aUVFRFBQUsG7dOmbNmkV6ejpLliwhMDDQo3V79dVXuf766xkwYIBLeXx8PAsWLKBdu3Zur5NlWTz++OMsXLiQvn378oc//IGWLVty4sQJ0tPTmTp1KseOHeP22293e90q6/7772fs2LE1+hiHDh3i5ZdfJjw8nI4dO9boY4lI3aPYdGkUmypHsanuURImtVb79u1JTEwEIDU1leLiYmbMmMHnn3/OzTff7OHaVaxRo0Z06tTJI489Z84cFi5cyMSJE5kwYYLLvv79+3PPPfewe/dut9bpzJkzNGzYsNLHt27dugZrIyJSdYpNl0axSeordUeUOsMR9HJyclzKMzIyGD9+PCkpKSQmJjJixAgWL17scszRo0eZMmUKQ4YMoXPnznTv3p2xY8eyZs2a8x7n7NmzvPzyywwePJjExERSU1MZM2YM69atAyA2Npb8/Hzef/99Z7eUMWPGABfu8vHFF18wevRokpKS6Ny5M3feeSc//PCDyzEzZswgNjaW7du3M2nSJLp27UqPHj2YPHkyJ06cuOhzU1hYyJw5c4iKiuKBBx6o8JjmzZvTrVs35/9zc3OZMmUKvXv3JiEhgWuvvZYXXniBs2fPupxXUFDA888/T//+/UlISKB3795MnTqVvLw8l+P69+/Pfffdx6effsqIESNITEzk5ZdfBmDnzp3cfffdJCUlkZqayp///GdOnTp1Xh0r6vIRGxvLX//6Vz744AMGDx5MUlISN954I1999ZXLcbt372by5Mlcd911JCUl0bt3b8aPH89PP/3kPCY9PZ1bbrkFgMmTJztfvxkzZjiPqcz7SUTEQbHpwhSbFJvqM90JkzojOzsbgMjISGfZypUrueeee0hKSmLKlCk0btyYxYsX8/DDD3PmzBluuukmwHyoA0yYMIGQkBDy8/P57LPPGDNmDK+//jqpqakAFBUVcc8997B27VrGjh1LWloaxcXFbNiwgf379wOwYMECbr/9dlJTU7n//vsBc5XxQj766CN+97vf0atXL55//nnOnj3LnDlznI9dPvgATJw4kSFDhnDLLbewbds2nn/+ecB0gbmQjRs3kpuby6hRo7DZbL/4XBYUFDB27Fj27NnDxIkTiY2NZc2aNcyePZstW7Ywe/ZswHQjuf/++1m5ciXjxo2jW7du/PTTT8yYMYP169ezYMECfH19nb9306ZN7Ny5k9/+9rdERETg5+fHkSNHGDNmDN7e3vzlL3+hWbNmfPTRR/z3f//3L9bT4euvvyYjI4MHH3wQf39/5syZw4QJE1i6dCmtWrUCTFeOoKAgHnnkEYKDgzl+/Djvv/8+t956K++//z5RUVHEx8czbdo0Jk+ezG9/+1v69esHQFhYGFD595OIiINik2KTYpNUyBKpZd577z0rJibGWr9+vVVYWGidPHnS+vbbb62ePXtat912m1VYWOg8dtCgQdaIESNcyizLsu677z6rZ8+eVnFxcYWPUVRUZBUWFlq333679cADDzjL33//fSsmJsZ65513LlrHTp06WY899th55StXrrRiYmKslStXWpZlWcXFxVavXr2soUOHutTl5MmTVvfu3a3Ro0c7y6ZPn27FxMRY//znP11+55QpU6zExESrpKTkgvX5+OOPrZiYGOutt966aL0d3nrrLSsmJsZavHixS/ns2bOtmJgY67vvvrMsy7K+/fbbCuvkeLwFCxY4y6655hqrY8eO1q5du1yOfe6556zY2Fhry5YtLuV33nmny3NlWZb12GOPWddcc43LcTExMVaPHj2sEydOOMsOHz5sdejQwXr11Vcv2MaioiLr7Nmz1nXXXWc9/fTTzvIff/zRiomJsd57773zzrnc95OI1H2KTYpN5Sk2yS9Rd0SptW699Vbi4+Pp0qUL99xzD02aNGHmzJl4e5sbvLt372bXrl0MGzYMMFcKHVufPn04fPgwmZmZzt/31ltvMXLkSBITE4mLiyM+Pp4VK1awc+dO5zHLli2jQYMG1davPzMzk0OHDjF8+HDs9rI/x4CAAK677jo2bNjA6dOnXc6pqMtDQUHBeV1dqmLlypX4+/szaNAgl3LH1bQVK1Y4jytf7jB48GD8/f2dx5Wva9u2bV3K0tPTad++PR06dHApHzp0aKXrm5qa6nJFNyQkhGbNmrF3715nWVFREbNmzWLIkCEkJCQQFxdHQkICWVlZLq/xhVzq+0lE6ifFJkOxSbFJLk7dEaXWevbZZ4mOjubUqVMsXryYBQsWMGnSJObMmQPAkSNHnMc9++yzFf6OY8eOATB37lyeeeYZfvWrX/HQQw/RtGlT7HY7L730Ert27XIef/ToUUJDQ12CUlU4Hr958+bn7QsNDaWkpIS8vDz8/Pyc5UFBQS7HObpUnDlz5oKP07JlS6CsW8wvyc3NJSQk5LzuIc2aNcPb29vZRSY3Nxdvb2+Cg4NdjrPZbISEhDiPc6ionbm5uURERJxXHhISUqm6wvnPCZjnpaCgwPn/Z555hvnz53PvvfeSnJxMYGAgNpuNJ554wuW4C7mU95OI1F+KTYZik2KTXJySMKm1oqOjnQOe09LSKCkp4T//+Q9Lly5l0KBBNG3aFID77ruPgQMHVvg7HFe+PvzwQ1JSUpg6darL/nMH4AYHB7N27VpKSkqqJdg56nj48OHz9h06dAi73U6TJk2q/DgJCQkEBQXxxRdf8Mgjj/xi3/ugoCA2bNiAZVkux+bk5FBUVOSsd1BQEEVFRRw9etQl2FmWxZEjR5yvj0NFjxsUFOQMIuVVVFYVH374ISNGjGDSpEku5ceOHavUc3wp7ycRqb8UmypPsUmxqT5Td0SpMx599FECAwOZPn06JSUlREVFERkZydatW0lMTKxwc3QTsNlsLoN0AbZu3cr69etdynr37k1BQQELFy68aF18fX0vevXPoW3btrRo0YJFixZhWZazPD8/n08//ZROnTq5XGm8XD4+Ptxzzz3s2rWLf/zjHxUek5OTw9q1awHo3r07+fn55y3q+cEHHzj3l//54Ycfuhz3ySefkJ+f79x/MampqWzfvp2tW7e6lC9atOiXG3YJbDYbPj4+LmVff/01Bw8edCm70NXbS3k/iYg4KDZdmGKTYlN9pjthUmcEBgYybtw4nnvuOT766COGDx/O1KlTuffee7n77rsZOXIkLVq04Pjx4+zcuZNNmzYxffp0APr168fMmTOZPn06ycnJZGZmMnPmTCIiIiguLnY+xtChQ1m4cCFTpkwhMzOT1NRULMtiw4YNREdHc8MNNwAQExPDqlWr+PLLL2nevDkBAQFERUWdV2e73c6jjz7K7373O+677z5Gjx7N2bNnee2118jLy+ORRx6ptufHEehmzJhBRkYGQ4cOdS6IuXr1at555x0mTpxI165dGTFiBPPnz+exxx5j7969xMTEsHbtWl599VX69u1Ljx49AOjZsye9evXi73//OydPnqRLly789NNPTJ8+nbi4OIYPH/6L9br99tt57733GDduHP/1X//lnIGqfFeb6tCvXz/nTFOxsbFs2rSJ1157zTm7lEPr1q1p2LAhH330EdHR0fj7+xMaGkqLFi0q/X4SEXFQbLo4xSbFpvpKSZjUKWPGjGH+/PnMnDmToUOHkpaWxn/+8x9mzZrF008/TV5eHkFBQURHRzN48GDneePHj+f06dO8++67zJkzh3bt2jFlyhQ+//xzVq1a5TzO29ubf/7zn7z66qt8/PHHzJs3j4CAADp06EDv3r2dx/3xj39k6tSpTJo0idOnT5OSksKbb75ZYZ2HDRuGn58fs2fP5uGHH8bLy4ukpCTeeOMNunTpUm3Pjc1mY9q0aQwYMIB33nnH+Xw46v+73/3OOYi5QYMGvPHGG7zwwgvMmTOHY8eO0aJFC+666y6XxTRtNhszZ85kxowZLFy4kFmzZhEUFMTw4cOZNGnSeVdwK9K8eXP+/e9/89RTTzFlyhT8/PwYMGAAf/rTn5zTKFeHP/7xj3h7ezN79mzy8/OJi4tjxowZvPTSSy7H+fn58fTTT/Pyyy9z9913U1hYyIQJE5g4cWKl308iIuUpNl2YYpNiU31ls8rfZxYREREREZEapTFhIiIiIiIibqQkTERERERExI2UhImIiIiIiLiRkjARERERERE3UhImIiIiIiLiRkrCRERERERE3EhJmIiIiIiIiBspCRMREREREXEjJWEiIiIiIiJupCRMRERERETEjZSEiYiIiIiIuNH/B/k2T0gV4NOSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC5UlEQVR4nOzdeXxU5dn/8c9kspF1srBlYw9hCQlhVwEXqlZUqmLpU1vF1rbUDVvbpxW11T72J0qrVqRWtGq1ikpVRCwoigsqmwRCUCTs2SAEksm+zszvj8kMhKyTZGayfN+vF6+Bc+4zue6gnFxz7vu6DDabzYaIiIiIiIh4hI+3AxAREREREelLlISJiIiIiIh4kJIwERERERERD1ISJiIiIiIi4kFKwkRERERERDxISZiIiIiIiIgHKQkTERERERHxICVhIiIiIiIiHqQkTERERERExIOUhImIiIiIiHiQr7cDEOkIi8XCm2++ydq1a8nKyqKiooKwsDCio6OZMGECF198MZdccolz/OjRowHYv39/o/dxHG/Jww8/zLXXXtulX3f16tXcd999zJw5k+eee67Zr/vzn/+cTz/9lD/96U8sWLCgXd+TZcuWsXfvXo4ePUpxcTGBgYHExMQwZ84cbrjhBiIiItr1PufG3pJzvzfdxaFDh3j11VfZtm0bx48fp6amBpPJxNixY/nOd77D1VdfTUBAQJPrMjMzefXVV9m+fTuFhYX4+voSGxvLBRdcwMKFCxk4cKAXZiMiPYHuSU319XtSS3/HZ7v44ovJy8vjo48+Ii4urkNfR/eunktJmPQ4FouFX/ziF2zevJmwsDBmz57NoEGDKCkp4dixY7zzzjscPny40Y2nLbfffnuzx8eMGdPlX/f6669n06ZNbNq0iVdeeYUbbrih0flXX32VTz/9lAsvvLDdNzuAf/3rX4wdO5bzzjuPqKgoqqqq2L17N8uXL+f111/n9ddfJyYmpt3v59Ce70138dRTT7FixQqsViupqalcc801BAcHc+rUKb766ivuu+8+Vq1axVtvveW8xmaz8Ze//IXnnnsOX19fzjvvPC6//HLq6urYtWsXzz//PKtWrWLp0qVcfvnlXpydiHRHuic1T/ck99K9qxewifQwa9assSUmJtquvvpqW2lpaZPzZrPZ9sUXXzQ6lpiYaEtMTGwytqXj7v66p06dsk2fPt2WkpJiO3TokPP44cOHbSkpKbZp06bZCgsL2xWXQ3V1dbPHH3vsMVtiYqLtD3/4g0vv58r3pjv4+9//bktMTLTNnj3btnv37mbHfPrpp7Yf//jHjY4tX77clpiYaLvoootsWVlZTa7ZsGGDLTk52TZmzBjbl19+6ZbYRaTn0j2peX39ntSeeC+66CJbYmKiLScnx+X3172r59OeMOlx0tPTAbjmmmsIDQ1tcj48PJzzzjuvW3/dqKgo/u///o+qqip++9vfUl9fT319Pb/97W+pqqrioYceIjo62qX4mltiB/Dd734XgJycHJfez1UZGRnceeednH/++YwfP57Zs2fzhz/8gYKCArd+XYDc3FxWrFiBn58fK1euJCUlpdlxs2bNarTcJicnh6effho/Pz+efvppRo0a1eSayy67jHvuuQeLxcIDDzyA1Wp12zxEpOfRPal5ffme5G66d/UOSsKkx4mMjATg6NGjPfrrzpkzh+uuu469e/eyYsUKVqxYQWZmJtdeey1z5szpkq8BsGnTJqDt9fSd8eabb/I///M/bN68menTp3PjjTcyfvx4Vq9ezXXXXUd+fr7bvjbAW2+9RV1dHZdeeimJiYmtjvX39290XX19PZdcckmr35/rr7+e/v37c/ToUbZv395lcYtIz6d7kmv6wj3J3XTv6h20J0x6nMsuu4xnn32W1157jfLyci655BLGjx9PfHx8h99z+fLlTY7FxsY22uTrjq+7ZMkStm3bxjPPPOP8mvfee2+H3w/gn//8J5WVlZSVlbF371527tzJ2LFj+fnPf96h92vre3PkyBH++Mc/Eh8fz8svv8yAAQOc47Zs2cJPfvITHnroIf7+9793bELt8NVXXwEwY8YMl67buXMnAOeff36r43x9fZk2bRrr1q0jPT2d6dOndyxQEel1dE9qXV+8J7UVr0NpaWmH3lP3rt5BSZj0OElJSfzlL3/hoYce4t133+Xdd98FwGQyMXXqVObPn8/s2bNdes+nnnqqybGpU6c2uuG54+uGhIRw2223cc899wDwwAMPEBIS4tJ7nOv555/n1KlTzj/PmjWLpUuXulyJyqGt782qVauoq6tjyZIljW52YE+KLr74YjZt2kR5eXmn59YSx3xdrQLluG7QoEFtjnWMOXnypIvRiUhvpntS6/riPamteDtL967eQUmY9EiXX345l1xyCdu2bWPnzp3s27ePnTt38sEHH/DBBx9w3XXX8ec//xmDwdCu92uthKw7v251dTXPPvus88/vv/8+s2bNanZsc5+mXXPNNU3K2n7xxReA/R/pXbt28Ze//IV58+bxzDPPMG7cOJffr63vze7duwHYtm0be/bsaXL+9OnTWK1Wjh49yvjx41t9r/bGdC6bzQbQ7u97R65zjDl77DPPPMMHH3zAkSNH8Pf3JzU1lV//+tdtLokUkd5F9yQ73ZOaak+J+rO1577S2XuXdA9KwqTH8vPz44ILLuCCCy4A7OV633//fe69917efPNNLr744i5dx+6Or7ts2TIOHz7MjTfeyI4dO/jPf/7DnDlzuOiii5qMbenTv5ZuBtHR0XznO99h3LhxXHrppfzud79j3bp1HX6/lpjNZsC+5KQ1lZWVbb5XR2MaMGAAhw8f5sSJE21+jbP179+/3dc5xvTv3995bPv27fzwhz8kOTkZm83Gk08+yc0338x7772HyWRyKRYR6dl0T9I9qSu0577S2XuXdA9KwqTXMBqNXHHFFWRlZfH000+zdetWt9zwuurrfv7557zyyiskJiby29/+lqNHj3Lddddx//338+677zZZqtHeT0bPFRMTw8iRI9m3bx9FRUXOzdwdfb9zOZZz7Ny5s9NLOzoa06RJk9i6dStbt27l+uuvd+m6bdu28eWXX7Z6ncViYdu2bQCkpaU5j597k3/00UeZPHky6enpXHzxxS7OQkR6E92TmtcX7kmd0Z77SmfvXdI9qDqi9DrBwcHAmcf13fHrms1m7rnnHnx9fVm2bBn+/v4kJiayePFiCgsLeeCBB7o0NsdacKPR2KXvC5CamgqcKY7hDddeey1+fn68//77HDx4sNWxtbW1ja4zGo1s3Lix1evefPNNTp48ybBhw5g6dWqL4yoqKrBarYSFhbk+CRHplXRPaqq335O6UnP3la6+d4l3KAmTHmfdunV88cUXzfa8KCwsZPXq1QBMnjy5237dBx54gJMnT3LXXXeRlJTkPP6Tn/yEyZMns2HDhkbLNNpy6NAhCgsLmxy3Wq08/vjjnD59mokTJxIeHt7u92yvG264AT8/Px5++GGOHDnS5Hxtba3bb4ZxcXHcfvvt1NXV8fOf/5zMzMxmx3322Wfccsstzj/Hx8fzi1/8grq6OhYtWtTszezDDz/kz3/+M0ajkT/+8Y/4+LT8z+af//xnxowZw8SJEzs/KRHpEXRPaqqv35O6UnP3la6+d4l3aDmi9DgZGRm89NJL9O/fn7S0NOfa7NzcXD799FOqq6u55JJLuPzyy7vl112zZg3r169nypQp/OQnP2l0zsfHh6VLl3L11Vfzpz/9iSlTprSr4t/mzZtZtmwZkydPJiEhAZPJxKlTp9ixYwc5OTn079+fhx56qOOTb8WIESP485//zL333suVV17JzJkzGTp0KPX19eTn57Nz504iIiLYsGGDW76+w6JFi6ivr2fFihXMnz+fiRMnMn78eIKDgzl16hRfffVVsxux77jjDqqqqnjhhReYN28eF1xwASNHjqS+vp5du3aRkZFBYGAgf/3rX1stgf/II4+wc+dOVq1a5ZZPd0Wke9I9qSndk7pGa/eVrrp3ifcYbJ5+Pi7SScePH2fTpk18+eWXHDx4kMLCQmprazGZTIwZM4Yrr7ySq666qtGnPo5mhueu727puLu+bn5+PldffTU2m421a9cSGxvb7NdavXo19913HzNnzuS5555rM7asrCxWrVpFeno6J06coKysjH79+jF06FAuvPBCfvzjH7tcKMKV741j3AsvvMC2bdsoLCwkKCiIAQMGkJaWxne/+12P3QQOHTrEq6++yrZt28jPz3f+HSUlJXHZZZcxb968Rg2bHfbs2cMrr7zCjh07OHXqFEajkdjYWGbOnMlNN93Uainghx9+mPfee49//etfjBgxwp3TE5FuRvekpnRPal+8juqIH330UZNiH+29r3Tm3iXepSRMRKQTHnroIf773//y8ssvKwETEZFO032lb9ByRBGRDnrggQdYu3YtK1asICwszLkHIigoyLkpXkREpL10X+k79CRMRKSDHMtNznX77bdzxx13eDgaERHp6XRf6TuUhImIiIiIiHiQ6lWKiIiIiIh4kJIwERERERERD1ISJiIiIiIi4kFKwkRERERERDxIJeo7yWq1Ul9fj4+PDwaDwdvhiIj0GTabDavViq+vb6OGtKJ7k4iIt7T33qQkrJPq6+vJzMz0dhgiIn1WcnIy/v7+3g6jW9G9SUTEu9q6NykJ6yRHhpucnIzRaHT5eovFQmZmZoev7+k0f81f89f8O/vvp56CNaV7U+do/pq/5q/5u/vepCSskxzLPIxGY6f+Q+3s9T2d5q/5a/6af0dpuV1Tujd1Dc1f89f8Nf+OauvepI8PRUREREREPEhJmIiIiIiIiAcpCRMREREREfEgJWEiIiIiIiIepCRMRERERETEg5SEiYiIiIiIeJCSMBEREREREQ9SEiYiIiIiIuJBSsJEREREREQ8SEmYiIiIiIiIBykJExERERER8SBfbwfQUfv27ePxxx8nKyuLoqIiAgMDGTZsGD/84Q+ZN29em9efPn2aZcuW8fHHH1NdXU1SUhJ33XUXM2bM8ED0IiIiIiLSV/XYJKy0tJRBgwYxd+5cBg4cSFVVFe+++y7/+7//S15eHrfeemuL19bW1rJw4UJKS0u59957iYqK4pVXXuGWW27hhRdeYOrUqR6ciYiIiIiI9CU9NgmbNm0a06ZNa3TsoosuIjc3lzfeeKPVJGz16tVkZWXx2muvMXHiROf7zZs3j2XLlrF69Wq3xu5QWVvP3W/sZmhAFampHvmSIiIirdp3vJT/9943XDkEUr0djIhIL9Xr9oRFRERgNBpbHfPhhx8ybNgwZwIG4Ovry9VXX82ePXsoKChwd5gAHDtdyfq9BbyytxybzeaRrykiItKazw+cYvPB07ybVeHtUEREeq0e+yTMwWq1YrVaKS0tZf369Xz++efcf//9rV5z4MABJk2a1OT46NGjnecHDhzoUhwWi8Wl8QBDIgLx9TFQWmMlp6iChKgQl9+jp3N83zry/esNNH/N/+zXvqaz8++r3zd3SxocCkDW6TovRyIi0nv1+CTsgQce4PXXXwfAz8+Pe++9lx/84AetXmM2mwkPD29y3HHMbDa7HEdmZqbL1wAkhBk5bK7nvS17mREX2KH36A06+v3rLTR/zb8v6+vz725S400YDHCy0kJhWQ2DTEHeDklEpNfp8UnYokWLuP766ykqKmLTpk383//9H1VVVfz0pz9t9TqDwdChcy1JTk5ucxlkc6YeyeTwV3mUGE2kpia5fH1PZ7FYyMzM7PD3r6fT/DV/zb/j83dcL10rNNCPUQNCyCooJz3bzBVKwkREulyPT8JiYmKIiYkBYPbs2QA89thjXHPNNURGRjZ7jclkavZpV0lJCUCzT8naYjQaO/RDRGp8BK99lceevNI++UOYQ0e/f72F5q/5a/59d/7d0cR4E1kF5ezKMXPFhBhvhyMi0uv0usIcEyZMoL6+npycnBbHJCYmkpWV1eS449ioUaPcFt+5JsTZE76v80uwWFWcQ0REvC8twQTArmyzV+MQEemtel0Stm3bNnx8fIiPj29xzJw5czh8+DAZGRnOY/X19axdu5aUlBSXi3J0xoj+wQQYDZTXWDhcWO6xrysiItKSiQ1JWGZeCbX1Vu8GIyLSC/XY5Yj3338/ISEhJCcnEx0dTXFxMRs2bOC///0vP/3pT51LEZcsWcKaNWvYuHEjsbGxAMyfP59XX32VxYsXc/fddxMVFcWrr77KkSNHeOGFFzw6D1+jD8MjfNl3qo6M3BJGDQz16NcXERE517CoYEL8DJTXWdl3vJSUeJO3QxIR6VV6bBKWmprKW2+9xdtvv01ZWRlBQUEkJSXx6KOPMm/ePOc4q9WKxWJp1IfL39+fF198kWXLlvHQQw9RVVXFmDFjePbZZ5k6darH5zIy0s+ehOWYmT8pzuNfX0RE5Gw+PgZGRfmx60Qt6dnFSsJERLpYj03CrrvuOq677ro2xy1dupSlS5c2OR4dHc0jjzzijtBcNirSD4A9uWbvBiIiItJgdJR/QxJm5ubzvR2NiEjv0uv2hPVEIyLsSdg3x0upqVfzURER8b7EKPu9Kf1YsZcjERHpfZSEdQMDg41EBPlRZ7Hx7fEyb4cjIiLCqEg/DAbIM1dxsrTa2+GIiPQqSsK6AYPBQHKsvVS9liSKiEh3EOTnQ+KAEADSs/U0TESkKykJ6yZSGvqF7c4p8XIkIiIido5S9enqFyYi0qWUhHUTjqbNehImIiLdhTMJ074wEZEupSSsm3AkYQcLyymvqfdyNCIiIpDWUJp+j5o2i4h0KSVh3UR0SACxpn7YbJCZqyWJIiLifcOigzEF+VFbb+Wb46XeDkdEpNdQEtaNOJ6GZWhJooiIdAMGg4GJDU/DtCRRRKTrKAnrRlIcyz6UhImISDeRlhABqEKiiEhXUhLWjTifhKlCooiIdBNpQ+xJ2C5VSBQR6TJKwrqR5NhwZ2PMU+U13g5HRESElHgTPg33pgI1bRYR6RJKwrqR0EA/RvS3N8bUkkQREekOQgJ8SRwYCmhfmIhIV1ES1s2kxJkANW0WEZHuw7EkUfvCRES6hpKwbiYlXk2bRUSkezlTnMPs3UBERHoJJWHdzISGJ2EZOWZsNpt3gxEREQHSEkwAZKpps4hIl1AS1s2MGRyKn9FAcWUducVV3g5HRESEYdHBRDQ0bf46X8vlRUQ6S0lYNxPga2TM4DAAdueYvRuMiIgIDU2btSRRRKTLKAnrhhzFObQvTEREugvHkkQV5xAR6TwlYd2Qs2lzrpZ8iIhI9+AozrFLZepFRDpNSVg3lBpvAmBvXgkWq4pziIiI9zmaNueXVHOiRE2bRUQ6Q0mYN1ktGNL/RZA5q9Hh4f1DCPY3Ullr4eDJci8FJyIickZwgC+jB9n3LGtJoohI5ygJ86bCb/F571cM3fVwo8NGHwPJjiWJKs4hIiLdhHNfmJYkioh0ipIwbwodDEC/8mNQZW50ylGcI0PFOUREpJs407RZSZiISGf4ejuAPi0oElvEMAzFR+D4Lhg1x3lqgpIwEZEeZ8uWLaxdu5Zdu3Zx4sQJQkNDGT9+PLfddhvjx49v8/rTp0+zbNkyPv74Y6qrq0lKSuKuu+5ixowZHoi+bWlD7EnY3rxSauotBPgavRyRiEjPpCdhXmaLmQiAIX9Xo+Mp8fbliN8eL6O6zuLxuERExHWrVq0iLy+PG2+8kZUrV3LvvfdSVFTEggUL2LJlS6vX1tbWsnDhQrZs2cK9997L3//+d6KiorjlllvYvn27h2bQuqFRQUQG+1NrsfJ1fqm3wxER6bH0JMzbYibC1281ScJiTf2ICvbndEUt3xwvdS4BERGR7uuPf/wjUVFRjY7NnDmTSy+9lGeeeabVJ1qrV68mKyuL1157jYkT7R/QTZs2jXnz5rFs2TJWr17t1tjbw2AwMDHexEffniT9WLHuTSIiHaQnYV5mi0mz/yY/vdFxg8FASkOp+j0qziEi0iOcm4ABBAcHM2LECI4fP97qtR9++CHDhg1zJmAAvr6+XH311ezZs4eCgoIuj7cjHEsSd2WbvRuIiEgPpidh3jZoAjZ8MJQdh9LjEDbYeWpCXDibvj3JHjVtFhHpscrKyvjmm2+YPn16q+MOHDjApEmTmhwfPXq08/zAgQNd+toWS8eWszuua+76lDh7mfqd2cUdfv/urrX59wWav+Z/9mtf09n5t/c6JWHe5h9MVehQgsoO25+Ghc11nnI8Cdut4hwiIj3Wgw8+SFVVFYsWLWp1nNlsJjw8vMlxxzGz2ezy187MzHT5mjavr7fiY4ATJdV89OVOooJ6b3GOzn7/ejrNX/Pvy9w9fyVh3UClabQ9CctLh6SzkrCGComHCysora4jLNDPSxGKiEhHPPHEE7z77rvcf//97aqOaDAYOnSuJcnJyRiNridJFouFzMzMFq8fs/VLvj5eSk1oLKnJg1x+/+6urfn3dpq/5q/5d3z+juvboiSsG6gwjSY6Z32TfWGRwf7ER/Yjp6iKzNwSzh8Z7aUIRUTEVU899RRPP/00v/rVr/jRj37U5niTydTs066SEvuS9OaekrXFaDR26oeolq5PGxLB18dL2Z1bwlWpsR1+/+6us9+/nk7z1/w1f/fNX4U5uoFKU5L9N3npYLM1Oqd+YSIiPc9TTz3F8uXLueOOO9pchuiQmJhIVlZWk+OOY6NGjerSGDsjbYgJUNNmEZGOUhLWDVSFDcNm9IdqMxQdbnQuJc7+yWeGKiSKiPQIK1asYPny5fzyl7/k9ttvb/d1c+bM4fDhw2RkZDiP1dfXs3btWlJSUlwuyuFOjtL0Xzc0bRYREdcoCesGbD5+MCjZ/odzmzY3PAlThUQRke7v+eef58knn2TmzJlceOGF7N69u9EvhyVLljB27Fjy8vKcx+bPn8+oUaNYvHgx7777Ll9++SV33XUXR44c4Te/+Y0XZtOyhMggohqaNu/NU9NmERFXaU9YN2GLScOQt9O+JDF5vvP4+NhwfAxwvKSak6XVDAgL9GKUIiLSmo8//hiAzZs3s3nz5ibn9+/fD4DVasVisWA7awm6v78/L774IsuWLeOhhx6iqqqKMWPG8OyzzzJ16lTPTKCdDAYDExMi+HBfAbuyi5k0RE2bRURcoSSsuxjc0JzznOIcwQG+jBoQyv6CMjJyS/jOWCVhIiLd1csvv9yucUuXLmXp0qVNjkdHR/PII490dVhukTbExIf7CrQvTESkA3psErZlyxbWrl3Lrl27OHHiBKGhoYwfP57bbrutzTLAb731Fvfcc0+z5z7//HP69+/vjpBbZYtxJGG7wVIPxjN/NRPiwtlfUMaeXDPfGdt99gSIiEjf5dgXln7M7N1ARER6oB6bhK1atQqz2cyNN97IyJEjKSoq4oUXXmDBggU899xzzJgxo833ePjhhxk+fHijYyaTyU0RtyF6FPiHQm0ZFH4Lg84kkinxJlbvzGW3inOIiEg3MSEuHKOPgROl1eSbq4gx9fN2SCIiPUaPTcL++Mc/EhUV1ejYzJkzufTSS3nmmWfalYSNGjWK5ORkd4XoGoMPxKTC0c32JYlnJ2FnFeew2WwdatgpIiLSLjYbnD4EttarHgb5+zJmcCh780pJzy5WEiYi4oIeWx3x3AQMIDg4mBEjRnD8+HEvRNQFYtPsr3mN94WNHhSKv68PJVV1HDtd6YXARESkz8h4DePfpzDgyNttDtWSRBGRjumxSVhzysrK+Oabb9rd0HLRokWMGTOGqVOncvvttzfbJNOjYhqSsHOKc/j7+jB2cBigps0iIuJmlhoAwk982eZQZxKm4hwiIi7pscsRm/Pggw9SVVXFokWLWh0XHR3NokWLSE1NJSQkhKysLFauXMmCBQtYtWoVSUlJLn9ti6VjzSod11ksFhiUihGwFXyNtaYCfM9UQkyODWN3jpnd2cVcmTyoQ1+rO2o0/z5I89f8z37tazo7/776fXO7+OkABJu/BUsdGI0tDnU2bc4vobrOQqBfy2NFROSMXpOEPfHEE7z77rvcf//9bVZHnDVrFrNmzXL+ecqUKcyePZurrrqKv/3tbzz99NMuf/3MzEyXr2lyvc3GBP8I/GqLObD5LSoixjrPm6xVAGzZn8/u2JpOfa3uqLPfv55O89f8+7K+Pv9uJzoRW2A4xuoSLCe/hrhJLQ6Nj+xHdIg/p8pr+Tq/hElDIj0YqIhIz9UrkrCnnnqKp59+ml/96lf86Ec/6tB7xMXFMWnSJDIyMjp0fXJyMsZWPi1sicViITMz03m9z/4pcOADEoPLsaWmOseFxpazfPvnHC21MD55Ar7G3rGS9Nz59zWav+av+Xd8/o7rpYv5+EDcVDi4EUPOtlaTMEfT5o3fFLDzWLGSMBGRdurxSdhTTz3F8uXLueOOO9pchtgWm82Gj0/Hkhuj0dipH6Kc18dOggMf4HN8d6MlICMHhBEa4EtZTT2HTlUxNiasw1+rO+rs96+n0/w1f82/786/O7LFT8NwcCPkbIcZt7Y6Nq0hCVNxDhGR9uvRj1NWrFjB8uXL+eUvf8ntt9/eqffKyckhPT2dlJSULoqugxzFOfJ2Njrs42MgOS4cgD0qziEiIm5ki5sKgCF3W5tj0xJMgL04h81mc2dYIiK9Ro99Evb888/z5JNPMnPmTC688EJ2797d6Hxqw1K+JUuWsGbNGjZu3EhsbCwACxcuZPLkySQlJREcHExWVhbPPfccBoOBxYsXe3gm53CUqT99AKpLIDDceSol3sSXh06TkWvmB1MTvBSgiIj0erFp2Aw+GErzwZwDpvgWh06IM+HrY+BkWQ155iriIoI8GKiISM/UY5Owjz/+GIDNmzezefPmJuf3798PgNVqxWKxNPp0LjExkfXr1/P8889TU1NDZGQk06dP59Zbb2XYsGGemUBLgqPBlADmbMjfDcNnO0+lNDwJy8gp8VJwIiLSJ/gFURk2iuCS/ZCzrdUkrJ+/kTGDw8jMKyE926wkTESkHXpsEvbyyy+3a9zSpUtZunRpo2NLlixxR0hdJyatIQlLb5yExZsA2F9QRlWthX7+2kMhIiLuUR457kwSljy/1bFpCSZ7EnasmKtTYjwUoYhIz9Wj94T1Wo4liXmNmzYPCgukf2gAFquNb47raZiIiLhPeWRDu5ecduwLG2LvF7ZLTZtFRNpFSVh3FNN8EmYwGJxLEndrSaKIiLhRRcQ4+29O7IWa8lbHnmnaXEp1nZpoi4i0RUlYdxSTChigNBfKTzY6lRJnAlQhUURE3KuuX39s4fFgs0DeV62OjYvoR3RIAPVWG5l5+pBQRKQtSsK6o4BQ6D/a/vtznoZNaNgXlpFj9mxMIiLS5zhK1ZOzvdVxBoPhTKn6Y1qSKCLSFiVh3ZVjSWJ+4yTMsRzx6OlKSirrPB2ViIj0JfHT7K/ZW9sc6tgXlq59YSIibVIS1l3FNt+02RTkz5Aoe/nfPXlmDwclIiJ9ic2RhOXuAGvre70c+8LSs81q2iwi0oYOlag/cOAA6enpFBQUUF1dTUREBCNHjmTKlCmEhIR0dYx909nFOWw2MBicp1LiTBw7XUlGjpmZo/p7KUAREen1BowB/xCoKYXCb2HguBaHTogLx9fHQGFZDbnFVcRHql+YiEhL2p2ElZSU8Prrr/P666+Tn5/f7Kdcvr6+zJo1ix//+MfMmDGjSwPtcwaNBx8/qCoC8zGIGOo8NSEunLUZ+WTkavOziIi4kY8vxE2Gw5/YlyS2koQF+hkZGxPGntwS0rOLlYSJiLSiXUnYSy+9xIoVKwC44oormDp1KuPGjSMyMpKAgABKSkrIyclh9+7dfPTRR/zkJz/hvPPO4w9/+ANDhgxx6wR6Ld8AeyKWv8v+NOysJCxVxTlERMRT4qfZk7Cc7TDlp60OTUuIYE9uCbuyzcxLjfVMfCIiPVC7krCXX36Ze+65h7lz5+Ln59fkfHR0NNHR0UycOJGbb76Z7Oxsnn76adavX8+iRYu6POg+IybNnoTlp8P4a52Hx8WEY/QxcLKshhMl1QwKD/RikCIi0qs59oXltF2cY2KCiRe/VHEOEZG2tCsJW79+Pb6+7d8+lpCQwMMPP4zFooaNnRKbBl/9s0mZ+n7+RkYNCOHbE2XszjFzefggLwUoIiK9XtwUwADFR6GsAEIHtjjUUZzjm4amzYF+Rs/EKCLSw7SrOuKBAwc69OZGo/7x7ZTYSfbX/N1NqlI5liSqabOIiLhVYNiZvWA521odGhfRj/6h9qbNe7RvWUSkRe1Kwq655hquvfZaXn31VcrKytwdkzhEJ4JfMNRVwKmsRqcmxJkAyFASJiIi7uZckth6EtaoabOWJIqItKhdSdgvfvELioqK+NOf/sQFF1zAb37zG7ZubXttuHSSjxFiUu2/P2dJYkq8vWnzntwSrFb1YxERETdqZxIGZ/ULO6YkTESkJe1Kwn71q1/x8ccfs3LlSi666CI++OADbr75Zi655BL+/ve/c/z4cXfH2XfFTLS/5jdOwhIHhhLg60NZdT1HT1d4ITAREekzEhqSsPzdUFfV6tC0IWraLCLSlnYlYWBfYjBr1iyeeOIJPv/8c+69917Cw8N58sknmTNnDj/96U/ZsGEDdXV17oy374l1NG3e2eiwn9GH8bH2p2FakigiIm5lGgIhg8BaZ6/a24rkWHvT5lPl9qbNIiLSVLuTsLOFhYXxox/9iLfeeos1a9bwwx/+kG+++YZf/epXzJo1q6tj7NscxTlO7IX6mkanJsQ1JGE52vwsIiJuZDBA/FT779tYkhjoZ2RcTBigfWEiIi3pUBJ2tqSkJK6++mouvvhiAMxmc2ffUs5mGgL9Iu2fPhbsbXTK2bRZT8JERMTdEqbbX7Pb3hc2UfvCRERa1f7mX+coKipi7dq1vPnmmxw8eBCj0chFF13E/PnzuzI+MRjsSxIPfmgvzuF4MsaZColf55dSZ7HiZ+x0Ti0iItK8s4tz2Gz2+1ML0oZE8OKXR0nPNnsmNhGRHsalJMxqtfLZZ5/x5ptv8sknn1BXV8fQoUP59a9/zTXXXEN0dLS74uzbYs5Kws4yNCqIsEBfSqvr2X+izLlHTEREpMsNmgC+gVBVBKcPQvSoFoc6ytTvO15KVa2Ffv7qGyoicrZ2JWFHjhzhzTff5J133uHUqVMEBgZy5ZVXct111zF58mR3xyjOps2NkzCDwUBKvInNB06RkWtWEiYiIu7j62+/Hx37ArK3tpqExZr6MSA0gJNlNezJNTNteJQHAxUR6f7atX7tu9/9Ls899xyDBw/mwQcf5PPPP+fhhx9WAuYpjgqJhfuhpnGz7DPFOcweDkpERPqcdhbnsDdtPlOqXkREGmvXk7CbbrqJ+fPnM2pUy596iRuFDICwOCjNheMZMPQC56mUhn1he3JVIVFERNwsvqE4R3uaNg8xseHrE6qQKCLSjHY9CbvnnnuaTcAOHz7Mzp07qays7PLA5ByxDU2bz9kXltJQITGroIzK2noPByUiIn2K40nYqSyoLGp1qONJ2K7sYjVtFhE5R4fK6a1Zs4ZZs2Yxd+5cfvSjH3HkyBEAFi9ezBtvvNGlAUqDmOabNg8MC2RQWCBWG+zNK/VCYCIi0mcERUJ0ov33OdtbHTo+Nhw/o4FT5bXkFKlps4jI2VxOwtavX8/vf/97xo4dy/3339/o061x48axfv36Lg1QGrRQnAPO7Avbo35hIiLibs5S9VtbHRboZ2RsjP3+pCWJIiKNuZyErVy5kmuvvZZ//OMfLFiwoNG54cOHc/DgwS4LTs4Sk2p/NWdDxalGpxxLEnerOIeIiLibMwlr/UkYnClVryRMRKQxl5OwQ4cOMXfu3GbPmUwmzGZzZ2OS5gSGQ1TDvrz8XY1OqTiHiIh4TEJDcY68nVBf2+rQMxUSlYSJiJzN5SSsX79+lJWVNXuuoKCA8HD1qnKb2Ob3hSU3LEfMLqqkqKL1G6KIiEinRI2EfpFQXw0nMlsdmjbEnoTtO67iUSIiZ3M5CZs4cSKvvPJKs5WO3nrrLaZOndolgUkznMU5Gu8LC+/nx/DoYED7wkRExM0MhnbvC4sJD2RgWAAWq02rNUREzuJyEnbbbbexe/du5s+fz8svv4zBYOCDDz5g0aJFfPXVVyxatMgdcQo0Ls5xThJ8pmmzbnIiIuJmCQ1JWHbrSVjjps1akigi4uByEpacnMyzzz5LZWUlS5cuxWaz8cwzz3DkyBFWrlxJYmKiO+IUgEHJ4OMLFYVQktvolKM4h56EiYiI2zmfhG1r8qHguZxJ2DGzm4MSEek5fDty0fTp01m/fj3Z2dmcOnWKiIgIhg0b1tWxybn8AmHAWDixx/40zBTvPDWhoThHRm4JNpsNg8HgpSBFRKTXi5kIPn5QXgDmYxAxtMWhaUNMwJmmzbo/iYh0sFmzQ0JCAmlpaUrAPKmF4hzjYsLw9TFwqryG/JJqLwQmIiJ9hl8/GJxi/30bperHxdibNp+uqCW7qNIDwYmIdH/tSsL++9//uvzGBQUF7Ny5s+2B4hrHvrBzinME+hkZPSgUgD3qFyYi4hXl5eU8+uij/OQnP2H69OmMHj2a5cuXt+vat956i9GjRzf7q7Cw0M2Rd4CjVH0b+8IC/YyMU9NmEZFG2pWE/elPf2LevHmsXr2a8vLyVsfu3buXBx98kMsuu4xvv/22S4KUszgqJB7PAKu10Sln02btCxMR8Qqz2cwbb7xBbW0tc+bM6dB7PPzww7z++uuNfplMpq4NtCucvS+sDdoXJiLSWLv2hG3cuJHly5fz5z//mT/96U+MHTuWsWPHEhUVhb+/PyUlJeTk5LB7924KCwsZNWoUy5cvZ+bMme6Ov+/pnwS+/aCmFE4fhP5nCqGkxIXz6jbYowqJIiJeERsby44dOzAYDBQVFbF69WqX32PUqFEkJye7Ibou5kjCCr6G6lIIDGtxaNoQE89/oSdhIiIO7UrCQkNDWbJkCbfddhtvvfUWn376KWvWrKGqqso5Jj4+npkzZ3LVVVcxffp0twXssGXLFtauXcuuXbs4ceIEoaGhjB8/nttuu43x48e3ef3p06dZtmwZH3/8MdXV1SQlJXHXXXcxY8YMt8feKUZf+zr8nK32fWFnJWGO4hyZeSVYrTZ8fLT5WUTEk/pU0YnQgfaCHMVHIXcHjLykxaGOJ2HfnrA3bQ7y71BdMBGRXsOlfwXDw8O5+eabufnmmwEoKyujuroak8mEn5+fWwJsyapVqzCbzdx4442MHDmSoqIiXnjhBRYsWMBzzz3XajJVW1vLwoULKS0t5d577yUqKopXXnmFW265hRdeeKH7N5yOTbMnYfnpkPo/zsOjBoTQz89IeU09h0+VM3JAqBeDFBGRjli0aBFFRUWEhoYydepU7rzzzu7b/iV+mj0Jy9neahIWY+rHoLBATpRWk5FTwowRUZ6LUUSkG+rUR1GhoaGEhnrnB/0//vGPREU1/kd85syZXHrppTzzzDOtJmGrV68mKyuL1157jYkTJwIwbdo05s2bx7Jlyzq0fMSjWijO4Wv0YXxsGDuOFpORU6IkTESkB4mOjmbRokWkpqYSEhJCVlYWK1euZMGCBaxatYqkpCSX39NisXQoFsd1bV1viJuKz57XsWVvwdrG2IkJ4azfW83OY6eZOtTUobg8pb3z7600f83/7Ne+prPzb+91PXY9wLkJGEBwcDAjRozg+PHjrV774YcfMmzYMGcCBuDr68vVV1/NY489RkFBAQMHDuzymLtMTEPcJzKhvhZ8/Z2nUuJM9iQs18x1k+K8FKCIiLhq1qxZzJo1y/nnKVOmMHv2bK666ir+9re/8fTTT7v8npmZmZ2Kqa3rAyvCGQdYs7ezO30n+BhbHDvAaC9P/0lmNjPCyzoVl6d09vvX02n+mn9f5u7599gkrDllZWV88803be5JO3DgAJMmTWpyfPTo0c7zriZh7v60sZHwIfgEmjBUm7Gc2HumVwswPta+MTojx9wjPsHQpy2a/9mvfY3m75lPG3uyuLg4Jk2aREZGRoeuT05OxmhsOTFqicViITMzs+3rrcnYtv4KY00ZqTH+MKjlgiK2SDP/ytjK4RIrKSkp3Xr/XLvn30tp/pq/5t/x+Tuub0uvSsIefPBBqqqqWLRoUavjzGYz4eHhTY47jpnNZpe/trs/bTzXqJARhFXvJHfbO5waanMe9yuvB+Dr/BJ2pO/Cr4cU59CnLZp/X6b59+35t8Vms+Hj066OMk0YjcZO/RDV5vVGI8RNhUMfYczbAbGpLQ5Njjfhb/ShqLKOXHMNQ6ODOxyXp3T2+9fTaf6av+bvvvn3miTsiSee4N133+X+++9vV3XE1j6B68inc27/tPEchuIL4fOdxBsLiUtNdR632WxEfLqJ4so6AgYMZ0Jc02SzO9GnLZq/5q/5u/vTxp4sJyeH9PR0zjvvPG+H0rL4aXDoI3u/sKk/a3FYgK+R8bFhpGebSc8u7hFJmIiIu/SKJOypp57i6aef5le/+hU/+tGP2hxvMpmafdpVUmLvr9XcU7K2uP3TxnPF2ZdT+uTvtn8SeZYJcSY+zSpkb34pE4dEdjgmT9KnLZq/5q/59xaffvopVVVVVFRUAHDw4EE2bNgAwOzZs+nXrx9LlixhzZo1bNy4kdjYWAAWLlzI5MmTSUpKIjg4mKysLJ577jkMBgOLFy/22nzalNDQLyy7fU2bHUnYtWnatywifZfLSdj//d//ccMNNzB8+HB3xOOyp556iuXLl3PHHXe0uQzRITExkaysrCbHHcdGjRrVpTG6RUya/bVwH9RWgP+ZTxRT4sL5NKuQjNwSfuyl8ERE+qoHH3yQvLw85583bNjgTMI++ugj4uLisFqtWCwWbLYzy8kTExNZv349zz//PDU1NURGRjJ9+nRuvfVWhg0b5vF5tFvsZDD4QEk2lOZDWEyLQ9OGRMDnR0g/ZvZcfCIi3ZDLSdiaNWt49dVXmT59OjfccAOXXHKJ1zbXrlixguXLl/PLX/6S22+/vd3XzZkzhwcffJCMjAxSUuxFLerr61m7di0pKSnduzKiQ9hgCB0MZcfh+B4YcqYkv6Npc0aO2TuxiYj0YZs2bWpzzNKlS1m6dGmjY0uWLHFXSO4VEAIDx8OJPfYlieOuaXHomabNpVTU1BMc0CsW5IiIuMzlnb6bN2/mvvvuo7CwkNtvv52LL76YlStXUlRU5I74WvT888/z5JNPMnPmTC688EJ2797d6JfDkiVLGDt2bKNPJefPn8+oUaNYvHgx7777Ll9++SV33XUXR44c4Te/+Y1H59EpjqdheTsbHZ4Qb19OebCwnPKaek9HJSIifU1CQ1XiNpYkDgoPJCY8EKsNMnLN7o9LRKSbcvkjqKCgIG644QZuuOEGtmzZwiuvvMLf/vY3nnrqKa644gpuuOEGkpNbLlHbVT7++GPAnhRu3ry5yfn9+/cDNLvkw9/fnxdffJFly5bx0EMPUVVVxZgxY3j22WeZOnWq22PvMrFpsP89yG/ctHlAqP0ml19Szd68EqYPb9pTTUREpMvET4PtKyFna5tDJw6JIH/PcXZlmzlvRLQHghMR6X46tQ5gxowZzJgxgxMnTvC73/2Od955h3feeYfx48fzy1/+kosvvrir4mzi5Zdfbte45pZ8AERHR/PII490dVieFet4Epbe5FRKvIn8khNk5JiVhImIiHvFNxTnOL6nyT7lc6UlRPDenuOkHyv2UHAiIt1PxxqPNKiurmb16tUsWrSIbdu2MWLECG677TYsFgu33XYbK1as6Ko4pTkxE+2vxUegsvFyUMe+sD25JR4OSkRE+hxTPITFgs3S7AeDZ0tLMAGwK8fcaJWKiEhf0qEkLDs7m4cffphZs2bxxz/+kUGDBvH888+zbt06br/9dt566y1+9rOf8e9//7ur45Wz9YuAyIYqlecsSUxp2Be2W8U5RETEE+IblvPntL4vbFxMOP6+PhRV1HL0dKUHAhMR6X5cTsJuueUWLr/8cv7zn/8wb948NmzYwD/+8Y8mjSQvuugiiou11MDtnMU5djU6nBwbjsEAeeYqTpXXeCEwERHpU+IbinO0kYT5+/qQHGv/oFBLEkWkr3I5CcvJyeGee+7hs88+49577yUhIaHZcaNGjeKll17qdIDShlh70+Zzn4SFBvoxon8IAHtUgUpERNzt7CdhVmurQx1LEtOzlYSJSN/kcmGO999/v13jQkJCelalwZ6qleIcE+LCOXiynIycEi5O6gG9z0REpOcalAx+QVBdAqeyYEBSi0Pt/cKOkJ5t9lh4IiLdSacKc0g3MGgCGIxQfgJK8xudSnE0bdaTMBERcTej35nVGW2Uqk8bYm/avP9EqfpZikif5PKTsIsvvhiDwdDsOR8fH0JDQ0lOTubGG29kxIgRnQ5Q2uAfBAPGQMFee9PmsBjnqZR4E2CvkGiz2Vr8exMREekS8dPg6GbI2Q6TFrY4bGBYILGmfuSZq9iTY+a8keoXJiJ9i8tPwqZOnYrNZqOgoIDY2FhSUlKIiYmhoKAAi8XC4MGD2bhxI9dddx2ZmZnuiFnO1cKSxDGDQ/EzGiiqqCW3uMoLgYmISJ+S0FCcI7sdTZu1L0xE+jCXk7ALLrgAf39/Nm7cyEsvvcRjjz3Gyy+/zAcffIC/vz9z5szh/fffZ+jQoSxfvtwdMcu5HBUSzynOEeBrZMzgMEBLEkVExAPiJttfiw5BeWGrQ+37wtC+MBHpk1xOwv7xj39wxx13MHjw4EbHY2JiuO2221i5ciWhoaEsXLiQ3bt3d1Wc0hrHk7D8XU0qUk2Is5cBVtNmERFxu34R0H+M/fe521sd6tgXtiu7WE2bRaTPcTkJO3bsGCEhIc2eCwsLIy8vD4DY2FiqqrQEziMGjAXfQHtFqqLDjU45inOoabOIiHhEwjT7axtLEscODiPA14fiyjqOnKrwQGAiIt2Hy0lYTEwMb7/9drPn3nzzTecTMrPZTHh4eOeik/Yx+tlLA0OTJYmO4hx780qwWPVJo4iIuFl8QxKW0/qTsEZNm7UkUUT6GJeTsJ/+9Kds2LCBH/zgB7z44ousW7eOF198kR/84Ads3LiRW265BYBt27Yxfvz4Lg9YWuAoC3xOcY4R/UMI9jdSWWvh4MlyLwQmIiJ9iiMJy98F9TWtDnUsSVRxDhHpa1wuUf/9738fm83G8uXLWbp0qfN4dHQ0Dz74INdffz0AixYtwt/fv+silda1UJzD6GNgfGw4244UkZFrZvSgUC8EJyIifUbkcAjuDxWFkL/7zPLEZqQ5KiQeUxImIn2LS0mYxWIhOzub7373u3z/+9/n8OHDmM1mTCYTw4cPb9SHKjpaPT88ylGc4/gesNTZlyg2SIk32ZOwHDPfnxzvpQBFRKRPMBjsT8O+XQc529pIwhqaNheUUVZdR2igX4tjRUR6E5eWI9psNubOncuuXbswGAyMGDGCSZMmMWLECDUC9rbIERAQBvVVcHJfo1OO4hyqkCgiIh7h3Be2rdVhAxqaNttskJGje5SI9B0uJWG+vr5ER0erlGx35OMDMRPtvz9nSaKjTP23J0qprrN4OjIREelrzk7C2viZQfvCRKQvcrkwx9y5c1mzZo0bQpFOcyxJPKc4R1xEP6KC/amz2Nh3vNQLgYmISJ8SkwrGAPu+sHNap5zLuS9MSZiI9CEuF+ZISkriv//9LzfeeCOXXnop/fv3b7IU8dJLL+2yAMUFLRTnMBgMTIgL5+P9hezJLWFiwxp8ERERt/ANsK/OyNlqfxoWNaLFoY59YbuyzVitNnx8tL1BRHo/l5Ow3/3udwAUFBSwfXvTHiAGg4F9+/Y1OS4e4HgSVvAN1FWBXz/nqZR4Ex/vLyRDTZtFRMQT4qeeScJSf9jisDENTZtLquo4fKqCkQNCPBikiIh3uJyEvfTSS+6IQ7pCWCwED4CKk/YqiWdVpHIU58jINXsnNhER6VsSpsOXT0J268U5/H19mBAXzo6jxaRnFysJE5E+weUkbOrUqe6IQ7qCwWBv2py13r4k8awkzFGc41BhBaXVdYSpDLCIiLhTXMPPC4X7oMoM/UwtDk1LiGDH0WJ2ZRerlYqI9AkuF+ZwKCsrY/Pmzaxdu5aSEpWV7TZaKM4RFRJAXIR9eeJelaoXERF3C+lvb58CkLuj1aGOvcrpx8xuDkpEpHvoUBK2YsUKZs6cyc9+9jN+97vfkZubC8BNN93EypUruzRAcVELxTngzJLE3VqSKCIinpAw3f6avbXVYWlDTABknSyjtLrOzUGJiHify0nYK6+8wooVK5g/fz7PPPNMo55hF110EZ988klXxieucvQKO33QvvzjLCnx9iWJe9QQU0REPCG+YUliW02bQwOJi3A0bTa7Py4RES/rUBK2cOFC7rvvPi644IJG54YMGcKxY8e6LDjpgOAoMA2x/z5/V6NTExqehO3RkzAREfGE+IYnYXk7wdL6E640LUkUkT7E5SQsJyeHmTNnNnsuODiY0lI1A/a62En213OWJCbHhuNjgPySak6WVXshMBER6VOiEyEwHOoqoWBvq0PVtFlE+hKXk7DQ0FBOnTrV7Lm8vDyioqI6HZR0UgvFOYIDfJ2lf7UkUURE3M7HB+IbKvW2Uao+bYijaXMxVqut1bEiIj2dy0nYjBkzeO6556isrHQeMxgM1NfXs2rVqiZLFMULnMU5djU5pX5hIiLiUY4kLKf14hxjBocR6OdDaXU9h0+VeyAwERHvcTkJu/POO8nPz2fu3LksXboUg8HAv//9b66//nqOHTvGrbfe6o44xRWDU8DgA6V5UHai0akJ8SYAMlSmXkREPMGZhG1vdZif0YcJsSZA+8JEpPdzOQkbMmQIq1atYvjw4axatQqbzcY777xDREQEr776KjExMe6IU1wREAL9k+y/P2dJYupZxTnOrmwpIiLiFrGTwGC0fzBozml16MSGUvXaFyYivZ1vRy4aOXIk//znP6mtraW4uJjw8HACAwO7OjbpjJg0OPmNvThH0hXOw6MHheJv9MFcWUd2USVDooK9GKSIiPR6/kEweIJ9iXzONjDFtzjUWSFRSZiI9HIdatbs4O/vz8CBA5WAdUexDf3CznkS5u/rw5iYMAB2qxeLiIh4gqNUfRv9whxJ2IGT5WraLCK9WoeehOXm5rJ+/Xry8/Oprm5c6txgMPD//t//65LgpBOcxTnSwWYDg8F5KjUunIwcM3tyS5iXGuulAEVEpM9ImAbbnobs1otz9A8NID6yHzlFVezONjMrsb+HAhQR8SyXk7BPPvmE22+/HavVSmRkJP7+/o3OG876YV+8aOB4MPpDVTEUH4HI4c5T9qbNx9S0WUREPMNRnKNgL9SU2/cutyAtIYKcoirSs4uVhIlIr+VyEvb444+TlpbG448/rp5g3ZmvPwxKhryd9iWJZyVhKQ0VEjPzSqi3WPE1dmpVqoiISOvCYiA8AUqyIe8rGH5hi0PTEiJ4Z3c+6dlmj4UnIuJpLv/0fezYMX72s595PQErLy/n0Ucf5Sc/+QnTp09n9OjRLF++vF3XvvXWW4wePbrZX4WFhW6O3INa6Bc2PDqY0ABfquusHDipXiwiIuIB8VPtr22UqnfsC1PTZhHpzVx+EhYTE9OoUbO3mM1m3njjDZKSkpgzZw6rV692+T0efvhhhg8f3uiYyWTqogi7gdg02EGT4hw+PgaS48L58tBpMnLMjBkc5p34RESk70iYDnv/0+a+sKTBoQT6+VBWXc+hwnJGDQz1UIAiIp7jchL2i1/8gueff55Zs2bRr18/d8TULrGxsezYsQODwUBRUVGHkrBRo0aRnJzshui6CceTsOO7wVIPxjN/3RPiTPYkLLeEH0z1TngiItKHOPaF5e4AqwV8jM0O8zP6MCHOxPYjRaRnFysJE5FeyeUkLDMzk9OnT/Od73yHadOmERER0WTMfffd1yXBtUYFQNohehT4h0JtGZzaDwPHOU+lxocDkKEy9SIi4gkDxoJ/CNSUQuG3je5J50pLiLAnYcfMLJiS4MEgRUQ8w+Uk7N///rfz9++9916T8waDwSNJWFdYtGgRRUVFhIaGMnXqVO68804SExO9HVbX8TFCTCoc3WxfknjWDc9eIRH2F5RRXWch0K/5TyRFRES6hNEX4ibD4U/sSxJbTcJMgJo2i0jv5XIS9u2337ojDo+Kjo5m0aJFpKamEhISQlZWFitXrmTBggWsWrWKpKQkl9/TYrF0KBbHdR29vi2Gwan4HN2MNW8ntpQfOo8PCPEjOsSfU+W17MkpZtKQpk80PcHd8+/uNH/N/+zXvqaz8++r37ceLX6aPQnL2QZTftrisLQhZ5o2l1TVEd7Pz0MBioh4RoeaNfd0s2bNYtasWc4/T5kyhdmzZ3PVVVfxt7/9jaefftrl98zMzOxUTJ29viWm2ghGAFUHv+Db3bsbnRsaauBUOazf/g3G4mC3fP32ctf8ewrNX/Pvy/r6/PsUx76wnG2tDosOCSAhMojsokp255iZrX5hItLLtCsJ27FjB2PHjiU4uPUf1IuKiti0aRPz58/vkuA8KS4ujkmTJpGRkdGh65OTkzEaXV/SZ7FYyMzM7PD1bRoaCTv/RFDZYVLHJ4FvoPPUBUUH+er4QYpsIaSmpnT9124Ht8+/m9P8NX/Nv+Pzd1wvPUjcFMAAxUehrABCB7Y4NC3BRHZRJenHipWEiUiv064k7MYbb+T1119nwoQJAFitViZMmMAbb7zB2LFjneNycnK4//77e2QSBmCz2fDx6VjjYqPR2Kkfojp7fYsih0JQNIbKUxgL99nX4zeYOCQSgD15pV7/AdBt8+8hNH/NX/Pvu/PvUwLD7HvBCvban4aNvbrFoWlDIlizO1/7wkSkV2pXxmGz2Zr8ub6+vsnxniwnJ4f09HRSUrzzRMhtDAZ7vzBo0i9sQqy9QuKRUxWUVNZ5OjIRkV6nvLycRx99lJ/85CdMnz6d0aNHs3z58nZff/r0aX7/+98zbdo0UlJSWLBgAVu2bHFjxF7QziWJjqbNu3PMatosIr1Oxx77dBOffvopGzZs4OOPPwbg4MGDbNiwgQ0bNlBVVQXAkiVLGDt2LHl5ec7rFi5cyFNPPcWHH37Ili1b+Ne//sUPf/hDDAYDixcv9spc3MrRLyy/cRIWEezPkKggAPbkmT0clIhI72M2m3njjTeora1lzpw5Ll1bW1vLwoUL2bJlC/feey9///vfiYqK4pZbbmH79u1uitgLHElYW02bB4XSz89IWXU9BwvLPRCYiIjn9OjCHA8++GCj5MqRgAF89NFHxMXFYbVasVgsjZ7aJSYmsn79ep5//nlqamqIjIxk+vTp3HrrrQwbNszj83A755OwnU1OTYgzcex0JXtyS5g5SmvuRUQ6IzY2lh07dmAwGCgqKmL16tXtvnb16tVkZWXx2muvMXHiRACmTZvGvHnzWLZsmUvv1a0lNCRhxzOgrgr8+jU7zNfow4S4cLYdKSL9WDGJatosIr1Ij07CNm3a1OaYpUuXsnTp0kbHlixZ4q6QuifHk7BTB6C61L4mv0FKXDjvZuSzW02bRUQ6zWAwdPjaDz/8kGHDhjkTMABfX1+uvvpqHnvsMQoKChg4sOVCFj2GaQiEDILyE5C/C4ac1+LQtCER9iQsu5gfTFXTZhHpPdqdhB0+fNi5cdrRm+Xw4cNNxkg3FNIfwhOgJBuO74ZhZ8rzp8SbANiTa/ZKaCIiYnfgwAEmTZrU5Pjo0aOd511NwrprD0ufuCkYvn0X67Gt2OKmtTguNc6+dzn9WLFH+8Kph5/mf/ZrX6P5e6aHZbuTsHvuuafJsf/93/9t9GebzdapTwHFjWIn2pOwvPRGSdi4mDB8DFBQWsOJkmoGhQe28iYiIuIuZrOZ8PDwJscdx8xms8vv2V17WA7wiSMeKP36Aw4Fz25xnF+1/YeZg4UVfL49nRB/z25l7+stEDR/zb8vc/f825WEPfzww24NQjwgJg2+eadJcY4gf18SB4by7YkyMnLNDAof5KUARUSktQ8yO/IhZ7ftYdm/Hr55mvDS/aSmpNgr+bYg4YvPyC6qxGKKJ9VD/cLUw0/z1/w1f3f3sGxXEnbNNde4HIB0My2UqQdIiTPx7Yky9uSauWyckjAREW8wmUzNPu0qKSkBaPYpWVu6bQ/LmIngG4ihqgij+QhEj2px6KQhEWQXVbI7t5SLx3j2HtXXe9hp/pq/5u+++ffoEvXigsGpgAFKcqC8sNEpx76wjJwSj4clIiJ2iYmJZGVlNTnuODZqVMuJSo/j6w+xDfvf2ihVn5ZgAmCXmjaLSC+iJKyvCAyD6ET7789ZkjihYePznlw1xBQR8ZY5c+Zw+PBhMjIynMfq6+tZu3YtKSkpvaMy4tnip9pf22raPKShaXO27lEi0nsoCetLWliSOHpQKAG+PpRW13P0dIUXAhMR6T0+/fRTNmzYwMcffwzAwYMHnX0sq6qqAHurlLFjxzbqdTl//nxGjRrF4sWLeffdd/nyyy+56667OHLkCL/5zW+8Mhe3ip9uf20jCRs9MJQgfyNlNfUcOKmmzSLSO/ToPmHiopg0yFjVpGmzn9GHcTFhpGeb2ZNbwvD+IV4KUESk53vwwQcbJVeOBAzgo48+Ii4uDqvVisViwWY782TH39+fF198kWXLlvHQQw9RVVXFmDFjePbZZ5k6darH5+F2jidhp7KgsgiCIpsd5mv0ISXOxJbDp0nPLmb0IDVtFpGeT0lYX+J4EpafDjZbo2pUKfEm0rPN7M4x872JsV4KUESk59u0aVObY5YuXcrSpUubHI+OjuaRRx5xR1jdT1CkfZn8qSzI2Q6jL29xaNqQhiTsWDH/o6bNItILuLQcsbq6mh/84Ad8+eWX7opH3GngePDxg8rTYM5udColzgSoabOIiHhQfEOj5py2inPY94WlqziHiPQSLiVhgYGBZGVl9elylT2aXyAMHGf/fQvFOb7OL6XOYvV0ZCIi0hc5k7DtrQ6b2JCEHSqswFxZ6+6oRETczuXCHBMnTmTPnj3uiEU8oYXiHEOjggkL9KWm3sr+E2VeCExERPqchIbiHHk7ob7l5Coy2J9h0cEA7MoxeyAwERH3cjkJ+93vfsfrr7/OmjVrqKhQJb0eJ6b5JMzHx8AE55JE9QsTEREPiBoJ/SKhvhpOtP4B70RHv7BjWpIoIj2fy0nYggULOHHiBPfccw+TJ09m4sSJpKWlOX9NmjTJHXFKV3E0xzy+G6yWRqdS4u1LEjP0KaOIiHiCwXDWksQ2+oU594WZ3RyUiIj7uVwd8bLLLsNwVlU96WH6jwa/YKgth1MHYECS85TjSViGinOIiIinJEyDrPWQvRVm3NbiMEcStjvHjMVqw+ijn0VEpOdyOQlrrqSu9CA+RhicAtlf2otznJWEpcabAMgqKKOytp4gf3UwEBERNzv7Sdg57VPONnpQKMH+Rspr6jlwsoykQWEeDFJEpGu5vBxRegFncY7GTZsHhgUyMCwAq81eJVFERMTtYiba26eUF4D5WIvDjD4GUho+LEw/ZvZMbCIibtLhRx1ZWVkcOnSImpqaJue+973vdSYmcbeYifbXc4pzgL1f2AffFJCRY2bK0EgPByYiIn2OXz/7Co28ryB7G0QMbXFoWkIEXx46TXp2MT+cpqbNItJzuZyEVVVV8ctf/pKtW7diMBiw2WwAjfaJKQnr5hzFOQr22ksC+/o7T6XENyRhqpAoIiKekjDdnoTlbIOUBS0OSxtiAtS0WUR6PpeXI/79738nLy+Pf//739hsNp566ileeOEFvvOd7zBkyBDefvttd8QpXSliqL0ksKXWnoidxdG0eY+Kc4iIiKe0s0LixHh7cY7DatosIj2cy0nYRx99xM9+9jMmTrQvaRs8eDAzZszgySefZNy4cbz66qtdHqR0MYPhzJLE/MZLEifEmgA4drqS4grd4ERExAMcSVjB11Dd8p7kiGB/hjuaNqtUvYj0YC4nYXl5eQwfPhyj0YjBYKCqqsp57qqrruKjjz7q0gDFTWKbb9ocHuTHsIYb3J48LUkUEREPCB3YsBfMBrk7Wh060dkvTEsSRaTncjkJCw0NpbKyEoCoqCiOHTtTyai+vt55Trq5mOaTMICUODVtFhERD2tv02btCxORXsDlJGz06NEcPXoUgGnTpvHMM8/w1VdfsWfPHlasWEFSUlLrbyDdg+NJ2Kn9UFPe6JSjabP2hYmIiMe0NwlzNG3OtjdtFhHpiVxOwq677joqKioAuOuuu6iqquLHP/4xCxYsID8/n9///vddHqS4QeggCIsFmxWOZzQ65ejDsjunxFn9UkRExK0Spttfc78CS32LwxIHhhIS4EtFrYWsgjIPBSci0rVcLlF/xRVXOH8fHx/P+++/7yxXP3HiREwmU1fGJ+4UMxFK8+zFOYae7zw8LiYMXx8Dp8prOF5STYypnxeDFBGRPqF/EgSEQU0pnPwGBk9odpi9aXM4Xxy09wsbMzjMw4GKiHSey0/CzhUUFMTFF1/MRRddpASsp3EW59jZ6HCgn5HRg0IB7QsTEREP8TFC3BT779u5JDH9mNnNQYmIuEenkzDpwRxNm5spzuHYF6amzSIi4jGOfWHZW1sd5kjCdqk4h4j0UO1ajpiUlITBYGjXGxoMBr755ptOBSUeMjjV/mo+BhWnITjKeSolLpxV21WcQ0REPCjBUZxje6vDJiaYADh8qoLiiloigv3dHJiISNdqVxJ22223tTsJkx6knwmiRsLpg5C/C0bNcZ5yFOfIzC3BarXh46O/fxERcbPYyWDwgZJsKM2HsJhmh5mC/BneP5jDhRXsyinm4qSBHg5URKRz2pWE3XHHHe6OQ7wlJs2ehOXtbJSEjRoQQqCfD2U19Rw+VcHIASFeDFJERPqEgBAYOB5O7LHvCxt3TYtD0xIiOFxYQfoxs5IwEelxtCesr3MU58hvvC/M1+hDcqyaNouIiIc5StVnt7M4h/aFiUgP5HKJ+jVr1rQ55nvf+14HQhGvOLs4h80GZy07nRBnYsfRYvbkmrluUpyXAhQRkT4lfhpsXwk5bRTnGGICYHeOmXqLFV+jPlcWkZ7D5SSspWbMZ+8ZUxLWgwxKBh9fqDhp7xkWfibZcjZtVoVEERHxFEeFxON7oLYC/IObHTZqgL1pc3lNPfsLyhgXE+7BIEVEOsflJOyjjz5qcqy4uJiPPvqI//73vzz++ONdEph4iF8/GDAGTmTan4adnYTF2W9o+/JLqa234u+rTxlFRMTNTPEQFmv/YDAvHYbNbHaY0cdAaryJzw+eIj3brCRMRHoUl3+qjo2NbfJr/PjxLF68mEsvvZSXXnrJHXGKO8U037Q5ITIIU5AftRYr354o9UJgIiLSJ8VPtb+22bTZBMCuY9oXJiI9S5c+2pgxYwabNm3qyrcUT3DsCzunOIfBYFDTZhER8bz4huIcbSRhE4eoOIeI9ExdmoTl5eXh4+OZJWvl5eU8+uij/OQnP2H69OmMHj2a5cuXt/v606dP8/vf/55p06aRkpLCggUL2LJlixsj7sacFRJ3g9Xa6JRjSeIeVUgUERFPOftJ2Dn3pbOlxduTsKOnKzldXuOJyEREuoTLe8J27NjR5FhtbS379+/nmWeeYcaMGV0SWFvMZjNvvPEGSUlJzJkzh9WrV7f72traWhYuXEhpaSn33nsvUVFRvPLKK9xyyy288MILTJ061Y2Rd0P9x4BvP6gphaJDED3KeSrF+STM7J3YRESk7xmUDH5BUF0Cp7JgQFKzw8KD/BjRP5hDhRXsyjYzZ6z6hYlIz+ByEvbjH/+4USVEAJvNBsB5553H/fff3zWRtSE2NpYdO3ZgMBgoKipyKQlbvXo1WVlZvPbaa0ycOBGAadOmMW/ePJYtW+bSe/UKRl8YPMH+iWPezkZJ2IR4+5OwAyfLKa+pJyTA5f9kREREXGP0sy+VP7rZXqq+hSQM7P3CDhVWkJ5drCRMRHoMl3+ibq7wRkBAALGxsURHR3dJUO1xbiLoig8//JBhw4Y5EzAAX19frr76ah577DEKCgoYOLCP/UMek9aQhKVDyg+chweEBhITHkh+STV780qYPjzKi0GKiEifET/NnoRlb4NJC1scljYkgtU7c7UvTER6FJeTsN6wVO/AgQNMmjSpyfHRo0c7z7uahFkslg7F4riuo9d3FcPgifgAtrydWM+JJTkunPySanZnFzOloTlmV+ku8/cWzV/zP/u1r+ns/Pvq963PSGhfcY60BPu+sIycEjVtFpEew+Uk7MiRIxQWFjabjG3fvp0BAwYwdOjQrojNbcxmM+HhTfuJOI6ZzWaX3zMzM7NTMXX2+s4KKA9kPGA7vofd6V/ZGzg36O9TAcCne48xJdQ9VRK9PX9v0/w1/76sr89fWhA32f5adAjKCyGkf7PDRg0IITTAl7Kaer49Ucb4WPULE5Huz+UkbOnSpQwdOrTZJOzjjz/myJEj/OMf/+iS4NypteWMHVnqmJycjNFodPk6i8VCZmZmh6/vMrYUbFvC8akuIXWwv32PWIPK0NP8O3MHORUGUlNTu/TLdpv5e4nmr/lr/h2fv+N66aX6RdgLRxXug9ztkDS32WE+PgZSE0xsPnCKXdnFSsJEpEdwOQnLzMzk+uuvb/bclClTePfddzsdlLuZTKZmn3aVlNif8jT3lKwtRqOxUz9Edfb6LhEzEQ5/gvHELog7s18uJSECgwFyi6swV9UTFRLQ5V+6W8zfizR/zV/z77vzl1YkTLMnYdlbW0zCACYmRLD5wCnSs8382DNFmkVEOsXlhdNlZWUEBQU1ey4wMNCZyHRniYmJZGVlNTnuODZq1Kgm5/qEmIZ+YXmNmzaHBfoxPDoYgD1q2iwiIp4SP83+2ua+MBOgps0i0nO4nIQNHDiQPXv2NHtuz5499O/f/Jrt7mTOnDkcPnyYjIwM57H6+nrWrl1LSkpK36uM6BDbUKwkf1eTU+oXJiIiHudIwvJ3QX3LzZgnNjRtPna6klNq2iwiPYDLSdicOXNYuXIlW7dubXR827ZtPPvss3znO9/psuDa8umnn7JhwwY+/vhjAA4ePMiGDRvYsGEDVVVVACxZsoSxY8eSl5fnvG7+/PmMGjWKxYsX8+677/Lll19y1113ceTIEX7zm994LP5uJ7bhSdjJfVBb2ehUSrwJgIwcs2djEhGRvityOARFg6UW8ne3OCw8yI+RA0IA2JVt9kxsIiKd4PKesNtuu43PP/+cm2++maFDhzJo0CBOnDjB0aNHGTlyJHfccYc74mzWgw8+2Ci5ciRgAB999BFxcXFYrVYsFouzoTSAv78/L774IsuWLeOhhx6iqqqKMWPG8Oyzz/aKEvwdFhYDIYOg/ASc2HOmPDAwIc6+T25Pbgk2m61TfdpERETaxWCw34u+XWdfkpgwrcWhaQkmDp4sJz27mO+oabOIdHMuJ2GhoaG8/vrrvPjii2zevJn8/HwiIiK44447uOmmmwgODnZHnM3atGlTm2OWLl3K0qVLmxyPjo7mkUcecUdYPVtsGuz/L+TtbJSEjRkchp/RwOmKWnKLq4iPbH5foIiISJeKn3YmCWtFWkIEb3yVS/ox7QsTke7P5SQMIDg4mNtuu43bbrutq+MRb3MmYY2LcwT6GUkaFEZmXgl7ckuUhImIiGc49oVlbwWbzf50rBlpQ+z7wvbkqmmziHR/Hf4XqqysjM2bN7N27doeURFR2slRITE/vcmplHj7kkQV5xAREY+JSQWjP1SegqLDLQ4b2T+E0EBfquosfHuizHPxiYh0QIeSsBUrVjBz5kx+9rOf8bvf/Y7c3FwAbrrpJlauXNmlAYqHxTT0Bys6DJVFjU5NcFRIVHEOERHxFN+AM/emVpYk+vgYSG0oIqVS9SLS3bmchL3yyiusWLGC+fPn88wzzzQqeHHRRRfxySefdGV84mlBkRAxzP77c0rVO25umXklWKw2REREPKLd/cLsSxK1L0xEursOJWELFy7kvvvu44ILLmh0bsiQIRw7dqzLghMviW1+SeKI/iEE+RuprLVwqLDcC4GJiEif5CgUld1GEtawLyxdZepFpJtzOQnLyclh5syZzZ4LDg6mtLS000GJlzmaNuc1fhJm9DEwPrZhX5iWJIqIiKfENbSPKdwHVS0/5XKs2MguUtNmEeneXE7CQkNDOXXqVLPn8vLyiIqK6nRQ4mWtFOdw3OBUnENERDwmpD9EjrD/PverFoeF9/NjVEPTZi1JFJHuzOUkbMaMGTz33HNUVlY6jxkMBurr61m1alWTJYrSAw2eAAYfKDsOpfmNTp3dtFlERBqrqKjgz3/+MxdccAHJycnMmzeP9957r83r3nrrLUaPHt3sr8LCQg9E3gOcXaq+Fc59YVqSKCLdmMt9wu68807mz5/P3LlzmTNnDgaDgX//+9/s27eP/Px8nnjiCTeEKR7lHwz9x8DJr+39wsJinKdSGiok7jteSk29hQBfo5eCFBHpfu644w4yMzO5++67GTp0KOvWrePXv/41VquVq666qs3rH374YYYPH97omMlkclO0PUzCNMh4te3iHENMvP5Vjiokiki35nISNmTIEFatWsXDDz/MqlWrsNlsvPPOO0ybNo2//OUvxMTEtP0m0v3FptmTsPx0GHOl83BcRD8ig/0pqqhl3/Ey5/JEEZG+7tNPP+WLL77gr3/9K1deaf93c/r06eTn5/Poo49yxRVXYDS2/sHVqFGjSE5O9kS4PU98Q3GOvJ1gqQOjX7PDHE/C9uSaqbNY8VPTZhHphjr0L9PIkSP55z//SXp6Op9++ik7d+7k+eefZ8SIEV0dn3iLo0JiXuN9YQaDgZQ4FecQETnXxo0bCQoK4vLLL290/Nprr+XkyZNkZGR4KbJeIjoRAsOhrhJOZLY4bET/EMICfamus/LtcTVtFpHuyeUnYWfz9/dn4MCBXRWLdCdnF+ew2cBgcJ6aEGfi4/2FKs4hInKWAwcOMGLECHx9G99aR48e7TyflpbW6nssWrSIoqIiQkNDmTp1KnfeeSeJiYkdjslisXTquo5e7y4+cVMxHNyINXsrtkEpLY5LiTex+cApvjp6mrGDQ1z+Ot11/p6i+Wv+Z7/2NZ2df3uva1cStmbNGpe++Pe+9z2Xxks3NHAcGAOgugSKDkPUmaeczgqJehImIuJkNpuJi4trcjw8PNx5viXR0dEsWrSI1NRUQkJCyMrKYuXKlSxYsIBVq1aRlJTUoZgyM1t+YuSJ67vaIGM8sYA5832O+E9rcVyMXzUAm/YcYUK/ju8N627z9zTNX/Pvy9w9/3YlYb///e/b/YYGg0FJWG9g9INByZD3lX1J4llJmKNC4uFTFZRV1xEa2Py6fBGRvsZw1qoBV87NmjWLWbNmOf88ZcoUZs+ezVVXXcXf/vY3nn766Q7Fk5yc3OY+tOZYLBYyMzM7fL3bmMph//NElGcRnpra4rCy4FO8/s1XHC0zkNrKuJZ02/l7iOav+Wv+HZ+/4/q2tCsJ++ijj1wOQHqB2En2JCw/HSZc7zwcFRJArKkfeeYqMvNKOG9EtBeDFBHpHkwmU7NPu0pK7C09HE/E2isuLo5JkyZ1ai+Z0Wjs1A9Rnb2+y8VPAYMRQ2k+xrJ8MMU3OyxtaCQGA+QUV1FUWU//0IAOfbluN38P0/w1f83fffNvVxIWGxvrtgCkG2uhOAfYlyTmmavIyFESJiICkJiYyLp166ivr2+0LywrKwuwVz50lc1mw8dH1f2c/IPsvSzzd9lL1beQhIUF2ps2ZxWUk55dzGXjBnk4UBGR1nX4X/by8nI+//xz1q1bxxdffEF5eXlXxiXdgaM4x/EMsNQ3OnWmabPZw0GJiHRPc+bMobKykg8++KDR8bfffpsBAwaQktJyIYnm5OTkkJ6e7vJ1vZ6jVH1b/cKcTZvVL0xEup8OVUf85z//yVNPPUV1dTU2mw2DwUBgYCB33nknN998c1fHKN4SNRICwqCmFAr32feINUhRcQ4RkUZmz57N+eefzwMPPEB5eTkJCQm89957bN68mWXLljmXtSxZsoQ1a9awceNG50qThQsXMnnyZJKSkggODiYrK4vnnnsOg8HA4sWLvTmt7id+Kmx7GrK3tjosbUgEr+3IYdcxs2fiEhFxgctJ2Jo1a1i2bBmzZs3immuuYcCAAZw8eZI1a9bw6KOPEhERocIcvYWPDwxOgaOb7UsSz0rCxseGYzBAfkk1J8uqGRAa6MVARUS6h+XLl/P444/z5JNPYjabGT58OI899hhz5851jrFarVgsFmw2m/NYYmIi69ev5/nnn6empobIyEimT5/OrbfeyrBhw7wxle4roeFJWMFeqCmHgOZL0DubNuepabOIdD8uJ2EvvvgiV155JX/5y18aHf/ud7/Lb37zG/71r38pCetNYifZk7D8dJh0k/NwSICvc739npwS5oxVEiYiEhwczH333cd9993X4pilS5eydOnSRseWLFni7tB6j7AYCE+Akmx78ajhFzY7bHh0MOH9/CipqmPf8VImxJk8GqaISGtc/ljo8OHDXH311c2eu/rqqzl06FCng5JupJXiHI4bmvaFiYiIR8VPtb9mt7wvzMfHwMQEEwDpx7QvTES6F5efhAUGBjrL7Z6rpKSEwEA9EelVHMU5Cr6Guirw6+c8lRJv4j87c9md2/x/DyIiIm6RMB32/qddxTk+2V9IeraZhed7KDYR6RHqLFZOlFSTU1RJTnElOUVV5BRXcqKkmhkDLHSgxaBLXE7CJk2axFNPPcXUqVMZOHCg83hhYSErVqxg8uTJXRqgeFl4HAT3h4pCOJF55tNHIOWsComOAi0iIiJu57gX5e4AqwV8mu/lowqJIn2X1WrjZFkNOcWV5DqSrLMSrhOl1VistuYvrg3gDjfH53IS9utf/5of/OAHXHrppcyYMYP+/ftTWFjI1q1b8fX15amnnnJHnOItBoN9X1jWBvuSxLOSsKRBYfgbfTBX1pFTVEVCVJAXAxURkT5jwDjwD2mo3vstDBzX7LCUeHsRqdziKhWREullbDYbxZV1jRKr3OJKcoqryC2qJNdcRW29tdX38Pf1IS6iH/ERQfbXyCBiwwOJrMl3e/wuJ2GjRo3iP//5D8uXL2fbtm2YzWZMJhOXXHIJt99+u6o49UYxafYkLL/xvjB/Xx/GxISRkWNmd65ZSZiIiHiG0RfiJsPhT+yl6ltIwkID/Rg9MJRvT5SRfszM5ePVtFmkJymvqbcnWUX25CqnyP5UK7fh9xW1llavN/oYGBweSHxEEPGRDclWw2t8ZBD9QwLw8Wm8kstisbB79wl3TgvoYJ+wYcOG8dhjj3V1LNJdtVKcIyUunIwcM3tyzFydEuPhwEREpM+Kn2ZPwnK2wZSftjhsYkIE354oY1d2sZIwkW6mus5CbnHjJ1hn788yV9a1+R4DQgOIjwwivuFJ1tmJ1uDwQHy7aXuKDiVh0sc4inOcPgBVZuhncp5KiTMBx8hQhUQREfGk+Gn21zaLc5hYtT1b+8JEvKDeYuX4WcUvHE+wHE+1TpbVtPkeEUF+xEcGnVk2eFbCFWvqR6Bf83tCu7sOJWHffPMN7777Lvn5+dTUNP7mGQwGnn766S4JTrqJ4CgwJYA5G47vbtSTJSXeXpxjb14p9RZrt/20QUREepm4yYABio9CWQGEDmx2WNqQhqbNuSXU1lvx99V9SqSrWK02CstrGlcYLGpItoorOV7SSvGLBsH+xoYky75kMC7iTJIVF9GP0EA/D83Gs1xOwtasWcM999yDj48PkZGR+Pk1/saoQl4vFTvJnoTlpTdKwoZHhxAS4Et5TT0HTpYzZnCY92IUEZG+IzDcvhesYK/9adjY5nuYDo8OxhTkh7nS3rQ5Jd7k2ThFejBH8Yvcs5YIOp5ktbv4hdFe/CLu3CWDDb+PCPLrk/mDy0nY008/zezZs3nkkUcIDw93R0zSHcWkwddvNynO4eNjIDk2nC2HT7Mn16wkTEREPCd+WptJmMFgYGK8iY/3F5KeXawkTKQVxRW1PLv5EDuyiin97HNyi6vaXfzCsVwwPvJMEYyWil9IB5KwkydP8sc//lEJWF/jLM6xq8mplHgTWw6fJiO3hAVTPByXiIj0XfHT4Kt/2isktiItIaIhCTNzs5o2izRr4zcF3PNWJqfKHVuNzmw5Orv4RVxE4yRrUHggftqO4jKXk7AxY8ZQUFDgjlikOxucAhigNLfJ2ntH0+aMHLN3YhMRkb4poaE4x/EMqKsCv37NDnPsC0s/puIcIucqqazjwXVf81Z6HgAj+wdzYZwPM5ITGRIdQlxEzy1+0Z25nLb+7//+LytXruTbb791RzzSXQWEQv8k++/PWZI4oWFpx/4TZVTXtf7IWkREpMuYhkDIQLDWQX7TlRoOKfEmfAyQZ67iZGm1BwMU6d4+3n+SS5/4lLfS8/AxwC9mD2ftbefx3ZHBXDi6PyMHhCgBcxOXn4SlpqZy6aWXcs0119C/f/8myxINBgNr167tsgClG4lNg8J99uIco7/rPBwTHkh0SACnymv4Or+USQ2fOIqIiLiVwWBfkrhvrX1J4pDzmh0WEuBLoqNpc3Yxl48f7OFARbqX0uo6/rxuH69/lQPAsOhg/nJ9CpOGRGCx6AN1T3D5SdjKlSt55plniIiIICYmBpPJ1OiX9or1YjET7a/nPAkzGAzOJYl71C9MREQ8KWG6/TVne6vDnEsSs81uDkike/v8wCkuf/wzXv8qB4MBfnrBMP5750x9iO5hLj8Je+mll7juuuv405/+hNGox5N9irM4x06w2eyfQDZIiTfx0bcntS9MREQ86+ymzefcm86WlhDBq9uytS9M+qyKmnr+33/38cq2bACGRAWxbH4KU4dFejmyvsnlJKyiooIrr7yyWyRgFRUVPPHEE6xfv56SkhKGDx/Oz3/+c+bOndvqdW+99Rb33HNPs+c+//xz+vfv745we76B48HHD6qK7c0xI4c5T01wPgkr8VJwIiLSJw2aAL6BUFUEpw9C9Khmh6UlmADYk6emzdL3bDl0mt/+J4Pc4ioAbpoxhN99N4kgf5dTAekiLn/n09LSOHToEDNmzHBHPC654447yMzM5O6772bo0KGsW7eOX//611itVq666qo2r3/44YcZPnx4o2Mmk8lN0fYCvgEwKNm+HDE/vVESlhJnAuDwqQpKquoI79c7u5uLiEg34+tv72WZ/aV9X1gLSdiw6GAigvworqzjm+OlpKpfmPQBlbX1PLphPy9+eRSAWFM/ls2fwHkjo70bmLiehN17773ceeedDBo0iFmzZuHv7++OuNr06aef8sUXX/DXv/6VK6+8EoDp06eTn5/Po48+yhVXXNHm07pRo0aRnJzsiXB7j9g0ewKWlw7jr3Mejgj2JyEyiOyiSjJzS7hglP7nFhERD0mYZk/CcrZC2o+bHWIwGJiYEMGmb0+SfqxYSZj0ejuOFvHb1RkcPV0JwA+nJbDkijGEBOjpV3fg8t/CddddR319PXfccQcGg4HAwMBG5w0GAzt37uyyAFuyceNGgoKCuPzyyxsdv/baa7n77rvJyMggLS3N7XH0OTEN39NmSgGnxJvILqokI9esJExERDwnvp3FORJM9iQsu5ifMKzVsSI9VXWdhb+8v59/fnEEmw0GhwfyyHUTmJWo7TbdictJ2GWXXYahhU2vnnTgwAFGjBiBr2/jKYwePdp5vq0kbNGiRRQVFREaGsrUqVO58847SUxMdFvMvYKjOEf+brBawOfM08aUuHDezchXcQ4REfGs+Kn211NZUFkEQc0XGkhLsFd/26UKidJL7cou5u7VGRwurADg+5PjuO/KsYQFaptId+NSEmaxWPjFL35BZGSk10vRm81m4uLimhx3xGU2m1u8Njo6mkWLFpGamkpISAhZWVmsXLmSBQsWsGrVKpKSklyOp6M9FRzX9ZieDBEj8PELxlBXgaXgGxgw1nlqfEwoYC9T39759Lj5dzHNX/M/+7Wv6ez8++r3TZoRFAnRifYkLGc7jL682WFnN20uKK1mYFhgs+NEeprqOgtPfHiAlZ8dwmqDAaEBLL0umYuTBno7NGmBS0mYzWZj7ty5PP3008yePdtdMbVba0/kWjs3a9YsZs2a5fzzlClTmD17NldddRV/+9vfePrpp12OJTMz0+VruvJ6T0oMG0no6Qxytr7D6YRa53FLvRUf4ERpDZu27CSyX/sraPak+buD5q/592V9ff7SReKnNiRhW1tMwoIDfBk9KIx9x0tJP1bMd5PVtFl6vj25Zu5+I4MDJ8sBuGZiLA9cNY7wID396s5cSsJ8fX2Jjo7GZrO5K552M5lMzT7tKimxl0h39UldXFwckyZNIiMjo0PxJCcnd6hsv8ViITMzs8PXe4Ph1EzYkkGC72niU1MbnRv15efsLyjHEh5H6ti2P33pifPvSpq/5q/5d3z+jutFAPu+sF3/huxtrQ5LSzDZk7BsJWHSs9XWW1m+6QB//+QQFquN6BB//nxNMpeNG+Tt0KQdXN4TNnfuXNasWcOFF17ohnDaLzExkXXr1lFfX99oX1hWVhZgr3zoKpvNho9Px/qGGI3GTv0Q1dnrPSp2EgA++elwTsyp8RHsLygnM7+Uy5Nj2v2WPWr+bqD5a/6af9+dv3SRhIbiHPnpUF9rL13fjLSECF7Zlk269oVJD/Z1fgl3v5HBtyfKALgqJYYHrx5HZLB3qpaL61xOwpKSkvjvf//LjTfeyKWXXkr//v2bLP279NJLuyzAlsyZM4c33niDDz74gCuuuMJ5/O2332bAgAGkpKS49H45OTmkp6dz3nnndXWovY+jOEfB11BfY+8f1mBCfDivf5Wjps0iIuJZUSOhX6S9afOJPRA3udlhaUPsxTky1bRZeqA6i5WnPznEkx8doN5qIzLYn/+bN565E/RUt6dxOQn73e9+B0BBQQHbtzctBWswGNi3b1/nI2vD7NmzOf/883nggQcoLy8nISGB9957j82bN7Ns2TLnp6pLlixhzZo1bNy4kdjYWAAWLlzI5MmTSUpKIjg4mKysLJ577jkMBgOLFy92e+w9nmkIBEVB5Wk4sRfiJjlPOZo2Z+SYsdls3aKSpoiI9AEGA8RPg6z1kLOtxSRsaFQQkcH+FFXU8nV+CRMbKiaKdHf7T5Rx9+rd7M0rBeDycYN46JrxRIcEtHGldEcuJ2EvvfSSO+LokOXLl/P444/z5JNPYjabGT58OI899hhz5851jrFarVgslkb72BITE1m/fj3PP/88NTU1REZGMn36dG699VaGDVPfkDYZDPZ+YQc32pd9nJWEjR4USoCvD6XV9Rw9Xcmw6GAvBioiIn1K/FR7Epa9FWbc1uwQg8HAxHgTH317kvRss5Iw6fbqLVae+ewwf/vwALUWK+H9/PjTvHFcnRKjD7t7MJeTsKlTp7ojjg4JDg7mvvvu47777mtxzNKlS1m6dGmjY0uWLHF3aL1fbEMSlpfe6LCf0YdxMWGkZ5vZk2tWEiYiIp7j2BeWsw1sNvuHhs1IGxLRkIQV81M1bZZu7ODJMu5evcfZg3XOmAH8v2uSGaD2Cj1ehxdCl5WVsXnzZtauXeusSCh9SEzDvrC8nU1OTWhYkrhbTZtFRMSTYiaCjx+UF4D5WIvDJiaYANh1rNhDgYm4xmK18exnh7niyc/JyDETGujLX69P4dkbJysB6yVcfhIGsGLFCp599lmqq6sxGAz85z//ITw8nJtuuonzzz+fn//8510dp3Q3juIcp7KgpgwCQp2nUuLt7QFUnENERDzKrx8MToG8r+yl6iOGNjssJc7etDm/pJrjJVUMDu/n2ThFWnHkVAW/WZ3BzoYPCWYn9mfpdcn677SXcflJ2CuvvMKKFSuYP38+zzzzTKO9VhdddBGffPJJV8Yn3VXIAAiPB2yQv7vRKUdxjr15JdRZrB4PTURE+rCzlyS2IDjAl6RBYQCkHzN7ICiRtlmtNp7//Ajf/dtn7DxWTEiAL49cl8yLN09RAtYLdSgJW7hwIffddx8XXHBBo3NDhgzh2LGWH/9LLxMz0f6a33hf2NCoYEIDfampt5JVUOaFwEREpM+Kb9i73koSBpA2xARAeraWJIr3ZZ+u5AfPbuVP676hus7K+SOj2HDXTBZMSVDxjV7K5SQsJyeHmTNnNnsuODiY0tLSTgclPYRjSeI5xTl8fAxnlarXkkQREfGg+IYnYQVfQ3XL96C0hqqISsLEm6xWGy9vPcblf/uM7UeKCPI38tD3xvPvn04jLiLI2+GJG7mchIWGhnLq1Klmz+Xl5REVFdXpoKSHiGk+CQOYEOfYF2b2YEAiItLnhQ5s2Atmg9yvWhzmSMK+ziulpt7imdhEzpJbXMmPn9/G/Wv2UllrYdqwSDYsnsWPpg/R068+wOUkbMaMGTz33HNUVlY6jxkMBurr61m1alWTJYrSi8WkAgYoyYaKxol5SrwJUIVEERHxgvhp9tdWliQOaWjaXGuxOpvfiniCzWbjte3ZXP7EZr44eJpAPx/+eNVYVv1sOglRevrVV7ichN15553k5+czd+5cli5disFg4N///jfXX389x44d49Zbb3VHnNIdBYZD9Cj77895GuZYjnjgZDlVtfqEUUREPKgdSZjBYCDNUapeSxLFQ46XVHHTCzv4/VuZlNfUM2lIBOsXz+Lm84fh46OnX32Jy0nYkCFDWLVqFcOHD2fVqlXYbDbeeecdIiIiePXVV4mJiXFHnNJdOZYknlOcY1B4IAPDArBYbXydr31hIiLiQY4kLPcrsNS3OGyi9oWJh9hsNv6zM5dLH/+Mz7IK8ff14b65Y3jjFzMYFh3s7fDECzrUJ2zkyJH885//pLa2luLiYsLDwwkMVOO4Pik2Dfa81mLT5o3fFLA7x8zkoZFeCE5ERPqkAWMgIAxqSuHk1/beYc1wFudQmXpxo5Ol1Sx5O5MP950E7Fs2/np9CiMHhHg5MvEml5+E3XPPPeTk5ADg7+/PwIEDnQlYXl4e99xzT9dGKN3b2cU5zuoZB5ASp6bNIiLiBT5GiJti/33O9haHpcSHY/QxcKK0mnxzlYeCk77CZrPxzu48vvP4Z3y47yT+Rh/+9/LRvLlohhIwcT0Je/vttykubv6xfXFxMWvWrOlsTNKTDEoGH1+oPAUlOY1OOYpzZKhCooiIeJpjSWL21haHBPn7kjQoFNCSROlap8prWPTvnSx+bTclVXWMjw3j3Tsu4NYLR+JrdPnHb+mFuvS/gpKSEvz9/bvyLaW78wuEgePsvz+nOMeEWBMAx05XYq6s9XBgIiLSpyU4inO0/CQMtCRRut57e45z6eOf8f7XBfgZDdz9nUTevvV8Rjck/N1eTSm+1aehygx1VWC1ejuiXqlde8J27NjBtm1nKgytXr2azz77rNGYmpoaPvroI0aMGNG1EUr3F5MGxzPsxTnGfc95ODzIj2HRwRw5VUFGbgmzE/t7L0YREelbYieBwcfeRqU0H8KaLxyWNsTEy1uP6UmYdFpRRS1/eGcv6/YcB2DM4DD+en0KY2PCvBxZO9lssOUpfD58kBRrHWw865zRH3wDwTeghdfANs6f9erXr4Xrm7umHxj9oBf2TWtXErZt2zaeeuopwF7SdfXq1c2Oi4mJ4Q9/+EPXRSc9Q2wa7HyhxabNR05VsCfHrCRMREQ8JyAUBo6HE3vsSxLHX9vsMGfT5vwSqussBPoZPRml9BLvf32Ce9/O5FR5LUYfA7ddOILbLx6Fv28PWXpYWwFr74C9b2IAbPhg4KwnYJZa+68abwRn6GCC19Y1zSWDAWAMaFLnwB3alYTdcsst3HDDDdhsNs477zz++c9/Mnbs2EZj/P39CQ5Wic0+yVmmfrf9kbXPmX9wUuJMvLM7X/vCRETE8xKm25OwnO0tJmEJkUFEBftzuqKWr/NLmDRE1Xyl/cyVtTz47je8vSsPgMSBIfz1+lSSG4qT9QhFh+G1H9krifr4Yr30z+zynUxqSjJGax3U10B99Tm/atp+ratq5nhL1zQz1snWcN4zxXOMQPzQeTDxBbd+nXYlYYGBgc4KiB999BH9+/fX3i85o38S+AVBbRmcPgD9RztPpcTb/xHKyC3BZrNh6IWPk0VEpJuKnwbbV0JOy8U5DAYDExMi+HBfAenHzErCpN02fVvA79/M5GRZDT4G+MXsEdw1ZxQBvj3oaeqBD+HNn0B1CQQPgO//C1vcNNi92154zS8AArxQydFmsz95ay5pqzs3mWstGXQhaWx4b5u1jvqACLdP0eU+YbGxse6IQ3oyo6+9B0v2FvuSxLOSsHEx9vK/hWU1nCitZnB4Py8GKiIifYqjQuLxPfblVv7Nr9hJG2KyJ2HaFybtUFpdx/+9+w2rd+YCMLx/MH+9PsXZ/LtHsNlg819h00OADWInw4KX7XsnLRZvR2ffA+YbYP/lYVaLheO7dzPQzV/H5SSsrq6OZ599lnXr1pGfn09NTePFoQaDgW+++abLApQeIiatIQnbCan/4zwc6Gdk9MBQvjleSkaOWUmYiPRqFRUVPPHEE6xfv56SkhKGDx/Oz3/+c+bOndvmtadPn2bZsmV8/PHHVFdXk5SUxF133cWMGTM8EHkvZYqHsFgozbN/SDhsZrPDnBUSs4uxeWAviPRcn2UV8rs393C8pBqDAW65YBh3Xzq6Z+0lrC6FNb+Eb9fZ/zxpIXz3Ua8kPH2Zy0nYY489xosvvsisWbOYM2eOliWKXaxjX1jT4hwp8eH2JCy3hMvHD/ZwYCIinnPHHXeQmZnJ3XffzdChQ1m3bh2//vWvsVqtXHXVVS1eV1tby8KFCyktLeXee+8lKiqKV155hVtuuYUXXniBqVOnenAWvUz8VPj6bfuSxBaSsAlx9lUbBaU15JdUMyhUP9tIY+U19fz5vX2s2p4NwNCoIP5yfQqTh/aw5aunDsBrP4RTWfaKh1f8BSbd5O2o+iSXk7D169dz2223cfvtt7sjHumpHEnYiUyorwXfMzewlDgTq7bnkJFj9k5sIiIe8Omnn/LFF1/w17/+lSuvvBKA6dOnk5+fz6OPPsoVV1yB0dj8p+WrV68mKyuL1157jYkTJwIwbdo05s2bx7Jly1qsSiztED+9IQlruV9YkL8vYwaHsjevlPRjxVwx3t0LkaQn+fLgKX77nz3kme2FIRaeN5T/vXw0Qf4u/xjtXd++B2/9wr6HPzTGvvwwbrK3o+qzXK6bWVJSwuTJ+guTc0QMg34R9k2UJ79udGpCnAmAzNwSrFYt8xCR3mnjxo0EBQVx+eWXNzp+7bXXcvLkSTIyMlq89sMPP2TYsGHOBAzA19eXq6++mj179lBQUOC2uHu9+IaniDnbWm06e/aSRBGAipp6/vDOXn743DbyzFXER/Zj1c+m88DV43pWAma1wqY/25+A1ZZBwnnwi0+VgHmZy0nYlClT+Pbbb90Ri/RkBgPENPzwcE6/sMSBIQT6+VBWU8/hUxVeCE5ExP0OHDjAiBEj8PVt/MPZ6NGjnedbu9YxztVrpQ2Dku0VfKtL7EuwWnAmCTN7KDDpzr4prOXKp77gpS3HAPjR9AQ2LJ7FjBFRXo7MRVVmWLUAPnvU/udpi+CmtRAywKthSQeWI953333ceuutxMTEcOGFF2pPmJwRkwaHNtmTsCk/dR72NfowPiacr44VsyfXzMgBXih1KiLiZmazmbi4uCbHw8PDnedbu9YxztVrW2PpYJUzx3Udvb578cEndhKGo5uxHvsSW9SoZkelxIUB8E1+CZXVtUBvmb/retffv2vKqut54sMs/rWlCBsQYwpk6TXjOX9kNNDDvicnv8HnjR9jKD6CzTcQ29zHsU1YYD/Xyjz68t8/dH7+7b3O5SRs3rx51NfXs3jxYgwGg7N/mIPBYGDnzp2uvq30Bq0W5zDx1bFiMnLMXJvW9IcUEZHeoLVeiG31SezMtS3JzMzs0HVddX13EeOXwGCgKGMDx3xSmh1js9kID/ChpMbK2s93kxTt32vm31F9af41FhvvH6zkrW/LKau1b52YM6wfN6WEElSey+7duV6O0DUR+Z8wZPejGCzV1PQbyKHJD1JlTbT3/2qnvvT33xx3z9/lJOyyyy5Tw11pXuwk+2vht036sUyIO9O0WUSkNzKZTM0+sSopsf+719yTrq64tjXJycktFgNpjcViITMzs8PXdzshV8OBV4iqPEhEamqLw6Z8nc6H+05S6hcFlPWe+buo1/39t6LeYuU/6Xks33SQE6X2tkvDooP4YVIAN106uefN31qPYdP/4bNzOQC2YbPxvfY5Rge1fxllX/r7b05n5++4vi0uJ2FLly51ORjpI0IH2avtlOXD8QwYcp7zVGq8CYBvjpdSW2/F39fl7YgiIt1aYmIi69ato76+vtG+sKws+z6kUaOaXwbnuNYx7mztubY1RqOxUz9Edfb6biPB3rTZUHQIY1URhPRvdtikIZF8uO8ku/NKmRpu6D3z76DePH+r1cZ/9x7nrx9kcaRhv3pMeCB3zUlkXsog9mbu6XnzrzgN/7kZjnxq//P5izFc/AeMxo4VEelx8+9i7p6/fhKWruVYkpjXeElqQmQQpiA/auut7D9R5oXARETca86cOVRWVvLBBx80Ov72228zYMAAUlKaXwbnuPbw4cONKijW19ezdu1aUlJSGDhQJdM7pV8E9B9j/31uy6Xq0xJMAOzKNqtpcy9ls9n4ZP9Jrnrqc25/dRdHTlUQGezP/VeOZdNvLuT7U+LxNfbAH4+PZ8DKC+0JmF8QzH8BvvMn6GACJu7Xrr+Zr7/+uu1BZxk3blyHgpFeIGaivQP7ORUSDQYDybHhbD5wioxcM8lxHVtaIyLSXc2ePZvzzz+fBx54gPLychISEnjvvffYvHkzy5Ytc36iumTJEtasWcPGjRuJjY0FYP78+bz66qssXryYu+++m6ioKF599VWOHDnCCy+84M1p9R4J06BwH2RvhaS5zQ6ZEGfC18fAybIaCitbLmcvPdPOY0U8smE/248UARAS4MstM4dxy8zhhAT04GQl4zV4dzHUV9tbBv3gVRg41ttRSRva9V/cdddd1659YDabDYPBwL59+zodmPRQjn1hzRTnSI032ZOwHDM/mj7Ew4GJiLjf8uXLefzxx3nyyScxm80MHz6cxx57jLlzz/zQb7VasVgsjZ60+Pv78+KLL7Js2TIeeughqqqqGDNmDM8++yxTp071xlR6n/hpsPNFe7+wFvTzNzJmcBiZeSVkna7lUs9FJ2707YlS/vL+fj7cdxIAf18fbpw+hFsvGklkcA+u8m2pgw/ug23/sP951KVw7Ur7k1/p9tqVhD388MPujkN6C0evsOKjUFkEQZHOU46mzXtUnENEeqng4GDuu+8+7rvvvhbHLF26tNn91dHR0TzyyCPuDK9vi7fvCyN/F9TXgG9As8PSEkxk5pXwwu4yrMEH+dGMofQPbX6sdG/Zpyt5bON+3snIx2YDHwN8f3I8d14yihhTP2+H1znlJ2H1Qjj2hf3Ps/4XLrwHfHrgUso+ql1J2DXXXOPuOKS36GeCyBFQdMj+NGzkHOeplIYliAdOllFRU09wT370LyIdVmexcqq8huPFlZir+2YfGvGCyOEQFA2VpyB/t7NYx7m+PyWe978+wYnSGv626SBPf3qYKycMZuH5Q50fJkr3drK0mic3HeC17TnUW+1PnOcmD+bXlyYyon8v6FWa+xW8/mN7ITT/ULj2mRaX2Er3pZ+CpevFptmTsLzGSdiAsEAGhwdyvKSavXklTBvew7rOi0ir6ixWCstqKCit5mRZDScbXgucrzUUllVzuqIWx0q8UH8DX02x9ukKXOIhBgMkTLfvW87Z2mISNi4mnE9+M5uV/93GJ/kG0rPNvLUrj7d25TFpSAQLzxvK5eMH4dcTizf0ciWVdfzjs0O88MURquvse/pmJfbnt5eO7j170Xf+C/77G7DUQnQiLHgF+id6OyrpACVh0vVi0iBzdZPiHAApcSaOl5wgI9esJEykh6itt1JY3pBMldZwssz+WnBWklVYVsPpitp2v6evj4Ho0AAmRBl6ZiUy6ZnipzUkYS1XSATwM/pwfnw/brsqlb35Zfzry6O8uyefnceK2XmsmEFhgfx4xhB+MCWeqBAtVfS2ytp6XvjiKM98eojS6nrAvqz0fy9PYnpv+VmjvgbW/699XyNA0pXwvachMMyrYUnHKQmTrnd2cQ6bzf7pY4MJ8eFs+PqEmjaLdAM19ZaGJ1f2J1QFDQmW/fXMk6wiF5OrAaEB9A8LZGBoAAPCAhgYGsiAsAAGhAUyIDSAgWGBRAb5Y7NZ2b17t/smKHIux76w7K1N7k8tSYk38diCVH5/RRKvbsvm31uzOVFazbL39/O3jw4wLyWGhecPZVxML3nS0oPU1lt5bUc2yzcdpLDM3mh59MBQfnPZaOaMGdCuonI9Qmk+vHEj5O4ADHDxfXDBr7X/q4dTEiZdb1AyGIxQXmD/hyM81nkq1Vmcw+yd2ET6gJp6SwtPrM4cO1lWTXFlXbvf089oYEBoIP1DAxgYFsCA0EDn64Cz/hwR5I+PT/t+8LFoO5h4WkwqGP3t+8KKDkPUiHZfOiDU3sj31gtH8t/M47zwxREycktYvTOX1TtzmToskpvPG8p3xg7U0103s1htrM3I47GNWeQUVQEQH9mPX38nkatTYjG289+gHuHYFnsCVnESAsPhun/CqO94OyrpAkrCpOv5B8GAsVCQaX8adlYSNr5hTXZOURWny2sw9dN/giLtVV1nabTn6tzlgI4/mzuQXJ39xGpgmCPZOvPkytTPr93JlUi35Rtgr+Kbs83+y4UkzMHf14fvTYxlXmoMu3LMvPjFUf6beZztR4rYfqSIWFM/51JFU1APLn/eDdlsNj7cd5K/vL+f/QVlAESHBLD4kpEsmJKAv28vSn5tNtj+LLx/D1jrYcA4+MG/7QVmpFfo0T8BV1RU8MQTT7B+/XpKSkoYPnw4P//5zxv1Y2nJ6dOnWbZsGR9//DHV1dUkJSVx1113MWPGDA9E3gfETrQnYXk7YcxVzsNhgX4M7x/M4cIK9uSVMGtkL1mrLdIJ1XUWTptrKDjnydW5hS1KqtqfXPkbfRqeUJ1Jps5eDuhIukxBfr1nyY5Ie8RPsydg2Vsh9YcdfhuDwUBaQgRpCREsuWIMr2w7xqvbsskzV7F0/bc88WEW10yMY+F5Qxk9KLQLJ9A3bT18mkc3fEt6thmAsEBffjF7BDefP5Qg/x7942xTdVWw7leQscr+5/HXwdXLwT/Yu3FJl+rR/9XecccdZGZmcvfddzN06FDWrVvHr3/9a6xWK1dddVWL19XW1rJw4UJKS0u59957iYqK4pVXXuGWW27hhRdeUGPMrhCTBukvNVucIzXOxOHCCjJyzErCpM+oqrVw+FQ5hworOHSynEOF5Rw6WU726XIqVp9o9/v4+/q0uhzQ8RreT8mVSLMSpsOXT7ZZnMMVg8IDufvS0dx20UjezcjnhS+O8s3xUlZtz2bV9mzOGxHFzecP4+KkAb1rqZwH7M0r4dH39/NZViEAgX4+3Hz+MBbNGkF4kJ+Xo3MDcza8/iM4ngEGH/jOn2DG7e3avyg9S49Nwj799FO++OIL/vrXv3LllVcCMH36dPLz83n00Ue54oorWix5vHr1arKysnjttdeYONHeXHjatGnMmzePZcuWsXr1ao/No9dyFufYDVZro82jE+LCeWtXnpo2S69js9koLK/h0MkKe5JVeCbpyjNXtXptgK9Po+V/5y4HdDy5Cuvnq+RKpDPiGj5oLdwHVcXQL6LL3jrQz8j1k+OZPymOr44V88IXR3j/6wK+PHSaLw+dJj6yHzfNGMr1k+MJ79cLE4gudKiwnMc+yOK9zOOAvejP/0xN4I6LRzIgLNDL0bnJ4U/tDZiriiAoCua/AMNnezsqcZMem4Rt3LiRoKAgLr/88kbHr732Wu6++24yMjJIS0tr9toPP/yQYcOGORMwAF9fX66++moee+wxCgoKGDhwoFvj7/UGjAHfQKgpsW9+jh7pPJUSbwIgI8eMzdEsSKQHqbNYOXa68kyidVbSVdZQHrk5piA/RvYPYUT/EEYMCGZYVBDlBce4cGoqpuAAJVcinhDSHyJH2PtZ5n7lliIHBoOBKUMjmTI0kjxzFS9vOcZrO7LJKarioff28djGLK5Li+Om84YyckAvaB7chfLNVfztwwP8Jz0Xi9WGwQDzUmL41XcSGRLVS5fj2Wyw5SnY+AewWWFwCiz4N5gSvB2ZuFGPTcIOHDjAiBEj8PVtPIXRo0c7z7eUhB04cIBJkyY1OX72ta4mYZYOlvlyXNfR67svH3wGJWPI3YE1Zwe2iGHOM6MHBOPrY+B0RS05RRVAb5x/+/Tev//26e7zL62qsz/JOlXO4cIKDhVWcLiwguyiSuqtzX+A4GOAuIggRvQPZnj/YEZEBzOifwjD+wcTGdx4k77FYiGzOp9gfx+sVqsnptStdPbvv7v+dyM9QPw0exKWvdXtleZiTf34/XeTWHzJKNbszuPFL46yv6CMl7ce4+Wtx5iV2J+bzxvK7MT+fbr4TVFFLX//+CAvbT1Gbb3938M5Ywbwm8tGkzSoF/fCqq2AtXfA3jftf075IVz5GPj1825c4nY9Ngkzm83ExcU1OR4eHu4839q1jnGuXtuSzMxMl6/pyuu7ozi/eAayg8I9H5BrbdzNfUi4kUPF9az7ci/nxQf2yvm7QvP33vytNhunKi3klVnIK60nr6zhV6kFc03LiVGg0UBsmJHYUF/7rzBfYkONDArxxd/o+EGq2v7LfJpsM2S38F76++/b8xcvSJgGGa/aC3R4SD9/I/8zNYEfTIlny+HTvPDFUT7cV8BnWYV8llXIsOhgbpoxhOsmxREa2HeWKpbX1PPc5sM8t/kI5TX2lQRTh0Xyu8tHM2lIpJejc7Oiw/Daj+Dk1+DjC5cvhSm3aP9XH9FjkzCg1aU7bS3r6cy1zUlOTm5xD1prLBYLmZmZHb6+OzMYL4MjbzGgLofo1NRG56Yd+5pD23MoMYYDNb1y/u3Rm//+28OT86+qtXDkVAWHTlVwuGGv1uHCCo6crqC6ruVka1BYAMP7hzAiuuHJVv9ghvcPYVBY55cP6u+/c/N3XC/isvjp9te8nWCpA6Pnkh6DwcB5I6I5b0Q0OUWVvLTlKK/tyOHIqQoeePcb/vJBFvMn2asqDo3upcvvsFeFfWVbNis+PuhsCD8uJozfXjaa2Yn9e//y7AMb4c2fQnUJBA+A7/8Lhpzn7ajEg3psEmYymZp9YlVSYi/20NyTrq64tiVGo7FTP0R19vpuKW4yAIYTmRixNrrJpSZE8Or2HDLzy/hujH/vnL8LNP+umX9HC2P4GQ0Ma1g26NivNaJ/CMOigz3yibT+/vv2/MULohPtjW+rS+BEJsQ2v33B3eIjg7h37ljumpPIW7vyePGLIxwqrODFL4/yry1HuWj0ABaeN5SZo6J7TVJSb7HyVnoeT3yYRX5JNQDDo4P59aWJXDF+cO9fkmm1wud/hU1/BmwQNwW+/xKExXg7MvGwHpuEJSYmsm7dOurr6xvtC8vKygJg1KhRrV7rGHe29lwrLogcDgHh9uIcJ/fB4AnOUylxJsBeetYyKdpLAUpP1VWFMRxJV1xEP3yNvajJp4i0zsfHvi/swAf2UvVeSsIcggN8+fH0IfxoWgKfHzzFC18cZdO3J52/Rg4I4abzhnLtxFiCA3rmj242m431e0/w1w/2c6jQvh98cHggiy8Zxf9v787joqr3x4+/ZlhkBwHZQQVl5+IKuKWZLZqmLeb93vvVssys9PrN6tu1uvdqt9LyVvdqqZll1q2+dkv9ueXWaqlomkSKggoqoILs+zJzfn8cZmAEDVlmWN7Px+M8gDPnzLw/M8N85n0+232DA7rHZ3BlMWx+DE5uU/8ePBPGv6ouIi66nc75nwyMGzeOzz77jN27dzNhwgTj/k2bNuHl5UVsbOx1z128eDFJSUnG42pra9myZQuxsbEyM2Jb0WrBbwCkf6d2+WiQhPXzcsLB1oqyah3ZJToaT5MiBBRV1Bi7Dp7JLeV03fpa5/OuPzFGoLtDXYJVl2h5qcnW1RNjCCG6scC4uiTsICTMsXQ0gNpVcVT/Xozq34v0K2V8eCCD//yUyemcUv6y+Vde23mS3w8NZMawPgS6O1g63GZRFIV9aVdYtusUyVlqj6OeDjY8cXM//juhN3Y23aQVPDcVNvwRrqSClS1M+AcMfsDSUQkL6rRJ2OjRoxkxYgSLFi2itLSUoKAgtm/fzr59+1i2bJmxa8tzzz3H5s2b2bNnD/7+/gDcd999fPLJJ8yfP5+nnnoKDw8PPvnkE9LT01m3bp0li9X1+A9Sk7Dso8BM424rrYZof1cOpeeTll9tufiExekVhayCCtLzK+oXMa5LvHJLqq55noOtVZOJVm8Ph+5TqQshWs4wLux8ojpFeAfr7tfX05G/TYpiwa2hfHEkk/UHzpF+pYx396Wz9od0xkV4M3NEH4YFe3TYroo/ny/gtZ2nOHA2DwBHWyseHhXMI6P6dqvJRzi5HTY+CtUl4OwH0z4yDtkQ3VenTcIAVqxYwZtvvsny5cspLCwkODiYN954gzvvvNN4jF6vR6fTmaxHZWtrywcffMCyZct46aWXqKioICIignfffZe4uDhLFKXrMizanPVzo5tiA9Qk7Ez+tbuPia6lskbHqUslJGcVcTy7iOTMIlIvF1Otu3zNc3xc7Ey6Dhq6Evq42HXYLx5CiE7AfzBorKAkG4oywS3Q0hE1ydnOhgdH9GXGsD58l5rLuv0ZfJ+ay54Tl9lz4jJh3s48OKIPUwb4Y2/bMS5ApV4uYdmuU+w5oX6221pp+WNCEE/c3A9Pp27U9U6vh2+XwPevqX/3HgFTPwAnL4uGJTqGTp2EOTo68sILL/DCCy9c85ilS5eydOnSRvs9PT159dVX2zM8AeBX188+5wRUl4NtffcJw6LN32RUMOP9w0T6uRDhq279vJyw6Q79w7uwimodJy4WG5OtX7OLSbtc0mQ3QktPjCGE6IZsHdRu8tk/q1PVd9AkzECr1XBzuBc3h3txOqeU9fsz+OJoJqcul7BwYzKv7jzJ74cGMX1Yb/zdLLPG1IX8ct7cm8qmn7NQFLV7+L2DApg/rj8BPTtH98k2U1EAG2erXV4B4h+D2/5u1pk4RcfWqZMw0Qm4+IGTN5Rehku/QFCC8abhIZ64O9qSX1bNj2fy+PFMnvE2GysN/b2c65IyZyLrkrOeMqanQyqrquV4djG/ZhXxa3YRv2YVcTqnlKaGbbk72hLt70q0nwtRvs7oCzK5bfggethKxSSEMLPAhPokLOY+S0fTbP28nPj7lGievj2M//x0gfUHMriQX8Hq787w7r6z3B7lzYPD+zK0T0+z9BjILanira/T+OTQeWp06gf/+GgfnrotlH5ezu3++B3O5RPwf3+AgnSwtoNJyyF2mqWjEh2MJGGifWk0amtY6peQddQkCXN3tOWHZ0azdd9RdM4+nLpcSsrFElIuFlNSVcuJi8WcuFhscnc+LnZE+DobW8wifF3o6+mIVVef0rYDKa6s4XhWfcKVnFVE+pUylCYSrl7OPYipS7ii/V2J9nfF17W+G6FOp+PYsUvdY1YsIUTHExgHiavg/EFLR9IirvY2zBoVzMwRffn6ZA4f7E/nx9N57Ei+xI7kS0T5ufDg8D5MivVrl7GyRRU1rPn+DO//kEFFjQ6AUf09eeb2MH5XNwtyt/PrRvh/T0BNObgGqeO//AZYOirRAUkSJtqf/2A1Ccs+2uimHjZW9HO3YcCAQONkKoqikFlQwYmLxaQYtxLO55dzqbiSS8WVfHMq13gfdjZawnxciGyQnIX7OEs3tjZQWF7Nr1nFxmTreFYRGXnlTR7r62pHlJ+rmnT5uxDj74qXi52ZIxZCiBtguDB4+VeoKoEenbPVxkqr4dZIb26N9ObUpRI+2J/Bpp8zOZ5dzDOf/8KSL0/yh7gg/juhNz6urf9crqjWsf5ABqu+PUNRRQ2gDjF49vYwhvfrpsvO6Grhq8Wwf7n6d/AYuPd9cPSwaFii45IkTLQ//4Hqz6zGSVhTNBoNge4OBLo7cHuUj3F/SWUNpy6pLWUn6lrMTl4qprJGT9KFQpIuFJrcT6C7PRE+9S1mkb4uBLrby2QO15BXWsWvhi6FWWrSlVnQ9ALH/m72xmQr2t+VKD9Xejl3o8HWQoiuwcVPba0oOq8upRI8xtIRtVqYjzNL7onh2TvC+L/DF/jowDmyCit465vTrP7uDONjfHlweB8GBbndcH1Yo9Oz4fAFln+VRk7d7LX9vZx4+vYwbov07r71a1kefD5TnQ0aYMR8GPtXsJKv2eLa5N0h2p9hco78M+pAVfueLbobZzsbhvRxZ0gfd+M+nV4hI6/MpMUs5WIxF4squZBfwYX8CnafqJ95z7mHNeFXdWcM83buMDNKmUtOSWVdslVsbOHKLqps8tjeHg5E+7nWdSd0IdrPVcbmCSG6jsA4NQk7n9glkjADNwdb5owOYdbIvuxNucz7P2ZwKD2frUnZbE3KJjbAlQdH9GFCjC89rK9fB+r1Clt/yeaNPamcq+sN4e9mz4JbQ5ky0L97DwnIPgYbpqvvIRtHmPwWRN9j6ahEJyBJmGh/Du7Qsw8UZKgDoEPGttldW2k1xhn1Jv7Oz7i/oKyalEtqUnYiW03QTueUUlJVy+GMAg5nFBiP1Wqgj6ejsbVMnQjEFW+XHp3+qp6iKFwqrjRJtpKzioxXMK8W7OlYn2zVtXC52ku3TiFEFxaUAL9+rk7O0QVZW2m5I9qXO6J9OZ5dxPr9GWw+lk1SZhFPbkji5e0n+e+EIP4QH4SXs2lXRUVR+PrkZZbtSiWlboy2p5Mtc2/ux3/FB/1m8tblJf0fbJ0PtZXQsy/8/hPwjrR0VKKTkCRMmIffIDUJyzrapknYtfR0tGV4iCfDQ+r7ptfo9JzJLTVpMUu5WMyV0mrO5pZxNreM7b9crL8PBxuTFrMIX2f6ezlja90xJ5FQFIWswgrTFq7sIq6UNl4MW6uBkF5Oxskyov1ciPRzkXF0QojuJ7BufdDMw6DXgbbrJhZRfq68dl8sz94RbuyqeKm4kn/uTePtb04z8Xd+zBzRhyhfZ07kVvPKu4kcOVcIqD1JHh2tTgLi2KObf33U1cCu5+HQO+rf/W+De94FezeLhiU6l27+XyTMxn8wHN+otoRZiI2VlnAfF8J9XLh7YP3+nJLKutay+sTs7JUyCspr2H8mj/0Nps631mro5+XUYOp8VyJ8nfEw8+KTiqJwPr/cJNn6NauIgvKaRsdaaTX093IyJlsxAa5E+LrgYCv//kIIgVcU2DpBVTHkpIBPtKUjanceTj144uZ+zL4pmJ2/XuKD/RkcOVfApp+z2PRzFkHu9pzPV8cE97DW8uCIPjw2OgQ3B+mKTmkOfPYAnN+v/j36WRj9Z9B2zAu0ouOSb2HCPPzrxoU1c3IOc/JytsMrzI4xYfUr2FfW6Ei7XFo3CUj9LI3FlbWcvFTCyUslbPq54X30MGkxi6ybOr8tpl7X1417U5Ot4rqFj4soqaxtdKyNlYZQb2d1DFeAmnRF+Lq0y9TEQgjRJVhZQ8AQOPut2iWxGyRhBjZWWibF+jEp1o+kC4Ws35/B1l+yOZ9fgZUGpg0NZP64ULxlpltV5k/q+K+SbLB1hnvegfA7LR2V6KQkCRPm4RsLGq36wVV8EVx8LR3RddnZWBET4EpMgKtxn6IoZBdVGseYGbaMvHJySqrIKcnlu9T6qfN7WGsJ9XY2WWw63NflumOsdHqFs7ml6pTwmerU8Ceyiymtapxw2VprifBxJsrflei6qeFDfZykj74QQtyowPj6JGzow5aOxiJiA914Y9oA/jwhnB/TcrEpyWb8yCjj8jHd3pEPYMczoKsGz1CY9jH0CrV0VKITkyRMmIetI/QKh5wT6nphLp3vypFGo8HfzR5/N3tujfQ27i+rUlvHDEnZiYvFnLpUQnm1juS6iTAa8nezr5sExJkwbydOZJTz/zJPcDxbnUTEsOBlQ3Y2WiJ8XeoWPlbHcfX3dsJGFjkWQojWC4xXf3bRyTluhJezHXfF+nHsWI6lQ+kYaqvgy/9VkzCA8IkwZRXYuVg0LNH5SRImzMdvkJqEZR3tUs33jj2sGdy7J4N710+9r9crnMsvN2kxS7lYQlZhhXHbm3K5wb0UG39zsLUiys+lwcLHroT0apuujUIIIZoQMATQqBNIlVwGh2664LAwVZwNX8xUJ21BA2NfgJELZPyXaBOShAnz8R8Ex/6ttoR1cVqthr6ejvT1dGRCTH3Xy6Lymrqp8+s3XVUFCWF+/C6gJ9H+rvT1dOzea64IIYS52bmCdxRc/hUuHISwiZaOSFiYU94vaL9+Bcpy1PfHve9D/3GWDkt0IZKECfNpODmHokAnX4OrJVwdbEgI9iAh2AMAnU7HsWPHGDAgQvrdCyGEJQXG1yVhhyQJ6870ejSH1hB64Hk0ik6dPfP3/wb3YEtHJroYaU8V5uMVBVa2UFkI+WctHY0QQghRzzAu7PxBy8YhLKO6HH56H1bGo931ZzSKDn3UPTBrjyRgol1IS5gwH2tb8ImBrCPqemEeIZaOSAghhFAF1SVhF5OgpsKysQjzKbkMh9+Fw+9BRT4Aiq0Tmf2m43f3S2AtX5VF+5B3ljAv/8FqEpZ1FGLus3Q0QgghhMqtNzh5Q+lluHgMsLd0RKI9XUqGAyvh18/VaecB3IIg/jH0sf9FTspZ/LrhsAlhPpKECfPyqxsX1g0m5xBCCNGJaDRql8SULWguJILjGEtHJNqaXg+n98CBtyH9u/r9gfGQ8Lg6/byVNegaLxUjRFuTJEyYl2FyjotJoKsF5CqTEEKIDiIooS4JOwThYywdjWgr1eXwy/+pLV95aeo+jRVE3gUJT0DgUMvGJ7olScKEeXn0B1tnqC6B3JPQK8LSEQkhhBAqw+QcmYcgTLFsLKL1Si7BoXfVCTfqxnvRwwUGzYD4R9Xuh0JYiCRhwry0WvAbABn71C6JkoQJIYToKHx+B9Z2aCry6VF2ARho6YhES1z8BQ6uhOTPQV+j7nMLUrscDvxv6OFs2fiEQJIwYQn+g9QkLOsoxP7R0tEIIYQQKmtbdezy+f24Xj4IyiRLRySaS6+HtN1w8G1I/75+f2ACDKsb76WV9ThFxyFJmDA/mZxDCPULQ1Em9kVn4JIVaDWg6NWFzFHUn8bf9c38nRs8vq67leF3Rd/gsa/3Ozd4vKLGdtV+jV6HS7UHMMAsT7kQzRKUAOf3E3hiNUrWdoi4CyImQWCcfInviKrLIelTteUr77S6T2MFkZNh2BMQMMSy8QlxDZKECfMzTM5x+TjUVlo2FiHaW3U55J+BK6lwJa1uS4W801jVlBMJ8P1v3UnXpAVCtD1Qbp0FVvLlVnQQ8Y+izz+LcmonVkUX1JaVg2+r09eH36kmZH1GgZWNpSPt3oovqut7/fQ+VBSo+3q4wOAHIO5RcAu0bHxC/AZJwoT5uQaCgyeUX1HX6UAqMtHJKYq6ttDVidaVNCi6QF0TVePTtNbU2jhjbdMDjUYDGi2gUafK1mjqftc283du8Pi6mUl/65gmY7p6/7V+v/7xeiBD50VvrVRFogNx9kG5932SjiQS63gFq1Pb4dSX6v/4T++rm50bhE1QZ9cLvhls7CwddffR5Hiv3nXjvf4o471EpyE1nzA/jUZdtDltF5rsn8E2ztIRCdE8tVWQf9Y0yapr1aKq+Nrn2fcEz1Dw7K/+9FB/6l0C+CX5OAMGDMCqG7YEKTodBceO0dvSgQjRBMWqh9ryFXUX1FZDxvdwYguc3K5eREz6RN1snaD/bWoLWf9bJQloD3o9pO1S1/fK2Fe/P2hY3fped0pXUdHpSBImLMN/kPqBmv0z9JEkTHQwZXl1SVZqfZJ1JRUKMurHRF1No4WefeqSrH51SVfd5ujR9DmyIKgQnYO1LfQbp24T34TzByBlq7oVZ8Hxjepm1QP63aImZGHj1QswouWqy+rGe60yHe8VNUVd3ytgsEXDE6I1JAkTllE3OYcm+yj0sWwoopvS1apJlTHRatCN0DC+oCm2zvUtWg1/ugeDdQ+zhS+EsBCtFfQZqW53LFVn+k3Zom75Z+HUDnXTWqtjxyLvgrA7wdnb0pF3HsUX4dAaOLKuwXgv17rxXrNlvJfoEiQJE5ZRNzmHJi8NbU2phYMRXVpFoZpc5V3VhTA/vX48QVNcgxokWQ1atpy868dTCSG6N41GbY0JGAzjFkHOCbXLYspWyDkOZ79Rt20L1FkXI+6CiImySPC1XEyCAyvh1y/qP5979lG7HA74g3T1FF2KJGHCMhw91S+5RedxLEoFRlo6ItGZ6XXqBBjGsVqpcKWuC2FZzrXPs3Go6zp4VcuWewjYOpgvftFllJWV8c9//pMvv/ySoqIigoODmT17Nnfeeedvnrtx40YWLlzY5G0//PADvXr1autwRVvSaMA7St1uXgh5Z+payLZC1hG1C+P5A7BrIfgNVLssRkxWL/J0Z9cc7zVcXd8rbIKM9xJdkiRhwnL8B0HReRwKT1k6EtFZVJU26DbYoGUr7zToqq59nrNvg0SrwZgtF3/Qas0Xv+jy5s2bR3JyMk899RR9+vRh27ZtLFiwAL1ez6RJzVv4d8mSJQQHB5vsc3Nza4doRbvyCIGRT6pbUSakbFOTsnP71fHQ2T/DVy9Crwg1IYu8C7yju09Le3UZHPtEHe+Vf0bdp7GCqLvV5MtfxnuJrk2SMGE5/oPgxGZccg6rXTh6hcqYGqFO916cZdqaZZgcozjr2udZ2da3ank0aNny6Ad2LuaLX3Rb3333HT/++COvv/46EydOBCAhIYHs7Gxee+01JkyY0KxZMPv3709MTEx7hyvMyTUAEuaoW2mOOsNiylZI/w5yU9Tt+9egZ9+6FrK71CSkK14kKs5Wx3v9tA4qC9V9PVxhyIPqeC/XAEtGJ4TZSBImLMdfXcXeJe8YvDNSvQLmEQK9wqBXeP3m2V+Ss66ougxyT9Mz+1s0xbvVJCsvTU28asqufZ5jr7okq0HLlmc/dZ0Y6bIiLGjPnj04ODhwxx13mOy/5557eOqpp0hKSmLQoEEWik50GE5eMGSmulUUQOoudRzZma+gIB32L1c3Zz91/FjEXepU7Fad/Ctb9jF1fa9fvwB9rbqvZ19IeAwG/BF6OFk0PCHMrZP/R4tOLWgY+uH/Q3nKbhzLL6CpKqlv9UjZWn+cRqvOPNcwMfMKV7+IywKZHVtttToDYf6ZuiSrwc+SbKyA4KbO01qrlbNxnFb/+m6EDu7mLYMQzZSWlkZISAjW1qZVa1hYmPH25iRhc+bMIT8/H2dnZ+Li4vjTn/5EaGhoi2LStXAZBMN5LT2/szNb+W1dIHqqulWXwumv0JzciiZtN5qSuhajQ2tQHDxQwiaghE+EvqPVlv921GblV/SQugtt4ko0536s3x00DH384xB6R/3Fsw70XpP3v5S/4c+Wnv9bJAkTlqPVotzyV0553MWA2FisynMg9yTknFR/Gn6vKqr74n4aTm6rP1+jVb+o9wpXW8+8ItSfnqFgY2+5cnU3ep063sGQXDVMuArPXXtdLUCxc6PM3g+HoFi0htfOM1SdDcvKxnxlEKINFBYWEhDQuCuVq6ur8fbr8fT0ZM6cOQwYMAAnJydSU1NZs2YN06ZN49NPPyU8PPyGY0pOTr7hc9ry/M7O/OXvDcFz0fSejcuVI7hd3Ifbpf1Yl+eh+fkj+PkjdNaOFHoPo9B3JEW94lCs2+9iZEvLr62twOPCLrzSv8CuTO1GrmisyPcbQ07wfZS7hUEl8EvHfn/J+1/K354kCRMdg0YDLn7qFjK2fr+iQOllyEmB3FN1fedPqX9XFqpf+PPPwKntDe9M/RJvaDEzdmsMlRnvWsrwOhhbsk6r6+EYfuqqr32ujSN4BKutWO4h6k+PfuARgr6HK6eOHWPAgAHQjLEyQphLYmIiM2bMaNaxmzdvJiIiAgDNdSZVuN5tADfddBM33XST8e+hQ4cyevRoJk2axL/+9S9WrVrVrHgaiomJadY4tKvpdDqSk5NbfH5n1zHKHwc8BroadOf3ozm5Dc3J7ViVXsIjay8eWXtRrO2h3y0o4Xeh9L+tzca/trj8xVloDq9Fc3Q9mrrxXoqdK8qgB1GGzsLNxR+3NomwfXWM199ypPytK7/h/N/SaZMwmQa4m9BowNlH3UJurt+vKOrg5tyrWs1yU9Q+9gXp6pb6ZcM7U9dmMbSY9TL8DANbR7MXrUMqz69Prq5OuKqvs56b1kbtMurRr3HC5exz7dm+umlXB9Hx9e3bl5deeqlZx/r6+gLqDIZNtXYVFRUB9S1iNyIgIIDBgweTlJR0w+cCWFlZtepLVGvP7+w6RPmtrKDfWHWb8A/IPGxcHFpTeB5ObkNzcpvaRTF4jDqxR9id4OjRBg/dzPJn/6yu73V8Y/14L/dgiH8MzYA/oOmk4706xOtvQVL+9i1/p03CZBrgbk6jAWdvdQseXb9fUaDsimmLmaEFrTxP7R5XeA5Sd5ren1tQ4zFnnmFdc6BwdVnjboOGhKsi/9rnabTq82RszQqp2/qBa6BMiiG6FC8vL6ZOnXpD54SGhrJt2zZqa2tNxoWlpqYC6qyHLaEoCtquOEueuHFaLQTFq9ttL6mLG6dsVZOyK6mQtlvdNPOh94j6xaFd/No+Fr1OrUsPvA0NxnvRewQMe8J0vJcQopFOmYTJNMDimjQacOqlbn1vMr2t7Epdi5khMatrQSvLhcLz6pa22/Qc18CrxpzV/d7D2XxlagnDhBh5pxsnWyXZ1z/X2beuJSvYpOsgPfvILJVCXMe4ceP47LPP2L17NxMmTDDu37RpE15eXsTGxt7wfV64cIGjR48yfPjwtgxVdAUaDfgNULdb/qLWayfUFjIu/aIufJyxD758BgKG1iVkk8C9b+set6pUXd8rcZXaSwLUyZSi7lHX9/Ib2NqSCdEtdMokTKYBFi3i6AmOI6HPSNP9ZXmm3RoNXRvLcqDogrqd3mN6jkuA6WQgvSLUdc7sbry7UYvpdWpsDVuyDAlX4fnrToiBvXt9K5ZHSH3rlntw12z9E8IMRo8ezYgRI1i0aBGlpaUEBQWxfft29u3bx7Jly0wuDj733HNs3ryZPXv24O/vD8CDDz7IkCFDCA8Px9HRkdTUVNauXYtGo2H+/PmWKpboLHqFwehn1C0/XZ3IKmUrXEhUuzBmHoY9fwGfmPqErFd48xeHLspSZ2s8sg4q1S622LnCkIfU9b3ao7VNiC6sUyZhHXEaYNGJOXqA4wjoM8J0f3l+g8SsQdfG0ktQnKluZ74yPcfZz3QyEEPLmb1by2IzTohxunHXwYL060+IYevUoDWrwYQY7sEyzbsQ7WTFihW8+eabLF++nMLCQoKDg3njjTcajVfW6/XodDoURTHuCw0N5csvv+T999+nqqoKd3d3EhISePzxx+nbt5WtF6J7ce8Lw+epW/HFuoRsC2T8CJeS1e2bl9WlXiImQeRd4Dug6YQs66i6vtfxTabjvRIeh9j/kgt3QrRQp0zCOuI0wLIWS8t06PL3cIWAeHVrqKIArpxCU9elUXPlFOSeQlNyUe3qV5INZ742OUVx9gXPUJS6pEzpFQ6e4ehs1W6NutIrUJiOxjjj4Bn19/yzaK4zIYZiZatO0+8eglI3Rktxr2vZcvLu8BNidOjX3wyk/OZZi8WcHB0deeGFF3jhhReue9zSpUtZunSpyb7nnnuuPUMT3ZWLL8Q9om5leXBqh9pCdvYbyEuDH95QN9cgNSGLmAS+A3G9+APapBfg/P76++o9ssF4LxmnKERrWDwJ6yrTAMtaLK3T+cpvB9pY8I4Fb3WPVU0pdiUZ2JWcw770HHYlGdiXnMO2MrcuQbuIJv07k3vR93AnVl+LdU3xNR9JQUu1gzeVjoFUOgVQ5ehPpWMAVU6BVNv3As1V4x8LgIJLwKW2LXI76nyvf9uS8nfv8gthNo4eMGi6ulUWq+OgU7ZA2h4oOg8H34aDb6O16kE/XZV6jtYaou9VW778Blg0fCG6EosnYV1lGmBZi6Vlul75Rzbao6ssVlvOrtS1nBla0IqzsKmqn41QqZsQQ3EPVlu23EOME2JYW9niBHS1Th9d7/W/MVJ+86zFIoRogp0LxNynbtXlag+OlC1waieaqiJqbZzRxs1CGy/jvYRoDxZPwrrKNMCyFkvrdOnyO/YExwTonWC6v7IYXe4pTqWdJWzYeKzs1UU2mzlEukvp0q9/M0j5u3f5hbA4Wwd1KvuIiVBbje7yCZIzS/ndkGHqOmVCiDbXKTv0jhs3jvLycnbvNp1OvC2mAW7JuUK0iJ0L+A2iwrWfLBYthBCiY7C2BZ8Y9Nb2lo5EiC7N4i1hLSHTAAshhBBCCCE6q06ZhIFMAyyEEEIIIYTonDptEibTAAshhBBCCCE6o045JkwIIYQQQgghOitJwoQQQgghhBDCjCQJE0IIIYQQQggzkiRMCCGEEEIIIcxIkjAhhBBCCCGEMCNJwoQQQgghhBDCjCQJE0IIIYQQQggzkiRMCCGEEEIIIcxIkjAhhBBCCCGEMCNJwoQQQgghhBDCjCQJE0IIIYQQQggzsrZ0AJ2doigA6HS6Fp1vOK+l53d2Un4pf8Of3Y2Uv3XlN5xn+BwW9aRuah0pv5S/4c/uRspvnrpJo0jt1SrV1dUkJydbOgwhhOi2YmJisLW1tXQYHYrUTUIIYVm/VTdJEtZKer2e2tpatFotGo3G0uEIIUS3oSgKer0ea2trtFrpXd+Q1E1CCGEZza2bJAkTQgghhBBCCDOSS4dCCCGEEEIIYUaShAkhhBBCCCGEGUkSJoQQQgghhBBmJEmYEEIIIYQQQpiRJGFCCCGEEEIIYUaShAkhhBBCCCGEGUkSJoQQQgghhBBmJElYO9q4cSNhYWHGLTIykpEjR/Lkk0+SkZFhcuxPP/3E888/zz333EN0dDRhYWFkZmZaJvA20tzy63Q61q1bx8MPP8xNN91EbGws48eP5x//+AfFxcWWK0A7ufp5uXpLTEy0dIgttnPnTsLCwtixY0ej2+666y7CwsLYt29fo9vGjRvH3XffDcA333zD//7v/zJp0iSioqIICwtr97jbSmvLX1payqpVq5g+fTojRoxg4MCBTJo0iTVr1lBVVWWOIrRKW7z+b775JlOmTCEuLo6YmBhuueUW/vKXv5CVldXu8XcXUjdJ3dQUqZukbrqa1E3tWzdZt/hM0WxLliwhODiYqqoqjh49yurVq0lMTOTLL7/E1dUVgIMHD3LgwAEiIiJwdHTk0KFDFo667fxW+SsrK1mxYgUTJ05k6tSp9OzZkxMnTrBq1Sq++eYbvvjiC+zs7CxdjDZneF6u1q9fPwtE0zbi4uLQaDQcPHiQCRMmGPcXFhaSmpqKg4MDiYmJjBo1ynjbpUuXuHDhAjNnzgRgz549JCUlERERgY2NDcePHzd7OVqqteXPzs5m/fr1TJ48mQcffBAHBweOHDnCW2+9xf79+1m3bh0ajcYSRWuWtnj9i4uLufPOOwkJCcHR0ZHTp0+zatUqvv76a7Zt20bPnj3NXq6uSuomqZuaInWTSuomqZvau26SJMwM+vfvT0xMDADx8fHodDpWrFjB3r17uffeewF4/PHHmTt3LgDvvfdel6rofqv8dnZ2fPXVVyZv4Pj4eHx9fZk/fz67du1i8uTJlgq/3TR8XroKd3d3+vfv3+j9e/jwYaytrbn33nsbXU09ePAgoL7mAC+99BJardpI/+KLL3aqiq615Q8ICODrr7/GwcHBePuwYcOwt7fntdde48iRIwwZMqT9C9JCbfH6/+1vfzO53fC8zJ49m6+++or77ruvHUvQvUjdJHVTU6RuUkndJHUTtG/dJN0RLcDw4ZaXl2fcZ/jH7g6uLr+VlVWTVxB+97vfAerVCNF5xMfHk56eTk5OjnFfYmIi0dHRjB49muPHj1NaWmq87dChQ1hZWRk/wDv7/0Jryu/g4GBSyRl0pv+F1r7+TXF3dwfA2lquG7YnqZukburKpG6Suqmj1U2d+x3VSRn60/fp08eygVhIc8tvuArRmbtAXI9er6e2ttZk0+l0lg6r1RISEgBMrjglJiYSFxfHoEGD0Gg0HDlyxOS2yMhInJ2dzR5re2iP8nem/4W2Kn9tbS2VlZWcOHGCV155hT59+nDrrbeapxDdlNRNUjeB1E0Nb5O6Seqm9qybJAkzA8MHWllZGfv27WPVqlUMHTqUsWPHWjo0s2hJ+S9fvszrr79OdHQ0N998sxmjNZ/777+fqKgok60rdAEZOnQoWq3W+EFXUFBAWloaQ4cOxdHRkcjISOMH98WLF8nMzDQ293cFbV3+kydPsnbtWm699VbCw8PNUobWaIvy5+bmEhUVRWxsLHfffTc6nY4PP/wQR0dHs5enK5O6SeqmpkjdJHWT1E3mqZukb4cZ3H///SZ/h4SEsHLlym7TteZGy19YWMgjjzyCoij885//7PRdAK7l1VdfJSQkxGRfRx7Y2lyurq6Eh4cb+1cfPnwYKysrBg0aBKgfhIYPOsMxXamia8vyZ2ZmMmfOHHx8fHjppZfMEH3rtUX5e/bsyeeff051dTVnz55l7dq1zJgxg48++ggvLy8zlqZrk7pJ6qamSN0kdZPUTeapm7rmJ0gH8+qrr/L555+zfv16pk2bxpkzZ1iwYIGlwzKbGyl/UVERDz30EJcvX+b9998nMDDQzNGaT0hICDExMSZbdHS0pcNqE/Hx8WRkZHD58mUSExOJiooyXimKi4sjJSWFkpISEhMTsba2ZvDgwRaOuG21RfmzsrKYMWMGVlZWrF+/Hjc3NzOXouVaW35ra2tiYmIYPHgwU6dOZf369WRmZrJmzRpLFKfLkrpJ6qamSN0kdZPUTeapmyQJMwPDB1pCQgIvvvgiU6dOZd++fezcudPSoZlFc8tfVFTEzJkzyczMZN26dZ2ieVs0zXD16NChQxw6dIihQ4cabzN8qB0+fJjExERiYmK6XDez1pY/KyuL6dOnA/Dhhx/i4+NjpsjbRlu//j4+Pnh5eTVaw0q0jtRNUjd1N1I3Sd0EHadukiTMAp555hlcXV1Zvnw5er3e0uGYXVPlN1RyFy5c4L333iMyMtLCUYrWGDp0KFZWVuzatYu0tDTi4uKMtzk7OxMREcHmzZvJysrqUt09DFpT/uzsbKZPn45er2f9+vX4+/ubO/xWa+vX/9y5c1y6dInevXu3Z9jdntRNUjd1dVI3Sd3Ukeqm7tHxu4NxdXVl9uzZLFu2jK1btzJ58mTy8/ONgwVTU1MB+P7773F3d8fd3d3kjdLZXV3+22+/nYcffpgTJ07w3HPPodPpOHbsmPF4d3d3goKCLBdwO0lLS2tyxqmgoCDjtKedlZOTE5GRkezduxetVtuoSX/o0KGsX78eaNznOisri+TkZADOnz8PYLwy7e/v3ykGiLe0/Hl5ecyYMYPc3Fxefvll8vLyTKYL9/Hx6RRXHlta/pMnT7JkyRJuv/12AgMD0Wq1pKam8sEHH+Dm5sZDDz1k1nJ0N1I3Sd0EUjdJ3SR1E5inbpIkzEKmT5/Oxx9/zMqVK5k4cSJpaWnMnz/f5JjFixcDaj/Vjz76yBJhtpuG5R84cKDxg+3ll19udOzdd9/N0qVLzR1iu1u4cGGT+1966SWmTp1q5mjaXnx8PMnJyURERODk5GRy29ChQ/nggw+wsbFh4MCBJrclJiY2em4M/xud6b3QkvKfPn2aCxcuAOpV+avNnTuXefPmtW/gbaQl5ff09MTLy4t169aRm5tLbW0tPj4+jBkzhjlz5uDr62vuYnQ7UjdJ3SR1k9RNUjeZp27SKIqitKo0QgghhBBCCCGaTcaECSGEEEIIIYQZSRImhBBCCCGEEGYkSZgQQgghhBBCmJEkYUIIIYQQQghhRpKECSGEEEIIIYQZSRImhBBCCCGEEGYkSZgQQgghhBBCmJEkYUIIIYQQQghhRpKEiU5n48aNhIWFGbfIyEhGjhzJk08+SUZGhqXDA2D16tXs3bu30f7ExETCwsJITEy0QFSqr7/+mjlz5jB8+HCio6OJi4vjgQceYMuWLdTU1Fgsrqs19Vz9+c9/ZuzYse36uJcvX2bFihWkpKS06+MIIboWqZtaR+qm65O6qeuxtnQAQrTUkiVLCA4OpqqqiqNHj7J69WoSExP58ssvcXV1tWhs77zzDrfffjvjxo0z2R8VFcWGDRvo16+f2WNSFIXnnnuOjRs3Mnr0aP785z/j6+tLSUkJiYmJLF68mIKCAh544AGzx9Zcjz/+ODNmzGjXx8jJyeGtt97C39+fiIiIdn0sIUTXI3XTjZG6qXmkbup6JAkTnVb//v2JiYkBID4+Hp1Ox4oVK9i7dy/33nuvhaNrmpOTEwMGDLDIY69du5aNGzcyb9485s6da3Lb2LFjmTVrFufOnTNrTJWVldjZ2TX7+KCgoHaMRgghWk/qphsjdZPorqQ7ougyDJVeXl6eyf7k5GTmzJlDXFwcMTExTJkyhR07dpgck5+fz6JFi5gwYQIDBw5k2LBhzJgxg59++qnR41RXV/PWW28xfvx4YmJiiI+PZ/r06Rw9ehSAsLAwysvL2bRpk7FbyvTp04Frd/n46quvmDZtGrGxsQwcOJCZM2fy888/mxyzYsUKwsLCSEtLY8GCBQwePJjhw4ezcOFCSkpKrvvc1NTUsHbtWoKDg3niiSeaPKZXr14MGTLE+HdhYSGLFi1i1KhRREdHc8stt/Dmm29SXV1tcl5VVRWvv/46Y8eOJTo6mlGjRrF48WKKi4tNjhs7diyPPvoou3fvZsqUKcTExPDWW28BcObMGR5++GFiY2OJj4/nr3/9K2VlZY1ibKrLR1hYGC+++CKbN29m/PjxxMbGctddd/HNN9+YHHfu3DkWLlzIbbfdRmxsLKNGjWLOnDmcOnXKeExiYiL33XcfAAsXLjS+fitWrDAe05z3kxBCGEjddG1SN0nd1J1JS5joMjIzMwHo06ePcd/BgweZNWsWsbGxLFq0CGdnZ3bs2MGTTz5JZWUl99xzD6B+qAPMnTsXT09PysvL2bNnD9OnT+eDDz4gPj4egNraWmbNmsWRI0eYMWMGCQkJ6HQ6kpKSuHjxIgAbNmzggQceID4+nscffxxQrzJey9atW3n66acZOXIkr7/+OtXV1axdu9b42A0rH4B58+YxYcIE7rvvPlJTU3n99dcBtQvMtfz6668UFhYydepUNBrNbz6XVVVVzJgxgwsXLjBv3jzCwsL46aefWLNmDSkpKaxZswZQu5E8/vjjHDx4kNmzZzNkyBBOnTrFihUrOHbsGBs2bMDW1tZ4v8ePH+fMmTM89thjBAQEYG9vz5UrV5g+fTrW1tb87W9/w8PDg61bt/L3v//9N+M0+Pbbb0lOTuZPf/oTDg4OrF27lrlz57Jz504CAwMBtSuHm5sbTz31FO7u7hQVFbFp0ybuv/9+Nm3aRHBwMFFRUSxZsoSFCxfy2GOPMWbMGAB8fHyA5r+fhBDCQOomqZukbhJNUoToZL744gslNDRUOXbsmFJTU6OUlpYq33//vTJixAjlj3/8o1JTU2M89o477lCmTJlisk9RFOXRRx9VRowYoeh0uiYfo7a2VqmpqVEeeOAB5YknnjDu37RpkxIaGqp89tln141xwIAByrPPPtto/8GDB5XQ0FDl4MGDiqIoik6nU0aOHKlMnDjRJJbS0lJl2LBhyrRp04z7li9froSGhirvvvuuyX0uWrRIiYmJUfR6/TXj2b59uxIaGqp8+umn143b4NNPP1VCQ0OVHTt2mOxfs2aNEhoaqvzwww+KoijK999/32RMhsfbsGGDcd/NN9+sREREKGfPnjU5dtmyZUpYWJiSkpJisn/mzJkmz5WiKMqzzz6r3HzzzSbHhYaGKsOHD1dKSkqM+3Jzc5Xw8HDlnXfeuWYZa2trlerqauW2225TXnnlFeP+X375RQkNDVW++OKLRue09P0khOj6pG6SuqkhqZvEb5HuiKLTuv/++4mKimLQoEHMmjULFxcXVq5cibW12sB77tw5zp49y6RJkwD1SqFhu+mmm8jNzSU9Pd14f59++il33303MTExREZGEhUVxYEDBzhz5ozxmH379tGjR48269efnp5OTk4OkydPRqut/3d0dHTktttuIykpiYqKCpNzmuryUFVV1airS2scPHgQBwcH7rjjDpP9hqtpBw4cMB7XcL/B+PHjcXBwMB7XMNa+ffua7EtMTKR///6Eh4eb7J84cWKz442Pjze5ouvp6YmHhwdZWVnGfbW1taxevZoJEyYQHR1NZGQk0dHRZGRkmLzG13Kj7ychRPckdZNK6iapm8T1SXdE0Wm9+uqrhISEUFZWxo4dO9iwYQMLFixg7dq1AFy5csV43KuvvtrkfRQUFACwbt06li5dyu9//3vmz59Pz5490Wq1/Otf/+Ls2bPG4/Pz8/Hy8jKplFrD8Pi9evVqdJuXlxd6vZ7i4mLs7e2N+93c3EyOM3SpqKysvObj+Pr6AvXdYn5LYWEhnp6ejbqHeHh4YG1tbewiU1hYiLW1Ne7u7ibHaTQaPD09jccZNFXOwsJCAgICGu339PRsVqzQ+DkB9Xmpqqoy/r106VI+/vhjHnnkEYYOHYqrqysajYYXXnjB5LhruZH3kxCi+5K6SSV1k9RN4vokCROdVkhIiHHAc0JCAnq9nv/85z/s3LmTO+64g549ewLw6KOPcuuttzZ5H4YrX1u2bCEuLo7Fixeb3H71AFx3d3eOHDmCXq9vk8rOEGNubm6j23JyctBqtbi4uLT6caKjo3Fzc+Orr77iqaee+s2+925ubiQlJaEoismxeXl51NbWGuN2c3OjtraW/Px8k8pOURSuXLlifH0MmnpcNzc3YyXSUFP7WmPLli1MmTKFBQsWmOwvKCho1nN8I+8nIUT3JXVT80ndJHVTdybdEUWX8cwzz+Dq6sry5cvR6/UEBwfTp08fTp48SUxMTJOboZuARqMxGaQLcPLkSY4dO2ayb9SoUVRVVbFx48brxmJra3vdq38Gffv2xdvbm23btqEoinF/eXk5u3fvZsCAASZXGlvKxsaGWbNmcfbsWd5+++0mj8nLy+PIkSMADBs2jPLy8kaLem7evNl4e8OfW7ZsMTlu165dlJeXG2+/nvj4eNLS0jh58qTJ/m3btv12wW6ARqPBxsbGZN+3337L5cuXTfZd6+rtjbyfhBDCQOqma5O6Seqm7kxawkSX4erqyuzZs1m2bBlbt25l8uTJLF68mEceeYSHH36Yu+++G29vb4qKijhz5gzHjx9n+fLlAIwZM4aVK1eyfPlyhg4dSnp6OitXriQgIACdTmd8jIkTJ7Jx40YWLVpEeno68fHxKIpCUlISISEh3HnnnQCEhoZy6NAhvv76a3r16oWjoyPBwcGNYtZqtTzzzDM8/fTTPProo0ybNo3q6mree+89iouLeeqpp9rs+TFUdCtWrCA5OZmJEycaF8Q8fPgwn332GfPmzWPw4MFMmTKFjz/+mGeffZasrCxCQ0M5cuQI77zzDqNHj2b48OEAjBgxgpEjR/KPf/yD0tJSBg0axKlTp1i+fDmRkZFMnjz5N+N64IEH+OKLL5g9ezb/8z//Y5yBqmFXm7YwZswY40xTYWFhHD9+nPfee884u5RBUFAQdnZ2bN26lZCQEBwcHPDy8sLb27vZ7ychhDCQuun6pG6Suqm7kiRMdCnTp0/n448/ZuXKlUycOJGEhAT+85//sHr1al555RWKi4txc3MjJCSE8ePHG8+bM2cOFRUVfP7556xdu5Z+/fqxaNEi9u7dy6FDh4zHWVtb8+677/LOO++wfft21q9fj6OjI+Hh4YwaNcp43PPPP8/ixYtZsGABFRUVxMXF8dFHHzUZ86RJk7C3t2fNmjU8+eSTWFlZERsby4cffsigQYPa7LnRaDQsWbKEcePG8dlnnxmfD0P8Tz/9tHEQc48ePfjwww958803Wbt2LQUFBXh7e/PQQw+ZLKap0WhYuXIlK1asYOPGjaxevRo3NzcmT57MggULGl3BbUqvXr3497//zcsvv8yiRYuwt7dn3Lhx/OUvfzFOo9wWnn/+eaytrVmzZg3l5eVERkayYsUK/vWvf5kcZ29vzyuvvMJbb73Fww8/TE1NDXPnzmXevHnNfj8JIURDUjddm9RNUjd1VxqlYTuzEEIIIYQQQoh2JWPChBBCCCGEEMKMJAkTQgghhBBCCDOSJEwIIYQQQgghzEiSMCGEEEIIIYQwI0nChBBCCCGEEMKMJAkTQgghhBBCCDOSJEwIIYQQQgghzEiSMCGEEEIIIYQwI0nChBBCCCGEEMKMJAkTQgghhBBCCDOSJEwIIYQQQgghzOj/A5UZoq7osU+UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHbCAYAAABCwpIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyBUlEQVR4nOzdeXxU1d0/8M+dmUz2zGTfZgYIEMKSDQIJKiCKS8WlbrW/tlpttUWB2mqfKopP1cdWLE+1FdAHXOsCVaqioqCIlqJC2LKxBgiQmezbTPZllt8fNzMQZrJMktkyn/frxWuGuefOfE8Cufnec873CBaLxQIiIiIiIiJyC4mnAyAiIiIiIvInTMKIiIiIiIjciEkYERERERGRGzEJIyIiIiIiciMmYURERERERG7EJIyIiIiIiMiNmIQRERERERG5EZMwIiIiIiIiN2ISRkRERERE5EZMwoiIiIiIiNyISRgRjTqdTocpU6bg0Ucf9XQoREREvC6R15F5OgCi4TKZTPjggw/wySefoLS0FG1tbYiIiEBMTAwyMjJwxRVX4Morr7S1nzJlCgDgxIkTfd7H+np/nn32Wdxyyy2j+rmbN2/GypUrMW/ePLz66qsOP/dXv/oVdu3ahaeffhp33HHHkL4mq1evxuHDh3H27Fk0NTUhKCgISUlJWLRoEX76058iMjJySO9zcexJSUnYvn07AgMD7dpcccUVqKiowJEjRyCTeeZHyunTp7Fx40bk5+ejqqoKXV1dUCqVmDZtGq666irceOONDmMvKSnBxo0bsW/fPtTV1UEmkyE5ORmXXXYZ7r77bsTHx3ugN0Tkq3hdsudv16X+vqcXssa3c+dOqFSqYX8Wr2G+jUkY+SSTyYRf//rX2L17NyIiIrBgwQIkJCTAYDDg3Llz+Pjjj1FWVtbnojOYZcuWOXx96tSpo/65t99+O77++mt8/fXXePfdd/HTn/60z/GNGzdi165duPzyy4d8oQOAf/zjH5g2bRouueQSREdHo6OjA4WFhVizZg3ee+89vPfee0hKShry+1lVVlbiH//4B371q18NqX18fDw+//xzhIeHO/1Zzlq7di3WrVsHs9mMrKws3HzzzQgNDUV9fT0OHDiAlStXYtOmTfjwww9t51gsFvzv//4vXn31VchkMlxyySW49tpr0dPTg4KCArz++uvYtGkTVq1ahWuvvdblfSAi38frkmP+eF1yNV7DxggLkQ/asmWLJTU11XLjjTdampub7Y7r9XrLd9991+e11NRUS2pqql3b/l539efW19db8vLyLJmZmZbTp0/bXi8rK7NkZmZacnNzLXV1dUOKy6qzs9Ph688//7wlNTXV8t///d9OvV9qaqpl9uzZljlz5lhmzpxpaWhosGuzcOFCS2pqqqWnp8ep9x4NL730kiU1NdWyYMECS2FhocM2u3btstx55519XluzZo0lNTXVsnDhQktpaandOdu3b7ekp6dbpk6davn+++9dEjsRjS28Ljnmb9eloXzvrPFptdphfQavYWMD14SRTzp06BAA4Oabb3Z4V0uhUOCSSy7x6s+Njo7G//zP/6CjowP/9V//BaPRCKPRiP/6r/9CR0cHnnnmGcTExDgVn6NpGQDwgx/8AACg1Wqdej8ACAoKwv3334/W1lasW7duSOe4Y+69TqfDunXrEBAQgA0bNiAzM9Nhu/nz5/eZWqPVavHyyy8jICAAL7/8MiZPnmx3zjXXXIMVK1bAZDLhySefhNlsdlk/iGhs4HXJMX+6LrkDr2FjB5Mw8klRUVEAgLNnz/r05y5atAi33norDh8+jHXr1mHdunUoKSnBLbfcgkWLFo3KZwDA119/DWDwdQb9+elPfwqNRoP33nsPZ86cGbW4RuLDDz9ET08Prr76aqSmpg7YVi6X9znPaDTiyiuvHPDrcfvttyM2NhZnz57Fvn37Ri1uIhqbeF1yzli8LrkDr2FjB9eEkU+65ppr8Morr+Cf//wnWltbceWVV2LGjBlQq9XDfs81a9bYvZacnNxn8bMrPvexxx5Dfn4+1q9fb/vMxx9/fNjvBwCvvfYa2tvb0dLSgsOHD+PgwYOYNm3akOfOXywgIAAPP/wwHnzwQfz1r3/F2rVrRxTfaDhw4AAAYO7cuU6dd/DgQQDApZdeOmA7mUyG3NxcbN26FYcOHUJeXt7wAiUiv8Dr0sD84bp0IUffO6vm5uZhvy+vYWMHkzDySWlpafjf//1fPPPMM/j000/x6aefAgCUSiXmzJmD2267DQsWLHDqPR39AJ8zZ06fi50rPjcsLAxLly7FihUrAABPPvkkwsLCnHqPi73++uuor6+3/X3+/PlYtWqV01WoLnTttdciOzsbO3bswIEDB5CTkzOiGEfK2j9nqz9Zz0tISBi0rbVNbW2tk9ERkb/hdWlg/nBdupCrkkJew8YOJmHks6699lpceeWVyM/Px8GDB3Hs2DEcPHgQX375Jb788kvceuut+NOf/gRBEIb0fgOVk3Xl53Z2duKVV16x/f2LL77A/PnzHbZ1dGft5ptvtitx+9133wEQf1gXFBTgf//3f3HTTTdh/fr1mD59utPvZ/XII4/gxz/+MZ577jm8//77Q+7jYJyNAxCrQwFwOgZnzrO2ubDt+vXr8eWXX+LMmTOQy+XIysrCQw89NOiUSCIa+3hdEvnrdelCQylRf7GhXF9Geg0j78EkjHxaQEAALrvsMlx22WUAxFK9X3zxBR5//HF88MEHuOKKK0Z1DrsrPnf16tUoKyvDXXfdhf379+Nf//oXFi1ahIULF9q17e+uaH8XhZiYGFx11VWYPn06rr76ajzyyCPYunXrsN8vOzsb11xzDb744gts27YN11133ZD6OBhn4wCAuLg4lJWVobq62qnPio2NHfJ51jaxsbG21/bt24ef/OQnSE9Ph8ViwYsvvoh77rkHn332GZRKpVOxENHYw+uS/16XRmoo15eRXsPIezAJozFFKpXiuuuuQ2lpKV5++WXs3bvXJRe70frcb7/9Fu+++y5SU1PxX//1Xzh79ixuvfVWPPHEE/j000/tpmkM9a7oxZKSkjBp0iQcO3YMjY2NtoXcw3m/3//+9/j666/x17/+ddS+tsOJY9asWdi7dy/27t2L22+/3anz8vPz8f333w94nslkQn5+PgBg5syZttdfe+21Pu3+8pe/ICcnB4cOHcIVV1zhZC+IaKzjdcmxsXhdGqmhXF9Geg0j78HqiDQmhYaGAjg/bO+Nn6vX67FixQrIZDKsXr0acrkcqampePDBB1FXV4cnn3xyVGOzzgmXSqUjeh+NRoP/9//+H3Q6Hd55553RCG1YbrnlFgQEBOCLL77AqVOnBmzb3d3d5zypVIodO3YMeN4HH3yA2tpaTJgwAXPmzOm3XVtbG8xmMyIiIpzvBBH5DV6X7I2169Joc3R9Ge1rGHkOkzDySVu3bsV3333ncO+Luro6bN68GQBGfZHuaH7uk08+idraWvz2t79FWlqa7fVf/OIXyMnJwfbt2/tM0RjM6dOnUVdXZ/e62WzGCy+8gIaGBmRnZ0OhUAz5PfuzdOlSRERE4P/+7//Q1tY24vcbDpVKhWXLlqGnpwe/+tWvUFJS4rDdf/7zH9x77722v6vVavz6179GT08PlixZ4vAi9tVXX+FPf/oTpFIp/vjHP0Ii6f9H5Z/+9CdMnToV2dnZI+8UEfksXpfs+dt1abQ5ur6M9jWMPIfTEcknFRUV4a233kJsbCxmzpxpm6Ot0+mwa9cudHZ24sorr8S1117rlZ+7ZcsWbNu2DbNnz8YvfvGLPsckEglWrVqFG2+8EU8//TRmz549pAqAu3fvxurVq5GTkwONRgOlUon6+nrs378fWq0WsbGxeOaZZ4bf+QsolUr8+te/xurVq0fl/YZryZIlMBqNWLduHW677TZkZ2djxowZCA0NRX19PQ4cOICzZ89ixowZfc5bvnw5Ojo68MYbb+Cmm27CZZddhkmTJsFoNKKgoABFRUUICgrCX//61wFL4D/33HM4ePAgNm3aNOI7uUTk23hdsueP16XRMtD1ZbSuYeRZgsXd4+JEo6Cqqgpff/01vv/+e5w6dQp1dXXo7u6GUqnE1KlTcf311+OGG27oc/fHuqnhxfO8+3vdVZ9bWVmJG2+8ERaLBZ988gmSk5MdftbmzZuxcuVKzJs3D6+++uqgsZWWlmLTpk04dOgQqqur0dLSguDgYIwfPx6XX3457rzzTqcLR0yZMgXx8fH4z3/+Y3esu7sb1157ra3C05EjRyCTifd1dDodrrzyStx8881YtWqVU585HKdPn8bGjRuRn5+PyspK2/ckLS0N11xzDW666aY+GzZbFRcX491338X+/ftRX18PqVSK5ORkzJs3Dz//+c8HLAH87LPP4rPPPsM//vEPTJw40ZXdIyIfwOuSPX+8Lg3le2etjrhz506HhT6Gen0ZyTWMPI9JGBGRk5555hl8/vnnePvtt5mAERHRqOH1xX9wOiIRkROefPJJfPLJJ1i3bh0iIiJs6x1CQkJsC+CJiIicxeuLf+FIGBGRE6xTTS62bNkyLF++3M3REBHRWMHri39hEkZERERERORGrFlJRERERETkRkzCiIiIiIiI3IhJGBERERERkRsxCSMiIiIiInIjlqgfIbPZDKPRCIlEAkEQPB0OEZHfsFgsMJvNkMlkfTaiJV6biIg8ZajXJiZhI2Q0GlFSUuLpMIiI/FZ6ejrkcrmnw/AqvDYREXnWYNcmJmEjZM1w09PTIZVKnT7fZDKhpKRk2Of7Ovaf/Wf/2f+R/vzkKJg9XptGhv1n/9l/9t/V1yYmYSNkneYhlUpH9A91pOf7Ovaf/Wf/2f/h4nQ7e7w2jQ72n/1n/9n/4Rrs2sTbh0RERERERG7EJIyIiIiIiMiNmIQRERERERG5EZMwIiIiIiIiN2ISRkRERERE5EZMwoiIiIiIiNyISRgREREREZEbMQkjIiIiIiJyIyZhREREREREbsQkjIiIiIiIyI2YhBEREREREbkRkzAiIiIiIiI3YhJGRERERETkRkzCPKi924ilGwvwVVm7p0MhIiICAByrasbdb+zHqcYeT4dCRDRmMQnzoHMN7dh+pAbvlrTAYrF4OhwiIiLsPlmH3aca8NnJNk+HQkQ0Zsk8HcBw7dmzB5988gkKCgpQXV2N8PBwzJgxA0uXLsWMGTMGPPfDDz/EihUrHB779ttvERsb64qQ7aTEhkIuFdDcbYG2qQMTYsPd8rlERET9mRwvXos4EkZE5Do+m4Rt2rQJer0ed911FyZNmoTGxka88cYbuOOOO/Dqq69i7ty5g77Hs88+i5SUlD6vKZVKF0VsL1AmxdTECBTpDCjU6pmEERGRx2WqlACAylYTmjt6EBkm9WxARERjkM8mYX/84x8RHR3d57V58+bh6quvxvr164eUhE2ePBnp6emuCnFIMtUKFOkMKNIZcPNMtUdjISIiigqVQx0ZDG1TB0oqDJg/JcjTIRERjTk+uybs4gQMAEJDQzFx4kRUVVV5IKLhyVYrAQCFWr1H4yAiIrLKUCkAAMUVBg9HQkQ0NvlsEuZIS0sLjh49ismTJw+p/ZIlSzB16lTMmTMHy5YtQ2lpqYsjtGed9nG0shldRpPbP5+IiOhi1iSsSMskjIjIFXx2OqIjTz31FDo6OrBkyZIB28XExGDJkiXIyspCWFgYSktLsWHDBtxxxx3YtGkT0tLSnP5sk2l4CVSyQo4IuVic44hOj8zekTF/Yf26Dffr5+vYf/b/wkd/M9L+++vXzR0ye5OwEo6EERG5xJhJwv72t7/h008/xRNPPDFodcT58+dj/vz5tr/Pnj0bCxYswA033IC///3vePnll53+/JKSEqfPsZocLcfBqi5s3XsElobQYb+PLxvJ128sYP/Zf3/m7/0fyObNm7Fy5UqEhISgoKDAbZ87PSkCEgDVzV2oae5EfATXhRERjaYxkYStXbsWL7/8Mn73u9/hZz/72bDeQ6VSYdasWSgqKhrW+enp6ZBKna8gZTKZMPnoHhys6kK9JQxZWZnD+nxfZTKZUFJSMuyvn69j/9l/9n/4/beeP1bV1NTgueeeQ1xcHFpbW9362SFyGVQKGcoNRhRp9bh6eoJbP5+IaKzz+SRs7dq1WLNmDZYvXz7oNMTBWCwWSCTDWyYnlUqH/UvU5KgAAECRzuCXv4gBI/v6jQXsP/vP/vtv//vzxz/+ETk5OVAqlfjiiy/c/vmTIgPEJEzHJIyIaLT5dGGOdevWYc2aNbj//vuxbNmyEb2XVqvFoUOHkJnp/pEoaxJ2rqEdDa1dbv98IiLyLh9//DH27duHJ5980mMxWK9NxTquCyMiGm0+OxL2+uuv48UXX8S8efNw+eWXo7CwsM/xrKwsAMBjjz2GLVu2YMeOHUhOTgYA3H333cjJyUFaWhpCQ0NRWlqKV199FYIg4MEHH3RzT4BQuQQTY0Nxuq4NRTo9rkiLd3sMRETkHRoaGvDnP/8ZDz/8MBISPDcCNck6S0Orh8VigSAIHouFiGis8dkk7JtvvgEA7N69G7t377Y7fuLECQCA2WyGyWSCxWKxHUtNTcW2bdvw+uuvo6urC1FRUcjLy8MDDzyACRMmuKcDF8lUKXC6rg2F5UzCiIj82VNPPYUJEybgJz/5yYjfaySVJzUKGeQyCZo7jThd24IJMf5TOIqVS9n/Cx/9Dfvvnsq9PpuEvf3220Nqt2rVKqxatarPa4899pgrQhqRbLUSHxZUooCbNhMR+a0vvvgCX3/9NbZs2TIqI08jKVwikwgYHyFFaaMZn35XjPnjgkccj68Zy4VfhoL9Z//9mav777NJ2Fhj3R+sUKuH2WyBRMJpH0RE/qStrQ1PP/007rzzTsTFxaG5uRkA0NPTAwBobm6GTCZDSEjIkN9zpJUn81ITULpXC4NMiaysqU6/j69i5VL2n/1n/11duZdJmJeYEh+GoAAJWjqNKKtvw6S4ME+HREREbtTU1IT6+nq8/vrreP311+2Oz549G1deeSVeeumlIb/nSCtPZqojgb1aFPtp9V5/r9zJ/rP/7L/r+s8kzEvIpBJkJCux72wjCsqbmIQREfmZ2NhYvPXWW3avb9iwAfv378crr7yCyMhIt8aUqVIAAI5UNqPHZEaA1KeLKhMReQ0mYV4kSyMmYYVaPW7PUXs6HCIicqPAwEDk5ubavf7RRx9BKpU6POZq46JCEB4kQ0unESeqWzAjWeH2GIiIxiLe0vIiWResCyMiIvI0iURApkoJgPuFERGNJiZhXiRbowQAHK9uQUe3f5YFJSKivlatWoWCggKPfX5G75TEIt4gJCIaNUzCvEiiIhjxEYEwmS0oqeAdRyIi8jxr9d4ind6jcRARjSVMwrzM+SmJTZ4NhIiICLBNRyytaUF7t9GzwRARjRFMwrxMtkasfFVQrvdsIERERAASFEGIjwiE2SJWSSQiopFjEuZlWJyDiIi8jXU0jOvCiIhGB5MwL5OerIBEAKoMnag2dHo6HCIiogvWhXG9MhHRaGAS5mVCA2WYkhABgOvCiIjIO3AkjIhodDEJ80LWKYkFvNgREZEXSO8tU1/e2I6mtm4PR0NE5PuYhHmhbOu6MBbnICIiL6AIDkBKTCgAlqonIhoNTMK8kHXT5pIKA4wms2eDISIiwvlNm4u5LoyIaMSYhHmhibFhCA+Uob3bhNKaVk+HQ0REdL44B6fKExGNGJMwLySRCMhQi3ccWaqeiIi8QYa1OIfOAIvF4tlgiIh8HJMwL5WtFjdtZoVEIiLyBtOTIiCTCKhv7UIlt1AhIhoRJmFeylYhkcU5iIjICwQFSDElIRwAUMxZGkREI8IkzEtl9RbnOFXXipbOHs8GQ0REhPPrwgpZIZGIaESYhHmpmLBAqKOCYbGwEhUREXmHTGuFRC2vS0REI8EkzItl9a4LKyjnujAiIvI860hYSYUBZjOLcxARDReTMC9mXRfGColEROQNJsWGIThAitYuI8rquYUKEdFwMQnzYtZNmwu1epYDJiIij5NJJUhPtm6hwimJRETDxSTM0xrLIOlxfDdxWmIEAqQC6lu7oWvqcHNgRERE9jKs68JYnIOIaNiYhHlS01lIXpqDiQeecng4KECKaYkRAIACTkkkIiIvYF0XVsTrEhHRsDEJ8yRBAsFiRnhDIdDjeKQrW9O7aTP3CyMiIi+QqVICAI5VtaDLaPJsMEREPopJmCcp1LCExUOwmIDqIodNbJs2a1khkYiIPE8dFYzIkAB0m8w4XtXi6XCIiHwSkzBPEgQgaZb4tOKgwybWJOxIZTO6jWZ3RUZEROSQIAjI6B0NK+K6MCKiYWES5mGWZDEJQz9J2LjoEPGOo9GMY1XNboyMiIjIsfPrwlghkYhoOJiEeZg1CetvJEwQhPNTErlpMxEReYHM3gqJHAkjIhoeJmGelpQFCwQIBi3QWuuwSZa6tzgHK1EREZEXsE5HPF3XipbOHs8GQ0Tkg5iEeVpgBDrDx4nPdQccNsm6YNNmIiIiT4sND0SyMhgWC1BSwSmJRETOYhLmBdqUU8UnFf0kYb13HM82tKOxrdtNUREREfUvU23dtJlJGBGRs5iEeYG2yN4krJ+RMEVIAFJiQwFwc0wiIvIOtgqJvC4RETmNSZgXsCVhFYcAs+ONL8/vF6Z3T1BEREQDsG7azJEwIiLnMQnzAh3h42EJCAW6W4D6UodtsjVicQ5WSCQiIm+QrlJAEIAKfQfqWro8HQ4RkU9hEuYNBCmQlCU+72dKYrZtTxY9zGaLe+IiIiLqR1igDJNiwwAAxSxVT0TkFCZhXsKSZN202XESNiUhHIEyCZo7jTjT0ObGyIiIiBzjujAiouFhEuYlrJs2Q+d40+YAqQQZvZtjFpTr3RQVERFR/7LU1k2buS6MiMgZTMK8hTUJqz0CdDse6bIW5yjUcl0YERF5nm0kTKeHxcKp8kREQ8UkzFtEJAHhSYDFDFQWOmySpRaLc3DTZiIi8gZpieGQSyXQt/dA29jh6XCIiHwGkzBvohp4XVi2RgkAOFbVgo5ux6XsiYiIRsTYDRzfColx8KQqUCbF1MRwAEAhi3MQEQ2ZzyZhe/bswYoVK3DttdciKysL8+bNw/3334/Dhw8P6fyGhgY8+uijyM3NRWZmJu644w7s2bPHxVEPQjVbfNTtd3g4URGEuPBAmMwWHK7k/HsiInKBA69DuvkuJJzaOKTmmb1T5Ys5S4OIaMh8NgnbtGkTKioqcNddd2HDhg14/PHH0djYOKRkqru7G3fffTf27NmDxx9/HC+99BKio6Nx7733Yt++fW7qgQPJOeJjP8U5BEE4vy6MxTmIiMgVQqIAABF1jq9FF7twXRgREQ2NzNMBDNcf//hHREdH93lt3rx5uPrqq7F+/XrMnTu333M3b96M0tJS/POf/0R2djYAIDc3FzfddBNWr16NzZs3uzT2fiVliXuGtVQCzZXiOrGLZGsi8eXRGhSwOAcREbmCJg8AEGI4CXNPOyANH7C5tULi4YpmGE1myKQ+e3+XiMhtfPYn5cUJGACEhoZi4sSJqKqqGvDcr776ChMmTLAlYAAgk8lw4403ori4GDU1NaMe75DIQ4G4aeLzfjZt5kgYERG5lEINS3giBIsJqCwYtHlKTBjCAmXo6DHhZG2rGwIkIvJ9PjsS5khLSwuOHj2KvLy8AdudPHkSs2bNsnt9ypQptuPx8fFOfbbJNLxCGdbzrI9C8kxIakpg1u6HZcpiu/bTE8MgEYBKQycqm9oQHxE0rM/1Fhf339+w/+z/hY/+ZqT999evm8sJAizqXAhHt0DQ5gMp8wdsLpEISE9WYE9ZA4p1ekxNjHBToEREvmtMJWFPPfUUOjo6sGTJkgHb6fV6KBQKu9etr+n1eqc/u6SkxOlzHJ0fbYrDeABtpbtQGlPosK06QoZzBiO27C5EbrJvJ2FWI/36+Tr2n/33Z/7ef6+kzgWOboGg3Tuk5hlqMQkr1Bpwx2wXx0ZENAaMmSTsb3/7Gz799FM88cQTmDFjxqDtBUEY1rH+pKenQyqVOn2eyWRCSUnJ+fOTAoGi1QhrPoWsjHRAYv+eeWcO49wBHQyySGRlTXH6M72JXf/9DPvP/rP/w++/9XwafRZ1rvhEtx8wmwHJwKsXsnqLcxSzOAcR0ZCMiSRs7dq1ePnll/G73/0OP/vZzwZtr1QqHY52GQxi2XdHo2SDkUqlI/olynZ+/FRAHg6huwXShlIgwT6hnDkuEu8d0KFIZxgzv7iN9Ovn69h/9p/999/+e6X4GTBJgyDtNAB1x4H4aQM2z+hdr3y8ugWdPSYEBfD7SUQ0kGElYSdPnsShQ4dQU1ODzs5OREZGYtKkSZg9ezbCwsJGO8YBrV27FmvWrMHy5csHnYZolZqaitLSUrvXra9Nnjx5VGN0ikQKJM8EzuwS70A6SMKyNZEAgGKdASazBVKJ8yN3RERE/ZLI0BY5FRH1BYB276BJWJIiCDFhgahv7cKRymbMGhfppkCJiHzTkJMwg8GA9957D++99x4qKythsVjs30wmw/z583HnnXcOWCJ+tKxbtw5r1qzB/fffj2XLlg35vEWLFuGpp55CUVERMjMzAQBGoxGffPIJMjMznS7KMepUOWISVnEAyLnH7vDEWLESVWuXEaU1LVwETUREo641coaYhJXnAzm/GLCtIAjIVCmw83gtirR6JmFERIMYUhL21ltvYd26dQCA6667DnPmzMH06dMRFRWFwMBAGAwGaLVaFBYWYufOnfjFL36BSy65BP/93/+NcePGuSTw119/HS+++CLmzZuHyy+/HIWFhX2OZ2VlAQAee+wxbNmyBTt27EBycjIA4LbbbsPGjRvx4IMP4uGHH0Z0dDQ2btyIM2fO4I033nBJvE4ZZNNmqURAhkqB7083oFDLSlRERDT6WqN6Z2IMsThHplqJncdruS6MiGgIhpSEvf3221ixYgUWL16MgIAAu+MxMTGIiYlBdnY27rnnHpSXl+Pll1/Gtm3bhjxF0FnffPMNAGD37t3YvXu33fETJ04AAMxmM0wmU5+RO7lcjjfffBOrV6/GM888g46ODkydOhWvvPIK5syZ45J4naLqTcLqjgOdzUCQfZKVrVHi+9MNKChvwv+bo3FzgERENNa1RU6DRZBAaDoLtNQA4QPPEslQieupi3QGN0RHROTbhpSEbdu2DTLZ0JePaTQaPPvssy7dw+Xtt98eUrtVq1Zh1apVdq/HxMTgueeeG+2wRkdYHKDQAIZycaPMlAV2TbLU4lSPQq3ezcEREZE/MAeEAnHTgJrD4mjYtJsGbJ/ZWyHxTH0bDO09UITY37QlIiLRwDVne508eXJYb85qVyOg6t1MuuKAw8NZvZWoTta2oqWzx01BERGRP7GVqi8ffEpiZKgcmqgQAEBxhd6FURER+b4hJWE333wzbrnlFmzcuBEtLS2ujomAQdeFxYYHQhUZDItFrJJIREQ06lRDT8IAcV0YwOsSEdFghpSE/frXv0ZjYyOefvppXHbZZfj973+PvXuH9gOZhsm6LqziAOCgEiVwfjSMUxKJiMgVbCNh1cVAd/ug7TN714XxukRENLAhJWG/+93v8M0332DDhg1YuHAhvvzyS9xzzz248sor8dJLL6GqqsrVcfqfxExAIgNaawCD1mETaxJWUK53X1xEROQ/FCogPAkwG4EKxzMzLnR+JEzv2riIiHzckJIwQNwDZP78+fjb3/6Gb7/9Fo8//jgUCgVefPFFLFq0CL/85S+xfft29PRwfdKoCAgG4nvLA+scrwuzbtpcqG1yuG8bERHRiAgCoOkdDRtCqfrpSRGQCEBNcxeqDZ0uDo6IyHcNOQm7UEREBH72s5/hww8/xJYtW/CTn/wER48exe9+9zvMnz9/tGP0X7YpiY7vPk5PikCAVEB9azd0TR1uDIyIiPyGOk98LM8ftGmIXIbU+HAAQBFHw4iI+jWsJOxCaWlpuPHGG3HFFVcAAPR6/UjfkqxsxTkcj4QFBUhtGzVz/j0REbmEpjcJ0+0DzOZBm1unyhfxukRE1K+hb/51kcbGRnzyySf44IMPcOrUKUilUixcuBC33XbbaMbn36wjYVWFgKkHkNrvuZKtVqJYZ0BBuR43ZCa5Nz4iIhr74mcAAaFApwGoOw7ETxuweYZKiX/u17JCIhHRAJxKwsxmM/7zn//ggw8+wL///W/09PRg/PjxeOihh3DzzTcjJibGVXH6p6iJQJBCvPDVHAGSsuyaZGmU+MeecyjUNrk/PiIiGvukMvGm4Jld4rqwQZKwTLVYIbFIp4fZbIFEIrgjSiIinzKkJOzMmTP44IMP8PHHH6O+vh5BQUG4/vrrceuttyInJ8fVMfoviQRIngWc/losVe8oCVOLxTkOVzaj22iGXDbiGaZERER9afLEJKx8L5DziwGbpsaHI1AmQUunEWcb2pASG+amIImIfMeQkrAf/OAHAICMjAwsX74cixcvRmhoqEsDo17JOWISpjsIzL7X7vD46BAoQwKgb+/BsapmW3lgIiKiUaMe+qbNAVIJZiQrcPBcE4p0eiZhREQODCkJ+/nPf47bbrsNkydPdnU8dDHVbPFRt9/hYUEQkKVW4t8n6lCo1TMJIyLyUceOHcMLL7yA0tJSNDY2IigoCBMmTMBPfvIT3HTTTZ4NTjUbECSA/hzQUg2EJwzYPEPVm4RpDbg5W+WmIImIfMeQkrAVK1Y4fL2srAxNTU2YOnUqQkJCRjUw6pU8S3xsOAl0NAHBkXZNLkzCfu7m8IiIaHQ0NzcjISEBixcvRnx8PDo6OvDpp5/iD3/4AyoqKvDAAw94LrigCCBuOlBTIo6GTf/hgM1tFRJZpp6IyKFhVUfcsmULnn/+edTV1QEA/vWvf2H69Ol48MEHcemll+JHP/rRqAbp10KjgcgJQNMZoOIQMOlKuybWTZsLylmcg4jIV+Xm5iI3N7fPawsXLoROp8P777/v2SQMEDdtrikBtPmDJmEZKiUA4EhlM3pMZgRIuV6ZiOhCTv9U3LZtGx599FFMmzYNTzzxBCwWi+3Y9OnTsW3btlENkDDops1ZvRe7sw3taGrrdlNQRETkDpGRkZBKpZ4O44JNmwdfFzY+OgQRQTJ0G804Ud3i4sCIiHyP0yNhGzZswC233II///nPMJlMePrpp23HUlJS8Pbbb49qgASxOEfJ5n43bVaEBCAlJhRl9W0o1OmxcEqcmwMkIqLRYjabYTab0dzcjG3btuHbb7/FE088Maz3MplMIzqvz/mqOZACsFQXw9zZAgQMvAwhQ6XAt6caUFDeiKkJvlWcw2H//Qj7z/5f+OhvRtr/oZ7ndBJ2+vRp/P73v3d4TKlUQq/XO/uWNBjbSNgBwGIBBPs9V7I0SpTVt6GgnEkYEZEve/LJJ/Hee+8BAAICAvD444/jxz/+8bDeq6SkZESxXHx+elAs5J11OLXrfbTGZA14bnxAJwDgm6IzmCZvHFEcnjLSr5+vY//Zf3/m6v47nYQFBwejpcXx1IKamhooFIoRB0UXSUgHpHKgvQFoOgtETbBrkq1W4sNDFSjU6t0eHhERjZ4lS5bg9ttvR2NjI77++mv8z//8Dzo6OvDLX/7S6fdKT08f1lRGk8mEkpISu/OF05cBRz/C5MB6WLKyBnyPOnkNPjhWgIoOKbIGaett+uu/v2D/2X/2f/j9t54/GKeTsOzsbLz77ru45ppr7I59+OGHmDNnjrNvSYORBYqJWMVBcUqigyTMumlzkVYPs9kCicR+tIyIiLxfUlISkpKSAAALFiwAADz//PO4+eabERUV5dR7SaXSEf0SZXf+uLnA0Y8g0e0DBnnfmePEWE/WtqLLZEGIfFi1wDxqpF8/X8f+s//sv+v673RhjqVLl6KwsBC33XYb3n77bQiCgC+//BJLlizBgQMHsGTJElfESdb9wiocrwtLSwxHoEwCQ0cPzjS0uTEwIiJypYyMDBiNRmi1Wk+Hcn7TZu1+wGwesGlcRBASIoJgtgCHK5rdEBwRke9wOglLT0/HK6+8gvb2dqxatQoWiwXr16/HmTNnsGHDBqSmproiTkruXRfWT3GOAKkE6cniVNDCcr2bgiIiIlfLz8+HRCKBWq32dChA/AwgIBToMgB1xwZtnqkWr0tFnCpPRNTHsOYG5OXlYdu2bSgvL0d9fT0iIyMxYYL9FDkaRareTZuriwFjlzhF8SJZaiUOnGtCoVaPW2ep3BwgERGNxBNPPIGwsDCkp6cjJiYGTU1N2L59Oz7//HP88pe/dHoqoktIZWKxqDO7xFL18dMHbJ6hUuKLIzUo5KbNRER9jGiCtkajgUajGa1YaCCRE4CQaLE4R/Xh80nZBcRNm8+gQMtNm4mIfE1WVhY+/PBDfPTRR2hpaUFISAjS0tLwl7/8BTfddJOnwztPkycmYdp8YPbAxUKy1EoAQDGTMCKiPoaUhH3++ee47rrrnHrjmpoa6HQ6zJplnyzQMAgCkDwLOPmluC7MQRKWpVECAI5XtaCzx4SgAP9dTElE5GtuvfVW3HrrrZ4OY3CaoW/aPKN3mry2sQMNrV2IDrOfxUFE5I+GtCbs6aefxk033YTNmzejtbV1wLaHDx/GU089hWuuuQbHjx8flSCp1yDrwpIUQYgND4TRbMHhCoMbAyMiIr+hmg0IEkB/DmipHrCpIjgAKbGhAIBiXpeIiGyGNBK2Y8cOrFmzBn/605/w9NNPY9q0aZg2bRqio6Mhl8thMBig1WpRWFiIuro6TJ48GWvWrMG8efNcHb9/sY5+9VMhURAEZKuV+PJoDQrK9cgZ7wXrB4iIaGwJDBfXglWXiKNh0384YPNMlRJldW0o0uqxcEqce2IkIvJyQ0rCwsPD8dhjj2Hp0qX48MMPsWvXLmzZsgUdHR22Nmq1GvPmzcMNN9yAvLw8lwXs15J7k7DGMqCtAQiNtmuSpRGTMG7aTERELqPOcyIJU+CjggoU6zgSRkRk5VRhDoVCgXvuuQf33HMPAKClpQWdnZ1QKpUICAhwSYB0geBIIHoy0HBS3Lg59Wq7JtZF0EzCiIjIZTR5wP5XAO3g68Iyeq9LRVo9LBYLBEFwcXBERN7P6X3CLhQeHo7Y2FgmYO6k6l0X1s+UxAyVEhIBqNB3oLa5042BERGR37Bu2lxVDHS3Ddh0WmIEZBIBDW3dqNB3DNiWiMhfjCgJIw+wTknspzhHWKAMqfHhAIACjoYREZErKNVARDJgMYkzMwYQFCBFWqJ4XSrSckoiERHAJMz32EbCDgIWi8MmnJJIREQuZx0NK88ftGmmSgmA+4UREVkxCfM18TMAWRDQqQcaTjtsYkvCyvVuC4uIiPyMdb+wIawLsyZhvDlIRCRiEuZrpAFAYqb4vJ91YdmaSADiHUeT2fFoGRER0YjYkrD9gNk8YNPM3puDhysMvC4REYFJmG8aZNPmSXFhCJVL0dZtwsnaFjcGRkREfiNuOiAPA7oMQN2xAZtOigtDSO916XRdq5sCJCLyXk4nYf/zP/+DsrIyV8RCQ2XdtFm33+FhqURAhnXqB6ckEhGRK0hl59cpl+8ZuKlEwIxkBQCxVD0Rkb9zOgnbsmULFi9ejHvuuQdfffUVLP0UhyAXUs0WH2sOAz2Oy/1ma5QAgAImYURE5Crq3imJQyrO0ZuEsTgHEZHzSdju3buxcuVK1NXVYdmyZbjiiiuwYcMGNDY2uiI+ckShBkLjALNR3KPFAVZIJCIil9P0VkgcSnGO3utSsY5l6omInE7CQkJC8NOf/hRbt27FG2+8genTp+Pvf/87Lr/8cjz66KMoKSlxRZx0IUEYdNPmrN6RsNLaFrR2Gd0UGBER+RXVbECQAPpyoLlqwKbWConHqprRZTS5ITgiIu81osIcc+fOxdq1a7Fz505kZ2fj448/xo9+9CPcfvvt+Prrr0crRnJkkE2b48KDkKwMhsUCFHM0jIiIXCEwHIifLj4fZDRMFRmMqFA5ekwWHKti0Sgi8m8jSsI6OzuxefNmLFmyBPn5+Zg4cSKWLl0Kk8mEpUuXYt26daMVJ11skJEw4PxoWAGTMCIicpUhrgsTBAEZKhbnICIChpmElZeX49lnn8X8+fPxxz/+EQkJCXj99dexdetWLFu2DB9++CHuu+8+vPPOO6MdL1klzQQgiFNAWuscNsnmujAiInK1YWzazOIcROTvZM6ecO+99+L7779HcHAwbrnlFtx5553QaDR27RYuXIgNGzaMSpDkQFAEEDsFqDsujoZN+YFdkwsrJFosFgiC4OYgiYhozLMmYVXFQHcbIA/tt2mmmiNhRETAMJIwrVaLFStW4JZbbkFoaP8/aCdPnoy33nprRMENpLW1FS+99BKOHz+Oo0ePoqmpCcuWLcPy5csHPffDDz/EihUrHB779ttvERsbO9rhukZyjpiE6fY7TMKmJykgkwiob+1Chb4DqsgQDwRJRERjmkIFRKiAZp24TjllQb9NrXtYltW3obmzBxFBAW4KkojIuzidhH3xxRdDahcWFoY5c+Y4HdBQ6fV6vP/++0hLS8OiRYuwefNmp9/j2WefRUpKSp/XlErlKEXoBqpZQOE7/RbnCAqQYmpiBEoqDCjU6pmEERGRa2hygcM6QJs/YBIWExaIZGUwKvQdOKwz4JJJMW4MkojIezidhHmL5ORk7N+/H4IgoLGxcVhJ2OTJk5Genu6C6NzEumlzZQFgNgMS+yV+2RolSioMKCjX4/qMJDcHSEREfkGdBxz+ACgffF1YllqJCn0HipiEEZEfczoJu+KKK/pdWySRSBAeHo709HTcddddmDhx4ogD7A/XNwGInQoEhABdzUB9KRCXZtckS63EW3vOsTgHERG5jnXTZt1+wGwCJNJ+m2aoFPispIrrwojIrzldHXHOnDmwWCyoqalBcnIyMjMzkZSUhJqaGphMJiQmJmLHjh249dZbvX7j5iVLlmDq1KmYM2cOli1bhtLSUk+H5BypDEjKFp/3t2lzb4XEwxUGdBvNbgqMiIj8Stx0QB4m3hSsPTZg08ze61IxKyQSkR9zeiTssssuQ2FhIXbs2IHExETb65WVlfjFL36BRYsWYdWqVbjzzjuxZs0ar6yQGBMTgyVLliArKwthYWEoLS3Fhg0bcMcdd2DTpk1IS7MfURqMyWQaVizW84Z7vpA0E5Jz38Gs3Q9Lxv+zO66JDIIiOACGjh4cqdDb9mjxFiPtv69j/9n/Cx/9zUj7769fN68klYn7V5b9WyxVnzCj36YzkhUQBKDS0Inalk7EhQe5L04iIi/hdBL2f//3f1i+fHmfBAwAkpKSsHTpUrz00ku4+eabcffdd+PPf/7zqAU6mubPn4/58+fb/j579mwsWLAAN9xwA/7+97/j5Zdfdvo9RzrqN9zzld3RmAig89S3OFZY6LBNikJAQQfw2d7DME/qv6KlJ3n7qKmrsf/svz/z9/6PGeo8MQkrzwdm39tvs7BAGSbHhaG0phXFWgMWTWMSRkT+x+kk7Ny5cwgLC3N4LCIiAhUVFQDEwhkdHR0ji86NVCoVZs2ahaKiomGdn56eDqm0/znw/TGZTCgpKRn2+UiJBQ4+ieCWM8iaNtnh/izzGk6ioPo06i3hyMrKcP4zXGjE/fdx7D/7z/4Pv//W88lLOLFpc4ZKidKaVhTp9Fg0Ld7FgREReR+nk7CkpCR89NFHWLDAvgTtBx98YBsh0+v1UCi8a+rbYCwWCyQOKgwOhVQqHdEvUcM+P1IDhCdCaKmCtKYEGH+pXZOZ46IAnEaRzuC1v+iN9Ovn69h/9p/999/+jxmqHECQAPpyoLkSiOi/Im+mWol/HdShSGdwY4BERN7D6Yzjl7/8JbZv344f//jHePPNN7F161a8+eab+PGPf4wdO3bg3nvFKQj5+fmYMaP/OeHeRqvV4tChQ8jMzPR0KM5LniU+DlKc40x9G/Tt3W4KioiI/EpgOBDfe90fpFR9Zu/65GKdHhaLxdWRERF5HadHwn70ox/BYrFgzZo1WLVqle31mJgYPPXUU7j99tsBiJUH5XL56EXqwK5du9DR0YG2tjYAwKlTp7B9+3YAwIIFCxAcHIzHHnsMW7ZswY4dO5CcnAwAuPvuu5GTk4O0tDSEhoaitLQUr776KgRBwIMPPujSmF1CNRs4vrXfTZuVIXJMiAnFmfo2FGr1uHxKnJsDJCIiv6DJA6qLxU2bZ9zSb7O0hAjIpRLo23tQ3tiOcdHeuV6ZiMhVnErCTCYTysvL8YMf/AA/+tGPUFZWBr1eD6VSiZSUlD57d8XEuH4Dxqeeesq2Bg0Atm/fbkvCdu7cCZVKBbPZDJPJ1OdOW2pqKrZt24bXX38dXV1diIqKQl5eHh544AFMmDDB5XGPOlWO+FhxsN8m2WolztS3oaCcSRgREbmIOhfYt2HQkTC5TIKpSREo0upRqNUzCSMiv+NUEmaxWLB48WK8/PLLWLBggUs3Yx6Kr7/+etA2q1at6jNiBwCPPfaYq0LyjMQscR5+cwXQXAVEJNo1ydIo8WFBBTdtJiIi17EW56guAbpagUDHhbwAIEulQJFWj2KdATdlJbspQCIi7+DUmjCZTIaYmBjO3/Y2gWFA3DTx+SDrwgq1nH9PREQuolABESrAYhpwdgYgVkgEgCLeHCQiP+R0YY7Fixdjy5YtLgiFRsRanKOfdWFpCREIlElg6OjBmfo2NwZGRER+RZMrPmrzB2yW2Xtz8HClAUaT2cVBERF5F6cLc6SlpeHzzz/HXXfdhauvvhqxsbF91oIBwNVXXz1qAdIQqXKAQ//o986jXCbBjGQFDp5rQqFWj5TY/qeIEBERDZs6Dzj8waDrwlJiQhEeKENLlxGlNa2YlhThpgCJiDzP6STskUceAQDU1NRg3759dscFQcCxY8dGHhk5J9lanOMQYDYBEvs9d7LUSlsSdstMlZsDJCIiv2BdF6bb3+/1CAAkEgHpKgW+P92AYp2eSRgR+RWnk7C33nrLFXHQSMVOAeRhQHcrUHsMSLDfoy1bowQAFJTr3RsbERH5j/jpgDwc6GoGao8CCen9Ns1QKfH96QYU6fT48RyNG4MkIvIsp5OwOXPmuCIOGimJFEieCZz5j1icw0ESZi3OcayqGZ09JgQFOL47SURENGwSqThFvuwbcUriAElYllrctLlIa3BXdEREXsHpwhxWLS0t2L17Nz755BMYDPzh6RWsUxL7Kc6RrAxGTFggjGYLjlTye0ZERC5inZI4xOIcJ2pa0NFtcnFQRETeY1hJ2Lp16zBv3jzcd999eOSRR6DT6QAAP//5z7Fhw4ZRDZCcMMimzYIgcEoiERG5nrq3QmL5wElYQkQQYsMDYTJbcLSKNweJyH84nYS9++67WLduHW677TasX7++z55TCxcuxL///e/RjI+cYR0Jqz0GdLU4bGKdkljAfVmIiMhVVDmAIAEM5UBzZb/NBEFAZu9+YYWckkhEfmRYSdjdd9+NlStX4rLLLutzbNy4cTh37tyoBUdOCo8HFGoAFqCywGGTbOumzRwJIyIiVwkMB+J71yYPUqo+UyWuCyvW6V0cFBGR93A6CdNqtZg3b57DY6GhoWhubh5xUDQCg2zanKFWQhCACn0Hals63RgYERH5FSfXhRVxhgYR+RGnk7Dw8HDU19c7PFZRUYHo6OgRB0UjoBq4OEdYoAypceEAOBpGREQuZFsXNvBIWEbvSNjZhnbo27tdHRURkVdwOgmbO3cuXn31VbS3t9teEwQBRqMRmzZtspuiSG5m27T5AHDBer0LWdeFFfKuIxERuYpmrvhYXQJ0tfbbTBkix/joEABAsY7rwojIPzidhP3mN79BZWUlFi9ejFWrVkEQBLzzzju4/fbbce7cOTzwwAOuiJOGKjETkMiA1hrAoHPYhBUSiYjI5RTJ4jpli0m8MTiAjN7iHJySSET+wukkbNy4cdi0aRNSUlKwadMmWCwWfPzxx4iMjMTGjRuRlJTkijhpqOQhQPx08Xk/F72s3iSsWKeHyex4tIyIiGjEhliq3rYujCNhROQnZMM5adKkSXjttdfQ3d2NpqYmKBQKBAUFjXZsNFzJOUBVkbgubPrNdocnx4UjVC5FW7cJp2pbMSUh3ANBEhHRmKfJAw7/C9AOrUJikU4Pi8UCQRDcER0RkccMa7NmK7lcjvj4eCZg3maQTZulEsE29aOgvMlNQRERkd+xjoRp9wNmU7/NpicpIJUIqGvpQnUzK/cS0dg3rJEwnU6Hbdu2obKyEp2dfX9YCoKAP//5z6MSHA2TtThHZSFg6gGkAXZNsjRK7ClrQKFWjx/P0bg3PiIi8g/x0wF5ONDdAtQeBRLSHTYLlkuRGh+OY1XNKNLqkagIdnOgRETu5XQS9u9//xvLli2D2WxGVFQU5HJ5n+OcQuAFoicBgQqgyyBe9BIz7ZqwQiIREbmcRCrOzij7RixV308SBgBZaoWYhOkMuHZGohuDJCJyP6eTsBdeeAEzZ87ECy+8wD3BvJVEAiTPFC96uv0Ok7Ds3iTsRE0LWruMCAsc1qAoERHRwDR54vVImw/Mua/fZhkqJTbt07JCIhH5BafXhJ07dw733XcfEzBvZ9u02fG6sLiIICQrg2GxiFUSiYiIXEKTJz4OViGxd61yic4AMyv3EtEY53QSlpSU1GejZvJSqtni4wB7s3BKIhERuVxyDiBIAUM5YKjot1lqfBiCAiRo6TKirL7NjQESEbmf00nYr3/9a7z++uvo6OhwRTw0WpJniY/1pUCH3mETbtpMREQuFxgGJMwQnw9Qql4mlWBGkliqnjM0iGisc3ohUElJCRoaGnDVVVchNzcXkZGRdm1Wrlw5KsHRCITGAJHjgaazQOUhYOIVdk0uHAnjvixEROQy6jxx/8ryfGDGrf02y1ApceBcE4q0etwyU+XGAImI3MvpJOydd96xPf/ss8/sjguCwCTMWyTniEmY7qDDJGxGsgKy3n1ZKg2dSFayJDAREbmAJhfYt37wTZvV1k2bDe6IiojIY5xOwo4fP+6KOMgVVDnA4X/1uy4sKECKqYkRKKkwoKC8iUkYERG5hrq3OEf1YaCrVZyi6IC1OMfRymZ0G82Qy5xeNUFE5BP4020ss27arDsAWBxXmrJNSeS6MCIichVFMqBQAxbTgAWjxkWHQBEcgG6TGSeqW9wYIBGRew0pCdu/fz/a2gavVNTY2Ih//etfIw6KRklCOiAJANrrxWmJDrBCIhERuYU6V3wcoFS9IAjIUIlTEgtZnIOIxrAhJWF33XUXTp8+bfu72WzGjBkzcPTo0T7ttFotnnjiidGNkIYvIEhMxACgwvF+YdYKiSUVBvSYzG4KjIiI/I51v7BB1oVZbw4W8+YgEY1hQ0rCLBdNZbNYLDAajXavkxey7hemczz9Y0JMKBTBAegymnG8ilM/iIjIRWxJ2H7AbOq3WUbvurAijoQR0RjGNWFjnap3XVg/c/AFQUCmbUpik5uCIiKii+3ZswcrVqzAtddei6ysLMybNw/3338/Dh8+7OnQRkfcNCAwAuhuAWqO9Nsss3c64snaVrR2Gd0VHRGRWzEJG+usmzZXFQPGbodNsnuTMG7aTETkOZs2bUJFRQXuuusubNiwAY8//jgaGxtxxx13YM+ePZ4Ob+Qk0vM3BrX9rwuLiwhCoiIIFgtwuIKl6olobHK6RD35mKgUIDgK6GgEakrOJ2UXyOpdF8biHEREnvPHP/4R0dHRfV6bN28err76aqxfvx5z5871UGSjSJ0HnP4aKN8LzLmv32aZKiWqDNUo1umRlxLdbzsiIl815CSsrKwMUqkUAGAymWyvXdyGvIwgiInXqR3ips2OkrDe+fdl9W3Qt3dDGSJ3c5BERHRxAgYAoaGhmDhxIqqqqjwQkQtoeiskDjASBgAZagW2H6lGkZYjYUQ0Ng05CVuxYoXda3/4wx/6/N1isUAQhJFHRaNLlSMmYRUHAPzK7nBkqBwTYkJxpr4NhVo9Lp8S5/4YiYjITktLC44ePYq8vLxhnW+9aTrc84Z7fr8SsyERpBAMWpiayoGIZIfN0pMiAIjFOUY9hiFwWf99BPvP/l/46G9G2v+hnjekJOzZZ58dVhDkJWybNu/vt0mWWskkjIjIyzz11FPo6OjAkiVLhnV+SUnJiD5/pOc7khaRglDDSZzb/T6akhc6bGPpEbdM0TV1YFf+ISgCPbOE3RX99yXsP/vvz1zd/yElYTfffLNLgyAXS54pPjaWAe2NQEiUXZMstRIfFVRwXRgRkZf429/+hk8//RRPPPEEZsyYMaz3SE9Pty0lcIbJZEJJScmwzx+IUL0Q2H8S46U1GJeV1W+7id/txum6NpiVamRNiR3VGAbjyv77Avaf/Wf/h99/6/mDYWEOfxASBURPAhpOiZs2T77KrkmWrUy9ntNKiYg8bO3atXj55Zfxu9/9Dj/72c+G/T5SqXREv0SN9HyHxuUB+zdAot0LDPDemSolTte1oaSiGYumJYxuDEPkkv77EPaf/Wf/Xdd/lqj3F7YpiY73C5uaGAG5TAJ9ew/ONrS7MTAiIrrQ2rVrsWbNGixfvnzY0xC9mrp3fVvNYaCrpd9m1j0si7lpMxGNQUzC/MUgmzbLZRLM6F0IzU2biYg8Y926dVizZg3uv/9+LFu2zNPhuIYiGVBoAIu53xuDAJDRu2lzkc4Ai8XiruiIiNyCSZi/sJamrzgI9HMxy1JHAuCmzUREnvD666/jxRdfxLx583D55ZejsLCwz58xZQil6qcmRiBAKqCxrRu6pg43BUZE5B5cE+Yv4mcA0kCgo0ks0BE90a5JtkYJfMdNm4mIPOGbb74BAOzevRu7d++2O37ixAl3h+Q66lygZLO4aXM/ggKkSEuIQEmFAUU6PdRRIW4MkIjItZxKwjo7O3H33XfjN7/5DS655BJXxUSuIJMDiZmAbp84/cNBEmYtznG0shmdPSYEBfjvYkwiInd7++23PR2C+2h614XpDgBmEyBxfL3JVCtQUmFAsc6A6zOS3BggEZFrOTUdMSgoCKWlpV5RKaW1tRV/+ctf8Itf/AJ5eXmYMmUK1qxZM+TzGxoa8OijjyI3NxeZmZm44447sGfPHhdG7AVUA+8XpooMRkyYHEazBUcqDW4MjIiI/ErcNCAwAuhuAWqO9NssQ6UEwBkaRDT2OL0mLDs7G8XFxa6IxSl6vR7vv/8+uru7sWjRIqfO7e7uxt133409e/bg8ccfx0svvYTo6Gjce++92Ldvn4si9gK2dWGOF0ILgsB1YURE5HoS6fkbgwOsC7PO0DhcYYDJzOIcRDR2OJ2EPfLII3jvvfewZcsWtLW1uSKmIUlOTsb+/fvxzjvv4KGHHnLq3M2bN6O0tBR/+9vfcOONN+LSSy/Fiy++iPHjx2P16tUuitgLqGaLj9WHgZ5Oh02yNUoAvOtIREQuZi1VP8C6sImxYQiRS9HebcKp2lY3BUZE5HpOJ2F33HEHqqursWLFCuTk5CA7OxszZ860/Zk1a5Yr4rQjCMKwNxT+6quvMGHCBGRnZ9tek8lkuPHGG1FcXIyamprRCtO7KDVAaCxg7gGqHY9mXrhpMxERkctoBk/CpBIB6cnWUvV6NwRFROQeTldHvOaaa4ad/HiLkydPOkwWp0yZYjseHx/v1HuaTKZhxWI9b7jnO0uSNAvCye0wa/fBkmT/NZieGA5BAHRNHagxtCMmLNCl8bi7/96G/Wf/L3z0NyPtv79+3cYMVQ4gSIFmHWDQAQqVw2aZaiXyzzSiSKvHj3LUbg6SiMg1nE7CVq1a5Yo43Eqv10OhUNi9bn1Nr9c7/Z4lJSUjimmk5w9VgiQJyQD0h7/CmcC5DtuowmXQNhvx0X8KMDspyC1xuav/3or9Z//9mb/332/JQ4GEdKCqUBwNS7/NYbPM3uIcxToWjCKiscNv9wkbaDRvOCN96enpw6oaaTKZUFJSMuzznRahB068jsj2Miiyshw2ySsrgfZgBQyyKGRlpbo0HLf338uw/+w/+z/8/lvPJx+myROTMG1+v0lYhkq8QXqsitunENHYMewkrLS0FKdPn0ZXV5fdsR/+8IcjicnllEqlw9Eug0G8y+ZolGwwUql0RL9EjfT8IVPnABAg6M9B2tEIhMXaNZk5LgqbD1agSGdw2y+Gbuu/l2L/2X/233/779fUuUD+/w24LkwVGYzoUDka2rpxrKoZ2ZpINwZIROQaTidhHR0duP/++7F3714IggCLRSwZe+HokbcnYampqSgtLbV73fra5MmT3R2S+wQpgJhUoP6EWKp+yg/smliLcxTrxJLAUolvrwEkIiIvZS3OUXMY6GoBAsPtmgiCgAyVAt+cqEORVs8kjIjGBKerI7700kuoqKjAO++8A4vFgrVr1+KNN97AVVddhXHjxuGjjz5yRZyjatGiRSgrK0NRUZHtNaPRiE8++QSZmZlOF+XwObZNmx3vF5YaH44QuRStXUacrmNJYCIicpGIJEChASzmfq9JgFicA+C6MCIaO5xOwnbu3In77rvPVt49MTERc+fOxYsvvojp06dj48aNox5kf3bt2oXt27fjm2++AQCcOnUK27dvx/bt29HR0QEAeOyxxzBt2jRUVFTYzrvtttswefJkPPjgg/j000/x/fff47e//S3OnDmD3//+926L32OsSVg/mzZLJYJtDn5BeZO7oiIiIn+kyRUfB9i02Vqco5Bl6olojHA6CauoqEBKSgqkUikEQbAlOwBwww03YOfOnaMa4ECeeuopPPjgg3jssccAANu3b8eDDz6IBx98EA0NDQAAs9kMk8lkmzYJAHK5HG+++SZyc3PxzDPPYMmSJairq8Mrr7yCOXPmuC1+j0m2JmGHALPZYZMstTjdg/uFERGRS6l7k7DyPf02sd4YLKtrQ3NnjzuiIiJyKafXhIWHh6O9vR0AEB0djXPnziEnR/yl3mg02o65w9dffz1om1WrVjksqx8TE4PnnnvOFWF5v7hpQEAI0NUMNJwEYqfYNbGuCyso17s3NiIi8i+a3u1SdAcAkxGQ2v9qEh0WCFVkMHRNHSjRGXDppBg3B0lENLqcHgmbMmUKzp49CwDIzc3F+vXrceDAARQXF2PdunVIS0sb7RhptEllQGKW+LyfOfjZGiUAoLSmBW1dRvfERURE/iduKhAYAXS3ArVH+m1mXRdWxCmJRDQGOJ2E3XrrrWhrawMA/Pa3v0VHRwfuvPNO3HHHHaisrMSjjz466kGSC6hmiY/9rAuLjwhCkiIIZgsXQhMRkQtJpIBqtvi8fKB1YeKUxCJOkyeiMcDp6YjXXXed7blarcYXX3xhK1efnZ0NpVI5mvGRqyQPXCERALI0SlSWVKNQq8fcidFuCoyIiPyOJg84vRPQ7gVyf+WwibU4B28MEtFYMOzNmq1CQkJwxRVXjEYs5E7WCok1R4DudkAeYtckWx2Jz0uqWSGRiIhcy1aco/+RsBnJCkgEoMrQidrmTsRFBLkpOCKi0ef0dEQaIyKSgbAEwGICqgodNsnqXRdWqNX3qS5JREQ0qlQ5gCAFmnWAQeewSWigDJPjxM2cizgaRkQ+bkgjYWlpaRAEYUhvKAgCjh49OqKgyA0EQbzoHd8qTkkcd4ldkxlJCkglAmpbulBl6ESSMtgDgRIR0ZgnDwUS0sWbguV7gfTbHDbLVCtwoqYFRVo9rpoW794YiYhG0ZCSsKVLlw45CSMfYk3C+inOESyXYmpiOA5XNKOgXM8kjIiIXEeTN2gSlqFS4v0DOlZIJCKfN6QkbPny5a6OgzzBVpzjYL9NstRKHK5oRqG2CYszEt0UGBER+R11LpD/f2Jxjn5Y97As6p0mzxvEROSruCbMnyVlA4JEnIPfUu2wSZY6EoC4LoyIiMhlNHniY80RoKvFYZMpCeGQyyRo7jTibEO7G4MjIhpdTldH3LJly6BtfvjDHw4jFHK7wDAgdqq4OabuADD1ersm1k2bi3UG9JjMCJAybyciIheISAKUGkBfDuj2AxPtKy8HSCWYnhSBgnI9inV6TIgJ9UCgREQj53QS1t9mzBdOCWAS5kNUs8QkrMJxEjYhOhQRQTI0dxpxoroFM5IVHgiSiIj8gjpPTMLK8x0mYYC4X1hBuR6FWj1uykp2c4BERKPD6SRs586ddq81NTVh586d+Pzzz/HCCy+MSmDkJsk5wKG3+t20WSIRkKlWYvfJehRo9UzCiIjIdTS5QMn7A64Ly1SL1yFu2kxEvszpJCw52f6uU3JyMmbMmAGj0Yi33noLq1atGpXgyA2smzZXFgBmEyCR2jXJ1kSKSVh5E+7MG+fmAImIyG+oe9eF6Q4AJiMgtf81JUOlBAAcruA0eSLyXaP6k2vu3Ln4+uuvR/MtydVi0wB5GNDdCtQdd9gku7caFYtzEBGRS8VNBQIjxGtS7RGHTSZEhyI8SIYuoxmlNY4LeBARebtRTcIqKiogkfCOlE+RSMUqiUC/UxIze5Owsro2GNp73BQYERH5HYkUUM0Wn5fnO24iEZChEqckFmk5JZGIfJPT0xH3799v91p3dzdOnDiB9evXY+7cuaMSGLmRKgc4u1sszjHr53aHo0LlGB8dgrMN7SjU6bEgNdYDQRIRkV/Q5AGndwLle4DcXzlskqlS4rtTDSjW6fGTXI2bAyQiGjmnk7A777zTbnNEi8UCALjkkkvwxBNPjE5k5D5D3LT5bEM7CsuZhBERkQtZ9wvTOh4JA86vC+M0eSLyVU4nYW+99Zbda4GBgUhOTkZMTMyoBEVuZi3OUXcM6GoV9w+7SJZaiS2FlSjUNrk5OCIi8ivJswBBCjRXAHotoFTbNcnqnSZ/srYV7d1GhMid/nWGiMijnP6pNWfOHFfEQZ4UngBEqIBmnVglccI8uybZmkgA4l1Hi8ViNxpKREQ0KuShQGKGeD3S5jtMwhIUQYgLD0RtSxeOVDZj9vgoDwRKRDR8TlfROHPmDPbt2+fw2L59+3D27NmRxkSeoJolPurs1/wBwNTECMhlEjS19+BcQ7sbAyMiIr9jLVVfPtB+YUoAQBGnJBKRD3I6CVu1apXDDZsB4JtvvuEeYb7Kui6swvG6MLlMgulJEQA4B5+IiFxMkys+DrRps7VCIjdtJiIf5HQSVlJSgtmzZzs8Nnv2bBw+fHjEQZEHWNeF6Q4AvYVWLpatFqckFpRzXRgREbmQdSSs5gjQ5XgvMOtIWLFO756YiIhGkdNJWEtLC0JCQhweCwoKgsHAO1I+KTFLXAjdWi0uhnYgS6MEwJEwIiJysYhEQKkBLOZ+p8lnJCsBAOca2tHU1u3G4IiIRs7pJCw+Ph7FxcUOjxUXFyM2luXLfZI8BIifLj7vZ9Pm7N67jkermtHZY3JTYERE5JcGWRemCAnAhJhQAEBxBW8AE5FvcToJW7RoETZs2IC9e/v+UMzPz8crr7yCq666atSCIzezTkmscJyEqSKDERMmR4/JgiOVzW4MjIiI/I51XdgAxTkyrOvCOEODiHyM0yXqly5dim+//Rb33HMPxo8fj4SEBFRXV+Ps2bOYNGkSli9f7oo4yR2Sc4ADr/e7abMgCMhSK/HVsVoUavWYNS7SzQESEZHf0MwVH3UHAJMRkNr/ypKpUuLjwkquCyMin+P0SFh4eDjee+89LFu2DAqFApWVlVAoFFi+fDn++c9/IizMfqNf8hHWkbDKAvGC54B1g0yuCyMiIpeKnQoEKoCeNqDGcdGvTLU4ElaoNcDST1EpIiJvNKwt5kNDQ7F06VIsXbp0tOMhT4qeLF7wugxA7REgMdOuiXXTZlZIJCIil5JIAPVs4NRX4qbNSVl2TaYnKSCVCKhv7UKVoRNJymD3x0lENAxOj4RZtbS0YPfu3fjkk09YEXGskEiA5GzxeT/FOTJUCggCoGvqQH1rlxuDIyIivzNIcY6gACmmxIcD4LowIvItw0rC1q1bh3nz5uG+++7DI488Ap1OBwD4+c9/jg0bNoxqgORmg2zaHB4UgEmx4pTTwnK9m4IiIiK/ZNu0Ob/fJtb9wrhpMxH5EqeTsHfffRfr1q3DbbfdhvXr1/eZg71w4UL8+9//Hs34yN1UvRtx9zMSBgDZvfuFFWg5JZGIiFwoeZa4h2VzBaDXOmySyQqJROSDhpWE3X333Vi5ciUuu+yyPsfGjRuHc+fOjVpw5AHW4hz1pUCn47uKWWpxXRiLcxARkUvJQ4HEDPF5P1MSrSNhJRUGmM0szkFEvsHpJEyr1WLevHkOj4WGhqK5mftH+bTQGEA5DoAFqDjksIm1QmKR1gATL3hERORK1nVhWsdJ2OS4MAQFSNDaZURZfasbAyMiGr5hlaivr693eKyiogLR0dEjDoo8bJBNm1PjwxAil6K1y4jTdbzgERGRC9k2bXa8LkwmlSA92TolkevCiMg3OJ2EzZ07F6+++ira29ttrwmCAKPRiE2bNtlNUSQfZC3O0c+mzRde8Ficg4iIXMo6ElZ7BOh0PNsmQ6UEABRx02Yi8hFOJ2G/+c1vUFlZicWLF2PVqlUQBAHvvPMObr/9dpw7dw4PPPCAK+Ikd7KOhOn2A/1sfpllK86hd09MRETknyISxWnyFrN4XXKAFRKJyNc4nYSNGzcOmzZtQkpKCjZt2gSLxYKPP/4YkZGR2LhxI5KSklwRJ7lTQgYgCQDa6wG940Ir2Wpu2kxERG6isa4Lczwl0Voh8VhlM7qNZndFRUQ0bLLhnDRp0iS89tpr6O7uRlNTExQKBYKCgkY7NvKUgCAgYQZQWSCWqo8cb9fEWqa+tKYFbV1GhAYO658SERHR4NS5QPF7/VZI1ESFQBkSAH17D45XN9umJxIReathbdZsJZfLER8fzwRsLLLuF9bPps3xEUFIVATBbBHLAhMREbmMdSRMdwAwGe0OC4Jwfl0Yp8kTkQ8Y0vDFli1bnHrTH/7wh8MIhbxKcg6ADQNu2pylVqLKUI2Ccj3yUlgVk4iIXCR2KhCoALoMQM1hICnLrkmWSoH/lNahSGfAne6PkIjIKUNKwh599NEhv6EgCEzCxgJrcY6qIsDYDcjkdk2yNUpsO1yNQi3XhRERkQtJJIB6NnDqK3FKooMkjCNhRORLhpSE7dy509VxkLeJSgGCI4GOJvGuY/JMuyZZtuIcelgsFgiC4O4oiYjIX6jzxCRMuxfIW2J3OEMtFuc4VdeK1i4jwrhWmYi82JB+QiUnJ7s6DvI2ggAkzxIveBUHHSZh6ckKSCUCalu6UGXoRJIy2AOBEhGRX7CuCyvPF7dPuejGX1x4EJIUQag0dKJEZ8DciZwmT0Tea9iFOVpbW/Htt99i69at+O6779Da2jqacQ1JW1sb/vSnP+Gyyy5Deno6brrpJnz22WeDnvfhhx9iypQpDv/U1dW5IXIfkXzBfmEOBMulSEsIBwAUcvoHERG5UvIsQCIDWioBg9ZhE+t+YcXctJmIvNywxupfe+01rF27Fp2dnbZpaEFBQfjNb36De+65Z7Rj7Nfy5ctRUlKChx9+GOPHj8fWrVvx0EMPwWw244Ybbhj0/GeffRYpKSl9XlMqlS6K1gfZNm0euDjHkcpmFGr1uC490U2BERGR35GHiPtYVh4SR8OUGrsmGSpxrXIRkzAi8nJOJ2FbtmzB6tWrMX/+fNx8882Ii4tDbW0ttmzZgr/85S+IjIx0S2GOXbt24bvvvsNf//pXXH/99QCAvLw8VFZW4i9/+Quuu+46SKXSAd9j8uTJSE9Pd3msPit5lvjYeBpobwRCouyaZKmVeDe/nJs2ExGR62nyxCRMuxfIuN3ucGbvurAiLbdOISLv5vR0xDfffBPXX389NmzYgB/84AeYNWsWfvCDH2D9+vVYvHgx/vGPf7giTjs7duxASEgIrr322j6v33LLLaitrUVRUZFb4hjTQqKAqIni84pDDptka8TiHCUVBvSYzO6KjIiI/JE6V3wsz3d4OD1ZAUEAKvQdqG/tcmNgRETOcXokrKysDA899JDDYzfeeCOWLVs24qCG4uTJk5g4cSJksr5dmDJliu34zJn2xSQutGTJEjQ2NiI8PBxz5szBb37zG6Smpg4rHpPJNKLzhnu+qwnJsyBpPA2zdh8sKQvtjo+LDEJ4kAwtnUYcqzRgelKEU+/v7f13Nfaf/b/w0d+MtP/++nXza9biHLVHgE4DEKToczg8KAATY8NwqrYVxTo9rkiL90CQRESDczoJCwoKgsHgeJjfYDAgKChoxEENhV6vh0qlsntdoVDYjvcnJiYGS5YsQVZWFsLCwlBaWooNGzbgjjvuwKZNm5CWluZ0PCUlJU6fM5rnu0qsJR4aAC3Hv8EpxTUO26QoJCjqBD7dcxg9E0OG9Tne2n93Yf/Zf3/m7/2/UGtrK1566SUcP34cR48eRVNTE5YtW4bly5d7OjTvEJ4AKMcB+nNi0ahJi+yaZKgUOFXbikKtgUkYEXktp5OwWbNmYe3atZgzZw7i48//cKurq8O6deuQk5MzqgEOZKB9qQY6Nn/+fMyfP9/299mzZ2PBggW44YYb8Pe//x0vv/yy07Gkp6cPugbNEZPJhJKSkmGf73JxZuDwGkS0nEJWZqZdSWAAmFd/EkU1p9FgCUNWVoZTb+/1/Xcx9p/9Z/+H33/r+WOJXq/H+++/j7S0NCxatAibN2/2dEjeR5MnJmHl+Q6TsCy1Eh8eqmCFRCLyak4nYQ899BB+/OMf4+qrr8bcuXMRGxuLuro67N27FzKZDGvXrnVFnHaUSqXD0S7rKJ11RGyoVCoVZs2aNey1ZFKpdES/RI30fJdJzASkgRA6GiE1nAOiJ9o1mTlOXBdWpDMMuw9e2383Yf/Zf/bff/t/oeTkZOzfvx+CIKCxsZFJmCPqXKD4PbE4hwMZKiUAoEirt1VwJiLyNk4X5pg8eTL+9a9/4corr0RJSQk+/PBDlJSU4Morr8TmzZsxadIkV8RpJzU1FadPn4bRaOzzemlpqS1OZ1ksFkgkw946bWySyYHE3tGtfkrVZ/Ze8E7XtcHQ3uOmwIiIxh5BEJg0DEYzV3zUHQRMRrvDUxPDESAV0NTeA11Th5uDIyIammHtEzZhwgQ8//zzox2LUxYtWoT3338fX375Ja677jrb6x999BHi4uKQmZnp1PtptVocOnQIl1xyyWiH6vuSc8S59xUHgMw77A5HhwViXHQIzjW0o0inx/zUWA8ESUREFxuTRaOiJ0MSpIDQaYCpqghIzOpzWCYAaQnhKKloxqFzjUhSBDr9EV7dfzdg/9n/Cx/9jbuKRg0rCfMGCxYswKWXXoonn3wSra2t0Gg0+Oyzz7B7926sXr3aNrXlsccew5YtW7Bjxw4kJycDAO6++27k5OQgLS0NoaGhKC0txauvvgpBEPDggw96slveSZUD5GPQTZvPNbSjUMskjIjIW4zVolGTIqZA0bkPFXs+RF2K/fHkICNKAOwsOAmVuWbYn+Ot/XcX9p/992eu7v+wkrCjR4/i008/RWVlJbq6+u7DIQjCsApbDMeaNWvwwgsv4MUXX4Rer0dKSgqef/55LF682NbGbDbDZDLBYrHYXktNTcW2bdvw+uuvo6urC1FRUcjLy8MDDzyACRMmuCV2n6LqLbZSXQL0dAIB9hUws9RKfFxYyU2biYi8yFgtGiW0XAXU7oPKokNyVpbd8YVmHbafPoyq7kBkOTg+GG/vv6ux/+w/++/6olFOJ2FbtmzBihUrIJFIEBUVhYCAgD7H3TmXPTQ0FCtXrsTKlSv7bbNq1SqsWrWqz2uPPfaYq0MbW5TjgJAYoL1eTMTUs+2aWDdtLuRCaCIirzFmi0aNE9eFSbT7AInErnLvTE0UAOBwRTMsECCTDm+9t9f2303Yf/af/Xdd/51Owl5++WUsWLAAzz33nNMVCMlHCYI4Gla6XVwX5iAJm5oYDrlUgqb2HpQ3tmNcdKgHAiUiIr+QPAuQyICWSsCgBZSaPodTYsMQKpeirduEU3WtSEuI8FCgRESOOX1rqLa2FnfddRcTMH+T3DslsZ91YYEyKaYliRe5gnK9m4IiIiK/JA8BEnor95bbl6qXSgSkq8TfU4q0ejcGRkQ0NE4nYVOnTkVNzfAXuZKPUs0SHyv6L86RrVECEKckEhHR8OzatQvbt2/HN998AwA4deoUtm/fju3bt6OjgyXXbTR54qODJAw4v31Kkc7gpoCIiIbO6emIf/jDH7BixQpMnToVaWlproiJvFHSTPGx6SzQVg+Extg1yVIrAQAFTMKIiIbtqaeeQkVFhe3v1gQMAHbu3AmVSuWp0LyLOhfY+xKgzXd4OLP3msSRMCLyRk4nYVlZWbj66qtx8803IzY21m5aoiAI+OSTT0YtQPISwUogJhWoLxWnJE651q5JtlosznGsshldRhMCZf67mJOIaLi+/vprT4fgG6wjYTVHgE4DENT39xFrEnaiugWdPSYEBfCaRETew+npiBs2bMD69esRGRmJpKQkKJXKPn+4VmwMs64L62dKojoqGNGhcnSbzDhS2ezGwIiIyO+EJwCR4wFYAN1+u8NJiiDEhMlhNFt4TSIir+P0SNhbb72FW2+9FU8//bRfl630S6ocoGhjv8U5BEFAllqJncdrUViux8zesvVEREQuoc4Tp8mX5wOTFvU5JAgCMlXiNalYp8escbwmEZH3cHokrK2tDddffz0TMH9k3bS54hBgNjtsYl0XxuIcRETkcppc8VHruDhHhrU4B69JRORlnE7CZs6cidOnT7siFvJ2cdMBWTDQZQAaTjlsYt20uUDb5M7IiIjIH6l714XpDgKmHrvDmWpxiUQxKyQSkZdxOgl7/PHH8c9//hNfffUVuru7XRETeSupDEjKEp/3sy4sQ62AIADaxg40tHa5LzYiIvI/sWliQY6eNqC6xO6wdSSsrL4Nhg77JI2IyFOcXhN26623wmg0Yvny5RAEAUFBQX2OC4KAgwcPjlqA5GWSZwHle8R1YVk/sTscERSAibFhOFXbikKtHldOjfdAkERE5BckEkA1Bzi1QyxVnzyzz+GoUDk0USEob2xHic6Ayybbb69CROQJTidh11xzDQRBcEUs5Aus68IcVKKyylYrcaq2FQXlTMKIiMjFNLliEla+F8i73+5whkqB8sZ2FOn0TMKIyGs4lYSZTCb8+te/RlRUFEvR+ytrmfqaI0B3OyAPsWuSpVFi80Edi3MQEZHraeaKj9p8wGIBLrpRnKVWYmtxFYtzEJFXcWpNmMViweLFi1FYWOiicMjrKVRAWDxgMQFVRQ6bWCskFmn1MJstbgyOiIj8TtJMQCIDWqoAfbndYVuFRJ3evXEREQ3AqSRMJpMhJiYGFgt/sfZbggCoZovP+ynOMSU+HMEBUrR0GXG6rtWNwRERkd+RhwCJmeJzbb7d4RnJEZAIQE1zF6oNnW4OjojIMaerIy5evBhbtmxxQSjkM5JniY/9bNosk0qQrhKnqxZw+gcREbmatVR9uf1+YSFyGVLjwwFwNIyIvIfThTnS0tLw+eef46677sLVV1+N2NhYu0IdV1999agFSF7Itmlz/1Uws9VK7DvTiEKtHj/KUbspMCIi8kuaXGDvOocjYQCQqVLieHULinV6XDM9wc3BERHZczoJe+SRRwAANTU12Ldvn91xQRBw7NixkUdG3ispG4AAGLRASw0Qbl8BMVujBAAUlOvdGhoREfkh60hYzRGgQw8EK/sczlAr8N4BLYq03LSZiLyD00nYW2+95Yo4yJcEhgNxU4Hao+K6sLTFdk2y1JEAgBPVzWjvNiJE7vQ/NSIioqEJjwcixwNNZ8Wp8pMX9Tmc2Vuco1gnFoySSLjVDhF5ltO/Gc+ZM8cVcZCvSZ4lJmG6/Q6TsARFEBIiglDd3IkSnQG5KdEeCJKIiPyGOk9MwrR77ZKwKQnhCJRJ0NxpxNmGNqTEhnkmRiKiXk4X5rBqaWnB7t278cknn8Bg4PC+37Ft2uy4OAdwwZREFucgIiJX0+SKjw6KcwRIJZieFAEAKNbxdxYi8rxhJWHr1q3DvHnzcN999+GRRx6BTqcDAPz85z/Hhg0bRjVA8lLWTZsrCwCzyWET635hhVwXRkRErmbdtLniIGDqsTts3S+skDcGicgLOJ2Evfvuu1i3bh1uu+02rF+/vs+eYQsXLsS///3v0YyPvFXcVCAgFOhuBepOOGxiS8J4wSMiIleLmQIEKYCedqC6xO6w9ZpUzDL1ROQFhpWE3X333Vi5ciUuu+yyPsfGjRuHc+fOjVpw5MUkUiB5pvi8n02b01UKSCUCqps7UWXocGNwRETkdyQSQN07JdFBqfqM3v0rj1Q2o8dkdmdkRER2nE7CtFot5s2b5/BYaGgompubRxwU+YhBNm0OkcswpXeDTE5JJCIil1P3vy5sfHQoIoJk6DKacaK6xc2BERH15XQSFh4ejvr6eofHKioqEB3NKnh+YwibNmf1FufglEQiInI5Te9+Ydp84ILlEgAgkQi2dWFFnJJIRB7mdBI2d+5cvPrqq2hvb7e9JggCjEYjNm3aZDdFkcYwa3GO2qNAV6vDJtm9c/C5aTMREblc0kxAIgNaqgC9/fKITLU4JbGYmzYTkYc5nYT95je/QWVlJRYvXoxVq1ZBEAS88847uP3223Hu3Dk88MADroiTvFFEIhCRDFjMYpVEB6xl6ksqDDByDj4REbmSPARIzBSflztaF6YEwJEwIvI8p5OwcePGYdOmTUhJScGmTZtgsVjw8ccfIzIyEhs3bkRSUpIr4iRvZV0X1k9xjpSYMIQHydDRY8KJGs7BJyIiF1NbpyTarwuzVkgsrWlBe7fRjUEREfUlG85JkyZNwmuvvYbu7m40NTVBoVAgKChotGMjX6DKAY590m9xDolEQJZaid0n61FQrsf0JIWbAyQiIr+iyQX2rnM4EhYfEYT4iEDUNHfhcEUz5kyI8kCARETDGAlbsWIFtFotAEAulyM+Pt6WgFVUVGDFihWjGyF5N9Vs8XGg4hzcL4yIiNzFOhJWexTo0Nsdzuydksj9wojIk5xOwj766CM0NTU5PNbU1IQtW7aMNCbyJYlZgCAVF0EbKhw2YRJGRBcymS0ob2jHrtI66Jo5JYxGWXg8EDkBgMXhLI1MXpOIyAsMazpifwwGA+Ry+Wi+JXk7eQgQPw2oLhHXhSmS7ZpYk7BTta0wdPRAERzg5iCJyBOaO3tQVteG07WtKKtvRVldG8rq2nCmoQ3dRrFQT4hMwLWXmiGVSj0cLY0pmjyg6Yy4Lmzyoj6Hzo+EsUIiEXnOkJKw/fv3Iz///NzqzZs34z//+U+fNl1dXdi5cycmTpw4uhGS90vOEZMw3QFg2k12h6PDAqGJCkF5YzuKdXrMmxzrgSCJyBWMJjN0TR22JOt0XRtO14nP61u7+j1PLpNgfHQIMqMtkEmdnpRBNDB1LlC0yeGmzekqcW1yeWM7Gtu6ERXKm8dE5H5DSsLy8/Oxdu1aAOKeYJs3b3bYLikpCf/93/89etGRb1DlAAffGHRdWHljOwrLmYQR+SJDew9O17f2jmq1oaw30TrX0I7uAbafiAsPREpsKCbGhiElNkx8HhOG5MhgwGJGYWGh+zpB/sO6abPuAGDqAaTnZ2AoggOQEhOKsvo2FOv0uHxKnIeCJCJ/NqQk7N5778VPf/pTWCwWXHLJJXjttdcwbdq0Pm3kcjlCQ0NdEiR5OeumzZUFgMkISO3/WWVrlPikqBIFnINP5LWMJjPKG9vFaYO2kS3xsaGtu9/zAmUSTIixJlqhtqRrQkwowoP6n35sMrmiF0QAYqYAQQqg0wBUF5/fTqVXhkqBsvo2FGkNTMKIyCOGlIQFBQXZKiDu3LkTsbGxXPtF58WkAoERQFezWI0qMcOuyYXFOSwWCwRBcHOQRGTV1NaNsvrWPlMHy+paUd7Yjh6Tpd/zEiKCLhjVChVHtmJCkawMhkTC/9PkRSQScUriyS/FUvUXJWGZaiW2FFayQiIReYzThTmSk+0LL5Cfk0iApGzgzC6xOIeDJGxaUgTkUgka27qhbeyAJjrEA4ES+Y8ekxnnGtrFaYMXTB88XdeKpvaefs8LCpBgQkwYJvYmWRMvGNUKDRzVWk5ErmVNwrR7gbkP9DmU0Vuco0jHG4NE5BlOX1F7enrwyiuvYOvWraisrERXV9+F14Ig4OjRo6MWIPkIVY6YhOkOAjm/sDscKJNiWlIECrV6FGibmIQRjQKLxYLGtm5bknW67nyyVd7YDqO5/1GtJEWQbY1WSkwoJsaJa7YSI4I4qkVjg2au+FieD1gswAWJ1vSkCMgkAupbu1Fp6ESyMthDQRKRv3I6CXv++efx5ptvYv78+Vi0aBGnJZLItmmz/Z4sVllqpZiEletxUxZHVImGqttoRnljG07Vtl1Q6l1Mugwd/Y9qhcilmBBzfkTLOn0wJTYUIXKOatEYlzwTkAQArdWA/hwQOd52KChAiikJ4ThS2YwirZ5JGBG5ndNX4W3btmHp0qVYtmyZK+IhX2UtzlF3AuhsBoIi7Jpka5R483tukEnkiMViQX1rd5/pg9aRLW1TB0wDjGolK4P7rNWyPiZEBHGaFfmvgGAgMVO8OVie3ycJA8R1YUcqm1Gk0+O69ETPxEhEfsvpJMxgMCAnJ8cVsZAvC4sFlBpAXw5UHgJSLrdrYi3OcbSyGV1GEwJl3JyV/JPRZMaRymbsLavHnqN66Pfuwem6NrR0Gvs9J1QuPV/i3TaNUFyrFSzn/yUihzR5YhKm3Qtk3tHnUKZKgY35QBFvDBKRBzidhM2ePRvHjx9HXl6eK+JxSltbG/72t79h27ZtMBgMSElJwa9+9SssXrx40HMbGhqwevVqfPPNN+js7ERaWhp++9vfYu7cuW6IfIxKzhGTMN0Bh0mYJioEUaFyNLZ142hlM7I1ke6PkcgDuowmFOsM2HemEflnGnHwbCPaui+sz94JQFyykqwM7lN9cGLveq248ECOahE5S50L7FnrcNPmzN4bg4crmmEyWyDlWkgiciOnk7CVK1figQceQFJSEi6//HKPrglbvnw5SkpK8PDDD2P8+PHYunUrHnroIZjNZtxwww39ntfd3Y27774bzc3NePzxxxEdHY13330X9957L9544w3MmTPHjb0YQ1Q5wJEPxSTMAUEQkKVW4uvjtSjU6pmE0ZjV0W1CQXkT9p5pxL4zDSgo16PL2HdD4/AgGWaPi0ScrAOXpk/C5IRwjI8ORVAAR7WIRo110+baY0CHHghW2g5Nig1DcIAUrV1GlNW1YnJ8uEdCJCL/5HQSdtNNN8FoNOLBBx+EIAi2/cOsBEHAwYMHRy3A/uzatQvfffcd/vrXv+L6668HAOTl5aGyshJ/+ctfcN1110EqdfzLzObNm1FaWop//vOfyM7OBgDk5ubipptuwurVq7F582aXxz8mWdeFVRywq0RlZU3CCsr1uOdSN8dH5CItnT04cK5JHOkqa0BJhcFuv63oUDnmTIjCnAlRyJ0QjSkJ4YDFjMLCQmSlJ/T784qIRiAsDoicADSdAXT7gclX2Q7JpBKkJyuw72wjinQGJmFE5FZOJ2HXXHONV0yJ2bFjB0JCQnDttdf2ef2WW27Bww8/jKKiIsycOdPhuV999RUmTJhgS8AAQCaT4cYbb8Tzzz+PmpoaxMfHuzT+MSkxA5DIgLY6cVpi5Di7JtkaJQAW5yDf1tTWjX1nG3unFzbgaGUzLq6bkRARhNwUa9IVhYmxYXY/O00mEJGrafLEJKx8b58kDAAyVL1JmFaP22apPBQgEfkjp5OwVatWuSIOp508eRITJ06ETNa3C1OmTLEd7y8JO3nyJGbNmmX3+oXnMgkbhoBgIH4GUFUojoY5SMKsG2SWN7ajobULymCWySbvV9vcifwzYtK170wjTtS02LXRRIUg94KRLnVUsFfcsCLye+pcoGgToM23O2RdF1as07s3JiLyez77G7Ber4dKZX/XSqFQ2I4PdK61nbPn9sc0zFva1vOGe763EZJzIKkqhFm7H5apP7Q7HiaXYGJsKE7XteHQuUYsmBwNYOz031lj7fvvLG/tf0VTB/LPNmL/mSbsO9uIsw3tdm0mxYZizoQozB4fidnjo5Co6Ds122w2251zMW/tv7uMtP/++nUjJ1k3bdYdAEw9gDTAdiiz98bg0SpW7SUi9xpSEnbkyBGn3nT69OnDCsZZA91lHuwO9EjOdaSkpMTpc0bzfG8RZYzBBADtpf/BibhCh200oWacrgO+OHACUZ3iHPyx0v/hYv8913+LxYKqVhOO1nXjSF03jtZ3o769bwIlABivlGFqjBzTY+WYGhMARZAUQA9gqUXNmVrUjCAGfv/9u//kYjGpQJAS6NQD1cVA8vmZMOqoYESGBKCpvQfHqlpsW6kQEbnakJKwW2+9dUiJicVigSAIOHbs2IgDG4xSqXQ4YmUwGADA4UjXaJzbn/T09GEtrDeZTCgpKRn2+V5HHQYUrkJoy2lkpU/vc8fR6oqucnxz9iiqe4KQnp4+tvrvpDH3/XeSJ/pvNltwsra1d01XE/adbUJ9a3efNlKJgPTkCMweH4U54yORMy4SEcH2/5ZHit//kfXfej7RgCQScUriyS/ETZsvSMIEQUCGSoldpXUo1umZhBGR2wwpCXv22WddHYfTUlNTsXXrVhiNxj7rwkpLSwEAkydPHvBca7sLDeXc/kil0hH9EjXS871GrHjHUejUQ1p/DEjKtmuSPS4KAFCkNUAQJADGUP+Hif13Xf+NJjOOVjXb9ujaf7YR+vaePm3kMgmy1Erbmq6ZmkiEBrpvtja///7df3IDTW8Spt0LzH2gz6FMtZiEFWr1uItbhRKRmwzpt4ybb77Z1XE4bdGiRXj//ffx5Zdf4rrrrrO9/tFHHyEuLg6ZmZkDnvvUU0+hqKjI1s5oNOKTTz5BZmYmi3KMhCCIdxlP7xTn3ztIwtISwhEUIEFLlxFl9W0eCJLGsm6jGSUVeuwtE4toHDzXhNYuY582wQFSzBoXaUu6MtVK7s9FNJape/cLK99rt4VKpkqc/VKsM3giMiLyUz5bmGPBggW49NJL8eSTT6K1tRUajQafffYZdu/ejdWrV9vuqj722GPYsmULduzYgeTkZADAbbfdho0bN+LBBx/Eww8/jOjoaGzcuBFnzpzBG2+84clujQ2qnPNJ2Jz77A7LpBJkJCux72wjCnV6TJJ4IEYaMzq6TSjQWvfoakSBtgmdPQ42Rh5/vlz8jGQFAqT8h0fkN5JnApIAoLUGaDoLRE2wHbJW7T1d14qWzh6EB43+1GMioov5bBIGAGvWrMELL7yAF198EXq9HikpKXj++eexePFiWxuz2QyTyQSL5fwmPnK5HG+++SZWr16NZ555Bh0dHZg6dSpeeeUVzJkzxxNdGVsu3LS5H1ma3iSs3IBJ490TFo0NLZ09OGjdGPlMI4p1eruNkaNC5ZjTm3TNmRCFqYkRkEpYLp7IbwUEA4mZ4nVJm98nCYsND0SyMhgV+g6UVBhwycQYDwZKRP7Cp5Ow0NBQrFy5EitXruy3zapVqxzubRYTE4PnnnvOleH5L+ui54ZTQEcTEBxp1yS7d/FzkU6P28aHujE48jX69m7b/lz7zjbicIXBbmPk+IhA5E6Ito10TYqz3xiZiPycJk9Mwsr3Apk/7nMoU61Ahb4DRVomYUTkHj6dhJGXCo0GolKAxjKg4iAwaZFdkyyNEgBwoqYVncZgNwdI3qy2pfN80nWmEcer7TdGVkcFY874aOSmiEmXJiqESRcRDUydC+xZ63DT5gyVEp+XVHPTZiJyGyZh5BrJOWISpnOchCUqghEfEYia5i6cbjIizwMhkneoazdhS2El9p8Vpxg6KtYyMTYUcyZEIy8lCrPHRyFJycSdiJyk6b3S1B4DOvRAsNJ2yLppc5FW7+6oiMhPMQkj11DlACXvD7guLFsdie1HqnGysaffNjS2WCwWnKlvs41y5Z9pQIW+E0CdrY0gAGkJEbbKhbPHRyE2PNBzQRPR2BAWd36Whm4/MPkq26F0lQKCAFQaOlHb0onoEBbnICLXYhJGrmEtzqE7YFcO2CpLo8T2I9UoqOrCuYZ2TIjlOp6xxmy24ERNywVJVyPqW7v6tJEIwIwkBfImRmPOeDHpUvAXICJyBXWemISV7+2ThIUFyjApNgwna1tRrDVg4RSuCyMi12ISRq6RMAOQyoGORvGCFz3RrslMjViw43BdN654/j+ICpUjW61EtkaJbE0kMlQKlgr2MUaTGUcq+26MbOi4aGNkqbgx8pwJUcgZp4RMX465s2dys14icj1NLlC0UUzCLpKpVopJmE7PJIyIXI5JGLmGLBBIyBCnI1YcdJiEzR4fid9eOQnbCs/hjN6IxrZu7Dxei53HawGIg2epceGYOU6JbHUksjVKTIwNg4Slxr1GZ48JxToD9p1pQH7vxsjt3aY+bULk4sbI1pLxF26MbDKZUFio80ToROSPrJs2VxwETD2A9PyNvkyVAv86qEMhN20mIjdgEkauo8oRkzDdASDjR3aHBUHA8ismYV5UK6bOyMCJmlYUlOtRoNWjoLwJuqYOnKhpwYmaFmzapwUAhAfKkKVRiiNm4yKRrVZCGSJ3d8/8VluXEYfKz+/RVajVo9vYd2PkiCCZbX+uOROiMT0pghsjE5F3iEkFgpRApx6oKgZUs2yHMnu3TinW6fvsLUpE5ApMwsh1hrBps1WgTIJsTSSyNef3FKtt6URhuR6HysWkrFhnQEuXEbtP1mP3yXpbu5SYUDEx04hJWVpCOGT8pX9UGNp7sP+suD9X/hlxjy7TRZt0xYQF2opozJkQhSnx4RytJCLvJJGIpepPfgFo9/ZJwtISIiCXSqBv70F5Y4cHgyQif8AkjFxH1ZuEVZcAxi5xiqIT4sKDcPX0BFw9PQGAuN7oRE2LOFrWm5iV1bfZ/nx4qAIAEBwgRYZK0ZvUiWvM4sKDRrVrY1VtSyf2n2myTS88UdOCi28IJyuD+yRdE2JCWVCFiHyHpjcJK98LzF1qe1kuk2BqUgSKtHoUVxig9mCIRDT6uo1mNLR1ob6lG3Wtnb2PXahr6UL9BY/69h5cmyJHVpZr42ESRq4TOR4IiQbaG8REzJqUDZNMKsH0JAWmJynws7xxAICmtm4U6s4nZYVaPVo6jcjvnS5nlawMRrZGiZm9idm0pAgEylgIokLfgX1nGsTphWWO9+hKiQlFbsr5cvGqyBAPREpENEo0c8VHbb5d9d5MlUJMwnR6qJM8FB8RDZnRZEZjWzdq+yRS3XaJVV1vcjVUtW2u/x2RSRi5jiCIUxJPfiGuCxthEuZIZKgcC6fEYeGUOABiSfSy+lYcOqdHgbYJBeV6nKhpQYW+AxX6DmwtrgIgVuibnhxhK/gxc1wkkhRBY3pEx36PrkZU6PtOuREEYEp8eO9IVzRmT4jkKCKRG7W1teFvf/sbtm3bBoPBgJSUFPzqV7/C4sWLPR3a2JGUDUgCgNYaoOksEDXBdkjctPkcinXNWJzE/QmJPMFktqCxzUEidUFCVd/SjfrWLjS2d9vN2BmITCIgOkyO2PBAxISJf6zPxUc5okMC0FJx0nUdtMbi8k8g/6bqTcKGsC5sNEgkAibFhWNSXDh+NFucTNLS2YMSnQEFWj0OnWtCgVaPxrZu27RGfCeeGxceaCuPn61WIl2lQIjcd/+LDGWPLqlEwIxkhZh0jY9CzvhIFjoh8qDly5ejpKQEDz/8MMaPH4+tW7fioYcegtlsxg033ODp8MaGgGAgKUvcsFmb3zcJUysAAIcrDTCZYz0UINHYYzZb0NTebUugLpwOWN/SdcG0wG40tnXB7ERiJRGA6LC+iVRseCBi7RKsQCiDAwZdt24ymVBY6fqb8r77Gyb5huTeRc+6/R4LITwoAJdMisElk8R9XywWC8ob221TGAu0ehytbEZtSxe+OFKDL47UABATlKmJ4bbRsmxNJMZHh3jtaFmPbY+uBlvi1dxp7NNGLhP36LKu6ZqpiURoIH8MEHmDXbt24bvvvsNf//pXXH/99QCAvLw8VFZW4i9/+Quuu+467qc3WtS54nWpfA+Q+WPbyykxYQgLlKG1ywhtsxGzBngLIn9nsVigb+9xmEhdPHrV0NZtV9hrIIIARIfKHY5UXZxYRYbIIfXBgmD87Ytcy5qENZ0F2uqBUM9vgCkIAsZFh2JcdCh+mJ0MAOjoNuFwpUFMysr1OFTehJrmLhyuaMbhima8vfccACAyJABZajEhm6mJRIZagQgPbSjd2WNCkVYvJlxnB96jyzq9MEOlsO3RRUTeZceOHQgJCcG1117b5/VbbrkFDz/8MIqKijBz5kwPRTfGaPKAPWuB8vw+L0skAtKTFdhT1oCj9d34oWeiI/Kolk4jdM1GdJY1oLHdOOB0QKMzQ1YAokLlfROpsEDEOEiyokLkY77SNZMwcq1gJRA9GWg4KW6OmXqNpyNyKFguxezxYuEJqypDh5iQ9U5hLKkwoKm9B9+cqMM3J+oAiHdqJseF9Rktmxznmg2l27qMOHiuyTbKVajVo9vUd48uRXAAZo+Pso10TU+KGPM/xIjGipMnT2LixImQyfpemqdMmWI7ziRslKhzxce6Y0BHExB8fnuUTLUSe8oa8FpBC/Jrvsf1mUlYnJ4IdRSLEtHY0mU04XRtG07UNON4dQtO9P6pMnT2tqgf8HwrZUhA7/oqOWLDg+xGq6zTAqNC5dw39AJMwsj1VDliEqY74LVJmCOJimAkpgfjuvREAGJp02NVzbYpjIfKm6Bt7EBpTStKa1rx3oHzG0pnqpW28vhZ6khEhTq/zmrIe3SlnE+6UuO4RxeRr9Lr9VCpVHavKxQK23FnmUymwRsNcN5wz/d6wdGQRKVAaCyD6Vw+MPkq26GfzFbhsE6P70834HBlMw5XNmPVtuPISFZgcUYCrpuRgCRlsAeDd70x//0fxFjrv9lsQYW+AydqWsVEq6YFpTWtOFPf1u9IVkiAgHhF8AUjVXLxeVggYsPkiO5NrKJD5ZDLhppYWXziazrS7/9Qz2MSRq6nygGKNrmtOIeryGUSZKqVyFQrcXfva3UtXSjU6m3TGIt0erR0GfHtqXp8e+r8HaTx0SG28vjZmkhMSQi3uxs0lD26VJHBmDMhyja90JvXqBGR8wb6/zyc/+slJSUjCWfE53uzcSGTEdNYhtoDn6CyrW8Rjt/NDMAvpschX9eJ73WdOFLbjeIKA4orDHh22wmkRgXgEnUQ5qqCEBMydqd4j+Xv/1D4Yv9busw4Z+hBucGIcwYjyg1GlDcb0WnsP9kap5BBo5BBowgQn0fIECq/OLHq7v3TAnQC5k6gph6ocXWHPMjV338mYeR6yb2l6SsOAmYzIBk7Q9Gx4YG4alo8rpoWD0Dcr6K0ptVWHr+gvAmn69pwtqEdZxva8WGBuKF0UIAEGclKZKgicLbCgNPf/Adn6tvt3j8lNhS5E6KROyEKsydEIXmM330l8mdKpdLhaJfBYABwfkTMGenp6cMq5mEymVBSUjLs832BYL4W0H2BhJ6ziLtoV1Zr/x/+YS7+IJWivrUL2w/X4PPDVdh3tgmljT0obezBm0UtmDVOietmJOAHMxIQHzE2tvTwh+//QHyh/109JpysbRVHt2paUFrdghM1raht6XLYPkAqYGJsGKbEh2FKQjhS48MxJT4MiQ625/GF/rvSSPtvPX8wTMLI9eKnA7IgoNMANJ4GYiZ7OiKXkUklmJYUgWlJEfhprrihtKG9p3dD6SYcKtejsLwJzZ1G7OudamglCEBaQoRtauHs8VGIDec+NUT+IjU1FVu3boXRaOyzLqy0tBQAMHmy8z87pVLpiH6JGun5Xm38pQAAoeIQpDADUvsiS9b+xytC8PNLJ+Dnl05AbXMnth2uxmfFVdh/rhEHz+lx8Jwez3x+HLPHRWFxRiJ+kJ4wJvZYHNPf/yHwhv6bzWJFZ9uard71W2fr2/ot466KDEZaQjimJIRjSkIE0hLCMSEm1On1WN7Qf09ydf+ZhJHrSQOAxCxAu1dcFzaGkzBHFCEBWJAaiwWp4nQXcUPpNhSUN6GwvAmthkZcP2cK5kyIgSLEM5UWicjzFi1ahPfffx9ffvklrrvuOtvrH330EeLi4pCZmenB6Mag6MliQY6OJqCqGFANrSB9XEQQfn7JePz8kvGoNnTi85IqfFZSJRZO6r259uSnR5A7IQqLM5Jw7fQE3lCjIalv7cKJ6pbehKsZJ6rFtVsdPY7XGClDAjAlPrw34YroTbrCEcatZ3wCv0vkHqqc3iRsP5D1/zwdjUeJG0qHYVJcGG7JTkJhYSGy0uL8+m4TEQELFizApZdeiieffBKtra3QaDT47LPPsHv3bqxevZo/I0abRCJWSSzdLl6fhpiEXShBEYRfXDYBv7hsAir1HbaErKBcj71ljdhb1og/fnwYeSnRuD4jCddMj0d0GBMyf9fRbUJpTcv5hKtGTLjqW7sdtpfLJJgcJ04jTLtgdCsuPJDrwn0YkzByD+t+YT5enIOIyJXWrFmDF154AS+++CL0ej1SUlLw/PPPY/HixZ4ObWyyJmHle4C5S0f0VknKYNw7LwX3zkuBrqldTMiKq1CkM+D70w34/nQDnvj4MC6ZGI3F6Ym4ZnoCIodROZd8h8lswdmGNrvRrXON7XaFtwBxWcK4qBDbNMIp8eLI1vjoEG43MwYxCSP3UPUW56g5AvR0AAEsMEFEdLHQ0FCsXLkSK1eu9HQo/kGTJz6W5wMWi/hb8ChQRYbgV/Mn4lfzJ0Lb2I7PehOykgoDdp+sx+6T9Vi55TAumRSD6zMScc20BE5H92EWiwV1LV22dVvW0a2TNa3oMpodnhMTJheTrfgI2/qtyfFhCJHzV3N/we80uYdCDYTGAW21QFXR+QsfERGRpyRlA5IA8drUdAaIShn1j1BHhWDJgolYsmAizta32RKyo1XN+E9pHf5TWofHpSW4bFIMFmck4app8VAEMyHzVm1dRpyoOb+x8fHe0a2m9h6H7YMDpEjtrUhonUY4JSEcMZyW6veYhJF7CAKgmg2c+EwszsEkjIiIPC0gGEjKEtcrl+e7JAm70PiYUCxdOAlLF05CWV0rPi+pwtbiKhyvbsE3J+rwzYk6yKUSzE+NweKMRCyaGo/wICZknmAyW3CythUna9v6jG5pGzsctpcI4vc3rXd0y7p+SxMVAomE67bIHpMwch/VLDEJ47owIiLyFupcMQnT7nVr4aiU2DAsu2Iyll0xGadqW/BZcTU+K6lEaU0rvjpWi6+O1UIuk2BBaiyuz0jElVPjWfXOBTq6TSirb8Xpujacrm3F6bpWnKptxanaFhjNjrcijgsPtCuSMSkuDEEBLJ5DQ8f/zeQ+1k2bdQc9GwcREZGVJg/Ys1YcCfOQSXHheHBROB5cNBmlNS34rLgKW4srcbquDTuO1mDH0RoEyiRYOCUOizMScUVaHEKZkA2ZxWJBXWsXTte24XRda+8fMemq0Dse2QKAULkUqdZkK/58wsWCKjQa+D+Y3CcpG4AAGMqBlhogPN7TERERkb9T906Przsm7hkWHOnRcFLjw5F6VTh+u2gyTtgSsiqcqW/D9iPV2H6kGkEBElyRFofrM5KwcEocguUcgQGAHpMZ5xrazydaFyRdLZ3Gfs9ThgRgUmwYJsaGYWJcKMZHhcDYWI6r5s5CQAB/VSbX4L8scp+gCCA2TbzQVRwA0lhymYiIPCwsFoiaCDSeBrT7gdSrPR0RAEAQBKQlRCAtIQIPXZWKY1Ut+KykEluLq3CuoR2fl1Tj85JqBAdIceXUOFyfkYjLp8T5xZQ4Q3sPTtlGtMRkq6yuFeca22EyO6j9DnHNliYqBCmxYZgYG9qbcImJV9RFI1smkwmFhZVcy0UuxSSM3Es1S0zCdEzCiIjIS2jyxCSsfI/XJGEXEgQB05IiMC0pAr+/egqOVDZja3EVPiuphLaxA1t7R8tC5VJcOTUe12ckYn5qrE8nZCazBZX6DjHZqu2dPljXirK61n43NQbEKYTW5OrCZGtcdAgCZb779aCxh0kYuVdyDlDwDotzEBGR91DnAoXvAlrPrQsbKkEQMCNZgRnJCjxy7RQU6wy2svcV+g58UlSJT4oqERYow1XT4rE4PRHzUmO8NgFp7zairK7t/Dqt3qTrTH1bv3tsAUCiIuh8omVLusIQHxEIYZT2eyNyJSZh5F7WTZsrCgCzybOxEBERAee3Tak4CBi7AcE7E5aLCYKATLUSmWolVvwgDYVaPT4rrsJnJVWoMnTio4IKfFRQgfAgGa6eloDrMxJx6aQYyGUSt8Zp3cz4VF3fKoRldW0DFsaQSyWYEBOKiXGhtiRrYmwYJsSGslIk+Tz+Cyb3ip0KBIQC3S1AfSkQnerpiIjIVcxmwGISb7hYH81GwGIWnxu7xb8TeVr0ZLEgR0cTUF0MJGZ7OiKnCYKAbE0ksjWReOy6qSjQNmFrcRU+L6lCTXMXPjikwweHdIgIkuGa6QlY3JuQBUhHLyHrNppxrqGtT/VB6/PWrv7/r0eFys9PHewtjjExNgyqyBBIuS6LxigmYeReUplYJfHct+K6MCZh5K86m4GqYiir9gPyswAs55MTs/GC5MXRayYxwRn2axc9d9VrcLxA3koKYHqoCsg6BEh9Y+SBxiiJRJySWLodKN/rk0nYhSQSAbPGRWHWuCg8sXgaDpY32UbI6lq6sPmgDpsP6qAMCcC1vQnZ3JRoyIaYkOnbu+2qD56ua0P5IIUxxkWH9km2UmJDkeKgMAaRP2ASRu6nmiUmYRUHgMyfeDoaItdrqweqisQ77FVFQFUx0HgaUgATAcAvl0gKsEik6A6OR4CPTP2iMc6ahGn3Arn3ezqaUSORCJg9Pgqzx0fhieunYf/ZRnxWXIVth6tQ39qNf+7X4p/7tYgKleOa6Qm4ISMRszQKmCwWlDe242xDh13J94a2/gtjhAXKLqo+KD7XsDAGeZrZDJh7AFM3YOoR/9j+bhQfzT3ic3P/6xFHC5Mwcj9u2kxjlcUCNFfaJ1zNOsfNI5LQJo1EaLgCgkQKSKTiWhSJFJDIAEHi4DWpeNe+39dkF5zj6DVp7/sO5TXrZwz3NVk/sUoBQYDZZMLJwkJkcRE9eQPNXPGxPF/8vzwGSSUC8lKikZcSjSdvnI78Mw34rLgK2w9Xo6GtG5v2lWPTvnJEBMnQ0W1Ej7mm3/dKUgQ5rEIYF87CGGOaxdKbwFgTlp4L/m7sP8EZUvLTz3sN9L79nuvgfSxDq0UgBTAhaSEw8wOXfimZhJH7WYtz1B4Buls9GwvRcJnNQNMZ+4Srvd5x+6gUIDETSMgQHxMzYQ6KxInCQmRlZUHK6XhEnpWUDUjlQFst0HTW09G4nFQi4JKJMbhkYgyeunE69pY14rOSSmw/XI2m9h4AgFwmQUpMqF0VwgkxoQhlYYyxo7MZqC4BqgqBqiJIqkswo6UBkm+EvgmOuWfsreOVBIj/76Uy8VESAIssEC0x2VC4+KP5P4jcLyIJCE8CWnpHDBDq6YiIBmYyioVkLk64ulvs2wpSIHZK34QrYQYQ5ODHuYkVQom8RkAQkJgF6PZB0O4FMNXTEbmNTCrBZZNjcNnkGDx90wwc1ulRefYkrrpkFuQB/FVxTOnQi9exysLea1kh0HCqTxMBQKAz79mbvEBq/SMXZz70eS4/f/zCtg6SoCEdG/Jn9HdMbpuVcTGzyYT6wkKohv9VHhL+zyLPUM0CjlVCqDgIhMz3dDRE5/V0ArVHey9OvUlXzRHA2GnfVhr4/9u787io6v1/4K8ZQFlEFlkVEUEYthFcANc0s3LB1Eq9v8d9gJmmZppXrVu2fNOuuWReS7wuhJl2/frVEn2oqeVSN7vJuAWSopA7iIAgm8g2c35/HGaYkUFB4IwDr+fjcR7Gmc9hPp+ZYd69z+dz3gdwD9ZLuMLFn61sJO82ETUD7ygg86R4vzCvtpOE6bOykKOnlwM0dyxZmdDclRXUJlrZKWLidfeq8bYOXWtWaYRD7a5EelY+AgJDYGFlbTwpekQiQ4/GJIxMo0tfIG0fZFmnAX8mYWQiFSU1SzDO1SZceReNL7do1wHwUOqWEsKjpzjjZWElfb+JqGV07QcgDrKbKsDrFVP3hqjh7uUD2b8bznAV3jDe1rGbGMc6h4snDz3DADuX2sfVapTdSxZjHpfKtxgmYWQaXhHiv1lnAH/TdoXaiHv5wO0Uw4Qr/zKMllG3ca5JtrTLCcPEa7rk0t7glIgk1jUKACC7cwkWlcUm7gxRPUpzDZOtW8n1FoCCU3fDZMszDLB1lqyrVD8mYWQancMBmQVkJdmwup9n6t5QayIIQEl27XVb2mWF9QUo+84PJFw9AQcvLq8gaos6uALOfkDBZdjdvQCAKzXIxIqzDZcTZieLMc6YTj3EZKtzeG08s3GUqqfUSEzCyDTa2QFuwUBOKuwK0wA8a+oekTkShNoKhfoJV30VCp26153h6uAqbZ+J6Mnm3Q8ouIxu5/4JWXkq4DMA8B4AdPLjyRlqOYIAFGcZJlvZKUCpsdsEyACXgNpkyzNcXDpo3VHSLlPTmG0Sdu/ePXz++ec4ePAgioqK4Ovri+nTp2P06NGPPDYxMRELFy40+tivv/4KV1f+T5kkvPqISdjdNFP3hMyBuhrIzzBMuG6fAyqMLBmSyQHXQL1y8D1rAlRLF5wlIrOnfBlC6rdoV34HOLdd3ADAzlVM0LwHAN36A+5KsUABUWMJgni9lv5ywvpOIGrjmXY5YedwwD0UaN9B2j5TszPbb485c+YgNTUVCxYsgI+PD/bv34/58+dDo9FgzJgxDfody5Ytg6+vr8E+R0fHFugtGdWlL3DmazhnHYXs2BLAq7d4n5aOXXi2sa2rrjCsUJh9Dsj5o54Khe0A9xCD+2/BLRhoZyt9v4nI/PkNg2Z+Oq78Zzv8rPIgv5kkXr98Lw9I2ydugFisp2tkbVLWpQ8ro1Jd+is2dNdxpQD3C+q2lVsCrkFA55rZLc9wMb4xnrVKZpmE/ec//8F///tfrFq1CtHR0QCAfv364datW/j0008xatSoBt341N/fH0qlsqW7S/XpPhiCzEI82/jff9but3MVk7HOvYDOvcWzPvYeJusmtSx5dRlwIwnI/aM24cpLe3iFQv2EixUKiai5WXdEsXsUhPBwsTpcVTlw63fgxm/A9RNiCfuKYuDyMXEDxJLdnXuJCZn3ALHcvY2TSYdBEtNoxITr1u+1ywmzU4Dyorpt5Va1tzjRXsflFiLer47aBLNMwg4fPgxbW1uMGDHCYP+LL76IBQsWICUlBb179zZR76jBnHygef0EMo//L7pa3IE8O0Wc/biXB2T8KG5a9p31ErNe4peVfjlVevKpq4GCK0DueSA3Dci9AHnOBYQXXIHMaIVCJ8Ny8J7hrFBIRKZhZS0mV936A4MBaNTi/QNvnBC36yeA0tviPcYyTwL//QKATJyV79Yf8O4PdBsAdOxs6pFQc9GoxQq7+ssJ61sib9FenNHSlYWvWbFh2ahbIlMrY5ZJWEZGBvz8/GBpadh9hUKhe7whSdjMmTNRUFAAe3t7REZG4s0330RAQMBj9UmtVjfpuMc93typHbvjjs8L8FQqxdnLqvtAzh+Q1XypybJ/B+6kQ1ZyC7h0C7j0ve5YwaEr4BkOoXMvCNppezOrAtQq33/txcW5FyDLTQPy0iDLvSC+j+pKg6baRaeCvSfg0RNCzQbPMOPLUgUBaEWvVat8/xuhqeNvq68bPQHkFjUFfnoCUTNql5xdP1E7W1Zwueak03ngVIJ4nGO3moSsZrbMxZ/L782B9ppk/YIZ2eeAqnt121pai9ds6ZeFdwviig2qwyyTsMLCQnh5edXZ7+DgoHv8YVxcXDBz5kyEh4ejQ4cOSE9PR3x8PCZNmoTt27cjMDCw0X1KTU1t9DHNeby5Mxy/FWAVAXSLALoB8ur7sCn6E3ZFl2BbmA67wkuwvncTsqKbQNFNyC7u0x1ZbtsZZY4KlDkG4J6DAmUO/tBY2Uk/oEYy1/ffoqIINiVXYFNyFTbF12r++xosqsuMtldbWKPc3gf37bvjvr0P7nf0xf2O3VHdXu+eJeUArt4BUE+Fw1bIXN//5tLWx0+tgEwmztQ7+wK9/iruK8kBbibVJma3U4HC6+J27v/ENrYuYrGPbgPE5MyjJ4t9mFpFCXDnMjrdOAjZ7e01M1ypQPX9um2tbMUl8vpFM1wUfA+pQUz+KVGpVIiNjW1Q2z179iAoKAgAIHvImaOHPQYATz31FJ56qvbeHxERERgyZAjGjBmDL774AuvXr29Qf/QptTM5jaRWq5GamvrYx5u7ho+/v+FxFcVA9jlxpuxWMmTZyZDdvQrrsluwLrsF51s/6doKnfzFmbLO4RA8e4lfmO2ejMTMbN7/ylIg76LezFYakJsG2b1co80FuSXQyR+CWxDgGgTBLVg8E+joDWuZHNYAnGBG428hHH/Txq89nuiJZO8OBI8VNwAoLxaXKl6vWcKYeVqshndxv7gBgJUd0DVCr9hHXxZlaG7qKqAoE7h7TUyI714D7l6v/bksHxYAfB48rl0HMUnWLwvv4i/OihI9BpMnYd27d8eSJUsa1NbT0xOAWMHQ2GxXUZF44aN2RqwxvLy80KdPH6SkpDT6WACwsLBo0v9ENfV4c9fo8ds6AX5DxE2rrKCm+tDvNVsyUHQDsvwMyPIzgD++FdvJ5OKZKv1rzDxCTVrV6ol5/6srxSUXuWni9Q41126h8Hr9xzj5iGvbtYmWWzBknXoAlu3Q0EU2T8z4TYTjb9vjpzbCuiPQY7i4AWIV2FvJesU+ksQCDld+FjegpthHeO01ZV2jAFtn47+fRIIgXluuS6yu1SZahdfFBEzQPPxX2Dij1NYbdv4DINcWCHP24zXJ1KxMnoS5ublhwoQJjTomICAA+/fvR3V1tcF1Yenp6QDEqoePQxAEyPkHZr5snQG/p8VN694dMcjpErPfgZJbYvW9vDQg5X/FdjILMYnoHF6bmLmHtN6LZjUaMTDlpgE5F8REKzdNTMCMVSUEgA7uNUlWiC7ZgquC9yohInoclu3FCoreUcCgeeL3cu6FmkIfv4n/lmQDmafE7bc14nGuQbXXlHXrDzjUvTyj1asorZnFum58NqvK+JJ4HUtr8fo8p27iiUTHmn+dugGO3aCxskN6cjLCtdUxiVqAyZOwxzF8+HDs3LkTP/74I0aNGqXbv3v3bri5uSEsLKzRv/PmzZs4e/YsBgwY0JxdJVOzcwH8h4ubVsntBxKzs+JZs5xUcfv9G7Gd3EpMxPRnzMzt4lpBAEpzxMCec6F2ZivvYv1Bqn3H2iRLb3YLdp2k7TsRUVsil4urMjxCgcjXam7oe92w2Ed+Ru1JxNNficc5eBtWYHQJMP9iH+pqoDjTMLHST7SM3dTYgEws7qRNrB5MtOzcHj6rxaI/JAGzTMKGDBmCgQMHYtGiRSgtLYW3tze+//57HD9+HCtXrjRY1vLee+9hz549OHz4MLp06QIAeOWVV9C3b18EBgbCzs4O6enpSEhIgEwmw9y5c001LJKKvQegGCFuQE01v1uGs2W3fhdvpJidLG5nNottLdqL15TpJ2auiidjTfj9QjG50i0jrEm4jN0QEhDH4qowTLTcg3mzbCKiJ4FMVpM0+ADh/0/cV5qnVxb/N7EketEN4NwN4NwOsY1tJzEh8+4nzpZ59nzyTh4KAlCWX5NYXaubaBVlAsIjEiEbp3pms3zE2cHWupKFWg2zTMIAIC4uDqtXr8aaNWtQWFgIX19f/POf/8To0aMN2mk0GqjVaghC7X2IAgICcPDgQXz11VeoqKiAs7Mz+vXrh1mzZqF79+5SD4VMTSYDHLqIW5B482/xDOSNBxKzZKCiCMg6LW5aVrY1F+vqJWaderTc2vGq+8CddMNlhLkXxLLwRscnF9ey6ydabsGAU3dWcCIiMicdXIHgF8QNECv5ZZ7SK/ZxSkxuHiz24dW3tgKjV4Q0xT4q74lx9MGlgtqfjZV312fRHnD0rn82y7rx1/8TPUnM9v/A7Ozs8MEHH+CDDz54aLvly5dj+fLlBvvee++9luwatQYyWc2XfjcgZJy4TxDEmw3rJ2XZyWLlwJtJ4qbVzr62XK02MXP2bdwMk7pavO+MfoGM3AtiH+q7qLijV02yFSQupXQLEpemmLDoCBERtZD29oDfMHEDxOJK2cm115TdSALKC4Gr/xE3AJBbipX99EvjP06xD3W1ePJPP7HS/+96qufWkok3r9ZPrHSJVjeggwcLYVCrZrZJGJHkZDKgk5+4KV8W92k0QP6fhjNm2SlAZQlw/Vdx07J2EAOf/oyZfRcxuSvKBO5c0pvZOg/kpQPqCuN9sXGqLZChndlyDTS7m1UTEVEzsmwHdI0UN/xNjFF5F2uvKbtxQkyctCs6TqwVj3MNrL2mzLs/YN+5dslg8U3js1lFmfUXctKydjBMrJx8AEefmn+7cskgtWlMwoiaQi4HXAPELWySuE9dLS4X1E/MbqeKpYf1z0YCkNs4I7yqAhbV9SzLsLIVg6NuGWHNksIO7rxui4iIHk4uF2OHezAQMa12qb3uurIT4gnAvIviVnP9s7yDB8LLi2Gx/xFVBi3aiUsG65vNsnFq8SESmSsmYUTNzcKyNuj1+qu4T10lznDpJ2Y55yG7XwALiDc3lnXyN0y03ILFQMblGERE1Bz0l9qH/UXcd++OuGxRW+wjOwWy0tvQlZuy96x7PZb2Z3tPxiiix8QkjEgKFlZihSrPnkCfyeK+6gqob5/HxYzLCBwYDYt2vG6LiIgkZuciFqXSFqaqKIX6dirSrt5GUP/nYNHezrT9I2qlePqCyFQs2wOeYSjv6Csu6SAiIjK19h0Ar0hU2HuLNzUmohbBJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkZGnqDpg7QRAAAGq1+rGO1x73uMebO46f49f/t63h+Js2fu1x2u9hqsXY1DQcP8ev/29bw/FLE5tkAqNXk1RWViI1NdXU3SAiarOUSiXatWtn6m48URibiIhM61GxiUlYE2k0GlRXV0Mul0Mmk5m6O0REbYYgCNBoNLC0tIRcztX1+hibiIhMo6GxiUkYERERERGRhHjqkIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwlpQYmIiFAqFbgsODsagQYMwb948XLt2zaDt6dOn8f777+PFF19EaGgoFAoFMjMzTdPxZtLQ8avVamzevBlTp07FU089hbCwMIwcORKfffYZiouLTTeAFvLg6/LgplKpTN3Fx3bo0CEoFAocOHCgzmMvvPACFAoFjh8/Xuex4cOHY/z48QCAn376CX//+98xZswYhISEQKFQtHi/m0tTx19aWor169cjJiYGAwcORK9evTBmzBjEx8ejoqJCiiE0SXO8/6tXr8a4ceMQGRkJpVKJZ555Bh9++CGysrJavP9tBWMTY5MxjE2MTQ9ibGrZ2GT52EdSgy1btgy+vr6oqKjA2bNnsWHDBqhUKhw8eBAODg4AgKSkJJw4cQJBQUGws7PDyZMnTdzr5vOo8ZeXlyMuLg7R0dGYMGECnJyccOHCBaxfvx4//fQTdu3aBWtra1MPo9lpX5cH9ejRwwS9aR6RkZGQyWRISkrCqFGjdPsLCwuRnp4OW1tbqFQqDB48WPfY7du3cfPmTUyZMgUAcPjwYaSkpCAoKAhWVlY4f/685ON4XE0d/61bt7BlyxaMHTsWr7zyCmxtbXHmzBmsXbsWv/32GzZv3gyZTGaKoTVIc7z/xcXFGD16NPz8/GBnZ4c///wT69evx7Fjx7B//344OTlJPq7WirGJsckYxiYRYxNjU0vHJiZhEvD394dSqQQAREVFQa1WIy4uDkeOHMFLL70EAJg1axZmz54NANi0aVOrCnSPGr+1tTWOHj1q8AGOioqCp6cn5s6dix9++AFjx441VfdbjP7r0lo4OzvD39+/zuf31KlTsLS0xEsvvVTnbGpSUhIA8T0HgCVLlkAuFyfpP/74Y7MKdE0dv5eXF44dOwZbW1vd4/3794eNjQ0+/fRTnDlzBn379m35gTym5nj/P/roI4PHta/L9OnTcfToUbz88sstOIK2hbGJsckYxiYRYxNjE9CysYnLEU1A++WWn5+v26f9w24LHhy/hYWF0TMIPXv2BCCejSDzERUVhatXryI3N1e3T6VSITQ0FEOGDMH58+dRWlqqe+zkyZOwsLDQfYGb+99CU8Zva2trEOS0zOlvoanvvzHOzs4AAEtLnjdsSYxNjE2tGWMTY9OTFpvM+xNlprTr6X18fEzbERNp6Pi1ZyHMeQnEw2g0GlRXVxtsarXa1N1qsn79+gGAwRknlUqFyMhI9O7dGzKZDGfOnDF4LDg4GPb29pL3tSW0xPjN6W+hucZfXV2N8vJyXLhwAUuXLoWPjw+effZZaQbRRjE2MTYBjE36jzE2MTa1ZGxiEiYB7RfavXv3cPz4caxfvx4REREYNmyYqbsmiccZf05ODlatWoXQ0FA8/fTTEvZWOhMnTkRISIjB1hqWgEREREAul+u+6O7evYuMjAxERETAzs4OwcHBui/u7OxsZGZm6qb7W4PmHv/FixeRkJCAZ599FoGBgZKMoSmaY/x5eXkICQlBWFgYxo8fD7Vaja1bt8LOzk7y8bRmjE2MTcYwNjE2MTZJE5u4tkMCEydONPjZz88P69atazNLaxo7/sLCQrz22msQBAGff/652S8BqM+KFSvg5+dnsO9JvrC1oRwcHBAYGKhbX33q1ClYWFigd+/eAMQvQu0XnbZNawp0zTn+zMxMzJw5Ex4eHliyZIkEvW+65hi/k5MTvvvuO1RWVuLKlStISEhAbGwsvvnmG7i5uUk4mtaNsYmxyRjGJsYmxiZpYlPr/AZ5wqxYsQLfffcdtmzZgkmTJuHy5cuYP3++qbslmcaMv6ioCK+++ipycnLw1VdfoWvXrhL3Vjp+fn5QKpUGW2hoqKm71SyioqJw7do15OTkQKVSISQkRHemKDIyEmlpaSgpKYFKpYKlpSX69Olj4h43r+YYf1ZWFmJjY2FhYYEtW7bA0dFR4lE8vqaO39LSEkqlEn369MGECROwZcsWZGZmIj4+3hTDabUYmxibjGFsYmxibJImNjEJk4D2C61fv374+OOPMWHCBBw/fhyHDh0yddck0dDxFxUVYcqUKcjMzMTmzZvNYnqbjNOePTp58iROnjyJiIgI3WPaL7VTp05BpVJBqVS2umVmTR1/VlYWYmJiAABbt26Fh4eHRD1vHs39/nt4eMDNza3OPayoaRibGJvaGsYmxibgyYlNTMJM4O2334aDgwPWrFkDjUZj6u5Iztj4tUHu5s2b2LRpE4KDg03cS2qKiIgIWFhY4IcffkBGRgYiIyN1j9nb2yMoKAh79uxBVlZWq1ruodWU8d+6dQsxMTHQaDTYsmULunTpInX3m6y53//r16/j9u3b6NatW0t2u81jbGJsau0YmxibnqTY1DYWfj9hHBwcMH36dKxcuRL79u3D2LFjUVBQoLtYMD09HQDwyy+/wNnZGc7OzgYfFHP34Piff/55TJ06FRcuXMB7770HtVqN5ORkXXtnZ2d4e3ubrsMtJCMjw2jFKW9vb13ZU3PVoUMHBAcH48iRI5DL5XWm9CMiIrBlyxYAdddcZ2VlITU1FQBw48YNANCdme7SpYtZXCD+uOPPz89HbGws8vLy8MknnyA/P9+gXLiHh4dZnHl83PFfvHgRy5Ytw/PPP4+uXbtCLpcjPT0dX3/9NRwdHfHqq69KOo62hrGJsQlgbGJsYmwCpIlNTMJMJCYmBtu2bcO6desQHR2NjIwMzJ0716DN4sWLAYjrVL/55htTdLPF6I+/V69eui+2Tz75pE7b8ePHY/ny5VJ3scUtXLjQ6P4lS5ZgwoQJEvem+UVFRSE1NRVBQUHo0KGDwWMRERH4+uuvYWVlhV69ehk8plKp6rw22r8Nc/osPM74//zzT9y8eROAeFb+QbNnz8acOXNatuPN5HHG7+LiAjc3N2zevBl5eXmorq6Gh4cHhg4dipkzZ8LT01PqYbQ5jE2MTYxNjE2MTdLEJpkgCEKTRkNEREREREQNxmvCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwsjsJCYmQqFQ6Lbg4GAMGjQI8+bNw7Vr10zdPQDAhg0bcOTIkTr7VSoVFAoFVCqVCXolOnbsGGbOnIkBAwYgNDQUkZGRmDx5Mvbu3YuqqiqT9etBxl6rd999F8OGDWvR583JyUFcXBzS0tJa9HmIqHVhbGoaxqaHY2xqfSxN3QGix7Vs2TL4+vqioqICZ8+exYYNG6BSqXDw4EE4ODiYtG8bN27E888/j+HDhxvsDwkJwY4dO9CjRw/J+yQIAt577z0kJiZiyJAhePfdd+Hp6YmSkhKoVCosXrwYd+/exeTJkyXvW0PNmjULsbGxLfocubm5WLt2Lbp06YKgoKAWfS4ian0YmxqHsalhGJtaHyZhZLb8/f2hVCoBAFFRUVCr1YiLi8ORI0fw0ksvmbh3xnXo0AHh4eEmee6EhAQkJiZizpw5mD17tsFjw4YNw7Rp03D9+nVJ+1ReXg5ra+sGt/f29m7B3hARNR1jU+MwNlFbxeWI1Gpog15+fr7B/tTUVMycORORkZFQKpUYN24cDhw4YNCmoKAAixYtwqhRo9CrVy/0798fsbGxOH36dJ3nqaysxNq1azFy5EgolUpERUUhJiYGZ8+eBQAoFAqUlZVh9+7dumUpMTExAOpf8nH06FFMmjQJYWFh6NWrF6ZMmYLff//doE1cXBwUCgUyMjIwf/589OnTBwMGDMDChQtRUlLy0NemqqoKCQkJ8PX1xRtvvGG0jaurK/r27av7ubCwEIsWLcLgwYMRGhqKZ555BqtXr0ZlZaXBcRUVFVi1ahWGDRuG0NBQDB48GIsXL0ZxcbFBu2HDhmHGjBn48ccfMW7cOCiVSqxduxYAcPnyZUydOhVhYWGIiorC//zP/+DevXt1+mhsyYdCocDHH3+MPXv2YOTIkQgLC8MLL7yAn376yaDd9evXsXDhQjz33HMICwvD4MGDMXPmTFy6dEnXRqVS4eWXXwYALFy4UPf+xcXF6do05PNERKTF2FQ/xibGpraMM2HUamRmZgIAfHx8dPuSkpIwbdo0hIWFYdGiRbC3t8eBAwcwb948lJeX48UXXwQgfqkDwOzZs+Hi4oKysjIcPnwYMTEx+PrrrxEVFQUAqK6uxrRp03DmzBnExsaiX79+UKvVSElJQXZ2NgBgx44dmDx5MqKiojBr1iwA4lnG+uzbtw9vvfUWBg0ahFWrVqGyshIJCQm659YPPgAwZ84cjBo1Ci+//DLS09OxatUqAOISmPr88ccfKCwsxIQJEyCTyR75WlZUVCA2NhY3b97EnDlzoFAocPr0acTHxyMtLQ3x8fEAxGUks2bNQlJSEqZPn46+ffvi0qVLiIuLQ3JyMnbs2IF27drpfu/58+dx+fJlvP766/Dy8oKNjQ3u3LmDmJgYWFpa4qOPPkKnTp2wb98+/OMf/3hkP7V+/vlnpKam4s0334StrS0SEhIwe/ZsHDp0CF27dgUgLuVwdHTEggUL4OzsjKKiIuzevRsTJ07E7t274evri5CQECxbtgwLFy7E66+/jqFDhwIAPDw8ADT880REpMXYxNjE2ERGCURmZteuXUJAQICQnJwsVFVVCaWlpcIvv/wiDBw4UPjrX/8qVFVV6dqOGDFCGDdunME+QRCEGTNmCAMHDhTUarXR56iurhaqqqqEyZMnC2+88YZu/+7du4WAgABh586dD+1jeHi48M4779TZn5SUJAQEBAhJSUmCIAiCWq0WBg0aJERHRxv0pbS0VOjfv78wadIk3b41a9YIAQEBwpdffmnwOxctWiQolUpBo9HU25/vv/9eCAgIELZv3/7Qfmtt375dCAgIEA4cOGCwPz4+XggICBB+/fVXQRAE4ZdffjHaJ+3z7dixQ7fv6aefFoKCgoQrV64YtF25cqWgUCiEtLQ0g/1TpkwxeK0EQRDeeecd4emnnzZoFxAQIAwYMEAoKSnR7cvLyxMCAwOFjRs31jvG6upqobKyUnjuueeEpUuX6vafO3dOCAgIEHbt2lXnmMf9PBFR68fYxNikj7GJHoXLEclsTZw4ESEhIejduzemTZuGjh07Yt26dbC0FCd4r1+/jitXrmDMmDEAxDOF2u2pp55CXl4erl69qvt927dvx/jx46FUKhEcHIyQkBCcOHECly9f1rU5fvw42rdv32zr+q9evYrc3FyMHTsWcnntn6OdnR2ee+45pKSk4P79+wbHGFvyUFFRUWepS1MkJSXB1tYWI0aMMNivPZt24sQJXTv9/VojR46Era2trp1+X7t3726wT6VSwd/fH4GBgQb7o6OjG9zfqKgogzO6Li4u6NSpE7KysnT7qqursWHDBowaNQqhoaEIDg5GaGgorl27ZvAe16exnyciapsYm0SMTYxN9HBcjkhma8WKFfDz88O9e/dw4MAB7NixA/Pnz0dCQgIA4M6dO7p2K1asMPo77t69CwDYvHkzli9fjr/85S+YO3cunJycIJfL8cUXX+DKlSu69gUFBXBzczMISk2hfX5XV9c6j7m5uUGj0aC4uBg2Nja6/Y6OjgbttEsqysvL630eT09PALXLYh6lsLAQLi4udZaHdOrUCZaWlrolMoWFhbC0tISzs7NBO5lMBhcXF107LWPjLCwshJeXV539Li4uDeorUPc1AcTXpaKiQvfz8uXLsW3bNrz22muIiIiAg4MDZDIZPvjgA4N29WnM54mI2i7GJhFjE2MTPRyTMDJbfn5+ugue+/XrB41Gg2+//RaHDh3CiBEj4OTkBACYMWMGnn32WaO/Q3vma+/evYiMjMTixYsNHn/wAlxnZ2ecOXMGGo2mWYKdto95eXl1HsvNzYVcLkfHjh2b/DyhoaFwdHTE0aNHsWDBgkeuvXd0dERKSgoEQTBom5+fj+rqal2/HR0dUV1djYKCAoNgJwgC7ty5o3t/tIw9r6Ojoy6I6DO2ryn27t2LcePGYf78+Qb7796926DXuDGfJyJquxibGo6xibGpLeNyRGo13n77bTg4OGDNmjXQaDTw9fWFj48PLl68CKVSaXTTLhOQyWQGF+kCwMWLF5GcnGywb/DgwaioqEBiYuJD+9KuXbuHnv3T6t69O9zd3bF//34IgqDbX1ZWhh9//BHh4eEGZxofl5WVFaZNm4YrV67gX//6l9E2+fn5OHPmDACgf//+KCsrq3NTzz179uge1/937969Bu1++OEHlJWV6R5/mKioKGRkZODixYsG+/fv3//ogTWCTCaDlZWVwb6ff/4ZOTk5BvvqO3vbmM8TEZEWY1P9GJsYm9oyzoRRq+Hg4IDp06dj5cqV2LdvH8aOHYvFixfjtddew9SpUzF+/Hi4u7ujqKgIly9fxvnz57FmzRoAwNChQ7Fu3TqsWbMGERERuHr1KtatWwcvLy+o1Wrdc0RHRyMxMRGLFi3C1atXERUVBUEQkJKSAj8/P4wePRoAEBAQgJMnT+LYsWNwdXWFnZ0dfH196/RZLpfj7bffxltvvYUZM2Zg0qRJqKysxKZNm1BcXIwFCxY02+ujDXRxcXFITU1FdHS07oaYp06dws6dOzFnzhz06dMH48aNw7Zt2/DOO+8gKysLAQEBOHPmDDZu3IghQ4ZgwIABAICBAwdi0KBB+Oyzz1BaWorevXvj0qVLWLNmDYKDgzF27NhH9mvy5MnYtWsXpk+fjr/97W+6ClT6S22aw9ChQ3WVphQKBc6fP49NmzbpqktpeXt7w9raGvv27YOfnx9sbW3h5uYGd3f3Bn+eiIi0GJsejrGJsamtYhJGrUpMTAy2bduGdevWITo6Gv369cO3336LDRs2YOnSpSguLoajoyP8/PwwcuRI3XEzZ87E/fv38d133yEhIQE9evTAokWLcOTIEZw8eVLXztLSEl9++SU2btyI77//Hlu2bIGdnR0CAwMxePBgXbv3338fixcvxvz583H//n1ERkbim2++MdrnMWPGwMbGBvHx8Zg3bx4sLCwQFhaGrVu3onfv3s322shkMixbtgzDhw/Hzp07da+Htv9vvfWW7iLm9u3bY+vWrVi9ejUSEhJw9+5duLu749VXXzW4maZMJsO6desQFxeHxMREbNiwAY6Ojhg7dizmz59f5wyuMa6urvj3v/+NTz75BIsWLYKNjQ2GDx+ODz/8UFdGuTm8//77sLS0RHx8PMrKyhAcHIy4uDh88cUXBu1sbGywdOlSrF27FlOnTkVVVRVmz56NOXPmNPjzRESkj7GpfoxNjE1tlUzQn2cmIiIiIiKiFsVrwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJPT/Aa4WuuoKnq41AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw40lEQVR4nOzdd3xb1d0/8M+V5D0k7yHJGU4cZ3jFiZ1ABiEpK5AwC78OCi0FWkhpoU9b1lPgoQ+BtJQSAg+bslIaRoAAgSTQEEa2VxInTuwktuQ9JE/Z1vj9cSXZjuUhW9P+vF+vvKTce670PRm++uqc8z2CxWKxgIiIiIiIiDxC4u0AiIiIiIiIJhMmYURERERERB7EJIyIiIiIiMiDmIQRERERERF5EJMwIiIiIiIiD2ISRkRERERE5EFMwoiIiIiIiDyISRgREREREZEHMQkjIiIiIiLyICZhREREREREHiTzdgBEzjCZTHjvvffw0UcfoaysDB0dHYiMjERsbCwyMzNx4YUXYuXKlfb2s2bNAgCcOHFiwOvYjg/lsccew9VXX+3S992yZQseeOABLF26FC+99JLD97311luxe/duPPLII7j++utH9WeyYcMGHDlyBGfOnEFLSwuCg4ORnJyMVatW4cc//jGioqJG9ToAcOGFF0Kr1Y6q7VVXXYX169eP+rU9pby8HG+//Tb27duHmpoadHd3Q6FQYM6cOfjBD36ANWvWICgoaNB1JSUlePvtt7F//340NDRAJpNBqVRiyZIluOmmm5CQkOCF3hCRr+N9aTDel0RD/V33Z+vfrl27oFKpxvxevIf5HyZh5DdMJhNuu+027NmzB5GRkVi+fDkSExOh1+tx9uxZfPjhh6ioqBhw0xnJnXfe6fD47NmzXf6+1113Hb788kt8+eWXeOutt/DjH/94wPm3334bu3fvxgUXXDDqGx0A/POf/8ScOXNw3nnnISYmBl1dXSgsLMTGjRvxzjvv4J133kFycvKoXuvGG29EW1vbkOe7urrw2muvwWQyYebMmaOO0VOeeeYZbNq0CWazGdnZ2bjqqqsQFhaGxsZGHDx4EA888AA2b96M999/336NxWLBX//6V7z00kuQyWQ477zzcMkll6C3txcFBQV45ZVXsHnzZqxfvx6XXHKJF3tHRL6G9yXHeF/yHN7D/JiFyE9s3brVkpaWZlmzZo2ltbV10HmdTmf59ttvBxxLS0uzpKWlDWo71HF3v29jY6Nl0aJFlqysLEt5ebn9eEVFhSUrK8uSn59vaWhoGFVcNgaDweHxJ5980pKWlmb57//+b6debyhms9mybt06S1pammXdunUWs9nsktd1lWeffdaSlpZmWb58uaWwsNBhm927d1t++tOfDji2ceNGS1pammXFihWWsrKyQdds377dkpGRYZk9e7blu+++c0vsROSfeF9yjPcl0Wj+TlesWGFJS0uzVFVVjek9eA/zX1wTRn7j8OHDAMTpBhEREYPOy+VynHfeeT79vjExMfif//kfdHV14b/+679gNBphNBrxX//1X+jq6sKjjz6K2NhYp+JzNLUOAC699FIAQFVVlVOvN5R//OMf+PzzzzFnzhw8/vjjEATBfk6j0WDWrFn405/+BI1Gg9/97nfIz89HRkYGrr76auzatcslMQxFo9Fg06ZNCAgIwAsvvICsrCyH7ZYtWzZgyk1VVRWee+45BAQE4LnnnnP4LerFF1+Me++9FyaTCQ899BDMZrPb+kFE/oX3Jcd4X/IM3sP8G5Mw8hvR0dEAgDNnzvj1+65atQrXXHMNjhw5gk2bNmHTpk0oKSnB1VdfjVWrVrnkPQDgyy+/BDDyOoPR+OSTT/Dcc88hLi4Ozz33HEJCQhy202q1uO6666DVarF27VpcdtllOHnyJO644w58//33445jKO+//z56e3tx0UUXIS0tbdi2gYGBA64zGo1YuXLlsH9O1113HeLi4nDmzBns37/fZXETkX/jfck5k+m+5Am8h/k3rgkjv3HxxRfjxRdfxL/+9S+0t7dj5cqVmDdvHtRq9Zhfc+PGjYOOKZXKAYuf3fG+9913H/bt24fnn3/e/p7333//mF8PAF5++WV0dnaira0NR44cwaFDhzBnzhzceuut43rd4uJi3HvvvQgKCsKmTZuQmJg4ZNv9+/dj3bp1A9Y0XH755bjlllvw8ssvY/HixeOKZSgHDx4EAKdf/9ChQwCA888/f9h2MpkM+fn52LZtGw4fPoxFixaNLVAimlB4XxreZL4v9efo79SmtbV1zK/Le5h/YxJGfiM9PR1//etf8eijj+Ljjz/Gxx9/DABQKBTIy8vDtddei+XLlzv1ms8888ygY3l5eQNudu543/DwcNxxxx249957AQAPPfQQwsPDnXqNc73yyitobGy0/37ZsmVYv369U1WozlVXV4df//rX6O7uxoYNG4ac5mejVCrxq1/9asCxpUuXIjk5GSUlJWOOYyS2fjtb/cl23XA3cBtbm/r6eiejI6KJivel4U3m+1J/jv5OXYH3MP/GJIz8yiWXXIKVK1di3759OHToEEpLS3Ho0CF88cUX+OKLL3DNNdfgL3/5y4B54cMZrmysO9/XYDDgxRdftP/+888/x7Jlyxy2dfQN2lVXXTWolO23334LQPyhXFBQgL/+9a9Yu3Ytnn/+ecydO9fp1+vq6sKvfvUrNDQ04LbbbsOaNWtG7Nfs2bMhlUoHHU9MTERhYeGI1zsTX38WiwUARv3nP5brbG36t33++efxxRdf4PTp0wgMDER2djbuvvvuEadEEtHEwfuSiPeloY2mRH1/o723jPceRt7FJIz8TkBAAJYsWYIlS5YAEEv1fv7557j//vvx3nvv4cILL3TpHHZ3vO+GDRtQUVGBG2+8EQcOHMC7776LVatWYcWKFYPaDvWt6FA//GNjY/GDH/wAc+fOxUUXXYQ//vGP2LZtm1OvZ7FY8Mc//hFHjx7FypUr8bvf/W5U/XK0QBwQp0KMdjGws/0FgPj4eFRUVKC2tnZU72ETFxc36utsbeLi4uzH9u/fjx/96EfIyMiAxWLB008/jZtvvhmffPIJFAqFU7EQkf/ifYn3JVca7b1lvPcw8i4mYeT3pFIpLrvsMpSVleG5557D3r173XKzc9X7fvPNN3jrrbeQlpaG//qv/8KZM2dwzTXX4MEHH8THH388aJrGaL8VPVdycjJmzJiB0tJSNDc32xdyj+b1nn76aXz++eeYNWsWNmzY4NFvzsbS39zcXOzduxd79+7Fdddd59R1+/btw3fffTfsdSaTCfv27QMAzJ8/33785ZdfHtDuiSeewIIFC3D48GFceOGFTvaCiCYK3pccm0z3pfEY7b1lvPcw8i5WR6QJIywsDEDf8Lwvvq9Op8O9994LmUyGDRs2IDAwEGlpabjrrrvQ0NCAhx56yKWx2eZ+O5qKMZRPPvkEzz77LGJiYvDcc8/Z++fLrr76agQEBODzzz/HqVOnhm3b09Mz4DqpVIodO3YMe917772H+vp6TJs2DXl5eUO26+jogNlsRmRkpPOdIKIJh/elwSbLfcmVhrq3uPoeRp7FJIz8xrZt2/Dtt986nD7Q0NCALVu2AAAWLFjgs+/70EMPob6+Hr/97W+Rnp5uP/7zn/8cCxYswPbt2wdM0RhJeXk5GhoaBh03m834+9//jqamJuTk5EAul4/q9WwVpwICArBx40YolcpRx+JNKpUKd955J3p7e3HrrbcOudj666+/xi233GL/vVqtxm233Ybe3l7cfvvtDm9iO3fuxF/+8hdIpVL8+c9/hkQy9I/Nv/zlL5g9ezZycnLG3yki8nm8Lw3G+5LrDXVvcfU9jDyL0xHJbxQVFeH1119HXFwc5s+fb5+LrdFosHv3bhgMBqxcuRKXXHKJT77v1q1b8dlnn2HhwoX4+c9/PuCcRCLB+vXrsWbNGjzyyCNYuHDhqCr97dmzBxs2bMCCBQuQkpIChUKBxsZGHDhwAFVVVYiLi8Ojjz46qn62t7fbK05lZGTgu+++w3fffTdk+3NLJnvb7bffDqPRiE2bNuHaa69FTk4O5s2bh7CwMDQ2NuLgwYM4c+YM5s2bN+C6devWoaurC6+++irWrl2LJUuWYMaMGTAajSgoKEBRURGCg4Pxt7/9bdhSxo8//jgOHTqEzZs3O/UNLxH5L96XBuN9ybVGure46h5GnsckjPzGz3/+c0ydOhXfffcdTpw4gW+++QY9PT32kryXX345rrjiCpfPE3fF+1ZXV+PRRx9FeHg4Hn/8cYffRKnVatx333144IEHcP/99+Oll14aMbbzzjsPP/zhD3H48GEcP34cbW1tCAkJwdSpU7F27Vr89Kc/HXWBCJ1OZ//2sqSkZMTSveeWTPYFd955Jy699FK8/fbb2LdvH95//33731V6ejpuueUWrF27dsA1EokEf/rTn3DZZZfhrbfewoEDB/D9999DKpVCqVTi5z//OX72s58NWwL4sccewyeffIJ//vOf49qnh4j8C+9Lg/G+5Dqjube44h5G3iFYPD1RmYhoAnn00Ufx6aef4o033kBqaqq3wyEiogmA95aJjyNhRERj9NBDD+Gjjz7Cpk2bEBkZaf/GNjQ0dNItHCciItfgvWVy4EgYEdEYzZo1y+HxO++8E+vWrfNwNERENBHw3jI5MAkjIiIiIiLyINapJCIiIiIi8iAmYURERERERB7EJIyIiIiIiMiDmIQRERERERF5EEvUj5PZbIbRaIREInH5ZoxERDQ0i8UCs9kMmUzmcKPZyYz3JiIi7xjtvYlJ2DgZjcYRd3AnIiL3ycjIQGBgoLfD8Cm8NxEReddI9yYmYeNky3AzMjIglUqdvt5kMqGkpGTM1/s79p/9Z//Z//H+/OQo2GC8N40P+8/+s//sv7vvTUzCxsk2zUMqlY7rH+p4r/d37D/7z/6z/2PF6XaD8d7kGuw/+8/+s/9jNdK9iV8fEhEREREReRCTMCIiIiIiIg9iEkZERERERORBTMKIiIiIiIg8iEkYERERERGRBzEJIyIiIiIi8iAmYURERERERB7EJIyIiIiIiMiDmIQRERERERF5EJMwIiIiIiIiD2ISRkRERERE5EFMwoiIiIiIiDyISRgREREREZEHMQnzos4eI+7cXICdFZ3eDoWIiAgAUFrTiptePYBTzb3eDoWIaMJiEuZFZ5s68dmROrxV0gaLxeLtcIiIiPB1WQP2nGrCJyc7vB0KEdGExSTMi6bHhSFQKqC1x4Kqli5vh0NERIS0hAgAQHkLR8KIiNyFSZgXBcmkmJMcCQAorNJ5NxgiIiIAGSo5AKC6zYQ2g9HL0RARTUxMwrwsW60AABQwCSMiIh8QGx6EZEUwLACOVuu9HQ4R0YTEJMzLsqzfOBZV8UZHRES+IUMp3ptKtK1ejoSIaGJiEuZlOdaRsGM1rTD0mrwbDBEREYAMpThVvkTLLwiJiNyBSZiXqaJCIA+SoNdkwdFqfuNIRETel2kfCWMSRkTkDkzCvEwQBKTFBAAACipbvBwNERERMM+ahFU2d0HX2ePlaIiIJh4mYT5gZrSYhLFCIhER+QJ5SAASw6QAOBpGROQOMm8HMFbff/89PvroIxQUFKC2thYRERGYN28e7rjjDsybN2/E65uamrBhwwZ89dVXMBgMSE9Px29/+1ssXrzYA9EP1DcSpvP4exMRETmSGh2A2g4TijV6LJ0Z5+1wiIgmFL8dCdu8eTO0Wi1uvPFGvPDCC7j//vvR3NyM66+/Ht9///2w1/b09OCmm27C999/j/vvvx/PPvssYmJicMstt2D//v0e6kGfGVEBEARAq+tCfavB4+9PRER0rhlR4heExRqddwMhIpqA/HYk7M9//jNiYmIGHFu6dCkuuugiPP/888OOaG3ZsgVlZWX417/+hZycHABAfn4+1q5diw0bNmDLli1ujf1cIQESpMWH40RdOwqqdLh4bqJH35+IiOhcqdap8iUaTkckInI1vx0JOzcBA4CwsDCkpqaipqZm2Gt37tyJadOm2RMwAJDJZFizZg2Ki4tRV1fn8nhHkmUtVc91YURE5AumK2QQBKBab0BDW7e3wyEimlD8diTMkba2Nhw7dgyLFi0att3JkyeRm5s76PisWbPs5xMSEpx6b5NpbHt82a7LUkbi3weBw2dbxvxa/sjW18nU5/7Yf/a//+NkM97+T9Y/N08JCZAgNTYMpxo6UKLV4cJ05+6LREQ0tAmVhD388MPo6urC7bffPmw7nU4HuVw+6LjtmE6nc/q9S0pKnL6mv9AucfStqLIFhw4XQCoRxvV6/ma8f37+jv1n/yezyd5/XzZPKcephg4Ua/RMwoiIXGjCJGFPPfUUPv74Yzz44IOjqo4oCEMnOcOdG0pGRgakUqnT15lMJpSUlODS83Lw4O7/oL3biNCkVMxOinT6tfyRrf9j/fPzd+w/+8/+j73/tuvJfTKUkdhaWM11YURELjYhkrBnnnkGzz33HH73u9/hJz/5yYjtFQqFw9EuvV68yTgaJRuJVCod14eogAAZstRyfHuqCcXaNsxTRY35tfzReP/8/B37z/6z/5O3/74sUyXeD4s0elgsljF9SUlERIP5bWEOm2eeeQYbN27EunXrRpyGaJOWloaysrJBx23HZs6c6dIYRytHLSZeBZUtXnl/IiKi/mYnRkIqEdDY3o1abqFCROQyfp2Ebdq0CRs3bsSvfvUr3HnnnaO+btWqVaioqEBRUZH9mNFoxEcffYSsrCyni3K4Sk6KAgBQwAqJRETkA0ICpZgZHw4AKOaURCIil/HbJOyVV17B008/jaVLl+KCCy5AYWHhgF829913H+bMmQOtVms/du2112LmzJm466678PHHH+O7777Db3/7W5w+fRq///3vvdAbUba1TP2p+nbou3q9FgcREZGNbUoi14UREbmO364J++qrrwAAe/bswZ49ewadP3HiBADAbDbDZDLBYrHYzwUGBuK1117Dhg0b8Oijj6KrqwuzZ8/Giy++iLy8PM90wIGY8CCkRIeisrkTxRodls6M81osREREAJCpUuDfBzUo0ui8HQoR0YTht0nYG2+8Map269evx/r16wcdj42NxeOPP+7qsMYtJ0WByuZOFFQyCSMiIu+zj4RpWZyDiMhV/HY64kSVY52SyOIcRETkC2YlRiBAKkDX2QtNS5e3wyEimhCYhPmYnBSxQmJhlW7AFEoiIiJvCJJJ7XtXsjgHEZFrMAnzMbOTIhEok6Clsxdnmzq9HQ4REREylOKUxGKuCyMicgkmYT4mUCbBvGTxG8eCKk5JJCIi77OtC+NIGBGRazAJ80G2KYkFlTrvBkJERAQgQ6kAABzR6mE2c6o8EdF4MQnzQfZNm5mEERGRD0hLCEeQTIK2biNON3V4OxwiIr/HJMwH2TZtLq1phaHX5N1giIho0pNJJZhrnSrPTZuJiMaPSZgPUipCEBcRBKPZgiNa3uyIiMj7MlUKAFwXRkTkCkzCfJAgCP32C9N5NRYiIiKg/6bNOu8GQkQ0ATAJ81H24hyskEhERD7AloQd0bbCaDJ7ORoiIv/GJMxH2daFFXIkjIiIfMC02HCEBUrR1WtCeQOLcxARjQeTMB+VqZJDIgDVegNq9QZvh0NERJOcVCJgLjdtJiJyCSZhPiosSIZZiWIlqkJOSSQiIh+QxU2biYhcgkmYD+N+YURE5EsybBUSWbmXiGhcmIR5m2Xoxc22dWEFVTrPxEJERDSMTOt0xNKaVvQYWZyDiGismIR5U3sDJE/NRUrx3x2enm8dCSvW6FiJioiIvG5KTCgig2XoMZpRVtfm7XCIiPwWkzBv6mqG0F6HaM0OwGwadHp6bDgigmUw9JpxvJY3OyIi8i5BELhpMxGRCzAJ86aYGbAEhkNqMgANJwadlkgETkkkIiKfksFNm4mIxo1JmDdJpEBSNgBAqD7ksEkO9wsjIiIfkqlkhUQiovFiEuZlFmWu+KT6sMPzOSlRAIAClqknIiIfkGn9cvBEbRsMvYOn0hMR0ciYhHmZJXk+AEDQOh4Js01HrGjogK6zx1NhEREROZQsD0ZMWCCMZgtKa1q9HQ4RkV9iEuZtSjEJQ30p0NMx6HRUWCCmxoQCAAq5LoyIaMIqLS3FrbfeigsuuACZmZnIy8vD9ddfjw8//NDboQ0gCEK/dWGckkhENBYybwcw6UUq0RMcg0BDE1BTDExZPKhJTkoUzjR1orBKhwtmxXshSCIicrfW1lYkJiZi9erVSEhIQFdXFz7++GP84Q9/gFarxa9//Wtvh2iXqVLgPycauC6MiGiMmIT5gA5FOgJrvwW0B4dIwhT4oECLAhbnICKasPLz85Gfnz/g2IoVK6DRaPDvf//bt5Iwe3EOnXcDISLyU5yO6AM6FbPFJ0OsC8tRi8U5Cqt0MJstngqLiIh8QFRUFKRSqbfDGMA2HfFUfTs6uo1ejoaIyP8wCfMBHVHp4pMhkrD0pAgEySTQd/XidNPgdWNERDRxmM1mGI1GNDc346233sI333yDX/7yl94Oa4CEyGAkRAbBbAGOsTgHEZHTOB3RB3TI02CBAEFXCbQ3AOFxA84HSCXIUMpx8GwLCit1SI0L91KkRETkbg899BDeeecdAEBAQADuv/9+3HDDDWN6LZNpbCXkbdcNd32GUo661noUVrZgvlo+pvfxVaPp/0TG/rP//R8nm/H2f7TXMQnzAeaAcCB2JtBYJo6GzbpkUJucFAUOnm1BQVULrslVeSFKIiLyhNtvvx3XXXcdmpub8eWXX+J//ud/0NXVhV/84hdOv1ZJScm4Yhnu+jhJJwDg6yNnMD9MN6738VXj/fPzd+w/+z+Zubv/TMJ8hEWZC6GxTCzO4TAJiwJwmsU5iIgmuOTkZCQnJwMAli9fDgB48skncdVVVyE6Otqp18rIyBjTejKTyYSSkpJhr9eHNmDz0UPQdEqQnZ3t9Hv4stH0fyJj/9l/9n/s/bddPxImYb4iORco2jzkujDbps3Ha9vQ1WNCSODk+09BRDQZZWZm4l//+heqqqqcTsKkUum4PkQNd312ihjL6cZOdPSaERkcMOb38VXj/fPzd+w/+8/+u6//LMzhIyy2TZu1hwDL4AqISXJxEbTJbOHmmEREk8i+ffsgkUigVqu9HcoA0WGBUEWFAACOcL8wIiKncCTMV8TPBaRBgEEPNJUDsTMGnBYEATnqKGw/WouCyhbkTXPu21AiIvJtDz74IMLDw5GRkYHY2Fi0tLRg+/bt+PTTT/GLX/zC6VEwT8hUyaFp6UKxVo/zZsR6OxwiIr/BJMxXSAOApCxAs18cDTsnCQPE4hxiEqbzfHxERORW2dnZeP/99/HBBx+gra0NoaGhSE9PxxNPPIG1a9d6OzyHMpQKfFpSixKOhBEROYVJmC9R5vYlYVnXDzptWxdWUNXi4cCIiMjdrrnmGlxzzTXeDsMpWdZNm4s0Ou8GQkTkZ7gmzJeoFoiP2oMOT2eo5JBKBNS1dqNG3+XBwIiIaNKoLoDk1UsQ1nxkxKZzlWISpmnpQnNHj7sjIyKaMJiE+RJbcY7aEsDYPeh0aKAM6YkRAMApiURE5B5nvoGg2Y/40x+M2FQeEoBpsWEAwKJRREROYBLmS6KmASHRgKkHqHP8DWROigIAUFDJKYlEROQGSVkAgPDmo6NqnmEdDSvhlEQiolFjEuZLBEFcFwYAmqH2C4sCwJEwIiJyk+T5sAgSBBrqAb1mxOaZ9nVhHAkjIhotJmG+xpaEDbFps20krESrR6/J7KGgiIho0ggKBxLmAQAEzYERm2eqFADAColERE5gEuZrRkjCpsWEQR4SgG6jGcdr2jwYGBERTRYWVZ74RLN/xLZzkyMhEYDaVgPqWw1ujoyIaGJgEuZrbElY00mga/C6L4lEYKl6IiJyL2sSNpqRsLAgGWbEhwMAijkaRkQ0KkzCfE1YDBA1VXxeXeCwiT0J47owIiJyA4vaOhJWWwz0jrwlSoZSAQAoZoVEIqJRYRLmi0a5LqywSueZeIiIaHKRq9EbFA3BbBzyC8H+bMU5WCGRiGh0ZGO56OTJkzh8+DDq6upgMBgQFRWFGTNmYOHChQgPD3d1jJOPcgFw5L1hKiQqAACnGzvQ0tGDqLBADwZHREQTniCgPWouomr3AFX7gCnnDds8w5aEafWwWCwQBMETURIR+a1RJ2F6vR7vvPMO3nnnHVRXV8NisQx+MZkMy5Ytw09/+lMsXrzYpYFOKv1HwiwWsXR9P4rQQEyPC0NFQwcKq3RYkR7vhSCJiGgia4+2JWEjF+eYkxQJmURAY3sPqvUGKBUhHoiQiMh/jSoJe/3117Fp0yYAwGWXXYa8vDzMnTsX0dHRCAoKgl6vR1VVFQoLC7Fr1y78/Oc/x3nnnYf//u//xpQpU9zagQkpKROQyIAO6x4tCvWgJtlqBSoaOlBQ2cIkjIiIXK4jaq74pGq/wy8E+wsOkCItIQLHalpRotExCSMiGsGo1oS98cYbuPfee/HNN9/gz3/+My699FKkpKQgPDwcAQEBiI2NRU5ODm6++Wa8+eab+PzzzxEfH4/PPvvM3fFPTAEhQIL15qc96LBJTop102auCyMiIjfolM+ERRoIdDYCzRUjtretC2OFRCKikY1qJOyzzz6DTDb65WMpKSl47LHHYDKZxhzYpKfMBWqKxCmJc68adDrHui6ssEoHs9kCiYTz74mIyHUs0kAgKQvQHBBHw2JSh22fqVLgXweqmIQREY3CqEbCTp48OaYXl0qlY7qOIBbnAADtYYen0xMjEBwgQZvBiIrGdg8GRkREk4V90+aqfSO27RsJ0zlcN05ERH1GlYRdddVVuPrqq/H222+jra3N3TER0Feco7oAMBkHnZZJJci07stymPuFERGRG/QlYSMX50hLiECgVIJWgxGVzZ1ujoyIyL+NKgm77bbb0NzcjEceeQRLlizB73//e+zdu9fdsU1usTOBwAigtxNoOO6wCfcLIyIit1ItFB/rjwGG1mGbBsokmJ0UAYDrwoiIRjKqJOx3v/sdvvrqK7zwwgtYsWIFvvjiC9x8881YuXIlnn32WdTU1Lg7zslHIgWUOeLzIYtzKAAABRwJIyIid4hIBBRTAFiGvBf1l6lSABCnJBIR0dBGlYQBgCAIWLZsGZ566il88803uP/++yGXy/H0009j1apV+MUvfoHt27ejt7fXnfHatbe344knnsDPf/5zLFq0CLNmzcLGjRtHde3777+PWbNmOfzV0NDg5sid0H+/MAdsFRJP1Laio3vwlEUiIqJxU49+SmIGKyQSEY3K6Ese9hMZGYmf/OQn+MlPfoLjx4/jvffew7Zt2/C73/0OCoUC33//vavjHESn0+Hf//430tPTsWrVKmzZssXp13jssccwffr0AccUCoWLInQBexLmuDhHQmQwkuTBqNEbUKzRY3FqjAeDIyKiSUGdD5Rscao4xxGtnpV7iYiGMaYkrL/09HSsWbMGnZ2deP/996HT6VwQ1siUSiUOHDgAQRDQ3Nw8piRs5syZyMjIcEN0LmKrkFh/DOhuB4LCBzXJSVGgpqQWhVU6JmFEROR6tpEwzUHAbAYkQ0+imREXjpAAKTp6TKhobMeM+AgPBUlE5F9GPR3xXM3NzXjttddwxRVX4Ic//CE+/PBDrFixAps2bXJlfEMSBAGCMMG/YYtMAiKSAYtZ3DPMgRy1ddPmyhZPRkZERJNF/FwgIAzobh2yUJSNTCrB3ORIAJySSEQ0HKdGwsxmM77++mu89957+M9//oPe3l5MnToVd999N6666irExsa6K063uP3229Hc3IyIiAjk5eXhN7/5DdLS0sb0WmPdmNp23VDXS5LnQzhRDbPmACzqRYPOZ6rEm11BpQ5Go9HvEtOR+j/Rsf/sf//HyWa8/Z+sf24eJ5UBqlzg9NfilMSEOcM2z1DJcfBsC4o1elw9X+WhIImI/MuokrDTp0/jvffew4cffojGxkYEBwfj8ssvxzXXXIMFCxa4O0aXi42Nxe23347s7GyEh4ejrKwML7zwAq6//nps3rwZ6enpTr9mSUnJuGIa6voESRJUAPRHd6EiZOmg8yaTBVIBaGjvxo7vDiM+zD83yB7vn5+/Y//Z/8lssvffL6jyrEnYfmDBzcM2ta0LK9FyJIyIaCijSsIuvfRSAEBmZibWrVuH1atXIywszK2BudOyZcuwbNky++8XLlyI5cuX44orrsA//vEPPPfcc06/ZkZGBqRS5xMgk8mEkpKSoa9XtAGlL0LRWYHs7GyHrzF773c4Ut2K3shkZGckOR2DN43Y/wmO/Wf/2f+x9992PXmAOl98HFVxDgUA4Gi1HkaTGTLpmFc+EBFNWKNKwn72s5/h2muvxcyZM90dj9eoVCrk5uaiqMjx2quRSKXScX2IGvJ65XwAAgS9BtLORiAiYVCT+VOicKS6FUWaVqzJ9s+pH+P98/N37D/7z/5P3v77BZV11ktzOdDRCIQNvfxgWkwYwoNkaO824mR9O2YnRXooSCIi/zGqr6fuvfdehwlYRUUFDh06hM7OTpcH5g0WiwWSYao+eUVwJBBnnR455H5hCgAszkFERG4SGg3EzhKfaw4M21QiETBPKSZeJSzOQUTk0Jgyjq1bt2LZsmVYvXo1fvKTn+D06dMAgLvuugv//ve/XRqgp1RVVeHw4cPIysrydiiDjbBpc7a1QuKR6lb0GM2eioqIiCYT+6bNI09JzLJOSSzS6NwXDxGRH3M6Cfvss8/wpz/9CXPmzMGDDz4Ii8ViPzd37lx89tlnLg1wOLt378b27dvx1VdfAQBOnTqF7du3Y/v27ejq6gIA3HfffZgzZw60Wq39uptuugnPPPMMdu7cie+//x7//Oc/8aMf/QiCIOCuu+7yWPyjppwvPg6RhE2NCYUiNAA9RjNKa1o9GBgREU0a9iRs/4hNM1icg4hoWE5v1vzCCy/g6quvxv/+7//CZDLhkUcesZ+bPn063njjDZcGOJyHH354QHJlS8AAYNeuXVCpVDCbzTCZTAOSxbS0NHz22Wd45ZVX0N3djejoaCxatAi//vWvMW3aNI/FP2q2ufjaww43yhQEATlqBb460YCCyhZkqRWej5GIiCY2W3EO7SHA1AtIA4ZsmqlUAABKa1rRbTQhSMY1f0RE/TmdhJWXl+P3v/+9w3MKhQI6nW68MY3al19+OWKb9evXY/369QOO3Xfffe4KyT3i5wCyYKBbLy6Kjh28Pi8nJUpMwqp0uMnzERIR0UQXMxMIVgAGHVBb3DdV3gF1dAgUoQHQdfairLbdPjJGREQip6cjhoSEoK2tzeG5uro6yOX8Qety0gAgybpWbch1YQoA4qbNRERELieR9JuSOHxxDkEQkKEUPw9wXRgR0WBOJ2E5OTl46623Bkzvs3n//feRl5fnksDoHErrlETNQYenbVMQK5s70dTe7aGgiIhoUnGiOId902ZWSCQiGsTpJOyOO+5AYWEhrr32WrzxxhsQBAFffPEFbr/9dhw8eBC33367O+KkEYpzyEMCMCM+HABQWKXzUFBERDSpqJwozmFdF1bM4hxERIM4nYRlZGTgxRdfRGdnJ9avXw+LxYLnn38ep0+fxgsvvIC0tDR3xEm24hy1JYDR8UhXDqckEhGROylzAUECtGoAvWbYpllqcSSsrK4NXT0mT0RHROQ3nC7MAQCLFi3CZ599hsrKSjQ2NiIqKso3qwpOJIopQGgM0NkkJmK2pKyf7BQFthzSoKCKmzYTEZEbBIUDCfPEwhxV+wG5asimiZHBiA0PQmN7N47VtCJ3SpQHAyUi8m1j2qzZJiUlBfPnz2cC5gmCMOKmzTnWTZuLqvQwmQev2SMiIho3W6l6zcjFOfrWhencHBQRkX8ZVRL26aefOv3CdXV1OHTIcbJAY2QrzjFEEpaWEI7QQCnau40ob2j3YGBERDRp2JKwURTnsFVI5LowIqKBRpWEPfLII1i7di22bNmC9vbhP9wfOXIEDz/8MC6++GIcP37cJUGSlW0kbIgKiTKpxP6tY0ElpyQSEZEbqBeKjzVFQG/XsE1t68KKWSGRiGiAUa0J27FjBzZu3Ii//OUveOSRRzBnzhzMmTMHMTExCAwMhF6vR1VVFQoLC9HQ0ICZM2di48aNWLp0qbvjn1xsFRKby4HOZiA0elCTbHUU9lY0o6BSh+sXpng4QCIimvAUU4DwBKC9DqguAKacN2TTedaRsPKGdrR3GxEeNKal6EREE86ofhpGRETgvvvuwx133IH3338fu3fvxtatW9HV1fcNmFqtxtKlS3HFFVdg0aJFbgt4UguNBqKnA80V4o1vxspBTXJSFABYpp6IiNxEEMT9wko/FqckDpOExUcEI0kejBq9AUe1euRPj/FgoEREvsupr6Tkcjluvvlm3HzzzQCAtrY2GAwGKBQKBAQEuCVAOocyV0zCtIccJ2HWMvUn6tr4rSMREbmHOt+ahA1fnAMQN22u0RtQwiSMiMhuXNURIyIiEBcXxwTMk0aokBgfGQylIgQWC1DM0TAiInKH/sU5LMNX481UKQAARVwXRkRkN64kjLzAViFRc3DIG1+2dUpiAZMwIiJyh6QsQBoIdDaKszOGYauQyDL1RER9mIT5m8QMQCITb3y6SodNbFMSCyp1nouLiIgmD1kQkJQtPq/aP2xTWxJ2pqkT+s5eNwdGROQfmIT5m4BgIGGe+HyoTZtTxE2bC6taYBlhmggREdGYqPPExxH2C4sKC0RKdCgAoIT7hRERAWAS5p9Uw2/aPDc5EgFSAY3tPdC0DL+HCxER0ZjY1oVpRi7OkaGybdqsc2NARET+g0mYPxqhOEdwgBRzkiIBAIe5aTMREbmDbSSs7ihgaB22aaZ9XRhHwoiIgDEkYf/zP/+DiorhF+GSm9mSsOpCwGR02KRvSqLOMzEREdHkEpEIKFIAWADtwWGb2iokFjMJIyICMIYkbOvWrVi9ejVuvvlm7Ny5k2uOvCFmJhAUCRi7gPpjDpvYNm1mcQ4iInIbe6n64YtzzFOKszO0ui40tXe7OyoiIp/ndBK2Z88ePPDAA2hoaMCdd96JCy+8EC+88AKam5vdER85IpEAyTni8yGmJGZbKyQeq25Ft9HkocCIiGhS6b9f2DAiggMwPS4MAFDM4hxERM4nYaGhofjxj3+Mbdu24dVXX8XcuXPxj3/8AxdccAH+9Kc/oaSkxB1x0rlGWBeWEh2K6LBA9JjMOFo9/Fx9IiKiMbGtC9McBMzmYZtyXRgRUZ9xFeZYvHgxnnnmGezatQs5OTn48MMP8cMf/hDXXXcdvvzyS1fFSI6MUCFREAT7fmGFnJJIRETuED8XCAgDuluBhuPDNu1bF6Zzf1xERD5uXEmYwWDAli1bcPvtt2Pfvn1ITU3FHXfcAZPJhDvuuAObNm1yVZx0LttIWH0p0N3msIl9XRiLcxARkTtIZYByvvh8hCmJmbYy9RwJIyIaWxJWWVmJxx57DMuWLcOf//xnJCYm4pVXXsG2bdtw55134v3338cvf/lLvPnmm66Ol2wiEoFIJQALUFPksEm2WqyQWMAy9URE5C6jLM4xJzkSEgGob+tGXavBA4EREfkup5OwW265BZdccgneffddrF27Ftu3b8f//d//4bzzzhvQbsWKFWhp4Yd/t7KNhmkclwbOVMshCICmpQsNbaxGRUREbjDK4hyhgTKkJUQA4GgYEZHTSVhVVRXuvfdefP3117j//vuRkpLisN3MmTPx+uuvjztAGsYIxTkigwMwMz4cAPcLIyIiN7GtUW4uBzqahm2aobRNSdS5OSgiIt/mdBL2+eef46c//SnCwsKGbRceHo68vLwxB0ajYC/OcXjIJjmckkhERO4UGg3EzhKfa4afksh1YUREonEV5iAvS8oGBAnQqgHaah02yeamzURE5G7qheLjCFMSM6wVEku0elgsFjcHRUTku2TOXnDhhRdCEASH5yQSCSIiIpCRkYEbb7wRqamp4w6QhhEUDsSlA/XHxCmJ6asHNbFVSCzW6GAyWyCVOP67IyIiGjN1PlDw5ojFOWYnRSBAKqC5oweali6oo0M9FCARkW9xeiQsLy8PFosFdXV1UCqVyMrKQnJyMurq6mAymZCUlIQdO3bgmmuu4cbNnjDCurCZ8REIC5Sio8eEk/WOS9kTERGNi604h/YwYOodslmQTIpZiWJxjhItpyQS0eTldBK2ZMkSBAYGYseOHXj99dfx5JNP4o033sAXX3yBwMBArFq1Cp9//jmmTp2KjRs3uiNm6m+EColSiYAs66bNnJJIRERuETMTCFYAxi6gdvgvYDOUCgBcF0ZEk5vTSdj//d//Yd26dUhKShpwPDk5GXfccQdeeOEFRERE4KabbkJhYaGr4qSh2JKw6gLAbHbYJNuehLE4BxERuYFEAqitxbhGmJJoK85RotW5OSgiIt/ldBJ29uxZhIeHOzwXGRkJrVYLAFAqlejq6hpfdDSy+DmALATobgWaTjlskpNiq5Co82BgREQ0qahsSdjwxTn6V0g0m1mcg4gmJ6eTsOTkZHzwwQcOz7333nv2ETKdTge5XD6+6GhkUhmQnC0+1zqekmgbCTvV0I5Ww9Bz9YmIiMZslCNhaQkRCJRJ0GYw4mxzpwcCIyLyPU4nYb/4xS+wfft23HDDDXjttdewbds2vPbaa7jhhhuwY8cO3HLLLQCAffv2Yd68eS4PmBwYoThHXEQQ1NEhsFiA4irOwSciIjdQ5vZtm6LXDtksQCrBnKRIANy0mYgmL6dL1P/whz+ExWLBxo0bsX79evvx2NhYPPzww7juuusAALfffjsCAwNdFykNbYQkDACy1VGoau5CQWULlsyM9VBgREQ0aQSFAwnzgNpicdNm+VVDNs1SyVFYpUOxRo+12UoPBklE5BucSsJMJhMqKytx6aWX4oc//CEqKiqg0+mgUCgwffr0AfuHxcbyg77H2JKw2iNArwEICB7UJEetwMdF1Sio0nk2NiIimjzU+WISVrUfmDt0EiZu2nwWJayQSESTlFPTES0WC1avXo2CggIIgoDU1FTk5uYiNTV1yA2cyQMUKUBoLGDuHbI0sG3T5sIqHSwWLoQmIiI3UDtXnONItR4mFucgoknIqSRMJpMhNjaWH+J9jSAAqgXi8yGKc8xJjkSgVILmjh5UciE0ERG5gy0JqykCeoeukJwaF47QQCk6e0yoaGj3UHBERL7D6cIcq1evxtatW90QCo3LCOvCgmRSzEkWF0KzVD0REbmFYgoQngCYjeL+lUOQSgTMSxZHw4o4JZGIJiGnC3Okp6fj008/xY033oiLLroIcXFxg6YiXnTRRS4LkEZJOV98HKY4R06KAoVVOhRUtuDKHC6EJiIiFxMEcTSs9GNxXdiU84ZsmqGSY/+ZZpRodLg2V+XBIImIvM/pJOyPf/wjAKCurg779w/eC0QQBJSWlo4/MnJOsjUJa64AOpuB0OhBTXJSovDqt2dQyOIcREQ+5/vvv8dHH32EgoIC1NbWIiIiAvPmzcMdd9zhX1u+qPP7krBh2Ddt1nIkjIgmH6eTsNdff90dcdB4hUYD0alAczmgPQzMXDWoSY510+aj1a0w9JoQHCD1cJBERDSUzZs3Q6fT4cYbb8SMGTPQ3NyMV199Fddffz1eeuklLF682Nshjo6qX3EOi0UcHXMgU6UAAByrbkWvyYwAqdMrJIiI/JbTSVheXp474iBXUOZak7BDDpMwVVQIYsMD0djeg6PVeuROGTxaRkRE3vHnP/8ZMTExA44tXboUF110EZ5//nn/ScKSsgBpINDZKM7OiEl12GxKdCgigmVoMxhRVteGudY1YkREk8GYv3Zqa2vDnj178NFHH0Gv51QCnzBChURBEJCtjgLA4hxERL7m3AQMAMLCwpCamoqamhovRDRGAcFAUrb4fJgpiRKJgAylmHhxvzAimmzGlIRt2rQJS5cuxS9/+Uv88Y9/hEajAQD87Gc/wwsvvODSAMkJ/SskDrGNgG2/MG7aTETk+9ra2nDs2DHMnDnT26E4x1aqXjP8urAMrgsjoknK6emIb731FjZt2oQf/ehHWLp0KW677Tb7uRUrVuCLL77Arbfe6tIgaZQS5gGSAKCzCdCdBaKmDmpi37SZI2FERD7v4YcfRldXF26//fYxXW8ymcZ13Vivh3IhpAAslftgHuY1MqxbpxRV6cb+Xm4w7v77Ofaf/e//ONmMt/+jvW5MSdhNN92EP/zhD4PeZMqUKTh79qyzL0muEhAMJGYA1YcBzUGHSVimSgFBALS6LtS3GhAfGez5OImIaERPPfUUPv74Yzz44INjro5YUlIyrhjGer3MEIosAKg/huID38IcEOawnbTDCAA4UdOK/YcKECh1XMTDW8b75+fv2H/2fzJzd/+dTsKqqqqwdOlSh+fCwsLQ2to67qBoHJS5YhKmPQxkXDvodHiQDLMSInC8tg0FVTpcPDfRC0ESEdFwnnnmGTz33HP43e9+h5/85Cdjfp2MjAxIpc5XwjWZTCgpKRnz9QBgOZACQVeJzJgeYPr5jttYLIj6z5do6exFcMJ0e9l6b3NF//0Z+8/+s/9j77/t+pE4nYRFRESgsbHR4TmtVutwYTF5kGoBcODFETdtPl7bhoJKJmFERL7mmWeewcaNG7Fu3boxT0O0kUql4/oQNa7r1fmArhJS7UGHFXttMlUK7C5rwJHqVuT4WNXe8f75+Tv2n/1n/93Xf6cLcyxevBgvvfQSOjs77ccEQYDRaMTmzZuxZMkSlwZITrIV56gpBEy9Dpvk2CsktngoKCIiGo1NmzZh48aN+NWvfoU777zT2+GMjzpffBztps2skEhEk4jTI2G/+c1vcO2112L16tVYtWoVBEHAm2++idLSUlRXV+Opp55yQ5g0atGpQJAc6NYD9cfE/VrOkW0tzlGs0cNoMkPGDTKJiLzulVdewdNPP42lS5figgsuQGFh4YDz2dnZXolrzOwVEg8AZjMgcXyvsZepZ4VEIppEnE7CpkyZgs2bN+Oxxx7D5s2bYbFY8OGHHyI/Px9//etfkZyc7I44B2lvb8ezzz6L48eP49ixY2hpacGdd96JdevWjer6pqYmbNiwAV999RUMBgPS09Px29/+1n82wxyKRAIo5wMVX4lTEh0kYTPiwhERJENbtxFlde2YY61ORURE3vPVV18BAPbs2YM9e/YMOn/ixAlPhzQ+8XOBgDCguxVoOA4kzHHYLFOlAACU1bWhq8eEkMDJO/2JiCYPp5MwAJgxYwZefvll9PT0oKWlBXK5HMHBnq2yp9Pp8O9//xvp6elYtWoVtmzZMupre3p6cNNNN6G1tRX3338/YmJi8NZbb+GWW27Bq6++iry8PDdG7gHKXDEJ0xwCFvx80GmJRECWWoFvTjWioKqFSRgRkQ944403vB2Ca0ll4peCZ/YAVfuGTMIS5cGIjwhCfVs3jlbrsWCqb60LIyJyh3HNQwsMDERCQoLHEzAAUCqVOHDgAN58803cfffdTl27ZcsWlJWV4amnnsKaNWtw/vnn4+mnn8bUqVOxYcMGN0XsQf03bR6CfdNm7hdGRETuwnVhREQOjWkkTKPR4LPPPkN1dTUMBsOAc4Ig4H//939dEtxwBGHse4ns3LkT06ZNQ05Ojv2YTCbDmjVr8OSTT6Kurg4JCQmuCNM7bElYw3Gguw0IihjUJFutAMDiHERE5Ea2JEwzfBKWoVRgZ2k914UR0aThdBL2n//8B3feeSfMZjOio6MRGBg44Px4kiNPOXnyJHJzcwcdnzVrlv28s0nYeHfVdumu5KGxkMhVEPQamDSHgKmD93XLUIpTEMsbOtDSbkBkSIDr3t8J3JWd/e//ONmw/+Pr/2T9c/MrqgXiY9MpoKMJCHO8jU2mWhwJK9LoPBQYEZF3OZ2E/f3vf8f8+fPx97//3W/3BNPpdJDLB28IaTum0+mcfs3x7qrt6l25p4dOR5Reg5qD21CnGzwSBgCJYVLUdpjw/u7DyE4Mcun7O4u7srP/kxn7P7n7P6GFRgOxaUBjmTgaNutSh81sFRIrGjrQZuhFRLB3vhgkIvIUp5Ows2fPYuPGjX6bgNkMN2I3ltG88e6q7epdyYWulUDN11BaapA0RFnj/LIifFhUg7bAGGRnz3DZezuDu7Kz/+w/+z/en5/k49R5YhJWtW/IJCw2PAhKRQi0ui4c0bZicap/f8YgIhqJ00lYcnLygI2a/ZFCoXA42qXXi3PRHY2SjWS8u2q7fFdu1UIAgKA9POTr5qRE4cOiGhRq9F7/AMhd2dl/9p/9pwlKnQ8UvDlicY4MpRxaXRdKtDomYUQ04TldHfG2227DK6+8gq6uLnfE4xFpaWkoKysbdNx2bObMmZ4OyfWSsgBBArRVA63VDpvkpEQBAAqrdLBYLJ6MjoiIJgtbcQ7tYcDUO2SzvnVhLM5BRBOf0yNhJSUlaGpqwg9+8APk5+cjKipqUJsHHnjAJcG5y6pVq/Dwww+jqKgIWVniZsZGoxEfffQRsrKy/Lsyok1QOBA/B6g7Ipaqjxy8ifbspEgEyiTQdfbiTFMnpsWGeSFQIiKa0GJmAsEKwKADakvEvcMcyFQqAAAlTMKIaBJwOgl788037c8/+eSTQecFQfBYErZ79250dXWho6MDAHDq1Cls374dALB8+XKEhITgvvvuw9atW7Fjxw4olUoAwLXXXou3334bd911F+655x7ExMTg7bffxunTp/Hqq696JHaPUM7vS8JmXzHodKBMggylHIfOtqCgsoVJGBERuZ5EIk6RP7VDnJI4RBJmK85R2dwJXWcPFKGBDtsREU0ETidhx48fd0ccY/Lwww9Dq9Xaf799+3Z7ErZr1y6oVCqYzWaYTKYB0+0CAwPx2muvYcOGDXj00UfR1dWF2bNn48UXX0ReXp7H++E2ylzg8OvDbtqcrVZYkzAdrp6v8mBwREQ0aajzrUnYPmDR7Q6byEMDMDUmFGeaOlGs0WNZWpyHgyQi8pwxbdbsK7788ssR26xfvx7r168fdDw2NhaPP/64O8LyHUrr/izaAsBsAiSDF77npCgAiOvCiIiI3EJt/YJzpOIcKgXONHWiRMskjIgmtlEV5jhw4IB9yt9wmpub8e677447KHKRuHQgIBToaQMaTzpsYivOUVrTiq4ebnxKRERuoMwVi0W1agC9dshmmdYpicXctJmIJrhRJWE33ngjysvL7b83m82YN28ejh07NqBdVVUVHnzwQddGSGMnlQFJ2eLzIaYkJsuDER8RBKPZgiPVXAxNRERuEBQOJMwTn2uGHg3LUIlJGItzENFEN6ok7Nzy5RaLBUajkWXN/YEqV3zUHnR4WhAEZKsVAICCyhYPBUVERJPOKKYkzlPKIQhAtd6AhrZuDwVGROR5Tu8TRn5GaUvChi7O0X+/MCIiIrew7RdWtW/IJuFBMqTGhQMASrQ6DwRFROQdTMImOlsSVncU6HW8wbatOEdBpc4zMRER0eRjGwmrKRryfgT0XxfGKYlENHExCZvo5GogLB4wG4GaYodNMlVySASgRm9AjX7oGyMREdGYKaYA4Qni/ai6cMhmmSomYUQ08Y26RH1FRQWkUrHEuclksh87tw35GEEQR8PKPhOnJKbkD2oSGijDrMRIlNa0orBSh6SMEC8ESkREE5ogiKNhpR+LUxKnLHbYLEOlACAmYRaLBYIgeDBIIiLPGHUSdu+99w469oc//GHA7/nD0kf1T8KGkJOiEJOwKh0uzUjyYHBERDRpqGxJ2NDFOeYkRUIqEdDY3o3aVgOS5PxikIgmnlElYY899pi74yB3GqFCIgDkqBV4e18l14UREZH79C/OYbGIo2PnCAmUYmZ8OI7XtqFYo2cSRkQT0qiSsKuuusrdcZA7Jc8XH1vOAB1NQFjMoCa24hzFWh16TWYESLlckIiIXCwpC5AGAp2NQHMFEJPqsFmWSmFNwnS4eG6ih4MkInI/ftKeDEIUQMxM8Xn1YYdNpseGIyJYBkOvGSdq2zwXGxERTR4BwUBStvhcc2DIZhkszkFEExyTsMnCVqpe43hKokTSb9Nm7hdGRETuYt+0eej9wmwVEku0YnEOIqKJhknYZOHEps0FlS2eiIiIiCYjexI2dHGOWYkRCJRKoOvsRVUzt04hoomHSdhkoeqXhA3xrWKOdSSskMU5iIjIXVTWJKzuKGBoddgkSCZFelIEAHGtMhHRRMMkbLJImCcuhu5qBlpOO2xim45Y0dgBXWePB4MjIqJJIzIJUKQAsAxbtTdDaZ2SyHVhRDQBOZWEGQwG3HDDDfjuu+/cFQ+5iywISMwQn2sdF+eICgvEtNgwAEAh14UREZG72EvVD12cI5PFOYhoAnMqCQsODkZZWRmkUqm74iF3Ui4QH4dbF2YrzsEpiURE5C799wsbQqZKAQA4otXDbGZxDiKaWJyejpiTk4Pi4mJ3xELuNkKFRADItu4XxgqJRETkNqqF4qPmAGA2O2wyMz4cQTIJ2rqNON3U4cHgiIjcz+kk7I9//CPeeecdbN26FR0d/KHoV2xJWE0RYOp12CRHLVZILKxs4TePRETkHgnzgIBQoLsVaDjusIlMKsHc5EgAXBdGRBOP00nY9ddfj9raWtx7771YsGABcnJyMH/+fPuv3Nxcd8RJrhCTCgTLAVO3WJXKgfSkCATJJGg18JtHIiJyE6ms74vBUUxJLNLo3B8TEZEHyZy94OKLL4YgCO6IhdxNEMSbXvmXYkWq5OxBTQKkEmSq5DhwpgUFlTqkxoV7Pk4iIpr41PnAmT3ilMQFNztsYt+0mSNhRDTBOJ2ErV+/3h1xkKfYk7DDwELHTbLVCmsS1oJrc1WejY+IiCaHURXnEJOwo9WtMJrMkEm5sw4RTQz8aTbZ2CokDlOcIydFXBfGColEROQ2Kuv9qOkU0NHksMm02HCEBUrR1WtCeQOnyBPRxOH0SJhNWVkZysvL0d3dPejclVdeOZ6YyJ2U88XHxjLAoBfXiJ0jx1oh8URdGzp7jAgNHPM/EyIiIsdCo4HYNPF+pNkPzLp0UBOpRMA8pRz7TjejSKPDrMQILwRKROR6Tn+67urqwq9+9Svs3bsXgiDAYhEr6PVfJ8YkzIeFxwPyFEBfCVQXAtOXD2qSJA9BYmQwalsNKNHokT89xvNxEhHRxKfOE5Owqn0OkzBAnJK473QzSjR6/HCB2sMBEhG5h9PTEZ999llotVq8+eabsFgseOaZZ/Dqq6/iBz/4AaZMmYIPPvjAHXGSK6msFam0w+wXZtu0mfuFERGRu9jXhR0YskmGtUJisZbFOYho4nA6Cdu1axd++ctfIicnBwCQlJSExYsX4+mnn8bcuXPx9ttvuzxIcjFbWWDt4SGb2KYkFlS2eCAgIiKalGxJmPbQkPtXZirFafOlNa3oMTre2JmIyN84nYRptVpMnz4dUqkUgiCgq6vLfu6KK67Arl27XBoguYE9CTs0ZJP+xTlsU06JiIhcKmamuDbZ2AXUljhsMiUmFJHBMvQYzSira/NwgERE7uF0EhYREYHOzk4AQExMDM6ePWs/ZzQa7efIhyVlAYIUaKsB9FqHTTKUckglAurbulGjN3g4QCIimhQkEkCVJz6v2u+wiSAI9k2bi7lfGBFNEE4nYbNmzcKZM2cAAPn5+Xj++edx8OBBFBcXY9OmTUhPT3d1jORqgWFA/Bzx+RCjYSGBUqRbq1CxVD0REbnNKPYLy7Bt2qzVeSAgIiL3czoJu+aaa9DRIe7V8dvf/hZdXV346U9/iuuvvx7V1dX405/+5PIgyQ1speqHnZKoAMB1YURE5EZq60iYZujiHFnWJKyoiiNhRDQxOF2i/rLLLrM/V6vV+Pzzz+3l6nNycqBQKFwZH7mLagFw+J/DJ2HqKLy5txKFrJBIRETuoswFBAmgrxKnyMuVg5rYKiSW1bXB0GtCcIDUw0ESEbmW0yNh5woNDcWFF16IFStWMAHzJ7biHNUFgNnksIltJKxEq2dFKiIico+gcCBhrvhc43hdWLI8GDFhgTCaLSitafVgcERE7jHuJIz8VFw6EBAG9LSLG2U6MC02DPKQAHQbzThey5seERG5iX1d2NDFOfrWhXFKIhH5v1FNR0xPT4cgCKN6QUEQcOzYsXEFRR4gkQLJOcDZbwDNQSB+9qAmgiAgW63A7rIGFFTq7NWpiIiIXEqdDxx4adjiHJkqBf5zokFcF7bYg7EREbnBqJKwO+64Y9RJGPkR5XwxCdMeAub/1GGTnBQxCSus0uFnHg6PiIgmCVtxjppioLcLCAgZ1MS2aTMrJBLRRDCqJGzdunXujoO8QbVAfBzVps2skEhERG6imAKEJwDtdUB1ITBl8FBXpnU64qn6dnR0GxEW5HRtMSIin8E1YZOZrThH3VGgx/Em29nWKYhnmjrR3NHjocCIiGhSEQRAtVB8PsSUxPjIYCRGBsNsAY5Wc50yEfk3p79G2rp164htrrzyyjGEQh4Xqez75rG2GEhZNKiJPDQA0+PCUNHQgcKqFlyYnuCFQImIaMJT5wPHtw1ZnAMQN22uPWZAsUaHvGnRHgyOiMi1nE7ChtqMuf+aMSZhfkIQAOUC4MQn4pREB0kYIO4XVtHQgcJKHZMwIiJyD3uFxH2AxSLeo86RqZRjx7E6VkgkIr/ndBK2a9euQcdaWlqwa9cufPrpp/j73//uksDIQ5TzxSRMc3DIJjkpCrx3WIMCbtpMRETukpQFSAOBzkag5TQQPX1QE3uZeg2TMCLyb04nYUrl4J3slUol5s2bB6PRiNdffx3r1693SXDkAbZ1YcMU58hWKwAAhZU6mM0WSCSslElERC4WEAwkZYsbNlftd5iE2bZKqWjsgL6rF/KQAM/GSETkIi4tzLF48WJ8+eWXrnxJcjflfPFRdxboaHTYJD0xAsEBErR1G1He0O7B4IiIaFKxlaofojhHdFggVFFi+fqjnJJIRH7MpUmYVquFRMKCi34lWA7EponPhxgNk0kl9m8fOSWRiIjcxp6EDV2cw1aqvphJGBH5MaenIx44cGDQsZ6eHpw4cQLPP/88Fi/mNvZ+R5kLNJaJSVjaxQ6b5KQosP90MwoqdfjhArWHAyQioklBZU3C6o4ChlYgOHJQk0yVAp+W1KJYo/NsbERELuR0EvbTn/50QCVEALBYLACA8847Dw8++KBrIiPPUeYCRZuHL85hXRfGTZuJiMhtIpMARQqgqxS/GExdMahJptI6EsbiHETkx5xOwl5//fVBx4KCgqBUKhEbG+uSoMjD+hfnGKIscE5KFACgrK4NHd1GhAU5/U+HiIhoZOp8MQmr2u8wCZtrTcI0LV1o7uhBdFigpyMkIho3pz9J5+XluSMO8qaEeYA0CDDogOYKICZ1cJPIYCTLg1GtN6BYo8fi1BjPx0lERBOfKg8o2TJkcQ55SACmxYbhdGMHSrR6LE+L83CARETj53QVjdOnT2P/fscLZvfv348zZ86MNybyNFkgkJQpPh+mVL1tNKygilMSiYjITWzFOTQHAbPZYRN7cQ4WiyIiP+V0ErZ+/XqHGzYDwFdffcU9wvyVE/uFFVTq3B8PERFNTgnzgIBQoFsPNJ5w2CRDyQqJROTfnE7CSkpKsHDhQofnFi5ciCNHjow7KPKCUSRhOSkKAGISZivGQkRE5FJSWd89aYgpibZtU0pYnIOI/JTTSVhbWxtCQ0MdngsODoZezx+Ifsl2w6spBow9DpvMU8ohkwhobO+GVtflweCIiGhSUeeLj0PsFzY3ORISAahtNaC+1eDBwIiIXMPpJCwhIQHFxcUOzxUXFyMuznMLZDs6OvCXv/wFS5YsQUZGBtauXYtPPvlkxOvef/99zJo1y+GvhoYGD0Tug6KnA8EKwNQN1DkezQwOkGJOsrhnC6ckEhGR29g3bXY8EhYWJMOM+HAALFVPRP7J6eqIq1atwgsvvIDs7GwsWrTIfnzfvn148cUXce2117o0wOGsW7cOJSUluOeeezB16lRs27YNd999N8xmM6644ooRr3/ssccwffr0AccUCoWbovVxgiCOhpXvEqckKuc7bJatVqBYo0dBpQ5XZCV7OEgiIpoUVNZlD02ngI4mIGxwRd4MpQJlde0o1uqxak6ChwMkIhofp5OwO+64A9988w1uvvlmTJ06FYmJiaitrcWZM2cwY8YMrFu3zh1xDrJ79258++23+Nvf/obLL78cALBo0SJUV1fjiSeewGWXXQapVDrsa8ycORMZGRmeCNc/qBb0JWH4pcMmOSkKvP79WVZIJCIi9wmNBmLTgMYyQHMAmHXJoCaZKjneO6xBiUbn+fiIiMbJ6emIEREReOedd3DnnXdCLpejuroacrkc69atw7/+9S+Eh4e7I85BduzYgdDQUFxyycAfzFdffTXq6+tRVFTkkTgmlNEU51CLZeqPVrei22jyRFRERDQZjTAl0V6mXqNnsSgi8jtOj4QBQFhYGO644w7ccccdro5n1E6ePInU1FTIZAO7MGvWLPv5+fMdT6mzuf3229Hc3IyIiAjk5eXhN7/5DdLS0sYUj8k0toTEdt1Yr3epxGxIAaCxDKaOFiA4clATlSIIUaEBaOnsxVGNDlnWsvVj5VP99wL2n/3v/zjZjLf/k/XPbdJQ5wMFbw5ZnGN2UiRkEgFNHT2o1hugVIR4OEAiorEbUxIGiFUSCwsL0dLSguXLl0Mul7syrhHpdDqoVKpBx21x6HS6Ia+NjY3F7bffjuzsbISHh6OsrAwvvPACrr/+emzevBnp6elOx1NSUuL0Na683lXmhSYhqLMG5Xu2oC0u12GbaZEStHQC2/YehaUpzCXv6yv99xb2n/2fzCZ7/2kIKutImPYQYOoFpAEDTgcHSJGWEIFjNa0o0eiYhBGRXxlTErZp0ya8+OKLMBgMEAQB7777LuRyOX72s5/h/PPPx6233urqOB0SBGFM55YtW4Zly5bZf79w4UIsX74cV1xxBf7xj3/gueeeczqWjIyMEdegOWIymVBSUjLm611NKF8EHPsAM0L0sGRnO2yzrPkUDteeQoM5HNnZWeN6P1/rv6ex/+w/+z/2/tuupwkqNg0IlgMGPVBb4rBgVJZajmM1rSjS6HHJvCQvBElENDZOJ2FvvfUWNm3ahB/96EdYunQpbrvtNvu5FStW4IsvvvBIEqZQKByOdtn2KXN2ZE6lUiE3N3fMa8mkUum4PkSN93qXUS8Ejn0ASXUBMEQ8uVOjAQBFGr3LYvaZ/nsJ+8/+s/+Tt/80BIlEHA07tUMszuEgCctQKrAZVdy0mYj8jtOFOd566y3cdNNNeOCBB7BkyZIB56ZMmYKzZ8+6LLjhpKWloby8HEajccDxsrIyAGLlQ2dZLBZIJE7/kUws9uIcB4EhFjpnqRUQBKCyuRON7d0eDI6IiCYV+6bNIxXn0LE4BxH5FaczjqqqKixdutThubCwMLS2to47qNFYtWoVOjs78cUXXww4/sEHHyA+Ph5ZWc5Nk6uqqsLhw4edvm7CScwEBCnQXge0ah02iQwOQGqcWAWzkJs2ExGRu9grJDouzpGWEIFAqQStBiMqmzs9GBgR0fg4PR0xIiICjY2NDs9ptVrExAzeUNEdli9fjvPPPx8PPfQQ2tvbkZKSgk8++QR79uzBhg0b7FNb7rvvPmzduhU7duyAUqkEANx0001YsGAB0tPTERYWhrKyMrz00ksQBAF33XWXR+L3WYGhQMJcoLZYXAwtH1z8BABy1Aqcqm9HQVULN8kkInKR9vZ2PPvsszh+/DiOHTuGlpYW3HnnnR7bg9PnKHMBQQLoqwC9FpArB5wOlEkwOzkSRVU6FGn0mBLjmmJRRETu5vRI2OLFi/HSSy+hs7PvGydBEGA0GrF58+ZBUxTdaePGjVizZg2efvpp3HLLLSgqKsKTTz6JNWvW2NuYzWaYTKYB0xTS0tLw2Wef4Q9/+ANuueUWvPTSS1i0aBHee++9MZeon1BsUxI1B4dskpMi7hdWWKXzQEBERJODTqfDv//9b/T09GDVqlXeDsf7gsLFLwYBQON4NCxTKU5J5KbNRORPnB4J+81vfoNrr70Wq1evxqpVqyAIAt58802UlpaiuroaTz31lBvCdCwsLAwPPPAAHnjggSHbrF+/HuvXrx9w7L777nN3aP5NmQscehXQHh6ySU6KAgBQVKWHyWyBVDJ0NUoiIhodpVKJAwcOQBAENDc3Y8uWLd4OyfvU+WJ1xKoDwNyrBp3O6LdpMxGRv3B6JGzKlCnYvHkzpk+fjs2bN8NiseDDDz9EVFQU3n77bSQnJ7sjTvIk1QLxsboAMDveDDUtIQKhgVK0dxtxqr7dg8EREU1cgiAMu8XKpDRCcY4slQIAcEQrfilIROQPxrRP2IwZM/Dyyy+jp6cHLS0tkMvlCA4OdnVs5C2xaUBgONDTDjQc75sK0o9UIiBTJcfeimYUVLZgVmKEFwIlIqLhmEyOv0gb7XVjvd6lkhdACsBSUwSzoR0IGLgp89ToYIQESNHRY8KpulbMiA8f91v6VP+9gP1n//s/Tjbj7f9orxtTEmYTGBiIhAQWZZhwJFIgOQc4s0cszuEgCQPEdWF7K5pRWKXDDXkpHg6SiIhGMt7NrH1iM2yLBZlBUQjobsHJr99FR0zGoCZTIiU43mTCtu9LcMGUEAcvMjY+0X8vYv/Z/8nM3f0fVRK2detWp170yiuvHEMo5FOUuX1J2PwbHTbJVisAAAUsU09E5JMyMjLGtBG2yWRCSUnJmK93NcnJ84ET25AW0gJLdvag84u0pTj+3Vm0ShXIzp497vfztf57GvvP/rP/Y++/7fqRjCoJ+9Of/jTqNxYEgUnYRGCvkHhoyCY51iSsrL4NbYZeRAQHeCAwIiIaLalUOq4PUeO93mVS8oET2yDRHgQcxJOtjgJwFiVavUvj9Zn+ewn7z/6z/+7r/6iSsF27drktAPJRtiSs/hjQ0wEEDt57JT4yGEpFCLS6LhRr9Dh/RqyHgyQiokmhf3EOiwU4p3iJrULi0epWGE1myKRO1x0jIvKoUSVhtk2OaRKRK4GIJKCtBqgpAqac57BZTooCWl0XCqt0TMKIiMg9krIAaSDQ0QC0nAaipw84PS0mDBFBMrR1G3Gyvh2zkyK9FCgR0eiM+aui9vZ2fPPNN9i2bRu+/fZbtLezTPmEYxsN0w49JbFvXViLBwIiIpr4du/eje3bt+Orr74CAJw6dQrbt2/H9u3b0dXV5eXovCQgWEzEAKBq8KbNEomAeUrbfmE6DwZGRDQ2Y6qO+PLLL+OZZ56BwWCAxWKBIAgIDg7Gb37zG9x8882ujpG8RTkfOL5t2CQsJyUKgFicw/ZvgYiIxu7hhx+GVqu1/96WgAHi8gCVSuWt0LxLnQ9oDohTErNuGHQ6UyXH9xVNKNbocf1CL8RHROQEp5OwrVu3YsOGDVi2bBmuuuoqxMfHo76+Hlu3bsUTTzyBqKgoFuaYKJTWTZuHKc4xNzkSAVIBTR09qGruQkpMqIeCIyKamL788ktvh+Cb1HnA9wCqDjg8bVsXVqLVezAoIqKxcToJe+2113D55Zfjr3/964Djl156KX7/+9/jn//8J5OwiSI5G4AA6CuB9nogPH5Qk+AAKeYky1FUpUNBVQuTMCIicg9VnvhYfxQwtALBA9d9ZSoVAIDSmlZ0G00Ikk3eqm5E5PucXhNWUVGBNWvWODy3Zs0alJeXjzso8hHBciA2TXyuPTxksxzuF0ZERO4WmQQoUgCL2eE0eXV0CBShAeg1WXCits0LARIRjZ7TSVhwcDD0esdD/Xq9HsHBweMOinyIyjolUXtwyCY5KQoAQEGVzv3xEBHR5GUbDXNQnEMQBGTYi3NwSiIR+Tank7Dc3Fw888wzqKurG3C8oaEBmzZtwoIFC1wWHPkA5XzxcbjiHGqxOMexaj0MvSZPREVERJNR//3CHMi0rQtjEkZEPs7pNWF33303brjhBlx00UVYvHgx4uLi0NDQgL1790Imk+GZZ55xR5zkLbbiHNpDDjfIBMQpIDFhgWjq6MGxmlbMt1ZMJCIicim1dSRMcxAwmwHJwO+SM1UKAEARy9QTkY9zeiRs5syZePfdd7Fy5UqUlJTg/fffR0lJCVauXIktW7ZgxowZ7oiTvCVhLiANAgx6oMnxej9BEPrtF6bzXGxERDS5JMwDAkKBbj3QeGLQadtI2Mn6dnT1cGYGEfmuMe0TNm3aNDz55JOujoV8kTRA3CBTs18cDYt1nGTnpCiw63i9ddPmaZ6NkYiIJgepDFDmAmf2iFMS42cPOJ0YGYzY8CA0tnfjWE0rcqdwZgYR+SanR8JoElL1m5I4hP6bNhMREbmNevjiHH3rwnQeDIqIyDljGgk7duwYPv74Y1RXV6O7u3vAOUEQ8Nxzz7kkOPIRylzxcZgKiZkqOQQB0Oq6UN9mQHwEq2QSEZEbjKI4x5fH61khkYh8mtNJ2NatW3HvvfdCIpEgOjoaAQEBA84LDgo3kJ+zVUisLQGM3YAsaFCTiOAAzIwPR1ldOwordbhobqKHgyQioklBtVB8bDoFdDQBYTEDTttGwoq1TMKIyHc5nYQ999xzWL58OR5//HHI5XJ3xES+JmoaEBINdDUDdUf6RsbOkaOOQlldOwqqmIQREZGbhEYDsWlAYxmgOQDMumTA6QylAgBQ3tCO9m4jwoPGNOmHiMitnF4TVl9fjxtvvJEJ2GQiCH2Jl2a4dWEKALAW5yAiInIT+7qwwVMS4yKCkCwPhsUCHOFoGBH5KKeTsNmzZw/aqJkmAfu6sJGLcxRr9DCZLZ6IioiIJiPV0MU5ACCDmzYTkY9zOgn7wx/+gBdeeAHHjx93Rzzkq0ZRIXFGfDjCAqXo7DGhrK7NQ4EREdGkYyvOoT0EmHoHnbZt2sx1YUTkq5yeKJ2dnY2LLroIV111FeLi4gZNSxQEAR999JHLAiQfkWwtztF0EuhqAUIG770ilQjIUivwXXkTCip1mJ0U6eEgiYhoUohNA4LlgEEvrlVOzhlwOkPJMvVE5NucHgl74YUX8PzzzyMqKgrJyclQKBQDfnGt2AQVFgNETRWfVxcM2YzrwoiIyO0kkmGnJNoqJJ5p6oS+c/BIGRGRtzk9Evb666/jmmuuwSOPPAKpVOqOmMhXKRcALWfE6R+pFzpskqMWR8gKq3Sei4uIiCYfdT5waodYnCP/tgGnFKGBSIkORWVzJ0q0eiyZGeulIImIHHN6JKyjowOXX345E7DJaBQVErOtI2En69uh7+K3j0RE5CZq635hIxTnKNbqPBQQEdHoOZ2EzZ8/H+Xl5e6IhXxd/wqJFsfVD2PDg6CODgEAFHMuPhERuYsyFxAkgL4KaK0edDrTui6suIrFOYjI9zidhN1///3417/+hZ07d6Knp8cdMZGvSsoEJDKgox7Qa4ZsZpuSWFCp81BgREQ06QRFAAlzxecO14UpAAAlrJBIRD7I6TVh11xzDYxGI9atWwdBEBAcHDzgvCAIOHRo6Olq5McCQsQbXk0RoD0IKNQOm+WkKPBRUTXXhRERkXup84HaEjEJm3vlgFPzlGKFXq2uC43t3YgND/JCgEREjjmdhF188cUQBMEdsZA/UOZak7BDwNyrHDbJVisAiBUSLRYL/70QEZF7qPOBAy+JxTnOEREcgOlxYaho6ECJVo8Vs+K9ECARkWNOJWEmkwm33XYboqOjWYp+slIuAA6+MmxxjjnJkQiUStDS2YuzTZ2YGhvmwQCJiGjSUFmLc9QUAb1d4oyNfrJUClQ0dKC4ikkYEfkWp9aEWSwWrF69GoWFhW4Kh3yerThHTSFgMjpsEiSTYq51GkhBFfcLIyIiN4maCoTFA+ZeoLpw0Gn7ps2skEhEPsapJEwmkyE2NhaWISrj0SQQOxMIjAB6O4GG40M2s+8XxuIcRETkLoIAqK2bNmuG3rS5WMPiHETkW5yujrh69Wps3brVDaGQX5BIAWWO+Fx7cMhmtv3CClicg4iI3EmdLz46qJA4JzkSEgGob+tGXavBw4EREQ3N6cIc6enp+PTTT3HjjTfioosuQlxc3KDCCxdddJHLAiQfpMwFTn8tFufIvclhkxxrcY5j1a0w9JoQHMDNvYmIyA3sSdg+cQ/Lfp9JQgNlSEuIwPHaNhRV6XDR3EQvBUlENJDTSdgf//hHAEBdXR327x/8rZMgCCgtLR1/ZOS7lAvER+3hIZuookIQGx6ExvZuHNHqsWBqtIeCIyKiSSUpC5AEAB0NQMtpIHr6gNMZSjmO17ahRKtnEkZEPsPpJOz11193RxzkT2zFOeqPAd3tQFD4oCaCICAnRYEdx+pQWKVjEkZERO4REAwkZwOaA+KUxHOSsEyVHFsOabgujIh8itNJWF5enjviIH8SmQREJANt1WJZ4KnnO2yWrRaTsAIW5yAiB7p7TTCz0BO5gjq/LwnLumHAqUyVAgBQrNFx70oi8hlOJ2E2bW1tKCwsREtLC5YvX859wyYbVS5QWi2uCxsiCcuxFeeoZJl6osnMYrGgRm9AaU0rjte24VhNK0prWnGmsQOJYVL8J8sCKZeN0nio84Dv4bA4R3pSBAKkAlo6e6Fp6YI6OtTz8RERnWNMSdimTZvw4osvwmAwQBAEvPvuu5DL5fjZz36G888/H7feequr4yRfo8wFSj8etkJipkoBiQBU6w2oazUgITLYgwESkTcYek0oq2vD8Zq+ZOt4bRv0Xb0O2yuCJZBwYILGS2WdpVN/FDC0AsGR9lNBMilmJUbgiLYVJVo9kzAi8glOJ2FvvfUWNm3ahB/96EdYunQpbrvtNvu5FStW4IsvvmASNhnY1oUNU5wjPKivKlVBpQ6XzOOCaKKJwmKxoK61G6U1rThmTbRKa1pR0dAOs4MZhlKJgNS4MMxOirT/SosLhba8lNPDaPwikwB5CqCvFGdopK4YcDpDqcARbSuKNXpclpHkpSCJiPqMKQm76aab8Ic//AEmk2nAuSlTpuDs2bMuC458WHIOAAHQVwFtdUBEgsNmOSkKMQmramESRuSnDL0mnKpvF5Otmjbr6FYrWjodj25FhQbYE630xAjMTorEzIRwBMkGzjk0mUyoZgJGrqLOE5Owqv2DkrAslRyb94vrwoiIfIHTSVhVVRWWLl3q8FxYWBhaW1vHHRT5gaAIIC4daCgVv3VMv8xhsxx1FDbvr2JxDiI/YLFYUN8mjm6VWpOt0ppWVDR2wORgeEsqETA9VhzdSk8Sk605SZGIjwji6BZ5njofOPIuoBm8LixDJa5bL9HqYTZbIOEcWCLyMqeTsIiICDQ2Njo8p9VqERMTM+6gyE8oc0dOwqzFOUo0ehhNZsikEg8GSERD6TaKo1ul/Ua2Smva0NzR47C9PCQAs62J1uykSMxOFEe3uBE7+Qy1dV1Y1QHAbAYkffebtIQIBMkkaDMYcba5E9Niw7wUJBGRyOkkbPHixXjppZewcuVKBAUFARD3hDIajdi8eTOWLFni8iDJR6lygcI3xSRsCKlx4YgIkqGt24gTdW2Ym8wqmkSeVt9mQGlNG45bR7ZKa9pQ3tAOo4PRLYkATIvtv3ZLTLwSI4M5ukW+LWEeEBAKdOuBxhNA/Gz7qQCpBHOSI1FQqUOxRsckjIi8zukk7De/+Q2uvfZarF69GqtWrYIgCHjzzTdRWlqK6upqPPXUU24Ik3xS/+Ic53zraCORCMhSK/DNqUYUVOqYhBG5UY/RjPKGdvs0wtKaNhyvbUVju+PRrchg2aBkKy0hgqNb5J+kMvG+dGYPULVvQBIGAJlKuTUJ02NtttJLQRIRiZxOwqZMmYLNmzfjsccew+bNm2GxWPDhhx8iPz8ff/3rX5GcnOyOOMkXxc8BZMHit47N5UDsTIfNclL6krCfLJri4SCJJqbG9m57smUrB1/e0I5e0+DRLcE2upXYl2ylJ0UiWc7RLZpg1HnWJGw/kHvTgFMZKgWAsyjR6L0RGRHRAGPaJ2zGjBl4+eWX0dPTg5aWFsjlcgQHcw+oSUcaACRlA1V7xSmJwyRhAFBYxU2biZzVa+ob3erbe6sNje3dDttHBMsGJVuzEiIQEsjRLZoE1Pnio4NNmzOtxTmOVOthMlsgZXEOIvIip5Owe++9F7/+9a+hVqsRGBiIhIS+0uRarRbPPPMMHnvsMZcGST5MmSsmYZqDQNYNDptkq6MAAOUNHdB39kIeGuDJCIn8RlN7t32/LVs5+FP17egxmQe1FQRgakwYZidFID2xb0qhUhHC0S2avFQLxcemk0BHExDWVywsNS4coYFSdPaYUN7QjrSECC8FSUQ0hiTsgw8+wP/7f/8ParV60LmWlhZs3bqVSdhkopwvPg5TnCM6LBBTYkJxtqkThRodlqfFeSg4It/V0W3E7hP1+KK4Df8oPIjjtW2obxtidCtIhvRzkq1ZiREIDRzTZAaiiSs0GohNAxrLAM0BYNYl9lNSiYB5yXLsP9OMYo2eSRgReZVL7+B6vR6BgYGufMlhdXR04KmnnsJnn30GvV6P6dOn49Zbb8Xq1atHvLapqQkbNmzAV199BYPBgPT0dPz2t7/F4sWLPRD5BKJaID7WlgDGbkAW5LBZjlqBs02dKKhsYRJGk1a1rgu7Suuwo7Qee8ub+o1wddjbTIkJtU4nFPfempMUCVUUR7eIRk2VJyZhVfsGJGGAuF/Y/jPNKNHocG2uyksBEhGNMgk7cOAA9u3bZ//9li1b8PXXXw9o093djV27diE1NdW1EQ5j3bp1KCkpwT333IOpU6di27ZtuPvuu2E2m3HFFVcMeV1PTw9uuukmtLa24v7770dMTAzeeust3HLLLXj11VeRl5fnsT74PcUUIDQG6GwSEzFbUnaOnJQobC2sRmGVzrPxEXmR2WzBkWo9dh6rw87SehyrGbiZfUp0KNIVFiydNw1zlAqkJ0YgLIijW0Tjos4Tt08ZZl1YEYtzEJGXjepuv2/fPjzzzDMAxD3BtmzZ4rBdcnIy/vu//9t10Q1j9+7d+Pbbb/G3v/0Nl19+OQBg0aJFqK6uxhNPPIHLLrsMUqnjhehbtmxBWVkZ/vWvfyEnJwcAkJ+fj7Vr12LDhg1D9o8cEARxXdjJL8QpiUMmYQoAQEGlDhaLhd/q04Rl6DXh21ON2Flah12l9QOmGEoEYH5KFFbNScCq2fGYGh2CoqIiZGenDPnzioicZCvOUX0YMPWKRaSsMlUKAMCxmlb0mswIkA7eWoWIyBNGlYTdcsst+PGPfwyLxYLzzjsPL7/8MubMmTOgTWBgIMLCPLf54Y4dOxAaGopLLhk41eDqq6/GPffcg6KiIsyfP9/htTt37sS0adPsCRgAyGQyrFmzBk8++STq6uoGFByhESgXiEmY5iCQf5vDJumJkQiUSaDv6sXpxg5Mjwv3cJBE7lPfZsCXpfXYWVqPb041wNDbV0gjLFCKZWlxWDk7AStmxSEmvG/Krslk8ka4RBNbbBoQLAcMeqDuCJDcd6+fEh2KiGAZ2gxGlNW1ce9KIvKaUSVhwcHB9hL0u3btQlxcnEfXfjly8uRJpKamQiYb2IVZs2bZzw+VhJ08eRK5ubmDjve/1tkkbKwfpmzX+fWHsaRsSAFYtIdgHqIfUgGYlxyJw5U6HDrbjCnRIQAmSP/Hgf33z/5bLBacqGvHztJ6fHm8ftDUpiR5MFalx+PC2XHInxaDIFnft+39++qv/XeV8fZ/sv650QgkEnFd2Kkd4pTEfkmYRCIgQynHd+VNKNHomYQRkdc4vfhAqfSNXeZ1Oh1UqsGLauVyuf38cNfa2jl77VBKSkqcvsaV13uTtCcA2QCE5nKU7P8apsBIh+2UwT04DGBXQTmmCw0Dzvlz/12B/ff9/veaLDja0IODNd04UG1AY+fAsvEzogKwIDkIC5ODMEUugyD0AB1alB7Rjvja/tB/d5rs/Sc3UNuSsH2DZmhkqhT4rrwJRRo9buAScCLyEqeTsN7eXrz44ovYtm0bqqur0d09sKSyIAg4duyYywIcznDrikZaczSeax3JyMgY05oOk8mEkpKSMV/vKywHpkNorkBGTC+Qmu2wzUXSWnxcVoiqLhmys8U2E6X/Y8X++3b/mzt68J+yBnx5vB57Tjaivbtv5CVIJsGSGTG4MD0eF86KQ3yk8xvW+3r/3W28/bddTzSI2ppdDVOco0Sr82BAREQDOZ2EPfnkk3jttdewbNkyrFq1ymvTEhUKhcMRK71enBbkaKTLFdcORSqVjutD1Hiv9zplLtBcAWlNIZB2kcMm86dGAwCO17ahxwSEBPb11+/7P07sv2/032KxoLyhA7tK67CztA6HzrbAbOk7HxcRhJXp8Vg1OwHnz4gd8G94PHyl/94y2ftPbqDMBQQJoK8CWquByGT7qQyleI8/UdsGQ68JwQH8t0dEnud0EvbZZ5/hjjvuwJ133umOeEYtLS0N27Ztg9FoHLAurKysDAAwc+bMYa+1tetvNNfSEJS5QMmWYTdtTpYHIz4iCPVt3SjR6pE3LdqDARI5ZjSZcfBsC3Yeq8Ou4/U43dgx4PzspEismi0mXhlKOSQSVvYk8nlBEUDCXHHrlKr9wNwr7adUUSGIDgtEc0cPjte2IVut8FqYRDR5OV2bVa/XY8ECx2XIPWnVqlXo7OzEF198MeD4Bx98gPj4eGRlZQ17bUVFBYqKiuzHjEYjPvroI2RlZbEy4lgorf8mNAcBi8VhE0EQ7KXqC6taPBQY0WCthl58XFSNu/5VgNxHd+KGF/bipW9O43RjBwKkApalxeGRtXPxzR9X4LO7luKei2YhS61gAkbkT2yl6s+ZkigIgn00rESj83BQREQip0fCFi5ciOPHj2PRokXuiGfUli9fjvPPPx8PPfQQ2tvbkZKSgk8++QR79uzBhg0b7FNb7rvvPmzduhU7duywFxW59tpr8fbbb+Ouu+7CPffcg5iYGLz99ts4ffo0Xn31VW92y38lZgCSAKCzEdBVAlFTHDbLVkfh86N1KKjUeTY+mvQqmzrFvbuO12FfRTOM/eYZRoUGYEV6PH4wOwFL0+IQzg2TifyfKg848JJYnOMcmSo5dpc1oJibNhORlzj9SeOBBx7Ar3/9ayQnJ+OCCy7waqn6jRs34u9//zuefvpp6HQ6TJ8+HU8++SRWr15tb2M2m2EymWDpNzoTGBiI1157DRs2bMCjjz6Krq4uzJ49Gy+++CLy8lgqaUwCgoHEeUB1gTglcYgkrP+mzUTuZDJbUFils26aXIeyuvYB52fEh2OldZrh/JQoSDnKRTSx2Ipz1BQBvQbxPmVlHwnTMgkjIu9wOglbu3YtjEYj7rrrLgiCYN8/zEYQBBw6NPS6IFcKCwvDAw88gAceeGDINuvXr8f69esHHY+NjcXjjz/uzvAmH2VuXxI272qHTTJVckgEoLbVgBp9F+LDvbvfHE0sHd1G7DnZiF2ldfjyeD2aOnrs56QSAQunRmHV7ASsmp2AqbGe21yeiLwgaioQFg901AM1hUBK3wyeLOs6sLK6NnT2GBEayNFvIvIsp3/qXHzxxWMq4U6TgDJXnPoxTHGO0EAZ0hMjcaymFYWVOlw0J96DAdJEVKPvws7SeuwqrcN35U3oMfbt3xURLMMFs+KxanY8LkiLhzw0wIuREpFHCYI4GnZ8mzglsV8SlhDZVyjqWHUrFkxloSgi8iynkzBHo0pEAPqKc1QXAiYjIHX8zys7RYFjNa0oqGISRs6zWCw4om3FTmsZ+aPVrQPOp0SHWke74rFwWjQCpE7XHyKiiUKdb03CHO8XtrO0HsUaPZMwIvI4jr+T68TMAIIige5WoP4YkJTpsFmOWoG391WioJIVEml0DL0mfFfeaB/xqmvt2yReEID5KVFYOVssrDEjPpyj9UQksm/avE+s3NvvZ0OmSmFNwnTeiY2IJrVRJWFHjx516kXnzp07pmDIz0kkQHIOcHq3OCVxqCQsJQoAUKzRo9dkdtiGqKGtG18dr8eO0jp8c7IRXb0m+7nQQCmWzYzDytnxWJEej9jwIC9GSkQ+KylbrNzb0QC0nAaip9tPZajE4hzFLM5BRF4wqiTsmmuuGdU3yxaLBYIgoLS0dNyBkZ9SLehLwhbc7LDJ9NgwRAbL0Gow4kRtm4cDJF9lsVhwoq4Nu0rrsbO0DoVVugFbziXJg+3VDBdNj0FwgNR7wRKRfwgIBpKzAc0BoOrAwCTMWiGxoqEDbYZeRARzzSgRec6okrDHHnvM3XHQRKHMFR+HKc4hkQjIUiuw52QjCqv0mBc8ZFOa4HqMZhTVdePDbcfw5fEGaFq6BpzPVMmxMj0Bq+bEY05SJKcZEpHz1PnWJGwfkHW9/XBseBCUihBodV04om3F4tQYLwZJRJPNqJKwq666yt1x0ERhS8LqS4HuNiAowmGznJQo7DnZiIIqHebN9GB85FW20a5vTjbi21ON2H+6GR09JgDi+sAgmQTnz4jFqtkJWDk7HgmRzNCJaJzUecD3GLI4h1bXhWKNjkkYkZeYzBb0GM3oMZnRa/tltKDHZEKP0WI/1tem71i30dZePN5jbWd/HZOlr439dcR2vf2O95gs6DGa0GuywGQ245JpAcjOdm+/WZiDXCsiEYhUAa0acYPMqUscNrNt2lxYpcNPZ0Z6MEDyNE1LJ7471YRvTjXiu/JGNLb3DDivCJLgonnJ+MHcRJw/I4b79RCRa6msxTnqjwKGViC4756ToZLjsyO1XBdGZGXoNeHbkw0oOtuFk0YNjBackwRZ7ElPT7+kZnCi1JcsDTjWLwGyHTNbRo7L0042uf89+GmHXE85X0zCNAeHTMKyVQoAwJmmTrR1h3swOHK3lo4efF9hTbpONeJMU+eA8yEBUuRNi8aSGbFYNC0KhrpyzM+ZB6mUa7yIyA0ikwB5CqCvFKfKp66wn8pUKgAAJRomYTR5mcwW7K1owtYCLbYfqUVbt9F6xjv/LwKlEgRIBQTIJAiQShAolSBQZj0mtR6TSfraDfi9BAEyB8esbYNk/X4vs7220K+NBIESoKuu3O39ZBJGrqfMBUo/GnZdWFRYIKbFhuF0YwdONvdiqQfDI9fq6jHh4NlmfHNKnGJ4tLp1QEENqURAtlqB81NjcP6MWOSkRCFQJu7dZTKZUFjPdV5E5GbqPDEJ0xwYkITZinNUNneipaMHUWGB3oqQyKNse25uLdTi46Jq1Lf1bf2SJA9GfLAZ0Qo5gmRSazIk2BOaQHtyJAxIZsRH4Zw2fQmQ/Zhs4LFzEyVvr//21GcTJmHkeirrps3aw8M2y1ErcLqxA2XNPcO2I99iNJlRotXju/ImfHOyEYfOtqDnnK0G0hLCcf6MWJyfGov86dGsOkZE3qXOB468Kxbn6EceGoCpMaE409SJEq0ey9LivBQgkWdUNnVia6EWWwu1qGjosB+XhwTgsowkXJmdjPlqOYqLi5Cdnc1ZKm7EJIxcLykbECTilMS2WnGdmAM5KQq8X6DFt1UGvLm3EnOUcsxKjEAkP7D7FIvFgvKGDnxrHen6vqIJbQbjgDZJ8mCcPyMWS2bE4rzUGMSzoAYR+RL7ps0HALNZ3NfSKkOlYBJGE1pTeze2Fddga6EWBZU6+/EgmQSr5iTgymwllqfFDZilQu7HJIxcLygciEsH6o+JUxLTVztslj9drERV3WbCnz8+Zj+uigpBemIkZidF2B+nxIRBKuG0NU+pazXg21ON1nVdTahtNQw4Hxksw+LUGCyZEYvzZ8RiWmyY16cPEBENKWEeEBAKdOuBxhNA/Gz7qUylHB8XVaNYo/NefEQu1tFtxI5jddhaqMWek40wWatfSATg/BmxWJutxMVzEzhTxYuYhJF7KHNHTMLSEiLw+s0LsPX7UrRYQnGitg3VegM0LV3QtHRhZ2mdvW1wgASzEvqSsvSkSKQnRkARyvn7rtBq6MXe8iZxiuGpRpyqbx9wPlAmwcKpUfYphvOUcibFROQ/pDLxvnRmjzglsX8SphLXhRWzOAf5uV6TGd+cbMTWQi2+OFqHrt6+Ea1MlRxrs5W4IjOJs1V8BJMwcg9lLlDwhlghcRjnz4hFWHuEfd6xrrMHx2vbcLymFcdr21Ba04oTdW0w9JpRpNGj6JybZJI8GLOtCVl6UiRmJ0ZgWmwYZFLJEO9IANBtNOHwWZ04xbC8EUVVugElYgVBXLBum2KYOyUKwQGcF05EfkydZ03CDgC5N9kPz1XKIQhAjd6A+jYD4iP4AZX8h8ViweFKHT4s1GJbcQ2aO/rW2U+JCcXabCXWZicjNY6VqH0NkzByD9umzdUFg+bfD0cRGohF02OwaHrfppkmswVnmzrsSVlpTRuO17ZC09KFGr0BNXoDvjxeb28fKJMgLSEc6YlicjYnKRLpSZGInsRVr8xmC47VtNqnGB440wxD78BiGtNjw3DeDHGK4aLpMRxlJKKJRZ0vPp5TnCM8SIbUuHCcqm/HEa0eF6YzCSPfd6q+DVsLqvFhkRZVzV3247Hhgbg8Mxlrs5ORrVZwqYAPYxJG7hE/B5CFAN2tQNNJIG7WmF9KKhEwPS4c0+PCcVlGkv14q6EXJ6yjZqW2UbPaNnT2mHBE24oj2taBIUUEiaNlSRGYnRiJ9KQITI8Nty9EnUgsFgsqmzvta7q+K29ES2fvgDax4UFYMiMG51nXdSkVIV6KlojIA1QLxcemk0BHExDW92VfpkqOU/XtKKrS48L0BC8FSDS8ulYDPiqsxtZCLY5W933GCQ2U4uK5iVibnYwlM2I5G8hPMAkj95DKgORsoPJ7cV3YOJKwoUQGB2Dh1GgsnBptP2Y2W1DV0onSGjEpO14rTms829SJ+rZu1Lc14OuyBnv7AKmAGfERmJ0YgXR7IZBIxEUEuTxed2ts78Z35U349qQ4xVDT0jXgfHiQDPnTosV1XTNikZYQzm/IiHxMR0cHnnrqKXz22WfQ6/WYPn06br31Vqxe7XhtLTkhNBqImSkmYZoDwKxL7KcylXK8f1iLEi3XhZFvaTX0YntJLbYWavF9RZN9H06ZRMDytDiszVHiB7MTEBLIJQP+hkkYuY8yty8Jy/6RR95SIhEwJSYMU2LCcMm8vtL47d1GcdSsthXHa/oe27qN1imOrUBB3+vEhgfapzPOThJHzWbEhyNI5js/5Dq6jdh/utk+xfB4bduA8wFSATkpUTg/NRZLZsYgU6VAAL8dI/Jp69atQ0lJCe655x5MnToV27Ztw9133w2z2YwrrrjC2+H5P3W+mIRV7RuQhGWoFADE4hyW/rvNE3lBt9GEr4434MNCLXYdr0ePsW/5wIIpUVibo8TqjKRJvcxiImASRu5jWxc2QnEOTwgPkiF3ShRyp0TZj1ksFmhauuyFQEqtidnppg40tvfgG2tyYyOVCEiNC7MWAhETs9mJkUiIDPLIiFKvyYyiKp19iuHhyhYYzQM/LMxOirRPMcybGo2wIP4XJ/IXu3fvxrfffou//e1vuPzyywEAixYtQnV1NZ544glcdtll3Dh1vNR5QOGb4khYP3OSIiGVCGhs70ZtqwHx4fxwS55lNluw73QzPizU4tOSGrT2249zZnw4rsxRYk1WMtTRoV6MklyJn9DIfWxJWN0RoNcABPjWYmdBEKCODoU6OhQ/mNO3BqCrx4SyOtt0xjb7SFmrwYiyunaU1bXjQ1Tb20eFBgxIymYnRWJmQvi4qwlaLBacqGvDt6ea8O2pRuyraEJHz8ANFFVRIfa9uhanxiA23P+mURKRaMeOHQgNDcUll1wy4PjVV1+Ne+65B0VFRZg/f76XopsgbMU5tIcAUy8gFfdICgmUIi0hAqU1rSiq0uMHs7lpM7mfxWJBaU0bPizU4qOiatTo+/bkTIwMxppsscDGnKRILh+YgJiEkfsoUoCwOKCjAagtAdQLvR3RqIQESpGlViBLrbAfs1gsqNEbcLy2td96szZUNLSjpbMX31c04fuKJnt7iQBMiw1DelKkWJ3RWkI/WR487A9Sra5LLBt/qhHfnmpCY3v3gPNRoQE4LzXWXjo+JYbfiBFNFCdPnkRqaipksoG35lmzZtnPO5uEmUymkRsNc91Yr/dZ0amQBMshGPQw1RQDSdn2UxnJkdYkrAUXpolrjSdc/0dpwv79j5K7+69p6cRHRTX4qKgGJ/vtyxkRLMOlcxOxJjsJeVOj7ftxms3moV7KLfj3P77+j/Y6JmHkPoIgjoaVbQe0B/0mCXNEEAQkK0KQrAgZUDnL0GvCqfp2HKvpW2tWWtOKls5elDd0oLyhA58U19jbRwbL7PuZpSdFYmZcGPZqDHj/7FF8V9GM040dA943OECCvGkx4hTD1FjMSYqEhJskE01IOp0OKpVq0HG5XG4/76ySkpJxxTTe633RjIhZkBv2Q7v3fTRM6zuusHQCAL47rsGqePH5ROy/M9h/1/W/rduMbzUG7DnbheNNfdWKZRIgNykIy1JCMD8pCIFSI9BahZLiKpe991jx79+9/WcSRu5lT8IOeTsStwgOkGKeUo55Srn9mMViQX1b94DpjMdr2lDe0I5Wg1hMY//p5nNeSQdAXHeWqZLbpxjmpCh8qhgIEbnXcCPlY5mOlJGRMaZ1ZCaTCSUlJWO+3pcJrSuB3fuhslRDmZ1tPy6J1eOFw9/jbKsF8+bNw5EjRyZk/0djIv/9j4ar+t/VY8LO4/X4qLAaX59stK/jFgRg0bRorM1KxsVzExAZEuCq0F2Cf//j67/t+pEwCSP3sq0Lm6BJmCOCICAhMhgJkcG4YFa8/Xi30YTy+o4BpfNP1LYhUDDhwrnJWDozHvnToxEZ7Fs/jInIMxQKhcPRLr1eLJtuGxFzhlQqHdeHqPFe75OmLAIASDQHgX59m6OUI1Aqga6rF9WtPQAmaP+dwP4733+jyYxvy5vwYYEWnx+tHbCWe25yJK7MVuKKrGQkyn1rnbwj/Pt3b/+ZhJF7JeeIj80VQGezuE/LJBUkk2JOciTmJEfaj5lMJhQWFiI7e86k/kFHREBaWhq2bdsGo9E4YF1YWVkZAGDmzJneCm1iUeYCggTQVwKt1UBkMgDxZ3R6UgSKNXqUaPVQejlM8h8WiwVFGj22Fmixrbgaje099nPq6BCszVLiypxkzIiP8GKU5GuYhJF7hUYD0alAczmgPQzMXOXtiIiIfNKqVavw73//G1988QUuu+wy+/EPPvgA8fHxyMrK8mJ0E0hQBJAwVywYVbUfmHul/VSGUm5NwlqhTBz6JYgAoKKhHR8WVuPDQi3ONHXaj0eHBWJ1RhKuzEnG/JQoVjYkh5iEkfupFliTsENMwoiIhrB8+XKcf/75eOihh9De3o6UlBR88skn2LNnDzZs2MDRcldS5TlMwrJUCry1rxLFGj0uSeReYTRYfZsBHxfV4MNCLYo1evvxkAApfjAnAVfmJGPpzDgESCVejJL8AZMwcj9lLlD8jlghkYiIhrRx40b8/e9/x9NPPw2dTofp06fjySefxOrVq70d2sSizgcOvgxU7RtwOEMlrrs7Wq2H2RLrjcjIB7UZevH50Tp8WKjFt6caYa2vAalEwNKZsVibnYyL5iQiLIgfq2n0+K+F3K9/cQ6LRSwLREREg4SFheGBBx7AAw884O1QJjZ1nvhYUwT0GoAAsUjCzPhwBMkkaO82oaZ9cu6RRKJeswU7S+vxUXENdh6rQ7exb6+unBQFrsxWYnVmEmLDg7wYJfkzJmHkfokZgCQA6GwCdGeBqKnejoiIiCazqKlAWDzQUQ/UFAIpYsVEmVSCucmROFypw6nm3mFfgiaexvZu7D/djN0n6vFJcT3ae+rs56bHheHKbCXWZidjSkyYF6OkiYJJGLmfLEhMxKoPA5qDTMKIiMi7BEEcDTu+TZySaE3CACBTpcDhSh2ePaDHN7V7sWh6DPKmRSN3ShQiuIXIhNLQ1o19p5uwr6IZeyuacLK+fcD5+IggXJGVjCuzlZinjGSBDXIpJmHkGcpcMQnTHgYyrvV2NERENNnZk7D9Aw5fm6vCF8dqUa0z4HClTkzI/lMOiQDMTZYjb1q0+GtqNKLCWLzDn9S3GewJ177TzTh1TtIFAOmJEVg4NQrTAtvwkx/kITCAH5XJPfgvizxDtQA48OKk2rSZiIh8mDpffKzaN2C98jylHF//fjk+//YQ2kMSceCsDvtON6GquQslWnEPsZe/OQ0AmJUQYU/K8qdFIz7S9zfgnUzqWw3Ye9qadFU0obyhY1Cb9MQILJoeYx/xjA4LtO/hKZVw5Ivch0kYeYatOEdNIWDqBaSc0kFERF6UlC2uV+5oAFrOANHT7KcEQUBiuAzZ2SpcnzcFAFCt68KBM83Yd7oZ+62jKCfq2nCirg1v7D0LAJgWG4a8qdH2xEwdHeqFjk1eda0G7K1owt6KZuyraEJF48CkSxCA2YmRyJ8eLSZdHM0kL2ISRp4RnQoEyYFuPVB/DEjipqNERORFAcFAcjagOSBOSeyXhDmSrAjB2mwl1mYrAYhFHA6c7kvKSmtbcbqxA6cbO/DOwSoAgFIR0jd9cVo0pseGcV2RC9XqDdh3usmeeJ12kHTNSYrEoukxyLf+HShCmXSRb2ASRp4hkQDK+UDFV+KURCZhRBODxQJYzIDZCJhNgMVkfW62Prf+3va8f1tjLyS9g6cHEXmMOt+ahO0Dsq536tLY8CBcmpGESzOSAAD6rl4cOtuMfRViYlai1UOr68IHBVp8UKC1XhNonbooTn2blRABCae8jVqNvsu+pmtvRRPONHUOOC8IwNzkSCyaFoN860iXPJQzb8g3MQkjz1HmikmY5hCw4OfejobIu3o6gNPfIObsPgimQgBmB8mMaeDzQQlO/7bmc5IdB9ebjdb3MDm4fpjrhkusLOaRejokKYB5QdFA7nFAKnXVnyzR6KnzgO8xqDjHWMhDAnBhegIuTE8AAHR0G1FQKa4n23e6GYVVOjS29+DTklp8WlJrv2bh1Ch7UjY3ORIyqWTcsUwU1bou63quZuw93YSz5yRdtmIpi6aLie3CadGQhzDpIv/AJIw8p/+mzUSTjcUC1JcCp3YC5buAs99BaurBVAAo9nJs7iRIAYm077Hfc4sgRZt8DuQCEzDyEpV10+b6o0B3GxAU4bKXDguSYcnMWCyZGQsAMPSaUKzRY781KTt0tgX6rl7sLK3HztJ68ZpAKeZPibJOnYtBllqOINnk+f+h1XVhb3mTdYphMyqbBydd85RyayGNaCyYGo1IbhtAfopJGHmOLQlrOO7ymx2RT+psBir+IyZdp74E2qoHnLbI1dAHKyFXxEKQSs9JWGTiNF578iKzPpf0Oy/tO2Y/7zjhGXz9SK95zvXDxiQFBInjY8OsfzGbTDhdWIhsrpEhb4lMAuQpgL5S/IJw+gVue6vgAKl9bdidAHpNZhytbsX+003Yb11X1mowYs/JRuw52QgACJRJkKNW2JOy+VMUCA2cOB/dNC2d2GsvGS9WoOxPKhHEpGuaWEgjd2oUky53M/UCVfsR1nQSqA8CwmKAkChxDSW51MT5n0y+LyIBkKsBfRVQXQBMW+btiIhcy2wS98KzjXZpDw2cricLAaYuAWasBFJXwhw1HeVFRcjOzoaU0/GIvEOdJyZhVfvdmoSdK0AqQbZagWy1ArcuS4XZbMGJujbsq2jC/jNiUtbY3oN91uIfwCnIJAIyVHJ7SfzcKf41/a6qubOveuHpJmhaBiddGdaRrvzp0VjADbI9o7cLKP8KKP0IOPEZpAYd0gHgu35tZMFAsEJMyEIUTjxXsCL2EJiEkWcp54tJmPYQkzCaGFqrgVO7xKSr/CvAoBt4Pm62mHTNWAmknDfw20STyaOhEpED6nzgyLticQ4vkkgEzE6KxOykSNx0/jRYLBZUNHZg/2mx3Pq+082o0RtQUKlDQaUOz++uGFByPX9aNBZOjUZMeJBX+2FjsVigaenC99YiGvsqmqHVDU66MlVye/XCBVOjER7Ej6Ye0d0GnPwCKP0YKPsC6FckyRIai24hGEHmTggGvbj+12gA2mvFX84KDD8nOZOPLoELlouzKiYo/ksnz1IuAI59CGgOejsSorHpNQCV31tHu74Ut1zoL1gufps+YxWQeiEgV3klTCIaJbV1XVjVAbH4jMQ3CmMIgoDUuHCkxoXj/+Wl2JMa29TF/WfEkuzHalpxrKYVr357BgAwIz7cPlKWPy0GiXLPTCOzWCyoau6yVy7cW9GEar1hQBtZv6Rr0fQY5E6JQhiTLs/pbAZOfCYmXuVfAqbuvnORKmD2FcCcNTAnL8DR4hJxloZEIiZsXS3il4xdulE+14nbEgFAT7v4q1XjZMACEBzZN6IWEjX650ERw06H9wX8l0+eZS/Ocdi7cRCNlsUCNJX3TTE8vQcw9v82VxD/XVunGEKZC0j5o5XIbyTMAwJCxQ+MjSeA+NnejsghQRCgjg6FOjoU1+SKX+7UtRr6krLTzThR14ZT9e04Vd+Ot/dVAgBSokPta9EWTYuBOjrEJXuVWSwWnG3qtBfR2FvRhBoHSVeWWoFF1s2Rc6dETag1bX6hrRY4vk1MvE7vEUe1bKJTgTlrgNlrgOScvqSl/ywNwZYIRQKY4tx7m02AQT/6pK3/8d4OABbxeoMe0J117r0F6cApkc4kcBLP7CXH/wnkWcnZ4mL9tmpxGldYgrcjIhrM0Aqc/tpaUGMnoKsceD48sW+K4fQVQGi0d+IkovGTysQvT87sEdeF+WgS5khCZDCuyErGFVnJAICWjh4cONO3gfTRaj0qmztR2dyJdw+JoxCJkcH2pCx/WjRmxIePKimzWCw409SJfRV9myPXtg5MugKkArLVCuRPE0e6JlohEb/RclZMuko/tk6ztfSdS8iwj3ghLt29o0USqXh/HMs90tjjRAJ3znNTt5hsdjaJv5wNWxaMhJk3AtnZzsftBP7PIM8KDAPi5wB1R8R1YWmXeTsiInEKUm1x3xTDqn3iPlg20kAgZZF1iuFKIGGuz09zICInqPP6krDcn3k7mjGLCgvERXMTcdHcRABAm6EXh8622JOyYo0Ota0GfFRUjY+KxGqt0WGByJsabU/MZidFAhCTrtONHdh/Rmcd7WpCXWv3gPcLkArIUUch3zrSNT8lCiGBE3cNj09rKANKPxQTr5qigedUC8XEa/YVQPR078TnLFkgEB4n/nJWb5dzSVv/5xYTBKMBwR3OTp10HpMw8jzlfCZh5H3tDWLCVb5LfOxoGHg+OtU62rVKrGgYGOadOInI/dT54qOXi3O4WkRwAC6YFY8LZsUDALp6TCioarEW+2jG4coWNHf0YPvRWmw/KhZciAiSYa4yEieqdWgx1A14vUCpBNkpCnFN17Ro5DDp8h6LRfzy8NhHYuLVeKLvnCABppwvTjNMXw3Ild6L0xsCQsRfkUnOXWexAD3tMHXpcfZULaLcE50dkzDyPOUC4PDr3LSZPMu694l9iuG53xQGhosVO21ru6KneSdOIvI81ULxsekk0NEkrguZgEICpTgvNRbnpYobSPcYzSjR6uwjZQfPtKCt24i9Fc0A+vYpsxXSyElRIDiASZfXmM2A5oBYSr70o4FT5SUBQOoKcbRr1mVAWKz34vRXgiAW9JCFAkLdyO3HiUkYeZ69OEeBuGiTyF1azvZNMazYDfS0DTyfmNE3xVCdL05/IKLJJzQaiJkpJmGaA8CMH/z/9u48vKkqjxv4N2mA7htdbdlaSLplytaWHURUliKgAvO88xZEEBBBBtBRUGeKgywig1KGpRYRHB4eUAovIKAsOuKMDQgDlqW0lMVSoC1dKd2T+/5xmzS3DVC6JE37/TzPfVLuPbc5Jwn59XfPuedYukZm0V4hR58u4npjc4YBVVodUu7ex28Z+agquIOXh/WBvS2/Fy1KWwXc/Ln6Hq+D0iniFXZAjxFA8DhA+Zw4Oy9ZDSZhZH6eQeJMVBX3xYBH1FQqSoAbP9f0duVelR637yhOGx/4jPjoxIlhiKhap6jqJOxUm0nCalPYyBHm54JgH0ecO5eLDuz1sozKMuDaj2LideVb8V4lvQ7OgHKkOLFG4DNAe3uLVZMah0kYmZ+NQpwK9eZ/ILt9FkCIpWtE1koQgOzLNdPH3/xFuu6JzEa84V4/xNC3Z4tZA4iIWphOkcC5f4nDlonMrbwYuHq0ZvFk45Eb9h3Fe7uCx4nD5jlqo1VgEkaW4dcbuPkf8b6wp5iE0RMoyROvEKYfB66eEJc7MObSqSbpChjK4RlEVD/6yTkyz4j3kBI1t9J84MqR6sWTjwNVRlP+Oz1VM5V8p35cf7IVstp39MGDB/j0009x+PBhFBYWIiAgADNnzsSYMWMee25iYiIWL15s8tjPP/8MT88GTIdJT6b6vjBZ5lngqRgLV4ZaNJ1WXNxbP8Qw8wwg6GqOK2zF2Qv193Z59OD08UT05DyU4kWbskIg+6Kla0OtVXG20eLJP0mXQ3HrZrR4cm+O3GjlrDYJmzdvHpKTk7Fo0SJ07doVBw8exMKFC6HT6TB27Nh6/Y4VK1YgIEC6XoKrq2sz1Jbq8OsrPmZfhExb/uiy1PYU3QauHq+ePv4HcQ0PY55B1UnXcKDLAHEqWiKixpDLxVkSrx6DLOMU0D7S0jWi1qIgo2bx5N9/gWTxZK/QmjW8uAZlm2KVSdi///1v/Oc//8GaNWsQHR0NAOjXrx9u376Njz/+GKNHj4aNzeNvJu3RowfUanVzV5dMcfEHHLwge5AN+8I0AFGWrhFZUlU5cENT3dt1HMi+JD1u6wIEDBN7uro/I35+iIiaWqcoscf91mkggEkYNcK9qzWLJ9/+n/TYU73FHq+gsYBHd8vUjyzOKpOwo0ePwt7eHiNHjpTsf/HFF7Fo0SKcP38evXv3tlDtqF5kMnFIYuphOBSkWLo2ZG4P7gF3kyG7cx7dfzsE+ZFkoLLEqIBMvG9QP8TQrw/HwxNR8+skJl6yW6eAgDcsXBmyKoIAZF2oWTw557LRQZk4akO/eLJrJ4tVk1oOq/yrJi0tDYGBgVAopNVXqVSG4/VJwmbPno28vDw4OTkhMjISb775JpRKZbPUmUzwF5Mwp5yz4hhpZx92w7c22krgXhqQdRHISgbuXhB/rl7nRA7AMG2Go3fNEMPA4eK6PURE5uTXB5DJISvMQLvSHEvXhlo6nU68T/lydeKVf73mmFwBdBsq9nipRgOOXparJ7VIVpmEFRQUwN+/7nAkFxcXw/FH8fDwwOzZs9GzZ084OjoiNTUV8fHxmDx5Mnbu3ImgoKAnrpNW27BFh/XnNfR8q+bbCzYAXLOTgLVBEOzcAA8VBE+V5BFOvq02OWtV739JHpB1AbKsC+K9flkXgZwUyLQVJosLbt0geIXgttwP3gP/D+Q+aun73Bpek8doVe9/AzS2/W31daNm1MFJvC/nbjIc834D0DbXC6NH0FYBv/+3ZvFk4xl6FbbixcTgsYDyecDOzXL1pBbP4kmYRqPBlClT6lV23759CA4OBgDIHvFH+aOOAcCQIUMwZMgQw78jIiIwdOhQjB07Fp999hk2btxYr/oYS05OfuJzmvJ8q6RzRpfOo+GYex4dHtyBrDQfyEiCLCNJUkyrcECpUxeUOXZBqVNXlDl1QaljF1TaebWa5Myq3n+dFrYPMmBXdA12RemwL0qHXVE62pflmiyutbFDqXMASpwDUeocgNLqR52iZjKNrCwdkHXeXC1ocazq/W8Gbb391ML4RwJ3kxFw9iMIKZuAjt0B90Cgo37rDrgHAO0dLF1TMpeqcuDav8UeryuHgBKjeNfeSUy4gscCPZ7l54LqzeJJWLdu3bBs2bJ6lfX19QUgzmBoqrersLAQQE2P2JPw9/dHnz59cP58w/4QVKvV9ZoMpDatVovk5OQGn2/ttOHbxPYHdYdNwQ3I7l0Re0/uXQFyrgB512BT9QCO+ZfgmC+drEFo7wh4KCF4qABPleERrp0BmXVM69ri3//SfCDroti7lXUBsuxL4vtjvJaJEcGtK+AVCsE7FIJ3mDjrk1sX2MnkMDV/YYtvfzNj+xvXfv35RE2q1/+FkPY9ZIUZkJXkin9wZ2jqlnN6SkzK3APExEyfoLl1BRQdzF5talryqtLqpOtbIPU7oLyo5qCdOxA0WrzHK2AY329qEIsnYV5eXpg4ceITnaNUKnHw4EFUVVVJ7gtLTU0FIM562BCCIEDewDUZbGxsGvVHVGPPt3Y2to6w8QsH/MKlB6oqgLx0ICdFTMqyL4uPuVchqygGbp+F7PZZ6TkKO3GtKM8gMSnzChZ/dusKyFvma2zx91+nBXLTxfu2si5W37t1ASjKNF2+nQPgHQJ4h4lDd3zUgFcIZLbOAIAn7Z+0ePstjO1v2+2nFsavN3Rvnsdvv/4Xf/BzgE3BdfH7MTddjEe5V8ULVPdvi9uNk9LzZXJx0fiOgdU9aN1retFcOnOSoZaksgy4f0dcFkX/WHQb8rxrCE//EXKd0RI6jj41U8l3Gcj3kRrNKj9BI0aMwO7du/H9999j9OjRhv179+6Fl5cXwsPDH3G2aRkZGTh79iwGDBjQlFWlxlK0F5Mor2Dpfm0lkHe9JjnTP95LBapKgbu/iZsxmw7VyZmqJkHzDBKvYtq0M1+bLK20oHqijAvA3WTxMfsy8JDeLbh2BrzV1clWmJh4uXXjIpJE1KrpFPaAbzjgb2Kir5I8aVJm+DkdqCgGCm6KW/oJ6XnyduIFQUOCZjTE0ekpfq82FUEQF90uqk6Ui+4Y/Vz97/u3pcMKjciqN8G1C2T6xZP9+vL9oSZllUnY0KFDMXDgQMTGxqK4uBidO3fGt99+i5MnT2L16tWSK6pLlizBvn37cPToUfj5+QEAXnnlFfTt2xdBQUFwcHBAamoqEhISIJPJMH/+fEs1i56ETTvAUyluxnRaIP9GdWJ22ShBq07OqofVScgVYgCUJGfBYmC05iEGOq2YqBrPSph1ASjMMF1eYVfTu+Wjru7lChHX6CIiohr27uLWKUK6XxDE2X5zr9ZK0K6Jj9pyIDdN3GpT2FYnZgG1etC6Aw6ereYe6EbTaYEHOeJIDUlydUfcp+/Rkix78ggKO8DZV0yCnZ8CnH2hc/RFSqk7VENego3CKv9UJitgtZ+suLg4rF27FuvWrUNBQQECAgLwj3/8A2PGjJGU0+l00Gq1EISa1cmVSiUOHz6ML774AuXl5XB3d0e/fv0wZ84cdOvWzdxNoaYkt6m5shhU00sKnQ4o/F3aa6Z/rCiu/jkFwP+rOUdmI/aSGZKz6gTNowfQztQdThZUVlidZF2U9m49LAi5dKpOtqqHE3qrAfduLXa4JhGRVZDJACdvces6UHpMpxOTBEOCZjTEMf+GOBoh+6K41dbeqSa21R7i2Jpm4KssM9FzVSu5un8XEOo5M6qdmyS5grOfOOOyc/U+J1+xTK0EV9BqUXruHBNfalZWm4Q5ODjg/fffx/vvv//IcitXrsTKlSsl+5YsWdKcVaOWSC4Xh4C4dRVnMdITBPHLPTulJhHLqZ4UpLyw5oplykGjXyYTf4/xkEbP6klBmntWJJ1OXIck60LNfVtZF4CC302XV9iJQzn1923pe7daU9AmIrIGcrm4SK9rJyDwaekxbaX4PW5qiGNBBlBxH7hzTtxqs3OvScqMhzi6BwIdHM3RsscTBKCsoGYYYJGJ5KroNlCaV7/fJ5OL92g5VydUhkTLKLly8gXa2zdrs4gaw2qTMKImIZMBLv7i1mNEzX5BEK+21e41y7ks3pCdf13cUg9Lf59r51rJWRDgoQSqJ6x4IuX3jXq2qocSZl0CKh+YLu/sL71vyztMDMTs3SIiatls2tUkT7VVlok9ZaZ60O7fEROXW6fErTZHn+oErdYQR7duQDvbpqm7TisOwXxUcnX/zpMPDzTVa+XsJx5z8OLEGGT1+AkmMkUmqw4CvtIrloIgjkWvk5yliPsLfhe3tO+lv8/Zr+6EIJ4qoL0zIOjEe7fuXZb2buXfMF03mw5i75ZxsuUdKt6fQERErUs7W8ArSNxqKy+uvt9Mn6AZ/VySCxTfFbebP9c6UVYzg2PtIY6unQFUT0BRVQYUZj06uXrS4YGG5Mo40fKr6dWydeUwQGoTmIQRPQmZDHD0ErduQ6THHuQC1euc1QxvvCIGwKJMcas1U5bc0Rs9S4tgoy01/XxOTxndt1U9YYZ7IK8AEhGRONzQ9w/iVltpvjQpy60e5ph3TVzzqvB3cbv2g/Q8uQJyZz+EP8iHzYGiur/XFMPwwNr3XlUnV/oerZZ2PzWRBfEvOaKm4tARcBgAdKm1zEFpvjg7Y+3es6JbkBVnwQaAYNMeMs8go/u2qpMuh44WaQoREVk5OzfAv4+4GdOP6DAkZcZDHK8BVaWQFdys+QNRYVf3fivDz9WPjl4c+k70hJiEETU3Ozegc5S4GSsrgjbnClLSbyJoQDRs2jfR+HwiIqKHMR7R0aW/9JhOB9y/DW3eDaTcuIOgiOGwcXDn8ECiZsAkjMhSbJ2Bp3qjLFvethaLJiKilkkuFyeqcvRFWd45wM6VCRhRM+HS30RERERERGbEJIyIiIiIiMiMmIQRERERERGZEZMwIiIiIiIiM2ISRkREREREZEZMwoiIiIiIiMyISRgREREREZEZMQkjIiIiIiIyIyZhREREREREZsQkjIiIiIiIyIyYhBEREREREZkRkzAiIiIiIiIzYhJGRERERERkRkzCiIiIiIiIzEhh6QpYO0EQAABarbZB5+vPa+j51o7tZ/uNH9satr9x7defp/8ephqMTY3D9rP9xo9tDdtvntgkExi9GqWiogLJycmWrgYRUZulVqvRvn17S1ejRWFsIiKyrMfFJiZhjaTT6VBVVQW5XA6ZTGbp6hARtRmCIECn00GhUEAu5+h6Y4xNRESWUd/YxCSMiIiIiIjIjHjpkIiIiIiIyIyYhBEREREREZkRkzAiIiIiIiIzYhJGRERERERkRkzCiIiIiIiIzIhJGBERERERkRkxCSMiIiIiIjIjJmHNKDExESqVyrCFhIRg0KBBWLBgAW7cuCEp++uvv+K9997Diy++iLCwMKhUKty6dcsyFW8i9W2/VqvF1q1bMX36dAwZMgTh4eEYNWoUPvnkExQVFVmuAc2k9utSe9NoNJauYoMdOXIEKpUKhw4dqnPshRdegEqlwsmTJ+scGzFiBCZMmAAA+OGHH/CXv/wFY8eORWhoKFQqVbPXu6k0tv3FxcXYuHEjYmJiMHDgQPTq1Qtjx45FfHw8ysvLzdGERmmK93/t2rUYP348IiMjoVar8cwzz+CDDz5AZmZms9e/rWBsYmwyhbGJsak2xqbmjU2KBp9J9bZixQoEBASgvLwcZ8+exaZNm6DRaHD48GG4uLgAAJKSkvDLL78gODgYDg4OOHXqlIVr3XQe1/6ysjLExcUhOjoaEydOhJubGy5duoSNGzfihx9+wJ49e2Bra2vpZjQ5/etSW/fu3S1Qm6YRGRkJmUyGpKQkjB492rC/oKAAqampsLe3h0ajweDBgw3H7t69i4yMDEybNg0AcPToUZw/fx7BwcFo164dLl68aPZ2NFRj23/79m1s27YN48aNwyuvvAJ7e3ucOXMG69evx3//+19s3boVMpnMEk2rl6Z4/4uKijBmzBgEBgbCwcEBV69excaNG3HixAkcPHgQbm5uZm9Xa8XYxNhkCmOTiLGJsam5YxOTMDPo0aMH1Go1ACAqKgparRZxcXE4duwYXnrpJQDAnDlzMHfuXADAli1bWlWge1z7bW1tcfz4cckHOCoqCr6+vpg/fz6+++47jBs3zlLVbzbGr0tr4e7ujh49etT5/J4+fRoKhQIvvfRSnaupSUlJAMT3HACWLVsGuVzspP/www+tKtA1tv3+/v44ceIE7O3tDcf79+8POzs7fPzxxzhz5gz69u3b/A1poKZ4///2t79Jjutfl5kzZ+L48eN4+eWXm7EFbQtjE2OTKYxNIsYmxiageWMThyNagP7LLTc317BP/x+7LajdfhsbG5NXEP7whz8AEK9GkPWIiorC9evXkZ2dbdin0WgQFhaGoUOH4uLFiyguLjYcO3XqFGxsbAxf4Nb+f6Ex7be3t5cEOT1r+r/Q2PffFHd3dwCAQsHrhs2JsYmxqTVjbGJsammxybo/UVZKP56+a9eulq2IhdS3/fqrENY8BOJRdDodqqqqJJtWq7V0tRqtX79+ACC54qTRaBAZGYnevXtDJpPhzJkzkmMhISFwcnIye12bQ3O035r+LzRV+6uqqlBWVoZLly5h+fLl6Nq1K5599lnzNKKNYmxibAIYm4yPMTYxNjVnbGISZgb6L7QHDx7g5MmT2LhxIyIiIjB8+HBLV80sGtL+rKwsrFmzBmFhYXj66afNWFvzmTRpEkJDQyVbaxgCEhERAblcbviiy8/PR1paGiIiIuDg4ICQkBDDF/edO3dw69YtQ3d/a9DU7U9JSUFCQgKeffZZBAUFmaUNjdEU7c/JyUFoaCjCw8MxYcIEaLVabN++HQ4ODmZvT2vG2MTYZApjE2MTY5N5YhPHdpjBpEmTJP8ODAzEhg0b2szQmidtf0FBAV577TUIgoBPP/3U6ocAPMyqVasQGBgo2deSb2ytLxcXFwQFBRnGV58+fRo2Njbo3bs3APGLUP9Fpy/TmgJdU7b/1q1bmD17Nnx8fLBs2TIz1L7xmqL9bm5u+Oabb1BRUYFr164hISEBU6ZMwVdffQUvLy8ztqZ1Y2xibDKFsYmxibHJPLGpdX6DtDCrVq3CN998g23btmHy5MlIT0/HwoULLV0ts3mS9hcWFuLVV19FVlYWvvjiC3Tq1MnMtTWfwMBAqNVqyRYWFmbpajWJqKgo3LhxA1lZWdBoNAgNDTVcKYqMjMTly5dx//59aDQaKBQK9OnTx8I1blpN0f7MzExMmTIFNjY22LZtG1xdXc3cioZrbPsVCgXUajX69OmDiRMnYtu2bbh16xbi4+Mt0ZxWi7GJsckUxibGJsYm88QmJmFmoP9C69evHz788ENMnDgRJ0+exJEjRyxdNbOob/sLCwsxbdo03Lp1C1u3brWK7m0yTX/16NSpUzh16hQiIiIMx/RfaqdPn4ZGo4FarW51w8wa2/7MzEzExMQAALZv3w4fHx8z1bxpNPX77+PjAy8vrzprWFHjMDYxNrU1jE2MTUDLiU1Mwizg7bffhouLC9atWwedTmfp6pidqfbrg1xGRga2bNmCkJAQC9eSGiMiIgI2Njb47rvvkJaWhsjISMMxJycnBAcHY9++fcjMzGxVwz30GtP+27dvIyYmBjqdDtu2bYOfn5+5q99oTf3+37x5E3fv3kWXLl2as9ptHmMTY1Nrx9jE2NSSYlPbGPjdwri4uGDmzJlYvXo1Dhw4gHHjxiEvL89ws2BqaioA4KeffoK7uzvc3d0lHxRrV7v9zz//PKZPn45Lly5hyZIl0Gq1OHfunKG8u7s7OnfubLkKN5O0tDSTM0517tzZMO2ptXJ0dERISAiOHTsGuVxep0s/IiIC27ZtA1B3zHVmZiaSk5MBAL///jsAGK5M+/n5WcUN4g1tf25uLqZMmYKcnBx89NFHyM3NlUwX7uPjYxVXHhva/pSUFKxYsQLPP/88OnXqBLlcjtTUVHz55ZdwdXXFq6++atZ2tDWMTYxNAGMTYxNjE2Ce2MQkzEJiYmKwY8cObNiwAdHR0UhLS8P8+fMlZZYuXQpAHKf61VdfWaKazca4/b169TJ8sX300Ud1yk6YMAErV640dxWb3eLFi03uX7ZsGSZOnGjm2jS9qKgoJCcnIzg4GI6OjpJjERER+PLLL9GuXTv06tVLckyj0dR5bfT/N6zps9CQ9l+9ehUZGRkAxKvytc2dOxfz5s1r3oo3kYa038PDA15eXti6dStycnJQVVUFHx8fDBs2DLNnz4avr6+5m9HmMDYxNjE2MTYxNpknNskEQRAa1RoiIiIiIiKqN94TRkREREREZEZMwoiIiIiIiMyISRgREREREZEZMQkjIiIiIiIyIyZhREREREREZsQkjIiIiIiIyIyYhBEREREREZkRkzAiIiIiIiIzYhJGVicxMREqlcqwhYSEYNCgQViwYAFu3Lhh6eoBADZt2oRjx47V2a/RaKBSqaDRaCxQK9GJEycwe/ZsDBgwAGFhYYiMjMTUqVOxf/9+VFZWWqxetZl6rd59910MHz68WZ83KysLcXFxuHz5crM+DxG1LoxNjcPY9GiMTa2PwtIVIGqoFStWICAgAOXl5Th79iw2bdoEjUaDw4cPw8XFxaJ127x5M55//nmMGDFCsj80NBS7du1C9+7dzV4nQRCwZMkSJCYmYujQoXj33Xfh6+uL+/fvQ6PRYOnSpcjPz8fUqVPNXrf6mjNnDqZMmdKsz5GdnY3169fDz88PwcHBzfpcRNT6MDY9Gcam+mFsan2YhJHV6tGjB9RqNQAgKioKWq0WcXFxOHbsGF566SUL1840R0dH9OzZ0yLPnZCQgMTERMybNw9z586VHBs+fDhmzJiBmzdvmrVOZWVlsLW1rXf5zp07N2NtiIgaj7HpyTA2UVvF4YjUauiDXm5urmR/cnIyZs+ejcjISKjVaowfPx6HDh2SlMnLy0NsbCxGjx6NXr16oX///pgyZQp+/fXXOs9TUVGB9evXY9SoUVCr1YiKikJMTAzOnj0LAFCpVCgpKcHevXsNw1JiYmIAPHzIx/HjxzF58mSEh4ejV69emDZtGv73v/9JysTFxUGlUiEtLQ0LFy5Enz59MGDAACxevBj3799/5GtTWVmJhIQEBAQE4I033jBZxtPTE3379jX8u6CgALGxsRg8eDDCwsLwzDPPYO3ataioqJCcV15ejjVr1mD48OEICwvD4MGDsXTpUhQVFUnKDR8+HLNmzcL333+P8ePHQ61WY/369QCA9PR0TJ8+HeHh4YiKisJf//pXPHjwoE4dTQ35UKlU+PDDD7Fv3z6MGjUK4eHheOGFF/DDDz9Iyt28eROLFy/Gc889h/DwcAwePBizZ8/GlStXDGU0Gg1efvllAMDixYsN719cXJyhTH0+T0REeoxND8fYxNjUlrEnjFqNW7duAQC6du1q2JeUlIQZM2YgPDwcsbGxcHJywqFDh7BgwQKUlZXhxRdfBCB+qQPA3Llz4eHhgZKSEhw9ehQxMTH48ssvERUVBQCoqqrCjBkzcObMGUyZMgX9+vWDVqvF+fPncefOHQDArl27MHXqVERFRWHOnDkAxKuMD3PgwAG89dZbGDRoENasWYOKigokJCQYnts4+ADAvHnzMHr0aLz88stITU3FmjVrAIhDYB7mwoULKCgowMSJEyGTyR77WpaXl2PKlCnIyMjAvHnzoFKp8OuvvyI+Ph6XL19GfHw8AHEYyZw5c5CUlISZM2eib9++uHLlCuLi4nDu3Dns2rUL7du3N/zeixcvIj09Ha+//jr8/f1hZ2eHe/fuISYmBgqFAn/729/QsWNHHDhwAH//+98fW0+9H3/8EcnJyXjzzTdhb2+PhIQEzJ07F0eOHEGnTp0AiEM5XF1dsWjRIri7u6OwsBB79+7FpEmTsHfvXgQEBCA0NBQrVqzA4sWL8frrr2PYsGEAAB8fHwD1/zwREekxNjE2MTaRSQKRldmzZ4+gVCqFc+fOCZWVlUJxcbHw008/CQMHDhT+9Kc/CZWVlYayI0eOFMaPHy/ZJwiCMGvWLGHgwIGCVqs1+RxVVVVCZWWlMHXqVOGNN94w7N+7d6+gVCqF3bt3P7KOPXv2FN555506+5OSkgSlUikkJSUJgiAIWq1WGDRokBAdHS2pS3FxsdC/f39h8uTJhn3r1q0TlEql8Pnnn0t+Z2xsrKBWqwWdTvfQ+nz77beCUqkUdu7c+ch66+3cuVNQKpXCoUOHJPvj4+MFpVIp/Pzzz4IgCMJPP/1ksk7659u1a5dh39NPPy0EBwcL165dk5RdvXq1oFKphMuXL0v2T5s2TfJaCYIgvPPOO8LTTz8tKadUKoUBAwYI9+/fN+zLyckRgoKChM2bNz+0jVVVVUJFRYXw3HPPCcuXLzfs/+233wSlUins2bOnzjkN/TwRUevH2MTYZIyxiR6HwxHJak2aNAmhoaHo3bs3ZsyYAWdnZ2zYsAEKhdjBe/PmTVy7dg1jx44FIF4p1G9DhgxBTk4Orl+/bvh9O3fuxIQJE6BWqxESEoLQ0FD88ssvSE9PN5Q5efIkOnTo0GTj+q9fv47s7GyMGzcOcnnNf0cHBwc899xzOH/+PEpLSyXnmBryUF5eXmeoS2MkJSXB3t4eI0eOlOzXX0375ZdfDOWM9+uNGjUK9vb2hnLGde3WrZtkn0ajQY8ePRAUFCTZHx0dXe/6RkVFSa7oenh4oGPHjsjMzDTsq6qqwqZNmzB69GiEhYUhJCQEYWFhuHHjhuQ9fpgn/TwRUdvE2CRibGJsokfjcESyWqtWrUJgYCAePHiAQ4cOYdeuXVi4cCESEhIAAPfu3TOUW7VqlcnfkZ+fDwDYunUrVq5ciT/+8Y+YP38+3NzcIJfL8dlnn+HatWuG8nl5efDy8pIEpcbQP7+np2edY15eXtDpdCgqKoKdnZ1hv6urq6ScfkhFWVnZQ5/H19cXQM2wmMcpKCiAh4dHneEhHTt2hEKhMAyRKSgogEKhgLu7u6ScTCaDh4eHoZyeqXYWFBTA39+/zn4PD4961RWo+5oA4utSXl5u+PfKlSuxY8cOvPbaa4iIiICLiwtkMhnef/99SbmHeZLPExG1XYxNIsYmxiZ6NCZhZLUCAwMNNzz369cPOp0OX3/9NY4cOYKRI0fCzc0NADBr1iw8++yzJn+H/srX/v37ERkZiaVLl0qO174B193dHWfOnIFOp2uSYKevY05OTp1j2dnZkMvlcHZ2bvTzhIWFwdXVFcePH8eiRYseO/be1dUV58+fhyAIkrK5ubmoqqoy1NvV1RVVVVXIy8uTBDtBEHDv3j3D+6Nn6nldXV0NQcSYqX2NsX//fowfPx4LFy6U7M/Pz6/Xa/wknyciarsYm+qPsYmxqS3jcERqNd5++224uLhg3bp10Ol0CAgIQNeuXZGSkgK1Wm1y0w8TkMlkkpt0ASAlJQXnzp2T7Bs8eDDKy8uRmJj4yLq0b9/+kVf/9Lp16wZvb28cPHgQgiAY9peUlOD7779Hz549JVcaG6pdu3aYMWMGrl27hn/+858my+Tm5uLMmTMAgP79+6OkpKTOop779u0zHDd+3L9/v6Tcd999h5KSEsPxR4mKikJaWhpSUlIk+w8ePPj4hj0BmUyGdu3aSfb9+OOPyMrKkux72NXbJ/k8ERHpMTY9HGMTY1Nbxp4wajVcXFwwc+ZMrF69GgcOHMC4ceOwdOlSvPbaa5g+fTomTJgAb29vFBYWIj09HRcvXsS6desAAMOGDcOGDRuwbt06RERE4Pr169iwYQP8/f2h1WoNzxEdHY3ExETExsbi+vXriIqKgiAIOH/+PAIDAzFmzBgAgFKpxKlTp3DixAl4enrCwcEBAQEBdeosl8vx9ttv46233sKsWbMwefJkVFRUYMuWLSgqKsKiRYua7PXRB7q4uDgkJycjOjrasCDm6dOnsXv3bsybNw99+vTB+PHjsWPHDrzzzjvIzMyEUqnEmTNnsHnzZgwdOhQDBgwAAAwcOBCDBg3CJ598guLiYvTu3RtXrlzBunXrEBISgnHjxj22XlOnTsWePXswc+ZM/PnPfzbMQGU81KYpDBs2zDDTlEqlwsWLF7FlyxbD7FJ6nTt3hq2tLQ4cOIDAwEDY29vDy8sL3t7e9f48ERHpMTY9GmMTY1NbxSSMWpWYmBjs2LEDGzZsQHR0NPr164evv/4amzZtwvLly1FUVARXV1cEBgZi1KhRhvNmz56N0tJSfPPNN0hISED37t0RGxuLY8eO4dSpU4ZyCoUCn3/+OTZv3oxvv/0W27Ztg4ODA4KCgjB48GBDuffeew9Lly7FwoULUVpaisjISHz11Vcm6zx27FjY2dkhPj4eCxYsgI2NDcLDw7F9+3b07t27yV4bmUyGFStWYMSIEdi9e7fh9dDX/6233jLcxNyhQwds374da9euRUJCAvLz8+Ht7Y1XX31VspimTCbDhg0bEBcXh8TERGzatAmurq4YN24cFi5cWOcKrimenp7417/+hY8++gixsbGws7PDiBEj8MEHHximUW4K7733HhQKBeLj41FSUoKQkBDExcXhs88+k5Szs7PD8uXLsX79ekyfPh2VlZWYO3cu5s2bV+/PExGRMcamh2NsYmxqq2SCcT8zERERERERNSveE0ZERERERGRGTMKIiIiIiIjMiEkYERERERGRGTEJIyIiIiIiMiMmYURERERERGbEJIyIiIiIiMiMmIQRERERERGZEZMwIiIiIiIiM2ISRkREREREZEZMwoiIiIiIiMyISRgREREREZEZ/X9SQ6keuy1W7gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHbCAYAAABCwpIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/UUlEQVR4nOzdd3yUVdr/8c/MpEES0imp1NAJSSAUKRasrLq2dYv9cRUV1+2uZZ9d93F/4rLr7oroinVtrLIqVrBgQ6UmBCItQCAVQtqkkTqZ3x+TGRKSQCbJzKR836+Xrwn3fe6Z6yTIyXXf51zHYLVarYiIiIiIiIhbGD0dgIiIiIiIyECiJExERERERMSNlISJiIiIiIi4kZIwERERERERN1ISJiIiIiIi4kZKwkRERERERNxISZiIiIiIiIgbKQkTERERERFxIyVhIiIiIiIibqQkTERERERExI2UhIlIj8vLy2P8+PH87ne/83QoIiIywGlMkt7Iy9MBiHTF+PHjnWr/yCOPcOWVVzqu279/v1PvZ78ewGKx8Oabb/Luu++SmZlJdXU1Q4YMITw8nGnTpnHuuedy3nnntfv+LT93zZo1PPjgg8yfP59nn3223c+97bbb+PLLL/nTn/7Etdde26m+Ll++nO+++44jR45QVlaGn58fkZGRLFq0iJ/85CeEhIR06n1OjT0yMpL169fj6+vbps25555Lfn4+u3fvxsvLM/+sHDp0iNdee40tW7Zw9OhR6urqCA4OZtKkSZx//vlcdtll7caekZHBa6+9xtatWykqKsLLy4uoqCjmzZvHTTfdxLBhwzzQGxHpSzQmdWygjUkd/Uxbsse3YcMGoqOju/xZGr/6NiVh0ictXbq0zbF///vfVFZWcsMNNzBkyJBW5yZOnNjl9215vcVi4fbbb2fjxo0MGTKEhQsXMnz4cMrLy8nOzuadd94hKyurzYDXnmuuuYbPPvuMzz77jFdffZWf/OQnrc6/9tprfPnll5x99tmdHuzA9n2YNGkSc+fOJSwsjJqaGtLT01mxYgWvv/46r7/+OpGRkZ1+P7uCggL+/e9/c9ttt52x7bBhw/jwww8JDAx0+nO64oknnmDlypU0NTUxffp0rrjiCvz9/SkuLmb79u08+OCDrF69mrfeestxjdVq5a9//SvPPvssXl5ezJ07l4suuoiGhgZ27NjB888/z+rVq1m2bBkXXXSRW/ohIn2TxqSODcQxydU0fvUTVpF+4pxzzrHGx8dbc3NzO2wTHx9vjY+P7/TxU61du9YaHx9vveyyy6wVFRVtzpvNZus333zT6fcvLi62zp4925qQkGA9dOiQ43hWVpY1ISHBOmvWLGtRUdEZ42qptra23eOPPfaYNT4+3vq///u/Tr1ffHy8debMmdaUlBRrUlKStaSkpE0b+/e+oaHBqffuCU8++aQ1Pj7eunDhQmt6enq7bb788kvr9ddf3+rYihUrrPHx8dZzzjnHmpmZ2eaa9evXW6dOnWqdOHGi9dtvv3VJ7CLSf2lMshloY1Jnfnad+btxOhq/+getCRNxQlpaGgBXXHFFu3fUgoKCmDt3bqffLywsjP/7v/+jpqaG3/zmNzQ2NtLY2MhvfvMbampqePjhhwkPD3cqxvamZgBcfPHFAOTm5jr1fgB+fn7ccccdVFVVsXLlyjO2d9f8+7y8PFauXIm3tzerVq0iISGh3XYLFixoNb0mNzeXp556Cm9vb5566inGjRvX5poLL7yQ++67D4vFwh//+Eeamppc1g8Rka7QmNS7xiR30PjVfygJE3FCaGgoAEeOHOmx91y0aBFXXXUV3333HStXrmTlypVkZGRw5ZVXsmjRoh77nM8++wxwfu2C3U9+8hNiY2N5/fXXOXz4cI/F1R1vvfUWDQ0NXHDBBcTHx5+2rY+PT6vrGhsbOe+88077/bjmmmuIiIjgyJEjbN26tcfiFhHpCRqTeteY5A4av/oPrQkTaWHFihVtjkVFRTkWQF944YU888wz/Oc//6GqqorzzjuPKVOmEBMT063Pvf/++9myZQtPP/204zMfeOCBbr3nc889x4kTJ6isrOS7774jNTWVSZMmdWr+fHu8vb351a9+xT333MPf/vY3nnjiiW7F1xO2b98OwJw5c5y6LjU1FYCzzjrrtO28vLyYNWsW77//PmlpacyePbtrgYqIdIHGpI71xjGppfZ+dnYVFRVdfl+NX/2HkjCRFtr7RzwlJcUx4E2YMIG//vWvPPzww7z33nu89957AAQHB5OSksLVV1/NwoULnf7cgIAA7rrrLu677z4A/vjHPxIQENCNnsDzzz9PcXGx488LFixg2bJlTleiaumiiy4iMTGRTz75hO3btzNjxoxuxdhd9v45WwHKft3w4cPP2Nbe5vjx405GJyLSPRqTTq+3jUktuSop1PjVfygJE2nhdCVl7S666CLOO+88tmzZQmpqKnv37iU1NZWPP/6Yjz/+mKuuuoo///nPGAyGTn9ubW0tzzzzjOPPH330EQsWLGjTrr07a1dccUW7JW6/+eYbwPYP9o4dO/jrX//K5ZdfztNPP83kyZOdfj+7e++9lx/+8Ic8+uijvPHGG071syNdiQNsFaIAp2Nw5jp7m5Ztn376aT7++GMOHz6Mj48P06dP55e//OUZp0SKiDhDY1LfGpNa6kyJ+pY6O650d/yS3kNJmEgXeHt7M2/ePObNmwfYygR/9NFHPPDAA7z55puce+65Ts2dX758OVlZWdxwww1s27aN//73vyxatIhzzjmnVbuO7oqebmAIDw/n/PPPZ/LkyVxwwQXce++9vP/++11+v8TERC688EI++ugj1q1bxyWXXNLZbnaoK3EADB06lKysLI4dO+bU50VERHT6OnubiIgIx7GtW7fy4x//mKlTp2K1Wnn88ce5+eab+eCDDwgODnYqFhGR7tKY1DvGpO7o7LjS3fFLeg8lYSI9wGQycckll5CZmclTTz3F5s2bOz3gff3117z66qvEx8fzm9/8hiNHjnDVVVfx+9//nvfee6/VVI3O3BXtSGRkJGPHjmXv3r2UlpYSGhra5ff79a9/zWeffcbf/va3Hlmo3dU4kpOT2bx5M5s3b+aaa65x6rotW7bw7bffnvY6i8XCli1bAEhKSnIcf+6551q1+8tf/sKMGTNIS0vj3HPPdbIXIiI9S2NS93SnX13V2XGlu+OX9B6qjijSg/z9/YGT0wXOxGw2c9999+Hl5cXy5cvx8fEhPj6ee+65h6KiIv74xz/2aHz2eeEmk6lb7xMbG8uPfvQj8vLyeOWVV3oitC658sor8fb25qOPPuLgwYOnbVtfX9/qOpPJxCeffHLa6958802OHz/OqFGjSElJ6bBddXU1TU1NbTZkFRHxJI1JfVdH40pPj1/iOUrCRJzw/vvv880337S750ZRURFr1qwB6PTi4D/+8Y8cP36cn//850yYMMFx/JZbbmHGjBmsX7/eMU2jMw4dOkRRUVGb401NTfz973+npKSExMREgoKCOv2eHbnrrrsYMmQI//rXv6iuru72+3VFdHQ0S5cupaGhgdtuu42MjIx223311Vfceuutjj/HxMRw++2309DQwJIlS9odyD799FP+/Oc/YzKZ+MMf/oDR2PE/l3/+85+ZOHEiiYmJ3e+UiEgnaUw6qTeMST2po3Glp8cv8RxNRxRxws6dO3nppZeIiIggKSnJMT88Ly+PL7/8ktraWs477zwuuuiiM77X2rVrWbduHTNnzuSWW25pdc5oNLJs2TIuu+wy/vSnPzFz5sxOVQDcuHEjy5cvZ8aMGcTGxhIcHExxcTHbtm0jNzeXiIgIHn744a51/hTBwcHcfvvtLF++vEfer6uWLFlCY2MjK1eu5OqrryYxMZEpU6bg7+9PcXEx27dv58iRI0yZMqXVdXfffTc1NTW88MILXH755cybN4+xY8fS2NjIjh072LlzJ35+fvztb387bQn8Rx99lNTUVFavXt3tu7kiIs7QmHRSbxmTesKZxpWeGr/Es5SEiTjhlltuYeTIkXz77bfs37+fr7/+mvr6ekc54O9973tceumlZ6xEVFBQwMMPP0xAQACPPvpou3epYmJiuP/++3nwwQd54IEHePbZZ88Y39y5c/nBD35AWloa+/bto7KykkGDBjFy5Eguv/xyrr/++h4tHHHDDTfw2muvtany5G5Lly7l4osv5rXXXmPLli289dZbjp/LhAkTuPXWW7n88stbXWM0Gvnd737HJZdcwquvvsq2bdvYtGkTJpOJqKgobrnlFm688cbTlgF+5JFH+OCDD/j3v//d7X15REScpTGptd4yJnVHZ8aVnhi/xPMM1s5OFBYREYeHH36YDz/8kJdffpkxY8Z4OhwREenjNK4MLHoSJiLipD/+8Y+8++67rFy5kiFDhjjWPAwePNixEF5ERKSzNK4MPHoSJiLipPHjx7d7fOnSpdx9991ujkZERPo6jSsDj5IwERERERERN1LNShERERERETdSEiYiIiIiIuJGSsJERERERETcSEmYiIiIiIiIG6lEfTc1NTXR2NiI0Wg842aIIiLSc6xWK01NTXh5ebW7uexAprFJRMQzOjs2KQnrpsbGRjIyMjwdhojIgDV16lR8fHw8HUavorFJRMSzzjQ2KQnrJnuGO3XqVEwmk9PXWywWMjIyunx9X6f+q//qv/rf3X8/9RSsLY1N3aP+q//qv/rv6rFJSVg32ad5mEymbv1F7e71fZ36r/6r/+p/V2m6XVsam3qG+q/+q//qf1edaWzS7UMRERERERE3UhImIiIiIiLiRkrCRERERERE3EhJmIiIiIiIiBspCRMREREREXEjJWEiIiIiIiJupCRMRERERETEjZSEiYiIiIiIuJGSMBERERERETdSEiYiIiIiIuJGSsJERERERETcSEmYiIiIiIiIGykJExERERERcSMlYR5UXdfI0tU7+CTrhKdDERERAWDv0QpuemEbB0sbPB2KiEi/5eXpAAaynNITrPuukCE+Bn59hdXT4YiISDdt2rSJd999lx07dnDs2DECAwOZMmUKd911F1OmTDnttW+99Rb33Xdfu+e+/vprIiIiXBFy2886UMzGgyVY6/y4+ly3fKSIyICjJMyDRkf44+NlpKK+iSMlJxg7bIinQxIRkW5YvXo1ZrOZG264gbFjx1JaWsoLL7zAtddey7PPPsucOXPO+B6PPPIIo0ePbnUsODjYRRG3NXGEbSzKLNGTMBERV1ES5kG+XiamRQWxPbuM1JwyJWEiIn3cH/7wB8LCwlodmz9/PhdccAFPP/10p5KwcePGMXXqVFeFeEYJMUEYDHD8hIXCiloiQ/w9FouISH+lNWEelhQbDEBqttmjcYiISPedmoAB+Pv7M2bMGI4ePeqBiJwX6OfN+GGBAOzIMXs2GBGRfkpPwjwsOS4ENh7WQCci0k9VVlayZ88eZs+e3an2S5YsobS0lMDAQFJSUvjZz35GfHx8lz7bYrF06brp0UPYd6yS1OwyLpoyvEvv0ZfZv29d/f71deq/+t/ydaDpbv87e52SMA9LbH4SduB4FeYT9QQP9vFsQCIi0qMeeughampqWLJkyWnbhYeHs2TJEqZPn05AQACZmZmsWrWKa6+9ltWrVzNhwgSnPzsjI6NLMUcYagD4Zn8B6VF1XXqP/qCr37/+Qv1X/wcyV/dfSZiHhdUXMNa/noPVPuzIMXPOhKGeDklERHrIP/7xD9577z1+//vfn7E64oIFC1iwYIHjzzNnzmThwoVceuml/POf/+Spp55y+vOnTp2KyWRy+rrAyApWbPuWLHMjE6dMw9drYK1esFgsZGRkdPn719ep/+q/+t/1/tuvPxMlYZ5UdgTjypn8w3sq3+O3bM8uVRImItJPPPHEEzz11FP84he/4LrrruvSe0RHR5OcnMzOnTu7dL3JZOrSLxGjIwIZ4mOgot7K3mNVtqnzA1BXv3/9hfqv/qv/ruv/wLq11QsZrBYmNnyHDw2kZpd5OhwREekBTzzxBCtWrODuu+8+4zTEM7FarRiN7h2uDQYD48Nt0+N35GhsEhHpaUrCPCk4DuugUEzWRiYYckjPNdNgafJ0VCIi0g0rV65kxYoV3HHHHSxdurRb75Wbm0taWhoJCQk9FF3nxYd5A+gGoYiIC2g6oicZDBCZCIc2MMs3m121Y9h7tIJp0cGejkxERLrg+eef5/HHH2f+/PmcffbZpKentzo/ffp0AO6//37Wrl3LJ598QlRUFAA33XQTM2bMYMKECfj7+5OZmcmzzz6LwWDgnnvucXNPYHyY7UlYWk4ZVqsVg8Hg9hhERPorJWEeZo1MxHBoAwv8c3imFrYfKVMSJiLSR33++ecAbNy4kY0bN7Y5v3//fgCampqwWCxYrVbHufj4eNatW8fzzz9PXV0doaGhzJ49mzvvvJNRo0a5pwMtjA3xxstooLCijnxzDdEhg90eg4hIf6UkzMOskUkATLIeBCA1p4xbcP9gKyIi3ffyyy93qt2yZctYtmxZq2P333+/K0LqMl8vAxNHBJKRX0FajllJmIhID9KaME+LTAQgtOYIg6klTXPvRUSkl7DvZamxSUSkZykJ87SAYdT7RWCwNjHNdISj5bXkm2s8HZWIiAhJsbbS9CrOISLSs5SE9QLVweMBuCAoH9BgJyIivUNSTDAAe45WcKK+0bPBiIj0I0rCeoETwRMASPE9AkDqkVIPRiMiImITGezHsCG+WJqs7Mor93Q4IiL9hpKwXsD+JGxUfSZgK84hIiLiaQaDwTElMU1jk4hIj1ES1gucaE7C/KtzCaaSvUcrqa7TtA8REfG85LjmJExT5UVEeoySsF7A4h2ANXQMAOcE5mNpsrIz1+zZoERERIAkexKWY261r5mIiHSdkrBewtpcqv68oDwAtuuOo4iI9AKTI4fgYzJSWl3PkZITng5HRKRfUBLWWzQnYdMMWYAqJIqISO/g62VianQQoCmJIiI9RUlYL2F/Ejaieg9gWwDd1KRpHyIi4nlJzZs2q3CUiEjPUBLWWwyfBgYT3ieOM9KnnMraRg4cr/J0VCIiIirOISLSw5SE9Rbeg2HoRAAuCz8GwPZs7RcmIiKeZy9Tv7+wksraBg9HIyLS9ykJ602apySeNSgb0LowERHpHYYO8SM6ZBBWK6Sreq+ISLcpCetNopIAGGc5ACgJExGR3sOxaXO22bOBiIj0A0rCepNIWxIWbN6NwWAlu+QERZV1Hg5KRETk5LowFecQEek+JWG9ybDJYPLFWGvm7DBbUY40DXYiItIL2J+E7VD1XhGRbuuzSdimTZu47777uOiii5g+fTrz58/njjvu4LvvvuvU9SUlJfzud79j1qxZJCQkcO2117Jp0yYXR30GJm8YPhWAC0MLAE1JFBGR3mHCiEAGeZuorG3kYJGq94qIdEefTcJWr15Nfn4+N9xwA6tWreKBBx6gtLS0U8lUfX09N910E5s2beKBBx7gySefJCwsjFtvvZWtW7e6qQcdaF4Xlux1GFASJiIivYO3yUhCjDZtFhHpCV6eDqCr/vCHPxAWFtbq2Pz587ngggt4+umnmTNnTofXrlmzhszMTP7zn/+QmGirSDhr1iwuv/xyli9fzpo1a1wa+2k1rwuLqdkHXERGXjm1DRb8vE2ei0lERATblMTNWaWkZpfxw5RYT4cjItJn9dknYacmYAD+/v6MGTOGo0ePnvbaTz/9lFGjRjkSMAAvLy8uu+wydu3aRWFhYY/H22nNT8J8i79jmL+JeksTuwvKPRePiIhIM8emzVqvLCLSLX32SVh7Kisr2bNnD7Nnzz5tuwMHDpCcnNzm+Pjx4x3nhw0b5tRnWywWp9qfep3j+pDRGH0CMNRXcXFUOS8eCmDr4VKmRwd16f17uzb9H2DUf/W/5etA093+D9TvmyclNhfnOFRUjflEPcGDfTwckYhI39SvkrCHHnqImpoalixZctp2ZrOZoKC2SY39mNlsdvqzMzIynL6mo+vjA8cSWJJOQuN3wGw+33WElMD+/TSsu9+/vk79V/8HsoHe/74k1N+H0eH+ZBVXsyPHzDkThno6JBGRPqnfJGH/+Mc/eO+99/j973/PlClTztjeYDB06VxHpk6disnk/Loti8VCRkZGq+sNxfNhUzpzg4oBOFhuJSEhoUtx9Xbt9X8gUf/Vf/W/6/23Xy/ulRgbQlZxNanZZUrCRES6qF8kYU888QRPPfUUv/jFL7juuuvO2D44OLjdp13l5banTe09JTsTk8nUrV+iWl0fbZsqGVG5Bx/TZZRW15NnrmNkuH+X37+36+73r69T/9V/9X/g9r+vSY4L4c20PK0LExHphj5bmMPuiSeeYMWKFdx9991nnIZoFx8fT2ZmZpvj9mPjxo3r0Rid1lwh0Vi4m8SoQQBsVzlgERHpBZLiggFIzzXTaGnybDAiIn1Un07CVq5cyYoVK7jjjjtYunRpp69btGgRWVlZ7Ny503GssbGRd999l4SEBKeLcvS44FgYHAZNDVwcbpuSqP3CRETELbK+wPjYeIKOfdPu6XFDAwn09eJEvYV9xyrdHJyISP/QZ5Ow559/nscff5z58+dz9tlnk56e3uo/u/vvv59JkyaRn5/vOHb11Vczbtw47rnnHt577z2+/fZbfv7zn3P48GF+/etfe6A3pzAYHE/DUnyzAUjNLvVkRCIiMlAU7sFQXUR4zvp2T5uMBqbHBgOwQ1MSRUS6pM+uCfv8888B2LhxIxs3bmxzfv/+/QA0NTVhsViwWq2Ocz4+Prz44ossX76chx9+mJqaGiZOnMgzzzxDSkqKezpwJlFJcPATRtfvByaQWVhFeU0DQYO8PR2ZiIj0Z1G2dcn+ZbuhxdjZUlJsCBsPFJOaXcb1c0a6MTgRkf6hzyZhL7/8cqfaLVu2jGXLlrU5Hh4ezqOPPtrTYfWc5idhfsd3MjLsRxwpOUFaThnnjFclKhERcaERCViN3njXm7GUHYGIsW2anNy02eze2ERE+ok+Ox2x34uyJWEU7WdutB8AaVoXJiIirubtByOmAWDI29Zuk+mxwRgMkFN6gqLKOndGJyLSLygJ660ChsKQaMDKuUEFgIpziIiIe1ijZ9q+yG8/CRvi50380EAAlaoXEekCJWG9WVQiAAmmLEDlgEVExE2ibElYR0/C4GSpes3SEBFxnpKw3qx5XVh4+W4C/VQOWERE3MMa01ykqnA31FW12yYp1r4uTEmYiIizlIT1Zs3rwgwFaY7BbvsRlaoXEREXGxJFvV8EBqsFCtLabZLUXJxjZ1459Y2apSEi4gwlYb3ZiOm2V3M28yINAKSqEpWIiLhBVcgk2xe5W9s9Pzrcn+DB3tQ3NrHnaIUbIxMR6fuUhPVmg4IhzFYa+KzBOQCk6kmYiIi4QbU9CetgXZjBYHDM0lDhKBER5ygJ6+2a14WNbTiAyWigoLyWAnONh4MSEZH+rjp0su2LvG0dbtrs2C9MSZiIiFOUhPV2zevCfArTmTjCVg5YdxxFRMTVTgwZi9XkAydKoDSr3TaJscGAinOIiDhLSVhv1/wkjII0Zmjah4iIuInV5HNybXIH68ISooMxGQ0c1SwNERGnKAnr7YZPBYMJqgqZO6weUBImIiLu4di0Oa/9JMzf18sxS0NPw0REOk9JWG/nMxiG2hZHz/A6DMCeoxWcqG/0ZFQiItKOTZs2cd9993HRRRcxffp05s+fzx133MF3333XqetLSkr43e9+x6xZs0hISODaa69l06ZNLo66Y44krIMnYYCKc4iIdIGSsL4gKhGAUPN3jAjyw9JkJT3X7NmYRESkjdWrV5Ofn88NN9zAqlWreOCBBygtLe1UMlVfX89NN93Epk2beOCBB3jyyScJCwvj1ltvZevWjpMgl7InYcf3QF1lu00cxTm0hYqISKd5eToA6YTIJEh7CQrSSI67lPd3HSUtu4y5Y8I9HZmIiLTwhz/8gbCwsFbH5s+fzwUXXMDTTz/NnDlzOrx2zZo1ZGZm8p///IfERNvNt1mzZnH55ZezfPly1qxZ49LY2xU4AoJioDwX8lNh9NltmtifhO3OL6e2wYKft8nNQYqI9D16EtYXRNmLc+wgubkS1XZN+xAR6XVOTcAA/P39GTNmDEePHj3ttZ9++imjRo1yJGAAXl5eXHbZZezatYvCwsIej7dTHFMS298vLDpkEBGBvjQ2WcnIL3djYCIifZeehPUFQyeBlx/UljM3pAKw7cnS1GTFaDR4ODgRETmdyspK9uzZw+zZs0/b7sCBAyQnJ7c5Pn78eMf5YcOGOfXZFovFqfanXmexWDBEz8S4+y2suVto6uD9EmOC+XhPIdsOl5AUE9Slz+xNWvZ/IFL/1f+WrwNNd/vf2euUhPUFJm9blcS8bYxp2M8g7yAqahs5VFTFuGGBno5ORERO46GHHqKmpoYlS5actp3ZbCYoqG0CYz9mNpud/uyMjAynrzn1+sEngpgIWLK3sHNHGhjaTqIZ7nUCgC8yspk1pKJbn9mbdPf719ep/+r/QObq/isJ6ysikyBvG17H0pkeczmbskrYnl2mJExEpBf7xz/+wXvvvcfvf/97pkyZcsb2BkPHsxtOd64jU6dOxWRyfo2WxWIhIyPDdj2TsG76JV4NFUyPCYDw+DbtG0PKeGnXFg6VW0lISOhSrL1Jq/534fvX16n/6r/63/X+268/EyVhfYV9XVh+GslxN7Epq4TU7DJ+lBLr2bhERKRdTzzxBE899RS/+MUvuO66687YPjg4uN2nXeXltnVW7T0lOxOTydStX6Js1/tAZCLkbMJUkArDJrZplxATgrfJQEl1PfnldcSF+Xf5M3uT7n7/+jr1X/1X/13XfxXm6Csim5OwozuZEWN7+qU9WUREeqcnnniCFStWcPfdd59xGqJdfHw8mZmZbY7bj40bN65HY3TKGfYL8/M2MTnSliRq02YRkTNTEtZXhI0F3yHQWEPy4OMAHC6upqSqzsOBiYhISytXrmTFihXccccdLF26tNPXLVq0iKysLHbu3Ok41tjYyLvvvktCQoLTRTl6VEyK7TWv/QqJcHK/MN0gFBE5MyVhfYXRCCMSAAgs3cW4oQGABjsRkd7k+eef5/HHH2f+/PmcffbZpKent/rP7v7772fSpEnk5+c7jl199dWMGzeOe+65h/fee49vv/2Wn//85xw+fJhf//rXHuhNC9HNSdjxvVDbfhl6x6bN2WY3BSUi0ndpTVhfEpUERzZCfhozRk7nwPEqUnPKuGDycE9HJiIiwOeffw7Axo0b2bhxY5vz+/fvB6CpqQmLxYLVanWc8/Hx4cUXX2T58uU8/PDD1NTUMHHiRJ555hlSUlLc04GOBA6D4DgwZ9s2bR5zbpsm9k2b9x2roKqukQBf/YohItKRLv0LeeDAAdLS0igsLKS2tpaQkBDGjh3LzJkzCQgI6OkYxc6+LqwgjaTkX7F6ay6pR/QkTESkt3j55Zc71W7ZsmUsW7aszfHw8HAeffTRng6rZ8Sk2JKw3K3tJmHDg/yICh5EvrmGXblm5o4N90CQIiJ9Q6eTsPLycl5//XVef/11CgoKWt29c7yZlxcLFizg+uuvZ86cOT0aqHCyQmLhbmZGDwZgV345dY0WfL0GbvUaERFxg+gUyFjTYXEOgMTYYPLNNaRmlykJExE5jU4lYS+99BIrV64E4JJLLiElJYXJkycTGhqKr68v5eXl5Obmkp6ezoYNG7jllluYO3cu//u//0tcXJxLOzCgBMXA4HA4UUxcQxZh/j6UVNfzXX6FYy6+iIiIS8Q0V0jM2w5NTba1yqdIjgvh/V1HVSFRROQMOpWEvfzyy9x3330sXrwYb2/vNufDw8MJDw8nMTGRm2++mZycHJ566inWrVvX6dK80gkGg+1p2IGPMRTsICkuiU/2FJKWXaYkTEREXGvYFPAaBHXlUJwJQye0aWJfF5aWY6apyYrR2Lc3bRYRcZVOVUdct24d3//+99tNwNoTGxvLI488wk9/+tNuBSftaLEuzJ54bc8u9WBAIiIyIJi8T06Lz2t/SuKkyCH4eRspr2kgq7jajcGJiPQtnUrCDhw40KU3H8i7bLuMfQDMT2OGY08Wc7tr9ERERHqUfb+wDtaFeZuMTIsKBiBNW6iIiHSoU0nYFVdcwZVXXslrr71GZWWlq2OS07E/CSvOZEq4ER+TkeKqOnJKT3g2LhER6f+iz7xpc5J9vzCtCxMR6VCnkrDbb7+d0tJS/vSnPzFv3jx+/etfs3nzZlfHJu0JiLAV6MCKX1EGU6KGANq0WURE3CC6uThH0T6oaX/cSXbM0tC4JCLSkU4lYb/4xS/4/PPPWbVqFeeccw4ff/wxN998M+eddx5PPvkkR48edXWc0lJkou21xbowDXYiIuJyAREQMsr2dV5qu00SY4MBOHC8ivITDW4KTESkb+lUEgZgMBhYsGAB//jHP/j666954IEHCAoK4vHHH2fRokX8z//8D+vXr6ehQf/gulyLdWHJcaGAkjAREXET+7qwDopzhAf4MjLMtpfljlyNTSIi7el0EtbSkCFDuO6663jrrbdYu3YtP/7xj9mzZw+/+MUvWLBgQU/HKKdqUSExKS4YgP2FlVTUKgEWEREXs09JPM2mzY5S9bpBKCLSri4lYS1NmDCByy67jHPPPRcAs9nc3beUM4mcbns15zDUWEVs6GCsVtiRY/ZkVCIiMhDEzLK95qfaNm1ux8niHGY3BSUi0rd0arPm9pSWlvLuu+/y5ptvcvDgQUwmE+eccw5XX311T8Yn7fELgrBxUHIACnYwIy6CnNITpGaXsTA+wtPRiYhIfzZ0Enj7Q12FrUDHsEltmtifhO3IKcPSZMWkTZtFRFpxKglramriq6++4s033+SLL76goaGBkSNH8stf/pIrrriC8PBwV8Upp4pMtCVh+Wkkxf2Qt3bkk6pNm0VExNVMXra1yUc2Qu6WdpOw8cMD8fcxUV1vIbOwkokjhnggUBGR3qtTSdjhw4d58803eeeddyguLsbPz4/vfe97XHXVVcyYMcPVMUp7opIg4w0oSGPGuXcAkJ5jptHShJep27NMRUREOhaTYkvC8rbBjJvbnDYZDUyPDeabgyWkZpcpCRMROUWnkrCLL74YgGnTpnH33XezePFi/P39XRqYnEHkyQqJ4yICCPT1orKukX3HKpkSFeTZ2EREpH+zb9p8muIcybEhfHOwhLScMq6bHeemwERE+oZOJWE33ngjV199NePGjXN1PNJZw6eCwQTVxzFVFZAYF8JXmUWk5ZQpCRMREdeyV0gsOQAnSmFwaJsmiXGqkCgi0pFOzVu777772k3AsrKySE1N5cSJEz0emJyBz2Db4miw7RfWvAh6+xENdiIi4mL+YRA6xvZ13vZ2myTF2MalIyUnKKmqc1dkIiJ9QpcWD61du5YFCxawePFirrvuOg4fPgzAPffcwxtvvNGjAcppRCXaXgvSmDHSNthp02YREXELe6n6DjZtDhrszbihAYBK1YuInMrpJGzdunX87ne/Y9KkSfz+97/HarU6zk2ePJl169b1aIByGi3WhSXEBGM0QL65hmPltZ6NS0RE+r+Yzm/arBuEIiKtOZ2ErVq1iiuvvJJ//etfXHvtta3OjR49moMHD/ZYcHIGUc1JWEE6Ad5GR/UpDXYiIuJy9uIc+anQZGm3SbJj02aNSyIiLTmdhB06dIjFixe3ey44OBiz2dzdmKSzhk4CLz+oK4fSLMdgt137hYmIiKsNnQg+gVBfBcf3tNskKS4YgF15ZhosTW4MTkSkd3M6CRs0aBCVlZXtnissLCQoSJX53MbkbauSCFCQdvKOo56EiYiIqxlNJ2dkdDAlcXR4AEGDvKltaGLv0Qo3Bici0rs5nYQlJiby6quvtloLZvfWW2+RkpLSI4GdSVVVFX/5y1+45ZZbmD17NuPHj2fFihWduvatt95i/Pjx7f5XVFTk4sh7WIt1YfYkbHdBBTX17U8NERER6TExzWN+3rZ2TxuNBhJjgwFNlRcRaalT+4S1dNddd/HjH/+Yq6++mksvvRSDwcDHH3/MihUr2L59O2vWrHFFnG2YzWbeeOMNJkyYwKJFi7r0uY888gijR49udSw4OLiHInQTx7qwNKKCBzF8iB/HKmrZmWdm9ugwz8YmIiL9m71C4hk2bf5ifxFpOWZuPstNcYmI9HJOJ2FTp07lmWee4aGHHmLZsmUAPP3008TFxbFq1Sri4+N7PMj2REVFsW3bNgwGA6WlpV1KwsaNG8fUqVNdEJ0b2Z+EHd2FoclCclwIH2QcJTW7TEmYiIi4VvQM22vpIaguse0fdookTZUXEWnD6SQMYPbs2axbt46cnByKi4sJCQlh1KhRPR3baRkMBrd+Xq8VNhZ8h0BdBRTtJalFEiYiIuJSg0IgPB6KM237hY2/uE2TU7dQGR7k54FARUR6ly5t1mwXGxtLUlKS2xOwnrJkyRImTpxISkoKS5cuJTMz09MhOc9ohBEJtq/z05jRohxwU1PbdXsiIiI9yl6qvoMpiQG+XowfbttCRaXqRURsOvUk7MMPP+SSSy5x6o0LCwvJy8sjOTm5S4G5Unh4OEuWLGH69OkEBASQmZnJqlWruPbaa1m9ejUTJkxw+j0tlq4VwrBf19XrAQwjEjEe2UhTfirjp/4YP28j5hMNHCisYOzQgC6/rzv0RP/7MvVf/W/5OtB0t/8D9fvW68TMhPRXOizOAZAcF8zeoxWkZZdxydQRbgxORKR36lQS9qc//Ymnn36a6667josvvpiAgI5/sf/uu+948803efvtt/nNb37TK5OwBQsWsGDBAsefZ86cycKFC7n00kv55z//yVNPPeX0e2ZkZHQrpu5cH1wfwhig9uA37M3YxZhgE7uLmlj7zS4WjRrcrbjcpbvfv75O/Vf/B7KB3v8+r+WmzZZGMLX91SI5LoRXNueQqidhIiJAJ5OwTz75hBUrVvDnP/+ZP/3pT0yaNIlJkyYRFhaGj48P5eXl5Obmkp6eTlFREePGjWPFihXMnz/f1fH3mOjoaJKTk9m5c2eXrp86dSomk8np6ywWCxkZGV2+HoCRYZD6EIOqjjB9ygQWHM9h95dZFDUFMn167y480iP978PUf/Vf/e96/+3Xi4dFTDi5Nvn47pNT5FtIirVNlf8uv5zaBgt+3gPv77uISEudSsICAwO5//77ueuuu3jrrbf48ssvWbt2LTU1NY42MTExzJ8/n0svvZTZs2e7LGBXslqtGI1dWyZnMpm69UtUt64PjYPB4RhOFGM6voeZo2J56sss0nLNfeYXu+5+//o69V/9V/8Hbv/7PKPRViXx0Ge2dWHtJGGxoYMJD/ChuKqe3QXlJMeFeiBQEZHew6nqiEFBQdx8883cfPPNAFRWVlJbW0twcDDe3t4uCdBdcnNzSUtLY+7cuZ4OxXkGg22/sAMfQ0EaSVNtA2BWUTWl1fWE+vt4OEAREenXolNOJmEpP21z2mAwkBgbwid7CknNLlMSJiIDXpdK1NsFBgYSGBjYU7E47csvv6Smpobq6moADh48yPr16wFYuHAhgwYN4v7772ft2rV88sknREVFAXDTTTcxY8YMJkyYgL+/P5mZmTz77LMYDAbuuecej/WnWyKbk7D8NIJn3c7YoQEcPF5FWnYZiyYN83R0IiLSn8XMtL3mnWbT5jhbEpaWbXZPTCIivVi3kjBPe+ihh8jPz3f8ef369Y4kbMOGDURHR9PU1ITFYsFqPVmuPT4+nnXr1vH8889TV1dHaGgos2fP5s477+yz5faJat60uSANgOTYEA4er2K7kjAREXG1qOZNm8uOQFURBES0aWJfF5aaU4bVatV+nyIyoPXpJOyzzz47Y5tly5axbNmyVsfuv/9+V4XkOZHNSVjxAaitIHlkCK9vzyVNmzaLiIirDQq2Fego2md7GjZhcZsm06KD8DIaKKqsI6+shpjQvlG9V0TEFbq1WbP0IgEREBQDWOFoOsnNmzbvzDNT39jk2dhERKT/i26ektjBps1+3iYmR2rTZhERUBLWv0Qm2l7z0xgd7k/IYG/qGpvYXVDu2bhERKT/i5llez3Nps1JzTcINUtDRAY6JWH9SYt1YQaDwfE0LFWDnYiIuFqMfdPmNLA0tNuk5bowEZGBzOkk7P/+7//IyspyRSzSXfZ1Yfk7ABwlgJWEiYiIy4WNA78gaKyBY+1vom2/Obj3aCUn6hvdGZ2ISK/idBK2du1aFi9ezM0338ynn37aquqgeFjkdNtreQ5UFzsGu+3ZZfo5iYiIaxmNJ9eFdTAlMTJ4ECOC/LA0WdmZq6nyIjJwOZ2Ebdy4kQcffJCioiKWLl3Kueeey6pVqygtLXVFfOIMvyDbnUiA/DSmRQfhbTpZiUpERFyrqqqKv/zlL9xyyy3Mnj2b8ePHs2LFik5d+9ZbbzF+/Ph2/ysqKnJx5D0kunlKYgfFOeDklEQV5xCRgczpJGzw4MH85Cc/4f333+eFF15g8uTJ/POf/+Tss8/md7/7HRkZ7U9BEDdpsS7MVokqCNCURBERdzCbzbzxxhvU19ezaNGiLr3HI488wuuvv97qv+Dg4J4N1FU6sWmzinOIiHRzn7A5c+YwZ84cjh07xr333ss777zDO++8w5QpU7jjjjs499xzeypO6azIJNj1um1hNLb59+m5ZrZnl/L9xCgPByci0r9FRUWxbds2DAYDpaWlrFmzxun3GDduHFOnTnVBdG4QNQMwgDkHKgshcFibJkmxwYDtSZg2bRaRgapb1RFra2tZs2YNS5YsYcuWLYwZM4a77roLi8XCXXfdxcqVK3sqTumsFk/CsFqZ4aiQaPZcTCIiA4TBYBjYSYXfEBg6yfZ1B0/DJkcG4eNlpOxEA4eLq90YnIhI79GlJCwnJ4dHHnmEBQsW8Ic//IHhw4fz/PPP8/7777N06VLeeustfvrTn/LKK6/0dLxyJsOngtELqougPM9RnGP/sQoqa9svGSwiIr3HkiVLmDhxIikpKSxdupTMzExPh+Qc+5TE3C3tnvbxMjItSlPlRWRgc3o64q233sq3337LoEGDuPLKK7n++uuJjY1t0+6cc85h1apVPRKkOMF7EAydaCsPXJDG0EmXExM6iNzSGtJzzcwfF+HpCEVEpB3h4eEsWbKE6dOnExAQQGZmJqtWreLaa69l9erVTJgwwen3tFgsXYrFfl1XrjdEzcCY+iLW3K00dXB9Ymww27PLSM0u5crEyC7F6Erd6X9/oP6r/y1fB5ru9r+z1zmdhOXm5nLfffdx5ZVX4u/v32G7cePG8dJLLzn79tITIpOak7AdMOlykmNDyC2tYfuRMiVhIiK91IIFC1iwYIHjzzNnzmThwoVceuml/POf/+Spp55y+j27WyyrK9f7VgUwBbDmp7EzbRtWo3ebNiGWWgC+3X+M9PTeu1/YQC82pv6r/wOZq/vvdBL20UcfdapdQEAAKSkpTgckPSAqCdL+fbI4x8hQ1qYXqBywiEgfEx0dTXJyMjt37uzS9VOnTsVkMjl9ncViISMjo2vXWxOwbg7BWFNGwjAjRE1v0yRqTB1/+fZzcisbGTNhMoF+bRM1T+pW//sB9V/9V/+73n/79WfSreqI0ktF2otzpENTE8nNe7LsyDFjabJiMg7gReMiIn2M1WrFaOxaHS2TydStX6K6fH10Chz4CFNBKsS2vSE7PHiwY6r8rvxKFsT3zlka3f3+9XXqv/qv/ruu/04nYeeee26HlZ+MRiOBgYFMnTqVG264gTFjxnQ7QOmCoRPByw/qyqE0i/HDxxDg60VVXSP7j1UyKXKIpyMUEZFOyM3NJS0tjblz53o6FOfEzIQDH9k2bZ59R7tN7FPl03LKem0SJiLiKk7fWktJScFqtVJYWEhUVBQJCQlERkZSWFiIxWJhxIgRfPLJJ1x11VUDfi6px5i8Yfg029cFaZiMBhKb92VJzS71XFwiIgPAl19+yfr16/n8888BOHjwIOvXr2f9+vXU1NQAcP/99zNp0iTy8/Md191000088cQTfPrpp2zatIl///vf/PjHP8ZgMHDPPfd4pC9dFt389CtvW4dNkh1bqGiqvIgMPE4/CZs3bx7p6el88sknjBgxwnG8oKCAW265hUWLFrFs2TKuv/56VqxYoQqJnhKVZNujJT8Npv2A5LgQNh4oJjW7jOvnjPR0dCIi/dZDDz3UKrmyJ2AAGzZsIDo6mqamJiwWC1ar1dEuPj6edevW8fzzz1NXV0doaCizZ8/mzjvvZNSoUW7vR7dEJYPBCOW5UFEAQ9pWQExsniqfnmOmqcmKUVPlRWQAcToJ+9e//sXdd9/dKgEDiIyM5K677uLJJ5/kiiuu4KabbuL//b//12OBipMiW2zaTIs7jirOISLiUp999tkZ2yxbtoxly5a1Onb//fe7KiT38w2AoZOhMMM2JXHy99s0mTA8kME+JirrGjlwvIrxwwPdH6eIiIc4PR0xOzubgICAds8NGTLEcfcvKirKMe1CPCCqOQk7ugssjUyPCcZogNzSGo5X1Ho2NhER6f/smzZ3MCXRy2QkIToY0JREERl4nE7CIiMjefvtt9s99+abbzqekJnNZoKCgroXnXRd6BjwHQKNNVC0l0A/b8YPtxXk0GAnIiIuFzPL9pq7tcMm9lka2kJFRAYap5Ow//mf/2H9+vX88Ic/5MUXX+T999/nxRdf5Ic//CGffPIJt956KwBbtmxhypQpPR6wdJLRCJHTbV837xc2o3mw264kTEREXC26+UnY0XRorGu3SVJcMABpGpdEZIBxek3YD37wA6xWKytWrGg1nz08PJyHHnqIa665BoAlS5bg4+PTc5GK8yKT4PBXtnVhyTeSHBfCy5uz9SRMRERcL3Q0DA6DEyW2qfH26YktJMbYbg5mFVdTWl1PqL9+bxCRgcGpJMxisZCTk8PFF1/MD37wA7KysjCbzQQHBzN69OhW+4eFh4f3eLDiJPu6sPzWxTl2F5RT22DBz3vgbsAnIiIuZjDYStVnroPcLe0mYSH+PoyO8CerqJodOWWcN3GYBwIVEXE/p6YjWq1WFi9ezI4dOzAYDIwZM4bk5GTGjBnT4QbO4kH2ConH90BDLdEhgxga6EuDxcquvHLPxiYiIv2fozjHadaFxWpdmIgMPE4lYV5eXoSHh7fa10R6saBo8I+ApkY4loHBYHA8DduuTZtFRMTV7Js253a8aXOSNm0WkQHI6cIcixcvZu3atS4IRXqcwdDhfmFaBC0iIi4XlQQGE1QWQHleu03s49LO3HIaLU3ujE5ExGOcLswxYcIEPvzwQ2644QYuuOACIiIi2kxFvOCCC3osQOmmqCQ48FGbdWGp2WVYrVZNIxUREdfx8YfhU+DoTlup+qDoNk3GRgQQ6OdFZW0j+45VMiVK29uISP/ndBJ27733AlBYWMjWrW3neBsMBvbu3dv9yKRnnPIkbHJkEL5eRspONJBVXM2YiPY33hYREekR0Sm2JCxvG0y5ss1po9FAYmwIX2UWkZZTpiRMRAYEp5Owl156yRVxiKvYKyQWH4DaCnz8hpAQHczWI6WkHilTEiYiIq4VkwLbnrFVSOxAcnMSlppdxg1zRrovNhERD3E6CUtJSXFFHOIq/uEQFAvlObYNM0ctIHlkiC0Jyy7jBzNjPB2hiIj0Z45Nm3dBQy14+7VpYt+0WcU5RGSgcLowh11lZSUbN27k3Xffpbxc5c57tahE26t9XVisKiSKiIibhIxsrtTbYLsZ2I7pMcEYDJBXVsPxilq3hici4gldSsJWrlzJ/Pnz+elPf8q9995LXp6t4tGNN97IqlWrejRA6QGnrAuzlwM+VFRNWXW9p6ISEZGBwL5pM9iKc7Qj0M+b8cMCAe0XJiIDg9NJ2KuvvsrKlSu5+uqrefrpp1vtGXbOOefwxRdf9GR80hPs68LydwAQ6u/D6Ah/AHbkarATEREXi2lOwk6zabP9BmFajtkNAYmIeFaXkrCbbrqJBx98kHnz5rU6FxcXR3Z2do8FJz1kxHTAYFsXVl0MwAz7ps1HlISJiIiLxbTYtLnFzduWkmK1abOIDBxOJ2G5ubnMnz+/3XP+/v5UVFR0OyjpYX5DIHyc7et29gsTERFxqchEMHpB1TEoz223iX1cysgvp67R4s7oRETczukkLDAwkOLi4nbP5efnExYW1u2gxAVOWReWHBcKwM48Mw2WJk9FJSIiA4H3IBg+1fZ1B+vCRoYNJtTfh/rGJnYX6IauiPRvTidhc+bM4dlnn+XEiROOYwaDgcbGRlavXt1miqL0Eo51YbYkbHS4P8GDvaltaGKPBjsREXG1MxTnMBgMJMUGA5CmWRoi0s85nYT97Gc/o6CggMWLF7Ns2TIMBgOvvPIK11xzDdnZ2dx5552uiFO6q+WTMKsVo9HgmH+/XYOdiIi4mlPFOTQuiUj/5nQSFhcXx+rVqxk9ejSrV6/GarXyzjvvEBISwmuvvUZkZKQr4pTuGj7VNh+/ugjKbVsK2Off646jiIi4nD0JO5YBDTXtNmlZnMPaQQEPEZH+wKsrF40dO5bnnnuO+vp6ysrKCAoKws/Pr6djk57k7QdDJ8GxXbanYcExjiRse3YpVqsVg8Hg4SBFRKTfCoqBgOG24hwFOyBubpsmCdHBmIwGCivqKCivJSp4kAcCFRFxvS5t1mzn4+PDsGHDlID1FaesC0uIDsarebDLN7d/V1JERKRHGAwQM9P2dQfrwgb5mJg0YgigWRoi0r916UlYXl4e69ato6CggNra2lbnDAYD/+///b8eCU56WGQSpL7oqJA4yMfE5Mgh7MwrJzW7jOiQwZ6NT0RE+rfoFNj7XodJGNimymfk28alSxO0xEFE+ienk7AvvviCpUuX0tTURGhoKD4+Pq3Oa0pbL2Z/ElaQDk1NYDSSHBfqSMIunx7l0fBERKSfa1mcw2q1PR07RWJsMC9+q+IcItK/OZ2E/f3vfycpKYm///3v2hOsr4mYCF6DoK4CSg9B+DiS40J4/pvDbD+iwU5ERFxsxHQwetuKRJUdgdBRbZrY1yvvKaigpt7CIB+Te2MUEXEDp9eEZWdn89Of/lQJWF9k8oIR02xfN68LmzHSNtjtO1ZBVV2jpyITEZGBwNvv5DiUt63dJlHBgxga6Etjk5VdeWb3xSYi4kZOJ2GRkZGtNmqWPqblfmHAsCF+RAUPoskK6Tlmz8UlIiIDQ8ws2+tpNm12bKGicUlE+imnk7Dbb7+d559/npoaVdPrk06pkAgnn4alqhKViIi4WnRzhcTTbdocq3FJRPo3p9eEZWRkUFJSwvnnn8+sWbMICQlp0+bBBx/skeBOp6qqiieffJJ9+/axZ88eysrKWLp0KXfffXenri8pKWH58uV8/vnn1NbWMmHCBH7+858zZ84cF0fuYfYnYcd2gaUBTN4kx4XwTnoBqVoELSIirubYtPk7qK8GH/82TZKan4TtyCnTPpYi0i85nYS98sorjq8/+OCDNucNBoNbkjCz2cwbb7zBhAkTWLRoEWvWrOn0tfX19dx0001UVFTwwAMPEBYWxquvvsqtt97KCy+8QEpKigsj97DQ0eAbBHXlcHwvjJjmmPaxI7sMS5MVk1GDnYiIuEhQNARGQmWBbVbGqPltmkyJGoKPyUhJdT3ZJScYGd42URMR6cucTsL27dvnijicFhUVxbZt2zAYDJSWljqVhK1Zs4bMzEz+85//kJiYCMCsWbO4/PLLWb58uVPv1ecYjRA5HQ5/aVsXNmIa44cF4u9jorKukQPHK5kwfIinoxQRkf4sZibsecc2JbGdJMzXy8SUqCGk5ZhJyylTEiYi/Y7Ta8J6C4PB0OXpCZ9++imjRo1yJGAAXl5eXHbZZezatYvCwsKeCrN3OmVdmJfJSGLz/HuVqhcREZeLbp5xktt+hUQ4Wape68JEpD/qVBK2bds2qqurz9iutLSU//73v90OytUOHDjA+PHj2xy3Hztw4IC7Q3KvUyokwsn592ka7ERExNXsFRLtmza3w16cQxUSRaQ/6tR0xBtuuIHXX3+dadNse3s0NTUxbdo03njjDSZNmuRol5uby+9//3uuvvpq10TbQ8xmM0FBQW2O24+ZzWan39NisXQpFvt1Xb2+S4YnYAKshXtoqq0C70EkxtimIG7PLnVrLB7pfy+i/qv/LV8Hmu72f6B+3/qFEdPA5AMnSqA0C8LGtGlivzm4/1gFlbUNBPp5uztKERGX6VQSZj3lLpXVaqWxsbHN8b7kdFMZuzLNMSMjozvhdPt6p1itTPMNwbuujAMb36I6dDKmhiYMQE5pDZ9vTiXEz+S+eHBz/3sh9V/9H8gGev8HJC9fGDHd9iQsb1u7SZh9H8t8cw07c8uZNy7c/XGKiLiI04U5+oPg4OB2n3aVl5cDtPuU7EymTp2KyeR84mKxWMjIyOjy9V1l3J8CBz4iPqAK6/TpAMRv+pr9hVXUB0YxffJwt8Thqf73Fuq/+q/+d73/9uulj4pJsSVhuVsg4YftNkmOCyHfXENaTpmSMBHpVwZkEhYfH09mZmab4/Zj48aNc/o9TSZTt36J6u71TotKhgMfYTyaDs2fO2NkKPsLq9iRW84l06LcFwse6H8vo/6r/+r/wO3/gGXftPk0xTmSYoN5d2eBinOISL/TZ6sjdseiRYvIyspi586djmONjY28++67JCQkMGzYMA9G5yanVEiEk5WotmuwExERV7Nv2nx8N9RVttskOS4UsG3a3NTUd5dAiIicqtNPwrKyshx3Ku2LobOystq0cacvv/ySmpoaR+XGgwcPsn79egAWLlzIoEGDuP/++1m7di2ffPIJUVG2pztXX301r732Gvfccw+/+tWvCAsL47XXXuPw4cO88MILbu2Dx9grJJYcgNpy8AtiRvNg911+ObUNFvy8dWdaRERcZEgkBMVAea7thuDohW2aTBgRiJ+3kYraRg4VVTFuWKAHAhUR6XmdTsLuu+++Nsd++9vftvqz1Wrt8t5dXfHQQw+Rn5/v+PP69esdSdiGDRuIjo6mqakJi8XSqoiIj48PL774IsuXL+fhhx+mpqaGiRMn8swzz5CSkuK2+D3KPwyCY8GcAwXpMHohMaGDCA/wpbiqjoz8cmaODPV0lCIi0p9Fz7QlYXlb203CvE1GEqKD2XK4lLScMiVhItJvdCoJe+SRR1wdR5d89tlnZ2yzbNkyli1b1uZ4eHg4jz76qCvC6jsik5qTMNsdSIPBwIy4ENbvPkZqdpmSMBERJ1VVVfHkk0+yb98+9uzZQ1lZGUuXLuXuu+/u1PUlJSUsX76czz//nNraWiZMmMDPf/5z5syZ4+LIPSQmBXa/dcZNm7ccLiU1u4xrZ8a6MTgREdfpVBJ2xRVXuDoO8YSoJNizts26MHsSJiIizjGbzbzxxhtMmDCBRYsWsWbNmk5fW19fz0033URFRQUPPPAAYWFhvPrqq9x666288MIL/XOmRnRzn+ybNrczm0abNotIfzQgqyNKM/u6sIIdjkPJI5sHu+wyt08vFRHp66Kioti2bRsGg4HS0lKnkrA1a9aQmZnJf/7zHxITEwGYNWsWl19+OcuXL3fqvfqM4VPByw9qyqDkIIS3rU5s37T54PEqzCfqCR7s4+4oRUR63ICsjijNIqcDBtt8/KoiACZHDsHHy0hJdT1HSk54NDwRkb7GYDB0+ebVp59+yqhRoxwJGICXlxeXXXYZu3btorCwsKfC7D28fGybNgPkbm23Sai/D6PC/QHYkWt2T1wiIi6mJ2EDmW8ghMdD8X7burD4C/H1MpEQHcS2I2VsP1LqGPhERMS1Dhw4QHJycpvj48ePd5x3dgsVezVjZ9mv6+r1zjBEz8CYu5mm3C1Yp7W/aXNiTBCHi6vZfriUBWPDXB6TO/vfG6n/6n/L14Gmu/3v7HVKwga6qCRbEpZvS8LANvVj25Ey0nLKuGZGjIcDFBEZGMxmM0FBQW2O24+ZzWan3zMjI6NbMXX3+s4IbohgDFB7YCN709PbbRNhsM3M+GpPLudGVLs8Jjt39L83U//V/4HM1f1XEjbQRSbBztW2J2HNZsSF8jRZbD+i4hwiIu50uqmMXZnmOHXqVMcen86wWCxkZGR0+XqnjB0B2//AoMrDTJ84GnyHtGkyaHglT6d9Q5bZwpSp0/AyuXY1hVv73wup/+q/+t/1/tuvPxOnkrDa2lpuuukmfvaznzF37lyng5JeKKq5OEd+mqMyVVJsMAAHjldRfqKBoMHenotPRGSACA4ObvdpV3l5OUC7T8nOxGQydeuXqO5e3ylBkRAci8Gcg+loOow5p02T8SOCCPD1oqqukYPFJ5gc6fz3oivc0v9eTP1X/9V/1/XfqVtJfn5+ZGZmDugfSL8zbAoYveBEsa1ABxAW4OtYC5aWo6dhIiLuEB8fT2ZmZpvj9mPjxrWtHNhv2EvVd1Ccw2Q0kNh8g1Cl6kWkP3D6eX5iYiK7du1yRSziCd5+MGyy7etT9gsDtF+YiIibLFq0iKysLHbu3Ok41tjYyLvvvktCQoLTRTn6lJgW+4V1IDH25BYqIiJ9ndNJ2L333svrr7/O2rVrqa523+JYcSHHfmFtk7Dt2aWeiEhEpM/68ssvWb9+PZ9//jkABw8eZP369axfv56amhoA7r//fiZNmkR+fr7juquvvppx48Zxzz338N577/Htt9/y85//nMOHD/PrX//aI31xm+iZtte8bdDU1G4T+7ikGRoi0h84XZjj2muvpaGhgfvuu4/77rsPPz+/VouFDQYDqampPRqkuFhUEqS+0OpJ2IzmwW5nbjkNlia8XbwIWkSkv3jooYdaJVf2BAxgw4YNREdH09TUhMViwWq1Otr5+Pjw4osvsnz5ch5++GFqamqYOHEizzzzDCkpKW7vh1sNnwpeg6C2HEoOQMT4Nk2mxwRjMEB2yQmKq+oID/D1QKAiIj3D6STswgsv7PJGlNJL2Z+EHd1puwNpNDImIoAhfl5U1Day92gF06KDPRqiiEhf8dlnn52xzbJly1i2bFmb4+Hh4Tz66KOuCKt3M3nbbghmf2NbF9ZOEhY0yJtxQwPILKwiLbuMCyYP90CgIiI9w+kkrL1BQ/q4iAm2O5B1FVByECLiMRoNJMeF8Pn+IlKzy5SEiYiIa0XPtCVheVsh6fp2myTHhZBZWEVqjpIwEenbNMdMwOQFIxJsX7e7Lkzz70VExMViTl8hEU4W59iRbXZDQCIirtPlzZozMzM5dOgQdXV1bc59//vf705M4glRSZC72bYuLOGHACTHhQKqRCUiIm5gL1NftA9qzDAouE0T+83BnXlm6hub8PHSvWQR6ZucTsJqamq444472Lx5MwaDwbGouOU6MSVhfVA7FRITYoIwGQ0cLa+lwFxDZPAgDwUnIiL9XkAEhIyEsiOQvx3GLmrTZHS4P8GDvTGfaGDv0QoSYoLdHaWISI9w+hbSk08+SX5+Pq+88gpWq5UnnniCF154gfPPP5+4uDjefvttV8QprhbVnIQdywBLAwCDfbyYHDkE0JREERFxg5hZttfcbe2eNhgMJMVqH0sR6fucTsI2bNjAT3/6UxITEwEYMWIEc+bM4fHHH2fy5Mm89tprPR6kuEHoaPALgsZaOL7HcThJm2OKiIi7OPYL63hdWFJsMACp2i9MRPowp5Ow/Px8Ro8ejclkwmAwODaeBLj00kvZsGFDjwYobmIwQKQtsW61X9hIbdosIiJuYi/OkZfa4abNSXH24hxKwkSk73I6CQsMDOTEiRMAhIWFkZ2d7TjX2NjoOCd9UDvrwuyLoPceraS6rtETUYmIyEAxdDJ4+0NdORTvb7dJQnQwRgMUlNdytLym3TYiIr2d00nY+PHjOXLkCACzZs3i6aefZvv27ezatYuVK1cyYcKEno5R3MW+Lix/h+PQiKBBRAUPwtJkZWeu2TNxiYjIwGDyOjkW5W5pt4m/rxcTR9jWK6epVL2I9FFOJ2FXXXUV1dXVAPz85z+npqaG66+/nmuvvZaCggJ+97vf9XiQ4ib2J2HH90D9ySea9qkfWgQtIiIuZ18X1kFxDjg5S0Pjkoj0VU6XqL/kkkscX8fExPDRRx85ytUnJiYSHBzck/GJOw2JhIBhUFVoq5IYa6tSlRwbzHs7C1QhUUREXM+xLux0xTlCeGlTNmkqziEifVS3dzkcPHgw5557Luecc44SsL7OYGh3XdiMkc2bNueU0dRk9URkIiIyUNg3bS7OhBPtF4WyPwnbXVBObYPFXZGJiPQYbTUvrTnWhZ1MwiYMD2Swj4nK2kYOHK/yUGAiIjIg+IdB6Bjb1/mp7TaJDhlEeIAvDRYr3+WXuzE4EZGe0anpiBMmTMBgMHTqDQ0GA3v27DlzQ+md2nkS5mUyMj0mmG8PlZCaXcb44YEeCk5ERAaEmBQoPQS5W2Hc+W1OGwwGkuOC+Wh3IanZZY4ZGyIifUWnkrC77rqr00mY9HH2vcJKDkKNGQYFA7apH98eKmF7dik/nhXrsfBERGQAiJ4JO1d3WCERbOvCPtpdqHVhItIndSoJu/vuu10dh/QW/mEQHAfmbDiaDqPPBk7Ov09TcQ4REXE1e3GO/FRosoDR1KbJyQqJZqxWq24Wi0ifojVh0pb9aViLdWGJsSEYDHCk5ARFlXUeCkxERAaEoZPAJwDqq+D43nabTIkKwttkoLiqjtxSbdosIn2L0yXq165de8Y23//+97sQivQaUUmwZ22rdWFBg7yJHxrI/sJK0nLKuHDycM/FJyIi/ZvRBFHJcPhLW6n64VPaNPHzNjE5Moj0XDNpOWXEhg32QKAiIl3jdBLW0WbMLacBKAnr4+zFOfJ3tDqcFBdiS8KylYSJiIiLxaTYkrDcbTDjlnabJMWGkJ5rJjW7jO8nRrk5QBGRrnM6CduwYUObY2VlZWzYsIEPP/yQv//97z0SmHhQ5HTAABV5UHUcAoYCMCMuhNVbc7Rps4iIuF70mTdtTo4L4flvDqs4h4j0OU4nYVFRbe80RUVFMWXKFBobG3nppZdYtmxZjwQnHuIbCOHxULzfti5s/EXAyUXQGXnl1DVa8PVqu1BaRESkR0TPsL2WHITqElvhqFMkxQUDsPdoBdV1jfj7Ov1rjYiIR/RoYY45c+bw2Wef9eRbiqdEtd0vLC5sMOEBPtRbmrQ5poiIuNbgUAgbZ/s6b1u7TUYEDSIyyI8mK+zMM7svNhGRburRJCw/Px+jUQUX+wXHurCTSZjBYCAp1l4SWFM/RETExWLOPCUxSVuoiEgf5PRz+23b2t6Nqq+vZ//+/Tz99NPMmTOnRwITD2v5JMxqhebCKzNGhvDxnkK2HynjtgUejE9ERPq/mBRIfxVyT5OExYbw/q6jpOWY3ReXiEg3OZ2EXX/99W02RLRarQDMnTuX3//+9z0TmXjWsClg9IITJWDOgZA4oMWmzTll2hxTRERcy16cIz8NLI1gavtri8YlEemLnE7CXnrppTbHfH19iYqKIjw8vEeCkl7A2w+GTYajO21Pw5qTsMmRQfiYjBRX1ZNdcoKR4f4eDlRERPqtiAngOwTqKuD4HhgxrU2TiSOG4OtlxHyigaziasZEBHggUBER5zidhKWkpLgiDumNIpNsSVh+Gky+ArBtjjk1OojU7DJSs8uUhImIiOsYjbZNm7M+t60LaycJ8/EykhAdzNYjpaRmlykJE5E+wekqGocPH2br1vbnZm/dupUjR450NybpLRzrwlpv2myf+qH9wkRExOXsxTlOsy4ssblUvYpziEhf4XQStmzZsnY3bAb4/PPPtUdYf2KvkFiQDk1NjsPJqkQlIiLuEn3mJCw59uS6MBGRvsDpJCwjI4OZM2e2e27mzJl899133Q5KeomICeA1COoroeSA47C9TH3m8UrKaxo8FZ2IiAwE0cm217LDUFXUbhN7mfrMwiqNSyLSJzidhFVWVjJ48OB2z/n5+VFerk18+w2TF4xIsH3dYr+wiEBfRoYNxmqFHbrrKCIirjQoxHZTEDrctDk8wJe4MNvvJum5ZjcFJiLSdU4nYcOGDWPXrl3tntu1axcRERHdDkp6kZb7hbVgv+uoTZtFRMTloptn4Jxm02b7lESNSyLSFzidhC1atIhVq1axefPmVse3bNnCM888w/nnn99jwUkvYF8Xlt86CZsRFwposBMRETdwFOdo/0kYQGLzzUHN0BCRvsDpEvV33XUXX3/9NTfffDMjR45k+PDhHDt2jCNHjjB27FjuvvtuV8QpnmJ/EnYsAxrrwcsHOFmcIz3XTKOlCS+T0/m8iIhI5zg2bU4FSwOYvNs0sT8J25FjxtJkxWTUps0i0ns5/ZtzYGAgr7/+OkuXLiUoKIiCggKCgoK4++67+c9//kNAgPbn6FdCR4NfEFjqbBtlNhs3NIBAPy9O1FvYd6zSgwGKiEi/Fx5vG4saa6Cw/QJg44cH4u9joqqukQPHNS6JSO/m9JMwAH9/f+666y7uuuuuno7HKdXV1fzjH/9g3bp1lJeXM3r0aG677TYWL1582uveeust7rvvvnbPff3111rX1pLBAJGJkPWFbV1Y5HQAjEYDSbEhfJlZRGp2GVOigjwapoiI9GNGI0TNgEMbbFMSIxPbNDEZDUyPDeabgyWkZpcxYfgQDwQqItI5XUrCwFYlMT09nbKyMhYuXEhQkPt/Cb/77rvJyMjgV7/6FSNHjuT999/nl7/8JU1NTVx66aVnvP6RRx5h9OjRrY4FBwe7KNo+LDLJloTlp8GMWxyHZ8TZkrDt2WXcOHekx8ITEZEBIGaWLQnL2wqzbmu3SVJsCN8cLCEt28xPZsW5OUARkc7rUhK2cuVKnnnmGWprazEYDPz3v/8lKCiIG2+8kbPOOovbbmv/H8ee9OWXX/LNN9/wt7/9je9973sAzJ49m4KCAv7yl79wySWXYDKZTvse48aNY+rUqS6Ptc9zVEjc0eqwNm0WERG3iWmukHiaTZvtlXu1abOI9HZOrwl79dVXWblyJVdffTVPP/00VqvVce6cc87hiy++6Mn4OvTJJ58wePBgLrroolbHr7zySo4fP87OnTvdEseAYK+QeHwv1J9wHE6ICcZkNJBvruFoeY2HghMRkQEhagZgAHM2VB1vt0lSjC0JO1xcTWl1vRuDExFxjtNPwl599VVuuukmfvvb32KxWFqdi4uLIzs7u8eCO50DBw4wZswYvLxad2H8+PGO80lJSad9jyVLllBaWkpgYCApKSn87Gc/Iz4+vkvxnPq9cPa6rl7vFv7DMAYMw1BViKVgB8TMBsDPy8CE4YHsLqhg2+ESFk8d4fRb94n+u5D6r/63fB1outv/gfp9G7D8hsDQibYiUblbYeL32jQJGuzN2KEBHDxeRVp2GYsmDfNAoCIiZ+Z0Epabm8v8+fPbPefv709FRUW3g+oMs9lMdHR0m+P2tWlms7nDa8PDw1myZAnTp08nICCAzMxMVq1axbXXXsvq1auZMGGC0/FkZGQ4fU1PXu9qY/xHE1xVSMG29zle4uc4Hju4kd3A+u0HiLIUdvn9e3v/XU39V/8Hsv7UfxWMcrHomc1J2JZ2kzCApNhgDh6vIjVHSZiI9F5OJ2GBgYEUFxe3ey4/P5+wsLBuB9VZBkPHe4Cc7tyCBQtYsGCB488zZ85k4cKFXHrppfzzn//kqaeecjqWqVOnnnENWnssFgsZGRldvt5dDBVnQ+EmogzHiZw+3XH8QuNR1h3cSW6NF9NbHO+svtJ/V1H/1X/1v+v9t1/fm6hglIvFpEDavyGv402bk+NCeGN7ntYri0iv5nQSNmfOHJ599lnOO+88fH19AVvC09jYyOrVq5k3b16PB9me4ODgdp92lZeXAzhdrTE6Oprk5OQuryUzmUzd+iWqu9e7XPQMAIwFO6BFnDNH2ZLuPUcrqbNYGezTtYKbvb7/Lqb+q//qf9/vvwpGuUHMLNtrwQ5orAcvnzZN7EWjduaZabA04W1yevm7iIjLOf0v089+9jMKCgpYvHgxy5Ytw2Aw8Morr3DNNdeQnZ3NnXfe6Yo424iPj+fQoUM0Nja2Op6ZmQnYBjJnWa1WjEb9Y90u+54spYegxuw4HBU8iBFBfliarOzMLfdMbCIivYAKRrlB2FgYFAKNtVDY/lPQ0eEBDPHzorahiX1HtWmziPROTj+2iIuLY/Xq1TzyyCOsXr0aq9XKO++8w6xZs/jrX/9KZGSkK+JsY9GiRbzxxht8/PHHXHLJJY7jb7/9NkOHDiUhIcGp98vNzSUtLY25c+f2dKj9g38YBMfZqlIV7IAx5zhOJcWF8MGuo6RmlzJnjPumo4qI9Ca9rWAU9M+iUcaoGRgOfkJTzhasw6e32yYxNpgvM4vZdqSESSMCnP6M3tx/d1D/1f+WrwONu4pGdWnu2NixY3nuueeor6+nrKyMoKAg/Pz8znxhD1q4cCFnnXUWf/zjH6mqqiI2NpYPPviAjRs3snz5cseUj/vvv5+1a9fyySefEBUVBcBNN93EjBkzmDBhAv7+/mRmZvLss89iMBi455573NqPPiUqqd0kbIYjCdP8exEZuHpbwSjon0WjhpuiiQLMGR9z2GdWu21GeNcC8NnOwyQM6vrY1Bv7707qv/o/kLm6/11bwNPMx8eHYcM8V3loxYoV/P3vf+fxxx/HbDYzevRoHnvssVZVqJqamrBYLK32M4uPj2fdunU8//zz1NXVERoayuzZs7nzzjsZNWqUJ7rSN0Qmwe63oSCt1WH7/PvU7DKamqwYjR0XRRER6c96U8Eo6KdFo4LKYf8LhFQfIKiDglDVgSX8Z/c2DleiolFdoP6r/+q/64tGdSoJW7t2rVMf/v3vf9+p9l3l7+/Pgw8+yIMPPthhm2XLlrFs2bJWx+6//35Xh9Y/RTVPo8nf0erwxBFDGORtoqK2kUNFVYwbFuiB4EREPKu3FYyCflo0KmYmGIwYyvMwVR+HIW33qEyKC8VogHxzLcXVDQwb0rXZOr2y/26k/qv/6r/r+t+pJOx3v/tdp9/QYDC4LQkTNxuRABigIg+qjkPAUAC8TUYSYoLYnFVKanaZkjARGZDi4+N5//33aWxsbLUuTAWjephvIAydBIXfQd5WmHR5myYBvl6MHz6EvUcrSMsu4+KpbRM1ERFP6lQStmHDBlfHIX2BbyBEjIeifZCfBuNPVgCbERfK5qxStmeX8cOUWA8GKSLiGSoY5UYxKbYkLLf9JAxsmzbvPVpBWo6SMBHpfTqVhNkLWogQmWRLwgpaJ2H2dWHaHFNEBioVjHKj6BTY/vwZN21+dUuOikaJSK/U5cIcVVVVpKenYzabCQkJISEhgYAA58vASh8TlQQ7X7M9CWshKdaWhGUVV1NSVUdYgK8nohMR8SgVjHKTmBTba0E6NNaBV9sxxz4ufZdfQV2jBV+vgbu2RUR6ny4lYc899xxPPPEEtbW1WK1WDAYDfn5+/OxnP+Pmm2/u6RilN4lsLs5RkAZWKzRX+woa7M24oQEcOF5FWo6Z8yd5rmqmiIinqGCUm4SOhsFhcKIEju6yFes4RVzYYML8fSiprue7/ArHjA0Rkd7A6dW+a9euZfny5cycOZPHHnuMV199lccee4yUlBT+8pe/OF1JUfqY4VPA6G0b+Mw5rU7NGGkb4LZnl3oiMhERGSgMBohuTrzytnbQxECSpsqLSC/ldBL24osv8r3vfY9Vq1Zx8cUXk5yczMUXX8zTTz/N4sWL+fe//+2KOKW38PKFYZNtXxe0PyVRg52IiLicPQnLbT8JgxbjUo7GJRHpXZxOwrKysrjsssvaPXfZZZdx6NChbgclvZxjv7D2N23emVdOXaPF3VGJiMhAEjPL9nqG4hwAqdllrdbgiYh4mtNJmJ+fn2PjyVOVl5fj59e1DRGlD3GsC2u9afOocH9C/X2ob2xid0GFBwITEZEBIyoJDCaoyIfy/HabTIsOwsto4HhlHfnmGjcHKCLSMaeTsOTkZJ544gkKCwtbHS8qKmLlypXMmDGjx4KTXsr+JKwgHZqaHIcNBoNj6kfqEU39EBERF/LxPzk9voN1YX7eJiZHDgFQqXoR6VWcTsJ++ctfUlxczAUXXMCSJUv4/e9/z5IlSzj//PMpLi7ml7/8pSvilN4kfDx4D4b6Sig50OqUvTiHBjsREXE5e6n63I6nJCY23xzckWN2Q0AiIp3jdBI2btw4/vvf/3LeeeeRkZHBW2+9RUZGBueddx5r1qxh7NixrohTehOTF4xIsH3dwbqw7Zp/LyIirhZtT8K2dNik5bowEZHeokv7hI0aNYrHHnusp2ORviQyCXI22SokTv+R4/DUqCC8TQaKq+rILa0hNmywB4MUEZF+zb4/2NGd0FAL3m3XpdvL1O85WsGJ+kYG+3TpVx8RkR7l9JMwEaDDCol+3iamRAUB2i9MRERcLGQU+EdAU4MtEWtHZJAfw4f4YWmysiuv/cJiIiLu1qXbQXv27OG9996joKCAurq6VucMBgNPPfVUjwQnvVhkou31WAY01oOXj+PUjLgQduSYSc0u48qkaA8FKCIi/Z7BYJuSuP8DW3GO2FntNDGQFBfMhxnHSM0uY/boMA8EKiLSmtNJ2Nq1a7nvvvswGo2Ehobi7e3d6rzBYOix4KQXCx0NfsFQa4bjeyByuuNUclwIz2w8rPn3IiLiejEzbUnYGTZt/jDjGDu0abOI9BJOJ2FPPfUUCxcu5NFHHyUoKMgVMUlfYDDYnoZlfW5bF9YiCbPPv99fWElFbQND/Lw7eBMREZFushfnyNsGVqttfDqFvThHWo4Zq9WqG8Yi4nFOrwk7fvw4N9xwgxIw6XBd2NBAP2JDB2O1QrpKAouIiCtFJoLRCyqPQnluu00mRwbh42WktLqeIyUn3BygiEhbTidhEydObLNRswxQkfZNm3e0OTWjRal6ERERl/EZDMOm2L7uYEqij5eRac1FozRVXkR6A6eTsN/+9resWrWKffv2uSIe6UvsT8KO74X61ncW7VMS0zTYiYiIq8W0mJLYAce4pHVhItILOL0mbPr06VxwwQVcccUVREREtJmWaDAYePfdd3ssQOnFhkRCwHCoOgbHdkHsbMepGSNtg92OnDIaLU14mbQbgoiIuEjMLNi66ozFOUA3B0XkpAZLE7mlJ8gqquZwcTVZxVXklZ5gZngj06e79rOdTsJWrVrF008/TWhoKJGRkW2qI8oAE5UE+z+0rQtrkYSNGxpIoK8XlXWN7C+sZHKk1hCKiIiLRDdv2nxsFzTUgPegNk2S4oIBW9GoytoGAlU0SmRAsFqtFFXVkVVU3ZxsVTmSrpzSEzQ2WdtcU3fCl7tcHJfTSdhLL73EVVddxZ/+9CdMJpMrYpK+JLI5CStoXZzDZDQwPTaYjQeKSc0uUxImIiKuExwLAcOgqhAK0iFuTpsmQwP9iAkdRG5pDem5ZuaPi3B/nCLiMifqG22JVnE1h4tsT7UON39dWdfY4XWDvE2MCvdndIQ/o8P9GRk2mKENx1wer9NJWHV1Nd/73veUgIlNVPOmzadUSASYERfqSMJumDPSvXGJiMjAYTDYnobte9+2aXM7SRjYpiTmltaQlq0kTKQvarQ0kW+ucSRbWUW2RCurqJpjFbUdXmc0QHTI4OZEK4BREf6MCfdnVIQ/w4f4tdq2wmKxkJ5+3OV9cToJS0pK4tChQ8yZ0/4/cDLA2Csklh6CGjMMCnacsu/Lsv2I5t+LiIiLxaTYkrDTrAtLjgvhnfQCUlWcQ6TXslqtlFbXO55oHSquan6yVU1OyQnqLU0dXhvm7+N4qjUqPMDxdCs2bDC+Xr3rAZLTSdgDDzzAz372M4YPH86CBQvw8fFxRVzSVwwOhZCRUHbEVqp+zDmOU9NjgzEaIN9cw7HyWoYH+XksTBER6efsmzbnbu1w02Z7cY4dOWU0NVkxGrVps4in1DZYbNMFm59oZTU/0coqqqKituPpg75exhaJ1sknW6PD/Qke3HfyEqeTsKuuuorGxkbuvvtuDAYDfn6tf7E2GAykpqb2WIDSB0QmNSdhaa2SsABfLyYMH8KeoxWkZpexeNoIz8UoIiL9W+R0MHpD9XEwZ9tuEJ5iwvBABnmbqKxt5GBRFfHDAt0epshA0tRkJd9c40i0bBUIbclWQXkN1rY1MQDbPZTIoEGOJ1mjIwIcSVdk0KB+cQPF6STswgsvbDVvUoSoJNj9VvvrwkaGKAkTERHX8x4EI6ZBfirkbms3CfMyGZkeE8ymrBJSs8uUhIn0EPOJ+lZPsuzrtI6UVFPX2PH0waBB3o51WvaEa1SEPyPD/PHz7l3TB3uaU0mYxWLh9ttvJzQ0tM3+YDKA2deFFexocyo5LoSXNmWTml3q5qBERGTAiU6xJWF5W2HaNe02SYqzJWFp2WX8KCXWzQGK9F11jRZySk5wyF550F6JsLia0ur6Dq/zMRmJCxvcZp3W6IgAQgZ7D9iHO04lYVarlcWLF/PUU0+xcOFCV8Ukfc2IBDAYoSIfKgshcJjjlL04x+6CCmrqLQzy6d93NURExINiZsKWp85YnANQcQ6RDhRX1bGrsI7vNudwpMVGxnllJ2hnSy2HEUF+bdZpjQkPICpkEKZ+MH2wpzmVhHl5eREeHo61owmcMjD5BkD4eCjaa1sXNv5ix6mo4EEMG+JLYUUdu/LMzBod5sFARUSkX7MX5ziWAfXV4OPfpklijC0Jyyqqpqy6nhD/vrOQX8RVrFYrqdllPP1VFp/uLWxeq9X2RkWgr9fJRCsioFWBjME+Tq9yGtCc/m4tXryYtWvXcvbZZ7sgHOmzopJsSVh+6yTMYDAwIy6UDzKOsj27TEmYiIi4TlA0BI6AyqO2KfIj57VpEuLvw+gIf7KKqtmRW8a5E4a180YiA4OlycrHu4+xamMWO3LMjuORASYmRocyZmigbZ1Wc9IVHuAzYKcP9jSnk7AJEybw4YcfcsMNN3DBBRcQERHR5odxwQUX9FiA0kdEJkL6q7YnYadIigvhg4yjpGVr6oeIiLiQwWDbL2zPO7Ypie0kYWArVZ9VVE1atllJmAxINfUW/puay7NfHya75AQAPl5GrkqK4ua5cVTmH2T69OmYTFpG4ipOJ2H33nsvAIWFhWzd2nbOtcFgYO/evd2PTPqWqObiHPlpbfZnmdFi/r32ZREZuKxWK4UVdewvrCTzWCX7j1UwuLGa6dM9HZn0K9HNSVjetg6bJMeF8N/UPFJ1c1AGmKLKOl7edISXN2dTdqIBgODB3lw/O44b5owkItAXi8VCer6HAx0AnE7CXnrpJVfEIX3dsCm2/VlqStvszzIpcgh+3kbMJxrIKq5m7NAAz8UpIm5RVl1vS7YKK9l/7OTrqRtw+hjhgaubdLdVek5M5zdt3plnptHShJfJ6M4IRdzuUFEVz248zJtpedQ3l4yPCR3ErfNGc82MaK3n8gCnv+MpKSmuiEP6Oi9fGD7FNgc/P61VEuZtMpIQHcyWw6WkZpcqCRPpR6rqGjngSLaqbK+FlRRV1rXb3mQ0MCrcn/HDAhk31J8oQ5l+AZaeNSIBTD5wohjKDkPo6DZNxg0NINDXi8q6RvYdq2RKlLbdkf7HarWy7UgZq5qLbdglxARz+4LRXDh5uKoWelCX097KykrS09MpKytj4cKF2jdMbPuFFeywrQubcmWrU8lxIc1JWBnXztS+LCJ9TW2DhUNFVY5k60BzspVXVtPhNTGhgxg/LJD4YYGMH257HR3hj6+X7amXxWIhPT3dTT2QAcPL15aI5W2zPQ1rJwkzGg0kxoXwVWYRO3LKlIRJv2JpsvLR7mOs+iqL9Fyz4/iiicO4feFoZsSFqLhGL9ClJGzlypU888wz1NbWYjAY+O9//0tQUBA33ngjZ511FrfddltPxyl9QVQSbH8O8tvftBlgu+bfi/RqjZYmjpScaD2NsLCSI8XVHe4PM2yIry3RGhZI/HDb69ihAfj7anqLeEh0yskkLOGH7TZJig3mq8wiUrPLuH7OSPfGJ+ICJ+obWbM9j+e+PkxOactiG9HcOn8UYyI0E6k3cXqEfPXVV1m5ciU//vGPmT9/Prfffrvj3DnnnMPHH3+sJGygimwuznE0HZosYDy5xsM+/z6ryLareqj2ZRHxqKYmK/nmGkeSlXmskv2FVRw6XkW9panda4IGeTN+eOtkK35YAMGD9f+z9DIxM2EzkKdNm6X/K6qs46XmYhvm5mIbIYO9uX7OSG6YE0d4gK+HI5T2dCkJu+mmm/jtb3+LxWJpdS4uLo7s7OweC076mIjx4O0P9VVQfACGTnCcCvH3YUyEP4eKqknLLmPRJJUEFnEHq9VKUWVzRcLCquZkq5IDhZVU11vavWawj4lxwwIZPyzAMZVw/LBAIgJ9NYVF+gb7ps2Fu6GuCnzbPgGYHhOMwQC5pTUcr6xlaKCfm4MU6Z6Dx6t47uss3kzLdxTbiAsbzK3zRnF1cgyDfFTwqDdzOgnLzc1l/vz57Z7z9/enoqKi20FJH2U02ebh53xrWxfWIgkDmBEXyqGialJzlISJuEL5iQb2t3qyZZtOaL8zeiofk5HREf6O9VrjmxOuqOBB2kpC+ragKBgSDRV5tvFo1II2TQL9vBk/LJB9xypJyzZz0ZThHghUxDlWq5Wth0t5ZmMWn+497jg+vbnYxgUqttFnOJ2EBQYGUlxc3O65/Px8wsLCuh2U9GFRSbYkLD8Npv+41ankuBBe355L6hFN/RDpjhP1jRworGqTbBVWtF+R0GiAkWH+xLeYRjh+eABxYf54qzKh9FcxM2F3nm1dWDtJGEBibAj7jlWyI6dMSZj0ao2WJj7aXciqrw6xM68csO2+cP7EYdy2YDTJKrbR5zidhM2ZM4dnn32W8847D19f2xxTg8FAY2Mjq1evZt689nenlwEiMtH2WpDW5lTyyJP7stQ3NuHjpV/+RE6nrtHC4eLqFvts2aoT2hdctycqeNDJJ1vDbdMJx0QE4OetaSkywESnwO63z7hp8+qtOdq0WXqt6rpG1mzP5blvDpNbaqtG6+tl5KrkaG6dN4rRKrbRZzmdhP3sZz/j6quvZvHixSxatAiDwcArr7zC3r17KSgo4B//+IcLwpQ+I6q5OMexDGisB6+TC/ZHh/sTMtibshMN7C4oJ7G5WIfIQGdpspJdWtVmr63DxdVYOihJGB7g60iy7IUyxg0NINDP283Ri/RSndq0ORiAXfnlujkovcrxylr+/e0RXtmcQ3nNyWIbN8wZyfUqttEvOJ2ExcXFsXr1ah555BFWr16N1WrlnXfeYdasWfz1r38lMjLSFXFKXxEyCgaFQE0ZHN998skYtiemyXEhfLr3OKnZZUrCZMAqq67nm0PFbMwsYuvBYgre/oS6xvYrEgb6eZ1SjdBWkTBMA7DI6Q2fBiZfqCmFkkMQPrZNk1G6OSi9zMHjlTzz1WHe3pHvqFQ7Mmwwt84fzVVJ0Sq20Y90aROXsWPH8txzz1FfX09ZWRlBQUH4+amqkGC70xiZCIc+s60La5GEASQ1J2FpKgksA0htg4XtR8r4+mAxXx8sYndBBdZTHnD5eRsZN7T1NMLxwwMZPsRP8/z7kOrqav7xj3+wbt06ysvLGT16NLfddhuLFy8+47UlJSUsX76czz//nNraWiZMmMDPf/5z5syZ44bI+yEvH9sYlLvZVqq+nSTMYDCQFBvChn3HScsxKwkTj7BarWw5XMozX2WxYd/JYhtJscHctmAM508apmIb/ZDTSdh9993HnXfeSUxMDD4+PgwbdrLKXX5+Pk888QSPPPJIjwYpfUxkki0JK0gD/qfVqRlxoQBsP1KG9dTfQkX6iaYmK3uOVvD1wWK+OVjM1sOlbZ50TRgeyNwxoYRby7lw9lRGhgdqkO0H7r77bjIyMvjVr37FyJEjef/99/nlL39JU1MTl156aYfX1dfXc9NNN1FRUcEDDzxAWFgYr776KrfeeisvvPACKSkpbuxFPxIz05aE5W5tUyzKLimuOQnLLuN/5o1yc4AykDVamlj33TGe2ZjFrhbFNi6YZC+2EerhCMWVnE7C3n77bX70ox8RExPT5lxZWRlr1651WxKmO469lH1dWP6ONqemRQfhbTJwvLKOvLIaIoM0pUr6h3xzDV8fKOLrgyV8e7CYkur6VueHDfFl3tgI5o0L46yx4QwN9MNisZCens7IMH8lYP3Al19+yTfffMPf/vY3vve97wEwe/ZsCgoK+Mtf/sIll1yCydT+VKI1a9aQmZnJf/7zHxITbTMIZs2axeWXX87y5ctZs2aN2/rRr9j3CztDcQ5AMzTEbarrGnljey7PfX2YvLKTxTaumRHN/8wbzahwfw9HKO7QpemIHSkvL8fHx+fMDXuI7jj2UpHNSVjRXqivBp+T/5j4eZuYHBlEeq6Z1OwyIqepJLD0TRW1DWw6VMLXB2xPu7KKq1ud9/cxMXt0GPPGhTNvbDhjhwZoWmE/98knnzB48GAuuuiiVsevvPJKfvWrX7Fz506SkpLavfbTTz9l1KhRjgQMwMvLi8suu4zHHnuMwsLCVjNPpJPsxTmO74HaCvAb0qbJtOggTEYDR8trKTDXEBk8yM1BykBxvKKWF789wiubs6mobQQg1N+HG+bEcf3sOK31HWA6lYRt27aNLVu2OP68Zs0avvrqq1Zt6urq2LBhA2PGjOnZCDugO4692JAREDgCKo/C0V0Q1/rpYnJciCMJu1RJmPQR9Y1NpOea+fpAERsPFrMz10zLwoUmo4GE6CDmjYtg/rhwpscEaw+uAebAgQOMGTMGL6/WQ+v48eMd5ztKwg4cOEBycnKb4y2vVRLWBYHDISgWynMgPxXGnNOmyWAfLyaNGEJGfrnt5qCSMOlhBworeWZjFmt3FDiKbYwK9+fW+aO4KilaW4gMUJ1KwrZs2cITTzwB2BaxdpSkREZG8r//+789F91p6I5jLxeZBPs/sK0LOyUJmxEXwnNfH2a79mWRXsxqtXLgeBVfHyjm64PFbM4q4US9pVWb0RH+zBtre9I1e0wYQ1QefkAzm81ER0e3OR4UFOQ4f7pr7e2cvfZ0LBbLmRud5rquXt+bGKJnYCzPoSlnC9aR7W/aPD0mqDkJK+WSKcP6Vf+7Qv3vfv+tViubD5fy7MYjfJFZ5DieHBfMT+eN4rwJQzE2T0Pvbd9n/fy71//OXtepJOzWW2/lJz/5CVarlblz5/Lcc88xadKkVm18fHzw93ffHNbedsdRA11rhhHTMe7/gKa8VKyn9C0h2jYdZP+xCsqr64D+1//O6q8//87qbf0/XlHLN4dK+OZQCd8eLKGwsq7V+VB/H84aE2b7b2xYmzvmzvajt/Xf3dw10LnT6aacnmk6aneu7UhGRkaXruup63uDCEMksUDl3g0cHHJ+u23CrLZ1OV/vLSA96uT/9/2h/92h/jvff0uTlU15tbybWc2hMtuUQwMwK8qXy8b7Mz7MB+qPsmvX0R6Otufp5+/a/ncqCfPz83OUoN+wYQMRERFuXfvVnt52x1EDXWuBNUOIB+qPbGZ3enqb80MHmzh+wsLar9NJGObb7/rvLPXfM/2vbWxid1EDuwrr2FVYT05FY6vzPkaYGOHDtGG+JAzzIS7IC6PBChRz/Egxx9t/W6fp598/+h8cHNzu+FFebqt61t640xPXns7UqVM7nJp/OhaLhYyMjC5f36sMtcJ3TzCkIpPpCdPA0HaacHjcCf6x5SuOlDcyYfJUvI30n/53Qb/6+XdBV/pfVdfImtQ8XvjmCPnmWsC29cjVSdHcfFYcI8P6TrEN/fy713/79WfidGGOqKgop4Nxld50x1ED3Slq4mDLvfhV5zN9/EgYFNzq9JzMnbyz8yhlphDgRP/rfyf1259/J7m7/5YmKxn55bYKhoeKScsx02A5ubDLYIDJI4Ywb2wYc8eGMyM2GF8XztXXz989A527xMfH8/7779PY2NhqlkZmZiYA48aNO+219nYtdeba0zGZTN36u9Xd63uFyATwGoSh1oyp7DBExLdpEhsWwNBAX45X1rH7aBXJsbakt1/0vxvU/zP3v7C52MarLYpthPn7cOPckVw3O45Qf88+tOgO/fxd23+nk7CGhgaeeeYZ3n//fQoKCqiraz1dx2AwsGfPnh4LsCO97Y6jBrpTBIRDyCgoO4ypcCeMObfV6RkjQ3ln51F25JZzdrh3/+u/k9R/1/TfarWSXXKCjQeL+fpAEZsOlTgGSbvokEHMHxfOvLERzBkT5pEBUz///tH/RYsW8cYbb/Dxxx9zySWXOI6//fbbDB06lISEhNNe+9BDD7Fz505Hu8bGRt59910SEhK0Trk7TN62TZtzvrVt2txOEmbftHn97mOk5ZQ5kjCRjmQWVrLqqyzeSc933MwbHe7PrfNHc2VSlIptyBk5nYQ99thjvPjiiyxYsIBFixZ5bFpib7zjKKeISoKyw5Cf1iYJs29AmJ5rxjI93BPRST9VWl3Pt4eK+fpAMRsPFJNvrml1foifF3PHhDtKx8eFDVbpeOkRCxcu5KyzzuKPf/wjVVVVxMbG8sEHH7Bx40aWL1/uSDTvv/9+1q5dyyeffOKYXXL11Vfz2muvcc899/CrX/2KsLAwXnvtNQ4fPswLL7zgyW71DzEzbUlY7lZIvK7dJslxtiQsNbuMn84b6d74pE+wWq1sOlTCqo1ZfLH/ZLGNlJGh/HTB6FbFNkTOxOkkbN26ddx1110sXbrUFfF0mu449gGRSfDdm1DQdtPm8cMDCfD1oqqukdzyRtqWSRHpnNoGC9uPlPH1wWK+PljE7oIKrC1Kx3ubbHe4548LZ964CKZGBWljZHGZFStW8Pe//53HH38cs9nM6NGjeeyxx1i8eLGjTVNTExaLBWuLv6g+Pj68+OKLLF++nIcffpiamhomTpzIM888o70re4J90+bcrR02SYoLBmBHTlmrn41Ig6WJDzOO8szGLL7LrwDAaICLpgznp/NHkxgb4uEIpS9yOgkrLy9nxowZrojFKbrj2AdENVenzE9rc8pkNJAYG8zGA8XsK2lwc2DSlzU1WdlztIKvD9o2Sd56uJS6xqZWbSYMD+SssbanXbNGhTLYp0f3pRfpkL+/Pw8++CAPPvhgh22WLVvGsmXL2hwPDw/n0UcfdWV4A5d90+aifVBbDn5tpxtOjgzCx2SkuKqenNKaNudl4LEV28huLrZh+zvh523k2hkx3DJvFHF9qNiG9D5O/2Yyc+ZM9u3bx+zZs10Rj1N0x7GXG5Fgq0JVWQCVx2ybZraQFBvCxgPF7C2q91CA0lfkm2tsmyQfKObbQyWUVrf+OzNsiC/zxkYwb1wYZ40NZ2ign4ciFZFeKWAohIyEsiOQtx3GntemiZ+3iSlRQ0jLMbMj18xId8covcax8lpe3lXJhve+oLJ5HXF4gA83zrEV2wjpw8U2pPdwOgl78MEHufPOO4mMjOTss8/2aKl63XHs5Xz8IWICHN9jexo24ZJWp2eMtD2+/zq3lmue3swNc0Zy8dTh+HppMetAV17TwOasEsdGyYeLq1ud9/cxMXt0mGNd19ihAVrXJSKnF53SnIRtazcJA9vNwbQcM2nZZYyMc2944nk5JSd46suD/Dc172SxjQh/bps/mu8nqtiG9Cynk7DLL7+cxsZG7rnnHgwGg2P/MDuDwUBqamqPBSh9XGSSLQkraJuEzR4dxhWJkbybXmAb9HLS+b/3fbh2Zgw/nhVLdMhgDwUt7lbf2ERGTrntadfBYnbmmmlqsSTDZDSQEB3EvHERzB8XzvSYYLxNbff6ERHpUEwKZLxx2nVhyXEhPPv1YXbkmrkyTlPNBopDRVU8+fkh1qbnY2kefCaGe/OLi6ayaNJwFdsQl3A6Cbvwwgt1x1k6LyoR0l9pd12Yt8nIX6+exuLoBr47EcR/tuVxrKKWJ784xL++PMS5E4Zx/Zw45o8N1z+A/VBZdT3vpufz7vYy9r6zgRP1llbnR4f7O550zR4TxhA/bw9FKiL9QvRM22vedmhqAmPbGzlJcbYZGvuOVVLTMMid0YkH7D9WyROfH+T9XQWOgk4L4yO48+zReJVlM32iqh2K6zidhLU3tU+kQ5HNxTkK0sBqte2Ge4oQPxN3zx7L0nPH8ene47y8+QjfHCzh072FfLq3kLiwwVw3K45rZkQTPFjzsPuy+sYmvth/nDfT8vhs3/FWGyWH+vtw1thw5o8N56xx4UQF6xcgEelBw6aA92CoK4fi/TB0YtsmQ/yICh5EvrmGA6UNzPFAmOJ63+WXs+KzA3y0u9BxbNHEYdx97lgSYoKxWCykl2V7MEIZCFQyTFxr2BQw+UBNmW0ufuioDpt6mYxcNGU4F00ZzsHjVby6JZv/puaRXXKCP3+4l79+vJ/LEiK5fk4c06KD3dYF6R6r1cp3+RW8mZbHuzsLWhXVmBw5hKSwJn6wYBqTo4J1x1FEXMfkZbsxmP21bUpiO0kY2J6G5ZtreC/zBHMSq5gwQhs39xdpOWU88dlBPtt3HLDdF75kygjuOmcskyKHeDi6XqLqOIa0l4nKycRQFmX7/8boBUYTGEwnv+70seave+SYV7tPsPuqTiVhu3fvdupNJ0+e3KVgpB/y8rElYgVptv9Ok4S1NHZoAH+4dDK/uXA876QX8NKmbPYerWBNah5rUvNIiAnm+tlxfG/aCC2U7aWOV9Ty9o583kzLI7OwynE8ItCXKxKjuCopmrERg0lPT2dS5BAlYCLiejEptiQsbysk39huk3PGR/DezgLSjtVx0T+/Zu6YMG6cO5LzJgzFS2tR+6QtWSWs+OwgXx8sBmx7fF2WEMld54xl3LBAD0fXS9SUwTePw5Z/YWw4wXCAg54OqgPtJWZOJ3WnJI8tjhmM3gQEzgamu7QbnUrCrrrqqk6tA7NarRgMBvbu3dvtwKQfiUqyJWD5aTDlKqcuHezjxY9SYvnhzBjScsy8sjmbD3YdZWeumZ25Zh7+YA/XzojhJ7PiiA1TIQ9Pq22w8PGeQt5MzWPjgSJHcQ0fLyMXTBrGVcnRzB8b7vhFxmKxnObdRER6mH2/sNxtHTa5MimaiAAfnvhoF9sK6vj2UAnfHiohKngQP5kdyw9nxhKqEuW9ntVq5euDxazYcJCtR0oB8DIauDIpijvPHsvIcBVeAaCuEjb/C75dYZuqC1gjkzjuN5qI8FCM1iZoskBTo+3Vav+6+c9tjjWd/Npx/NRjLd6v3WNn2D+2qRFoBEudS74lRmDYsGw4r/0bNT2lU0nYI4884tIgpJ9zrAvb0eW3MBgMJMeFkBwXwgOLJ/LG9lxe3ZxDvrmGp7/KYtXGLBbGR3DDnDgWxg/FpKcqbmO1WknNLuPNtDze33XUsacKwIy4EK5KjuaSqSMIGqTCGiLiYfbiHMX7bXf+B4W022zumDAGzw0hIm48q7fn8Z+ttvHmL+v3849PD3DptEhunKup8b2R1Wrl8/3HeXzDQdJzzQD4mIxcMyOaJQvHEBOqG7YANNTC9udg42NwwvaEkKGT4NwHaRp7IXk7dxI+fTqYPDTbqKmpRRLXXhLoTGJoOSXhO/2xpiYLuZY4Jrm4i51Kwq644goXhyH9WpQ9CUu3/QU3du9/6PAAX+48eyy3LxjD5/uO8/LmbL7MLOKL/bb/okMG8ZNZcfxgRjRhAb7dj1/alVt6grfS8nlrh23dnl1U8CCuSoriyqRo3WkUkd7FPxxCR0NpFuSlwrhFp20eFTKIey+awD3njeP9XUf597dHyMgv5820PN5My2N6TDA3zo3jkqkjtMelhzU1Wfl4zzFWfHaQ3QUVAPh6GfnxrFhuXzCG4UF+Z3iHAcLSADtehi+XQ2WB7VjoaDjnAZh8pW1qX2+YpWI0AkYwuf8GrtVioT493eWfo8Ic4nrh8eDtDw3VUJzZ4WJoZ5mMBhZNGsaiScM4UlzNq1uyeWN7HnllNTy6fh9//yST700bwXVz4kiMCdbWCj2gqq6RDzOO8mZqHlsOlzqO+/uYuGTqCK5MimbWqFCt7xKR3is6xZaE5W45YxJm5+dt4urkaK5KiiI918xLm7J5f1cB6blm0l838/D7e/lRSiw/mR3LiCBVdnUnS5OVDzKOsvKzg+wvrARgsI+J62fHcev80UQE6mYsYLsJnvFf+OL/2QqlAQyJhoW/hek/9kiyM9ApCRPXM5ogcjpkf2NbF9ZDSVhLI8P9eWDxJH51wXje21nAy5uz2ZVXzls78nlrRz6TI4dww5w4LkuIYpCP7lY6w9Jk5dtDxbyZmsf63ceobWgCbFWlzhoTzlXJUVw4eTiDffTPiYj0ATEzYdd/bMU5nGQwGEiMDSExNoT7L5nI69tyeGVzDscqanni84M89eUhLpw8jBvmjGTWqFDd/HOhBksT76QX8OTnB8kqrgYg0NeLm84ayS1njSJE6/ZsrFbY+x58/mco2mc75h8B838NyTeBt54Qeop+axL3iEy0JWEFaZD4E5d9jJ+3iWtmxHDNjBh25pp5eXM27+4sYHdBBfe+mcGfP9jL1ckxXDc7ltERAS6Loz84eLyKN9PyWLsjn6PltY7joyP8uSopmisSo4jUXl4i0tfEzLK95qV2a4p8RKAvS88dx5KFY/hkTyH/3nSEzVmlfJhxjA8zjjF+WCA3zI3j+9Oj8PfVr1s9pb6xiTfT8njyi4PkltYAEDzYm/85axQ3zB2p9cd2Visc3ACf/R8cTbcd8wuCs+6BWUvAR8sFPE3/Koh72NeF5ae57SMTYoJJiAnmgUsmsiY1l1c255BTeoLnvznM898cZv64cK6bHaeywy2YT9Tz3s4C/puWz87mBc0AQYO8uTRhBFclRTNdUztFpC8bOgl8AqC+0vZkYFj3ttXxMhm5eOoILp46gn3HKnhpUzZvp+Wzv7CSB97+jmXr9nFNcgzXz4ljlNbJdlltg4XXt+Xyry8POW4Mhgf4cOv80Vw3O44AJbonZX8LG/4Pcr61/dnbH+bcCXOWwqBgj4YmJ+lvrLiHvUJi4XfQWG/bP8xNQvx9uG3BGG6dN5qvDhTx8qZsPtt/nI0Hitl4oJjIID9+PCuWa2fGDsi54w2WJr7YX8RbaXls2HuceottuqHJaOCc8RFclRTNuROHatG5iPQPRpPtxuDhr2ybNnczCWtpwvAh/L8rpnLvRRP4b2oeL286wpGSkzf/FsZHcOPcOM6OH6q1s510or6RVzfnsGpjFkWVtpLkw4b4cvuCMfwoJVZLDFrKT4PPHoZDG2x/NvlCyk9h3i9sRWmkV1ESJu4RMhIGhUJNqS0Rsz8ZcyOj0cDZ44dy9vih5Jae4LWtOby+LZeC8lr++nEm/9xwgIumjOCGOXHMiAvp1097rFYruwsqeDMtj3fTCyiprnecmzRiCFclR3P59EjCVV1SRPqj6BRbEpa3DWbc3ONvHzTIm/+ZN4qb547kqwNFvLQpm8/3H+fLzCK+zCwiNnQw18+O4wczYggarOlz7amsbeClTdk89/VhSpvHqKjgQSw5ewzXJEfj563ky+H4Xlvyte9925+NXpB4PSz4DQRFeTY26ZCSMHEPg8G2LuzQBtu6MA8kYS3FhA52lB1e991RXt6UTVqOmfd2FvDezgImDA/kutlxXJHYv+byH6+o5Z30At5My2PfsUrH8fAAX65IjOTKpGgmjhjiwQhFRNzAsWmz88U5nNHy5l92STWvbM7m9W255JSe4M8f7uVvn+znisQorp89kkmR+rcXoPxEA89/c5gXvjlMRfO+k3Fhg7nr7LF8PzEKHy8tH3AozYIvlsGuNwArYIBp18LZ99rKzkuv1n9+u5TeLyrJloTl74CZng7Gxs/bxBWJ0VyRGM13+eW8sjmbten57DtWyYNrbXP5r0qK4rrZcYwbFujpcLuktsHCJ3sKeTMtj68yi2iy2o77eBk5f9Iwrk6KZv64cK2LE5GBw75pc8kBOFEKg0Nd/pFxYbYqvr88fzzvpOfz4rdH2HesktVbc1m9NZeUkaHcMDeOCycPx3sA/ntcUlXHc18f5qVN2VTV2ZKvMRH+LD13LJdOi9QY1VJ5Pnz1F9jxim2TYYCJl9n2+ho6wbOxSacpCRP3sa8LK3BfcQ5nTIkKYtlV07jvkom8mZrHK5uzySqu5t+bsvn3pmxmjw7lhjkjOX/SsF4/QFqtVtJyyvhvaj7v7yqgsvluIkBSbDBXJUfzvamRmgYjIgPT4FAIGwslB21TEuMvdNtHD/Ix8cOUWK6dGcP27DJe/PYIH313jK1HStl6pJShgb78ZFYcP5oVw9DA/l8+/HhFLc9szOKVzTnUNNg2CZ4wPJC7zx3HRVOGY9LauZOqiuDrv8O2Z8FiWx/H2EVw7oO22UbSpygJE/exT0Es2gf11b22PGrQIG9umTeKm+aO5NtDJby8+Qif7Clkc1Ypm7NsA+SPUmL58axYhg3pXQNkXtkJ3k6z7Y12uHnfFLDNo78yKYorEqNUml9EBGyl6ksO2qYkujEJszMYDMwcGcrMkaEcK6/lta05vLYlh+OVdfz900ye+PwAF08ZwY1z40iK7X/rlAvMNTz95SFWb8ulvtFWEGpadBBLzxnLoonDVLikpRozfLsCNj8FDc1je9xZcO7vIW6OR0OTrlMSJu4TOBwCI6GyAI7uhLi5no7otIxGA/PGhTNvXDgF5hpWb81h9dZcjlfW8c8NB3ji84NcOHkY182OY87oMI8NkNV1jXyYcZQ30/LYnFXqOD7Yx8TFU0ZwVXIUs0eFaUATEWkpeiakv9qlTZt72vAgP355fjxLzxnLuu+O8tKmbFKzy3h3ZwHv7ixgcuQQbpwzksumR/b5ghQ5JSd46suD/Dc1jwaLbX58clwId587loXxEf0u2eyWuirY8i/49nGoLbcdi0y0JV9jzrWtt5c+S0mYuFdUEuwrsJVR7eVJWEuRwYP41QXjufvccXy0+xgvb8pm65GTm3KOHRrA9bPjuCIpiiF+rp/i19RkZVNWCW+m5rHuu2OOKRwGA8wdE8aVidFcNGV4vyoqIiLSo+zFOfLTurVpc0/y8TJy+fQoLp8e9f/bu/O4qOr1geOfGRZlURYRN1AEZRMCRRb3JSs118zs/kptMTPTFm3TujftmpbmrcSr5rXMylt2c8klNfelBA2XVFxwB1RQFBUXluH8/vjK4AQqCsww8Lxfr/Pi5TlnmOc7M87Dc853YV/qJb7ZdoKfd59m/+nLvLXwTyauPMCAlt48HdMIb3dHS4d7T46ey2LGhqMs2Z2K4ebg5Fa+tRjZuQmt/Cx3IbNCyr0BCXNhy1S4ek7tqx0End+FwB5SfFUS8heaMK/64WoK1Qo6Luxu7G319AyrT8+w+hw8e5nv4tSinEfSs3h/6X4+XnWQPs0bMKhVIwLrlv1MV0fPZbEwIYUlu1I5fXOxSgBfDyf6RXjRp3kDGrg6lPnzCiFEpVM7EOxrqEWb0xOhbqilIzIR0sCFyY+HMaZbED/+kcy3cSdJuXidLzYfY/aWYzwY6Mng1j608fOo0D0dDp29wvQNR1jx52njxFDt/WvzSucmtPQp/wlRrIohV92d3TQZLqeqfW6NodNYCOlXIS4UiLIjRZgwr4LJOVKtswi7VWDdmkzooxblXLwrlW+3nSQpPYv/xqt+/ZE+bjwd04huIfVKNaVu5rUclv15hoUJKexOzjTur1ndlp5h9ekX4UVzb1e5iiiEEPdCbwNeEXBsIyTHV7girICbkz0vdvBjSDtfNhxMZ962E2xJOs/aA+msPZCOb20nBsU0ol+EFzXM0BOjpPalXiJ2fRKr96cZ93UJqsOIzk0I93a1XGAVUX4+7FsIGyeqaecBajaADm9B+FNgU3HeV1F2pAgT5lUwe8/F42pa4Goulo2nDNSobsegVj4MjGlE3LELfBd3ktX7z7LjxEV2nLjIP50TeTKyIX+Lbljiu1S5hnw2Hz7Hwp0prE1MJ8egBi3b6HV08K9NvxZePBjkafVjA4QQwqK8om4WYTsgcoilo7kjG72OLsF16BJch6Pnsvh220l+Skjh2LmrjFuWyJTVh3ishReDWll2SZVdpy4Su/4I6w+mA6rnXLeQurzcqQnN6lt/zi9TmgYHV8CGD9XdWABHD2g3Glo+B3YVa/IvUbakCBPm5eiubq1fPA6nd0HjjpaOqMzodDpa+dWilV8t0i7f4Iftyfx3+0nSLmczfcMRZmw8QpegOgxs1ei23Uf2n77Eop2p/Lw7lfNZOcb9QfVq0q+FGidQu0Y1czZLCCEqL+9o9bMCTM5xL/xqOzOuVzPeeCSAxTtTmLftJEfSs/g27iTfxp2ktV8tBrXyoUuQp9nW14o/lkHs+iNsPXIeAL0OeoXV5+VOTax2nc1yo2lwdD2sn1A4PKO6C7R+BaKHQTWZxbgqkCJMmF+DFjeLsJ2Vqgi7VZ2a1Xm1S1OGd/JjbWIa38ad5PejGfyamMaviWk09nDi6ZhG9A2vR+YNA19uPc6iXac5ePaK8Xd4ONvTO7wB/Vp4EVy/7MeXCSFElecVoX5eOAZXz4OTh2XjuUfO1WwZ2MqHp2Mase1oBvO2qSVVfj+awe9HM6jvUp2nYhrxZKQ3tZzL/gKepmn8diSDaeuT2H5czc5rq9fxWIsGvNSxCY09KuZSNBZ1Kg7W/RNOblX/tnOCmGHQeiQ4uFk2NmFWUoQJ86vfQvV9Tt1l6UjKnZ2Nnm6h9egWWo8j6Vf4Lu4UCxNSOH7+Kv9cnsjkVQfJNeSTr6nZj+xt9HQJ9qRfCy/a+9eu8ItCCyGEVXNwA48AOH9ILdoc0M3SEd0XnU5H6yYetG7iQWrmdebHneSHHcmcvnSDKasP8fm6JHo+UJ/BrRvxgJdrqZ9P0zQ2HEpn2rojxrHK9jZ6+rf0YlgHP6ubudEsTu9Wd76OrFH/tqkGkc9D21HgXNuioQnLkCJMmF/Bos1WOkPi/WriWYNxvZrx5iMBLNmtJvIouPPV3NuFfhHe9HigHq6O9haOVAghqhDvSFWEJW+32iLsVg1cHXirayCvPNiUFX+eYd62E/yZcomFO1NYuDOFcG9XBrduRPfQelSzvbdxxfn5Gr8mpjF9QxL7Ui8DUM1Wz/9FN2Roe1/qucjsvEWkH1Rjvg4sVf/W2UCLgdD+TXDxsmxswqKkCBPmVy8MdHq4ckZtVYxTNVueim7E/0U1JPH0JY4fOUS3ti2xsZFJNoQQwuy8omDXd+pOWCVS3c6GfhFe9IvwYndyJt/8foLlf55hd3ImuxdkMmH5Af4W1ZD/i25I/btMGmXI11ix9wz/Xn+EQ2nq4qGjvQ0DYxoxpJ2vjFUuzoXjsOlj+HMBaPmADkL7Q8d3oJafpaMTFYAUYcL87J3U+izpiWpyDupbOiKL0Ol0BNatwY2z8t9QCCEsxrhocwIY8sCm8n0nh3u7Ej4gnLGPBvHD9lN8F3eKs5dvMH3DEWZuOsrDwXUY1MqHGF93k+VO8gz5LN59hhkbjnDs/FUAalSzZXBrH55r2xh3J+m5UcTl07B5Cuz8BvLz1L7AHtDpXagTbNnYRIVS+b5phHWo3wLSE9Gd3gVuVbMIE0IIUQF4BKjlUrIvQdo+qB9u6YjKjYdzNUZ0bsqwDn6sSUxj3rYTxB27wMp9Z1m57yz+dZwZ1MqHbs08WXPsGq+t3ULyxesAuDra8Vybxgxu7YOLg6xbVcTVDNj6L9gxB/JuqH1+naHze9AgwrKxiQpJijBhGQ2aw+7v0J3eCW6PWjoaIYQQVZVeD14t4eg61SWxEhdhBWxvmTTq0NkrfLPtBIt2pnI4LYv3luzjvSWF59ZysueF9r48HdMI52ryZ2MRNy7B79MhbgbkZKl9DVtB57+DTxvLxiYqNPnfJCyj/s3JOc7shmDNoqEIIYSo4ryjVBGWvB2iXrB0NGYVULcGH/YN5a2ugSxMSOHbuJMcP38Vt+p6Xu7sz1MxPjjYy5jlInKuQvwX8NvncCNT7asXBp3/AU0eVKtUC3EHUoQJy6gTAjb26K5fxP7aaaC5pSMSwvxuXMbuWhpcy1CLc9o5SOIWwhK8ItVPK1u0uSy5ONjxXNvGPNPah+Pnr5B+4jBRET4yadRf5WVDwtew+RO4mq72eQRA53chqJd8h4sSkyJMWIatvSrETu/EKfMQIF0SRSWnaZBxBJLjb2470J87yANosO6W8+wcVTFm/Onwl31/Pf6X8+wd7/DYmz/18keVECa8WgI6uHgCstLBoZalI7IYvV6HTy0nMpOlmDBhyIM9/4VNk+FSstrn5gMdx6hZD+V7VdwjKcKE5TRocUsRJkQlk52l1sK7WXCRsh2uXzQ5RQfk6+3Q5+cW7sy9pjYyyi82m2olKORuU8AZz3O6c7FoK7OmCStS3UXN2nvugOqS6G/964WJMpKfD/sXwYaJcOGo2lejHnR4C5oPBBuZpETcHynChOXcHBdWM327uvroIetmCCulaZB5Uv3xlrxdFV5p+0EzmJ5nW1197r2jwDsKQ/0IdielEv5AKDb5OZB7/WYRdh1yr978eeu+W37mFLPP5PxijhcwZKutYBxDedDb3uWOnAM6W0dq6b0hPLz84hCipLwjVRGWIkWYQH2vH1oJmyapWTMBHGtB21EQ+bz6HhOiFKQIE5bTuD2anSMOWSfRZkRB86dlBXlhHXJvqEllCgqulB2QlVb0vJpexoIL7yioE2p6h8hgAFJVNxY7ZzUurLxompo2+dbCLOfqbQq4OxRyt56Xc+0v+67eXJQUtT5O9mW13YYeaKivhvboGyDjToSleUertZ2SK9eizeIeaRoc20jA1nexyTyg9lVzgdYjIWYYVKth2fhEpSFFmLAcV2/yBy8n6+e3cTm3Qw103f1faPmcutJUo46lIxRCuXy68C5XynY4vRtu7UIIoLdTM2MVFFxeUeDSwCLhFkunK7wrhXv5PIemgSG3xIVcfnYWR6464aeXVCQqAK+bizaf3qU+x6Jq0TQ4uh42TcYmOQ5nQLNzRBf9IrR+BRzL6XtTVFmS+YRl1QvnSMzHhLtfx2bjRDj5G8TPUlcjo16ANq/JF58wL0MunN1bWHAlby8chH0rJ0/Tgqt+uHRP0enUnT5be3BwvevpmsHAld27yz0sIUqkVhOo7qq66abtQ43aFJWepkHSr7DpY0hNULtsqnGuYXdq9ZmIjUt9CwcoKispwkTF0LAVPLMCjm2E9RMg9Q+19saOr6DVcGj1sho4LURZu3retOBK3Ql5103P0emhTjPVXcnrZuHl5iNTEYsirl69ymeffcbKlSu5dOkSvr6+DB06lEcfvfsMsIsWLWLMmDHFHtu6dSu1a9cu63DFrfR6NVX9kTXoUnaAfZSlIxLlKT8fDv0CmyfDmT1qn60DtHyW/JiXST6aRi1n6ZEjyo8UYaLi0OnArxP4doTDq2HDBHVHYtPHakHENq9A1IvlO25GVG75Bkg/UDiOKzkeLhwrel5118I7XN5RaiZPGQcgSmDkyJHs3buX0aNH4+Pjw/Llyxk1ahT5+fn07NmzRL9j0qRJ+Pr6muxzdXUth2hFEd5RcGSNuijjK0VYpZRvgMSf1Tpf6fvVPjsnNdlG65Hg7HlzvG4x43yFKENShImKR6eDgK7Q9GE4sBQ2ToJzB2HdB7BtBrQbpcaNVfWuX+LurmdCyh8373LFQ0oC5Fwpel7tQHUF3DtabbWaqKviQtyDTZs28dtvvzF16lR69OgBQExMDKdPn2by5Ml07969RAvfNm3alNDQ0PIOVxTn5qLNupQd4HuXc4V1yTfAvkWweQqcv7k0jn0NiB4KMS+DU9VdG05YhhRhouLS66FZHwjqCfsWqjU6Lh6H1WPh91ho/wY0HyTrEQlF0+B8UmHBlbxDFe9opufZO0ODiMKCyysCHNwsErKoXNasWYOjoyNdu3Y12f/YY48xevRo9uzZQ4sWLSwUnSiRBhGg06O7lIztjXJcq0+YjyEX9v5P3fkqWOerugtEv6RmO5Tvf2EhUoSJik9vAw88Ac36wp7vC1erXzFajRvr8DY88CTYyMe5SinBYsgAuDW+WXDdvNPlGaw+U0KUsaSkJPz8/LC1Nf0uCggIMB4vSRE2bNgwLly4QI0aNYiKiuKVV17B39//vmIyGAx3P+kOj7vfx1stOyf0tYPQpe/H+eJ+DIaOlo7IIirF+2/IQffnD+i2foou8yQAmoMbWvRwtMgXoHrNm+cVbWOlaH8pSPtL1/6SPk7+ahXWw8YOWgyCBwao2RM3T4HMU/Dzy7DlX9BpLDR7TLqRVUbFLoa8r3BNqgJ/WQwZryhwlskMhHlkZmbi5VV0nUMXFxfj8Tvx8PBg2LBhhIeH4+zszOHDh5k9ezYDBgzg+++/JzAw8J5j2rt37z0/piwfb40aOvhSm/147Z/JuSunyPB+hFyHqvk9Yo3vv86Qg0fySuoc+Z5q19MByLV3Jc3vCc759Cbf1gEOFjMWuBjW2P6yJO0v3/ZLESasj201NX19+FPwx5ew9VPVxWDh87BlqirGAnvIzHXW7K+LISdvh6vpRc+722LIQtyn+Ph4Bg0aVKJzlyxZQlBQEAC6O3zv3OkYQPv27Wnfvr3x35GRkXTo0IGePXvy+eefM3PmzBLFc6vQ0NASjUP7K4PBwN69e+/78Vat1kto/91AtetpNDj0FfUPzQW/Tmhh/4cW0F1d7KnkrPL9z72Obuc8dNti0V05A4DmXAet1Uj0Ec9Qz86ReiX8VVbZ/jIk7S9d+wsefzdWW4TJNMACe0c1k1HEM2ptsd9iIT0RFjwN9cKh83vQpIsUY9bg8mk4nVBYdJ3Zc5vFkB+42bWwAi6GLCqVxo0bM2HChBKdW6+e+tPO1dW12Ltdly5dAgrviN0LLy8vIiIi2LNnzz0/FsDGxqZUf0SV9vFWyacNhtcTSV49nUYXtqI79TscXY/u6Ho1c2ro49D8Zp6p5PnFKt7/nKvwx1fw27TCi3U1G0Cb19C1GIiuFJN4WUX7y5G0v3zbb7VFmEwDLIyq1YD2b0LkENj2b4ibqe6izH9c/cHe+T1o3P6uv0aYUe519UfN/p8JObIBm+vF3OVyqm1acMliyMKMPD096d+//z09xt/fn+XLl5OXl2cyLuzw4cOAmvXwfmiahl66WZuXvTMZ3l3x7vkONpdOwu7/wu7v4XIK7JijNs9m0Pwp1UXeycPSEVc92Vdg+39g23S4dnMSFZeGagbl8P9TvWaEqMCssgiTaYBFsRzcVMEVPQx++0x9OSfHw7yeqgjr9B40jLZ0lFVXzlVI+hUSl6p14HKvogeqAZpOj04WQxZWrkuXLvz444/8+uuvdO/e3bh/8eLFeHp6EhYWds+/Mzk5mZ07d9K6deuyDFXcC3dflVs6joHjm2DXd3BguVpjavVYWPMP8O+q7o41eUgmiSpv1zPV2qFxM+BGptrn1ljNmPzAADV+XAgrYJXfFDINsLgjJw94eAK0GqHGiP0xF45vhuMPq7XHOo2F+s0tHWXVcOOyKrgSl8CRdZB3vfBYTS/yg3pyROeHX/v+2Di6WipKIcpEhw4daNOmDePGjSMrK4uGDRuyYsUKtmzZwpQpU0wuDo4dO5YlS5awZs0aGjRQ3WqfeeYZWrZsSWBgIE5OThw+fJg5c+ag0+l49dVXLdUsUUBvA36d1Xb9olo6Zdd8NUvrweVqc/KEsAEQ/jR43vtEKuIOrl1QhVf8F5B9We2r1VT1hAnpJ8WvsDpW+YmtiNMAiwqoRl3oPkWNG9s8RSXLpF/VFtQTOo6FOsGWjrLyuXYBDq1UC20fXQ+GnMJjbj4Q3Ftt9Vug5edzZfdu1aVUiEogNjaWTz/9lGnTppGZmYmvry//+te/ioxXzs/Px2AwoGmF69j5+/uzcuVKvvrqK7Kzs3F3dycmJobhw4fTuHFjczdF3ImDm+oCHzkE0hJh93z4c4Eak/R7rNoaRKi7YyH91LpU4v5cPa9ezx1zICdL7asdBB3ehOA+suSIsFpWWYRVxGmAZS2W+2OW9tdoAI9+Bq1eQbd5Mrq9/0N3YBnageVoIf3Q2r8FtZqU3/PfQaV5/6+eR3doBboDS+HEFnT5ecZDWq2maEG90IJ6QZ2Qwi6GN/8IhUrQ/vsk7TfPWizm5OTkxHvvvcd77713x/M++ugjPvroI5N9Y8eOLc/QRHmpEwyPfAhdxqmLfLvmQ9JqSE1Q26ox6sJf+FPQuIMso1JSV9Lg92lq0o3ca2pfnVDo8JaaAVleR2HlLF6EVZZpgGUtltIxW/t9hlG9VlfqH/oatzOb0e37CW3/IjK8HuaM/yByHOuaJ46/sMb33/ZGBm5nt+J6ehM1Mv5ER+GaXddq+JJZvz0X67XnRg0ftfOsAc4WP8ObNba/LEn7q3b7RSVhYweBj6otK13dGds1H84dgL3/U5tLQwj/m5o4ws3H0hFXTJdS4bfPYec8yLuh9tVvDh3eVmPvZKywqCQsXoRVlmmAZS2W+2OZ9odDuz4YzvyJftMkdEmr8UheRa3UdWjNB6K1HQU165slEqt7/y+loDu4DN2BZZAcj47CrlRavXC0wJ5oQT2pVqsJdYA6d/l1Vtf+MibtN89aLEKYnbOn6grfaoQaM7ZrPuz9CS6dgk0fq82nnbo7FtwL7J0sHbHlZZ5S637u+q6wG7tXlCq+mjwoxZeodCxehFWWaYBlLZbSsUj7vZrDUz9C8g7YMAHdsY3oEr5Sffsjh0Db18HZPGvGVej3/8JxNb4r8WfVteZWXpFqfFdQT3RuPtxviqzQ7TcDaX/Vbr+oxHQ6NTasQYTqsnhwhSoyjm2EE1vU9subENJXTebhHVX1io0Lx2DLv2DP91DQlb1RWzXmq3GHqvd6iCrD4kXY/ZBpgEWZ8o6EQT/Dia2wfgKc2gZx/4aEryH6RXU109Hd0lGa1/kkVXQl/gxn/7zlgA4atjIWXrJYshBClJCdg1roOfRxyEyGPT/A7u/g4gnY+Y3aajVVXRXD/gY161k64vJ1/ghs+QT+/BG0m+M7G3dQY7582lo2NiHMwCqLMJkGWJQLn7bw7Eo4uk4VY6d3wdZ/qRmZWo2AmJegek1LR1k+NA3SD6ii68BSSE8sPKazUa9NcC8I7Ak17tbJUAghxB25eqs7Pe1Gw6nfVXfFxCWQkQTrxsP6f0KTLqq7YkC3yrXwcPoB2PwJ7F8E2s2xxE0eUsWXd5RlYxPCjKyyCAOZBliUE51OJT6/B+HQL7D+Q7Ug58aJED8T2rwGUS9Ujv77mqbuchXc8co4UnhMbwu+HdUdr4BHwamWxcIUQohKS69XF7l82kL3ybB/ieoSf2pb4ZIqDm4Q+oSa7r7eA5aO+P6d3auWi0lcCgXjiQO6q0WWG0RYNDQhLMFqizCZBliUK51OzXDl3w0SF8OGSeoK5dr3Ydu/1dXLiGfArrqlI703mqbGdRUUXpknC4/ZVFODn4N6QUBXlfiFEEKYR7Ua0GKg2s4fUcXYnh/gymnY/oXa6oaqsWMPPGE93eRP74JNU+DQisJ9Qb3UIsvWXFQKUUpWW4QJYRZ6vVpoM6i3ml544yRVuKx6W61f0v5NdXXSxs7Skd5efj4kx9/sargMLqcUHrN1gKYPqTteTR+uvN0thRDCmng0gS7vQ+f34OgGNXbs4Ap1N2nV2/DrexDYXRVkfp3BpgL+OZe8AzZPVnfzANBByGPQ7g21tpoQVVwF/F8rRAVkY6vWdgl9XM1stXkKXE6F5a/Bb59Bh3fUlUl9BZnhzZCnxhkUFF5ZaYXH7J3B/xFVeDXpUjm6VgohRGWkt4GmXdR27YKa5n73d3BmT2GPBue6EPakuiDocX+zQ5epk7/DpslwbIP6t06vulO2Gw21/S0bmxAViBRhQtwLGzto+ayauSrha9gyVc1stWSYmsSj4xgI7qPuoJmbIReOb1L97Q8uh2sZhcequairpkG91FVTa+tGKYQQVZ2jO0QPVdvZfaq74p8LIOusuhj422dqXa3mT0Ozvubt2aBparr9TZPVT1Bji8OehLajoJaf+WIRwkpIESbE/bCrDjHDVN/97f9Rye/8YfjpWagzFTq9q2a0Ku/1TfKyVVeVxJ/VRCI3MguPObircW3BfaBxe7C1L99YhBBCmEfdEOg6CbqMh8OrVEGWtAZStqtt5duqt0Pzp9SaW+V1YVDT4Oh6VXwlx6l9ejtVCLZ9Hdwalc/zClEJSBEmRGnYO0Hb16DlcxA3E7ZNh7R98MPfoH4L1Z/fr3PZFmM519Q0+ok/w6FVkHOl8JiTJwT1UMm3UduKOU5ACCFE2bC1V8uHBPeCK2fVnbFd8+H8IfjzB7W5NlJT3Yf/DVwbls3zahocXq3GfKUmqH021SBiMLR5FVy8yuZ5hKjE5C80IcpC9ZrQ8W01ff3vsRA/C07vhO8eg4atVTHm0+b+f392FiStVl0Nk36F3GuFx2rUVwk4qBc0jKk449KEEEKYT426qgBq/Qqk/KHGju1bpCaT2jhRTSzVuL26SxXUUy0efa/y89Ush5smqyVOQE3w1PI5aPOKikEIUSJShAlRlhzd1YxWMcNh66dqoedTv8PX3dW6W53eA+/Ikv2uG5fUna7En9Wdr7wbhcdcG6qiK7iPWl/FEmPQhBBCVDw6ncoz3pHwyCQ1RnjXd2rMcMFWzUXNVNj8aZVD7tZbI9+gctHmT9TamQB2ThA1BFqNBOfa5d8uISoZKcKEKA/OtaHrRGg9QiWtnd/AsY1q8++qxowVtz7KtQtqGuIDS9VYr/zcwmPufqqbYXAvqBde/uPNhBBCWDd7RzVz7wNPwMWTsOd7NX4s8xQkzFWbR4AaO/bAk1Cjjunj8w2wf5GaEfj8IbWvWk2IGqouNjrVMn+bhKgkpAgTojzVrA89/qW6aWyaAnv+qwZRH16lCqr2b2ObfQFdwtdwcBkc3wyaofDxtQNvFl69wTNYCi8hhBD3x60RdHwH2r8FJ7eqsWOJP6vias0/YO14tV5k86egcUdqJa9C/9sLcOGoenx1F1V4Rb8IDm4WbYoQlYEUYUKYg5sP9Pm3mi1q4yTYtxASf0afuJQH0KEjv/DcuqFqcejgXlA7wGIhCyGEqIT0ejU2rHF76D4Z9i9WBVnKdji8Eg6vRK+zwafggqCDO7R6Wd39Mue090JUclKECWFOHk3g8S+h3SjYMBHdweWAhla/BbqCrobuvpaOUgghRFVQ3QUinlHbucOqq+KeH9BlnSXX3g2b9q+hjxwC1ZwtHakQlY4UYUJYQp1m8OR8DBnH2X/gIM1aPYyNjcxqKIQQwkJq+8ND46Hz3zGkH2DvqcuEtYwByU1ClAuZUk0IS3JtSK6Dp6WjEEIIIRQbW/AMRrOtbulIhKjUpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzMjW0gFYO03TADAYDPf1+ILH3e/jrZ20X9p/68+qRtpfuvYXPK7ge1gUktxUOtJ+af+tP6saab95cpNOk+xVKjk5Oezdu9fSYQghRJUVGhqKvb29pcOoUCQ3CSGEZd0tN0kRVkr5+fnk5eWh1+vR6XSWDkcIIaoMTdPIz8/H1tYWvV56199KcpMQQlhGSXOTFGFCCCGEEEIIYUZy6VAIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgrR4sWLSIgIMC4BQcH07ZtW15//XVOnDhhcu4ff/zBu+++y2OPPUZISAgBAQGkpKRYJvAyUtL2GwwG5s6dy/PPP0/79u0JCwujW7dufPLJJ1y+fNlyDSgnf31d/rrFx8dbOsT7tmrVKgICAvjll1+KHOvVqxcBAQFs2bKlyLEuXbrQt29fADZs2MBbb71Fz549adasGQEBAeUed1kpbfuzsrKYOXMmAwcOpE2bNjRv3pyePXsye/ZssrOzzdGEUimL9//TTz+lT58+REVFERoayoMPPsjf//53UlNTyz3+qkJyk+Sm4khuktz0V5Kbyjc32d73I0WJTZo0CV9fX7Kzs9m5cyezZs0iPj6elStX4uLiAkBcXBzbtm0jKCgIJycntm/fbuGoy87d2n/jxg1iY2Pp0aMH/fv3x83NjcTERGbOnMmGDRtYuHAh1atXt3QzylzB6/JXTZo0sUA0ZSMqKgqdTkdcXBzdu3c37s/MzOTw4cM4OjoSHx9Pu3btjMfOnj1LcnIyzz77LABr1qxhz549BAUFYWdnx/79+83ejvtV2vafPn2aefPm0bt3b5555hkcHR1JSEhg+vTp/P7778ydOxedTmeJppVIWbz/ly9f5tFHH8XPzw8nJyeOHDnCzJkzWb9+PcuXL8fNzc3s7aqsJDdJbiqO5CZFcpPkpvLOTVKEmUHTpk0JDQ0FIDo6GoPBQGxsLGvXrqVfv34ADB8+nBEjRgDw5ZdfVqpEd7f2V69enXXr1pl8gKOjo6lXrx6vvvoqq1evpnfv3pYKv9zc+rpUFu7u7jRt2rTI53fHjh3Y2trSr1+/IldT4+LiAPWeA0yYMAG9Xt2k/+CDD6wq0ZW2/V5eXqxfvx5HR0fj8VatWuHg4MDkyZNJSEigZcuW5d+Q+1QW7//7779vcrzgdRk6dCjr1q3j8ccfL8cWVC2SmyQ3FUdykyK5SXITlG9uku6IFlDw5ZaRkWHcV/Afuyr4a/ttbGyKvYLwwAMPAOpqhLAe0dHRHD9+nPT0dOO++Ph4QkJC6NChA/v37ycrK8t4bPv27djY2Bi/wK39/0Jp2u/o6GiS5ApY0/+F0r7/xXF3dwfA1lauG5YnyU2SmyozyU2SmypabrLuT5SVKuhP7+PjY9lALKSk7S+4CmHNXSDuJD8/n7y8PJPNYDBYOqxSi4mJATC54hQfH09UVBQtWrRAp9ORkJBgciw4OJgaNWqYPdbyUB7tt6b/C2XV/ry8PG7cuEFiYiITJ07Ex8eHhx56yDyNqKIkN0luAslNtx6T3CS5qTxzkxRhZlDwhXb16lW2bNnCzJkziYyMpHPnzpYOzSzup/1paWlMnTqVkJAQOnXqZMZozeeJJ56gWbNmJltl6AISGRmJXq83ftFdvHiRpKQkIiMjcXJyIjg42PjFfebMGVJSUoy3+yuDsm7/wYMHmTNnDg899BCBgYFmaUNplEX7z507R7NmzQgLC6Nv374YDAa++eYbnJyczN6eykxyk+Sm4khuktwkuck8uUn6dpjBE088YfJvPz8/ZsyYUWW61txr+zMzM3nhhRfQNI3PPvvM6rsA3M7HH3+Mn5+fyb6KPLC1pFxcXAgMDDT2r96xYwc2Nja0aNECUF+EBV90BedUpkRXlu1PSUlh2LBh1K1blwkTJpgh+tIri/a7ubnx008/kZOTw7Fjx5gzZw6DBg3i22+/xdPT04ytqdwkN0luKo7kJslNkpvMk5sq5zdIBfPxxx/z008/MW/ePAYMGMDRo0cZNWqUpcMym3tp/6VLl3juuedIS0vjq6++wtvb28zRmo+fnx+hoaEmW0hIiKXDKhPR0dGcOHGCtLQ04uPjadasmfFKUVRUFAcOHODKlSvEx8dja2tLRESEhSMuW2XR/tTUVAYNGoSNjQ3z5s3D1dXVzK24f6Vtv62tLaGhoURERNC/f3/mzZtHSkoKs2fPtkRzKi3JTZKbiiO5SXKT5Cbz5CYpwsyg4AstJiaGDz74gP79+7NlyxZWrVpl6dDMoqTtv3TpEs8++ywpKSnMnTvXKm5vi+IVXD3avn0727dvJzIy0nis4Ettx44dxMfHExoaWum6mZW2/ampqQwcOBCAb775hrp165op8rJR1u9/3bp18fT0LLKGlSgdyU2Sm6oayU2Sm6Di5CYpwizgzTffxMXFhWnTppGfn2/pcMyuuPYXJLnk5GS+/PJLgoODLRylKI3IyEhsbGxYvXo1SUlJREVFGY/VqFGDoKAglixZQmpqaqXq7lGgNO0/ffo0AwcOJD8/n3nz5tGgQQNzh19qZf3+nzx5krNnz9KoUaPyDLvKk9wkuamyk9wkuaki5aaq0fG7gnFxcWHo0KFMmTKFZcuW0bt3by5cuGAcLHj48GEANm/ejLu7O+7u7iYfFGv31/Y/8sgjPP/88yQmJjJ27FgMBgO7d+82nu/u7k7Dhg0tF3A5SUpKKnbGqYYNGxqnPbVWzs7OBAcHs3btWvR6fZFb+pGRkcybNw8o2uc6NTWVvXv3AnDq1CkA45XpBg0aWMUA8fttf0ZGBoMGDeLcuXN8+OGHZGRkmEwXXrduXau48ni/7T948CCTJk3ikUcewdvbG71ez+HDh/n6669xdXXlueeeM2s7qhrJTZKbQHKT5CbJTWCe3CRFmIUMHDiQ+fPnM2PGDHr06EFSUhKvvvqqyTnjx48HVD/Vb7/91hJhlptb29+8eXPjF9uHH35Y5Ny+ffvy0UcfmTvEcjdmzJhi90+YMIH+/fubOZqyFx0dzd69ewkKCsLZ2dnkWGRkJF9//TV2dnY0b97c5Fh8fHyR16bg/4Y1fRbup/1HjhwhOTkZUFfl/2rEiBGMHDmyfAMvI/fTfg8PDzw9PZk7dy7nzp0jLy+PunXr0rFjR4YNG0a9evXM3YwqR3KT5CbJTZKbJDeZJzfpNE3TStUaIYQQQgghhBAlJmPChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChNVZtGgRAQEBxi04OJi2bdvy+uuvc+LECUuHB8CsWbNYu3Ztkf3x8fEEBAQQHx9vgaiU9evXM2zYMFq3bk1ISAhRUVEMHjyYpUuXkpuba7G4/qq41+qdd96hc+fO5fq8aWlpxMbGcuDAgXJ9HiFE5SK5qXQkN92Z5KbKx9bSAQhxvyZNmoSvry/Z2dns3LmTWbNmER8fz8qVK3FxcbFobF988QWPPPIIXbp0MdnfrFkzFixYQJMmTcwek6ZpjB07lkWLFtGhQwfeeecd6tWrx5UrV4iPj2f8+PFcvHiRwYMHmz22kho+fDiDBg0q1+dIT09n+vTpNGjQgKCgoHJ9LiFE5SO56d5IbioZyU2VjxRhwmo1bdqU0NBQAKKjozEYDMTGxrJ27Vr69etn4eiK5+zsTHh4uEWee86cOSxatIiRI0cyYsQIk2OdO3dmyJAhnDx50qwx3bhxg+rVq5f4/IYNG5ZjNEIIUXqSm+6N5CZRVUl3RFFpFCS9jIwMk/179+5l2LBhREVFERoaSp8+ffjll19Mzrlw4QLjxo2je/fuNG/enFatWjFo0CD++OOPIs+Tk5PD9OnT6datG6GhoURHRzNw4EB27twJQEBAANeuXWPx4sXGbikDBw4Ebt/lY926dQwYMICwsDCaN2/Os88+y65du0zOiY2NJSAggKSkJEaNGkVERAStW7dmzJgxXLly5Y6vTW5uLnPmzMHX15eXX3652HNq165Ny5Ytjf/OzMxk3LhxtGvXjpCQEB588EE+/fRTcnJyTB6XnZ3N1KlT6dy5MyEhIbRr147x48dz+fJlk/M6d+7Miy++yK+//kqfPn0IDQ1l+vTpABw9epTnn3+esLAwoqOj+cc//sHVq1eLxFhcl4+AgAA++OADlixZQrdu3QgLC6NXr15s2LDB5LyTJ08yZswYHn74YcLCwmjXrh3Dhg3j0KFDxnPi4+N5/PHHARgzZozx/YuNjTWeU5LPkxBCFJDcdHuSmyQ3VWVyJ0xUGikpKQD4+PgY98XFxTFkyBDCwsIYN24cNWrU4JdffuH111/nxo0bPPbYY4D6UgcYMWIEHh4eXLt2jTVr1jBw4EC+/vproqOjAcjLy2PIkCEkJCQwaNAgYmJiMBgM7NmzhzNnzgCwYMECBg8eTHR0NMOHDwfUVcbbWbZsGW+88QZt27Zl6tSp5OTkMGfOHONz35p8AEaOHEn37t15/PHHOXz4MFOnTgVUF5jb2bdvH5mZmfTv3x+dTnfX1zI7O5tBgwaRnJzMyJEjCQgI4I8//mD27NkcOHCA2bNnA6obyfDhw4mLi2Po0KG0bNmSQ4cOERsby+7du1mwYAH29vbG37t//36OHj3KSy+9hJeXFw4ODpw/f56BAwdia2vL+++/T61atVi2bBn//Oc/7xpngY0bN7J3715eeeUVHB0dmTNnDiNGjGDVqlV4e3sDqiuHq6sro0ePxt3dnUuXLrF48WKeeOIJFi9ejK+vL82aNWPSpEmMGTOGl156iY4dOwJQt25doOSfJyGEKCC5SXKT5CZRLE0IK7Nw4ULN399f2717t5abm6tlZWVpmzdv1tq0aaM99dRTWm5urvHcrl27an369DHZp2ma9uKLL2pt2rTRDAZDsc+Rl5en5ebmaoMHD9Zefvll4/7Fixdr/v7+2o8//njHGMPDw7W33367yP64uDjN399fi4uL0zRN0wwGg9a2bVutR48eJrFkZWVprVq10gYMGGDcN23aNM3f31/7z3/+Y/I7x40bp4WGhmr5+fm3jWfFihWav7+/9v33398x7gLff/+95u/vr/3yyy8m+2fPnq35+/trW7du1TRN0zZv3lxsTAXPt2DBAuO+Tp06aUFBQdqxY8dMzp0yZYoWEBCgHThwwGT/s88+a/JaaZqmvf3221qnTp1MzvP399dat26tXblyxbjv3LlzWmBgoPbFF1/cto15eXlaTk6O9vDDD2sTJ0407v/zzz81f39/beHChUUec7+fJyFE5Se5SXLTrSQ3ibuR7ojCaj3xxBM0a9aMFi1aMGTIEGrWrMmMGTOwtVU3eE+ePMmxY8fo2bMnoK4UFmzt27fn3LlzHD9+3Pj7vv/+e/r27UtoaCjBwcE0a9aMbdu2cfToUeM5W7ZsoVq1amXWr//48eOkp6fTu3dv9PrC/45OTk48/PDD7Nmzh+vXr5s8prguD9nZ2UW6upRGXFwcjo6OdO3a1WR/wdW0bdu2Gc+7dX+Bbt264ejoaDzv1lgbN25ssi8+Pp6mTZsSGBhosr9Hjx4ljjc6Otrkiq6Hhwe1atUiNTXVuC8vL49Zs2bRvXt3QkJCCA4OJiQkhBMnTpi8x7dzr58nIUTVJLlJkdwkuUncmXRHFFbr448/xs/Pj6tXr/LLL7+wYMECRo0axZw5cwA4f/688byPP/642N9x8eJFAObOnctHH33Ek08+yauvvoqbmxt6vZ7PP/+cY8eOGc+/cOECnp6eJkmpNAqev3bt2kWOeXp6kp+fz+XLl3FwcDDud3V1NTmvoEvFjRs3bvs89erVAwq7xdxNZmYmHh4eRbqH1KpVC1tbW2MXmczMTGxtbXF3dzc5T6fT4eHhYTyvQHHtzMzMxMvLq8h+Dw+PEsUKRV8TUK9Ldna28d8fffQR8+fP54UXXiAyMhIXFxd0Oh3vvfeeyXm3cy+fJyFE1SW5SZHcJLlJ3JkUYcJq+fn5GQc8x8TEkJ+fz//+9z9WrVpF165dcXNzA+DFF1/koYceKvZ3FFz5Wrp0KVFRUYwfP97k+F8H4Lq7u5OQkEB+fn6ZJLuCGM+dO1fkWHp6Onq9npo1a5b6eUJCQnB1dWXdunWMHj36rn3vXV1d2bNnD5qmmZybkZFBXl6eMW5XV1fy8vK4cOGCSbLTNI3z588b358CxT2vq6urMYncqrh9pbF06VL69OnDqFGjTPZfvHixRK/xvXyehBBVl+SmkpPcJLmpKpPuiKLSePPNN3FxcWHatGnk5+fj6+uLj48PBw8eJDQ0tNitoJuATqczGaQLcPDgQXbv3m2yr127dmRnZ7No0aI7xmJvb3/Hq38FGjduTJ06dVi+fDmaphn3X7t2jV9//ZXw8HCTK433y87OjiFDhnDs2DH+/e9/F3tORkYGCQkJALRq1Ypr164VWdRzyZIlxuO3/ly6dKnJeatXr+batWvG43cSHR1NUlISBw8eNNm/fPnyuzfsHuh0Ouzs7Ez2bdy4kbS0NJN9t7t6ey+fJyGEKCC56fYkN0luqsrkTpioNFxcXBg6dChTpkxh2bJl9O7dm/Hjx/PCCy/w/PPP07dvX+rUqcOlS5c4evQo+/fvZ9q0aQB07NiRGTNmMG3aNCIjIzl+/DgzZszAy8sLg8FgfI4ePXqwaNEixo0bx/Hjx4mOjkbTNPbs2YOfnx+PPvooAP7+/mzfvp3169dTu3ZtnJyc8PX1LRKzXq/nzTff5I033uDFF19kwIAB5OTk8OWXX3L58mVGjx5dZq9PQaKLjY1l79699OjRw7gg5o4dO/jxxx8ZOXIkERER9OnTh/nz5/P222+TmpqKv78/CQkJfPHFF3To0IHWrVsD0KZNG9q2bcsnn3xCVlYWLVq04NChQ0ybNo3g4GB69+5917gGDx7MwoULGTp0KK+99ppxBqpbu9qUhY4dOxpnmgoICGD//v18+eWXxtmlCjRs2JDq1auzbNky/Pz8cHR0xNPTkzp16pT48ySEEAUkN92Z5CbJTVWVFGGiUhk4cCDz589nxowZ9OjRg5iYGP73v/8xa9YsJk6cyOXLl3F1dcXPz49u3boZHzds2DCuX7/OTz/9xJw5c2jSpAnjxo1j7dq1bN++3Xiera0t//nPf/jiiy9YsWIF8+bNw8nJicDAQNq1a2c8791332X8+PGMGjWK69evExUVxbfffltszD179sTBwYHZs2fz+uuvY2NjQ1hYGN988w0tWrQos9dGp9MxadIkunTpwo8//mh8PQrif+ONN4yDmKtVq8Y333zDp59+ypw5c7h48SJ16tThueeeM1lMU6fTMWPGDGJjY1m0aBGzZs3C1dWV3r17M2rUqCJXcItTu3ZtvvvuOz788EPGjRuHg4MDXbp04e9//7txGuWy8O6772Jra8vs2bO5du0awcHBxMbG8vnnn5uc5+DgwMSJE5k+fTrPP/88ubm5jBgxgpEjR5b48ySEELeS3HR7kpskN1VVOu3W+8xCCCGEEEIIIcqVjAkTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwo/8HfGUc9jPH+soAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrLklEQVR4nOzdd1yUV9r/8c89QxNEQMBCt4ENwd5Nr6b3Zzd1n2TTNNkk+2zKZneT/e0mZrObzUaNG1M3zWRNjKmmudnExF5ArFjoKKIy9Dozvz8GUBSFAYYB5vt+vXgN3G2uMyTeXPc55zqG3W63IyIiIiIi4mFM7g5ARERERETEHZQMiYiIiIiIR1IyJCIiIiIiHknJkIiIiIiIeCQlQyIiIiIi4pGUDImIiIiIiEdSMiQiIiIiIh5JyZCIiIiIiHgkJUMiIiIiIuKRlAyJiIiIiIhH8nJ3ANI1nX322eTl5bXq2CuvvJJ58+a5NJ59+/bx7rvvsm7dOg4cOEB1dTXBwcGMHDmS8847j8suuwxfX9/G4xMSEk57vaeffpqrrrqq2X2LFi3i+eefB2DFihUMHjzY6Xi//PJLNmzYwM6dO9m1axfl5eVceuml/PWvf3X6WsdLS0vj3XffZf369RQWFuLl5UVkZCQzZszg1ltvpX///s2e1/B57N69+5TXbvidr1y5kqioqHbF2RrO/k4btPUzEJHuTfel5wHdl1yhM2PRPazrUTIkzbr55pspLS095f7KykreeOMNrFYrw4YNc2ksCxYsYOHChdhsNpKTk7nyyisJCAjg8OHDbNy4kccff5wlS5awbNmyk86dM2dOs9ccMWJEs9vtdjsffPABhmFgt9tZunQpDz/8sNMxL1q0iF27duHv78+AAQPYv3+/09c4Ma6//vWvvPLKK3h5eTFt2jQuvPBCamtr2bJlC6+99hpLlixh3rx5XHjhhe16r87Qlt9pT/sMRMQ5ui/pvtSd6fPqwuwiTrLZbPa5c+fa4+Pj7XPnzrXbbDaXvdeLL75oj4+Pt59xxhn2lJSUZo/5/vvv7TfddFOTbfHx8fb4+Hin3++HH36wx8fH2x9//HH71KlT7VOmTLFXV1c7fZ01a9bYMzIy7Dabzb527Vp7fHy8/aGHHnL6Og3mz59vj4+Pt5911ln29PT0k/Z/+eWX9sTERPuIESPsq1evPml/az6Ps846yx4fH2/Pyclpc5yt0dbfaXs/AxHpuXRfapnuS6fWGbHoHtZ1ac6QOO0f//gHX331FSNHjuSZZ57BMAwAcnNzSUhI4JFHHiE3N5cHHniAyZMnk5iYyFVXXcXKlSudep/c3FwWLlyIt7c3ixcvJikpqdnjZs2axSuvvNLudgEsXboUgGuvvZZLL72Uo0eP8u233zp9nSlTphAXF9f42bRHTk4OixYtwtvbm0WLFjX7xPOCCy7g0UcfxWq18sQTT2Cz2dr9vq7Q1t9pT/oMRKTj6b7UMt2X3EefV9emZEic8vnnn7No0SLCw8NZtGgRvXr1OumYvLw8rr32WvLy8rj88su5+OKL2bNnD/feey9r1qxp9XstW7aM2tpazj//fOLj4097rI+Pj9NtOdHhw4f5z3/+w5AhQxgzZkzj2O1///vf7b52eyxbtoy6ujrOOeec0445v/baawkPDyczM5P169d3YoSt19bfaU/6DESkY+m+1Pn0b7Jz9Hl1bZozJK22detWHn30UXx9fVm4cCEDBgxo9rj169czd+7cJuOiL7nkEm6//XZeffVVpk6d2qr327hxI0Crj2/O/PnzT9oWGRnZ7CTVhpvcFVdcATgmVI4cOZK1a9eSk5NDdHR0m+Noj02bNgEwffr00x7n5eXF5MmT+eyzz9i8eTNTpkw56ZjmPo8GJSUl7Qu0Fdr6O+3Iz0BEeg7dl3Rf6kiuikX3sK5NyZC0SkFBAffccw/V1dU8++yzpxwaAI5/1O++++4m22bOnElERARpaWmtfs/Dhw8DtKuyyoIFC07aNmnSpJNuOvb6Salms5nLL7+8cftVV13Fn/70J5YuXcqDDz7Y5jjao+FzONVN/ngNxxw6dKjZ/c19Hp2prb/TjvwMRKRn0H1J96WO5qpYdA/r2pQMSYsqKyu5++67KSws5M477+Syyy477fEjRozAbDaftH3AgAGkpKQ02dbcU5grr7ySqKgo7HY7QLvGN5+uTObx1q5dS3Z2NjNnzmxyk7vkkkt45plnWLZsGffddx9eXl4txt0WHfU5NBxzqmNbUza0Ndra/rb+Ttv7Gbz00kt8/fXXZGRk4OPjQ3JyMg8++GCLw1xEpGvSfUn3pRN1RPudjaW195aO/Lyk4ykZktOy2+08/PDDbN++nXPOOYcHHnigxXMCAwOb3e7l5XXShMBTPSGLioqiX79+7N+/n4MHD7YteCe8//77ACc9mQsJCeHss8/mq6++4rvvvuO8885rMe62ON31wsPDW/05NBwTHh7epjhaq63tb+vvtL2fwfr16/nZz35GYmIidrudF154gdtuu43PP/+c4OBgp2IREffSfUn3peZ0dPtbo7X3lq74eckxSobktF544QW++uorEhISePbZZzv8ScXpnsKMHz+etWvXsnbtWq699toOfd/jHV+Z54EHHjjljfX9999vvOm09slea7X0Oaxbt47Vq1ef9nOwWq2sW7cOgHHjxnVofCdqa/vb+jtt72fw6quvNjnuL3/5CxMmTGDz5s2cffbZTrZCRNxJ96VjdF86pqPb3xqtvbd0xc9LjlE1OTmlzz//nBdffJHQ0FAWLVpEQEBAp77/VVddhbe3N1999RV79+497bE1NTVtfp+PPvqI2tpaRo0axTXXXNPsV0hICD/99FOru+s70lVXXYXZbOabb7457efw4YcfcujQIQYNGsSkSZM6McLWa+vvtKM/g/Lycmw2G3369HG+ESLiNrov6b7UlZ3q3qLPq2tTMiTNaqjQ4+3tzfz584mMjOz0GKKiopgzZw61tbX88pe/POUk1x9++IHbb7+9ze/TsIbDE088wZ///Odmv6699lpsNhsffPBBm9+nraKjo7nzzjupra3lrrvuavYf0m+//ZY///nPmM1m/vCHP2Aydc3/tdv6O+3oz+DPf/4zI0aMYOzYse1vlIh0Ct2XdF/q6k51b9Hn1bVpmJycpKysrLFCT2JiIqtXr2b16tWnPP5UJUE7wl133UVdXR0LFy7kmmuuYezYsYwePZqAgAAOHz7Mxo0byczMZPTo0W26/rp168jIyCA+Pp4xY8ac8rhrr72Wl19+mQ8//JA5c+Y0OxH3eN9++23jEIfCwkIAUlJSeOSRRwDHmO+HH3641XHOnTuXyspKXn/9dS6//HJmzJjB0KFDqaurY8uWLaSmpuLn58ff/va3dpV87Qxt/Z121GfwzDPPsGnTJpYsWdLi71FEugbdl06m+1LX0tK9RZ9X16VkSE5isVga/6FMS0trsexocyVBO9KcOXO46KKLePfdd1m3bh3Lli2jpqaG4OBghg8fzu23396k7KgzGhaua2nsd0xMDJMmTWLdunV8//33Lc4z2blzJx999FGTbTk5OeTk5ACOG7UzNx2TycQjjzzCxRdfzDvvvMOGDRtYs2YNZrOZyMhIfvGLX3DLLbe0qmxnV9CW32lHfAZPP/00n3/+Of/617/ctj6HiDhP96WT6b7UdbTm3qLPq+sy7A31/kREerA//elPfPHFF7z11lsMGTLE3eGIiEgPoHtL96eeIRHp8Z544gk++eQTFi5cSJ8+fRqfMPv7+3f6BGwREekZdG/pGdQzJCI9XkJCQrPb58yZw9y5czs5GhER6Ql0b+kZlAyJiIiIiIhHUt0+ERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPFKPKa1ts9moq6vDZDJhGIa7wxER8Rh2ux2bzYaXlxcmk56xHU/3JhER92jtvanHJEN1dXUtrkgtIiKuk5iYiI+Pj7vD6FJ0bxIRca+W7k09JhlqyPgSExMxm81On2+1WklLS2vz+d2d2q/2q/1qf3v//VSv0Ml0b2oftV/tV/vVflffm3pMMtQw/MBsNrfrP5j2nt/dqf1qv9qv9reVhoGdTPemjqH2q/1qv9rfVi3dm/QYT0REREREPJKSIRERERER8UhKhkRERERExCMpGRIREREREY+kZEhERERERDySkiEREREREfFISoZERERERMQjKRkSERERERGPpGRIREREREQ8kpIhERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPJKSIQC7HeOTexmQ/pa7IxEREQHgQHEl//uvTWw6UO3uUEREeiwlQwDVJZhSlxCx+w2oKXd3NCIiImzJtvDf9EKW7SxzdygiIj2WkiEAvyDsgQMxsENBmrujERERIWFAIAD7i2qptdrcHI2ISM+kZKjBgDEAGAe2ujkQERERGBQaQB8/L2pskF6g3iEREVdQMlTPPjDJ8c2BVPcGIiIiAphMBmOiggBIzbG4NxgRkR6qSyRDO3bs4J577mHGjBkkJSVx4YUXsmDBAiorKzstBvsARzJkHFQyJCIiXUNSVDAAKbnF7g1ERKSH8nJ3AHv37uWGG25g0KBBPPbYY4SEhLBx40ZefPFFtm/fzqJFizonkIaeocLdUFsJ3r06531FREROITna0TO0VcmQiIhLuD0Z+vTTT6murmb+/PnExMQAMHXqVAoLC3n//fcpLi4mKCjI9YEEDqTWJwTvmiI4uA2iJ7r+PUVERE6jYZjc3sIySqtqCfTzdnNEIiI9i9uHyXl7O/5h7927d5PtgYGBmEymxv2u9snWAxT0GuL44UBKp7yniIjI6YT19qWfvxm7Xb1DIiKu4PaeoSuuuIJ//etfPPHEE/zf//0fISEhbNiwgffff5+f//zn+Pv7O3U9q9XqdAylVXU88O+tPOwTzd2mjdjyt2Bvw3W6s4bPrS2fX0+g9qv9x796mva231M/t84yLNSbQxVWUnIsTB8a5u5wRER6FLcnQ1FRUbz33nvMmTOHc889t3H7TTfdxG9/+1unr5eW5vw6QTa7HX9vg5S6OPCBqv3r2JmS4vR1eoK2fH49idqv9nsyT29/VzWsrzc/5VSRoopyIiIdzu3JUG5uLnfffTehoaG88MIL9O3bl9TUVBYtWkRFRQVPPfWUU9dLTEzEbDY7HUfy5vWk7R8EQK+yTJJHDwcvP6ev011ZrVbS0tLa/Pl1d2q/2q/2t739DeeLawzr6xgunpJjwW63YxiGmyMSEek53J4M/e1vf6OsrIzly5c3DombOHEiISEhPPbYY1xxxRVMmjSp1dczm81tupknRQezen8o5eYgAqzFmA/vgsjxTl+nu2vr59dTqP1qv9rvue3vqgaFeONlMigsrSa/uIrIYFU7FRHpKG4voLBz506GDBly0tygxMREAPbs2dMpcTgq9hjsMgY7NmjxVRER6QJ8zQYJAwIBLb4qItLR3J4M9evXj71791JeXt5ke0r9nJ3+/ft3ShxJ9eVL11VFOzbkp3TK+4qIiLSk4R6leUMiIh3L7cnQLbfcQlFREb/4xS/44osvWLNmDf/85z95+umnGTp0KLNmzeqUOPr38aOvn4k0m2PekHqGRESkq0iqX3w1Jdvi3kBERHoYt88ZOuecc3jjjTd4+eWXeeqppygtLWXAgAHccMMN/PKXv8THx6fTYhna15u0A/XJ0KEdUFcDXp33/iIiIs1JjgoGIC2vmDqrDS+z259lioj0CG5PhgCmTJnClClT3B0Gw/p6sz4/nHJTIAHWUkdCFJHs7rBERMTDDQ4LINDXi9LqOtILyhgZ0cfdIYmI9Ah6tHScIX29AYOdaKiciIh0HSaTwZhozRsSEeloSoaOMzTEsZbDxppYx4YDKe4LRkRE5DjJ0cEApOQUuTcQEZEepEsMk+sqAnxMDA4LYNvROMcG9QyJiHRLa9as4ZNPPmHLli0cPHiQwMBARo8ezb333svo0aNPe+6yZct49NFHm933448/Eh4e7oqQW5QcHQJAak6xW95fRKQnUjJ0gjFRQWw5Uj9M7uA2sNaC2du9QYmIiFOWLFmCxWLh5ptvZujQoRw9epTXX3+d66+/nldeeYWpU6e2eI2nn36awYMHN9kWHBzsoohb1lBRLv1QKWXVdfT21S1cRKS99C/pCcZEBfFxSj8qDH/8rRVQuAsGJLo7LBERccIf/vAHQkNDm2ybOXMm559/Pi+99FKrkqFhw4Y1LgDeFfQL9CMyuBd5lkq25lqYNiTM3SGJiHR7mjN0gqSoIOyY2GFXEQURke7qxEQIICAggCFDhnDgwAE3RNQxGuYNaaiciEjHUDJ0ghEDAvEyGWypqy+ikJ/i1nhERKRjlJaWsmPHDoYNG9aq4++66y5GjBjBpEmTmDNnDunp6S6OsGWNi6+qiIKISIfQMLkT+HqbGTGwz7HFV9UzJCLSIzz55JNUVlZy1113nfa4sLAw7rrrLpKTk+nduzfp6eksXryY66+/niVLljB8+HCn39tqtbYp5obzGl7HRDrWF0rJtrT5mt3Jie33NGq/2n/8q6dpb/tbe56SoWYkRQexOr+hiEIaWOvArI9KRKS7ev755/n000/53e9+12I1uVmzZjFr1qzGnydOnMgZZ5zBpZdeyj/+8Q8WLVrk9PunpaU5fU5z51vrbJgMKCitZuWaTYT2Mrfrut1Fez+/7k7tV/s9mavbr7/wmzEmKph31g6g0uhFr7pKOLIH+o1wd1giItIGCxYsYNGiRTzwwAPceOONbbpGVFQU48ePJzW1baMFEhMTMZudT1ysVitpaWlNzk9Y8xM7D5ZS1yeS5FED2hRPd9Fc+z2J2q/2q/1tb3/D+S1RMtSM5Ohg7JjYbotlgrHLMW9IyZCISLezYMEC5s+fz9y5c1scHtcSu92OydS2qbZms7ldf8wcf35yTAg7D5aSmlfCxWMi23zN7qS9n193p/ar/Wq/69qvAgrNGBLeG38fM1utcY4NB1LcGY6IiLTBwoULmT9/PnfffTdz5sxp17VycnLYvHkzSUlJHRRd241trChncWscIiI9gXqGmmE2GSRGBpGWpSIKIiLd0WuvvcYLL7zAzJkzOfPMM0lJSWmyPzk5GYDHHnuM5cuX88033xAZ6ehlufXWW5kwYQLDhw8nICCA9PR0XnnlFQzD4P777+/klpwsqT4ZSsstxmqzYzYZ7g1IRKQbUzJ0CsnRwazMbEiGtoLNCibP7aIUEelOvvvuOwBWrVrFqlWrTtq/e/duAGw2G1arFbvd3rgvPj6eFStW8Nprr1FdXU3fvn2ZMmUK99xzD4MGDeqcBpzG0H69CfAxU15jZc+hUoYP6OPukEREui0lQ6cwJiqYl+0RVOGLX205HNkH4fHuDktERFrhrbfeatVx8+bNY968eU22PfbYY64IqcOYTQZjooJZs/8IKdkWJUMiIu2gOUOnkBQdhK2+iAKgeUMiItJlJMcEA5Caa3FrHCIi3Z2SoVOIDO5FWG8f0mxxjg35Ke4MR0REpFFSVDAAW7Itbo1DRKS7UzJ0CobhGIawza4iCiIi0rWMre8ZSi8opby6zr3BiIh0Y0qGTiMpKpg023HJkM3m3oBERESA/n38GBjkh80O2/KK3R2OiEi3pWToNJKig9hrj6QaH6gphaIMd4ckIiICHBsql6L1hkRE2kzJ0GmMiQrGipkdthjHhvwt7g1IRESkXkMRBSVDIiJtp2ToNPoG+BDT159tDUUUVFFORES6iOT6xVdTlQyJiLSZkqEWJEUHk6YiCiIi0sUkRgZhMiC/uIpDJVXuDkdEpFtSMtSCpKggth9fROG4VcpFRETcJcDXi/j+gQBsUe+QiEibKBlqQVJ0MOn2KGrwgqpiKMp0d0giIiLAsaFymjckItI2SoZaMCqiDzaTNzsbiiho3pCIiHQRSZo3JCLSLkqGWuDv48Wwfr3Z3lhEQfOGRESka2joGdqaW4zVpmHcIiLOUjLUCsnHF1HIT3FrLCIiIg3i+wfi72OmrLqOfYVl7g5HRKTbUTLUCknRwWxrLKKQoiIKIiLSJZhNBomRQYDmDYmItIWSoVYYExXEbns0tZihsgiKc9wdkoiICKAiCiIi7aFkqBXi+wdi8vZlty3asUFD5UREpItoTIayLW6NQ0SkO1Iy1AreZhOjI4LYpiIKIiLSxSTHBAOwu6CUyhqre4MREelmlAy10pioYLbZj5s3JCIi0gUM6ONHv0BfrDY72/KL3R2OiEi3omSolZKig44VUchPUREFERHpEgzD0FA5EZE2UjLUSklRwey0x1BnN0HFYSjJd3dIIiIiwLGhciqiICLiHCVDrRQb6o9frwD22KMcGzRUTkREuojkqGBAyZCIiLOUDLWSYRj16w3FOTaoiIKIiHQRiVFBGAbkWSopLK12dzgiIt2GkiEnJEUFkWY/bt6QiIhIFxDo582wfr0B9Q6JiDhDyZATkqKCjxVR0DA5ERHpQpLqh8qlKhkSEWk1JUNOGBMdxE57DFa7AWUFUHrQ3SGJiIgAKqIgItIWSoac0C/Qj5CgYPbZIxwbNFRORERcxWbF2P4RXtVHW3V4Q3nt1BwLNpuWfxARaQ0lQ05Kig4+Nm9IRRRERMRVdq/AtOx/id62oFWHJ/QPxM/bRGl1HfsPl7s4OBGRnkHJkJMcFeU0b0hERFwscAAAfQo3g93W4uFeZhOJkUGAhsqJiLSWkiEnjYkKOpYMaZiciIi4ysAk7N4BeNWWwKGdrTqlYahcSk6RCwMTEek5lAw5KTEyiJ3EYrMbUJoPZYfcHZKIiPREZm+IngSAkfVTq05Jjg4BIDWn2GVhiYj0JEqGnBTo583A8HAy7I7hC5o3JCIirmKPnQ6Akb26VccnRTuGye08UEJVrdVlcYmI9BRKhtpgTNTxRRRS3BqLiIj0XPaYaY5vsteAveUKcZHBvQjr7Uudzc72fPUOiYi0RMlQGyRHB5GmeUMiIuJqEWOxmXwwygvhcHqLhxuG0ThvaEu2xbWxiYj0AF5tOWnPnj1s3ryZgoICqqqqCAkJYejQoUycOJHevXt3dIxdTlJ0MJ/X9wzZD6RiuDkeERHpobx8KQsZSZ8jKZD5I4QntHhKcnQQ3+4sIDVXPUMiIi1pdTJUXFzM+++/z/vvv09+fj72Zrrrvby8mDVrFjfddBNTp07t0EC7kuED+pBuDAbAKM6BiqPg39fNUYmISE9UFjrGkQxlrYaJ/9vi8Q1FFFRRTkSkZa1Kht58800WLlwIwMUXX8ykSZMYNWoUffv2xdfXl+LiYnJyckhJSWHlypX84he/YNq0afz+978nNjbWpQ1wBx8vE9ERA8go6M8gUwHkb4Gh57g7LBER6YFKQ5Mc32T95Jg3ZJx+PMKY+iIKOUcrOVJWTWhvX1eHKCLSbbUqGXrrrbd49NFHmT17Nt7e3iftDwsLIywsjLFjx3LbbbeRnZ3NokWLWLFiBXfddVeHB90VJEcFse3gIAZR4Kgop2RIRERcoDxkJHazD0bpATi6H0KHnPb4Pn7eDAkPYF9hOam5Fs4e3r+TIhUR6X5alQytWLECL6/WTy+KiYnh6aefxmrtuWU9x0QFk7Z+EJea16qinIiIuIzd7AsR4yBnraN3qIVkCBxD5fYVlpOSrWRIROR0WlVNbs+ePW26uNlsbtN53UFSdDDbjiuiICIi4iqNJbazWrfeUHJMMABbciyuCUhEpIdoVTJ05ZVXctVVV/Huu+9SWlrq6pi6hcFhAWR5DwXAKMqESk1UFRER17DH1idDmT+16vix9eW1U3MszRY8EhERh1YlQ3feeSdHjx7lj3/8IzNmzODXv/41a9eudXVsXZrJZBAbFUm2LdyxQb1DIiJdxpo1a3j00Ue58MILSU5OZubMmdx9991s27atVecfOXKERx55hMmTJ5OUlMT111/PmjVrXBz1aURPAsMMxdlgyW7x8IQBgfh6mSipqiPjcHknBCgi0j21Khl64IEH+O6771i8eDFnnXUWX3/9NbfddhvnnHMOL774IgcOHHB1nF1SUnQwafVD5ZQMiYh0HUuWLCEvL4+bb76ZxYsX89vf/pajR4+2Kqmpqanh1ltvZc2aNfz2t7/lxRdfJDQ0lNtvv53169d3UgtO4NMbIsY6vm/FUDlvs4nRkY6qcikaKicickqtropgGAazZs1i1qxZlJSU8Mknn7Bs2TJeeOEFFi5cyJQpU7j22ms555xzmq041xMlRQWz1TaI2eb1kJ/i7nBERKTeH/7wB0JDQ5tsmzlzJueffz4vvfTSadfCW7p0Kenp6bz33nuMHetIQCZPnszll1/Os88+y9KlS10a+ynFToO8jY7FV5NuaPHw5OhgNmUVkZJj4apxUZ0QoIhI99OqnqET9enThxtvvJFly5axfPlyfvazn7Fjxw4eeOABZs2a1dExdllJ0UGNPUM29QyJiHQZJyZCAAEBAQwZMqTF0QzffvstgwYNakyEwLGo+GWXXcbWrVspKCjo8HhbJW6G4zWrdfOGko6bNyQiIs1rUzJ0vOHDh3PZZZdx9tlnA2CxWNp7yW5jQB8/DvonAGA6ug+qit0ckYiInEppaSk7duxg2LBhpz1uz549JCQknLS9YVtbK6y2W8wUMEyOtYZKWh6e3lBEYceBEqpqe+5SFyIi7dH6xYNOcPToUT755BM+/PBD9u7di9ls5qyzzuKaa67pyPi6NMMwiI2OIXd/GFHGYTiwFQbNdHdYIiLSjCeffJLKysoWFwO3WCwEBQWdtL1hW1se+rV13b2G86xWK3j3xtQ/EeNgKraMVdhHX33acwf28aFvgA9Hy2vYlmthbH257e6kSfs9kNqv9h//6mna2/7WnudUMmSz2fjhhx/48MMP+e9//0ttbS1xcXE8+OCDXHnllYSFhbUp2O4sOTqIbXsHEWU+7CiioGRIRKTLef755/n000/53e9+x+jRo1s83jCMNu07lbS0NKfPae78qF5D6U8qRzZ/QnZdy4uvDupjcLQcvli3HeNoQLticKf2fn7dndqv9nsyV7e/VclQRkYGH374IR9//DGHDx/Gz8+PSy65hKuvvpoJEya4NMCuLik6mHW2OC40b4ADKe4OR0RETrBgwQIWLVrEAw88wI033tji8cHBwc32/hQXO4ZCN9dr1JLExMQ2LURutVpJS0s7dr7fFZDxIWHlu+mbnNzi+TOP7mXTgb0ctvcmOTnJ6fd3t5Pa72HUfrVf7W97+xvOb0mrkqGLLroIgDFjxjB37lxmz55NQED3fcLUkcZEBvNqfREFa14KnvefqohI17VgwQLmz5/P3LlzWxwe1yA+Pp709PSTtjdsa2nOUXPMZnO7/phpPH+Qo4iCcTgdc+VR6B1+2vPGxfYFIDW3uFv/MdXez6+7U/vVfrXfde1vVQGFW265hU8//ZR///vfXHfddUqEjhPk701J8CgATEf3QnWpmyMSERGAhQsXMn/+fO6++27mzJnT6vPOPfdc9u/fT2rqsSqhdXV1fPLJJyQlJdG/f39XhNs6/n2h30jH99ktrzeUFBUMQNaRCorKa1wYmIhI99SqZOjRRx9t9knY/v372bRpExUVFR0eWHcSExPLAXtfDOxw0LPHdYqIdAWvvfYaL7zwAjNnzuTMM88kJSWlyVeDxx57jJEjR5KXl9e47ZprrmHYsGHcf//9fPrpp6xevZpf/epXZGRk8Otf/9oNrTlB7HTHa2bLJbaD/L0ZHOZ4gJmSa3FhUCIi3VObqsktX76c5557jsLCQgA++OADRo0axf3338/06dO57rrrOjTIrm5MVDDbtg9ioPmoo4hC7DR3hyQi4tG+++47AFatWsWqVatO2r97927AURjIarVit9sb9/n4+PDGG2/w7LPP8qc//YnKykpGjBjByy+/zKRJkzqnAacTNx02vNzq9YaSo4PZf7iclGwLZyX0c3FwIiLdi9PJ0IoVK3jkkUc488wzmTVrFn/84x8b940aNYoVK1Z4XDKUFB3MD7Y4zjNvwp6/BefrDImISEd66623WnXcvHnzmDdv3knbw8LCeOaZZzo6rI7R0DNUsB0qjjqGzp1Gckwwy7bkkaqeIRGRkzi96OrixYu56qqr+Oc//8n111/fZN/gwYPZu3dvmwLZuHEjd9xxBxMnTmTMmDGcf/75LFy4sE3X6myjIvqwg8EA1OWluDcYERHp2Xr3g9BhgB2y17Z4eMO8odQcS5MeMBERaUMytG/fPmbPnt3svlOVI23Jp59+yk033URgYCDPPPMMixcv5o477ug2/2j7eZupDE8EwOvIHqgpd3NEIiLSo8XV9w61YqjciIF98PEyUVRRS9YRz57jKyJyIqeHyfXq1YvS0uYrphUUFDi9/kJBQQG///3vuf7663niiScat0+ZMsXZ0NwqJnYwh4qC6WdYHEMXorvAuHIREemZYmfApjcg88cWD/XxMjEqog9bsi2k5FiIC1NFWBGRBk73DI0dO5Z33nmn2V6bZcuWOT25dOnSpVRUVHDHHXc4G0qXkhwVTJrNsd4Q+SlujUVERHq4hkI9B7dCVXGLhzcMlUvJsbguJhGRbsjpZOjee+8lJSWFa665hrfeegvDMPj666+566672LhxY6sXtWuwYcMGgoOD2b9/P5dffjkjR45k6tSp/P73v6esrMzZ8NxmTHQQ2+xxANjyt7g3GBER6dmCIiEkDuw2yFnf4uFjY4IBJUMiIidyephcYmIiL7/8Mk8++WRjBZ6XXnqJ2NhYFi9eTHx8vFPXKygooLKykvvvv58777yT5ORk0tLSmD9/Pnv27OHdd9/FMFpfn81qtTr1/iee19bzB4f6s8c0BICanC14t/E67tLe9nd3ar/af/yrp2lv+z31c3O72BlQlOkYKjfsvNMemhwdDMCO/BKq66z4ennuavYiIsdr0zpDU6ZMYcWKFWRnZ3P48GFCQkIYNGhQmwKw2+1UV1czZ84cfvnLXwIwefJkvL29eeqpp1izZg3TprV+3Z60tPYtetqe80t6D4EK8Dm6m5RN67CbfdsVizu09/Pr7tR+td+TeXr7u5246ZDydquKKMT09SfE35uiilp2HSglqT45EhHxdG1KhhrExMQQExPTrgCCg4MBmDFjRpPts2bN4qmnnmL79u1OJUOJiYmYzc4/8bJaraSlpbX5fIBh+b4c3tiHMKOEpAFeEJncpuu4Q0e0vztT+9V+tb/t7W84XzpZw3pD+VscVUx9Tl0YwTAMkqKD+e/uQlJyLEqGRETqtSoZ+uKLL7j44oudunBBQQG5ubmMHz/+tMclJCSQkpJy0vaGAg0mk3PTmsxmc7v+mGnP+WNj+7Jt/SDONKdiLtgKMd2volx7P7/uTu1X+9V+z21/txMcA32ioCTXMW9oyFmnPTz5uGTolk4KUUSkq2tVpvHHP/6Ryy+/nKVLl7ZY1GDbtm08+eSTXHDBBezatavFa59//vkA/PDDD022N/yclJTUmhC7hKSo4MYiCtY8FVEQEREXMgyn1htq6A1KVREFEZFGreoZ+uabb5g/fz5//vOf+eMf/8jIkSMZOXIkoaGh+Pj4UFxcTE5ODikpKRQWFjJs2DDmz5/PzJkzW7z2jBkzOOuss1i4cCE2m43k5GS2bdvGggULOOuss5gwYUK7G9lZokJ6kekzDGxQnbMFf3cHJCIiPVvsdNj6PmS2nAwl15fX3n+4nOKKWoL8vV0cnIhI19eqZCgwMJDHHnuMe++9l2XLlvH999+zfPlyKisrG4+Jjo5m5syZXHrppU4vmPr888+zYMEC/v3vf7Nw4UL69evHrbfeypw5c5xrjZsZhgEDkyAPfI/uhrpq8Op+RRRERKSbiKufb5u3EWqrwNvvlIeGBPgQF+pP5pEKUnItnBEf3klBioh0XU4VUAgKCuK2227jtttuA6C0tJSqqiqCg4Px9m77EyY/Pz9+/etf8+tf/7rN1+gqouISKMrtTQhlcGgHRIx1d0giItJT9R0MvftDWYEjIYqbcdrDk6ODHclQtpIhERFow6KrxwsMDCQ8PLxdiVBPkxQdQpqtvsx4fopbYxERkR7OMI5VlWvFULnGeUO5FtfFJCLSjbQrGZKTjYkKYnt9EYWa3M3uDUZERHq+xiIKP7Z4aMPiqyk5lsaqrSIinkzJUAcL7e1Lvn8CANXZqignIiIu1tAzlLMB6mpOe+jIiD54mw2OlteQc7TytMeKiHgCJUMuYIpIBsC/aFeLNyYREZF2CR8O/qFQV+lYgPU0fL3MjBzYB4AUDZUTEVEy5ApRg0ZSbPfHbK+FwpbXWhIREWkzw4DYaY7vnRkql21xXUwiIt2EkiEXGBMdzLaGIgoHUtwai4iIeIDY+ipyrVlvKCYYgJScIhcGJCLSPTidDP2///f/2L9/vyti6TFGRx4rolCRtcm9wYiISM/X0DOUsw6sdac9NKl+8dVt+SXUWm0uDkxEpGtzOhlavnw5s2fP5rbbbuPbb79VNZpmBPh6caTPSABqclREQUREXKz/KPALgpoyOJh62kMHhQUQ1Mubmjobuw6UdlKAIiJdk9PJ0KpVq3j88ccpLCxkzpw5nH322SxevJijR4+6Ir5uyxyZDEBA0a4Wn9KJiIi0i8kMMfW9Qy0MlTMMo3G9IQ2VExFP53Qy5O/vz89//nM+++wzXn/9dUaNGsU//vEPzjzzTB555BHS0tJcEWe3EzlkFKX2Xnjbq+HwbneHIyIiPV3jekOtmDcUFQTAlhyLCwMSEen62lVAYerUqSxYsICVK1cyduxYPv74Y6677jquvfZa/vOf/3RUjN1SUnRfdthjAbC3UOpURESk3Roryq0Bm/W0hzYUUUhVMiQiHq5dyVBVVRVLly7lrrvuYt26dQwZMoR7770Xq9XKvffey8KFCzsqzm4nYUAgOxgMQEmGiiiIiIiLDUgCn0CoLoaC7ac9tKGIwr7CcoorazshOBGRrqlNyVB2djZPP/00s2bN4g9/+AMDBgzgtdde47PPPmPOnDksW7aMO+64g7fffruj4+02vM0mioNHAVCXq54hERFxMbMXxEx2fN/CULnQ3r7E9PUHYKsWXxURD+Z0MnT77bdz4YUX8sEHH3D55Zfz5Zdf8s9//pNp06Y1Oe6ss86iqMizJ2Z6R40FINCys8UhCyIiIu0W2/p5Qw1FFDRUTkQ8mZezJ+Tk5PDoo49y1VVXERAQcMrjhg0bxptvvtmu4Lq7yKGJlG/3JcBWBYf3QL/h7g5JRER6ssZkaDXY7WAYpzw0OTqYT1PzSVEyJCIezOlk6KuvvmrVcb1792bSpElOB9STJMWEssMey0Qjnbq8zXgpGRIREVeKGAtevaDiCBTugn4jTnlocmN5bQt2ux3jNImTiEhP1a4CCnJ6caH+pJuGAGDZt9HN0YiISI/n5QPR9Q8iM3887aGjIvrgZTI4XFZDnqWyE4ITEel6nO4ZOvvss0/59MhkMhEYGEhiYiI333wzQ4YMaXeA3ZlhGJT2HQ1HV2DLUxEFERHpBLHTIeN7x1C5SXec8jA/bzMjBvYhLa+YlBwLUSH+nRikiEjX4HTP0KRJk7Db7RQUFBAZGUlSUhIREREUFBRgtVoZOHAg33zzDVdffbUWYAX8oscBEFS8E2w2N0cjIiI93vGLr9rtpz20cahctsW1MYmIdFFOJ0MzZszAx8eHb775hjfffJPnnnuOt956i6+//hofHx/OPfdcvvrqK+Li4pg/f74rYu5WooYlUWn3wddWCUf3uTscERHp6SIngNkXygrgyOnvO40V5VReW0Q8lNPJ0D//+U/mzp3LwIEDm2yPiIjg3nvvZfHixQQGBnLrrbeSkpLSUXF2W2NiQtlpjwGgKluLr4qIiIt5+0HUBMf3WaefN9TQM5SWV0ytVaMXRMTzOJ0MZWVl0bt372b39enTh7y8PAAiIyOprNSEzH59/NjvNQyAor0b3ByNiIh4hNj6tf+yVp/2sMFhAQT6eVFVa2P3wdJOCExEpGtxOhmKiIjgo48+anbfhx9+2NhjZLFYCAoKal90PUR56GgA7Pkp7g1EREQ8Q8N6Q5mnnzdkMhkkRQUDaL0hEfFITidD//u//8uXX37JDTfcwBtvvMFnn33GG2+8wQ033MA333zD7bffDsC6desYPXp0hwfcHfnFOooohJSoiIKIiHSC6Elg8oKSXLBknfbQhqFyqUqGRMQDOV1a+7rrrsNutzN//nzmzZvXuD0sLIwnn3ySa6+9FoC77roLHx+fjou0G4uJH0v1Bm962cqhKANCPbvkuIiIuJhPAESMg9z1jt6hkLhTHnr84qsiIp7GqWTIarWSnZ3NRRddxHXXXcf+/fuxWCwEBwczePDgJusPhYWFdXiw3dWomDB22qNJNvZTmrGRQCVDIiLiarHTHMlQ1moY+/NTHtZQUW5vYRmlVbUE+nl3UoAiIu7n1DA5u93O7Nmz2bJlC4ZhMGTIEMaPH8+QIUNOuRCrQB8/b7J94wE4qiIKIiLSGeJmOF5bqCgXHuhLZHAv7HZIyy3uhMBERLoOp5IhLy8vwsLCsLewiJucrCrMMX/KOJDi3kBERDxAWVkZf/nLX/jFL37BlClTSEhIaPXad8uWLSMhIaHZr8LCQhdH3oGiJ4NhgqJMKM477aHJMcEAbNFQORHxME7PGZo9ezbLly/nzDPPdEE4PVev2AlwAPqW7nJU9lFPmoiIy1gsFv79738zfPhwzj33XJYuXer0NZ5++mkGDx7cZFtwcHAHRdgJ/PrAwCTI3wJZP8GY60556NjoYD7fekDzhkTE4zidDA0fPpwvvviCm2++mfPPP5/w8PCThsidf/75HRZgTxEzfDw1a8z0tpViL8rE6DvI3SGJiPRYkZGRbNiwAcMwOHr0aJuSoWHDhpGYmOiC6DpR7PRWJUNJxxVRsNvtGvouIh7D6WTo4YcfBqCgoID169eftN8wDHbu3Nn+yHqY4VGhpBPDaDI4smcDYZOVDImIuIr+mK8XOx3WLHBUlDuN0RFBmE0GhaXVHCiuIiK4VycFKCLiXk4nQ2+++aYr4ujxfL3M5PnFM7o6g6J9GwibfOondCIi4n533XUXR48eJTAwkEmTJnHfffcRHx/v7rCcEzsVMODIHigtgMD+zR7Wy8fM8AGBbM8vISXHomRIRDyG08nQpEmTXBGHR6gOT4TcrzAdTHV3KCIicgphYWHcddddJCcn07t3b9LT01m8eDHXX389S5YsYfjw4U5f02q1timWhvPaej4+fTD1H4VRsA1r5o8w8opTHjomMojt+SVszjrKBSP7te39Oli729/Nqf1q//Gvnqa97W/teU4nQw1KS0tJSUmhqKiIM844g6CgoLZeymMEDJoAuRCuIgoiIl3WrFmzmDVrVuPPEydO5IwzzuDSSy/lH//4B4sWLXL6mmlpae2KqT3nR/sPox/bOLLpY3Jq4k55XF97BQCrd+WRMrCqze/nCu39/Lo7tV/t92Subn+bkqGFCxfy8ssvU1VVhWEYfPDBBwQFBXHLLbcwffp0fvnLX3Z0nD1C7PAJ1P5gpg/F1BVl49U31t0hiYhIK0RFRTF+/HhSU9vWs5+YmIjZbHb6PKvVSlpaWpvPB8D3csj4iPDydEKTk095WEBEGQs3/khGsY3RiWPwMju1+oZLdEj7uzG1X+1X+9ve/obzW+J0MvTOO++wcOFCfvaznzFz5kzuvPPOxn1nnXUWX3/9tZKhUxg0MIw9RDGcLA7uXkvUVCVDIiLdhd1ux2RqW4JgNpvb9cdMu84fNBMAo3An5ioLBIQ2e9iw/n3o7etFWXUd+w5XMjKiTxuj7Xjt/fy6O7Vf7Vf7Xdd+p/9Vf+edd7j11lt5/PHHmTFjRpN9sbGxZGVldVhwPY3ZZHAgwDHWvHjfRjdHIyIirZWTk8PmzZtJSkpydyjOCwiDsATH99lrTnmY2WQwJsox5D0119IJgYmIuJ/TPUM5OTnMnDmz2X0BAQGUlJS0O6ierCY8EbK+wqtgq7tDERHp0b7//nsqKyspLy8HYO/evXz55ZcAnHHGGfTq1YvHHnuM5cuX88033xAZGQnArbfeyoQJExg+fDgBAQGkp6fzyiuvYBgG999/v9va0y5x0+Hwbsd6QyMuOeVhydHBrN53hJRsC/8zKaYTAxQRcQ+nk6HAwEAOHz7c7L68vDxCQ5vvfheHPoMmQBb0K1MRBRERV3ryySfJy8tr/PnLL79sTIZWrlxJVFQUNpsNq9WK3W5vPC4+Pp4VK1bw2muvUV1dTd++fZkyZQr33HMPgwZ10zXiYqfDxtcg88fTHpZ83OKrIiKewOlkaOrUqbzyyiucc845+Pr6Ao7F7erq6liyZMlJQ+ekqbhRk7B+ZxCChaqjufiFRrs7JBGRHuk///lPi8fMmzePefPmNdn22GOPuSok94md7ng9mAaVFugV3OxhDclQ+qFSyqrr6O3b5qKzIiLdgtNzhu677z7y8/OZPXs28+bNwzAM3n77ba699lqysrK45557XBFnjzEgrC8ZhiMByt1x6rHbIiIiHabPQOg7GLBDzrpTHtavjx8RQX7Y7ZCWW9x58YmIuInTyVBsbCxLlixh8ODBLFmyBLvdzscff0xISAjvvvsuERERroizxzAMg4LejiIKpftVREFERDpJQ+9QS0PlYoIBDZUTEc/Qpv7voUOH8uqrr1JTU0NRURFBQUH4+fl1dGw9Vl2/MVD2Nd6HVERBREQ6SdwM2PKWo4jCaSRFBfNF2kFSlQyJiAdo14pqPj4+9O/fX4mQk/oMmQhA/4rdbo5EREQ8RkPPUH4KVJee8jAVURART9KmnqHc3FxWrFhBfn4+VVVVTfYZhsFTTz3VIcH1VINGTcL2tUE4Ryk+lENQPxVREBERFwuOhqAYKM6GnPUw9JxmD0uMCsJkwMGSKg4WVzEgSA88RaTncjoZ+u9//8ucOXOw2Wz07dsXHx+fJvsNlYpuUXBwXzJNkcTZc8nZvkbJkIiIdI646ZCa7Rgqd4pkyN/Hi/j+gew6WEpKThEXBg3s5CBFRDqP08nQ3//+d8aNG8ff//53rSnUDoWBI4gryaUscxNwnbvDERERTxA7HVKXQObp5w2NjQmuT4aKuXC0kiER6bmcnjOUlZXFHXfcoUSonaz9xwDgW6giCiIi0kni6ucN5W2CmopTHnZs3lBRJwQlIuI+TidDERERVFSc+h9QaZ2QoY4iCgMr0pusfC4iIuIyIYMgcCDYaiHv1Ms7JNUnQ2m5xVhtukeJSM/ldDJ055138tprr1FZWemKeDxGzMgpAAzgMIcO5ro5GhER8QiGcdx6Q6ceKjesXyABPmbKa6zsPVTWScGJiHQ+p+cMpaWlceTIEc477zwmT55MSEjIScc8/vjjHRJcT9YrMIRcUyRRtjxytq+h/0AVURARkU4QNx22fXDa9YbMJoPEqCDW7j9KSk4RCQMCOzFAEZHO43Qy9Pbbbzd+//nnn5+03zAMJUOtdLjPCKIseZRnbkZFFEREpFM09AzlboC6avDybfaw5OiQ+mTIwvUTYzoxQBGRzuN0MrRr1y5XxOGR7AOSwPItvQ6riIKIiHSSsHgICIfyQsjbDLFTmz0sOToIgJSc4s6MTkSkUzk9Z0g6Tt+hkwCIqEzHpgmqIiLSGQwDYqc5vs/68ZSHJUc7hsHvPlhCRU1dZ0QmItLpWpUMbdiwgfLy8haPO3r0KB988EG7g/IUkSMmAxBlFJKZm+PmaERExGPEznC8nqaIwoAgPwb08cNmd1SVExHpiVqVDN18883s27ev8Webzcbo0aPZsWNHk+NycnL43e9+17ER9mBeASEcNDsWs8vbsc7N0YiIiMdo6BnKWQ/W2lMeltQ4VM7SCUGJiHS+ViVDJ66DY7fbqaur0/o4HeBonxEAVGZvcnMkIiLiMfqNhF4hUFsOB1JPeVjDULnUXEsnBSYi0rk0Z8jdIpIB8D+S5t44RETEc5hMEFPfO5R5unlDwQCkZFtcH5OIiBsoGXKz0KGOeUPRVXuorrO6ORoREfEYcfUltk+z3lBiVBCGAfnFVRwqqeqkwEREOo+SITfrFz8RgFijgPTMXDdHIyIiHqNh3lD2WrA1/zCut68X8f0cC65q3pCI9EStXmdo//79mM1mAKxWa+O2E48R5xgBoRSaBxBuPciBXetIHBrr7pBERMQTDBgDvn2gugQOpjUO2z5RcnQwuwtKScmxcP6oAZ0bo4iIi7U6GXr00UdP2vab3/ymyc92ux3DMNoflYexBI8g/MhBqrM3A9e5OxwREfEEJjPETIE9XzuGyp0iGUqKDub9jTnqGRKRHqlVydDTTz/t6jg8mikiGY58R8DRbe4ORUREPEnsdEcylPkTTL232UMaiihszS3GZrNjMumhp4j0HK1Khq688kpXx+HRwuInQxrE1eyltKqWQD9vd4ckIiKeILa+iEL2arDZHFXmThDfvze9vM2UVdexr7CMYf0DOzlIERHXUQGFLiBosKOIwmDTAXZkqIiCiIh0kohk8A6AyiIo3NnsIV5mE4lRjsVXt2ionIj0MEqGuoKAMI569QPgwO4Nbg5GREQ8htkboic5vs88dYntxvWGlAyJSA+jZKiLKA4eCUBt7mY3RyIiIh6lcb2hlhdfTVUyJCI9jJKhLsIraiwAfY5ud3MkIiLiURrmDWWtBru92UMakqFdB0uprNEC4SLScygZ6iLCh00GYHDdPg6VapVvERHpJJHjwcsPygvh8J5mDxkY5Ed4oC9Wm51t+cWdHKCIiOs4lQxVVVVxww03sHr1alfFw9KlS0lISGDs2LEue4+uyC9mHABDjHy27893czQiIuIxvHwhylHI51RD5QzD0FA5EemRnEqG/Pz8SE9Px2w2uySYgoICnnnmGfr16+eS63dpgf0p9grDZNg5uGeju6MRERFPEjvN8Zp16oedDcmQKsqJSE/i9DC5sWPHsnXrVlfEwh/+8AcmTJjA9OnTXXL9rq40xFFEoU5FFEREpDM1zBvK/KnFeUMp2ZbOiUlEpBM4nQw9/PDDvP/++yxfvpzy8vIOC+Tjjz9m/fr1PPHEEx12ze7GO8oxVK6PZQf2U9yMREREOlzURDB5Q2k+FGU0e8iYqCAMA/IslRSWVndygCIiruHl7AnXX389tbW1PProozz66KP4+flhGEbjfsMw2LRpk1PXPHLkCE899RQPPfQQAwYMcDakJqzWtlW5aTivred3hOAh42ELJNj2s7+wlLjQgE57767QfndS+9X+4189TXvb76mfW4/i4+8opJCz1tE71HfwSYcE+nkzNLw3ew6VkZpj4dyR/d0QqIhIx3I6GbrggguaJD8d4cknn2TQoEH87Gc/a/e10tLS3Hp+e3hX+jAGGGbksmjVeqbGhXR6DO5sf1eg9qv9nszT2+/xYqc5kqGs1TDupmYPSYoOZs+hMlKUDIlID+F0MjRv3rwODeCrr77iP//5D8uXL++QJCsxMbFNBR6sVitpaWltPr9D2O2U/rcvgXVH8as5THLyWZ321l2i/W6k9qv9an/b299wvnRzcdPhx+daXHz1g025pOZaOi8uEREXcjoZ6kjl5eX88Y9/5KabbqJfv36UlJQAUFtbC0BJSQleXl74+/u3+ppms7ldf8y09/z2Ku87isBDq7Dnp2I239Dp7+/u9rub2q/2q/2e236PFz0ZDDNYssGSA8HRJx3SWEQhx4LNZsdk6tiRIiIina3NyVB6ejr79u2juvrkSZRXXHFFq65RVFTE4cOHee2113jttddO2j9x4kTOOeccXnzxxbaG2e34xIyDQ6sIKd5BrdWGt1nr4oqISCfwDYSIZMjbBFk/QfDJD+QSBgTi522itKqO/YfLGdqvd+fHKSLSgZxOhiorK7n77rtZu3YthmE0Vj07fohba5Oh8PBw3nzzzZO2L168mA0bNvDyyy8TEtL582bcKXjwBNgII8kgvaCUURFB7g5JREQ8Rey0Y8lQ0snJkLfZxOiIIDZmFZGSY1EyJCLdntPdDi+++CJ5eXm8/fbb2O12FixYwOuvv855551HbGwsH330Uauv5evry+TJk0/6Cg8Px2w2M3nyZOLj450NsVszRYwFHEUU0jIPuTkaERHxKLEzHK+ZP53ykIahcqlafFVEegCnk6GVK1dyxx13MHas44/2gQMHMnXqVF544QVGjRrFu+++2+FBepSgKCq8gvE2rBzep8VXRUSkE8VMAQw4ug9KDzZ7SHJMMOCYNyQi0t05nQzl5eUxePBgzGYzhmFQWVnZuO/SSy9l5cqV7Q5q3rx5bNmypd3X6ZYMg4rQ0QDY8lPcG4uISDdVVlbGX/7yF37xi18wZcoUEhISmD9/fqvPP3LkCI888giTJ08mKSmJ66+/njVr1rgw4i6iVzAMSHR8n9l8VbmkqGAAdh4ooapWa0yJSPfmdDIUGBhIRUUFAKGhoWRlZTXuq6ura9wnbdcrdhwA4WU7qaipc3M0IiLdj8Vi4d///jc1NTWce+65Tp1bU1PDrbfeypo1a/jtb3/Liy++SGhoKLfffjvr1693UcRdSOx0x2vW6mZ3R4X0Iqy3D3U2O9vzSzoxMBGRjud0MpSQkEBmZiYAkydP5qWXXmLjxo1s3bqVhQsXMnz48I6O0eMExI4HYLSRoRuNiEgbREZGsmHDBt5++20efPBBp85dunQp6enpPP/881x22WVMnz6dF154gbi4OJ599lkXRdyFxDUkQ83PGzIMo0mJbRGR7szpZOjqq6+mvLwcgF/96ldUVlZy0003cf3115Ofn88jjzzS4UF6nIhkABKMHNKyVERBRMRZhmG0eSHvb7/9lkGDBjXOjQXw8vLisssuY+vWrRQUFHRUmF1TzDTHa+EuKD/c7CENQ+WUDIlId+d0ae2LL7648fvo6Gi++uqrxjLbY8eOJTg4uCPj80zBsVR59cGvroRD+1LgDPW2iYh0lj179jB+/PiTtickJDTu79+/v1PXtFrbNrem4by2nt8mfsGYwkdgFO7EmrEKRlx20iFjovoAkJpT5NLY3NL+LkTtV/uPf/U07W1/a89r86KrDfz9/Tn77LPbexk5nmFQFTYav4OrMR1MBU5e60FERFzDYrEQFHTyGm8N2ywWi9PXTEtLa1dM7T3fWdEB8fQr3MnhTZ+QWx1z0n6jxgZA9tFKvl+3mSBf1y4Q3tnt72rUfrXfk7m6/e1OhsQ1esWOh4OriajYzdHyGvoG+Lg7JBERj3G6IXZtGX6XmJiI2Wx2+jyr1UpaWlqbz28rw/syyPyYfhXphCUnN3vM4J9Wsf9wObagKJKH93NJHO5qf1eh9qv9an/b299wfktalQwNHz681f/4G4bBjh07WnWsnJpv9FhYB6NNGaTmWjgrwTU3GhERaSo4OLjZ3p/i4mKAZnuNWmI2m9v1x0x7z3faoJkAGAXbMdeUQK+Qkw5Jjglm/+FytuaVcO6ogS4Np9Pb38Wo/Wq/2u+69rcqGbr33nvbPBFV2mhgMgAjjBwWZx1RMiQi0kni4+NJT08/aXvDtmHDhnV2SJ0vsD+EDoUjeyF7LSRcdNIhY6ODWbY5j5TcYjcEKCLSMVqVDM2dO9fVcciJQgZR49Ub37oyDmemAiPcHZGIiEc499xzefLJJ0lNTSUpKQlwrKP3ySefkJSU5HTxhG4rdrojGcr8sdlkKDna0VuUmmPBbrfroamIdEuunfEobWcyUR022vHtgRTsdrubAxIR6V6+//57vvzyS7777jsA9u7dy5dffsmXX35JZWUlAI899hgjR44kLy+v8bxrrrmGYcOGcf/99/Ppp5+yevVqfvWrX5GRkcGvf/1rt7TFLeJmOF5Psd5QwoBAfLxMFFfWknG4vBMDExHpOE4XUFi+fHmLx1xxxRVtCEVO5CiisJa42r3kWSqJCvF3d0giIt3Gk08+2STJaUiEAFauXElUVBQ2mw2r1drkgZOPjw9vvPEGzz77LH/605+orKxkxIgRvPzyy0yaNKnT2+E2sfXrDR1IhaoS8OvTZLePl4nREX3YnG0hNdfC4PDebghSRKR9nE6GTrWo6vHd40qGOoZXpGPBv0RTBqk5xUqGRESc8J///KfFY+bNm8e8efNO2h4WFsYzzzzjirC6j6AoCI4FSxbkrIdh5550SHJ0CJuzLaRkW7hybJQbghQRaR+nk6GVK1eetK2oqIiVK1fyxRdf8Pe//71DAhMgIhmAEUY2X+UcZvYY11brERERaSJuBqRkQdaPzSZDSdGOynopOZZODkxEpGM4nQxFRkY2u2306NHU1dXx5ptvNvuUTdqg7xBqzf70slZwJGMbkOjuiERExJPEToeUdyCz+XlDY+uLKOw4UEJ1nRVfL88t/ysi3VOHFlCYOnVqq4YlSCuZTNT2cyRA3oe2YrWpiIKIiHSiuOmO1/zNUHNykYTovr3oG+BDrdXOjvySTg5ORKT9OjQZysvLw2RSgbqO5BczDoB42z72HipzczQiIuJRgmOhTyTY6iB3w0m7DcMgKUpD5USk+3J6mNyGDSf/Y1hTU8Pu3bt56aWXmDp1aocEJg6m+nlDo00ZpOZaSBgQ6N6ARETEcxiGY6hc2r8dQ+UGn3nSIcnRIXy3u1DJkIh0S04nQzfddNNJC6s1lCSdNm0av/vd7zomMnEYmAzASCOLj7OPcN2EaPfGIyIiniWuPhk6xXpDyTHBgGPxVRGR7sbpZOjNN988aZuvry+RkZGEhYV1SFBynLBh1Jl7EWCt5EjWDiDZ3RGJiIgnia1ffDV3I9RWgbdfk90Nw+Qyj1RQVF5DSIBPZ0coItJmTidDHrXgXFdgMmPtNxqvAxvwP5JGVa0VP29V6xERkU4SOgQC+kH5IcjbdKyoQr1gfx8GhQWQcbiclFwLZyX0c1OgIiLOc7raQUZGBuvXr2923/r168nMzGxvTHICn2jH4qsjyGDHAVXrERGRTmQYxxKgUw2Viw4GNFRORLofp5OhefPmNbvwKsB3332nNYZcwKifN5RoymCrbjQiItLZYuuTocwfm93dkAypiIKIdDdOJ0NpaWlMnDix2X0TJ05k27Zt7Q5KTlBfUW6kkcXWnCL3xiIiIp6nIRnKWQ91NSftTjquZ6ihqJKISHfgdDJUWlqKv79/s/v8/PwoLi5ud1BygrAErGZfAo1KDmfvdHc0IiLiacKHQ6++UFcJB1JO2j1iYCA+ZhNFFbVkH63o/PhERNrI6WSof//+bN26tdl9W7duJTw8vN1ByQnMXtj7jQYg2LKD4spaNwckIiIexWSC2GmO75sZKufrZWZkRB9AQ+VEpHtxOhk699xzWbx4MWvXrm2yfd26dbz88sucd955HRacHOMVmQzAKFMGabnqfRMRkU4WV19iu4UiCluyLZ0Tj4hIB3C6tPa9997Ljz/+yG233UZcXBwDBgzg4MGDZGZmMnToUObOneuKOKV+3lCikcGWXAszhmlNJxER6UQNPUPZ68BaB+amf0I0VpTLtXRuXCIi7eB0z1BgYCDvv/8+c+bMISgoiPz8fIKCgpg7dy7vvfcevXv3dkWcUl9RbrQpk9RsFVEQEZFO1n80+AZBTSkcPHm4fEMytD2/hJo6WycHJyLSNk73DAEEBARw7733cu+993Z0PHIq4cOxmXzoY6vgcO5uoPmKfiIiIi5hMkPsVEj/0jFULnJck92xof4E+3tjqahl54GSxgpzIiJdmdM9Qw1KS0tZtWoVn3zyiSrIdQYvH+z9RwIwsHw3B4ur3ByQiIh4nMb1hk6eN2QYBklRwYCKKIhI99GmZGjhwoXMnDmTO+64g4cffpjc3FwAbrnlFhYvXtyhAcox5vp5Q6NNGRqTLSIina8hGcpeDbaTh8IlH7fekIhId+B0MvTOO++wcOFCrrnmGl566aUmi6udddZZ/Pe//+3I+OR4DfOGjAzdaEREpPMNTAKf3lBVDIe2n7S7IRlSz5CIdBdtSoZuvfVWHn/8cWbMmNFkX2xsLFlZWR0WnJygsWcok9QcFVEQEZFOZvaC6MmO75sZKtcwT2j/4XKKK7Qmnoh0fU4nQzk5OcycObPZfQEBAZSUlLQ7KDmFfiOxmbwJMco4nLcXm83e8jkiIiIdKa5+qFzWyYuv9g3wITbUH1CJbRHpHtpUWvvw4cPN7svLyyM0NLTdQckpePli9BsBQFzNXjKOlLs5IBER8TgN84ayVoP95IdyGionIt2J08nQ1KlTeeWVV6ioqGjcZhgGdXV1LFmy5KShc9KxjIFJACSaNG9IRETcIGIcePWCiiNQuPuk3aooJyLdidPJ0H333Ud+fj6zZ89m3rx5GIbB22+/zbXXXktWVhb33HOPK+KUBvXzhhKNDLbmqqS5iIh0Mi8fiK5f666ZoXLJMcGAo6KcvZmeIxGRrsTpZCg2NpYlS5YwePBglixZgt1u5+OPPyYkJIR3332XiIgIV8QpDQaOBWCUKZOUbBVREBERN4itHwXSTBGFkQP74G02OFJeQ25RZScHJiLiHK+2nDR06FBeffVVampqKCoqIigoCD8/v46OTZrTfyR2w0wYJRw9kEFN3TR8vNq8dq6IiIjzYqc5XhvmDRlG4y4/bzMjBvZha24xW3IsRPf1d1OQIiIta9df0T4+PvTv31+JUGfy7gX9hgOQYN/P7oOlbg5IREQ8TtQEMPtA2UE4uv+k3Y1FFLItnRuXiIiTWtUztHz5cqcuesUVV7QhFGktY2AyFGxntCmDlFwLiVFB7g5JREQ8iXcviJwA2ash80cIHdJkd3J0MG+uyVJ5bRHp8lqVDD3yyCOtvqBhGEqGXG1gMqS8Q6KRwYocC0yJdXdEIiLiaWKnOZKhrJ9g/C1NdjUsvrotr5haqw1vs4Zzi0jX1KpkaOXKla6OQ5xRX157tCmTeXrqJiIi7hA3HVb91TFv6ASDQgPo4+dFSVUduw6UagSDiHRZrUqGIiMjXR2HOGNAInbDRD8sFB/Koay6jt6+baqFISIi0jbRk8HkBcU5UJQFIcdGKZhMBknRwazac1jDuUWkS2tzv3VZWRk//vgjn332GT/99BNlZWUdGZecjo8/RlgCAKOMDLblab0hERHpZD4BEOFY7oGsk0tsq4iCiHQHbepOePXVV1mwYAFVVVXY7XYMw8DPz4/77ruP2267raNjlOYMTILCnSQaGaTmWJgyONTdEYmIiKeJnQa5GxzrDSX/rMmuxmQoR2viiUjX5XQytHz5cp599llmzZrFlVdeSb9+/Th06BDLly/nL3/5CyEhISqg0BkikmHre4w2ZfCR5g2JiIg7xM6An/5x2p6hfYXllFTV0sfPu5ODExFpmdPD5N544w0uueQSFi9ezEUXXcT48eO56KKLeOmll5g9ezb/+te/XBGnnOi4IgqpORomJyIibhAzBQwTFGVASX6TXaG9fYnu2wuArbpPiUgX5XQytH//fi677LJm91122WXs27ev3UFJKwwYgx2DgcZRqi0HKSytdndEIiLiafz6wIAxju8zT+4dSooKBjRUTkS6LqeTIT8/P4qLm3/CU1xcjJ+fX7uDklbw7Y0RNgyA0aYMtmqonIiIuEPsdMfr6YooqGdIRLoop5Oh8ePHs2DBAgoKCppsLywsZOHChUyYMKHDgpMWNAyVMzJIzdWNRkRE3CDu1MnQ2JhgAFJyLNjt9k4MSkSkdZwuoPDggw9yww03cP755zN16lTCw8MpLCxk7dq1eHl5sWDBAlfEKc0ZmAxpS0k0ZfBujsXd0YiIiCeKmQoYcDgdyg5B736Nu0ZFBOFlMjhcVk2epZKoEH/3xSki0gyne4aGDRvGBx98wDnnnENaWhrLli0jLS2Nc845h6VLlzJ06FBXxCnNqe8ZGmXKJDVXT91ERI5XXl7On//8Z2bMmEFiYiKXX345n3/+eYvnLVu2jISEhGa/CgsLOyHybsa/L/Qf5fj+hN4hP28zwwcGAo7eIRGRrqZN6wwNGjSI5557rqNjEWcNdExajTIOY1QcIedoJTGheuomIgIwd+5c0tLSeOihh4iLi+Ozzz7jwQcfxGazcemll7Z4/tNPP83gwYObbAsODnZRtN1c7DQo2AZZq2HUlU12JUcHsy2vhNQcC5eMiXBTgCIizWtTMiRdhF8Q9B0CR/cx2pRJSq5FyZCICPD999/z008/8be//Y1LLrkEgClTppCfn89f/vIXLr74Ysxm82mvMWzYMBITEzsj3O4vdjqsX3zKinJvk62eIRHpktqUDO3YsYNPP/2U/Px8qqublnQ2DINFixZ1SHDSCgOT4Og+Eo0MUnMsXJakp24iIt988w3+/v5ceOGFTbZfddVVPPTQQ6SmpjJu3Dg3RdcDNVSUO7QdKo46hs7VayiikJZXTK3VhrfZ6RH6IiIu43QytHz5ch599FFMJhN9+/bF27vpitKGYXRYcNIKEcmwfRmjTBm8ofLaIiIA7NmzhyFDhuDl1fQ2l5CQ0Li/pWTorrvu4ujRowQGBjJp0iTuu+8+4uPj2xSP1Wpt13ltPb/T9OqLKXQYxpE9WDN+hOGzG3fFhvSit68XZdV17MovZmREn1Zfttu030XUfrX/+FdP0972t/Y8p5OhRYsWccYZZ/DMM88QFBTkdGDSweqLKCQaGaTlFVNnteGlp24i4uEsFgtRUVEnbW+4b1ksllOeGxYWxl133UVycjK9e/cmPT2dxYsXc/3117NkyRKGDx/udDxpaWlOn9OR53eGmN7DCT+yh8ObPia3KrLJvkFBJtIOwWdrtlEzxPnh3N2h/a6k9qv9nszV7Xc6GTp06BB/+MMflAh1FfXJUIypEN+qEtILypx66iYi0lOdbqTC6fbNmjWLWbNmNf48ceJEzjjjDC699FL+8Y9/tGkoeGJiYotzlJpjtVpJS0tr8/mdyfC6DLI+pV/FHsKSk5vsm3EonbRD+zlCIMnJrZ+H1Z3a7wpqv9qv9re9/Q3nt8TpZGjEiBEnLbgqbtQrBIJjwZLFKFMmW3MtSoZExOMFBwc32/tTXOxYoNrZB3pRUVGMHz+e1NTUNsVjNpvb9cdMe8/vFINmAGAUpGGuLXMU+ak3LrYvsJ+tecVtake3aL8Lqf1qv9rvuvY7PZ7qN7/5DYsXL2bXrl2uiEfaIiIZcAyVS9W8IRER4uPj2bdvH3V1dU22p6enA45Kcc6y2+2YTBqGfEp9IiBkENhtkL22ya6kaEditOdQGaVVte6ITkSkWU73DCUnJ3P++edz5ZVXEh4eftLTNcMw+OSTTzosQGmFgcmw42NGmzJYlFPs7mhERNzu3HPP5d///jdff/01F198ceP2jz76iH79+pGUlOTU9XJycti8eTPTpk3r6FB7lrjpUJThWHw1/oLGzf0C/YgM7kWepZK03GKmDQ1zY5AiIsc4nQwtXryYl156ib59+xIREXFSNTlxg/p5Q6ONDHYXlFJZY6WXj+d2p4qInHHGGUyfPp0nnniCsrIyYmJi+Pzzz1m1ahXPPvts45CLxx57jOXLl/PNN98QGemY9H/rrbcyYcIEhg8fTkBAAOnp6bzyyisYhsH999/vzmZ1fbEzYMvbza43lBwdTJ6lki05FiVDItJlOJ0Mvfnmm1x99dX88Y9/9Ojxi13KwGQABpkK8LeVsz2/mAlxfU9/johIDzd//nz+/ve/88ILL2CxWBg8eDDPPfccs2cfK/tss9mwWq3Y7fbGbfHx8axYsYLXXnuN6upq+vbty5QpU7jnnnsYNGiQO5rSfcTVrzeUvwWqy8C3d+Ou5OhgPk87QKoWXxWRLsTpZKi8vJxLLrlEiVBXEhAKQdFQnMMoUyapuUqGREQCAgJ4/PHHefzxx095zLx585g3b16TbY899pirQ+u5gmMa70fkrIOh5zTuSooOBiAlx4Ldbte6hCLSJTg9E3TcuHHs27fPFbFIexw3VE5P3URExG1i63uHslY32ZwYGYTZZHCotJoDxVVuCExE5GROJ0O//e1vee+99/j222+pqalxRUzSFvUV5UabVFFORETcqGGoXFbTeUO9fMwk9A8E0EM7EekynB4md/XVV1NXV8fcuXMxDAM/P78m+w3DYNOmTR0WoLRS/byhRCODrCMVWCpqCPb3cW9MIiLieRp6hvI2QW0lePdq3JUUHcyOAyWk5Fi4KHGgmwIUETnG6WToggsu6NBxvmvWrOGTTz5hy5YtHDx4kMDAQEaPHs29997L6NGjO+x9erz6YXKDTAcJoJLU3GLOiA93c1AiIuJx+g6G3gOg7CDkboRBMxt3jY0OZsn6bLaoZ0hEuginkiGr1cqdd95J3759nV69+1SWLFmCxWLh5ptvZujQoRw9epTXX3+d66+/nldeeYWpU6d2yPv0eL37QWAEptJ8RhpZpOZYlAyJiEjnMwzHULltHzqGyh2XDCXHBAOQlltMndWGl1mL2IqIezmVDNntdmbPns2iRYs444wzOiSAP/zhD4SGhjbZNnPmTM4//3xeeuklJUPOiEiG3fkkmjLYqnlDIiLiLrH1yVDmj002DwnvTYCPmfIaK3sOlTFiYB83BSgi4uDUIxkvLy/CwsKarMfQXicmQuAohzpkyBAOHDjQYe/jEernDY0yZZCSU9yhvycREZFWi5vheM3dAHXVjZvNJoMxUcGAo8S2iIi7OT1naPbs2SxfvpwzzzzTBeE4lJaWsmPHDqZMmeL0uVartU3v2XBeW8/vEvonYgbGGBkcLqsm92g5EcG9WjwNekj720HtV/uPf/U07W2/p35uchph8eAfBhWHHQuwxhy7nyfHBLNm/xFSsi38z6QYNwYpItKGZGj48OF88cUX3HzzzZx//vmEh4efVFDh/PPPb1dQTz75JJWVldx1111On5uWltau927v+e7kVeVFEjDYlE8vqvj4x1SmRvm1eN7xunP7O4Lar/Z7Mk9vv3Qgw4DYabDzE8dQueOTofrFV7UMhIh0BU4nQw8//DAABQUFrF+//qT9hmGwc+fONgf0/PPP8+mnn/K73/2uTdXkEhMTMZvNTp9ntVpJS0tr8/ldhX1Nf8xlBYwwsinxGkFyckKrzusp7W8rtV/tV/vb3v6G80WaiJvhSIayfgJ+3bi5IRlKLyilvLqOAF+n/xQREekwTv8L9Oabb7oiDgAWLFjAokWLeOCBB7jxxhvbdA2z2dyuP2bae77bDUyGPV85iijkFTvdlm7f/nZS+9V+td9z2y8dLHaa4zV7HVhrwewNQP8+fgwM8uNAcRVbc4uZOuTkucMiIp3F6WRo0qRJroiDBQsWMH/+fObOndum4XFSb2AS7PmK0UYGH+aVYLXZMZs6bl0oERGRVuk3CvyCocoCB7ZC1PjGXcnRwRwoPkhqrkXJkIi4VZsL/JeWlrJq1So++eQTiouL2xXEwoULmT9/PnfffTdz5sxp17U8XkQyAGPMmZRV17G/sMy98YiIiGcymY71DmU1LbGdVD9ULiXb0rkxiYicoE0DdRcuXMjLL79MVVUVhmHwwQcfEBQUxC233ML06dP55S9/2eprvfbaa7zwwgvMnDmTM888k5SUlCb7k5OT2xKi56ovrz3UyMWXGlJyLAzrH+jemERExDPFTofdX0DmTzD9/sbNDfOGVF5bRNzN6WTonXfeYeHChfzsZz9j5syZ3HnnnY37zjrrLL7++munkqHvvvsOgFWrVrFq1aqT9u/evdvZED1bnwjwD8NccZgRRjZbc4dx7YRod0clIiKeqHHe0BqwWcHkmJOWGBmEyYCDJVUcLK5iQJBzlU9FRDpKm5KhW2+9ld/85jcnrS0RGxtLVlaWU9d76623nA1BTscwHEPl9n7LaFOGSpeKiIj7DBgDPoFQXQIF2xzzWoEAXy/i+wey62ApKTkWLgwa4OZARcRTOT1nKCcnh5kzZza7LyAggJKSknYHJe1Uf7MZbWSw80AJ1XVaEFFERNzA7HVsjaHMn5rs0lA5EekKnE6GAgMDOXz4cLP78vLyCA1VVRi3q583lOyVSa3Vzs4Dpe6NR0REPFfcdMdrVvPJUKqSIRFxI6eToalTp/LKK69QUVHRuM0wDOrq6liyZAkzZszo0AClDeoryg0lBx9qdaMRERH3iT0uGbLZGjc3VJTbmmvBarO7ITARkTYkQ/fddx/5+fnMnj2befPmYRgGb7/9Ntdeey1ZWVncc889rohTnBEUDb1C8MJKgpGjeUMiIuI+EWPB2x8qi6BwV+Pm+P6B+PuYKa+xsveQloEQEfdwOhmKjY1lyZIlDB48mCVLlmC32/n4448JCQnh3XffJSIiwhVxijMMo3GoXKIpQz1DIiLiPmZviK5fsP24oXJmk0FiZBAAKTlF7ohMRKRt6wwNHTqUV199lZqaGoqKiggKCsLPT2Uxu5SBSbD/O0YbGbxbWE5JVS19/LzdHZWIiHii2Bmw/7+Q+SNMuqNxc3JMMOsyjpKSU8z1E90Xnoh4Lqd7hh599FFycnIA8PHxoX///o2JUF5eHo8++mjHRihtUz9vaJy3o9T5ttxiNwYjIiIerWG9oazVYD82Pyg5KhhQRTkRcR+nk6GPPvqIoqLmu7OLiopYvnx5e2OSjlA/TG4I2XhTR4rmDYmIiLtEjgezL5QfgiN7GzcnxwQDsPtgCRU1dW4KTkQ8mdPJ0OkUFxfj4+PTkZeUtgqJA78gvO21xBu5mjckIiLu4+0HUfXj4DJ/bNw8MKgX/fv4YrPDtjytUygina9Vc4Y2bNjAunXrGn9eunQpP/zwQ5NjqqurWblyJUOGDOnYCKVtDMMxbyjjB0abMvghd7i7IxIREU8WOw2yfnQUUZhwW+PmpKhgvt5RQEpOEZMG9XVjgCLiiVqVDK1bt44FCxYAjjWFli5d2uxxERER/P73v++46KR96pOhRFMG7xdXUVBSRf8+KnQhIiJuEDcdfgAyf3LMGzIMwDFUzpEMWdwanoh4plYlQ7fffjs///nPsdvtTJs2jVdffZWRI0c2OcbHx4eAgACXBCltVD9vaIJPNtQ6Vvk+f9QA98YkIiKeKWoSmLyhNB+KMqHvIACS6xdfTc1RoR8R6XytSob8/PwaK8atXLmS8PBwzQ3qDhqKKNgy8aKOrbnFSoZERMQ9fPwhchzkrHMMlatPhhIjgzAMyLNUcqi0in6BGsEgIp3H6QIKkZGRSoS6i76DwScQb3sNQ418UlVRTkRE3KmhxHbmscVXA/28GdavNwAp2RY3BCUinszpRVdra2t5+eWX+eyzz8jPz6e6urrJfsMw2LFjR4cFKO1gMjnmDWX9yGhTBl/nDMZut2PUj9MWERHpVLEz4Me/O3qGjpMcHUx6QRkpGs4tIp3M6WToueee44033mDWrFmce+656iXq6uqToSRzJh9U1ZF5pIJBYZrbJSIibhAzGQwzWLKgOBeCogBIig7m3xtzNYJBRDqd08nQihUruPfee5kzZ44r4pGOFpEMwESfbKhxFFFQMiQiIm7hG+h4SJe/2TFULul64FgRha05xdhsdkwmjWAQkc7h9Jyh4uJiJkyY4IpYxBUGJgEwxLofEzaVLhUREfdqmDeUdWzx1YT+gfTyNlNaXce+wjI3BSYinsjpZGjixIns2rXLFbGIK4QOBe8AvO3VDDHy2aohCCIi4k5xMxyvWasbN3mZTSRGBgHooZ2IdCqnk6HHH3+cDz74gK+//pqamhpXxCQdyWSGgWMAGG1ksC2/hFqrzc1BiYiIx4qZChhwZC+UHmzcnBStZEhEOp/Tc4Yuv/xy6urquP/++zEMo3H9oQaGYbBp06YOC1A6wMAkyF7DeJ8sPqqysftgKaPrn8CJiIh0ql7BMGA0HExzVJUbfTUAydEhQIaSIRHpVE4nQxdccIFKM3c39YuvTvTJhipIzbUoGRIREfeJne5IhjKPS4ZiggHYdbCUqlorft5mNwYoIp7C6WRo3rx5rohDXKm+iMKgun0Y2EjNsfDzybFuDkpERDxW7HRY988m84YigvwI6+3L4bJqtuUVMyGurxsDFBFP4fScIemGwuLBqxc+tkoGGwdIzSl2d0QiIuLJYqc7Xgt3QvkRwDHMvqHEtobKiUhnaVXP0Pbt25266KhRo9oUjLiI2QsGJELuekYZmXx2KJLy6joCfJ3uGBQR6TbKy8t5/vnnWbFiBcXFxQwePJhf/vKXzJ49u8Vzjxw5wrPPPst3331HVVUVw4cP51e/+hVTp07thMg9QEAohI9wJENZP8HIywAYGxPMtzsLlAyJSKdp1V/DV199davmCdntdgzDYOfOne0OTDrYwCTIXc+UXtl8Uj6dbXnFTB4c6u6oRERcZu7cuaSlpfHQQw8RFxfHZ599xoMPPojNZuPSSy895Xk1NTXceuutlJSU8Nvf/pbQ0FDeeecdbr/9dl5//XUmTZrUia3owWKn1SdDqxuToaSoYEA9QyLSeVqVDD399NOujkNcLSIZgAne2QBszVUyJCI91/fff89PP/3E3/72Ny655BIApkyZQn5+Pn/5y1+4+OKLMZubn6C/dOlS0tPTee+99xg7diwAkydP5vLLL+fZZ59l6dKlndaOHi1uOmx8tcniq2OigzAMyC2q5HBZNSG9NIJBRFyrVf/KXHnlla6OQ1ytvohCbO1eDGykaPFVEenBvvnmG/z9/bnwwgubbL/qqqt46KGHSE1NZdy4cc2e++233zJo0KDGRAjAy8uLyy67jOeee46CggL69+/v0vg9QsO8oYPboLIIeoXQx8+bIeG92XuojJRsC2clhLk3RhHp8fTIxVOEDwezL77WcmKNAlJzAtwdkYiIy+zZs4chQ4bg5dX0NpeQkNC4/1TJ0J49exg/fvxJ248/19lkyGq1OnX8iee19fwuzT8cU98hGEf3Yc1cDfGOxHVMZB/2HipjS3YRs4aGAD20/a3Qo3//raD2q/3Hv7b1/JYoGfIUZm/oPwryNzPalMlnRQM5UlZNaG9fd0cmItLhLBYLUVFRJ20PCgpq3H+6cxuOc/bcU0lLS3P6nI48v6uK6Z1A+NF9FG5cTl7FAABCjQoAftyZw9nh5UDPbX9rqf1qvydzdfuVDHmSiGTI38xM/1w+K3XMGzpreD93RyUi4hKnK/zTUlGg9pzbnMTExFPOUTodq9VKWlpam8/v6gzTZZD9Bf0r9xKenAyAV3gxL29ew/5iG6NGjWb79m09tv0t6em//5ao/Wp/e9rfcH5LlAx5koHJAIz1zgIc1XqUDIlITxQcHNxsD05xsWOdteZ6fjri3FMxm83t+mOmved3WYNnAmAcSMVcVwG+gYyMDMbXy0RpVR05liqgB7e/ldR+tV/td137teiqJ2koolCzB7CzVUUURKSHio+PZ9++fdTV1TXZnp6eDsCwYcNOe27Dcc6eK04KioLgGLBbIXsdAN5mE6MjHQlnSq4WCRcR11Iy5En6jQSTN751pUQbh0jNLcZut7s7KhGRDnfuuedSUVHB119/3WT7Rx99RL9+/UhKSjrtufv37yc1NbVxW11dHZ988glJSUmqJNfRYmc4XrN+atyUHB0MQGqOkiGRnshut1NVa6W4opaCkiqyjpSz+2ApqTkW1u0/wvfphXyzo4CiStcXj9AwOU/i5QP9R8KBVJLNWXxa3p/cokqi+/q7OzIRkQ51xhlnMH36dJ544gnKysqIiYnh888/Z9WqVTz77LONQy4ee+wxli9fzjfffENkZCQA11xzDe+++y73338/Dz30EKGhobz77rtkZGTw+uuvu7NZPVPcdEh9t/lkKNfClTG6R4m4ms1mp6rOSlWtjapaa/2XrX6bleqG7U2OObat+hTnNRxTXWejssZ67Hp1Nk79PN6ON1a8qGNAcG/OmuratisZ8jQDk+FAKmcE5vFpkeNGo2RIRHqi+fPn8/e//50XXngBi8XC4MGDee6555g9e3bjMTabDavV2qSX3MfHhzfeeINnn32WP/3pT1RWVjJixAhefvllJk2a5I6m9GwN6w3lbYaaCvDxb0yGdh0spcbay32xibhRdZ0NS5WV3KIKam00m4Q0TV6a2VdTR21tDdbaaqy11dQ1fF9XjbWuFntdDfa6GrDW4o0Vb6MOL+rwoa4xIfExjn3vTR0+WPGmDi+jjl5Y6UPdsX1G0+Mavvc2HOc0fu994nZr/fvU4cWx3qCd3tOBc136OSsZ8jQRybD5XyR5OYoopOZYuGRMhHtjEhFxgYCAAB5//HEef/zxUx4zb9485s2bd9L2sLAwnnnmGVeGJw1C4iAwAkrzIXc9DD6TqJBehAb4cKS8hgxLLUpBpSertdrIPFzO7oJS9hywUJqzHb/CVAZU7CKIcrZ9eVwCUp9ABDQmICckGQ3fN2w3WjHMzIsumxH07+P6JWC6aNPFZeqLKMRUpQN2jccWERH3MgzHULm0pZC1GgafiWEYJEcHs3LXIfYcqXV3hCIdwmazk1tUye6CUtILStl9oISyA+kEF6Uxkn2MMe3nbCMTf6PacYKLCqjZTD7YTd7Yzd5g9gGzN4bZG8Psg+HleMXsAyZvxzqV9cc0fu/sdrMPmLyOfW/2atV2q2EmY3s6ya75GBopGfI0/UaByQvfWguRHCYtz4s6qw3nV80QERHpILH1yVDmsXlDSfXJ0MqMSq7ML2FMdIgbAxRpPbvdTkFJtaOnp6CU3QdLST9YQsmhLOKte0gy7WeMsZ8bTfsJMipO+mu8xuxPZWgi5qixHK0yERU7CJOXb9NEw3R80uFEsmIyY2rDWmluYXV98QRQMuR5vP0gfAQUpDHBN4ePq8PZW1jGsPAAd0cmIiKeKq6+olzuBqitAm8/Lk4cyKL/7iO7pI7LX1zNlcmR/PqCBCKCNYdIuo6i8ppjPT0Hj716VR1ljGkfScZ+LjTt5zem/YSbi0/q7bGafKjrl4hP9DiMyPEQOQ6f0GH4mExYrVYKU1KITE4GD15nyNWUDHmiiCQoSOPMwDw+rh5Hao5FyZCIiLhP6FAI6AflhyBvE8RNZ2i/3nx5/3R++/56fsypYtmWPD5PO8AvZgzi7jOH0MfP291Riwcpq65jT2PSU+Z4LSilsLSaQCoYbcogydjHbab9jDHtJ8rv8EnXsBtm6DcSI3IcRIyFyHGY+43EbNZ/y+6kZMgTDUyGLW8zxpwJQGpuMdeMi3RrSCIi4sEMA2KnwY7ljnlDcY4Kc1Eh/jwwJZiHLhnE01/uZn3GURb9dx/vb8jh/nOG8bPJMXibtWSidJyqWiv7Cssak5499UlPblElAH5UM9LIIsm0j6tN+xnjs58hpgMnXceOgRE2DCKOJT7GgETwVs9mV6NkyBMNTAYgqrGIgsWd0YiIiDiGyu1YDlk/Av/XZNeYqCDe/+UUvt15iKdX7GR/YTl/+GQ7b6zO5OELh3PBqP4Y3WUehHQJdVYbmUcqmg5vKygl83A5tvpK+97UkWBkM8uUwRivfYz3ymAwOZixnXzB4BhH4lPf62MMTAa/Pp3aJmkbJUOeaMBoMMz4Vh9hAEfZddBEVW3nTFITERFpVuw0x2vOerDWOiZ9H8cwDM4b2Z8zE8J5b0MOz3+TTsbhcu56exMT40J47OIRjI1RkQVpymazk2epbEx20g+WsrugjH2HyqixHktqTNgYYuRzlWkf470zmeCdSVxdBt72mpMv2rv/cYnPOMeyJQFhndco6VBKhjyRdy8IT4BDO5jmn8eyilB2HChBAw1ERMRtwkdArxCoLIL8FIie2Oxh3mYTN02J5YrkCF76fj+v/LifDZlFXPniai4ZM5DfXDCcmFAtJu5p7HY7haWOCm7Henocw9wqak584GsnxjjERJ8MZvrnkGjaT3T1HnysFccOaajo7hfcOMytMQEKHOgY2ik9gpIhTzUwGQ7t4Mw+eSyrGENqbjFjde8QERF3MZkcJbZ3feYYKneKZKhBoJ83v74ggZ9PieFvX6fz4eZcPtt6gK+2H+TmqXHMPXsowf4+nRS8dCZLRQ3pBWXH9fQ4kh9LRfNrUkWZizgvKI+pvbIZbtvDwPJdeNfUr7NYddyB3gGOXp6IsccSoJBBSnx6OCVDnmpgEqS+S6IpE4CtucWMjXdvSCIi4uEakqHMn2DGA606ZWBQL/56bRK/mD6Ip1fsZNWew7z6YwZLN+Yw9+xh3DwtFl8vlSXujipq6th7tJa9m3LZc6i8MekpKKlu9niTAWP6Wjm7Tx7jvTMYWpNOaMkOvCoKoALHVwOzDwxIbFLggLB4MOm/FU+jZMhTRSQ7Xip3A45kiHhN9BMRETdqmDeUvRasdeDEkuAjI/rw1v9O5vv0Qp76fCe7C0r58xc7eXNtJv93wXAuHTNQRRa6AbvdTkqOhbfXZvPp1nxq6mzAkZOOiwzuxZhwgxkBeYwx7SemcheBR9MwFWdD+QkHG2boN6Jpj0+/UeClnkNRMuS5BiQCBr6VhwiniMwjUFbT291RiYiIJxuQCL5BUF0MBWnQf4zTlzgjPpwZQ8P4cFMuf/16NzlHK7lvyRZe/TGD3148gkmD+rogcGmvyhorn6Tm8dbaLLbllTRuD/I1MSoqhFH9fJjkl8tw214GlO3EuyAFcvYA9pMvFjq0SWU3BowBH80FkOYpGfJUPgGO7uDDuzkn6ADvFYewr6iWGe6OS0REPJfJDDFTYM9XjqFybUiGAMwmg+smRnNJ0kBeWZXBP7/fR2qOheteWsP5I/vz8EXDGRKuB4Bdwd5DZbyzLosPNuVSWlUHgI+XictGh3NPWCqB2SsJq87GSN0JtrqTLxAU3bTAQUQy+AV1biOkW1My5MkikuHwbmb1zuO94pHsOdr8xEMREZFOEzfdkQxl/QST727Xpfx9vLjvnGHcMCma57/dw3vrs/l6RwErdx3i55NjuP+cYYT29u2gwKW1aq02vt1RwFtrs1i979gQuOi+vbhxciz/MyCPPv+5H3Zta3piQPgJJa3HQu/wTo5eeholQ55sYBJsfZ9RpgwA9ioZEhERd4ud7njNWg32Zha3bIN+gX48dWUit02LY96KXazcdYg312SxbHMed585hP+dMQg/b02cd7WDxVUsWZ/NkvXZHCp1FEEwGXD28H7cOCWWWQPtmFY+Ad+9C4C9VwgFERcQPvYizNEToE+kKrtJh1My5MkGJjteyh1FFLYX1vDBplwuHxulm4KIiLjHwCRHieMqCxza2aGXHtY/kFdvncjqfYd56oudbMsr4dmvdvP22ix+fX4CV46NxGTSH9sdyW63s3rfEd5em8XXOwqw2hxzfMJ6+3D9xGj+Z1IMUUG+sPE1WPb/HPPFMGDczdjOepy89BzCRySDWX+XiGsoGfJkAx1jsX0qDpDQu4rdZX48vGwb877czfUTY7hxSgxRIZpwKCIincjsDTGTYd9/MLJ+Ap9JHf4W04aE8cm9M/g4NY+/fpVOnqWSh5am8uqPGTx28QhmDAvr8Pf0NMUVtXywOZd31mWxv/BYebdJcX25cWosF44agI+XCXI2wPsPwsGtjgMGJsHs5yBqAlitQI57GiAeQ8mQJ/MNdFRcObKXpZf58ey2QL7LqSO3qJJ/fr+PxT/s49wR/bl1WhxTh4SqJKmIiHSO2OnHkqFhHZ8MAZhMBleOjeKi0QN5/adMXvxuLzsOlHDjq+s4MyGcRy8aQcKAQJe8d0+WllvM22uz+Dg1j6paxzDHAB8zV42L4udTYhg+oH4Zj/LD8PkTsOUtx89+QXDO72H8bVrrRzqVkiFPNzAZjuyl99HtXJFwDr+7Nonv9xzhX6sz+XHvYb7eUcDXOwoY1q83N0+L46qxkQT46j8bERFxoYZ5Q9lrYOivXPpWft5m7j5zCNdPjOaFlXt4e20W/91dyA/phVw3IZoHz4unXx8/l8bQ3VXVWvls6wHeWptFao6lcfvwAYH8fEosV46NpHfD3w42K2x6A1b+0TEUEmDsjXDukxCgHjnpfPqr1tMNTIJtH2AcTIXAczCbDM4b2Z/zRvZn76FS3lyTxYebctlzqIzfLd/GX1bs4poJUdw8NY5BYQHujl5ERHqiyHHg5YdRcRi/smxgrMvfsm+AD09cNopbpsXxly93sWLbQd7bkMPHKfn8ctZgfjlrsB4GniDzcDnvrMti6aZcLBWOIkzeZoOLRg/kpqmxTIgNaTqqJG8TfP4Q5G9x/Nw/EWb/zTEsUsRN9H+1p4tIdrweSIVhTXcN7RfIHy8fza8vSODDTbm8uSaLjMPlvP5TJq//lMkZ8eHcOi2OM+LDNeFUREQ6jpcvRE2EzFX0PpIKXN5pbz0oLIBFN45nY+ZR/vzFTrZkW/jHyj28uz6bB8+L59rxUXiZTZ0WT1dTZ7Xxn12HeGttFqv2HG7cHhnci59NjuG6CdGEB55QrrziqKMnaNMbgB18+8DZj8OE/wWz/hQV99J/gZ5ugKOIglGcg7mmuNlD+vh5c9v0QdwyNY5Vew/z5upM/rP7EN+nF/J9eiGxof7cNCWWaydEE9TLuzOjFxGRnipuBmSuov++f2NsHw2jr+rUuSQT4vqy7O5pfJF2kGe+3EX20QoeXZbGa/VFFs5MCPeoubSHSqt4f30OS9Znk19cBTiqXJ8RH85NU2I5M6Ef5hMfjNpsjjlB3z4BlUcd25L+B877I/Tu17kNEDkFJUOerlcwhAyCogz8i/cAZ5zyUJPJ4Iz4cM6IDyfrSDlvrcni3xtzyDpSwZ8+38nfvk7nynGR3DI1TpNORUSkfcZch33tIvwq8mHZ7fDfp2D6/Y4/pr06Z6FUwzCYPWYg543sz9trs3jhP3vYc6iM297YwLQhoTx28QhGRwZ1SizuYLfbWZdxlLfWZvHVtoPU1ZfFDvH35rqJ0fx8UiwxoaeoOpuf4hgSl7fR8XO/kY4hcbHTOid4kVZSMiSOoXJFGfhb0lt9SmxoAI9fMpIHz49n+ZZ8/rU6k90Fpby7Lpt312UzdXAot0yL5dwR/T16OIGIiLRR38HY7t1Iwaf/j4E5n2Ac3Q+f3g//nQdT74XxtzqqonYCHy8Tv5gxiKvHRbHwv3t546dMVu87wqULfuTK5EgeuiCByOBenRJLZyipquWjzXm8vTaLPYfKGrePiwnmpqmxXDR64KnXI6wsgv/8CTa8CtjBJxDOegwm3eEomy7SxSgZEkcRhe0f1fcMOcffx4ufTY7hfyZFsy7jKP9ancnXOwpYs/8Ia/YfISLIj59PieV/JsXQN8DHBcGLiEiP5d+XAwm30P/K/4c55W1YvQBK8+Hrx+GHv8LkO2HSnRAQ2inhBPl789jFI7hpSizPfrWbT1LzWbYlj8/SDvC/MwZx95lD6OPXff/g35Ffwtvrsli+JY+KGisAvbzNXDE2khunxDAq4jS9YDYbpC6Bb34PFfVziRKvhfP+H/QZ2AnRi7SNkiFxlNcGehdtg4IdEJHo9CUMw2DK4FCmDA4l31LJO+uyWLI+h/ziKp79ajf/WLmHy5IiuGVqHIlRPXdIgYiIuIBPb0dv0MTbYev78OPzcHQffP8MrJ4P426BaXMgKKpTwonu688L/zOW/50xiKe+2Mm6jKMs+u8+3t+Qw/3nDONnk2Pw7iajIqrrrKxIO8hba7PYlFXUuH1ov97cODmGq8ZHtZzgHdgKX/wactY5fg4fDhf/FQbNdGHkIh1DyZBARDJ2sw8+VUdg8QyIngwTfgEjLwdv57v9I4J78X8XDGfu2cP4fOsB/rUmk625xXywKZcPNuUyLiaYW6bFcdHogY7Vp0XEraprrY1zAUS6NC9fGHczJP8cdn4Cq56Dg1th3SLY8AqMuR5m/ArChrV4qY6QFB3Me7+cwrc7D/H0ip3sLyznD59s543VmTx84XAuGNW/yxZZyDlawTvrsvn3xhyOltcA4GUyuGD0AG6cHMuUwX1bjr2qGL57CtYvBrsNvAPgzEdgyt0aEifdhpIhgV4h2G76mJIvnyK4YDVGzjrH050VDztuOONvhfB4py/r523m6vFRXDUukpQcC/9ancnnaQfYnG1hc3YKfwrcyc8mxfCzyTH014J2Ii5TXl1HnqWSvKJKci2V5BZVkFdUSZ6lktyiSgpLq+nja+K/I2rp21srv0s3YDLDqCth5BWw7z/w498hcxWkvA0p78CIS2HmgxDh+vWJDMOxPt+ZCeG8tyGH579JJ+NwOXe9vYmJcSE8dvEIxsaEuDyO1rDa7Hyffoi31mTx3/RC7PXPQAYG+fE/k2K4YWJ06xaYtdsdPXRf/w7KDzm2jboSzv8zBEW6rgEiLqBkSByiJ7N/4pMkD+mPOXUJbP4XFOfA2oWOr7iZjqRoxKVOV/ExDIOxMSGMjQnhsdkjeG99Du+sy6KgpJp/rNzDwu/2clHiQG6ZGsv4ExdoE5HTstvtlFTWkWtxJDi59UmOI/FxbCuqXwzxdHp7G/h0k2E9Io0MA4ae4/jK2QA/Pge7v3D0Gu38BAaf5UiK4mY6jnUhb7OJm6bEckVyBC99v59XftzPhswirnxxNbPHDOThC4afuvKaix0pq+b9jTm8uy6b3KLKxu0zh4Vx45RYzhner/XFjgq2w+e/huzVjp9Dh8HFz8KQs1wQuYjrKRmSpgIHwhn/57h57P0WNr4Oe75yPHHLXAX+oTD2Rkdi1Hew05fvF+jHfecM4+4zh/DV9oP8a3UmGzKL+DQ1n09T8xkV0YdbpsVxWVLEqSvViHgQu93OkfKa4xKdk5Oe0uq6Fq8T6OdFVIg/kcG9iApxfEUG9yIypBcD+viSnb6dXj76f066seiJ8D9LHHNff3oe0j6A/d85viInOO5r8ReBybVJf6CfN7++IIGfT4nhua/T+WBzLp9vPcDX2w9y89Q45p49lGB/1xcUstvtbMoq4u21WXyRdpAaqw2AoF7eXDs+ip9PiWVQWEDrL1hV4qjkt+6fYLeCtz+c8RuYci94qUCSdF9KhqR5JjPEX+D4Ks6FzW86vkoPwE//cHwNPssxtyjhIqfHBnubTVwyJoJLxkSwLa+Yt9ZksTwlj+35Jfzmg608/cVOrp8Yw41TYogKcc+TNJHOYLPZOVRa7Ri6Vj9s7Vii49hWVWtr8TqhAT5E1ic4xxIdf8f3Ib1OOwHaarWSox5Z6Sn6j4SrFjvKOa+eD5vfcqx1897PIHyEY07R6KtdPqdlYFAvnr02idumD+LpFTtZtecwr/6YwdKNOcw9exg3T4vF16vjH0CUV9exPCWPt9ZksetgaeP2pKggbpwSy6XOPmy022Hbh/DVb6HsoGPbiMvggqcgOLqDoxfpfF0iGSovL+f5559nxYoVFBcXM3jwYH75y18ye/Zsd4cm4KjOc9ZjMOs3kP4lbHod9q489sStd38YexOMvwWCY5y+/OjIIJ65ZgyPXDSc9zfm8NaaLPIslfzz+30s/mEf547oz63T4pg6JFRD6KTbqbXaOFhc1ZjgnDhf50BxJbXW0xcvMAzoF+hbn+j4N0l6okJ6ERHcC3+fLvHPuUjXERLnWOTzjIdh7YuOdW8Kd8JHd8J//gzT73OMdGhDoSBnjIzow1v/O5nv0wt56vOd7C4o5c9f7OTNtZn83wXDuXTMwA65t6UXlPL22iyWbc6jrL632NfLxOXJEdw4JZYxUcHOX/TQLkeVuMxVjp/7DoaLnoVh57Y7XpGuokvcPefOnUtaWhoPPfQQcXFxfPbZZzz44IPYbDYuvfRSd4cnDcxeMOISx1dRJmz6F2x5C8oKYNVfYdXfYNh5jt6iYec7epecEBLgw11nDOGOmYNZubOAN9dk8ePew3y9o4CvdxQwrF9vbp4Wx1VjIwnw7RL/6YpQVWsl33LcPJ0Tkp6DJVW0VKjNbDIY0MevsRcn6oSkZ2Cwn0ueIIt4hN794NwnYMYDjopzaxdBcbbjj/zvn3FUPpt4O/i5dtmHM+LDmTE0jA835fK3b3aTc7SS+5Zs4dVV+3ns4hFMHuz8Wkk1dTa+2u4oi70+42jj9kFhAdw4JZZrxkUR5N+GHrDqMsdns/ZFsNWBVy+Y9RBMu8/pecMiXZ3b/6L8/vvv+emnn/jb3/7GJZdcAsCUKVPIz8/nL3/5CxdffDFms/4I6HJC4uDcP8CZj8Luz2Hja5DxA+z52vHVJ9Kx7sO4m6BPhFOXNpsMzh81gPNHDWDvoVL+tTqLDzfnsudQGb9bvo2/rNjFNROiuHlqnHPjnUXaoEkltqIKck9IegpLq1u8ho/Z1JjYNA5ja+jd6etP/0Df1k9eFpG28QuCmQ/BlHtgy9vw0wuOpGjlHx3rFk38X8e+3v1cFoLZZHDdxGguSRrIK6sy+Of3+0jNLeb6xWs5f2R/Hr5oOEPCe7d4nTxLJUvWZfPehhwOl1U3Xvu8Ef25cUos04aEYjK1obfJbocdy+HLxxyL2wIkzIYLn4aQWOevJ9INuD0Z+uabb/D39+fCCy9ssv2qq67ioYceIjU1lXHjxrkpOmmRl4+jnOaoK+HwXscQupR3oSQP/vuU48lSwkUw/jYYcrbTE1eH9gvk/10xmv+7MIEPN+Xy5posMg6X8/pPmbz+UyZnxIdz67Q4zogPb9s//OLRrDY7R8qqybdUsC6vii0VmRwoPjZ/p7WV2Px9zI3FCBzzdfwbv48K7kVYb1/99ynSVXj3gkl3OAoBbfvQUZa7cJfjde0ix9C5afe59I9/fx8v7jtnGDdMiub5b/fw3vpsvt5RwMpdh/j55BjuP2cYob2b9sDYbHZW7T3MW2uy+M+ugsYe536BvtwwKYb/mRTNwKB2DPk7vMfRW7b/v46fQ+Lgor845g6L9GBuT4b27NnDkCFD8PJqGkpCQkLjfiVD3UTYULjgz3D27xwlTTe+7ii9ueszx1dwrGNe0dibnH7y1sfPm9umD+KWqXGs2nuYf63O5Lvdh/g+vZDv0wuJDfXnpimxXDshmqBeWujN09lsdo5W1FBQUsWhkmrHa6njtaCkmkOlVRSUVFFYWn3CEDZLs9fr4+d1rBhBk2psjqQnxN9b89lEuhuzNyTdAInXQfoKxwKueRsdQ+k2vg6J18D0XzkKMrhIv0A/nroykdumxTFvxS5W7jrEm2sc837uPnMIt0yJobTaxis/ZvDu+hyyjlQ0njt1cCg3TY3lvJH98W5Pz3JNOfzwV0exCVstmH0dlfem3+/y+VQiXYHbkyGLxUJUVNRJ24OCghr3O8NqtbYpjobz2np+d9eh7Td5w6irHV+FuzA2v4Gx9X0MSxas/CP2757CnjAb+/jb2rT2w4whfZkxpC9ZRxyrZy/dlEvWkQr+9PlO/vZ1OlckR3DT1BgS+ge2+pr6/XeP9tvtdiyVtY4Ep7Qh0ammsLSagtKGJMfxc11LE3XqmQwI6+1LHy8bQyNCHElP8LGy05HBfgSephIbgM3WcrU3t6urAksOFOdgFGc7vrdkYxRnY7JkM8IUiDXhG+jl/LyJrv7fjchpmUwwfDYkXOwoFLDqOUdxoK3vO77iL3IkB9GTXBbCsP6BvHrrRFbvO8xTX+xkW14Jz361m9d/yqC4ooZam2Nh00BfL64eH8WNU2IY2q/197hm2e2w81P48lEoya0P5Hy46Jk2LZ0h0l25PRkCTvtE1dmnrWlpae2Kpb3nd3cuaX//GzDOuoK+B/5LWNZn9C7agbHzY9j5MVUBURTGXsKRqAuw+jr/R9jFEXB2v778kF3Fij0VZJfUsWRDDks25DA63IeLhvozMcL3/7d353FR1fvjx18zgLKIICJgKinEDuEGuG9Zpmlqpd7vvRfNNCXTvFre0upe7JrLNfMmXrcwU68/f5qiP7fU1PpmNxm3NNzNLcFdWURkmzm/Pw4zMgLKPsK8n4/HeczMZ86c+XzmDPPmfc7nfD7YlLKLkux/y7RfURSy8hTuZBu4c19P6n0Dd7LV29RsPXfuG0xl+aXMOzSAS10tDRy0NLC3wc1Bve9mb6PeOtjgZq+lvr0WG7PfmWx1yUkl+xqcu1YFDa4CGn0OdbKuU/f+NepkXSu4vU6d+9epm3UNu5w7j3x9Hbv7HDuWhN7u8dcrCFEraTTQoou6XPlF7TZ3YpN61ujMt/B0J+g8AXyfq7IJXDv4urPp7U5sOnqF2TtOk5KmTpAa0rg+0e2f5uWWT1XOyJG3z8G3f1XnEwRw8VaToIDeVT45rRBPGosnQ66ursWe/UlPTwcenCEqrbCwsHINuKDX60lKSir362u66ml/O+AD9NeOqWeLktZify+ZZicW0fT0VyhBL6tni5q1K/OPcbu2MElR0F24w8rE3/nu5A2O3czl2M1cGrvY86eoZgxp2ww3p+InhpP9X3Xtz8zJ50ZGtnrmJqPgDE5BtzW165p6Rqc0c+kYuTna4VHfnkbOdfF0rotH/bp4OtsX3NbFo7497vXqlLrrSI3Y/3lZBWd2fkdTcFZHvf87pCejuXfjsZtQ7JzUeUFcvVFcvMG1GYpLMwzOTTl2PZeQVlEV+v0UotZ4qhUMXqFeR/Pff8HRNXDpJ3VpHK6OTBf0cplHTS0NrVbDgFZNeDHUiz0nr5N+7RKDekQUuZygXHKz4KfP1bkC9blgU0ftDtdpItSROf2EdbJ4MuTv78+WLVvIz883+0M/c+YMAH5+fmXano2NTYX+mano62u6aml/k3BoMhde+AccWwcHv0Jz9SiaY+vUx40C1QEXwoeAQ4Mybbqjnwcd/Ty4knafVbpLrN5/mavp2Xy28yzz9pzj5fCnGNa+OWFNi0+yZf+Xvv1Zufmm63GMCU7ha3KMz93LLX0XKhcHOzzr18XTmOjUt8ez4Najvj2e9evSyLlulQ0zbdH9n5MJ6QVJTnFL1q3Hb6NOPfXaPFdvU9LzYHkajUMD04EGs8MNej2G20es/vsvRBHuftD/3+rIqfv+DYe+hqtH4ZvXoeEzaiLx7B/UwYQqmb2dDb1CPDmSd7Vyrkk8tQ22v6/+noB6hqvPbGjoW/FtC1GDWTwZ6tmzJ2vXrmXnzp306dPHVL5hwwY8PDwIDw+3YO1ElapbTx3Np83rkHJYHZ772Hp1VJ/t78OuWAh9RZ23qEmbMp0tesrVgUm9AhnXw48tv15l+c8XSUpJZ92hZNYdSqa1tyvDOjSnd2hj6tjKkMaFZefp1WtwChIbNdlRkxvjNTnXM7K5m51f6m0617VVz9rUt8fjoeRGTXjUszplmhW9psm5a7pOR10uFZzdKSjLuv34bdSt/1CCU7C4FCQ+hZIda1eRybwTEhKYPHlysc/99NNPNGrUqLKrK550Lk3V4aU7vwf7F4NuMdz+DTaNg+9nQIex6nQSdZ/AbqZ3LsD2D9RJ0wHqF7QlqJ/8XgjBE5AMde3alY4dOxIbG0tmZibe3t5s3bqVvXv3Mnv2bDlKaS2atFaXXp/Cr2vVkXxuHIcjq9TFMwzavq6O+mNfv9Sbtbez4bU2TXm1dRN+uZzG8p8vsi3pKod/T+Pw70eY5nySP0Z684e2TcpddUVRMCiQbzCgNyjkGxT0+oJbg2JeblDI1z8oz3/osdl6BgW9wVDo+YfKi7xPofIi9Xio/KHt5xsM3EzNJGPLbtLuP34oaSMHOxu8XAolOKZEpyDJKSiziklyszMeJDqmMzyXHpTdT338NuxdTGdxzJIc4+LgWuXNqC0qYzLvGTNm4ONjfiG5q6trFdRW1BhODaH7FOgwTj1L9PN8dT6eHVPgx9kQFQORo8DRzdI1hbxstYvf3s9Bn6MObtRhHHR5D+rIHH1CGD0R/6HExcUxd+5c5s2bR1paGj4+Pnz++eelOoInahl7F3X+h4iRcHm/Om/R8Q1wPQm2vgs7/6YOd9r2DXiqZak3q9FoaO3dgNbeDfjwpSBW6y6zSneJG3dz+GL3Wf79/W80d7HF4eef0Rt4RHKikK8vWl7b1LXVFiQz6vU3xiTH03Rtjnq/Xl1b6xlSOju95C5sab9Ddtrjt+HQoNDZnIfP8DRTv/+iwiprMm8/Pz/CwsKqurqiJqrrrCYWkaPg6Gr1Gpw75+GHGepkrm2HQ/u3yzzpeKU5sxO+nQSpF9XHPt2g92xo5G+Z+gjxBHsikiEnJyc++ugjPvroI0tXRTwpNBrwjlKXXtPh6P9VE6NbZ+DwcnV5qpWaFIW+WqajXB7O9ozv6ceY7r5sP3aN5T9f5OClVH5LzYPU0p8VKQ07Gw02Wg22Wm3BrebBrU0J5YXXtymh3PjYRlvMNjXYaLXFbFODzcPrF2xTg8K15Iu0bxnMU65O1HewoiQHQFGwyb0LV3+FuynFJzs56Y/fjmPDh87mFLp+x6VZmc5qivKTybxFtbGtq3b1bhUNJzbC3rnqwbt989WudC3/R52rqLquy0m9pA6VfXqr+tj5KXhxOgQPkC5xQpTgiUiGhHgkRzdoPwbavQWX/qt2oTvx/9ShTzeNgx0fwrND1CNxniGl3qydjZZ+4U/RL/wpTlxJ44eDx/H39cHOztaUKKjJTPEJxIPEo/hkRVvK4byfBHq9niN5V/H3dK59XVMVRe2ilnGlYEkudD8FMq6gzbhCy9zMx2/L0b34a3aMXdqexOsFrFBlTeYdExPDnTt3cHZ2JjIyknfeeQd///IdWZc58MqnRrU/aAAE9odzu9D+919oft8Hh1eg/PIfdbTUDn+Bxs+WaZOlbn9+Dpp989H89Dma/PsoWluUqLdQukxSB1apCXOhFaNG7f8qIO2vWPtL+zpJhkTNodFA807qcm+Wei3RwWWQegEOfKkuzaLUkehCBpRp5uwAT2fuN7GnZaBH7UsGajODQR14oCCpeXD70P38+4/cjDFtVZw80BQZic14/U5T6WdfQ1R0Mm93d3diYmJo2bIl9erV48yZMyxZsoQhQ4awevVqAgMDy1wnmQOvYmpW+xtB+Kc4NTuG12//B9friWhObIQTG0lvFMk1v/8h0+3ZMp2peVT76984QLNjcdjfUydOvduwJb+HvUO2c3M48VsF2/JkqFn7v/JJ+6u2/ZIMiZrJyV0d0rT9OLjwv+pIdKe3wWWdumz/AFr+UU2MpI90zWTQw72balKTXkKyc/eqOldGaTg1Uvvv129ScPvgvt7Ji6MXbhLetp0kw08YnU7H0KFDS7Xuxo0bCQoKAio2mXeXLl3o0qWL6XFERARdu3alX79+fPHFFyxcuLBU9SlM5sArn5rd/pbQ48/orx9H8/MXaI4n4HJzPy4396M0jcTQ8S/g1+uRSdEj25+ejHbnh2hObQZAqeeF8vw/cAx5hcBa0iWuZu//ipP2V6z9pZ0DT5IhUbNpteDbXV3uXoNfVsKhFZD+OyQuUJenO6ld6IL6qf27heXp8yHz2qPP5ty9CobSDN+tgXqeRRIc86TnqUfve70e5fLdSmueqDwtWrRg2rRppVq3cePGQOVP5g3QtGlT2rRpw9GjR8v8WpA58CqqRrf/qWfhtaXQ4yP4eR78sgpN8n5s1vwRPILVCVxDXgGbkv8lM2t/fq56TdKPs9XJmDU2EBWDptsHaGrpdYk1ev9XAml/1bZfkiFRezh7QZdJ6kza5/aoZ4vObH8wa7hjQ2j1Z/ViVzefx25OlFN+rjrUbJEEp1Cik3kdlFL0YdfYgHPjYhKdQvedvcDGrurbJSzCw8ODQYMGlek1lT2Zt5GiKGi1Mi+ZKCe3FtB3LnR9Xz1Qd+AruHECEt6EPdOg4zvQ8s9gZ1/yNs7/AFvfg9tn1cfeHeClz8p0vawQwpwkQ6L20dqA3/Pqkp4Mh1fC4RXqP+j//UJdfLqrZ4sC+sg/0mWRd79QklPCWZ17N0q3La0d1G9cfIJTv4m61PNQ96cQZVAVk3lfvnyZw4cP06FDh8qsqrBGzl7w/CfqGaED8ZC4UJ2TbOu78MMsdcCgtiPMR5/MuAK7PlanmgC12+8L09TBg2pJlzghLEWSIVG7uTSF7pPVM0Znd6gDLvy2C85/ry71PNUhUVtGW7qmFqfNv68OXW7qvlZMsnP/Tuk2Zmtf8pkc431Hd7WboxCVrCyTeU+ZMoWNGzfy3Xff0aSJOvny66+/Ttu2bQkMDMTJyYkzZ84QHx+PRqNh/PjxlmqWqG0cGqixqd3bahfvn+PUCZt3xapDdEeOhNbD8Ty3Bu32/0DePdBo1bmNuk2WSZiFqCSSDAnrYGMLgS+pS+qlgrmKVqrdtfZ+hnbvHILreaNNdEAdW0xRh2SGct4vuIWC8sq+X7nb1wKtStNtDcDOsYTrcgruuzRVg7wcrRQWVNrJvA0GA3q9HsX096t2s/v222/56quvyMnJwc3NjXbt2jFmzBhatGhR3U0RtV0dR4garc6bl/QN/PQvuHUa9s7BZu8cTOMiNouCPp+VeXhuIcSjSTIkrE+Dp+G5v0HXD9QR6A5+hebC/+KQeQlKMdVMbWQaWrpufTQldlsrKLN3kURHPPFKO5n3zJkzmTlzplnZlClTqrJqQhTPxk4dBfXZP6iTpu79HK4cJq+OKzYvTkPb8k9yNl2IKiDJkLBetnXU+YhCBqC/dZ5zB3fh+8wz2GhtCv2zrynnfY3p4YP7mtLfL9N78oj3L919vcHAr6fO8WzbDlY9Yo0QQlicVquOfhrYF/2VXzl2OZ1nwztKIiREFZFkSAiABk9zt1EbaNESrDEZ0Osx2F61dC2EEEIYaTTgFYrh2hFL10SIWk0OMwghhBBCCCGskiRDQgghhBBCCKskyZAQQgghhBDCKkkyJIQQQgghhLBKkgwJIYQQQgghrJIkQ0IIIYQQQgirJMmQEEIIIYQQwipJMiSEEEIIIYSwSpIMCSGEEEIIIaySJENCCCGEEEIIqyTJkBBCCCGEEMIqSTIkhBBCCCGEsEqSDAkhhBBCCCGskiRDQgghhBBCCKtka+kKVBZFUQDQ6/Xler3xdeV9fU0n7Zf2F761NtL+irXf+Drj77B4QGJTxUj7pf2Fb62NtL96YpNGqSXRKzc3l6SkJEtXQwghrFZYWBh16tSxdDWeKBKbhBDCsh4Xm2pNMmQwGMjPz0er1aLRaCxdHSGEsBqKomAwGLC1tUWrld7XhUlsEkIIyyhtbKo1yZAQQgghhBBClIUcwhNCCCGEEEJYJUmGhBBCCCGEEFZJkiEhhBBCCCGEVZJkSAghhBBCCGGVJBkSQgghhBBCWCVJhoQQQgghhBBWSZIhIYQQQgghhFWyimQoISGBgIAA0xIcHEynTp2YMGECFy9eNFv34MGDfPjhh7zyyiuEhoYSEBBAcnKyZSpeSUrbfr1ez7JlyxgxYgRdunQhPDyc3r1789lnn5GRkWG5BlSRhz+XhxedTmfpKpbb9u3bCQgIYNu2bUWee/nllwkICGDv3r1FnuvZsycDBw4E4Pvvv+evf/0r/fr1IyQkhICAgCqvd2WpaPszMzNZuHAh0dHRdOzYkVatWtGvXz+WLFlCTk5OdTShQipj/8+dO5cBAwYQGRlJWFgYzz33HB9//DEpKSlVXn9rIbFJYlNxJDZJbHqYxKaqjU225X5lDTRjxgx8fHzIycnh8OHDLFq0CJ1Ox7fffouLiwsAiYmJ7Nu3j6CgIJycnNi/f7+Fa115Htf+7Oxs4uLi6Nu3L4MGDaJBgwacOHGChQsX8v3337N+/Xrs7e0t3YxKZ/xcHvbMM89YoDaVIzIyEo1GQ2JiIn369DGVp6WlcebMGRwdHdHpdHTu3Nn03LVr17h8+TLDhw8H4LvvvuPo0aMEBQVhZ2fH8ePHq70d5VXR9l+5coXly5fTv39/Xn/9dRwdHTl06BDz58/n559/ZtmyZWg0Gks0rVQqY/9nZGTw0ksv4evri5OTE7/99hsLFy5kz549bNmyhQYNGlR7u2oriU0Sm4ojsUklsUliU1XHJqtKhvz8/AgLCwMgKioKvV5PXFwcu3bt4tVXXwVgzJgxjB07FoClS5fWqoDzuPbb29uze/dusy9SVFQUjRs3Zvz48ezYsYP+/ftbqvpVpvDnUlu4ubnh5+dX5Pt74MABbG1tefXVV4scXUxMTATUfQ4wbdo0tFr15PEnn3xSowJORdvftGlT9uzZg6Ojo+n59u3b4+DgwD//+U8OHTpE27Ztq74h5VQZ+//vf/+72fPGz2XUqFHs3r2b1157rQpbYF0kNklsKo7EJpXEJolNULWxySq6yZXE+CNz+/ZtU5nxD8waPNx+GxubYjPqZ599FlCzc1FzREVFceHCBW7cuGEq0+l0hIaG0rVrV44fP05mZqbpuf3792NjY2P6Ia3pfwsVab+jo6NZsDGqSX8LFd3/xXFzcwPA1taqjqNVO4lNEptqM4lNEpuetNhUs79RFWTsb928eXPLVsRCStt+Y1Zek0/NP4rBYCA/P99s0ev1lq5WhbVr1w7A7AiMTqcjMjKS1q1bo9FoOHTokNlzwcHBODs7V3tdq0JVtL8m/S1UVvvz8/PJzs7mxIkTTJ8+nebNm/P8889XTyOslMQmiU0gsanwcxKbJDZVZWyyqmTI+MNy79499u7dy8KFC4mIiKBHjx6Wrlq1KE/7r1+/zpw5cwgNDaV79+7VWNvqM3jwYEJCQsyW2tA1ISIiAq1Wa/rBSU1N5ezZs0RERODk5ERwcLDpB/Tq1askJyebTkPXBpXd/lOnThEfH8/zzz9PYGBgtbShIiqj/Tdv3iQkJITw8HAGDhyIXq9nxYoVODk5VXt7ajOJTRKbiiOxSWKTxKbqiU1W1ddh8ODBZo99fX1ZsGCB1XT5KGv709LSePPNN1EUhX/96181/tR0SWbNmoWvr69Z2ZN8AWJpubi4EBgYaOp/e+DAAWxsbGjdujWg/iAZf3CM69SmgFOZ7U9OTiYmJgYvLy+mTZtWDbWvuMpof4MGDVi3bh25ubmcP3+e+Ph4hg4dysqVK/Hw8KjG1tRuEpskNhVHYpPEJolN1RObaucvSAlmzZrFunXrWL58OUOGDOHcuXNMnDjR0tWqNmVpf3p6Om+88QbXr1/nq6++olmzZtVc2+rj6+tLWFiY2RIaGmrpalWKqKgoLl68yPXr19HpdISEhJiOnERGRnLy5Enu3r2LTqfD1taWNm3aWLjGlasy2p+SksLQoUOxsbFh+fLluLq6VnMryq+i7be1tSUsLIw2bdowaNAgli9fTnJyMkuWLLFEc2otiU0Sm4ojsUlik8Sm6olNVpUMGX9Y2rVrxyeffMKgQYPYu3cv27dvt3TVqkVp25+ens7w4cNJTk5m2bJlNeK0qyie8WjK/v372b9/PxEREabnjD8uBw4cQKfTERYWVuu6P1W0/SkpKURHRwOwYsUKvLy8qqnmlaOy97+XlxceHh5F5sARFSOxSWKTtZHYJLEJnpzYZFXJ0MMmTZqEi4sL8+bNw2AwWLo61a649huDzeXLl1m6dCnBwcEWrqWoiIiICGxsbNixYwdnz54lMjLS9JyzszNBQUFs3LiRlJSUWtUNwagi7b9y5QrR0dEYDAaWL19OkyZNqrv6FVbZ+//SpUtcu3aNp59+uiqrbfUkNklsqu0kNklsepJik3V0SC6Bi4sLo0aNYvbs2WzevJn+/ftz584d00VdZ86cAeDHH3/Ezc0NNzc3sx1W0z3c/l69ejFixAhOnDjBlClT0Ov1HDlyxLS+m5sb3t7elqtwFTl79myxI/R4e3ubhmusqerVq0dwcDC7du1Cq9UWOdUcERHB8uXLgaJ9clNSUkhKSgLg999/BzAdqW3SpEmNuJC3vO2/ffs2Q4cO5ebNm3z66afcvn3bbJhjLy+vGnEkrrztP3XqFDNmzKBXr140a9YMrVbLmTNn+Prrr3F1deWNN96o1nZYG4lNEptAYpPEJolNUD2xyaqTIYDo6GhWrVrFggUL6Nu3L2fPnmX8+PFm60ydOhVQ+zGuXLnSEtWsMoXb36pVK9MPzKefflpk3YEDBzJz5szqrmKVmzx5crHl06ZNY9CgQdVcm8oXFRVFUlISQUFB1KtXz+y5iIgIvv76a+zs7GjVqpXZczqdrshnY/zbqEnfhfK0/7fffuPy5cuAepT6YWPHjmXcuHFVW/FKUp72u7u74+HhwbJly7h58yb5+fl4eXnRrVs3YmJiaNy4cXU3w+pIbJLYJLFJYpPEpuqJTRpFUZQKtUYIIYQQQgghaiCrvmZICCGEEEIIYb0kGRJCCCGEEEJYJUmGhBBCCCGEEFZJkiEhhBBCCCGEVZJkSAghhBBCCGGVJBkSQgghhBBCWCVJhoQQQgghhBBWSZIhIYQQQgghhFWSZEiUW0JCAgEBAaYlODiYTp06MWHCBC5evGjp6gGwaNEidu3aVaRcp9MREBCATqezQK1Ue/bsISYmhg4dOhAaGkpkZCTDhg1j06ZN5OXlWaxeDyvus/rggw/o0aNHlb7v9evXiYuL4+TJk1X6PkKI2kViU8VIbHo0iU21j62lKyBqvhkzZuDj40NOTg6HDx9m0aJF6HQ6vv32W1xcXCxat8WLF9OrVy969uxpVh4SEsKaNWt45plnqr1OiqIwZcoUEhIS6Nq1Kx988AGNGzfm7t276HQ6pk6dSmpqKsOGDav2upXWmDFjGDp0aJW+x40bN5g/fz5NmjQhKCioSt9LCFH7SGwqG4lNpSOxqfaRZEhUmJ+fH2FhYQBERUWh1+uJi4tj165dvPrqqxauXfHq1atHy5YtLfLe8fHxJCQkMG7cOMaOHWv2XI8ePRg5ciSXLl2q1jplZ2djb29f6vW9vb2rsDZCCFFxEpvKRmKTsFbSTU5UOmPwuX37tll5UlISMTExREZGEhYWxoABA9i2bZvZOnfu3CE2NpY+ffrQqlUr2rdvz9ChQzl48GCR98nNzWX+/Pn07t2bsLAwoqKiiI6O5vDhwwAEBASQlZXFhg0bTN0loqOjgZK7IuzevZshQ4YQHh5Oq1atGD58OL/88ovZOnFxcQQEBHD27FkmTpxImzZt6NChA5MnT+bu3buP/Gzy8vKIj4/Hx8eHt99+u9h1GjVqRNu2bU2P09LSiI2NpXPnzoSGhvLcc88xd+5ccnNzzV6Xk5PDnDlz6NGjB6GhoXTu3JmpU6eSkZFhtl6PHj0YPXo0O3fuZMCAAYSFhTF//nwAzp07x4gRIwgPDycqKoq//e1v3Lt3r0gdi+uKEBAQwCeffMLGjRvp3bs34eHhvPzyy3z//fdm6126dInJkyfzwgsvEB4eTufOnYmJieH06dOmdXQ6Ha+99hoAkydPNu2/uLg40zql+T4JIYSRxKaSSWyS2GTN5MyQqHTJyckANG/e3FSWmJjIyJEjCQ8PJzY2FmdnZ7Zt28aECRPIzs7mlVdeAdQfV4CxY8fi7u5OVlYW3333HdHR0Xz99ddERUUBkJ+fz8iRIzl06BBDhw6lXbt26PV6jh49ytWrVwFYs2YNw4YNIyoqijFjxgDqUbeSbN68mffee49OnToxZ84ccnNziY+PN7134SAAMG7cOPr06cNrr73GmTNnmDNnDqB2zSjJsWPHSEtLY9CgQWg0msd+ljk5OQwdOpTLly8zbtw4AgICOHjwIEuWLOHkyZMsWbIEULs3jBkzhsTEREaNGkXbtm05ffo0cXFxHDlyhDVr1lCnTh3Tdo8fP865c+d46623aNq0KQ4ODty6dYvo6GhsbW35+9//TsOGDdm8eTP/+Mc/HltPox9++IGkpCTeeecdHB0diY+PZ+zYsWzfvp1mzZoBahcDV1dX3n33Xdzc3EhPT2fDhg0MHjyYDRs24OPjQ0hICDNmzGDy5Mm89dZbdOvWDQAvLy+g9N8nIYQwktgksUlikyiWIkQ5rV+/XvH391eOHDmi5OXlKZmZmcqPP/6odOzYUfnTn/6k5OXlmdZ98cUXlQEDBpiVKYqijB49WunYsaOi1+uLfY/8/HwlLy9PGTZsmPL222+byjds2KD4+/sra9eufWQdW7Zsqbz//vtFyhMTExV/f38lMTFRURRF0ev1SqdOnZS+ffua1SUzM1Np3769MmTIEFPZvHnzFH9/f+XLL78022ZsbKwSFhamGAyGEuuzdetWxd/fX1m9evUj6220evVqxd/fX9m2bZtZ+ZIlSxR/f3/lp59+UhRFUX788cdi62R8vzVr1pjKunfvrgQFBSnnz583W3f27NlKQECAcvLkSbPy4cOHm31WiqIo77//vtK9e3ez9fz9/ZUOHTood+/eNZXdvHlTCQwMVBYvXlxiG/Pz85Xc3FzlhRdeUKZPn24q//XXXxV/f39l/fr1RV5T3u+TEKL2k9gksakwiU3icaSbnKiwwYMHExISQuvWrRk5ciT169dnwYIF2NqqJx4vXbrE+fPn6devH6AeOTMuXbp04ebNm1y4cMG0vdWrVzNw4EDCwsIIDg4mJCSEffv2ce7cOdM6e/fupW7dupXW7/vChQvcuHGD/v37o9U++LNwcnLihRde4OjRo9y/f9/sNcWdis/JySnSBaMiEhMTcXR05MUXXzQrNx5d2rdvn2m9wuVGvXv3xtHR0bRe4bq2aNHCrEyn0+Hn50dgYKBZed++fUtd36ioKLMjnO7u7jRs2JCUlBRTWX5+PosWLaJPnz6EhoYSHBxMaGgoFy9eNNvHJSnr90kIYZ0kNqkkNklsEo8m3eREhc2aNQtfX1/u3bvHtm3bWLNmDRMnTiQ+Ph6AW7dumdabNWtWsdtITU0FYNmyZcycOZM//OEPjB8/ngYNGqDVavniiy84f/68af07d+7g4eFhFhwqwvj+jRo1KvKch4cHBoOBjIwMHBwcTOWurq5m6xlP9WdnZ5f4Po0bNwYedNd4nLS0NNzd3Yt0W2jYsCG2tramrhtpaWnY2tri5uZmtp5Go8Hd3d20nlFx7UxLS6Np06ZFyt3d3UtVVyj6mYD6ueTk5Jgez5w5k1WrVvHmm28SERGBi4sLGo2Gjz76yGy9kpTl+ySEsF4Sm1QSmyQ2iUeTZEhUmK+vr+nC1Hbt2mEwGPjmm2/Yvn07L774Ig0aNABg9OjRPP/888Vuw3gkaNOmTURGRjJ16lSz5x++UNLNzY1Dhw5hMBgqJegY63jz5s0iz924cQOtVkv9+vUr/D6hoaG4urqye/du3n333cf2zXZ1deXo0aMoimK27u3bt8nPzzfV29XVlfz8fO7cuWMWdBRF4datW6b9Y1Tc+7q6upp+zAsrrqwiNm3axIABA5g4caJZeWpqaqk+47J8n4QQ1ktiU+lJbJLYZM2km5yodJMmTcLFxYV58+ZhMBjw8fGhefPmnDp1irCwsGIX4+lrjUZjdjElwKlTpzhy5IhZWefOncnJySEhIeGRdalTp84jj4YZtWjRAk9PT7Zs2YKiKKbyrKwsdu7cScuWLc2OvJWXnZ0dI0eO5Pz58/z73/8udp3bt29z6NAhANq3b09WVlaRyfk2btxoer7w7aZNm8zW27FjB1lZWabnHyUqKoqzZ89y6tQps/ItW7Y8vmFloNFosLOzMyv74YcfuH79ullZSUczy/J9EkIII4lNJZPYJLHJmsmZIVHpXFxcGDVqFLNnz2bz5s3079+fqVOn8uabbzJixAgGDhyIp6cn6enpnDt3juPHjzNv3jwAunXrxoIFC5g3bx4RERFcuHCBBQsW0LRpU/R6vek9+vbtS0JCArGxsVy4cIGoqCgUReHo0aP4+vry0ksvAeDv78/+/fvZs2cPjRo1wsnJCR8fnyJ11mq1TJo0iffee4/Ro0czZMgQcnNzWbp0KRkZGbz77ruV9vkYA05cXBxJSUn07dvXNLHdgQMHWLt2LePGjaNNmzYMGDCAVatW8f7775OSkoK/vz+HDh1i8eLFdO3alQ4dOgDQsWNHOnXqxGeffUZmZiatW7fm9OnTzJs3j+DgYPr37//Yeg0bNoz169czatQo/vKXv5hG7CncBaQydOvWzTQyT0BAAMePH2fp0qWm0XiMvL29sbe3Z/Pmzfj6+uLo6IiHhweenp6l/j4JIYSRxKZHk9gksclaSTIkqkR0dDSrVq1iwYIF9O3bl3bt2vHNN9+waNEipk+fTkZGBq6urvj6+tK7d2/T62JiYrh//z7r1q0jPj6eZ555htjYWHbt2sX+/ftN69na2vLll1+yePFitm7dyvLly3FyciIwMJDOnTub1vvwww+ZOnUqEydO5P79+0RGRrJy5cpi69yvXz8cHBxYsmQJEyZMwMbGhvDwcFasWEHr1q0r7bPRaDTMmDGDnj17snbtWtPnYaz/e++9Z7rYtG7duqxYsYK5c+cSHx9Pamoqnp6evPHGG2aT4mk0GhYsWEBcXBwJCQksWrQIV1dX+vfvz8SJE4sc0SxOo0aN+M9//sOnn35KbGwsDg4O9OzZk48//tg0/Gtl+PDDD7G1tWXJkiVkZWURHBxMXFwcX3zxhdl6Dg4OTJ8+nfnz5zNixAjy8vIYO3Ys48aNK/X3SQghCpPYVDKJTRKbrJVGKXzeVQghhBBCCCGshFwzJIQQQgghhLBKkgwJIYQQQgghrJIkQ0IIIYQQQgirJMmQEEIIIYQQwipJMiSEEEIIIYSwSpIMCSGEEEIIIaySJENCCCGEEEIIqyTJkBBCCCGEEMIqSTIkhBBCCCGEsEqSDAkhhBBCCCGskiRDQgghhBBCCKv0/wEABkpZ4WhZyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAHaCAYAAAAQZpgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjbUlEQVR4nOzdeXhU5d3/8feZmWyE7AuBJCQQ9iwssisiKm64VMXan3VBqhUr6GNt3do+rT5PKy7tY0GkoLgvVURxqaKAigsIyBrWQMKSBUL2hJB1Zn5/TBKICZBJMplJ8nldV66ZOefcZ773wJWT75z7/t6G3W63IyIiIiIiIi5jcncAIiIiIiIiXZ0SLxERERERERdT4iUiIiIiIuJiSrxERERERERcTImXiIiIiIiIiynxEhERERERcTElXiIiIiIiIi6mxEtERERERMTFlHiJiIiIiIi4mBIvERERERERF7O4OwCRn7rwwgvJzs5u0bHXXnstc+fOdUkcgwcPBmDv3r2nPaY+1tWrVxMTE9OitgcPHmTmzJlkZ2dz11138dvf/pb169dz6623MnbsWF5//fVm3ysrK4uLLrqI6Ohovvzyy0b7rFYry5Yt46OPPiItLY3y8nICAwMJDw8nJSWFCy+8kIsuuqhRbC31xBNPcN11153xmBUrVrBx40Z2797Nnj17KC8v56qrruKZZ55x6r3aQ3p6Om+99Rbr16/nyJEjVFVVERwczLBhw5g6dSpXX301Pj4+Tdqlpqby1ltvsWHDBvLy8rBYLERHR3PeeecxY8YMevXq1eF9ERHPoOuSrkut0ZZ/L2fo+tV5KPESj3PrrbdSVlZ22v0VFRW88sorWK1WBg4c2IGRtV1qaiq//vWvKS4u5k9/+hM333xzm89ptVq56667+PbbbwkMDGTy5MlERUVRUlLCoUOH+PDDD8nIyGi4wM2ePbvJOV599VXKysq49dZbCQwMbLRv6NChZ41h4cKF7Nmzhx49ehAVFUVGRkab+9Uazz33HAsWLMBmszFixAiuvfZa/P39yc/P58cff+SPf/wjb7/9Nu+//35DG7vdzjPPPMOLL76IxWJh4sSJXHbZZdTU1LBlyxZeeukl3n77bebOnctll13mln6JiHvpuuQcXZc6hq5fnY8SL/E4M2bMOO0+u93Offfdh9Vq5dJLL2XmzJkdF1gbfffdd8yZM4eamhr+8Y9/cPnll7fLeT/55BO+/fZbhgwZwhtvvEFAQECj/SUlJezcubPh9Zw5c5qc44MPPqCsrIzbbrutVd+4PfLII0RFRREXF8eGDRu49dZbne9IGy1cuJD58+fTu3dv/vnPfzJ8+PAmx3zzzTe8+OKLjbYtWLCAF198kejoaBYtWtTkj6bPP/+c3//+9/z2t78lKCiICRMmuLQfIuJ5dF1yjq5LHUPXr85Hc7ykU/nnP//J559/zrBhw3jyyScxDANwDHcYPHgwDz/8MFlZWdx///2MGzeO5ORkrrvuOlavXu3WuD/++GNmzZqFyWTixRdfbLeLG8DmzZsBx/CWn17cAIKCgpg4cWK7vV9zxo8fT3x8fMO/R0fLyspiwYIFeHl5sXjx4maTLoDzzz+/UeKVmZnJwoUL8fLyYuHChc1+U33ppZfyyCOPYLVa+ctf/oLNZnNZP0Sk89F1qSldl1xP16/OSYmXdBr/+c9/WLhwIRERESxcuBA/P78mx2RnZ3PDDTeQnZ3NNddcwxVXXMG+ffu45557WLdunRuihldeeYXf//73BAcH88YbbzB+/Ph2PX9oaCjgGKPfXb3//vvU1NRwySWXMGjQoDMe6+3t3ahdbW0tF1100RnnGNxwww1ERERw8OBBNmzY0G5xi0jnputS83Rdcj1dvzonDTWUTmH79u088sgj+Pj4sGDBAqKiopo9bsOGDcyZM6fRePErr7ySO+64gyVLlrTqNvv8+fNPu6+0tPSMbZ955hleeOEF4uPjefHFF4mNjXX6/c/m0ksv5YUXXuDf//43x48f56KLLiIpKckl7+WpfvzxRwCn/303bdoEwLnnnnvG4ywWC+PGjeOTTz5h8+bN7f5Hioh0ProunZ6uS4215d/rdHT96pyUeInHy83N5Te/+Q1VVVU8/fTTpx1GBhAdHc3dd9/daNukSZPo06cPqamprXr/5557rlXtAF544QW8vLxcdnEDGDJkCM888wz/+7//y8cff8zHH38MQHBwMGPHjmX69OlMnjzZJe/tKfLz8wGcrtxU3+50fzCdqv6YY8eOORmdiHQ1ui6dma5LjbXl3+t0dP3qnJR4iUerqKjg7rvvJi8vj7vuuourr776jMcPHToUs9ncZHtUVBRbt25ttK25b6CuvfbaJpN4W1IG9nTOO+88vvvuOx544AFefPHFJpWZ2stll13GRRddxPr169m0aRO7d+9m06ZNfPHFF3zxxRdcf/31/PWvf231WPeWflZt1dr3sdvtAE73z5l29cfUPy5atIgvvviCAwcO4O3tzYgRI/jtb3971qGOItK56brUMt39unQqZ/+9WnJ9acv1S9xHiZd4LLvdzkMPPcTOnTu56KKLuP/++8/aprlJvOC41f7TSaXNfQM1duzYdv2lvXDhQu677z6+/PJLbrvtNpYsWdIw9v1UJpNjuuWZJr6e7Zesl5cX5513Hueddx7gKOf7+eef84c//IFly5Zx4YUXcvHFF7eqHx3xWbXlfSIjI8nIyODo0aNOvV9ERESL29UfExERATiGD910000kJydjt9uZN28et99+O//5z38IDg52Kg4R6Rx0XWpM1yXXaMn1pS3XL3EfJV7isebNm8fnn3/O4MGDefrpp9v9m5ozfQPVXry9vZk/fz6/+93v+Oyzz7j11lt5+eWXm/zyq78wFxcXn/ZcRUVFAC3+dtJsNnPFFVeQlpbGwoUL+eGHH1p9geuIz6ot73POOefwww8/8MMPP3DDDTc41W79+vWsXbv2jO2sVivr168HYNSoUQAsWbKk0TFPPfUUo0ePZvPmzVx44YWt6IWIeDpdlxrTdck1WnJ9acv1S9xHVQ3FI/3nP//h+eefJywsjIULF+Lv7+/ukFrNYrHw97//nWuvvZZ9+/Zx8803N/mGql+/fnh7e3Pw4MGGC9lPbdmyBeCM1YuaU//Z1X8z2RVdd911eHl58fnnn7N///4zHltdXd2ondlsZuXKlWdst2zZMo4dO0a/fv0YO3Zss8eUl5djs9lcNmxHRNxL16WmdF3qGM1dX9rz+iUdR4mXeJz6SlFeXl7Mnz+f6Ohod4fUZmazmSeeeIIbb7yRgwcP8stf/pKsrKyG/T4+Plx++eXU1tby1FNPNbkYHT16tOEbsJ/97GeN9n3yySd8//33zQ4HycvLY+nSpQCMHj26nXvlOWJiYpg9ezY1NTX8+te/Pu2E9W+++YY77rij4XVsbCx33XUXNTU1zJo1q9mL16pVq/jrX/+K2Wzmz3/+c8Pwm5/661//ytChQxk5cmT7dEpEPIauS7ouuVNz15f2vH5Jx9FQQ/Eox48fb6gUlZyczNq1a1m7du1pj4+Ojua6667rwAhbzzAMHn/8cXx9fXn11Vf55S9/yauvvkp8fDwADz/8MNu3b+f9999n69atnHvuufj7+5OTk8Pq1aspLy9n5syZTUrBbtu2jddee42IiAhGjRrVMO48KyuLNWvWUFlZyUUXXcRll13msr6tWrWKVatWAY6LKsDWrVt5+OGHAQgJCeGhhx5y2fsDzJo1i9raWhYsWMD06dMZOXIkSUlJ+Pv7k5+fz48//sjBgwdJSkpq1G7OnDlUVFTw8ssvc80113DeeecxYMAAamtr2bJlC9u2bcPX15e///3vpy37/OSTT7Jp0ybefvvtZifRi0jnpeuSrkvudKbrS3tcv6RjKfESj1JcXNzwCzI1NfWspXbHjh3baS5w9R599FH8/Pz417/+xc0338zLL7/MwIEDCQ0N5b333uP1119n5cqVvP/++1RVVREUFMSYMWO48cYbm507NHPmTOLj41m7di179+7lu+++o7q6uqFs75VXXslVV13l0mpGu3fv5oMPPmi0LTMzk8zMTMDxh0hHXOBmz57N5ZdfzltvvcX69et5//33Gz6LIUOGcMcdd3DNNdc0amMymXj44Ye54oorePPNN9m4cSPr1q3DbDYTHR3NzJkzue22205bsveJJ57gP//5D6+++mq3XaNGpCvTdUnXJXc52/Wlrdcv6XiGXQNsRURa5X//93/59NNPef3110lISHB3OCIi0kXo+tI16Y6XiEgr/OUvf+Gjjz5iwYIFBAYGNnwj3qNHj0496V5ERNxL15euS3e8RERa4XRVvGbPns2cOXM6OBoREekqdH3pupR4iYiIiIiIuJjqSoqIiIiIiLiYEi8REREREREXU+IlIiIiIiLiYkq8REREREREXEzl5J1ks9mora3FZDK5dOE/ERFpym63Y7PZsFgsmEz67rCerk0iIu7hzHVJiZeTamtrz7pqvYiIuFZycjLe3t7uDsNj6NokIuJeLbkuKfFyUn0mm5ycjNlsdrq91WolNTW11e07u+7ef9BnoP6r/23pf3173e1qTNemtlH/1X/1X/3viOuSEi8n1Q/hMJvNbfrP2db2nV137z/oM1D/1f+29F/D6RrTtal9qP/qv/qv/rdWS65L+spQRERERETExZR4iYiIiIiIuJgSLxERERERERdT4iUiIiIiIuJiSrxERERERERcTImXiIiIiIiIiynxEhERERERcTElXiIiIiIiIi6mxEtERERERMTFlHiJiIiIiIi4mBIvERERERERF1PiJSIiIiIi4mJKvERERERERFxMiVdHO/Q9A354EAoPuDsSERERAIwfFhC/+W9grXF3KCIiXZYSrw5m7P0PQXk/Ymx5zd2hiIiIAGBseZ2w7FVweJ27QxER6bKUeHW08EEAGEe3uzkQERHpKEuXLmXw4MGMHDmyyb6dO3cyY8YMRo4cyejRo5k9ezaZmZkdG2BY3bUpN7Vj31dEpBtR4tXB7FHDHU+Obge73b3BiIiIy+Xm5vLkk08SGRnZZF96ejq33HILNTU1PPvss/ztb3/j4MGD3HTTTRQWFnZYjPaoJMeTozs67D1FRLobJV4dLXIodsOMcaIASrPdHY2IiLjYn//8Z0aPHs25557bZN+8efPw9vZm0aJFTJ48mUsuuYRFixZRVFTEkiVLOixGe69kQHe8RERcSYlXR7P4UhEQ73h+ZJtbQxEREdf68MMP2bBhA3/5y1+a7KutreXrr7/mkksuoWfPng3bo6OjGTduHKtWreq4QKMciRf5aVBT2XHvKyLSjVjcHUB3dCJoID1K0x2J15Bp7g5HRERcoKCggL/97W888MADREVFNdl/+PBhKisrGTx4cJN9gwYN4vvvv6eqqgofH58Wv6fVam1VrFb/KOxegVhqSrHm7oTeI1p1ns6q/nNr7efX2an/6v+pj91NW/vvTDslXm5wImggZK7QHS8RkS7sscceo1+/ftx0003N7i8uLgYgODi4yb7g4GDsdjslJSXNzg07ndTU1g8VHBiUQGD+FjI3fkpB31afplNry+fXFaj/6n931hH9V+LlBieCBjqeKPESEemSPv/8c7788kuWL1+OYRhnPPZM+8/W9qeSk5Mxm81OtQHHN7ZFOwcQmL+Fvt4lxI4Y4fQ5OjOr1UpqamqrP7/OTv1X/9X/1ve/vn1LKPHqYGvS8vj7pmA+wcAoOwLHj0HPln+bKSIinq28vJzHH3+cW265hcjISEpLSwGoqXEsTlxaWorFYmm401VUVNTkHMXFxRiGQWBgoFPvbTabW/2H04mgAQCYcndAN/zjC9r2+XUF6r/6r/67tv9KvDrYd/vz2VlsoSC4L+GVh+DIdhh4sbvDEhGRdlJUVER+fj4vvfQSL730UpP9Y8aM4aKLLmLevHn4+vqSlpbW5Ji0tDTi4uKcmt/VVicCHYkXR1PBZgOT6m+JiLQnJV4dbHBUAAC76cckDsGRrUq8RES6kIiICF577bUm2xcvXszGjRt54YUXCAkJwWKxMGXKFFauXMnvf//7hsqGOTk5rF+/nhkzZnRo3JU9Y7GbfTCqj0PRAQhL6ND3FxHp6pR4dbDk6CAA1p2IYZIJzfMSEelifHx8GDduXJPtH3zwAWazudG+OXPmMH36dGbNmsWdd95JdXU18+bNIyQkhJkzZ3Zk2GCyQORQxxeCR1OVeImItDONI+hgAyJ64mM22FIb59igxEtEpNtKSEjg9ddfx2KxcN999/Hwww/Tt29f3nzzTUJDQzs8Hnv9el5Hu3d1MxERV9Adrw5mNhn0D7GwMz/esaH4EFQUgV+IW+MSERHXmjt3LnPnzm2yPSkpiVdeeaXjA2pOr/rEa7t74xAR6YJ0x8sNEkK8KMWfQu8+jg1HdIETERH3s0clOZ7ojpeISLtT4uUGA0K9ANhj9Hds0HBDERHxBJGJgAFlR+B4nrujERHpUpR4uUFCiCPxWncixrFBiZeIiHgCnwAIrftSMFd3vURE2pMSLzeI6mkmwNfCdmtdgQ2NpRcREU9RX2BDw+BFRNqVEi83MBkGSX0C2WmLd2zI3wdVx90ak4iICHAy8dI8LxGRduX2qobHjx/n+eefZ8+ePezatYuioiJmz57NnDlzGh03ePDg056jX79+rFix4ozvc8stt7Bhw4Ym28877zyWLFnSuuDbIDk6iHUZQZR4RRBUkwe5O6Dv+A6PQ0REpJGoFMejEi8RkXbl9sSruLiYd999lyFDhnDxxRezdOnSZo975513mmzbtm0bf/vb35g6dWqL3is2NpZnnnmm0baAgADng24HKTGOhZT30I9x5DnmeSnxEhERd+tdl3gV7IPqE+Ddw73xiIh0EW5PvKKjo9m4cSOGYVBYWHjaxGvEiBFNtr3zzjsYhsH06dNb9F6+vr7NnscdkqMDAVhfGcs48wYV2BAREc/Qsxf4R0B5HhzbBTGj3R2RiEiX4PY5XoZhYBiG0+2OHz/OihUrGDNmDHFxcS6IzLWig/0I6eHFdmu8Y4MSLxER8QSGcco8LxXYEBFpL26/49Van376KSdOnOCGG25ocZvDhw8zduxYjh8/Tp8+fZg2bRp33303vr6+Tr+/1Wp1us2p7Ww2G8nRQezYFw+A/dhubFXlYHE+ls6kvv+t/fy6gu7+Gaj/6v+pj61tLy4WlQzpX2qel4hIO+q0idd7771HYGAgl156aYuOHzVqFJdffjn9+/enqqqKb775hhdffJFNmzbx2muvYTI5d/MvNbVtF6PU1FQiLRV8QyilpkACbaWkfbecE8FD2nTezqKtn19X0N0/A/Vf/RcPpgIbIiLtrlMmXvv27WPbtm388pe/xMfHp0Vt7r///kavJ0+eTHR0NE8++SSrV69ucYGOesnJyZjNZqfagOPb2tTUVJKTk8n3KeC93ZvZa0pgjG0LgwMqsXvIHDRXObX/rfn8uoLu/hmo/+p/W/pf315crD7xyt0JNiuYut//VRGR9tYpE6/33nsPwKlhhs25+uqrefLJJ9m6davTiZfZbG7TH01ms5kRfUMA+LEyljGWLZhyt0M3+UOsrZ9fV9DdPwP1X/3vzv33eGEJYPGDmhNQkA4Rg9wdkYhIp+f24hrOqq6u5sMPPyQxMZGhQ4e2yzmdHWbYXnoF+hIZ4ENq/ULKRzSJWUREPIDJDL0SHc9VYENEpF10usTryy+/pKioqMUl5M/kgw8+AGD48OFtPldrpcQEs8Pez/EidydYa9wWi4iISIPemuclItKePGKo4Zo1a6ioqKC8vByA/fv3s2LFCsAxF8vPz6/h2Pfeew9fX1+uuuqq055v2LBhjBkzhldffRWAH3/8kYULFzJ16lRiY2Mbimu8++67jB8/ngsvvNCFvTuzlJggVu2OpMLkj5+1HPL2QlSS2+IREREBVFJeRKSdeUTi9dhjj5Gdnd3wesWKFQ2J1+rVq4mJiQHgyJEjfP/991x99dUEBASc9nxWqxWbzdbwOiIiArPZzPPPP09RURGGYRAXF8e9997LzJkz3TbUECA5Jggw2GP0YyQ7HOt5KfESERF3qy+wcWQ72O2O9b1ERKTVPCLx+vLLL1t0XO/evdm9e/dZj9u7d2+j13FxcSxevLhVsblaSnQQAD9W9WWkpS7xGvlLN0clIiLdXuQwMExwIh+O50JAlLsjEhHp1DrdHK+uJqynD9HBfuxoKLCxza3xiIiIAODdA8IGOp5rnpeISJsp8fIAKTFBJwtsHE11rJkiIiLibvXzvPSloIhImynx8gApMcEcsPemyvCFmnLHmikiIiLu1lBgQ3e8RETaSomXB0iJCcKGiTQjzrFB3yyKiIgnUOIlItJulHh5gKS6Ahubq/s6NhxV4iUiIh6gvrJhYQZUlbk3FhGRTk6JlwcI8vOiX7j/yXleuuMlIiKeoGcEBPQG7JC7093RiIh0akq8PERydBA7T61saLe7NR4RERFAww1FRNqJEi8PkRITxD57DDV4QWUJFB9yd0giIiKnJF7b3RuHiEgnp8TLQ6TEBFODhf1G3TwvDTcUERFPUD/PS3e8RETaRImXh0jsE4jJgC01SrxERMSD1N/xyt0F1hr3xiIi0okp8fIQ/j4WBkT2ZKcKbIiIiCcJ6QfePcFaBfn73B2NiEinpcTLgyRHB7OjvsBGzlYV2BAREfczmaBXkuO5hhuKiLSaEi8PkhITxB57X6yY4EQ+lB1xd0giIiLQu36elwpsiIi0lhIvD5ISE0QV3hwgxrHhiC5wIiLiAVTZUESkzZR4eZChvQOxmAy2WeMcGzTPS0REPMGpa3lpGLyISKso8fIgvl5mBkcFnJznpcRLREQ8QcRQMFmgoghKs90djYhIp6TEy8OkxASxw6bKhiIi4kG8fCF8sOO5hsGLiLSKEi8PkxwdzC573VDD0iwoz3dvQCIiItB4uKGIiDhNiZeHSYkJohw/DtLbsUF3vURExBOowIaISJso8fIwg3oF4G0xsd0a79igxEtERDxBQ0l53fESEWkNJV4exttiYmjvQBXYEBERz1K/iHLxIagodmsoIiKdkRIvDzQ8JogddhXYEBERD9IjFIJiHc9zd7g3FhGRTkiJlwdKjg5iZ/0dr6IDUFni1nhEREQAFdgQEWkDJV4eKCUmmBJ6km2PcGzQBU5ERDxBlOZ5iYi0lhIvDzQgsid+XmZSNc9LREQ8Sf0dL63lJSLiNCVeHshsMkiKVoENERHxMPWJV94eqK12bywiIp2MEi8PlRITzA57vOOFEi8REfEEwX3BNwhsNY7kS0REWkyJl4dKiQlip62usmF+GlSXuzcgERERw9A8LxGRVlLi5aGSo4PII5hj9hCw2yB3p7tDEhEROaWyoeZ5iYg4Q4mXh4oP8yfA16ICGyIi4llUUl5EpFWUeHkok8kgOTrolHleW90ZjoiIiMOpiZfd7t5YREQ6ESVeHiw5JohduuMlIiKeJHwwmL2hqhSKD7k7GhGRTsPtidfx48d56qmnmDlzJuPHj2fw4MHMnz+/yXEPP/wwgwcPbvJz2WWXtfi91q5dy4033sjw4cMZN24cDz/8MAUFBe3ZnXY1PCb4ZEn5Y3ugtsqt8YiIiGDxhoghjudaz0tEpMUsrWm0b98+Nm/eTG5uLpWVlYSEhDBgwADGjBlDz549nTpXcXEx7777LkOGDOHiiy9m6dKlpz3W19eXV199tcm2ltiwYQN33nknkydP5vnnn6egoIBnnnmGGTNmsGzZMry9vZ2KuyMkRweRTThF9p6E2I7Dsd3QZ4S7wxIRke4uKsVRXONoKgy72t3RiIh0Ci1OvEpKSnjnnXd45513yMnJwd7MuG6LxcL555/PLbfcwoQJE1p03ujoaDZu3IhhGBQWFp4x8TKZTIwYMaKlITfy1FNPER8fz7x587BYHN2OiYnh//2//8d7773HTTfd1KrzulJMiB8hPbzZURPPJPMOx3BDJV4iIuJuKrAhIuK0FiVer732GgsWLADgiiuuYOzYsSQmJhIaGoqPjw8lJSVkZmaydetWVq9ezcyZM5k4cSL//d//TVxc3BnPbRhG23txFrm5uaSmpvLAAw80JF0Ao0aNIj4+nlWrVnlk4mUYBikxwezM6Mckdmiel4iIeIbeWstLRMRZLUq8Xn/9dR555BGmTZuGl5dXk/3h4eGEh4czcuRIbr/9dg4fPszChQv57LPPmDVrVrsFW1lZybnnnkthYSERERFcfPHF3HvvvQQHB5+xXVpaGgCDBw9usm/w4MFs3ry53WJsbykxQezYH+94ocRLREQ8Qa9Ex2NpFpwohB6h7o1HRKQTaFHi9dlnnzW6U3Q2ffv25YknnsBqtbY6sJ8aMmQIQ4YMYeDAgYBjztarr77KunXreO+99/D39z9t2+LiYgCCgoKa7AsODm7Y74zW9q2+XUvbJ/UJ5OO6kvL23B3YaqrA1KqpeR7B2f53Rd39M1D/1f9TH1vbXtzMNwhC4qHooGOuV/8L3ByQiIjna9Ff8Pv27WPo0KFOn9xsNjvd5nRmzJjR6PW5557LsGHDuPfee1m6dGmT/c053bDG1gx3TE1t2/CKlrY3VVg5ZO9Fmd2PgNoK9nz3MZWB/dr03p6grZ9fV9DdPwP1X/2XTi4quS7xSlXiJSLSAi1KvK699lqGDRvG9OnTueqqqwgICHB1XC0ydepUevTowdatW894XP1QxObubBUXFzd7J+xskpOTW5VYWq1WUlNTnWofseYrdlXFMc7Yw9CgKuzDRzj9vp6iNf3varr7Z6D+q/9t6X99e/EAUcNh98ea5yUi0kItSrzuuusuPvzwQx5//HGefPJJpk6dyvTp0xk/fryr4zsru92OyXTm5cgGDRoEwN69e5k8eXKjfWlpaQ37nWE2m9v0R5Mz7VNigtm5L55xpj2YclPB/MtWv6+naOvn1xV0989A/Vf/u3P/u4T6yoZay0tEpEVatIDy/fffz1dffcXixYuZMmUKX3zxBbfffjsXXXQRzz//PEeOHHF1nM1asWIFFRUVDB8+/IzH9erVi5SUFD7++ONG8wO2bt3KgQMHmDp1qqtDbZOUmKCTCykf1QVOREQ8QH3ilZ8GNRXujUVEpBNocZUGwzA4//zzOf/88yktLeWjjz7i/fffZ968eSxYsIDx48dzww03cNFFFzVb+fBM1qxZQ0VFBeXl5QDs37+fFStWADB58mQKCwt54IEHmDZtGn379sUwDDZu3Mirr77KwIEDueGGGxqdb9iwYYwZM6bRYsu/+93vmDlzJvfddx833XQTBQUF/P3vf2fQoEFcf/31TsXb0ZJjgvjEXjev68h2sNngLHf5REREXCqwD/iFQkUhHNsN0aPcHZGIiEdrVXm8wMBAbr75Zm6++Wb27NnDsmXL+OSTT7j//vsJDg5m3bp1Tp3vscceIzs7u+H1ihUrGhKv1atXExAQQHh4OC+//DIFBQVYrVaio6O55ZZbmDVrFj169Gh0PqvVis1ma7Rt3LhxLF68mHnz5jFr1iz8/Py44IILePDBB/H29m7Nx9BhUqKDSLf3odLuhW91GRQdgLAEd4clIiLdmWE41vPK+Noxz0uJl4jIGbW5LvmQIUO4+uqrOXHiBO+//36rSrN/+eWXZz3mueeea/H59u7d2+z2c889l3PPPbfF5/EUYT19iAruye4TcYw09sORrUq8RETE/aKS6xIvDYMXETmbVidehYWFfPTRRyxbtoz9+/djNpuZMmUK06dPb8/4pM7w2CB27I5npGm/YyHlJM8eHikiIt1AVIrjUZUNRUTOyqnEy2az8c0337Bs2TK+/vprampqiI+P57e//S3XXnst4eHhroqz20uODmbHrvp5XtvcG4yIiAicLLBxdIfmH4uInEWLEq8DBw6wbNkyPvzwQ/Lz8/H19eXKK6/k+uuvZ/To0a6OUXBUNvykvrLhkW1gtzvG14uIiLhL2ECw+EJNueYfi4icRYsSr8svvxyAlJQU5syZw7Rp0/D393dpYNJYUnQQ++wxVNvNeFcUQUkmBPd1d1giItKdmS0QOQxyNju+FFTiJSJyWi1KvG677TamT5/OwIEDXR2PnEaQnxfR4cHsK40h0TjkuMAp8RIREXeLSnYkXkdTIek6d0cjIuKxWjQY+5FHHmk26crIyGDTpk2cOHGi3QOTppKjg9hhO2U9LxEREXdrmOelAhsiImfSqlmwy5cv5/zzz2fatGncfPPNHDhwAID77ruPd999t10DlJNSYoLYYY93vFCBDRER8QS9hzselXiJiJyR04nXZ599xsMPP8ywYcP405/+hN1ub9iXmJjIZ5991q4BykkpMcHsPLXAhoiIiLtFDgMMOH4Ujh9zdzQiIh7L6cRr8eLFXHfddfzrX//ixhtvbLSvf//+7N+/v92Ck8YS+wSyl75Y7XUXuLKj7g5JRER+Yvfu3fz617/mggsuICUlhbFjx3LjjTfy4YcfNjl2586dzJgxg5EjRzJ69Ghmz55NZmamG6JuA5+eJ4tqaCFlEZHTcjrxSk9PZ9q0ac3uCw4Opri4uK0xyWn4+1iIjgwn3d7HsUHzvEREPE5paSlRUVHcf//9LF68mCeffJLo6GgefPBBnn/++Ybj0tPTueWWW6ipqeHZZ5/lb3/7GwcPHuSmm26isLDQjT1oBc3zEhE5K6cWUAbw8/OjrKys2X25ubkEBQW1OSg5veToYHYU9mMQ2Y7hhoMucXdIIiJyinHjxjFu3LhG26ZMmUJWVhbvvvsuv/nNbwCYN28e3t7eLFq0iJ49ewKOIfuXXnopS5Ys4fe//32HxfzH5TtZm5bPh0NqCfY3O3+CqBTY+YESLxGRM3D6jtfIkSN58803G83tqvf+++8zduzYdglMmjc8NuiUeV5b3RmKiIg4ISQkBLPZkdTU1tby9ddfc8kllzQkXQDR0dGMGzeOVatWdWhs27NLOFRSyzf78lp3gqgUx6NGYoiInJbTd7zuuecebrrpJqZPn85VV12FYRh88cUXzJ8/nx9//JGlS5e6Ik6pkxwdxH/qSsrbj2zDcHM8IiLSPJvNhs1mo7S0lM8++4zvvvuOP/3pTwAcPnyYyspKBg8e3KTdoEGD+P7776mqqsLHx8ep97Rara2KdXTfYHbmlLIuvYBpyb2dP0HkMMyAvWA/topS8PZvVRzuUv+5tfbz6+zUf/X/1Mfupq39d6ad04lXcnIyL7zwAo899hhz584FYNGiRcTFxbF48WIGDRrk7CnFCUN7B7LXiAfAKMmEE4XQI9S9QYmISBN/+ctfeOeddwDw8vLiD3/4A7/4xS8AGuZDBwcHN2kXHByM3W6npKSEyMhIp94zNbV1Q/2iTJUArNl9hK3xta06R4pPCF5VRez7/kPKQ4a16hzu1trPr6tQ/9X/7qwj+u904gUwfvx4PvvsMw4fPkx+fj4hISH069evvWOTZvh6mYmO6sXB/F7Em3Id87wSprg7LBER+YlZs2Zxww03UFhYyJdffsn//M//UFFRwa9+9auGYwzj9OMWzrTvdJKTkxuGMzojbkAlT6/9mpzjVqL6DSEqyNfpc5h2jYL01QwKrMI+YoTT7d3JarWSmpra6s+vs1P/1X/1v/X9r2/fEq1KvOr17duXvn37tuUU0gopMUHsyIsnnlxH6V4lXiIiHqdPnz706eOoQjt58mQA/vGPf3Dttdc23OkqKipq0q64uBjDMAgMDHT6Pc1mc6v+cAjp6Uu/EAvpRbVsOFTEtSNjnD4HvVMgfTWm3FTopH+8tfbz6yrUf/Vf/Xdt/1tUXOPTTz91+sS5ubls2rTJ6XZydsnRweysm+elhZRFRDqHlJQUamtryczMpG/fvvj6+pKWltbkuLS0NOLi4pye39VWSZGO91u7v6B1J1BJeRGRM2pR4vX4449zzTXXsHTpUo4fP37GY3fs2MFjjz3GpZdeyp49e9olSGksJSaIHfZ4wFFgQ0REPN/69esxmUzExsZisViYMmUKK1eubHRdzcnJYf369UydOrXD40uO9AZgXUZrE6/hjsfcnWBt3TwxEZGurEVDDVeuXMn8+fP561//yuOPP86wYcMYNmwYYWFheHt7U1JSQmZmJlu3biUvL4+BAwcyf/58Jk2a5Or4u6VBvQJIM/UHwCjYD5Wl4Ov8kBQREWl/f/rTn+jZsyfJycmEh4dTVFTEihUr+PTTT/nVr35FaKijINKcOXOYPn06s2bN4s4776S6upp58+YREhLCzJkzOzzuIeFeWEwGWUUVZBaeIDa0h3MnCO0HXv5QUw6F6RDRtGKjiEh31qLEKyAggEcffZR77rmH999/nzVr1rB8+XIqKioajomNjWXSpElcddVVjB8/3mUBC3hbTET1jiH7WBjRRgHk7oC4ie4OS0REgBEjRvD+++/zwQcfUFZWRo8ePRgyZAhPPfUU11xzTcNxCQkJvP766zzzzDPcd999mM1mxo8fz4IFCxqSs47kZzGREhPE5sPFrE3P58ZQJ+dwm8zQKxGyNjjW81LiJSLSiFPFNYKCgrj99tu5/fbbASgrK6OyspLg4GC8vLxcEqA0b3hMEDuPxhNtLnDM81LiJSLiEa6//nquv/76Fh2blJTEK6+84tqAnDChfxibDxezLr2AG8e0onhWVLIj8Tq6HVJuaP8ARUQ6sRbN8TqdgIAAIiIilHS5QXJ0EDtUYENERNrRhATHnba16QXY7XbnT9A7xfGoAhsiIk20KfES9xkeG8xOexygAhsiItI+RsUG420xcaysivS8cudPcGplw9YkbiIiXZgSr04qIaIn+80DHC/y9kJNxZkbiIiInIWPl5lz+oYAraxuGDkMDBOcyIeyI+0cnYhI56bEq5Mymwwi+8SRZw/EsFshd5e7QxIRkS5gYkIYAOvS851v7OUH4YMczzXcUESkESVenVhKbMgpCylvdWssIiLSNUxoSLwKsNlaMVwwqn6e1/Z2jEpEpPNT4tWJnbqQsgpsiIhIe0iJCaaHt5miEzXszS1z/gSnzvMSEZEGTide//M//0NGRoYrYhEnnVrZ0KbES0RE2oG3xcTo+JPVDZ1Wn3gd0R0vEZFTOZ14LV++nGnTpnH77bezatWq1pWblXYRH+bPQe+6Ahu5u6C22r0BiYhIl9CmeV71Qw2LDkBlaTtGJSLSuTmdeH377bf88Y9/JC8vj9mzZ3PhhReyePFiCgsLXRGfnIHJZBDaZwAl9h6YbNWQt8fdIYmISBdQn3itzyik1mpzrrF/GARGO57n7mznyEREOi+nE68ePXrwy1/+kk8++YSXX36ZxMRE/vnPf3LBBRfw8MMPk5qqMd0dKTk2WAspi4hIu0rsE0SAr4Wyqlp25rTirpXmeYmINNGm4hoTJkzgueeeY/Xq1YwcOZIPP/yQn//859xwww18+eWX7RWjnMHwmGB2qsCGiIi0I7PJYFy/uuGGrVnPqyHx0nVJRKRemxKvyspKli5dyqxZs1i/fj0JCQncc889WK1W7rnnHhYsWNBeccppOApsxANgy9nq1lhERKTrqB9u2KYCG7rjJSLSwNKaRocPH+bNN9/kgw8+4Pjx45x//vk8+OCDTJw4EYDZs2fzj3/8gzfeeIN77rnnjOc6fvw4zz//PHv27GHXrl0UFRUxe/Zs5syZ03CM1Wrltdde47vvvmPfvn2UlJTQp08fLrroIn79618TGBh41phvueUWNmzY0GT7eeedx5IlS5z8BDxHTIgfWb6DwAb23B1gs4LJ7O6wRESkk6tfz2vjgUKqa214W5z4rra+wMax3WCtAbOXCyIUEelcnE687rjjDtauXYufnx/XXXcdt9xyC3379m1y3JQpU1i8ePFZz1dcXMy7777LkCFDuPjii1m6dGmTYyorK5k/fz5XXnklN9xwAyEhIezatYuFCxfy1VdfsWzZMnx9fc/6XrGxsTzzzDONtgUEBJy1nSczDIPA6MGUH/bBv7YCCvZDxGB3hyUiIp3c4F4BhPp7U1hezfas4oYS8y0SHAc+gVBVCvlp0CvRdYGKiHQSTidemZmZPPLII1x33XX4+/uf9riBAwfy2muvnfV80dHRbNy4EcMwKCwsbDbx8vX1ZfXq1YSEhDRsGzduHL179+a+++7j888/55prrjnre/n6+jJixIizHtfZJMeGsutQHGOMNMc8LyVeIiLSRiaTwYT+Yfwn9Qhr0wucS7xMJuiVBIfXOtbzUuIlIuL8HK/PP/+cW2655YxJF0DPnj0ZO3bsWc9nGAaGYZzxGLPZ3CjpqpeS4hjKcPTo0bO+T1eWEqPKhiIi0v7GN8zzas16XprnJSJyqlbN8fIUP/zwAwADBgxo0fGHDx9m7NixHD9+nD59+jBt2jTuvvvuFg1T/Cmr1ep0m1PbtbZ9cxJ79+TzusqGtdlbMNrx3O3NFf3vbLr7Z6D+q/+nPra2vXSM+gIbmw8XU1ljxdfLiTnEvevmeR3d7oLIREQ6H6cTrwsvvPC0d6hMJhMBAQEkJydz6623kpCQ0OYATyc3N5e///3vJCUlMWXKlLMeP2rUKC6//HL69+9PVVUV33zzDS+++CKbNm3itddew2Ry7uZfW9cra+/1zg579QfAlr2F1C2bwWhTwUqX03pv+gzUf/VfPF//cH96BfqQW1rF5kNFTBwQ3vLGp97xstvhLKNbRES6OqcTr7Fjx7JhwwaOHTvGqFGjCA8PJy8vjy1bthAZGUnv3r1ZuXIlH374Ia+//jrJycntHnRxcTF33nkndrudZ599tkVJ0/3339/o9eTJk4mOjubJJ59k9erVTJ061akYkpOTMZudrx5otVpJTU1tdfvTCdleTdVBL3ysJxgRFwKh/drt3O3JVf3vTLr7Z6D+q/9t6X99e+kYhuGY57V8aw5r0wucS7wihoDJApXFUJIJwU0LcYmIdCdOJ17nnXceW7duZeXKlfTu3bthe05ODjNnzuTiiy9m7ty53HLLLcyfP79FlQ2dUVJSwsyZM8nNzeXVV18lNja21ee6+uqrefLJJ9m6davTiZfZbG7TH01tbf9TiX3D2XMgluFGBuZjqRDRsuGX7tLe/e+MuvtnoP6r/925/53JxIRwlm/NcX4hZYuPI/nK3eG466XES0S6OafHo/3rX/9izpw5jZIugD59+nDPPfewePFiAgICmDFjBlu3bm2vOAFH0nX77beTlZXFyy+/zJAhQ9rlvM4OM/REyTFB7KxbSFkFNkREpL3Ur+e1LbOY8qpa5xrXr+elAhsiIs4nXocOHaJnz57N7gsMDCQ7OxtwlImvqKhoW3SnqE+6MjMzWbJkCcOGDWvzOT/44AMAhg8f3uZzuVtKdBA77I7hhbXZW90bjIiIdBmxoT2ICfGj1mZn48FC5xqrsqGISAOnhxr26dOHDz74gMmTJzfZt2zZsoY7YcXFxQQFBbXonGvWrKGiooLy8nIA9u/fz4oVKwDHXCzDMPjVr37Frl27ePTRR7FarY3upoWGhjZaxHnYsGGMGTOGV199FYAff/yRhQsXMnXqVGJjYxuKa7z77ruMHz+eCy+80NmPweOE9fQh138wVIM9Z5smMouISLuZmBDGuz9msS69gAsGR7a8YX3idUSVDUVEnE68fvWrX/Hf//3f/OIXv+Cyyy4jPDyc/Px8VqxYwbZt23j88ccBWL9+PUlJSS0652OPPdZwpwxgxYoVDYnX6tWrgZMVsP761782aX/ttdcyd+7chtdWqxWbzdbwOiIiArPZzPPPP09RURGGYRAXF8e9997LzJkzu8RQQwD/2BRq95vwqiqE0hwIinZ3SCIi0gVMqEu81qY7Oc8rqu7vgJLDUFEEfk3X5BQR6S6cTrx+/vOfY7fbmT9/fqNkJzw8nMcee4wbbrgBgFmzZuHt7d2ic3755ZdnPWbv3r0tjvGnx8bFxbV7kQ9PNDQ2kn37YhhqHHbM81LiJSIi7WBCf0c1w505JZScqCGoh1fLGvqFOIpqFB+Gozug3yQXRiki4tmcSrysViuHDx/m8ssv5+c//zkZGRkUFxcTHBxM//79G63vFR7uRMlZaRcpMUHssMUz1FSXeA25wt0hiYhIFxAV5Ev/CH8y8spZf6CASxKjnGicUpd4pSrxEpFuzakxdna7nWnTprFlyxYMwyAhIYFzzjmHhISE0y6qLB0n6ZQCG9VZW9wcjYiIdCUT+juqGzo/3LC+wIbmeYlI9+ZU4mWxWAgPD8dut7sqHmmDID8vCgOHAmDP2ereYEREpEuZmOAYyfKDs+t5qbKhiAjQinLy06ZNY/ny5S4IRdqDT0wKNruBT0UuHD/m7nBERKSLGN8/FIA9R8vIP17V8ob1a3nl7YFaJ9qJiHQxThfXGDJkCJ9++im33norl1xyCREREU2GGV5yySXtFqA4Z0jf3hzYG0WCccRRvnfgxe4OSUREuoCwnj4MiQpgz9Eyfsgo4MqUPi1rGBQDvsFQWexIvnp3/rUzRURaw+nE66GHHgIgNzeXDRs2NNlvGAa7d+9ue2TSKikxweyw9yOBI3BkqxIvERFpNxMSwthztIx16U4kXobhGG548FvHF4JKvESkm3I68XrttddcEYe0k8Q+gayyx3MNa6nM3IqvuwMSEZEuY2JCOC9/f5B1ThfYSHEkXprnJSLdmNOJ19ixY10Rh7QTfx8LxUFDoRxsKrAhIiLtaGy/UEwGZOSXc7SkkqigFn6917tunpcSLxHpxpwurlGvrKyMb7/9lo8++oiSkpL2jEnayDtmFAA9yjOhosjN0YiISFcR5OdFUnQQAOsy8lve8NTKhjabCyITEfF8rUq8FixYwKRJk7jzzjt56KGHyMrKAuC2225j8eLF7RqgOG9QfAyHbRGOF/p2UURE2tGEhLr1vPY7MdwwfBCYvaG6DIoPuiYwEREP53Ti9eabb7JgwQKmT5/OokWLGq3pNWXKFL7++uv2jE9aIfmUhZS1npeIiLSn+oWU1zmznpfZCyId60zqC0ER6a5alXjNmDGDP/7xj5x33nmN9sXFxXHo0KF2C05aZ2jvQHbXJV4Vh7e4ORoREelKxsSHYjEZZBVVkFl4ouUNozTPS0S6N6cTr8zMTCZNmtTsPn9/f0pLS9sclLSNr5eZkmDHN4sqsCEiIu3J38fCiNhgANamOzPPS4mXiHRvTideAQEB5Oc3/4s2OzubsLCwNgclbecTOxIA/7IDUHXczdGIiEhXUj/Py6my8vUFNo5sd0FEIiKez+nEa8KECbz44oucOHFyeIFhGNTW1vL22283GX4o7tEvvj9H7SEY2CF3h7vDERGRLqShwEZ6QaO53mfUK9HxWJYD5U7cKRMR6SKcTrzuvfdecnJymDZtGnPnzsUwDN544w1uuOEGDh06xG9+8xtXxClOSokJYoctHgD7kW3uDUZERLqUUX1D8LaYOFZWRXpeecsa+QZCaH/Hcw03FJFuyOnEKy4ujrfffpv+/fvz9ttvY7fb+fDDDwkJCeGtt96iT58+rohTnDSoVwB7DMcF7vjBTW6ORkREuhJfLzPn9A0BnKxueOp6XiIi3YylNY0GDBjAkiVLqK6upqioiKCgIHx9W7h6vXQIb4uJkuBhULoMW/ZWd4cjIiJdzMSEMNZlFLAuPZ9bxse1rFFUMuz6EI5qnpeIdD+tWkC5nre3N7169VLS5aHqC2z0LNsPNZVujkZERLqSUwts2GwtnOcVNdzxqDteItINteqOV1ZWFp999hk5OTlUVjb+g94wDP72t7+1S3DSNnHxAynYEUAYZXBsF0SPcndIIiLSRaTEBNPD20zRiRr25pYxtHfg2RvVDzXMT4OaCvDyc22QIiIexOnE6+uvv2b27NnYbDZCQ0Px9vZutN8wjHYLTtpmeN8QdtriOd+cii1nGyYlXiIi0k68LSbGxIeyJi2PtekFLUu8AqKgRzicyK/7QvAc1wcqIuIhnE68/u///o9Ro0bxf//3f1qzy8MlRPRkjdGf80ml7MCPBI253d0hiYhIFzIhIYw1aXmsS8/nV+f1O3sDw3Dc9cr4yrGelxIvEelGnJ7jdejQIe68804lXZ2A2WRQFjIMAGvOVvcGIyIiXc7Eunle6zMKqbXaWtaod4rjUfO8RKSbcTrx6tOnT6PFk8WzedcV2AgoSQNrjZujERGRriSxTxABvhbKqmrZmVPaskZRSrxEpHtyOvG66667eOmll6ioqHBFPNLOYhOGUWr3w8te7ZjMLCIi0k7MJoNx/eqqG7Z0Pa/6Ahu5O8FmdVFkIiKex+k5XqmpqRQUFDB16lTGjRtHSEhIk2P++Mc/tktw0nbJMSHssscz3thNbfZWLL0S3R2SiIh0IRMTwli1O5e16QXMmpxw9gZhA8DiBzXlUJgB4QNdH6SIiAdwOvF64403Gp7/5z//abLfMAwlXh4kPsyf70z9Gc9uSjI2Ejbql+4OSUREupCJAxx3vDYeKKS61oa35SyDaUxm6JUI2T86FlJW4iUi3YTTideePXtcEYe4iMlkUBaSCEX/wZa9zd3hiIhIFzMoMoBQf28Ky6vZnlXM6PjQszeKSq5LvFIh6XrXByki4gGcnuMlnY93jKPARmDJbrC1sOqUiIhIC5hMBhP6O+56rU13cp6XCmyISDfSosRr48aNlJeXn/W4wsJC3nvvvTYHJe0remAKFXZvfGwVUJju7nBERKSLmZBQn3jlt6xBfWXDI9tdFJGIiOdpUeJ16623kp5+8g92m81GUlISu3btanRcZmYmf/rTn9o3Qmmz5JhQdtv7AlCdtcXN0YiISFdTn3htPlxMZU0LKhX2SgTDBOXHoCzXxdGJiHiGFiVedru9yeva2tom28UzxYT4sd/sqDRVnL7RzdGIiEhX0z/cn16BPlTX2th8qOjsDbx7OKobgoYbiki34fY5XsePH+epp55i5syZjB8/nsGDBzN//vxmj925cyczZsxg5MiRjB49mtmzZ5OZmdni91q7di033ngjw4cPZ9y4cTz88MMUFLRwPHonZhh1BTYAa/ZW9wYjIiJdjmG0ZZ6XhhuKSPfg9sSruLiYd999l+rqai6++OLTHpeens4tt9xCTU0Nzz77LH/72984ePAgN910E4WFhWd9nw0bNnDnnXcSFhbG888/zx/+8AfWrl3LjBkzqK6ubs8ueaT6AhtBxbtAdypFRKSdTUwIB1qxkLISLxHpJpwuJ9/eoqOj2bhxI4ZhUFhYyNKlS5s9bt68eXh7e7No0SJ69uwJQGJiIpdeeilLlizh97///Rnf56mnniI+Pp558+ZhsTi6HRMTw//7f/+P9957j5tuuql9O+Zheg8cSfU2Mz1sx6H4MITEuTskERHpQurneW3LLOZ4VS09fc7yJ0Z9gQ0NNRSRbqLFd7wyMjLYuXNnw09z2zIyMpwOwDAMDMM44zG1tbV8/fXXXHLJJQ1JFziStnHjxrFq1aozts/NzSU1NZVrrrmmIekCGDVqFPHx8Wdt3xUkx0Ww1x4LQFXmZjdHIyIiXU1saA9iQvyotdnZePDsI1Ea7ngVpEPVcdcGJyLiAVp8x+uRRx5psu3BBx9s9Nput581iWqNw4cPU1lZyeDBg5vsGzRoEN9//z1VVVX4+Pg02z4tLQ2g2faDBw9m82bnExGrtQVVm87QrrXtWyvc34t15gEk2w+Sn7aBqMSrO/T967mr/56ku38G6r/6f+pja9uLZ5qYEMa7P2bxQ3oBUwZHnvngnpHQMwqOH4VjuyB2bMcEKSLiJi1KvJ544glXx3FGxcXFAAQHBzfZFxwcjN1up6SkhMjI5n/J17cPCgpqtn39fmekprZtaERb27dGnl8/OAEnDqxn69atHf7+p3JH/z1Nd/8M1H/1X7qeiQnhvPtjlnMFNvYfhSPblHiJSJfXosTr2muvdXUcLXKmu2ktudN2umNac5cuOTkZs9nsdDur1Upqamqr27fFvkMHYfsLRFVm0H/4cHDB3cmzcWf/PUV3/wzUf/W/Lf2vby+eqX6e186cEkpO1BDUw+vMDXqnwP6VmuclIt2C24trtET9na6ioqZrgxQXF2MYBoGBgWdt39ydreLi4mbvhJ2N2Wxu0x9NbW3fGn0Gj8a6zSDAWgQn8iCwd4e+/6nc0X9P090/A/Vf/e/O/e+qegX60j/Cn4y8ctYfKOCSxKgzN2iobKjES0S6PreXk2+Jvn374uvr2zBX61RpaWnExcWddn4XOOaBAezdu7fZ9vX7u7rEuCj226MBOHF4k5ujERGRrmhighPredVXNjy2C6y1LoxKRMT9OkXiZbFYmDJlCitXruT48ZOVj3Jycli/fj1Tp049Y/tevXqRkpLCxx9/3Ghi9tatWzlw4MBZ23cVYT19yLAMACB/30Y3RyMiIl3RhP6O9bx+aMl6XiH9wLsn1FZCwT4XRyYi4l4ekXitWbOGFStW8NVXXwGwf/9+VqxYwYoVK6ioqABgzpw5VFRUMGvWLNasWcPKlSu56667CAkJYebMmY3ON2zYMG677bZG2373u9+RkZHBfffdx9q1a/n444/5r//6LwYNGsT111/fMR31AMdDhwFgzd7q3kBERKRLGt8/FIA9R8vIP1515oNNJuiV5Hiu4YYi0sV5xByvxx57jOzs7IbX9UkXwOrVq4mJiSEhIYHXX3+dZ555hvvuuw+z2cz48eNZsGABoaGhjc5ntVqx2WyNto0bN47Fixczb948Zs2ahZ+fHxdccAEPPvgg3t7eru+kh/CKGQn5EFS8292hiIhIFxTW04chUQHsOVrGDxkFXJnS58wNopIh8wc4uh1Sft4xQYqIuIFTiVdlZSUzZszg3nvvZeLEie0WxJdfftmi45KSknjllVfOelxzc7kAzj33XM4991xnQutyogaNga0QWpsL5QXgH+bukEREpIuZkBDGnqNlrEtvYeIFuuMlIl2eU0MN6wtcqBJV5zW0XwwZNkeVqdKDKrAhIiLtb2KCY57XuhYV2KhLvI5sB7vdhVGJiLiX03O8Ro4cyfbt210Ri3SAID8vDnrXF9jY4OZoRES6nnXr1vHII49w2WWXMWLECCZNmsTdd9/Njh07mhy7c+dOZsyYwciRIxk9ejSzZ88mMzPTDVG3r7H9QjEZkJFfztGSyjMfHDkMDDNUFEJpTscEKCLiBk4nXg899BDvvPMOy5cvp7y83BUxiYuVBScCYM3a6t5ARES6oLfffpvs7GxuvfVWFi9ezB/+8AcKCwu58cYbWbduXcNx6enp3HLLLdTU1PDss8/yt7/9jYMHD3LTTTdRWFjoxh60XZCfF0nRjjUy12Xkn/lgL1+IGOx4ruGGItKFOV1c48Ybb6SmpoZHHnmERx55BF9fXwzDaNhvGAabNmkImyfzjhkB+RBYvMvdoYiIdDl//vOfCQtrPH920qRJXHLJJSxatIgJEyYAMG/ePLy9vVm0aBE9e/YEIDExkUsvvZQlS5bw+9//vsNjb08TEsLYnlXC2v0FXDsy5swHRyU71vI6mgqDL+uYAEVEOpjTidell17aKNGSzqfX4LGwFXrVZkNlCfgGuTskEZEu46dJF4C/vz8JCQkcOXIEgNraWr7++muuueaahqQLIDo6mnHjxrFq1arOn3j1D2PRmowWLqScDNvfgaPbXB+YiIibOJ14zZ071xVxSAca3D+ebHs40UY+RembCEm80N0hiYh0aWVlZezatYvx48cDcPjwYSorKxk8eHCTYwcNGsT3339PVVUVPj4+Tr2P1WptVXz17VrbvjmjYoOwmAyyiys4mFdGbGiP0x8cmYQZsB9NxdaOMbSUK/rfmaj/6v+pj91NW/vvTDuPWMdLOpa/j4WtXgOIrs0nL22DEi8RERd77LHHqKioYNasWQAUFxcDEBwc3OTY4OBg7HY7JSUlREZGOvU+qaltmyPV1vY/NSDEwp6CGt5Zs5WL+50+8TJX2xkBGEUH2b7xO2xePU97rCu1d/87G/Vf/e/OOqL/rU680tLSSE9Pp6qq6ar0P/vZz9oSk3SA0pBEyPuB2hwN6xARcaVnn32Wjz/+mD/96U8kJSU12nemofutGdafnJzcqiVfrFYrqamprW5/Ohfl7WPP1+nk1PgzYsTwMx5rXxeNUZpNSi8z9B3RbjG0hKv631mo/+q/+t/6/te3bwmnE6+KigruvvtufvjhBwzDwF635sapFwglXp7PO3YE5KnAhoiIKz333HMsXLiQ+++/n5tvvrlhe/2drqKioiZtiouLMQyDwMBAp9/PbDa36Q+ntrb/qXMHhrPg63TWZRRiMpnOnExGpUBpNubcHdDvvHaLwRnt3f/ORv1X/9V/1/bf6XLyzz//PNnZ2bzxxhvY7Xaee+45Xn75ZaZOnUpcXBwffPCBK+KUdhY5aBwAvWsOY6/WsgAiIu3tueeeY/78+cyZM6dhiGG9vn374uvrS1paWpN2aWlpxMXFOT2/yxON6huCt8XEsbIq0vPOcq3pneJ4VEl5EeminE68Vq9ezZ133snIkSMB6N27NxMmTGDevHkkJiby1ltvtXuQ0v4GJgzgmD0YMzby0re4OxwRkS5lwYIFzJ8/n7vvvpvZs2c32W+xWJgyZQorV67k+PHjDdtzcnJYv349U6dO7chwXcbXy8w5fUMAWJdxluqGUcmOx6PbXRyViIh7OJ14ZWdn079/f8xmM4ZhUFFR0bDvqquuYvXq1e0aoLiGr5eZQ94DAMjbu97N0YiIdB0vvfQS8+bNY9KkSVxwwQVs3bq10U+9OXPmNBTcWLNmDStXruSuu+4iJCSEmTNnuq8D7WxigqO8/rr0syykXJ945e2B2moXRyUi0vGcnuMVEBDAiRMnAMdaJYcOHWL06NGAY12S+n3i+cpCEuHYj9Rmb3V3KCIiXcZXX30FwLfffsu3337bZP/evXsBSEhI4PXXX+eZZ57hvvvuw2w2M378eBYsWEBoaGiHxuxKEweE8feVsC69AJvNjsl0mnlewXHgEwRVJZC/92QiJiLSRTideA0ePJiDBw9y/vnnM27cOBYtWkRcXBze3t4sWLCAIUOGuCJOcQFL9Ag49qoKbIiItKPXX3+9xccmJSXxyiuvuC4YD5ASE0wPbzNFJ2rYm1vG0N6nKRpiGI5k69B3jnleSrxEpItxeqjh9ddfT3m5Y4Lsf/3Xf1FRUcEtt9zCjTfeSE5ODg8//HC7Bymu0WvwWABiag5gr6l0czQiItIVeZlNjIl33MFbm97SeV4qsCEiXY/Td7yuuOKKhuexsbF8/vnnDaXlR44c2exikOKZ+g8YSrHdn2CjnJx9W+gzbIK7QxIRkS5oYkIYa9LyWJeez6/O63f6A5V4iUgX1uoFlOv16NGDCy+8sD1ikQ7mZTFzyHsgwTVbyU3boMRLRERcYkJdgY31GYXUWm1YzKcZcHNqZUO73TH8UESki3B6qKF0LWUhwwCwqsCGiIi4SGKfIAJ8LZRV1bIzp/T0B0YMAZMXVJZA8eGOC1BEpAO06I7XkCFDzrza/CkMw2DXLhVr6CwcBTbeUoENERFxGbPJYFy/MFbtzmVdRgHDY4ObP9DiDZFDHEMNj6ZCSFyHxiki4kotSrzuueeeFide0rn0GjIetkBsdQbW2hrMFi93hyQiIl3QxARH4rU2vYBZkxNOf2BUysnEa+iVHRegiIiLtSjxmjNnjqvjEDfpOyCJcrsv/kYlh/ZtI27oaHeHJCIiXdDEAY55XhsPFFJda8Pbcrp5XinAm455XiIiXYjmeHVzZrOZQ94DADi2d4OboxERka5qUGQAof7eVNRY2Z5VfPoDVdlQRLoop6saLl++/KzH/OxnP2tFKOIuZSHD4NgOarO3uDsUERHpokwmgwn9w/hP6hHWphcwum5tryaikhyPJZlwohB6nOY4EZFOxunE63QLJJ86B0yJV+fiFTMCjr2rAhsiIuJSExLqE6987r1oYPMH+QZBcBwUH4LcHdDv/I4NUkTERZxOvFavXt1kW1FREatXr+bTTz/l//7v/9olMOk4EYPGwmaIq06nprYWL0ubl3cTERFpon49r82Hi6msseLrZW7+wN4pjsTryHYlXiLSZTj9F3Z0dHSz25KSkqitreW1115j7ty57RKcdIzoASOoxIueRgX79u1g4NAR7g5JRES6oP7h/vQK9CG3tIrNh4qYOCC8+QOjUmD3x5rnJSJdSrsW15gwYQJffvlle55SOoDJ4kWWV38AjqWpwIaIiLiGYRhMTHAkW2vTC05/oApsiEgX1K6JV3Z2NiaTCiV2RqUhiQDUZG11byAiItKlTejvGG64LqMFiVf+Xqip7ICoRERcz+mhhhs3bmyyrbq6mr1797Jo0SImTJjQLoFJx3IU2HhfBTZERMSl6ud5bcss5nhVLT19mvlTJDAa/EKhohDydkOfkR0cpYhI+3M68brlllsaVTAEsNvtAEycOJE//elP7ROZdKj6Ahvx1fuorK7F11sFNkREpP3FhvYgNtSPzMIKNh4sZMrgyKYHGYbjrteBNY7hhkq8RKQLcPqv69dee63JNh8fH6KjowkPP80kWfF4vRJGUoOZUOM4O9P3kjg00d0hiYhIFzWhfxiZhVn8kF7QfOIFjRMvEZEuwOnEa+zYsa6IQ9zM8PIlxyuOuJoM8vauByVeIiLiIhMTwnn3x6yzFNhIcTwq8RKRLsLpxOvAgQPk5eU1m4Bt2LCByMhI4uPj2yO2Jh5++GE++OCD0+5/5513GDFiRLP73n//fR555JFm93333XdERES0R4idWllIIhzLoCZ7q7tDERGRLqx+ntfOnBJKTtQQ1MOr6UG9T0m8bDZQ8S4R6eScTrzmzp1LfHx8s4nXV199xYEDB/jXv/7VLsH91G9+8xt+8YtfNNk+a9YsvL29SU5OPus5nnjiCfr3799oW3BwcHuF2KlZokfAsY8JLNrp7lBERKQL6xXoS/8IfzLyyll/oIBLEqOaHhQ2EMw+UH0cig5AWELHByoi0o6cTrxSU1O54YYbmt03ZswYPv744zYHdTp9+/alb9++jbZt2LCBoqIi7r77bsxm81nPMXDgwBYlaN1R5OBxsAXia/ZzorqWHiqwISIiLjIxIYyMvHLWpp8m8TJboNcwyNniuOulxEtEOjmn79uXlZXRo0ePZvf5+vpSUlLS5qCc8d5772EYBtdff32Hvm9XFNp/FDYMehnF7N2f7u5wRESkC5vQ31GQ64eWrOeleV4i0gU4nXj16tWL7du3N7tv+/btHTpXqqysjM8//5wJEyYQGxvbojazZs1i6NChjB07ltmzZ5OWlubiKDsRb3+Oejk+x2NpG9wcjIiIdGXj+4cCsOdoGfnHq5o/qKHARvN/d4iIdCZOjyW7+OKLWbx4MSNGjGD8+PEN29evX88LL7zA9OnT2zXAM/nkk0+orKxs0XuGh4cza9YsRowYQc+ePUlLS2Px4sXceOONvP322wwZMsSp97Zara2Kub5da9u7WknwMPrkHaYmawtW603tfn5P739H6O6fgfqv/p/62Nr20vmF9fRhSFQAe46W8UNGAVem9Gl6kCobikgX4nTidc899/Ddd99x++23Ex8fT1RUFEePHuXgwYMMGDCAOXPmuCLOZr333nsEBwczderUsx57/vnnc/755ze8HjNmDJMnT+aqq67in//8JwsXLnTqvVNT23YRaGt7V6nxddzx8i9IZevWrS57H0/tf0fq7p+B+q/+i0xICGPP0TLWpZ8m8eo1DDCg7Agcz4OeqkAsIp2X04lXQEAA77zzDq+88grffvstOTk5hISEMGfOHG677Tb8/f1dEWcTe/bsYceOHdx66614e3u36hwxMTGcc845bNu2zem2ycnJLSrm8VNWq5XU1NRWt3e1Ut8iyHyBAdYDBAxJJMC3mRK/beDp/e8I3f0zUP/V/7b0v769dA0TE8J5+fuDrDvdel4+ARDaHwrTITcVel7YsQGKiLSjVpWt8/f355577uGee+5p73ha7L333gM4bYXFlrLb7ZhasTaI2Wxu0x9NbW3vKiH9RwMQa8pjw6Esxg4b4JL38dT+d6Tu/hmo/+p/d+6/OIztF4rJgIz8co6WVBIV5Nv0oN4pjsTryHZIUOIlIp1Xq1cjLCsr49tvv+Wjjz7q8EqG1dXVfPzxx6SkpDBo0KBWnyczM5PNmzczfPjwdoyuk/MLJs+rNwC5e1VgQ0REXCfIz4uk6CAA1mXkN3+QKhuKSBfRqsRrwYIFTJo0iTvvvJOHHnqIrKwsAG677TYWL17crgE2Z9WqVRQXF5/2btejjz7KsGHDyM7Obtg2Y8YMnnvuOVatWsW6det49dVXuemmmzAMg/vuu8/lMXcmpcGJANRmb3VvICIi0uVNSAgDYO3+0ww3VIENEekinE683nzzTRYsWMD06dNZtGgRdru9Yd+UKVP4+uuv2zO+Zr333nv06NGDK664otn9NpsNq9XaKLZBgwbx2Wef8eCDD3LHHXfw4osvMn78eJYtW9amu2ZdkTl6BAABRTvdG4iIiHR5ExMc63mtPd08r/o7XgX7oPpEB0UlItL+nJ7j9eabbzJjxgwefPDBJmV94+LiOHToULsFdzovvfTSGffPnTuXuXPnNtr26KOPujKkLiVi4FjYCv1q0iksrybUv3XFS0RERM5mdFwIFpNBdnEFmYUniA3t0fiAgCjwj4TyY3BsF8SMdk+gIiJt5PQdr8zMTCZNmtTsPn9/f0pLS9sclLiXf9woAPoZR9l1MPssR4uIiLSev4+FEbHBAKxNP9s8Ly2kLCKdl9OJV0BAAPn5zf9izM7OJiwsrM1BiZv1jKDIEoHJsHN074/ujkZERLq4iXXzvE5bVl4FNkSkC3A68ZowYQIvvvgiJ06cHGdtGAa1tbW8/fbbnHfeee0aoLhHafAwAGqyt7g5EhER6erG1xfYSC9oND+7gRIvEekCnE687r33XnJycpg2bRpz587FMAzeeOMNbrjhBg4dOsRvfvMbV8QpHcwcPRKAwKJdbo5ERES6ulF9Q/C2mDhWVkV6XnnTA3rXLfuSuxNs1qb7RUQ6AacTr7i4ON5++2369+/P22+/jd1u58MPPyQkJIS33nqLPn36uCJO6WDhAx2Tl/vX7udYaaWboxERka7M18vM6LgQANZlNDPcMLQ/ePWAmhNQkN7B0YmItA+nqxoCDBgwgCVLllBdXU1RURFBQUH4+jaz2rx0Wr6xjgIbA41svjmYy4UpcW6OSEREurIJ/cNYm17AuvR8bhn/k2uOyQy9EiFro6PARoSWgRGRzqdVCyjX8/b2plevXkq6uqLAPpSZg7EYNo7u3+zuaEREpIubOOBkgQ2bTfO8RKTradEdr+XLlzt10p/97GetCEU8imFQGjyMgIK11GRtBq51d0QiItKFpcQE08PbTNGJGvbmljG0d2DjA6JSHI8qKS8inVSLEq+HH364xSc0DEOJVxdhjh4BBWsJKNqF3W7HMAx3hyQiIl2Ul9nEmPhQ1qTlsTa94PSJ15HtYLeDrkki0sm0KPFavXq1q+MQDxQ6YAxshwRrBjkllUQH+7k7JBER6cImJoSxJi2Pden5/Oq8fo13Rg4FwwQn8uF4LgREuSdIEZFWalHiFR0d7eo4xAN5xzhKyg8xDvPVoTyig/u6OSIREenKJtSt57U+o5Baqw2L+ZSp6N49IGwg5O91zPNS4iUinUyri2scP36c7777jk8++YTvv/+e48ePt2dc4glC4qkw9cTHqCVn/1Z3RyMiIl1cYp8gAnwtlFXVsjOntOkBveuHG27r2MBERNpBq8rJL1myhOeee47KysqGuT++vr7ce++93H777e0do7iLYVAaMgy/gg3UZG0BrnZ3RCIi0oWZTQbj+4exclcua9MLGB4b3PiAqGRIXarKhiLSKTmdeC1fvpynn36a888/n2uvvZbIyEiOHTvG8uXLeeqppwgJCVFxjS7E3Gc4FGxQgQ0REekQE+oSr3UZBdx9QULjnSopLyKdmNOJ1yuvvMKVV17JM88802j75Zdfzu9+9zteffVVJV5dSHDCaEh9gUG2DA4VnCA+3N/dIYmISBdWv57XxgOFVNfa8LacMiuivrJhYTpUlYFPgBsiFBFpHafneGVkZHD11c0PObv66qtJT09vc1DiOSzRjgIbw4xDbMsscHM0IiLS1Q2KDCDM35uKGivbs4ob7/QPh4A+jue5Ozs8NhGRtnA68fL19aWkpKTZfSUlJfj6+rY5KPEgYQOoNvnSw6giZ/8Od0cjIiJdnKlunhfA2vRmvvDTcEMR6aScTrzOOeccnnvuOXJzcxttz8vLY8GCBYwePbrdghMPYDJTGjQEgJrsLW4ORkREuoP6svJr0/Ob7mxIvLZ3YEQiIm3n9Byv3/72t/ziF7/gkksuYcKECURERJCXl8cPP/yAxWLhueeec0Wc4kbm6BFQtJWAol1YbXbMJhXYEBER15lYl3htPlxMZY0VXy/zyZ31idcRJV4i0rk4fcdr4MCBvPfee1x00UWkpqby/vvvk5qaykUXXcTSpUsZMGCAK+IUNwrq77iLOdiWQUae1msTERHX6hfuT69AH6prbWw+VNR4Z/1aXsd2g7Wm44MTEWmlVq3j1a9fP/7xj3+0dyzioUx9RgCQZDrIysxiBvZSFSkREXEdwzCYmBDOB1uyWZtewMQB4Sd3BseDdwBUl0H+Pug1zG1xiog4w+k7XtINRQyh1vAi0DhBZsYud0cjIiLdQP08r3UZPymwYTJBVJLjuQpsiEgn0qo7Xrt27eLjjz8mJyeHqqqqRvsMw2DhwoXtEpx4CLMXx4MGEVy8k+qsrcCl7o5IRES6uAl1lQ23ZRZzvKqWnj6n/MkSlQKH1zkKbAy/0U0Riog4x+nEa/ny5TzyyCOYTCZCQ0Px8vJqtN8wVHihKzL1GQHFOwks3kmN1YaXWTdLRUTEdWJDexAb6kdmYQUbDxYyZXDkyZ2qbCginZDTidfChQuZPHkyTz75JEFBQa6ISTxQz/hzYNebDLUfIC23jMQ++rcXERHXmtA/jMzCLH5ILzhN4pUKdjvoS18R6QScvm1x7Ngxbr31ViVd3Ux9gY1E00FSM4vdGouIiHQPExMcRTWaLKQcORRMFqgogtJsN0QmIuI8pxOvoUOHNlk8WbqBXsOwYSbcKOXAgf3ujkZERLqB+gIbO3JKKDlxSul4iw9EDHE813peItJJOJ14PfjggyxevJg9e/a4Ih7xVF5+HA9MAKAme4ubgxERke6gV6Av/SP8sdth/YGf3PU6dbihiEgn4PQcrxEjRnDJJZdw7bXXEhER0WTIoWEYfPTRR+0WoHgOc/QIKE0jqHgXlTVWfL3M7g5JRES6uIkJYWTklbM2vYBLEqNO7ohKhm1vq8CGiHQaTt/xWrx4MYsWLSIkJIQ+ffoQHBzc6Edzv7quHnGjABjGQfYcLXNzNCIi0h3Uz/P64afreemOl4h0Mk7f8Xrttde4/vrrefzxxzGbdcejOzF6jwAg0XSA1VnFjIgNdms8IiLS9Y2vW89rz9Ey8o9XEd7Tx7GjPvEqPgQVxeAX7Jb4RERayuk7XuXl5Vx55ZVKurqjqCTsGPQxCkk/eNDd0YiISDcQ6u/NkKgA4Cd3vfxCIKiv43nuDjdEJiLiHKcTr1GjRpGenu6KWM5o/fr1DB48uNmfrVu3nrV9QUEBDz/8MOPGjWP48OHceOONrFu3zvWBdyU+AZwIiAegOnOrW0MREZHuo3644bqflpXXcEMR6UScHmr4hz/8gXvvvZeoqCjOP/98vL29XRHXaf32t79l3LhxjbYNHDjwjG2qq6uZMWMGpaWl/OEPfyAsLIw333yTO+64g5dffpmxY8e6MuQuxdxnOOw9QEjpLk5U19LD2+n/QiIiIk6ZkBDGS98faD7x2vsfJV4i0ik4/Vfz9ddfT21tLXPmzMEwDHx9fRvtNwyDTZs2tVuAPxUXF8eIESOcarN06VLS0tL497//zciRIwEYN24c11xzDU8//TRLly51QaRdk2/fUbB3OcOMA+zMKWVMfKi7QxIRkS5ubL9QTAZk5JdztKSSqKC6vz16pzgetZaXiHQCTidel156KYZhuCIWl1m1ahX9+vVrSLoALBYLV199Nf/4xz/Izc2lV69eboywE+k9HIAk4yCrskqUeImIiMsF+XmRHB3EtqwS1mXkc+3IGMeO+qGGeXugthosHTsKR0TEGU4lXlarlbvuuovQ0FC3lY1//PHH+e1vf4uvry8jR47k7rvvZvTo0Wdss2/fPs4555wm2wcPHtywX4lXC0U5vl2MMx1j/6FMOK+fmwMSEZHuYHxCGNuySli7v+Bk4hUUC75BUFniSL7q74CJiHggpxIvu93OtGnTWLhwIZMnT3ZVTM0KCAjg1ltvZdy4cQQHB3Po0CGWLFnCrbfeyqJFi5g0adJp2xYXFzebKNZvKy4udjoeq9XqdJtT27W2vdv5BFHtH41feTYVmVuxWs91qnmn73876O6fgfqv/p/62Nr20v1MTAhn0ZoM1p46z8swHF8IHvzWMc9LiZeIeDCnEi+LxUJ4eDh2u91V8ZzWsGHDGDZsWMPr0aNHM3XqVK666iqefvrpMyZewBmHR7Zm6GRqatsm8ra1vTvF+vfDrzybsLI9fL9xM/5eThfH7NT9by/d/TNQ/9V/EWeMiQ/BYjLILq4gs/AEsaE9HDsaEq/twC/dGqOIyJk4Pcdr2rRpLF++nAsuuMAF4TgnMDCQCy64gH//+99UVlY2KfRRLzg4uNm7WiUlJQCtGjaZnJzcqrXMrFYrqamprW7vCYyyyXDsO5JMBzGFxTGibnHLlugK/W+r7v4ZqP/qf1v6X99eup8e3hZGxAbz46Ei1qbnc2No3RpeKikvIp2E04nXkCFD+PTTT7n11lu55JJLiIiIaHLH6JJLLmm3AM+m/u7bme5aDRo0iLS0tCbb67edrRx9c8xmc5v+aGpre7fqMwJwFNhYnVPGeQMjnT5Fp+5/O+nun4H6r/535f4fP36c559/nj179rBr1y6KioqYPXs2c+bMaXLszp07efrpp9m2bRtms5nx48fz0EMPERsb64bIPdvEhDB+PFTEuvQCbhzTTOJltzuGH4qIeCCnE6+HHnoIgNzcXDZs2NBkv2EY7N69u+2RtUBJSQlff/01Q4cOxcfH57THXXzxxTz22GNs27aN4cMdVflqa2v56KOPGD58uAprOKuusmGCkcPzh48CCe6NR0TEwxQXF/Puu+8yZMgQLr744tMuW5Kens4tt9zC0KFDefbZZ6mqqmLevHncdNNNfPjhh4SGqnLsqcYnhDHvy/2sTS/Abrc7vnSNGAxmb6gqheJDEBLv7jBFRJrldOL12muvuSKOs3rggQfo3bs3SUlJhISEcOjQIV566SUKCgqYO3duw3GPPvooy5cvZ+XKlURHRwMwffp03nrrLe677z4eeOABwsLCeOuttzhw4AAvv/yyW/rTqQX0otovEu+KY1RmbQOcK7AhItLVRUdHs3HjRgzDoLCw8LSJ17x58/D29mbRokX07NkTgMTERC699FKWLFnC73//+44M2+ON6huCt8XEsbIq0vPKGRDZE8xeEDkUjmxzrOelxEtEPJTTidfYsWNdEcdZDR48mE8//ZR///vfnDhxgqCgIM455xyeeuopUlJOVjGy2WxYrdZGBUC8vb155ZVXePrpp/nf//1fKioqGDp0KC+88ILb+tPZGX2GQ/pKIo7vobC8mlB/rZ0iIlKvJUWbamtr+frrr7nmmmsaki5wJG3jxo1j1apVSrx+wtfLzOi4ENamF7Auo8CReIFjuOGRbY7hhsOudm+QIiKn4XTiVa+srIytW7dSVFTE5MmTXb6u169//Wt+/etfn/W4uXPnNroDVi88PJwnn3zSFaF1S17RIyF9JUnGQVKzS5g8KMLdIYmIdCqHDx+msrKyYU3JUw0aNIjvv/+eqqqqMw6l/6nusNTJuH6hrE0vYO3+PG4a41jPy4hMwgTYj2zH1oo+dKb+u4L6r/6f+tjddOQyJ61KvBYsWMALL7xAZWUlhmHw3nvvERQUxG233ca5557bogRJOrm6eV5JpoOszixW4iUi4qT6arvBwcFN9gUHB2O32ykpKSEysuUFjLrDUifh1moAvks7xuYtWzAZBj3LfBkM1GRuJnXr1lafuzP035XUf/W/O+uI/judeL355pssWLCAm266iUmTJnHXXXc17JsyZQpffPGFEq/uoC7xGmhkMT8rD3C+MqSIiLTvOpPdYamTRKuNv36/mrJqKz16D2BIVABU9Ye1/4V35TFGDOoLPZwrStKZ+u8K6r/6r/53zDInrUq8ZsyYwYMPPtjk1lpcXByHDh1y9pTSGQXFUOMTgldVEScydwAT3R2RiEinUn+nq6ioqMm+4uJiDMMgMDDQqXN2h6VOzGYzY+JDWZOWxw8HikiMDoYeIRDSD4oOYM7bCf0vaPW5Pb3/rqT+q//qv2v7b3K2QWZmJpMmTWp2n7+/P6WlpW0OSjoBw8BUd9erd8VejpVWujkgEZHOpW/fvvj6+p52ncm4uDin5nd1JxMTwgBYl55/cqMWUhYRD+d04hUQEEB+fn6z+7KzswkLC2tzUNI5mKPr5nkZB9ieVeLmaEREOheLxcKUKVNYuXIlx48fb9iek5PD+vXrmTp1qhuj82wTE8IBWJ9RSK3V5tgYVVfhWImXiHgopxOvCRMm8OKLL3LixImGbYZhUFtby9tvv815553XrgGKBzulwMb2bCVeIiKnWrNmDStWrOCrr74CYP/+/axYsYIVK1ZQUVEBwJw5c6ioqGDWrFmsWbOGlStXctdddxESEsLMmTPdGb5HG9YnkEBfC2VVtezMqRtp07su8Tqy3X2BiYicgdNzvO69916mT5/OtGnTuPjiizEMgzfeeIPdu3eTk5PDs88+64IwxSP1HgHAUOMw8zPzgUFuDUdExJM89thjZGdnN7yuT7oAVq9eTUxMDAkJCbz++us888wz3HfffZjNZsaPH8+CBQsIDXWuQER3YjYZjOsfxspduaxNL2B4bPDJoYb5aVBTAV5+bo1RROSnnE684uLiePvtt3niiSd4++23sdvtfPjhh4wbN45nnnmGPn36uCJO8UQh/bB69cSn5jjHs3Zht09wugKXiEhX9eWXX7bouKSkJF555RXXBtMFTUxwJF7rMgq4+4IECOgNPcLgRAEc2w3Ro9wdoohII61ax2vAgAEsWbKE6upqioqKCAoKwtfXt71jE09nMmH0ToHDa4mp3EdOSSXRwfqGUUREXG9CXYGNjQcKqa614W0xOe56ZXztmOelxEtEPIzTc7weeeQRMjMzAfD29qZXr14NSVd2djaPPPJI+0YoHs3UZwQASaYDbM8sdmssIiLSfQyKDCDM35uKGivbs4odGxsKbGiel4h4HqcTrw8++KDZNUfAsRbJ8uXL2xqTdCZ1BTaGmQ6pwIaIiHQYk8lgfN1dr7XpBY6NqmwoIh7M6cTrTEpKSvD29m7PU4qnq0u8Eo2DpGYWujkYERHpTib0r0+86pa5aVjLawfYbG6KSkSkeS2a47Vx40bWr1/f8Hrp0qV88803jY6pqqpi9erVJCQktG+E4tnCBmIz+9LTWklx9l4V2BARkQ5Tv5Dy5sPFVNZY8Q0bABZfqCmHogMQpr9JRMRztCjxWr9+Pc899xzgWLNr6dKlzR7Xp08f/vu//7v9ohPPZ7ZAVBJk/0i/6v0cKjhBfLi/u6MSEZFuoF+4P70CfcgtrWLzoSImDgiHXomQvQmObFPiJSIepUWJ1x133MEvf/lL7HY7EydOZMmSJQwbNqzRMd7e3vj76w/u7sjUezhk/0ii6SDbsoqVeImISIcwDIOJCeF8sCWbtekFjsQrKtmReB1NhaTr3B2iiEiDFiVevr6+DZULV69eTUREhOZyyUl187ySjAN8nVXCNSOi3RyQiIh0FxMSwvhgSzbrMuoLbNTP81KBDRHxLE4X14iOjlbSJY3VJ16mgydL+oqIiHSA+gIb2zKLOV5Vq8qGIuKxnF5AuaamhhdeeIFPPvmEnJwcqqqqGu03DINdu3a1W4DSCUQOxW7yIthWTmHOfqy2CZhNKrAhIiKuFxvag9hQPzILK9h4sJAp/RIBA44fhePHoGeku0MUEQFakXj94x//4JVXXuH888/n4osv1t0vAYsPRA6Fo9tJqE0nI+84A3sFuDsqERHpJib2D+edwkx+SC9gyuBICBsABfscCykPuNjd4YmIAK1IvD777DPuueceZs+e7Yp4pJMyeg+Ho9tJNB1ke1aJEi8REekwExLCeOfHzFMWUk6uS7xSlXiJiMdweo5XSUkJo0ePdkUs0pk1FNjQPC8REelYE+rW89qRU0LJiRoV2BARj+R04jVmzBj27NnjilikM+s9AqgrsJFd4t5YRESkW+kV6EtChD92O6w/UAC96wpsHNnu3sBERE7hdOL1xz/+kffee48vvviC6upqV8QknVGvROyGiUijmLycQ9RYbe6OSEREupH6u15r0wtOVjYs2A/V5W6MSkTkJKfneF1zzTXU1tZy3333YRhGw/pe9QzDYNOmTe0WoHQS3j0gfBDk7WGgLYO03DIS+wS5OyoREekmJiaE88YPh/khowCuToSeveB4LuTugtgx7g5PRMT5xOvSSy/FMFQqXJoyeg+HvD0kGQdIzSpR4iUiIh1mfN16XnuOlpF/vIrwqBTYv9JR2VCJl4h4AKcTr7lz57oiDukKeg+H7e+QZDrI11kl/GKsuwMSEZHuItTfmyFRAew5WsYPGQVcGZV8MvESEfEATs/xEjmtusqGiaaDpGYXuzcWERHpdiYmhAOwLr1AlQ1FxOO06I7Xzp07nTppYmJiq4KRTq7uIhdj5HPsaDaVNVZ8vcxuDkpERLqLCQlhvPT9AUfiNamuwEbuTrDWgtnpQT4iIu2qRb+Frr/++hbN67Lb7RiGwe7du9scmHRCvkHYQ/tjFGYwyH6QPUfLGBEb7O6oRESkmxjbLxSTARn55Ry19CHKyx9qyqEwHSIGuzs8EenmWpR4PfHEE66OQ7oIo/dwKMwg0ThIalaxEi8REekwQX5eJEcHsS2rhHUHCrk2Kgky1zvW81LiJSJu1qLE69prr3V1HNJV9B4OOz8gyXSAb7K0kLKIiHSs8QlhbMsqYe3+Aq6NSnYkXke3Q8oN7g5NRLo5FdeQ9lW3aGWicZDtSrxERKSD1RfYWKsCGyLiYZR4Sfuqq2zY33SUI8dyOVFd6+aARESkOxkTH4LFZJBdXMHRHoMcG4+mgt3u3sBEpNvrNCV+1q1bx0cffcSWLVs4evQoAQEBJCUlcc8995CUlHTGtu+//z6PPPJIs/u+++47IiIiXBFy9+QfDoExUJrFEA6xM6eUMfGh7o5KRES6iR7eFkbEBvPjoSK+KwlnumGGE/lQdgQC+7g7PBHpxjpN4vX2229TXFzMrbfeyoABAygsLOTll1/mxhtv5MUXX2TChAlnPccTTzxB//79G20LDg52UcTdWO/hUJpFkskx3FCJl4iIdKSJCWH8eKiIbw+WMz18EOTtdtz1UuIlIm7UaRKvP//5z4SFhTXaNmnSJC655BIWLVrUosRr4MCBJCcnuypEqdd7OOz9D4mmA3ybVezuaEREpJuZkBDOvC/3sy69APuQZIy83Y4CG4MudXdoItKNdZo5Xj9NugD8/f1JSEjgyJEjbohITqtunleSCmyIiIgbjOwbjLfFxLGyKgoC6srIq8CGiLhZp7nj1ZyysjJ27drF+PHjW3T8rFmzKCwsJCAggLFjx3LvvfcyaNCgVr231WptU7vWtu8UeiVhBgYY2eTkF1JcXkmArxfQTfp/Ft39M1D/1f9TH1vbXuRMfL3MjI4LYW16AVtqYpkKjrW8RETcqFMnXo899hgVFRXMmjXrjMeFh4cza9YsRowYQc+ePUlLS2Px4sXceOONvP322wwZMsTp905Nbds3Z21t79HsdlJ8QvCqKmKIkcnybzaTHOnT6JAu3f8W6u6fgfqv/ou40sSEMNamF/BFQYQj8So6AJWl4Bvo7tBEpJvqtInXs88+y8cff8yf/vSns1Y1PP/88zn//PMbXo8ZM4bJkydz1VVX8c9//pOFCxc6/f7JycmYzWan21mtVlJTU1vdvrMw7TkH9q8iyXSAE75XMGKEo6hJd+n/mXT3z0D9V//b0v/69iJnMyHBMUVh1cFa7IHRGKXZkLsT4s4+J1xExBU6ZeL13HPPsXDhQu6//35uvvnmVp0jJiaGc845h23btrWqvdlsbtMfTW1t7/F6D4f9q0g0DvJdTlmTvnb5/rdAd/8M1H/1vzv3X1wvJSaYHt5mik7UcDx2KAGl2Y55Xkq8RMRNOk1xjXrPPfcc8+fPZ86cOWcdYng2drsdk6nTfQSdQ32BDdMBtmcXuzcWERHpdrzMJsb2cyxnst9Ut5TM0dZ92Soi0h46VdaxYMEC5s+fz913383s2bPbdK7MzEw2b97M8OHD2yk6aaQu8RpsZHK0sIzC8mo3ByQiIt3NhP6O4Ybryns7NqiyoYi4UacZavjSSy8xb948Jk2axAUXXMDWrVsb7R8xYgQAjz76KMuXL2flypVER0cDMGPGDEaPHs2QIUPw9/cnLS2NF198EcMwuO+++zq4J91EcBz4BuFdWcIgI4vU7BImD4pwd1QiItKNTEwIB+Dj3HB+YwDHdoO1Bsxe7g1MRLqlTpN4ffXVVwB8++23fPvtt0327927FwCbzYbVasVutzfsGzRoEJ999hkvvfQSVVVVhIaGMn78eH7zm9/Qr1+/julAd2MYjrteB74h0XSA7ZnFSrxERKRDDesTSKCvhd2VoVgDAjDXlEF+GvRKdHdoItINdZrE6/XXX2/RcXPnzmXu3LmNtj366KOuCEnOpi7xSjIO8m22FlIWEZGOZTYZjOsfxspdueT2GEifks2O9byUeImIG3SqOV7SyfQeATgKbKRmKfESEZGON7GurHyqta9jg+Z5iYibKPES16krsDHUOMyx0hMcK610c0AiItLd1K/ntaY0yrHh6HY3RiMi3ZkSL3Gd0ATw7omfUU1/I4ftuuslIiIdbFBkAGH+3mytOeWO1ynzwEVEOooSL3EdkwmikgFIMg6yXfO8RESkg5lMBuMTwthnj8FqWKCyGEoy3R2WiHRDSrzEtaJSgLqFlLOK3RuLiIh0SxP6h1GDhUyz5nmJiPso8RLXqpvnlWQ6SGpWSaMy/yIiIh2hvsDG5uoYxwYlXiLiBkq8xLXqEq9E4yCF5ZUcKVGBDRER6Vj9wv2JCvQl1Rrn2KDES0TcQImXuFbEYDD7EGBU0Nc4pgIbIiLS4QzDYEJCGLts8Y4NR1TZUEQ6nhIvcS2zV8NClUnGQVJVYENERNxgQkIYu+11c7xKDkNFkXsDEpFuR4mXuF7DPK8DbM8udXMwIiLSHU1MCKMUfzLtEY4NR3e4NyAR6XaUeInrnTLPKzVbBTZERKTjxYT0IDbUj531ww01z0tEOpgSL3G9UyobllXWcLTc6uaARESkO5rYP5xdtvoCG5rnJSIdS4mXuF7kMDBZCDXK6E0h+wtr3B2RiIh0QxMHhLHLrsqGIuIeSrzE9bx8IWII4JjnlV6kxEtERDrehP5hDXe87Hl7oLbKzRGJSHeixEs6xinDDdN1x0tERNwgMtAXv/C+FNl7YthqIW+Pu0MSkW5EiZd0jIYCGwfIKKrFalOBDRER6XgTBpwyz0vreYlIB1LiJR2jLvFKNh2k0monI7/czQGJiEh3NDEhXPO8RMQtlHhJx+iVBBj0MoqIoJjX1x3iWFmlu6MSEZFuZvwp87xqcra5ORoR6U4s7g5AugmfnhA+EPLTSDQd5M0Nwfz7xyzOHxjO9efEcPHQXvh6md0dpYiIdHGh/t6cCEuEMhx3vGw2d4ckIt2EEi/pOL2HQ34aM6KPUMJktmSW8NXePL7am0egr4Urh/dh+jkxjIwNxjAMd0crIiJdVOzA4VRt8sKnthyKD0JQnLtDEpFuQEMNpePUzfMabjnEe7MmsPqBydwzJYHeQb6UVtby1vrDXPf8Wi76+xoWfLWfnOIKNwcsIiJd0fgBvdhrj3G80DwvEekgSryk49QlXj1K9gGQENGT3186hO8eupA3fjWOa0dG4+tlIiO/nKc/38u5T37JL1/8gQ+2ZHGiutadkYuISBcytn8ou+sKbBw/tMXN0YhId6GhhtJxopIB8DlxBGtFMfQMA8BsMjhvYDjnDQznf36WxKepR1i2KYv1Bwr5fn8B3+8vwN97B1ck9+b6c2IYGx+KyaShiCIi0jqBvl4UBw6F8q8pO7gZP3cHJCLdghIv6Th+IdiD4zCKD8HR7TBgSpNDevpY+PnoWH4+OpbMwhMs25zF+5uzOVx4gqWbsli6KYuYED+uHxXD9aNi6BvWww0dERGRzq5H3EjYBX4Fu9wdioh0ExpqKB0rKgUA04d3w4pHIXPDaStKxYb24L8uHsSa31/Au3dN4MbRsfT0sZBVVME/V+/j/Ke/4uf/Wsc7Gw9TVlnTkb0QEZFOrl/iWGx2g+DaPCjPd3c4ItIN6I6XdCjbyJth/2rMZUfghwWOn8AYGHYNJP4MokeDqfH3AYZhMLZfKGP7hfKXqxP5fOdRlm3O4rv9+Ww4WMiGg4X8+aOdXJoYxfRzYpiYEI5ZQxFFROQMRg2M5RC96MdR8vZvAnq5OyQR6eKUeEnHGjCVbZcsY7h/PuY9H8Hez6A0q8VJmJ+3mZ+NjOZnI6M5UlLBB1uyWbYpi/S8cj7cmsOHW3OICvTl2lHRXD8qhgGRPd3TTxER8Wg9vC0c8RtIv8qjHNm7EQZd6e6QRKSLU+IlHc5u9oEh0yDxaqipgP2rYddyp5Ow3kF+/OaCAdw9OYFtWSUs25TFR9tyOFpaycKv01n4dTrDY4OZfk4MV6X0JriHt1v6KyIinskWmQSHv8Wasw1DiZeIuJgSL3EvLz8YeqXjp5VJmGEYjIgNZkRsMH+8ciirdx9j2aYsvk7LY1tmMdsyi/mfj3dx8bBIrh8Vw/mDIvAya3qjiEh3FzZgNByG0LK9FNrt7g5HRLo4JV7iOdohCfOxmLkiuTdXJPcmr6yKD7dms2xzNruPlPJp6lE+TT1KeE9vrhkRzfRzYhjaO9Bt3RUREffqlzQBvoQ4ezY7i08w0t0BiUiXpsRLPJPTSdi1EDMajJNFNSICfLhjUn/umNSfnTklLNuUzYdbs8k/Xs2S7w6w5LsDDOsdyPXnxHDNiD6E9/RxX39FRKTD+Yb0ocQUTJCtmLzsfcC57g5JRLowJV7i+dohCUvsE0RinyAeuWIIa/bmsWxzFqt3H2PXkVJ2fbKLJz7dzQWDI5h+TgxThkTiYzG7r78iItIxDIOSoCEEFf2ANW+vu6MRkS6uUyVe5eXlPPvss3z22WeUlJTQv39/fv3rXzNt2rSzti0oKODpp5/mq6++orKykiFDhvBf//VfTJgwoQMil3bTxiTMy2zi4mG9uHhYL4rKq/l4ew7LNmWxLauEVbuPsWr3MYJ7eHH18D5cPyqGlJggDEOl6UVEuirv6OFQ9AMBZelU1VjpYdYXbyLiGp0q8ZozZw6pqak88MADxMfH88knn/Db3/4Wm83GVVddddp21dXVzJgxg9LSUv7whz8QFhbGm2++yR133MHLL7/M2LFjO7AX0m7amISF+Htz64R4bp0Qz/5jZby3KZsPtmSRW1rFa+sO8dq6QwyI7Mn0c2K4dmQ0vQJ93dtfEemS2vKlorRd+MAxsGMRA+2HSHpsJfFh/gzs1ZNBvQIYEOl47B/hr5EQItJmnSbxWrNmDd9//z1///vfufJKR8nX8ePHk5OTw1NPPcUVV1yB+TTfUi1dupS0tDT+/e9/M3KkY+rsuHHjuOaaa3j66adZunRph/VDXKSNSdiAyAAevnwIv790MN/tz2fZpiw+33mU/ceOM/ezPTy1Yg/nDYzg+lHRXJoYha+XLsAi0j5a+6WitA9Ln+EADDUOg91GRn45GfnlfL4zt+EYs8kgLqwHA+sSsYG9AhjUqyf9wpWQiUjLdZrEa+XKlfTo0YPLLrus0fbrrruOBx54gG3btjFq1Khm265atYp+/fo1JF0AFouFq6++mn/84x/k5ubSq5dWrO8ymkvCdn4AaSuaJmGJP4NhP2tIwswmg8mDIpg8KILSyho+3X6EZZuz2HiwiG/S8vgmLY8AHwvTUnoz/ZwYzokL0VBEEWm1tnypKO0kLAG7xY8etRXs7fMYJf4JZFli2VPbm03lEXxTGERupYWMvHIy8ppPyAZFOhKxAUrIROQMOk3itW/fPhISErBYGoc8ePDghv2nS7z27dvHOeec02T7qW2dTbysVqtTx/+0XWvbd3Yd3n+TNwy63PFTUwHpX2LsWo6x73OM0ixY9xysew57YDT2YddgH3qNo0S9YeDvZeKGc6K54ZxoDhWc4IMt2XywNYesogr+vTGTf2/MJC6sB9eO6MN1I6OJDvFrUUj6P6D+n/roana7HZsdbHY7dvvJ13bqHuu22xq21x1js2OH0xxz8vWpj3bAZrM7XkOzx5iwY7fb2/w7tKtoy5eK0k5MZuxDr8ZIfQevwn2EF+4jHBgB/KLuEGtkLCX+/cjx6kuatTebT0SypiiEzMoeDQnZip0nT2k2GcSH9WBgXULmuEMWQL9wf7wtWkdSpLvqNIlXcXExMTExTbYHBQU17D9T2/rjnG17OqmpqU63ac/2nZ37+h8N/e/BiLuDwGMbCT3yNUFH12Euzcb44Xn44XmqfSMp6jOZoj6TKQ8e2jAc8YJwOP+iQHbl+fL1oUrWZVZyqOAEz67ez7Or95MY4c2UeD/Gx/jg14ILq/4PtL3/drsdqx2sNrDa7VhtUGu3Y6t7dGwHq81Orc3xx3/tKcda7fXbodZmP815HO3PfJ6Tx/z0PKceU1t3jN0O9hVfYgOwgw0aEhf7KUmMvW7fyWNOJjSNj7E3cx7Ho+exc+VAf8xG9/7/X68tXypK+7Ff8zypkdcwLNKCuXA/5O2F/H2QvxdOFGAuzSS0NJNQIAm4rq6dLSSMsp79OeIdy35bH7ZU9OLb4lD2VQaRnldO+mkSsvrhivVDF5WQSWfQ8MVdky/0bI4v5mw27FYbdmzYbHU/divYwG6zYbM7frDZsNvsjtc2G3a7DerOYbfZsNnsYLc6rnm2uu12G/a6Y+22k6+p22ezO57b6s7liAPsdqvj/eri/Gk77HastlryS6tISkp2+QiDTpN4AWcc0nW24V5taduc5OTW/eNYrVZSU1Nb3b6z86z+jwNmQ00F1lPuhHlXHqNXxlJ6ZSxt9k7YKOBm4ER1LZ/vzOX9LTmsyyhgZ141O/OqeWmbmUsTe3HdyGjG9wvFZGr8/8uzPoPWqa61UVlj5US1lYr6x1Of11g5UV1bt81GRXUtJ2ocx5yorqWgsBj/gMC6JMVOjdVOrc128rm17rntlOdWe93xtlOee2Zq4SwDGxZsWKjFgg0zVrywYsaKxXBsN2PDgrXhx4zNcYxhbbzdOGW7cfLYU4+x4NjXcI5G53W8p1fDcXXPf3q8YcPrJ3E5znMyXvMp2+uf2zCx1v5rkpMfb9Pv0K6iLV8qNkejMVrHarNR3SMKa79kGHBx450nCiA/DSPfkYwZ+WmO1yWZmCoKCKooIIiNDAGurGti6+lHeUA/cr3j2G/vw7bKXnxfEs7uqvCGhOyzHUcb3sJSl5ANiOzJwMieDOzleIwP65iErNv/+7uh/1abnepaGzVWG9VWG9W1pzzWOq5z1bVWaqqrsNVUYK06gbW6AltNBbaaSuw1ldirKxyjeWorMWorMKyVUFuNqbYSk9XxY7ZWYbZVYrFVYbZV42WrcvzYq/C2V+Ntr8KbavrZayj9CEyOr/swYcPAcX0yTnkNdkx1PxbsmIyucR0G2PClmXMuucnpds78v+k0iVdwcHCzF6CSkhKAZu9otUfb0zGbzW36o7mt7Ts7j+q/uSckXu34qamA/atg53JIW4Fxyp2wn84JC/DzYfrovkwf3Zfs4go+2JzFss3ZHMgv54MtOXywJYfoYD+uGxXNdaNi6Bfu3/htXfgZWG32nyQ/J5OjE3XJT33idOr2ihqrI0lqNqGqbXhd2y4JT147nKN5XmYDi8mExWxgMRlYzCa8TAZms4FX3XZvw04Pcw1+Rg2+Jit+Rg1+Ri1+Rg3edY++Rg3e1OBDLT5GNT72GrzqtjkuWNV4UYOXvQYvezUWezUWew0WWxUWWzVmew3muoud2VaN2VqFyVqF3VqNGTuG3Yphq8Hw0HtTrmDCSv8Aq2f9DnCz9vxiUKMx2ub0/fcD0wiIHAGRji2m2gp8yrPwLTuM3/FD+B4/jG/ZIXzKszHVVhBQtIsAdjEAuAzAAJufiVKf3hy1xJBuj2ZXTW9+PBHFztre7M+zsz+vnBWnziEzoHdPM7FBFmIDLcQEOh57B1jwMrX//OLu8u9vs9upqLFTXmPnRI2NEzV2KmvtrM/eSK3NTo0Naq11X/7ZqPsSEKzWGkzWKgxrNYa1CsNahclajanh9/zJ3/detirM9hos9iq8bNV4nZLkeNur8aYGX6rxpQZfoxpfqvGhmqCG54795o5KbNw8Xd1qN7BT92M40j17a3+M+vTQ8Qhgq3u0G6ZGx1J3zAlLIDVewWzdutWl/ew0idegQYP45JNPqK2tbTQkIy0tDYCBAweesW39cadqSVvpZrz8YOhVjp+fJGGcMieMoFhHdcS6JCw62I/ZFw7knikD2Hy4mGWbs/h4Ww7ZxRXM/3I/87/czzlxIVw/KobLEyOx2+1UVFuptp1MjuqToJMJUe0Zk5/GyVTdOeruKlXV2jrk4zKbDHp4mfHzNtPD24yft8XxeMo2x2sLft4menhb8DFB3pFM+sdE4mvU4m3U4G2vwYdqRwJDXRJTd6GyUIPFVu34ts5eg8V68uJmslVjslZhstVd/OouhNTW/1SefLRWOx6r6vbZPf2bXQPMXmCyNP0xn/raC0zmuu31x5vrtrfH8ae+rxPnP03sVpMXuXsO0NvdH6+HaO8vBjUao3Xas/92Wy3WooN1d8nS6u6S7YX8NEzVxwmuzCaYbIYA08Dxl5gFKv16ke8bzyEjmh3VvfihLJwdVb3JKgsiq8zKOqoa3sNiMugX7s/AyJ4MiPRnYGQAA3v1JD6sB15m5++QdaZ/f6vNTnlVLWWVtZRV1VJWWeN4Xv9TdfJ1ad2+qopyjIoizFVF+FQX4VtTSohRRghlhBplBBvHiabckQgZjmTIp+65T0OCVI3FaMO11aDNyU2V4UON4e34MflQW/djNfliNftgM/lgM/tgs/hiM/tit/iCxRe7ly+GxRfDyw+8fDF5+Tl+vP0weffAsHiTmX2Ufv37YzFbMEwmx5c+JjMmw8BkMoNhYJgMTIYJw2TCZDIBJkynbMNwbDeZTJgMo26bAYbJ0XnjNK+b+Yg68n9h/f//MW38/dkSnSbxuvjii3n33Xf54osvuOKKKxq2f/DBB0RGRjJ8+PAztn3sscfYtm1bw3G1tbV89NFHDB8+XBUNpXlnSsJKMptNwoyY0ZwTF8I5cSH895XDWLkrl2Wbs/gmLY9Nh4rYdKiIPy6vm3/z3kqXd8EwwM+rPiky08PLgq+3mR6nbmtIlCwnE6W6badNpkx2/OzleNeUQkUxVBZDZWHd8xLH6/rnx4sbbbdXlmLYrbDH5d1vOZMXWHzB4l336ON4NJ/62ufkdosPmH3Osu+n+x3PrYaF3Xv3MzQxGbOXzxmSly4636ObDmU6nbZ8qdgcjcZom3bpv9kMkYMdP6ey26HsSOP5Y3mOhIzjufhW5BJTkUsMcC5wlwH4Qo3X/2/vzqOauvI4gH+zsKOEgCxVqQVNZMngBnGjLnUXC7Yuc84ccKxrrY7jNq1dpui4jnWcgoOKOIqO9dhW9Ghrbau2p84ZiYqjQ3FDXCrUIqIIiGzJmz9CXokERSBE4Ps5Jyfhvhve776E/Pzdd19sj3tOL+InaWdkVvrgdEkH/Fjhjew7Xsi6U2K2C1NBZryGrPqr771c0cXTpV4FmbVff71BQEmNgkgsmiwUS2bba9zryx/CHSXGwklSAiWKoZBUF1AogV/1vamgUqIYzpJfi1ZIANg3fiy/Fj3VxY7MEQa5AwwyJ7HggdzB+G+J6mJHYucEib0TZPbOkNk5QuZQ/djeqboocqp+niNg5wjInX69lzvAQSKBQ+NDr0Wv16PQcA6d1D34989rvIwGDRqEAQMGIC4uDiUlJfDz88OXX36JEydOYN26deKBevfdd3HgwAF8++236NixIwBgwoQJ+OSTTzB//nwsWrQIHh4e+OSTT3D9+nVs377dlsOilqIBRZhjpz4YF/oCxoW+gDtFZThwLhf70nNxOa/Y7Fc7yKWPFTbyxwoi05kjudnPxsLIWBQ52snMiiZTX0c7qeWlSoJgHMfjRZLp8aMHwH0L7abHFSW1f2c91YpG9qzFjuWCxnzb47/zKduas8jR61GeWwa4v2j8Bxq1aY2ZVKQWRiIB2r9gvAUMMd/2qLB2MXb3CnD/Buwqi+BdmQFvZCAMwO8lABwAg9Qe951exC1ZJ1yq8sWZEk9kVvri2h1fY0FWYwLeTlZ9hqzGF3qovF3xokf9CjKgnkXTo0oUWSyYjI8fVtSceBHggrLqM0/VhVL1GShvSQkCYSys3E331WeoHB0rG3T4BYkMVY5KCI7ugIsHZNU3OCthcHTHT/lF8PNXQ2rvbLHoEYsiOydA5mBczt6gSKgta1HvmYSEBGzYsAHx8fEoLCyEv78//va3v2Hs2LFiH4PBAL3e+E0oJvb29tixYwfWrVuHFStW4NGjRwgMDMTWrVsRHh5ui6FQS1ZXEXb5qzqLMK9OfTDz5QDMiPDH7cJSXLiQibCeoXB1tIesoev0DQagvKj6bNMDY+IurvG4rK7H1cWTvqLxx8K+HeCkABwV1fduT32st3NBxqVsaHr2gczOqfWe2SGqh/pOKlIr56QAOocZbzVVlgH3sh87S3YFKMiCtKoMHg+z4IEs41ffSwE4AAIkKHbsiBx5Z1zW++Lsww7IrPTF1bwXcCXPfNLMVJB19XKFvLwIn934ESXl+noUTY8T0B6l4hkmhaQYHihGV7Fgqr63M94rq9vtUNWgwyXI7CFxUgLOxsIJzkrA7GePGj+7A84ekDi0h10d10wKej0Kzp1D55AenBAjq2pRhZeLiwvef/99vP/++3X2WbNmDdasWVOr3dPTE2vXrrVmeNQWPWMRJgmKhrdvT9x2lMHVQQ6ZoRIofWChSCp8SvFUCJQVodFfGC6RGYsiU/FU78fugEN74/K4Z6XXQ2+XZ5w5ZNFFVK9JRWqj7BwB72DjrSaDHij8qfZZsvzLkJQVon1ZDoKQgyAA46sLMgAotVPitp0frhhewH9LvXChyhfZeS/gcJ4SxvUIpZDAgPYohbL6DJNf9ZI+d5nx3lNaAk/ZQ3hWL+VzE4rgaiiGDA1cRix3/LVgqlk8PaGwkti7ml0bRNRStKjCi+i5Vs8iTOriBY3eAOmRUqCytPH7lTvW44yTwnIhxeRFZHP1mVQkMiOVAcqXjDfViF/bBQF4eLf2ksX8K0BRDpwr7yGg8h4CcA6jpRCvdaqQOaNQooArSuFYVSR+pXidBFie97NzMTvLVPsslHvts1L2zk10UIiefyy8iKzhCUWY5OGd2tf1OrSvLpLcLBRJirqLKkc344woERGRRAK4djDeugw031ZeUl2IPXaW7N412OtL4YXHJgId2lsulOoqrJyUzEdET8HCi8jaHivC9DlnceXaTah+Ew6Zi9JYPEm5ppyIiKzIwRXo2Mt4q0lfCf3dq7h6/iS6asIgc/UyFlzyJvjqPyIyw8KLqDnZOQF+fVF6z9G4RIQX8RIRkS3J7ABPFUo8SgGvIOYlIivile1ERERERERWxsKLiIiIiIjIylh4ERERERERWRkLLyIiIiIiIitj4UVERERERGRlLLyIiIiIiIisjIUXERERERGRlbHwIiIiIiIisjIWXkRERERERFbGwouIiIiIiMjKWHgRERERERFZGQsvIiIiIiIiK2PhRUREREREZGUsvIiIiIiIiKxMbusAWhpBEAAAer2+Qc83Pa+hz2/p2vr4AR4Djp/jr3nf0OebPovJiLmpcTh+jr/mfVvD8TdfXpIIzF7PpKKiAhkZGbYOg4ioTdNoNLC3t7d1GM8N5iYiItuqT15i4fWMDAYDqqqqIJVKIZFIbB0OEVGbIggCDAYD5HI5pFKuljdhbiIiso1nyUssvIiIiIiIiKyM04VERERERERWxsKLiIiIiIjIylh4ERERERERWRkLLyIiIiIiIitj4UVERERERGRlLLyIiIiIiIisjIUXERERERGRlbHwamKpqalQq9XiLSgoCAMHDsSCBQtw48YNs75nzpzBe++9h9deew0hISFQq9XIycmxTeBNpL7j1+v12L59O6ZNm4aXX34ZoaGhGD16ND766CMUFRXZbgBW8vhxefym0+lsHWKDHTlyBGq1GocPH6617dVXX4VarcaJEydqbRs2bBjGjx8PAPjuu+/wpz/9CePGjUNwcDDUarXV424qjR1/SUkJNm3ahJiYGAwYMAA9e/bEuHHjkJSUhPLy8uYYQqM0xeu/YcMGREdHIzw8HBqNBq+88go++OAD5ObmWj3+toK5ibnJktaam5iXmJee17wkb9SzqU6rV6+Gv78/ysvLcfbsWWzevBk6nQ5fffUV3NzcAABpaWk4efIkAgMD4eLiglOnTtk46qbztPGXlZUhISEBkZGRmDhxItzd3XHhwgVs2rQJ3333Hfbt2wdHR0dbD6PJmY7L47p27WqDaJpGeHg4JBIJ0tLSMGbMGLG9sLAQV65cgbOzM3Q6HSIiIsRtv/zyC27duoWpU6cCAL799lucP38egYGBsLOzQ2ZmZrOPo6EaO/6ff/4ZKSkpiIqKwu9//3s4OzsjPT0dGzduxH/+8x9s374dEonEFkOrl6Z4/YuKijB27FgEBATAxcUFV69exaZNm3D8+HF88cUXcHd3b/ZxtVbMTcxNlrS23MS8xLz0vOYlFl5W0q1bN2g0GgCAVquFXq9HQkICjh49itdffx0AMGfOHMydOxcAsG3btlaV3J42fkdHRxw7dszsjavVauHr64v58+fj66+/RlRUlK3Ct5qax6W1UCqV6NatW6337+nTpyGXy/H666/XmjVNS0sDYHzNAWDFihWQSo0n4JcvX96iElxjx9+pUyccP34czs7O4vZ+/frByckJf/3rX5Geno4+ffpYfyAN1BSv/4cffmi23XRcZs6ciWPHjmHChAlWHEHbwtzE3GRJa8tNzEvMS89rXuJSw2Zi+kArKCgQ20x/0G3B4+OXyWQWZwt+85vfADDOPFDLodVqcf36ddy5c0ds0+l0CAkJwaBBg5CZmYmSkhJx26lTpyCTycQP7pb+t9CY8Ts7O5slN5OW9LfQ2NffEqVSCQCQyzk/aE3MTcxNrRXzEvPS85iXWva7qgUxrY/v0qWLbQOxkfqO3zTj0FKXNzyNwWBAVVWV2U2v19s6rEbr27cvAJjNLul0OoSHh6NXr16QSCRIT0832xYUFIR27do1e6zWYI3xt6S/haYaf1VVFcrKynDhwgWsWrUKXbp0wfDhw5tnEG0UcxNzE9A6cxPzEvMS8PzlJRZeVmL6EHv48CFOnDiBTZs2ISwsDEOHDrV1aM2iIePPy8vD+vXrERISgiFDhjRjtM1n0qRJCA4ONru1huUdYWFhkEql4gfc/fv3kZWVhbCwMLi4uCAoKEj8wL59+zZycnLE0/mtQVOP/9KlS0hOTsbw4cPRvXv3ZhlDYzTF+PPz8xEcHIzQ0FCMHz8eer0eO3fuhIuLS7OPpzVjbmJusqQ15ibmJeal5zEvcQ2HlUyaNMns54CAACQmJraZZTPPOv7CwkLMmDEDgiDg73//e4s/xV+XtWvXIiAgwKzteb5Atb7c3NzQvXt3cc306dOnIZPJ0KtXLwDGD0DTB5ypT2tKcE05/pycHMyePRs+Pj5YsWJFM0TfeE0xfnd3d3z++eeoqKjAtWvXkJycjNjYWOzatQteXl7NOJrWjbmJucmS1pibmJeYl57HvNQ6P0GeA2vXrsXnn3+OlJQUTJ48GdnZ2Vi4cKGtw2o2zzL+Bw8e4I033kBeXh7++c9/onPnzs0cbfMJCAiARqMxu4WEhNg6rCah1Wpx48YN5OXlQafTITg4WJwVCg8Px8WLF1FcXAydTge5XI7evXvbOOKm1RTjz83NRWxsLGQyGVJSUqBQKJp5FA3X2PHL5XJoNBr07t0bEydOREpKCnJycpCUlGSL4bRazE3MTZa01tzEvMS89LzlJRZeVmL6EOvbty+WL1+OiRMn4sSJEzhy5IitQ2sW9R3/gwcPMHXqVOTk5GD79u0t4vQ1WWaaKTp16hROnTqFsLAwcZvpw+z06dPQ6XTQaDStbglZY8efm5uLmJgYAMDOnTvh4+PTTJE3jaZ+/X18fODl5VXr/5iixmFuYm5qS5iXmJeA5ysvsfBqJkuWLIGbmxvi4+NhMBhsHU6zszR+U2K7desWtm3bhqCgIBtHSY0RFhYGmUyGr7/+GllZWQgPDxe3tWvXDoGBgThw4AByc3Nb1XIOk8aM/+eff0ZMTAwMBgNSUlLQsWPH5g6/0Zr69b958yZ++eUXvPjii9YMu81jbmJuas2Yl5iXnre81DYWdT8H3NzcMHPmTKxbtw6HDh1CVFQU7t27J170d+XKFQDADz/8AKVSCaVSafYGaekeH//IkSMxbdo0XLhwAe+++y70ej3OnTsn9lcqlfDz87NdwFaSlZVl8Zui/Pz8xK8pbalcXV0RFBSEo0ePQiqV1jplHxYWhpSUFAC111Hn5uYiIyMDAPDTTz8BgDgD3bFjxxZxkXdDx19QUIDY2Fjk5+dj5cqVKCgoMPtqbx8fnxYxy9jQ8V+6dAmrV6/GyJEj0blzZ0ilUly5cgU7duyAQqHAG2+80azjaGuYm5ibgNabm5iXmJeet7zEwqsZxcTEYPfu3UhMTERkZCSysrIwf/58sz7Lli0DYFx7umvXLluEaTU1x9+zZ0/xA23lypW1+o4fPx5r1qxp7hCtbunSpRbbV6xYgYkTJzZzNE1Pq9UiIyMDgYGBcHV1NdsWFhaGHTt2wM7ODj179jTbptPpah0b099GS3ovNGT8V69exa1btwAYZ98fN3fuXMybN8+6gTeRhozf09MTXl5e2L59O/Lz81FVVQUfHx8MHjwYs2fPhq+vb3MPo81hbmJuas25iXmJeel5yksSQRCEBj+biIiIiIiInorXeBEREREREVkZCy8iIiIiIiIrY+FFRERERERkZSy8iIiIiIiIrIyFFxERERERkZWx8CIiIiIiIrIyFl5ERERERERWxsKLiIiIiIjIylh4UYuQmpoKtVot3oKCgjBw4EAsWLAAN27csHV4AIDNmzfj6NGjtdp1Oh3UajV0Op0NojI6fvw4Zs+ejf79+yMkJATh4eGYMmUKDh48iMrKSpvF9ThLx+qdd97B0KFDrbrfvLw8JCQk4OLFi1bdDxG1LsxNjcPc9GTMTa2P3NYBED2L1atXw9/fH+Xl5Th79iw2b94MnU6Hr776Cm5ubjaNbcuWLRg5ciSGDRtm1h4cHIy9e/eia9euzR6TIAh49913kZqaikGDBuGdd96Br68viouLodPpsGzZMty/fx9Tpkxp9tjqa86cOYiNjbXqPu7cuYONGzeiY8eOCAwMtOq+iKj1YW56NsxN9cPc1Pqw8KIWpVu3btBoNAAArVYLvV6PhIQEHD16FK+//rqNo7PM1dUVPXr0sMm+k5OTkZqainnz5mHu3Llm24YOHYrp06fj5s2bzRpTWVkZHB0d693fz8/PitEQETUec9OzYW6itopLDalFMyW6goICs/aMjAzMnj0b4eHh0Gg0iI6OxuHDh8363Lt3D3FxcRgzZgx69uyJfv36ITY2FmfOnKm1n4qKCmzcuBGjR4+GRqOBVqtFTEwMzp49CwBQq9UoLS3F/v37xSUnMTExAOpeznHs2DFMnjwZoaGh6NmzJ6ZOnYr//ve/Zn0SEhKgVquRlZWFhQsXonfv3ujfvz+WLl2K4uLiJx6byspKJCcnw9/fH2+99ZbFPh06dECfPn3EnwsLCxEXF4eIiAiEhITglVdewYYNG1BRUWH2vPLycqxfvx5Dhw5FSEgIIiIisGzZMhQVFZn1Gzp0KGbNmoVvvvkG0dHR0Gg02LhxIwAgOzsb06ZNQ2hoKLRaLf785z/j4cOHtWK0tJxDrVZj+fLlOHDgAEaPHo3Q0FC8+uqr+O6778z63bx5E0uXLsWIESMQGhqKiIgIzJ49G5cvXxb76HQ6TJgwAQCwdOlS8fVLSEgQ+9Tn/UREZMLcVDfmJuamtoxnvKhFy8nJAQB06dJFbEtLS8P06dMRGhqKuLg4tGvXDocPH8aCBQtQVlaG1157DYDxgxwA5s6dC09PT5SWluLbb79FTEwMduzYAa1WCwCoqqrC9OnTkZ6ejtjYWPTt2xd6vR7nz5/H7du3AQB79+7FlClToNVqMWfOHADG2cS6HDp0CIsXL8bAgQOxfv16VFRUIDk5Wdx3zYQDAPPmzcOYMWMwYcIEXLlyBevXrwdgXN5Slx9//BGFhYWYOHEiJBLJU49leXk5YmNjcevWLcybNw9qtRpnzpxBUlISLl68iKSkJADGJSJz5sxBWloaZs6ciT59+uDy5ctISEjAuXPnsHfvXtjb24u/NzMzE9nZ2XjzzTfRqVMnODk54e7du4iJiYFcLseHH34IDw8PHDp0CH/5y1+eGqfJ999/j4yMDPzhD3+As7MzkpOTMXfuXBw5cgSdO3cGYFymoVAosGjRIiiVSjx48AD79+/HpEmTsH//fvj7+yM4OBirV6/G0qVL8eabb2Lw4MEAAB8fHwD1fz8REZkwNzE3MTeRRQJRC7Bv3z5BpVIJ586dEyorK4WSkhLhhx9+EAYMGCD87ne/EyorK8W+o0aNEqKjo83aBEEQZs2aJQwYMEDQ6/UW91FVVSVUVlYKU6ZMEd566y2xff/+/YJKpRI+/fTTJ8bYo0cP4e23367VnpaWJqhUKiEtLU0QBEHQ6/XCwIEDhcjISLNYSkpKhH79+gmTJ08W2+Lj4wWVSiVs3brV7HfGxcUJGo1GMBgMdcbz5ZdfCiqVStizZ88T4zbZs2ePoFKphMOHD5u1JyUlCSqVSvj3v/8tCIIg/PDDDxZjMu1v7969YtuQIUOEwMBA4dq1a2Z9161bJ6jVauHixYtm7VOnTjU7VoIgCG+//bYwZMgQs34qlUro37+/UFxcLLbl5+cL3bt3F7Zs2VLnGKuqqoSKigphxIgRwqpVq8T2//3vf4JKpRL27dtX6zkNfT8RUevH3MTcVBNzEz0NlxpSizJp0iQEBwejV69emD59Otq3b4/ExETI5caTtzdv3sS1a9cwbtw4AMYZQdPt5ZdfRn5+Pq5fvy7+vj179mD8+PHQaDQICgpCcHAwTp48iezsbLHPiRMn4ODg0GTr9K9fv447d+4gKioKUumvf4IuLi4YMWIEzp8/j0ePHpk9x9JyhvLy8lrLWBojLS0Nzs7OGDVqlFm7adbs5MmTYr+a7SajR4+Gs7Oz2K9mrC+99JJZm06nQ7du3dC9e3ez9sjIyHrHq9VqzWZuPT094eHhgdzcXLGtqqoKmzdvxpgxYxASEoKgoCCEhITgxo0bZq9xXZ71/UREbRNzkxFzE3MTPRmXGlKLsnbtWgQEBODhw4c4fPgw9u7di4ULFyI5ORkAcPfuXbHf2rVrLf6O+/fvAwC2b9+ONWvW4Le//S3mz58Pd3d3SKVSfPzxx7h27ZrY/969e/Dy8jJLRI1h2n+HDh1qbfPy8oLBYEBRURGcnJzEdoVCYdbPtFyirKyszv34+voC+HXJy9MUFhbC09Oz1tIPDw8PyOVycflLYWEh5HI5lEqlWT+JRAJPT0+xn4mlcRYWFqJTp0612j09PesVK1D7mADG41JeXi7+vGbNGuzevRszZsxAWFgY3NzcIJFI8P7775v1q8uzvJ+IqO1ibjJibmJuoidj4UUtSkBAgHjRct++fWEwGPDZZ5/hyJEjGDVqFNzd3QEAs2bNwvDhwy3+DtMM18GDBxEeHo5ly5aZbX/8IlqlUon09HQYDIYmSXCmGPPz82ttu3PnDqRSKdq3b9/o/YSEhEChUODYsWNYtGjRU9fSKxQKnD9/HoIgmPUtKChAVVWVGLdCoUBVVRXu3btnluAEQcDdu3fF18fE0n4VCoWYOGqy1NYYBw8eRHR0NBYuXGjWfv/+/Xod42d5PxFR28XcVH/MTcxNbRmXGlKLtmTJEri5uSE+Ph4GgwH+/v7o0qULLl26BI1GY/FmWgIgkUjMLrQFgEuXLuHcuXNmbRERESgvL0dqauoTY7G3t3/iLJ/JSy+9BG9vb3zxxRcQBEFsLy0txTfffIMePXqYzSg2lJ2dHaZPn45r167hH//4h8U+BQUFSE9PBwD069cPpaWltf6jzQMHDojba94fPHjQrN/XX3+N0tJScfuTaLVaZGVl4dKlS2btX3zxxdMH9gwkEgns7OzM2r7//nvk5eWZtdU1S/ss7yciIhPmproxNzE3tWU840UtmpubG2bOnIl169bh0KFDiIqKwrJlyzBjxgxMmzYN48ePh7e3Nx48eIDs7GxkZmYiPj4eADB48GAkJiYiPj4eYWFhuH79OhITE9GpUyfo9XpxH5GRkUhNTUVcXByuX78OrVYLQRBw/vx5BAQEYOzYsQAAlUqFU6dO4fjx4+jQoQNcXFzg7+9fK2apVIolS5Zg8eLFmDVrFiZPnoyKigps27YNRUVFWLRoUZMdH1NyS0hIQEZGBiIjI8X/pPL06dP49NNPMW/ePPTu3RvR0dHYvXs33n77beTm5kKlUiE9PR1btmzBoEGD0L9/fwDAgAEDMHDgQHz00UcoKSlBr169cPnyZcTHxyMoKAhRUVFPjWvKlCnYt28fZs6ciT/+8Y/iN0fVXEbTFAYPHix+Q5RarUZmZia2bdsmfiuUiZ+fHxwdHXHo0CEEBATA2dkZXl5e8Pb2rvf7iYjIhLnpyZibmJvaKhZe1OLFxMRg9+7dSExMRGRkJPr27YvPPvsMmzdvxqpVq1BUVASFQoGAgACMHj1afN7s2bPx6NEjfP7550hOTkbXrl0RFxeHo0eP4tSpU2I/uVyOrVu3YsuWLfjyyy+RkpICFxcXdO/eHREREWK/9957D8uWLcPChQvx6NEjhIeHY9euXRZjHjduHJycnJCUlIQFCxZAJpMhNDQUO3fuRK9evZrs2EgkEqxevRrDhg3Dp59+Kh4PU/yLFy8WL0R2cHDAzp07sWHDBiQnJ+P+/fvw9vbGG2+8YfYfXEokEiQmJiIhIQGpqanYvHkzFAoFoqKisHDhwloztZZ06NAB//rXv7By5UrExcXByckJw4YNwwcffCB+5XFTeO+99yCXy5GUlITS0lIEBQUhISEBH3/8sVk/JycnrFq1Chs3bsS0adNQWVmJuXPnYt68efV+PxER1cTcVDfmJuamtkoi1DyfTERERERERE2O13gRERERERFZGQsvIiIiIiIiK2PhRUREREREZGUsvIiIiIiIiKyMhRcREREREZGVsfAiIiIiIiKyMhZeREREREREVsbCi4iIiIiIyMpYeBEREREREVkZCy8iIiIiIiIrY+FFRERERERkZf8H8BLtKosFC0QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHbCAYAAAAJakHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACffUlEQVR4nOzdZ3hc1bn//e+eUe+y1at7V3HvgCmmmIQAduDJAUKHgEkh+VMOcEJykkDISUIwDsEBktAcSozp1TQDxg1LlntXtWTJsnqd8rzYI9nCkq1RG0nz+1zXXCPtNvcag/bcs9a6l+F0Op2IiIiIiIh4GYunAxAREREREfEEJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiIiIiIh4JSVDIiIiIiLilZQMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQyIiIiIi4pWUDIl4WEFBAWPHjuWee+7xdCgiIiK6L4lX8fF0AOJ5Z599NoWFhZ069tJLL+Xhhx/ulTjGjh0LgMVi4aOPPiIxMbHd4y666CL2798PwD/+8Q/mzJlz0jU68tBDD3HZZZcBsH79eq655hpmzJjBc8891+7xBQUFnHPOOSQmJvLxxx+73aYWq1ev5u677wbgN7/5DUuWLOnytb4tJyeHF198kQ0bNlBaWoqPjw+JiYnMmzePa6+9ltjY2HbPa3mvdu/e3eG1W/7bWLNmDUlJST0Wc0f279/Piy++yPr16zl8+DCNjY1EREQwYcIEzjvvPL773e/i7+9/0nldfQ9EpH/SfUn3pY701X2pr2LR/cvzlAwJ11xzDdXV1R3ur6+v55///Cd2u53Ro0f3aiw+Pj7YbDZWrVrFHXfccdL+zZs3s3///tbjOrJ06dJ2t48fP77HYu2sw4cP85vf/IagoCDq6up67LpOp5P/+7//46mnnsLHx4c5c+ZwwQUX0NzczJYtW3jmmWdYuXIlDz/8MBdccEGPvW5vefzxx1m+fDkOh4PMzEwuvfRSgoODKSsrY9OmTdx///2sXLmSVatWtZ4z2N4DETHpvtS7dF/yPL1X/YeSIeHaa6/tcJ/T6eQnP/kJdrud888/n+uvv75XYxk6dChRUVGsWrWK22+/HYul7UjOV199FV9fX2bPns3nn3/e4XXau2F5gtPp5N577yUiIoLzzjuPZ555pseuvXz5cp566ikSExN58sknT/pA8P777/P//t//48477yQ8PJzZs2f32Gv3tCeeeIJly5YRHx/PX/7yFzIyMk465vPPP+epp55qs20wvQcicpzuS71H96X+Qe9V/6E5Q3JKf/nLX3j//feZMGECv//97zEMA2g7nrigoICf/exnzJw5k7S0NC677DLWrFnT5ddcvHgxRUVFfPnll22219TU8N5773H22WczdOjQbrWrrzz77LN8/fXXPPTQQwQFBfXYdfPz83niiSfw9fXliSeeaPeb0fPPP597770Xu93Ogw8+iMPh6LHX70kFBQUsX74cX19fVqxY0W4iBHDGGWe0SYYG03sgIp2n+1L36L7keXqv+hclQ9Kht99+myeeeILo6GieeOIJAgMDTzqmsLCQJUuWUFhYyCWXXMJFF13E3r17uf3221m3bl2XXvc73/kOgYGBvPLKK222v/nmm9TV1bF48eIuXbev7d+/nz/+8Y9cc801TJ8+vUevvWrVKmw2G+ecc84px6MvWbKE6OhoDh06xIYNG3o0hp6yatUqmpubWbhwIWPGjDnlsX5+fm3OGyzvgYh0ju5L3aP7Uv+g96p/0TA5adfWrVu599578ff3Z/ny5cTFxbV73IYNG7jjjjvajIW++OKLufHGG3n66ae71K0bGhrK+eefz9tvv015eTlDhgwB4JVXXiEhIYF58+bxzjvvnPIay5YtO2lbYmJi6yTV3maz2fh//+//ER8fz5133tnj19+8eTMAc+fOPeVxPj4+zJw5k7feeotvvvmGWbNmnXRMe+9Vi6qqqu4F2gmbNm0CcPu/lZ58D0Sk/9N9qXt0X+qa3ohF96/+RcmQnKSkpITbbruNxsZG/vCHP3Q4bAnMP+Q/+tGP2mybP38+CQkJ5OTkdDmGJUuWsHr1al5//XWuu+46du7cyfbt21m6dOlJ47Xb8/jjj5+0bcaMGX1201m+fDk7d+7kxRdfJCAgoMevX1ZWBtDhh4ETtRxz5MiRdve39171pZa2uFsxpyffAxHp33Rf6j7dl7qmN2LR/at/UTIkbdTX1/OjH/2I0tJSbrnlFr773e+e8vjx48djtVpP2h4XF0dWVlabbe19u3LppZe2W45y2rRpDB8+nFdffZXrrruOl19+GYvFwuWXX96pdpyqFGZ3na4dW7du5cknn+S6665j8uTJvfI6TqcToHWs/Km0HNPRsZ0pG9oZ7vz7nsidtnT1vPbegyeffJIPPviAgwcP4ufnR2ZmJnfeeedph+qJSN/Sfen0dF9qX1fvS92JpTP3lp58r6T7lAxJK6fTyd1338327ds555xz+NnPfnbac0JDQ9vd7uPjc9Jkv46+Fevoj9LixYv5wx/+wLp163jrrbeYM2cOCQkJnWhJ57R8k3eqSYnt/cE6VTtahiEMGzaMn/70p92K71SvEx0dzYEDByguLj7tdVqOiY6O7lY8p+Puv2+LmJiYTrflRN19DzZs2MAPfvAD0tLScDqdPPbYY1x33XW8/fbbREREuBWLiPQO3ZdOpvtS53X1vtQdnbm39Mf3ypspGZJWjz32GO+//z5jx47lD3/4Q49/C+Hut2KXXnopjz76KPfccw9VVVU9PkG15YZZUVHR4THHjh0DICwsrHXbqdpRV1fHoUOHAEhLS2v3mPvvv5/777+fa665hvvuu6/Da53qdaZOncr69ev56quvTrlQnt1uZ/369QBMmTKlw+N6Qle/9Zw6dSpff/01X3/9tVuL/nX3PXj66afbHPfII48wbdo0vvnmG84++2w3WyEivUH3pZPpvtR5vdkb15HO3Fv643vlzVRNTgCzQs9f//pXhg4dyhNPPEFwcLCnQ2Lo0KGcddZZFBcXExkZyTnnnNOj1x8+fDh+fn4cOnSo9ebybVu2bAFOv4J4Cz8/PxYvXtzuY8KECYD5R3Dx4sXdGqpw2WWXYbVa+fDDD9m3b1+Hx/3nP//hyJEjDB8+nBkzZnT59XrTZZddhq+vL++///4p2wLQ1NTU5ryefA9qa2txOBxtPmCIiOfovqT70mDQ3r1F71X/omRIWiv0+Pr6smzZMhITEz0dUqu7776b5cuXs2LFijZllXuCv78/F154ITabjUceeaR16EGL4uLi1m94vve973XqmgEBAfz2t79t99HyjdCll17Kb3/7Wy666KIux56cnMwtt9xCc3Mzt956a7t/TD/66CN++9vfYrVa+eUvf9mpCb6ekJSUxNKlS2lububmm2/ucILz559/zo033tj6e0+/B7/97W8ZP358tz4MiEjP0H1J96XBor17i96r/kXD5LxcTU1Na4WetLQ0vvrqK7766qsOj+/LMqBg/sFITk7utevfc889bN26lVWrVpGVlcXcuXMJDg6mqKiINWvWUFtby/XXX98vy1necccd1NfX849//INLLrmEefPmMWrUKGw2G1u2bCE7O5uAgAD++Mc/9vuVq2+99VZsNhvLly9v/XZy0qRJBAcHU1ZWxqZNmzh06BCTJk1qc15PvQe///3v2bx5MytXrmx34rWI9B3dl3RfGixOdW/Re9V/KBnychUVFZSWlgKQk5Nz2rKjfVkGtC8MGTKEV199leeee44PP/yQVatW0djYSHh4ONOnT+eKK67ot/NHLBYL99xzDxdddBEvvPACGzduZN26dVitVhITE7n++uv54Q9/2KnSnf3B0qVLufDCC3nxxRdZv349q1atoqmpiYiICMaNG8eNN97IJZdc0uacnngPHnroId5++23+9a9/9eoHHBHpHN2XdF8aDE53b9F71X8Yzm/3wYqIeInf/OY3vPPOOzz33HOMHDnS0+GIiMggoHvLwKKeIRHxSg8++CBvvPEGy5cvJywsrPWb6KCgoH4xUVtERAYe3VsGHvUMiYhX6qgS09KlS7njjjv6OBoRERkMdG8ZeJQMiYiIiIiIV1KdPhERERER8UpKhkRERERExCspGRIREREREa+kZEhERERERLzSoCmt7XA4sNlsWCwWDMPwdDgiIl7D6XTicDjw8fHBYtF3bCfSvUlExDM6e28aNMmQzWY77SrVIiLSe9LS0vDz8/N0GP2K7k0iIp51unvToEmGWjK+tLQ0rFar2+fb7XZycnK6fP5Ap/ar/Wq/2t/dv5/qFTqZ7k3do/ar/Wq/2t/b96ZBkwy1DD+wWq3d+g+mu+cPdGq/2q/2q/1dpWFgJ9O9qWeo/Wq/2q/2d9Xp7k36Gk9ERERERLySkiEREREREfFKSoZERERERMQrKRkSERERERGvpGRIRERERES8kpIhERERERHxSkqGRERERETEKykZEhERERERr6RkSEREREREvJKSIRERERER8UpKhkRERERExCspGRIREREREa+kZEhERERERLySkiEApxPjjduJ2/OcpyMREREBoKiinhv+tZnNhxs9HYqIyKDVb5KhTZs2cdNNNzF9+nTS09NZuHAhy5cv75sXb6jEkr2ShN3/gqbavnlNERGRU8jKr+DTPaWs2lnj6VBERAYtH08HAPDmm29y1113ceGFF/L73/+eoKAg8vPzKSkp6ZsAAiNwBsdg1B6BI9shdXbfvK6IiEgHxsaFAnCgohmb3YHVavVwRCIig4/Hk6GSkhL+53/+hyuuuIIHH3ywdfusWbP6NpD4dNj3EUZxjpIhERHxuOFDgwkN8KG6wcaekhrSkiM9HZKIyKDj8WFyr7zyCnV1ddx0000ejcMZm27+ULzVo3GIiIgAWCwG6YnhAGQXVHo4GhGRwcnjPUMbN24kIiKCAwcOcNttt7F3717Cw8M577zzuOuuuwgJCXHrena7vUtxOGImmpnh4a1dvsZA1tJmb2w7qP1qv9p/4nNXz5eel54Uzpf7j7JVyZCISK/weDJUUlJCfX09P/nJT7jlllvIzMwkJyeHZcuWsXfvXl588UUMw+j09XJycroUh1+tP2kAR3aQ9c0msHj8rfGIrr5/g4Xar/Z7M29vf3+UmRwBQHZBhUfjEBEZrDz+id/pdNLY2MjSpUu5+eabAZg5cya+vr787ne/Y926dcyZM6fT10tLS+vSJFO7bRK2z4PxsdWSmRAAcZPcvsZAZrfbycnJ6fL7N9Cp/Wq/2t/19recLz0vPTEMgL1HaqhttBHs7/HbtojIoOLxv6oREREAzJs3r832M844g9/97nds377drWTIarV2+cNMXfgoQo9mYz2yDRIzunSNga47799goPar/Wq/97a/P4oJCyAq0EJZvYNthZXMHDHU0yGJiAwqHi+gMHbs2Ha3O51OACyWvguxLmyU+cPh7D57TRERkVMZNcQXMNcdEhGRnuXxZGjhwoUAfP755222t/yekdF3PTR14aPNH1RRTkRE+onRrmRI84ZERHqex4fJzZs3jwULFrB8+XIcDgeZmZls27aNxx9/nAULFjBt2rQ+ieNf63IJakxhOEBxDjgc0Ie9UiIiIu1p6RnKzldFORGRnubxZAjg0Ucf5fHHH+fll19m+fLlxMTEcO2117J06dI+ef2qhmZ+/dZOAi2hXBEUgNFUA8cOwtCRffL6IiIiHRk5xBeLAYUV9RypbiAmNMDTIYmIDBr9IhkKCAjgF7/4Bb/4xS888vqh/j5EBPpSUQ91EWMJLsuGw1lKhkRExOMCfSyMiglhT0kNW/MrOXeCkiERkZ6icWCAYRikJZmrfBf4u+YNHda8IRER6R8yXPcozRsSEelZSoZcWm40Wx2p5gYVURARkX4i3XWPUkU5EZGepWTIJT3RvNF8VhVvbjicDa7y3iIiIp6UkRQBQHZ+BQ6H7k0iIj1FyZBLy7duH5VH4TSsUHcUqoo8HJWIiAiMiQ3B38dCVYONQ0drPR2OiMigoWTIJTrUn6hACw1OP+rDXYUTNFRORET6AV+rhbREzRsSEelpSoZOMNK1loOKKIiISH+TkRwBaL0hEZGepGToBC2rfG+1u4ooHM72YDQiIiLHtSRDKqIgItJzlAydoGWV709aiihomJyIiPQTma4iCjuKqmi02T0bjIjIIKFk6AQjIn0xDPi8JRmqzIe6cs8GJSIiAiQPCSQyyJcmu4Ndh6s9HY6IyKCgZOgEwb4WRkQFU00Q9cHJ5kb1DomISD9gGMbxeUMqoiAi0iOUDH1LS4nt/IAx5gbNGxIRkX4iU/OGRER6lJKhb2lZfHWrPcXcoIpyIiLSTxyvKFfh0ThERAYLJUPfkuHqGfpURRRERKSfyXAVUdhfWktVQ7NngxERGQSUDH3LuPgwfK0G6+uSzA1le6GxxrNBiYiIAEOC/UgZEgTAVq03JCLSbUqGvsXfx8K4uDBKiaAhIBpwQsl2T4clIiICoCIKIiI9SMlQOzKSzaFyBf6jzQ0aKiciIv1Ey3BuFVEQEek+JUPtSHeNyc5uLaKginIiItI/TE6JAMxkyOl0ejYYEZEBTslQO1pKl35WlWBuUDIkIiL9xMSEcKwWg9LqRoqrGjwdjojIgKZkqB0jo0MI8rPyTbOrZ+jITrA1eTYoERERIMDXyri4UEAltkVEukvJUDusFoO0xHAKnNE0+YaBoxlKd3k6LBEREeB4EYUtSoZERLpFyVAHzBuNQYH/SHODhsqJiEg/kdkyt1XJkIhItygZ6kDLwnbZtmHmBlWUExGRfqKlZyinoBK7Q0UURES6SslQB9JdpUu/qIk3NxxWMiQiIv3DqJgQgv2s1DbZ2V+qhcFFRLpKyVAHkiIDGRLsx1b7MHNDcQ44HB6NSUREBFxzW7XekIhItykZ6oBhGGQkhXPAGY/NEgDNtVC+39NhiYiIAMeHymnekIhI1ykZOoX0pAjsWCn0G2FuUBEFERHpJ1qKKKhnSESk65QMnULL4qvZdtd6QyqiICIi/URLz9Cu4moamu2eDUZEZIBSMnQKLUUUvq5LNDeoiIKIiPQT8eEBRIf6Y3c42V5U6elwREQGJCVDpzA0xJ+kyEByHMPNDYezwakSpiIi4nnm3NYIALLylQyJiHSFkqHTyEiKYI8zCQdWqC+HqkJPhyQiIgLA5JQIQEUURES6SsnQaWQkh9OIH0V+qeYGDZUTEZF+onWB8IIKj8YhIjJQKRk6jXTXjWarzVVEQRXlRESkn2hZayj3aB3ltU0ejkZEZOBRMnQakxLDMQzY2JhsblBFORER6SfCA30ZER0MqHdIRKQrlAydRoi/D6NjQtjuGGZu0DA5ERHpR1rWG9K8IRER9ykZ6oT0pAh2OF1zhqoKoPaoZwMSERFxaVlvSMmQiIj7lAx1QkZyBDUEUeyTYG4o1rwhERHpH1oXCC+oxKnlH0RE3KJkqBMyXBNUt9pUUU5ExBvs3LmTm2++mbPOOov09HRmzJjBFVdcweuvv+7p0E4yLj4UP6uF8tomCo7VezocEZEBxcfTAQwE4+LC8LNayGpOYaHvOhVREBEZ5KqqqoiLi2PRokXExsZSX1/Pm2++yV133UVhYSG33Xabp0Ns5e9jZXxCGNn5FWzJryB5SJCnQxIRGTCUDHWCn4+F8QlhbC8cZm5QeW0RkUFt5syZzJw5s822BQsWUFBQwMsvv9yvkiGAzKRwsvMryM6v4LsZCZ4OR0RkwNAwuU7KTAo/XlHu6H5orPFoPCIi0vciIyOxWq2eDuMkKqIgItI16hnqpPSkCP5FOOWWoQxxHIWSbZAyy9NhiYhIL3I4HDgcDqqqqnj33Xf54osveOCBB9y+jt1ud//F7c04t76Eb0Psac9PSwgFYFtRJQ1NzfhaB8d3nS3t7tL7Nwio/Wr/ic/eprvt7+x5SoY6KSPZVUTBnsJZxlGziIKSIRGRQe3BBx/kpZdeAsDX15f77ruPK6+80u3r5OTkuH1OxOG1jNz0S5Lj5pETGH3KYx1OJ8G+BrXNDt5au5nhEb5uv15/1pX3bzBR+9V+b9bb7fd4MrR+/Xquueaadve99NJLZGZm9m1AHRgRFUKIvw/Z9mGc5bNF84ZERLzArbfeypIlSygvL+fjjz/mf//3f6mvr+eGG25w6zppaWnuD6+LccImCC3bQtrECVh9/U55+OSsjXyx7ygNQXFkZia791r9lN1uJycnp2vv3yCg9qv9an/X299y/ul4PBlqceedd540WXX06NEeiuZkFotBWmI4Ow4NMzdorSERkUEvISGBhASzIMGZZ54JwJ/+9CcuvfRShgwZ0unrWK1W92/mCZk4/ULwaarBfnQP1sSMUx6emRzJF/uOsrWwkqusw9x7rX6uS+/fIKL2q/1qf++1v98MKk5NTSUzM7PNIzg42NNhtZGRHMF25zDzlyO7wNbk0XhERKRvpaenY7PZyM/P7/0Xs/pA0nQAjPx1pz38eBGFyt6MSkRkUOk3ydBAkJEUToEzimojBBzNULrT0yGJiEgfWr9+PRaLheTkvhmG5kyZbf6Q+9Vpj21ZIHzPkWpqGm29GZaIyKDRb4bJ/frXv+bOO+8kICCAyZMn86Mf/Yhp06a5fZ3uVpw41fmTEkIBgxx7KnMs23EUbsEZM6lLr9ffqGKJ2n/is7dR+/umYs9A8sADDxASEkJaWhpRUVEcO3aM9957j3feeYcbbrjBrSFy3eFMmQOAkf81OJ1gGB0eGxMWQEJ4AEWVDWwrrGTWiKF9EqOIyEDm8WQoNDSUa665hpkzZxIREUFubi5PP/0011xzDU8++STz589363rdrThxqvOdTicR/ha22Ycxx7Kdsm0fk2+kdev1+htVLFH7vZna793tP1FmZiarVq3itddeo7q6mqCgIMaNG8cjjzzCJZdc0neBJE7BYfHFUlMC5Qdg6MhTHp6ZEkFRTjHZ+RVKhkREOsHjydCECROYMGFC6+/Tpk3jvPPO4zvf+Q5/+MMf3E6Gultx4nTnT922me17UgGIth1maD+pdtddqlii9qv9an9vV+wZSC6//HIuv/xyT4cBPgHURowjtDzHHCp3mmQoIymCd3KKyS6o6Jv4REQGOI8nQ+0JCwvjrLPO4t///jcNDQ0EBAR0+tzuVpw43fkZyZG8vns4AEbJNqwGYBk8H55UsUTtV/vVfulfaoakHU+Gplx9ymNbiihk5VX0fmAiIoNAvy2g4HQ6ATBOMT7aE9KTwjnojKcef2iug6P7PR2SiIgMYjVD080f8k5fRCEtMRyLAUWVDRypaujlyEREBr5+mQxVVlby6aefMn78ePz9/T0dThsZSRE4sLDT4aokVLzVswGJiMigVhM5EadhgWOHoLLwlMcG+/swOiYUgOwCldgWETmdLg2T27t3L9988w0lJSU0NDQQGRnJqFGjmD59OiEhIW5d6+c//znx8fFMmjSJyMhIcnNzeeaZZzh69CgPP/xwV8LrVZHBfqQMCWJ71TCmWPbB4WxIW+zpsEREZJBy+AZDbJq52HfeutPeczKSw9ldUk12fgXnTYjtoyhFRAamTidDlZWVvPTSS7z00ksUFRW1DmNrczEfH8444wyuvvpqZs+e3anrjh07lnfeeYd///vf1NXVER4eztSpU3nkkUdIT0/vfEv6UEZyBNu2mfOGOJzt2WBERGTQc6bOxijONucNnSYZykyO5OVNBSqiICLSCZ1Khp599lmWL18OwEUXXcSMGTOYOHEiQ4YMwd/fn8rKSvLz88nKymLNmjVcf/31zJkzh//5n/8hNTX1lNe++eabufnmm7vfkj6UkRTO6q2udhVvPe3aDyIiIt3hTJ4N6//WucVXk83FV7PzK3A4nFgsuj+JiHSkU8nQc889x7333suiRYvw9fU9aX9UVBRRUVFMnjyZ6667jry8PJ544gneffddbr311h4P2tMykiN4xJmMDSs+9cegsgAi+mY1chER8UIprtEWpTuhrhyCOl70dUxsKAG+FqoabBw8WsvIaPeGr4uIeJNOJUPvvvsuPj6dn16UkpLCQw89NChXJQeYmBCGzfBlryOR8ZY8c6ickiEREektwVEQNQbK9pjzhsYt6vBQX6uFSQnhbMo9RnZ+hZIhEZFT6FQ1ub1793bp4oN1vYogPx/GxIayzTHM3KCKciIi0ttS55jPnRoqFwGYQ+VERKRjnUqGLr30Ui677DJefPFFqqurezumASEjKYLtzmHmL4eVDImISC9LcT8ZylJ5bRGRU+pUMnTLLbdQXl7Or3/9a+bNm8cvfvELvv76696OrV9LTw5nu3qGRESkr7T0DB3OhsaaUx462ZUM7SyqotE2OIesi4j0hE4lQz/72c/45JNPWLFiBQsWLOCDDz7guuuu45xzzuGvf/0rhw8f7u04+52MpAh2OF0V5aoKobbMswGJiMjgFpEM4SngtEPBhlMemhQZyJBgP5rsDnYd1ogOEZGOdCoZAjAMgzPOOINHH32UL774gvvuu4/w8HAee+wxzj33XG644Qbee+89mpubezPefmNsXCg2n2AOOOLMDVpvSEREeluqq6rcaYbKGYZBRpJZYjtL84ZERDrU6WToRGFhYVx11VWsWrWK1atX84Mf/IAdO3bws5/9jDPOOKOnY+yXfK0WJiaEsaNl3pCGyomISG9rLaKw7rSHqoiCiMjpdSkZOtG4ceP47ne/y9lnnw1ARUVFdy85YKQnRRyfN6QiCiIi0ttaiigUbARb4ykPPV5EoaJ3YxIRGcA6v3jQt5SXl/PGG2/wn//8h3379mG1WlmwYAGLFy/uyfj6tczkCP7z9TDzFw2TExGR3hY1GoKioK4MirZAyqwOD81IigDgQGktlfXNhAeevGi6iIi3cysZcjgcfP755/znP//h008/pbm5mWHDhnHnnXdy6aWXEhUV1Vtx9kvpSeH8uqVnqHw/NFaDf6hHYxIRkUHMMMx5QzvfhNwvT5kMDQn2I3VoELlH68gpqGTeaO+6R4uIdEankqGDBw/yn//8h9dff52ysjICAgK4+OKLufzyy5k2bVpvx9hvDRsajC1gCIedQ4g3yqF42/HJrSIiIr0hda4rGVoH8099aEZSBLlH68guqFAyJCLSjk4lQxdeeCEA6enp3HHHHSxatIjg4OBeDWwgsFgM0pMi2JY7jHhruTlUTsmQiIj0phTXfSZ/PTjsYLF2eGhGcgRvZBexJa+ib2ITERlgOpUM/fCHP2Tx4sWMHj26t+MZcNKTwtlxaBjn8Y0qyomISO+LSwO/UGisgpJtEJ/R4aGZycfLazudTgzD6KsoRUQGhE5Vk7v33nvbTYQOHDjA5s2bqaur6/HABoqM5Ai2O1yLr6qinIiI9DaL9fhcodOsNzQxIRyrxaCsppHDlQ19EJyIyMDSpdLaq1ev5owzzmDRokVcddVVHDx4EICf/OQnvPzyyz0aYH+XcUJ5bWfpztOWOhUREem21sVXvzzlYQG+VsbFmYV9tN6QiMjJ3E6G3n33Xe655x4mTJjAAw88gNPpbN03ceJE3n333R4NsL+LCw/AFprIMWcIhsMGR3Z4OiQRERnsUueaz7nr4IT7cHsytd6QiEiH3E6GVqxYwWWXXcbf/vY3rrjiijb7RowYwb59+3osuIEiPTlSQ+VERKTvJEwGq7+53lDZ3lMe2rr4qoooiIicxO1kaP/+/SxatKjdfREREVRUVHQ3pgEnMzmC7c5h5i8qoiAiIr3Nxx+Spps/55163lBLz1BOYSV2x6l7kUREvI3byVBgYCDV1dXt7ispKSE8PLzbQQ006UnhbHcMN385nO3ZYERExDu0zhs6dTI0MjqEYD8rdU129h2p6YPAREQGDreTocmTJ/PCCy+0mSvUYtWqVcyYMaNHAhtI0hMj2O40h8k5S7ab6z6IiIj0ptQ55nPuulMeZrUYpCWZX1SqiIKISFtuJ0O33347WVlZLF68mOeeew7DMPjggw+49dZb2bRpE7feemtvxNmvhQf5wpCR1Dn9MZrr4Kj3zZsSEZE+ljQDDCtU5kFF/ikPzVARBRGRdrmdDKWlpfH3v/+duro6Hn74YZxOJ08++SQHDx5kxYoVjBkzpjfi7PcmJQ9hpzPF/EVFFEREpLf5hxxfcDXv1L1DmUkRgHqGRES+zacrJ82aNYt3332XvLw8ysrKiIyMZPjw4T0d24CSkRTBtm3DmGrZC4ezIH2Jp0MSEZHBLnUOFH1jrjeU/v0OD8tMiQBgV3E19U12Av2sfRSgiEj/1qVFV1ukpKQwZcoUr0+EADKSw1sryjlVUU5ERPpC67yhUxdRiAsLICbUH7vDyfaiyj4ITERkYOhUMvTOO++4feGSkhI2b97s9nkD1cSEcHZhJoXOoq2nXQRPRESk21JcFeXK9kBNaYeHGYZxfN6QhsqJiLTqVDL061//mksuuYRXXnmFmppTl+Xctm0bv/rVrzj//PPZtWtXjwQ5EAT4WiF6PM1OK5bGCqjI83RIIiIy2AUNgejx5s+nmzfkSoayC9QzJCLSolNzhj788EOWLVvGb3/7W379618zYcIEJkyYwNChQ/Hz86OyspL8/HyysrIoLS1l9OjRLFu2jPnz5/d2/P3KxJRo9pQnMdHINRdfjUz1dEgiIjLYpc6B0p1mMjThux0elqEiCiIiJ+lUMhQaGsp///d/c/vtt7Nq1So+++wzVq9eTX19fesxycnJzJ8/n+985zvMmjWr1wLuzzKSwtn+zTAmWnLNinLjv+PpkEREZLBLnQObnjaLKJxCy1pDeeV1lNc2MSTYry+iExHp19yqJhceHs51113HddddB0B1dTUNDQ1ERETg6+vbKwEOJOlJEbzkHAZ8hvNwNoanAxIRkcGvZd5QcQ40VEFAWLuHhQf6MjI6mP2ltWTnV7BgXEwfBiki0j91q5pcaGgo0dHRSoRcxsSGsMcyAgB7UbaHoxEREa8QnggRqeB0QP6GUx6qIgoiIm11KxmStnysFqxxaTicBj61xaes7CMiItJjUueaz3mnLrF9vIhCRe/GIyIyQCgZ6mFjU+M56IwzfylW75CIiPSBTq43dGIRBaeWgBARUTLU09KTwtnhdFWRO6zFV0VEpA+0JEOFm6G5ocPDxsWH4me1cKyumfzy+g6PExHxFkqGelhmcgTbHObiq5o3JCIifWLICAiJBXuTmRB1wN/HyvgEs8BClobKiYgoGeppKUOCyPUbCYCtMMuzwYiIiHcwjONV5U4zVG5ySxGFvIrejUlEZABwOxn63//9Xw4cONAbsQwKhmFgScgEwL/qkFnmVEREpLd1sohCRrK53pCKKIiIdCEZWr16NYsWLeK6667jo48+0gTMdoxMTaHQOdT8pTjHs8GIiIh3SHX1DOVvALutw8NaiihsK6yk2e7og8BERPovt5OhtWvXcv/991NaWsrSpUs5++yzWbFiBeXl5b0R34CUnhTBDscw85diFVEQEZE+EDMBAsKhqeaU955hQ4MJC/Ch0eZgd3F1HwYoItL/uJ0MBQUF8V//9V+89dZb/OMf/2DixIn85S9/4ayzzuKee+4hJ0c9IRlJ4Wx3VZRr1rwhERHpCxYrJM8yfz7FvCGLxWhdfFVD5UTE23WrgMLs2bN5/PHHWbNmDZMnT+b111/n+9//PkuWLOHjjz/uqRgHnJiwAIoCxgDQVJDl2WBERMR7tJTYzlt3ysNOXG9IRMSbdSsZamho4JVXXuHWW29l/fr1jBw5kttvvx273c7tt9/O8uXLeyrOAceamAlAYMXeU675ICIi0mNaiijkfgWOjucDZbZUlFMyJCJerkvJUF5eHg899BBnnHEGv/zlL4mLi+OZZ57hrbfeYunSpaxatYqbbrqJ559/3u1rv/LKK4wdO5bJkyd3JbR+I3nYKMqdIVicdjiyw9PhiIiIN4jPAJ9AqC+Hsj0dHpbuqii390gNNY0dF1sQERns3E6GbrzxRi644AJeffVVLrnkEt577z3+9re/MWfOnDbHLViwgGPHjrl17ZKSEn7/+98TExPjblj9TmZyJNtVREFERPqSjx8kTzd/zv2yw8NiQgNIjAjE6YScgso+Ck5EpP9xOxnKz8/n3nvv5fPPP+e+++4jJSWl3eNGjx7Ns88+69a1f/nLXzJt2jTmzp3rblj9zqSkcLY7hwHQkPeNZ4MRERHvkeL6cvI0i69qvSERkS4kQ++//z5XX301wcHBpzwuJCSEGTNmdPq6r7/+Ohs2bODBBx90N6R+KSzAl7KQsQA0qoiCiIj0ldQTkqFTrAWoIgoiIuDj6QAAjh49yu9+9zt+/vOfExcX161r2e32bp3X1fPbY4nPgIMQdGwX9uYms+xpP9Ub7R9I1H61/8Rnb9Pd9nvr+9ZvJU0Hiw9UF0FFLkQOa/ew1vLaSoZExIu5nQydffbZGIbR7j6LxUJoaChpaWlcc801jBw5slPX/NWvfsXw4cP5wQ9+4G44J+nuOkc9uU6S3S+cWqc/wY5Gtn/5Jg2hw3rs2r3F29eJUvvVfm/m7e0fNPyCIGEyFGyE3HUdJkNpieFYDCiqbOBIVQMxYQF9G6eISD/gdjI0Y8YMNmzYwJEjR5gyZQpRUVGUlpayZcsWYmJiiI+P58MPP+T111/nueeeIy0t7ZTXe//99/n4449ZvXp1h0mWO9LS0rBa3e+Bsdvt5OTkdPn8dg2tYMfOVKYbexgX3gjpmT1z3V7QK+0fQNR+tV/t73r7W86XfiRltisZ+hIy/792Dwn292FMbCi7iqvJyq9g4cTujcwQERmI3E6G5s2bR1ZWFh9++CHx8fGt24uKirj++us599xzefjhh7n66qtZtmwZK1as6PBatbW1/PrXv+bqq68mJiaGqqoqAJqbmwGoqqrCx8eHoKCgTsdntVq79WGmu+efaGJiBC87hzGdPdTlZRE6ufs9X72tJ9s/EKn9ar/a773tH1RS58JXj3Vq8dVdxdVkFygZEhHv5HYBhb/97W/ccccdbRIhgISEBG6//XZWrFhBaGgo1157LVlZWae81rFjxygrK+OZZ55h+vTprY+33nqLuro6pk+fzi9+8Qt3Q+w3AnytHAsbD6iIgoiI9KGUmYABR/dBdUmHhx2fN6Ty2iLindzuGcrNzSUkJKTdfWFhYRQWFgKQmJhIfX39Ka8VHR3dbvntFStWsHHjRv7+978TGRnpboj9ijUhA/ZCcPkOs6pPDwwFFBEROaXASIidCCXbzN6hid9r97ATy2s7HE4sFt2jRMS7uJ0MJSQk8Nprr3HmmWeetO8///lPa49RRUUF4eHhp7yWv78/M2fOPGn7a6+9htVqbXffQBM3ejJNe6wE2qtPWdVHRESkR6XOMZOh3K86TIbGxoYS4GuhusHGwaO1jIxu/8tOEZHByu1hcjfccAPvvfceV155Jf/85z956623+Oc//8mVV17Jhx9+yI033gjA+vXrmTRpUo8HPNCkpUSzx5kMgL0o28PRiIiI10iZbT6fYvFVH6uFtETzi8usvIo+CEpEpH9xu2fo+9//Pk6nk2XLlvHwww+3bo+KiuJXv/oVS5YsAeDWW2/Fz8+vS0E9/PDDba49kI2KCWG1MZxJHKLiwGaGTrzE0yGJiIg3aFl8tWQb1FdAYES7h2UkRbDx0DGyCyq4fGpSn4UnItIfuJUM2e128vLyuPDCC/n+97/PgQMHqKioICIighEjRrQpjR0VFdXjwQ5EVotBRfh4qPqEpvxvPB2OiIh4i9A4GDICyg9A/noYc367h2nxVRHxZm4Nk3M6nSxatIgtW7ZgGAYjR45k6tSpjBw5skfWCBqsrAkZgKuIgoiISF9p6R06xVC5TFcytONwFY02ex8EJSLSf7iVDPn4+BAVFYXT6eyteAal2DFTcTgNwmxHoeaIp8MRERFvkXL6ZCgpMpAhwX40253sPFzdR4GJiPQPbhdQWLRoEatXr+6FUAavScMSOeg0F7NrKtzi4WhERMRrtPQMFW2Bprp2DzEMg4wkV4ltDZUTES/jdgGFcePG8c4773DNNdewcOFCoqOjTxoit3Dhwh4LcDBIigzkPetIRjoPU7ZnIwlj2x+3LSIi0qMih0FoAlQXQeEmGH5Gu4dlJkfyye5SsvIr+GHfRigi4lFuJ0N33303ACUlJWzYsOGk/YZhsHPnzu5HNogYhkFV+Hio+IKmgixPhyMiIt7CMCB1Nmz7D+Su6zAZal18VT1DIuJl3E6Gnn322d6IY9DzScyACghREQUREelLqXNcydCXHR6SkRQBwIGyWirrmgkP8u2j4EREPMvtZGjGjBm9EcegFz1mOmyHqOZCaKiEgHBPhyQiIt6gpYhCwUawN4P15EQnMtiP1KFB5B6tY2thBfNHR/dxkCIinuF2AYUW1dXVrF27ljfeeIPKysqejGlQmjByOAVOc+2lujwVURARkT4SPQ4CI6G5Dg5nd3hYS++QhsqJiDfpUjK0fPly5s+fz0033cTdd99NQUEBAD/84Q9ZsWJFjwY4WESF+HPAOgKAkj0bPRyNiIicyrp167j33nu54IILyMzMZP78+fzoRz9i27Ztng7NfRYLpMw2fz7VUDnXekNZ+fqCU0S8h9vJ0AsvvMDy5ctZvHgxTz75ZJs1hxYsWMCnn37ak/ENKlUR4wFoys/ybCAiInJKK1eupLCwkGuuuYYVK1Zw3333UV5ezhVXXMG6des8HZ77Whdf7Tj2zNZkqELrCYqI13B7ztALL7zAtddey1133YXd3nal6tTUVHJzc3ssuMHGJzETyv9FyLHtng5FRERO4Ze//CVDhw5ts23+/PksXLiQJ598ktmzZ3sosi5qmTeUtw4cDrO36FsmJoThYzEoq2mkqLKBxIjAPg5SRKTvud0zlJ+fz/z589vdFxwcTFVVVbeDGqyiR5vFJ2KbcqG53sPRiIhIR76dCIF5jxs5ciSHDx/2QETdFJ8OvsHQUAGl7S9/EeBrZVx8KKB5QyLiPdxOhkJDQykrK2t3X2FhYbs3EDGNHTOWo85QfHBw7FDHk1hFRKT/qa6uZseOHYwePdrTobjP6gvJrmqwuV91eJiKKIiIt3F7mNzs2bN56qmnOOecc/D39wfMRUVtNhsrV65k3rx5PR7kYBES4Mtun5EMtWdRvHs9kaNneTokERHppF/96lfU19dz6623un3ut4eVu3teV88/kZE8C8uBT3Ac+hLn1OvbPSY9MYwXgKz8Yz3ymt3Vk+0fiNR+tf/EZ2/T3fZ39jy3k6Ef//jHLF68mEWLFnHuuediGAbPP/88O3fupKioiEcffdTdS3qVysgJUJZFU77Ka4uIDBSPPvoob775Jg888ACTJk1y+/ycnJxuvX53zwcIaYphLGDb/zk5W7aAYZx0jF9NMwDZeRVs3rIFazvHeEJPtH8gU/vVfm/W2+13OxlKTU1l5cqVPPTQQ6xcuRKn08nrr7/OzJkz+b//+z8SEhJ6I85BwychA8peJORY+2O2RUSkf3n88cd54okn+NnPfsZVV13VpWukpaVhtVrdPs9ut5OTk9Pl89toHotz/V34NR4lMzUchow4OU6Hk/s//YjaJjsh8aMYGxfavdfsph5t/wCk9qv9an/X299y/um4nQwBjBo1iqeffpqmpiaOHTtGeHg4AQEBXbmU14kZOwO2QmLTfpz2Zox2VgIXEZH+4fHHH2fZsmXccccdXRoe18JqtXbrw0x3zzcvEgKJUyH/a6wF6yH65LlPViukJ0Ww7sBRcoqqmJAY0b3X7CE90v4BTO1X+9X+3mt/lxZdbeHn50dsbKwSITeMGJNOjTOAAJop3u/d3Z4iIv3Z8uXLWbZsGT/60Y9YunSpp8PpGakti6+eooiCFl8VES/SpZ6hgoIC3n33XYqKimhoaGizzzAMfve73/VIcIORn68Pe31HMtG2ncO71xM/ZoqnQxIRkW955plneOyxx5g/fz5nnXUWWVlZbfZnZmZ6JK5uS50LX/z5lMlQZnI4oIpyIuId3E6GPv30U5YuXYrD4WDIkCH4+fm12W/0k8mW/Vl15Hgo3U5TQZanQxERkXZ88sknAKxdu5a1a9eetH/37t19HVLPSJ4BGHDsIFQdhrD4kw5p6RnaXVJNfZOdQD/vHZ4jIoOf28nQn//8Z6ZMmcKf//xnrSnURdaETCh9lZBjOzwdioiItOO5557zdAi9IyAc4tKgeCvkfQWTLj/pkLiwAGJC/TlS3cj2okqmDRvigUBFRPqG23OGcnNzuemmm5QIdUPsWHPhu5TGfdhs3lk7XkREPCR1rvncwVA5wzBOmDdU0TcxiYh4iNvJUEJCAnV1db0Ri9dIGj2ZJqcPYUYduQfUOyQiIn2otYjCug4PyVQyJCJewu1k6JZbbuGZZ56hvr6+N+LxChZfPwr8hgFQvGuDZ4MRERHvkjLHfD6yHerK2z2kJRnKLqjom5hERDzE7TlDOTk5HD16lPPOO4+ZM2cSGRl50jH3339/jwQ3mFVFTIDSfTQVbPF0KCIi4k1ComHoaDi6F/K+hnEXnXRIWpJZUS6/vJ6jNY0MDfHv6yhFRPqE28nQ888/3/rz22+/fdJ+wzCUDHWCb2ImlL6hIgoiItL3Uue4kqGv2k2GwgJ8GRkdzP7SWrYWVLJgXIwHghQR6X1uJ0O7du3qjTi8TsyYGZAFqU37aWi2E+Cr0qUiItJHUufAN/867eKr+0trycqvUDIkIoOW23OGpGdEjZyMA4MYo4Ld+/Z5OhwREfEmqa55Q4ezobGm3UNUREFEvEGnkqGNGzdSW1t72uPKy8t59dVXux2UNzD8Qyj2TQbgyO71Ho5GRES8SkQKhCWBwwYFG9s95MQiCk6nsw+DExHpO51Khq655hr279/f+rvD4WDSpEns2NF2vkt+fj4PPPBAz0Y4iFVFTACgqSDLs4GIiIj3aekdymu/xPa4uDD8rBYq6prJK9eSGiIyOHUqGfr2N0JOpxObzaZvirrJNzEDQEUURESk77UkQx3MG/LzsTAhIQzQUDkRGbw0Z8iDosfMBGBY834q65s9HI2IiHiVlmSoYCPYmto9pHWoXH5lHwUlItK3lAx5UNiwyQCkWo6w40C+h6MRERGvEjUGgoaCrQGK2l/zLiPZXG9Ii6+KyGClZMiTgoZw1CcWgOI9GzwcjIiIeBXDgJTZ5s+5X7Z7SEZSBADbCitptjv6KDARkb7T6XWGDhw4gNVqroVjt9tbt337GHFPdeQEhpaW0JyfBVzp6XBERMSbpM6FXW91WERheFQwYQE+VDXY2F1czaTE8D4OUESkd3U6Gbr33ntP2nbXXXe1+d3pdGIYRvej8iI+iZlQ+gmhFSqiICIifSzV1TOU9zU47GBpuwC4YRhkJEewdm8ZWfkVSoZEZNDpVDL00EMP9XYcXitq9HTIghG2/ZRUNRAbFuDpkERExFvEpoFfKDRWQcl2iE8/6ZBMVzKUnV/BVbNSPRCkiEjv6VQydOmll/Z2HF4rINksojDSKOLTQ8XEpg/zbEAiIuI9rD6QMhP2fWSW2G4nGWqZN6QiCiIyGKmAgqeFxlNjjcDHcHB4z2ZPRyMiIt6mpYhCXvvrDaW7KsrtPVJDTaOtr6ISEekTSoY8zTCoipwAgK0wy7OxiIiI90mdaz7nfgXtLKYeExpAYkQgTidsVe+QiAwySob6Ad/ETABCju3A2c6NSEREpNckTgGrP9SWwtH97R6ixVdFZLDyeDK0c+dObr75Zs466yzS09OZMWMGV1xxBa+//rqnQ+szkSOnATDacYBDR+s8HI2IiHgVH39IMu9DHa431LL4an5FHwUlItI3Ol1au7dUVVURFxfHokWLiI2Npb6+njfffJO77rqLwsJCbrvtNk+H2Ot8XD1D44183s8rZXhUsGcDEhER75Iy20yE8tbB1B+etFtFFERksHIrGWpoaODaa6/lxz/+MXPmzOmRAGbOnMnMmTPbbFuwYAEFBQW8/PLLXpEMETmcRksQ/o46CvdthSnDPB2RiIh4k9Q5sJYOe4YmJYZjMeBwZYOWgRCRQcWtYXIBAQHs2bMHq9V6+oO7KTIysk9ep1+wWKiOHA9Ac0GWZ2MRERHvkzwDDAtU5EFlwUm7g/19GBMbCmionIgMLm4Pk5s8eTJbt249qTenuxwOBw6Hg6qqKt59912++OILHnjgAbevY7fbu/T6Led19fzussanw9HNhFXsoKGpGV9r307n8nT7PU3tV/tPfPY23W2/t75vg4p/KMRnQNEWyF0H6UtOOiQjKYJdxdVk5VewcGKcB4IUEel5bidDd999N7fddhvR0dGcd955BAf3zPyWBx98kJdeegkAX19f7rvvPq688kq3r5OTk9OtOLp7fldFWqOJBMZzkLfWbmZ4hK9H4vBU+/sLtV/t92be3n6vlzrXlQx92W4ylJkSwUub8jVvSEQGFbeToSuuuILm5mbuvfde7r33XgICAjAMo3W/YRhs3uz+4qG33norS5Ysoby8nI8//pj//d//pb6+nhtuuMGt66SlpXVpeJ3dbicnJ6fL53dbvC9kP8J4I5e9gTFkZqb26ct7vP0epvar/Wp/19vfcr4McCmzYd3jZhGFdrQUUdiaX4nD4cRiMdo9TkRkIHE7GTr//PPbJD89JSEhgYSEBADOPPNMAP70pz9x6aWXMmTIkE5fx2q1duvDTHfP77LY8dgMP8Kop+jQbqxzRvR9DHiw/f2E2q/2q/3e236vlzLbfC7dBbVHIXhom91jYkMI8LVQ3WjjQFkto2JCPBCkiEjPcjsZevjhh3sjjpOkp6fz73//m/z8fLeSoQHL6kttxBjCj22juTALuNDTEYmIiDcJHgrR48xkKG8djL+4zW4fq4W0xHA2HjpGdn6FkiERGRQ8vuhqR9avX4/FYiE5OdnTofQZX9d6Q5FVO6lv0oRkERHpY6muZTNyv2p3t9YbEpHBpsuLru7Zs4f9+/fT2Nh40r7vfe97nb7OAw88QEhICGlpaURFRXHs2DHee+893nnnHW644Qbv6BVyCUqdDNueZwKH2F5UybRh3tN2ERHpB1LmwKZnIK+DZCg5AoAsldcWkUHC7WSovr6eH/3oR3z99dcYhoHT6QRoM4/InWQoMzOTVatW8dprr1FdXU1QUBDjxo3jkUce4ZJLLnE3vIEtLgOAiZaDvJ53TMmQiIj0rVTXvKHD2dBYbZbcPkGmKxnaebiKhmY7Ab6aYyYiA5vbydBf//pXCgsLef7557nqqqt4/PHHCQ4OZuXKlezZs4dHH33UretdfvnlXH755e6GMTjFTsSBhWijikO5B4CRno5IRES8SXgSRKSYi6/mr4dR57bZnRQZyNBgP47WNrHzcBWTUyI9FKiISM9we87QmjVruOmmm5g8eTIA8fHxzJ49m8cee4yJEyfy4osv9niQXsMviPpws4pcc0GWZ2MRERHvlDrXfM49ucS2YRitQ+WyNVRORAYBt5OhwsJCRowYgdVqxTAM6uvrW/d95zvfYc2aNT0aoLdpKaIQXbObiromzwYjIiLep9NFFCr7KCARkd7jdjIUGhpKXV0dAEOHDiU3N7d1n81ma90nXeOXZPa4TbQc0o1GRET6XoorGSrcDM0NJ+3OSA4H1DMkIoOD28nQ2LFjOXToEAAzZ87kySefZNOmTWzdupXly5czbty4no7Ru8SnAzDJOMRW3WhERKSvDR0JwTFgb4Sib07a3dIzdKCslsq65j4OTkSkZ7mdDF1++eXU1tYC8NOf/pT6+nquvvpqrrjiCoqKirjnnnt6PEivEpcGQLKllL25BR4ORkREvI5hHK8q185QuchgP4YNDQK03pCIDHxuV5O76KKLWn9OTk7m/fffby2zPXnyZCIiInoyPu8TGEljSBL+NQU0FWbhdJ7Vpmy5iIhIr0udCzte73jeUHIEh47WkZ1fwRljovs4OBGRnuN2z9C3BQUFcfbZZ7NgwQIlQj3Ex1VEIalhL8VVJ4/XFhER6VUprp6h/A1gt520+3gRhYq+i0lEpBd0OxmSnmdNyARcRRQ0b0hERPpa7ETwD4emaijJOWl3S3ntrPzK1sXXRUQGok4Nkxs3blynh2oZhsGOHTu6FZTXcxVRmGgc4rWCSi6YFO/hgERExKtYrJAyE/Z+YA6VS5jcZvfEhDB8LAZlNY0UVTaQGBHooUBFRLqnU8nQ7bffrnkrfSnOTIZGGkXszC0GVKFPRET6WOqc48nQ7Nvb7ArwtTIuPpRthVVk5VUoGRKRAatTydAdd9zR23HIiULjsAVG41NfSnNRDg7HmVgsSkZFRKQPpc41n/PWgdNpVpk7QUZSBNsKq8guqGBRukYwiMjApDlD/ZFhYEkwe4eG2/ZzoKzWwwGJiIjXic8En0CoOwple07andk6b6iiT8MSEelJbpfWXr169WmP+d73vteFUORElvgM2L+GCcYhthZUMComxNMhiYiIN/Hxg6RpcGgt5H4J0WPb7G5JhnIKKrHZHfhY9f2qiAw8bidDHS2qeuKcIiVDPSA+A4CJllxeK6jksilJHg5IRES8TuocVzK0DqZd32bXiOgQQvx9qGm0sa+0hnFxYR4KUkSk69xOhtasWXPStmPHjrFmzRreeecd/vznP/dIYF7PVVFunJFHTl6Zh4MRERGvlDrHfG5n8VWrxSAtMZx1B46SnV+hZEhEBiS3k6HExMR2t02aNAmbzcazzz7Lww8/3CPBebWIYTj8QvFvqqapeCdNtvn4+WgIgoiI9KGk6WDxgaoCqMiDiJQ2uzOSI1h34ChZ+RVcMT2lg4uIiPRfPfrpevbs2Xz88cc9eUnvZbFgxKcBMMZxkN3F1R4OSEREvI5fsFlIAdrtHcpMDgfMxVdFRAaiHk2GCgsLsVjUe9FTDNcNaJLlINkFFR6NRUREvFTqbPM598uTdmUmRwKwp6SauiZbX0YlItIj3B4mt3HjxpO2NTU1sXv3bp588klmz57dI4EJrYuvTrDk8mp+BVfNSvVwQCIi4nVS58JXy8wiCt8SFx5AbJg/JVWNbC+qYvqwIR4IUESk69xOhq6++uo2leMAnE4nAHPmzOGBBx7omciktYjCBCOXnPxjHg5GRES8UsoswICje6HmCITEtNmdkRTBBztKyM6vUDIkIgOO28nQs88+e9I2f39/EhMTiYqK6pGgxCVqLE5rAKH2ehpL91PbOI9gf7f/yURERLouMBJiJsCR7ZC3DiZc0mZ3RrKZDGnxVREZiNz+ZD1jxozeiEPaY/XBiJ0ARd8wwTjEtsJKZo4Y6umoRETE26TOMZOh3K9OSoZaFl9VMiQiA5Hb1Q4OHjzIhg0b2t23YcMGDh061N2Y5ESuoXITLYfYWqBqPSIi4gGtRRROriiXlhSOYUDBsXrKahr7ODARke5xOxl6+OGH2114FeCTTz7RGkM9zVVEYaJxiCxVlBMREU9IcS2+WpwDDW2/mAsL8GVkdAgAW3WfEpEBxu1kKCcnh+nTp7e7b/r06Wzbtq3bQckJXOW1J1oOsVVFFERExBPC4iFyOOCE/JNHh2QkRQBab0hEBh63k6Hq6mqCgoLa3RcQEEBlpf4Q9qjYCTgNK1FGFU3HijiqIQgiIuIJqXPN53bXGzIXX83WvCERGWDcToZiY2PZunVru/u2bt1KdHR0t4OSE/gGYkSNAVy9Q4VKNkVExANOMW8ow1VEIbugonW5DRGRgcDtZOjcc89lxYoVfP311222r1+/nr///e+cd955PRacuMQfnzekb91ERMQjUl3zhgq/geb6NrvGxYXhZ7VQUddM7tE6DwQnItI1bpfWvv322/niiy+47rrrGDZsGHFxcRQXF3Po0CFGjRrFHXfc0Rtxerf4DNj6EpMsh3hJFeVERMQTIodDaDxUH4aCTTB8fusuPx8LExLCyMqvILuggmFRwR4MVESk89zuGQoNDeWll15i6dKlhIeHU1RURHh4OHfccQf//ve/CQkJ6Y04vVvc8fLa2fkagiAiIh5gGJDiGiqXt+6k3VpvSEQGIrd7hgCCg4O5/fbbuf3223s6HmlPXBoASUYZttpyCivqSYpsv4iFiIhIr0mdA9tXdVBEIQJQEQURGVjc7hlqUV1dzdq1a3njjTdUQa63BUZA5DBAi6+KiIgHtcwbyt8I9uY2u1qKKGwrqqLZ7ujjwEREuqZLydDy5cuZP38+N910E3fffTcFBQUA/PCHP2TFihU9GqC4xKmIgoiIeFj0eAiIgOZaONy2suywoUGEBfjQZHOwu7jaM/GJiLjJ7WTohRdeYPny5SxevJgnn3yyzfyVBQsW8Omnn/ZkfNIi/oR5Q1rhW0REPMFiOWHeUNsS24ZhtPYObdGXdiIyQHQpGbr22mu5//77mTdvXpt9qamp5Obm9lhwcoK4DAAmGrnkFFRid6iIgoiIeEDLULl21hvSvCERGWjcToby8/OZP39+u/uCg4OpqqrqdlDSjngzGRppFOFoquVAaY2HAxIREa90YjLkaDs3SMmQiAw0XSqtXVZW1u6+wsJChg4d2u2gpB2hsRASi8VwMt7IU+lSERHxjPgM8A2Chgoo3dVmV3pSBAD7Smuobmg++VwRkX7G7WRo9uzZPPXUU9TVHV9h2jAMbDYbK1euPGnonPQgVxGFCZZcVZQTERHPsPpC8gzz52+V2I4O9ScxIhCnE3IKdZ8Skf7P7WToxz/+MUVFRSxatIiHH34YwzB4/vnnWbJkCbm5udx22229EadA61C5iYaKKIiI9KaamhoeeeQRrr/+embNmsXYsWNZtmyZp8PqP1JcQ+VOsfhqdr6SIRHp/9xOhlJTU1m5ciUjRoxg5cqVOJ1OXn/9dSIjI3nxxRdJSEjojTgFWivKTbIcZOfhKhptdg8HJCIyOFVUVPDyyy/T1NTEueee6+lw+p8T5w052xb0yUgOByAr/1hfRyUi4jafrpw0atQonn76aZqamjh27Bjh4eEEBAT0dGzyba5hcmMtBTibmtl1uLq1jKmIiPScxMRENm7ciGEYlJeX88orr3g6pP4laRpYfKH6MBw7BEOGt+7KcM0bUs+QiAwEXUqGWvj5+REbG9utANatW8cbb7zBli1bKC4uJjQ0lEmTJnH77bczadKkbl170IkcBv7h+DVWMtooJLugQsmQiEgvMAzD0yH0b76BkDgF8tebvUMnJENpSeFYDCiuaqC4soG4cH1ZKiL9V6eSodWrV7t10e9973udPnblypVUVFRwzTXXMGrUKMrLy/nHP/7BFVdcwVNPPcXs2bPdeu1BzTDMoXKH1jLJctD81k1vj4hIv2e3d21Yc8t5XT2/NxnJs7Dkr8eR+yXO9Ctbt/tbDcbEhrKruJoteeUsnND1L037c/v7gtqv9p/47G262/7OntepZOiee+7p9AsbhuFWMvTLX/7ypHLc8+fPZ+HChTz55JNKhr4tzkyGJhi5vKAiCiIiA0JOTo5Hz+8NYbZYRgNNez9le1ZWm31JgTZ2AR9u3kNM0+Fuv1Z/bH9fUvvVfm/W2+3vVDK0Zs2aXgugvXWJgoODGTlyJIcPd/8P6KDjKqIw0XKI/a51HEIDfD0clIiInEpaWhpWq9Xt8+x2Ozk5OV0+v1c1DMe54T4CagvJHBkHoXGtuxY05/PRwe0UNweQmZnZ5Zfo1+3vA2q/2q/2d739LeefTqeSocTERLcD6I7q6mp27NjBrFmz+vR1BwRXee1JllxwOsgprGTOyCgPByUiIqditVq79WGmu+f3iuAhEDcJinOwFqyHSZe17pqcMgSAnIJKDMOCxdK9OVj9sv19SO1X+9X+3mt/lwso1NTUkJWVRUVFBZGRkWRkZBASEtIjQf3qV7+ivr6eW2+91e1zB+O47DYiR2DxCSDI1sAwo4SsvGPMHBbZ7csOmPb3ErVf7T/x2dv01bhsGYRS50JxjllE4YRkaExsCIG+VqobbRwoq2FUTKgHgxQR6ViXkqGnn36axx9/nIaGBpxOJ4ZhEBAQwI9//GOuu+66bgX06KOP8uabb/LAAw90qZrcYByX/W3jQoYRXLGLicYhPt82jJlhVT127YHQ/t6k9qv93szb2y9dkDIb1v/tpMVXfawW0hLD2XConKz8SiVDItJvuZ0MrV69mj/84Q+cccYZXHrppcTExHDkyBFWr17NI488QmRkpFsFFE70+OOP88QTT/Czn/2Mq666qkvXGJTjsr/FKJwF3+xiouUQz9Ua3RqP3WIgtb83qP1qv9rf++OyB5rPPvuM+vp6amtrAdi3bx/vvfceAGeeeSaBgYGeDK9/aFl8tWQ71B+DwOMjFTKSzWQoO7+CxVOTPBSgiMipuZ0M/fOf/+Tiiy/m//7v/9psv/DCC/nFL37Bv/71ry4lQ48//jjLli3jjjvu6NLwuBaDclz2tyVkwjcwyXKIoooGyutsRIf698ilB0T7e5Har/ar/d7b/m/71a9+RWFhYevv7733XmsytGbNGpKS9AGfkBgYOgqO7oO89TD2gtZdLevgZavyqYj0Y24nQwcOHODOO+9sd993v/tdli5d6nYQy5cvZ9myZfzoRz/q0vlex1VRLs2aCzjZWlDBOeO7t/itiIi09fHHH3s6hIEhdY6ZDOV+2TYZSooAYOfhKhqa7QT4KtEWkf7H4u4JAQEBVFZWtruvsrKSgAD3Vpp+5plneOyxx5g/fz5nnXUWWVlZbR7SjpiJYFiJcFYRRznZBe3/e4iIiPS6FNdQuW/NG0qKDGRosB/Ndic7Dvfc3FYRkZ7kds/Q1KlTefzxx5kxYwaxscd7I0pLS1m+fDnTpk1z63qffPIJAGvXrmXt2rUn7d+9e7e7IQ5+vgEQPRaO7GCi5RDZ+eM8HZGIiHirlnlDRVugqRb8ggFzEfaM5Ag+3nWE7PwKpqR0v/KpiEhPczsZuvPOO7nyyitZuHAhs2fPJjo6mtLSUr7++mt8fHx4/PHH3brec889524IAuZ6Q0d2MMk4xLMFFa1V/URERPpURAqEJUJVIRRsghFntu7KSDqeDImI9EduD5MbPXo0r776Kueccw45OTmsWrWKnJwczjnnHF555RVGjRrVG3HKt8WZ84YmWXM5VtdMfnm9hwMSERGvZBjHe4dyv2qzKzMlAkDDuUWk3+rSOkPDhw/nT3/6U0/HIu5wFVHI8MmFJrNaT8rQIA8HJSIiXil1DuS8YhZROEFGUjgAB8tqqahrIiLIzxPRiYh0yO2eIekn4tIAiHGUEkE1W1W6VEREPKWliELBJrA1tW6OCPJjmOuLOvUOiUh/1KWeoR07dvDmm29SVFREY2Njm32GYfDEE0/0SHByCgHhEDkcjh10FVFI9XREIiLiraLHQtBQqDsKh7MgeUbrrozkCA4drSM7v4Izx0R7LkYRkXa4nQytXr2ae++9F4vFwpAhQ/D19W2zX5P4+1B8upkMGYd4rjATm92Bj1WdfSIi0scMA1Jmw663zHlDJyZDSRG8nlWkIgoi0i+5nQw98cQTnHnmmfz+978nPDy8N2KSzopLhx2vk+GTx4pGO/tKaxgXF+bpqERExBulzjmeDM37aevmjOQIwJzbqsqnItLfuN2NcOTIEa655holQv1BfCYAmb65AGzN13hsERHxkJTZ5nPe1+Cwt26emBCGj8WgrKaJwgpVPhWR/sXtZGj8+PGUlJT0RiziLldFuQRbIUE0kKUiCiIi4ilx6eAXAo2VcGRH6+YAXyvj481RC9n60k5E+hm3k6G77rqLFStWsGvXrt6IR9wREgMhcRg4GWfkqaKciIh4jtXn+Fyh3HVtdmUkm6NJsvKP9XVUIiKn5PacoczMTBYuXMill15KdHT0ScPlDMPgjTfe6LEA5TTiM2BvMRMth1h5eCwNzXYCfK2ejkpERLxR6hzY/7G53tDMm1s3ZyRF8Dx56hkSkX7H7Z6hFStW8OSTTxIZGUlCQgIRERFtHppL1MdcQ+Wm+eVhczjZcbjKwwGJiIjXSp1rPud+BU5n6+ZMVxGFnMJKbHaHBwITEWmf2z1Dzz77LJdffjm//vWvsVrVA+FxcWYylOmbB/WwNb+CKSmRHg5KRES8UsIUsPpB7REoPwBDRwIwIjqEEH8fahpt7D1S0zqHSETE09zuGaqtreXiiy9WItRfuHqGkpoP4YtNK3yLiIjn+AZA4jTz59wvWzdbLQbpSebIEa03JCL9idvJ0JQpU9i/f39vxCJdEZEKAeFYnTbGGAVkq4iCiIh4UqqrxPZJRRQiAHSfEpF+xe1k6L777uPf//43H330EU1NTb0Rk7jDMFqHyk2wHOJAaS2V9c0eDkpERLxW6hzz+YSeITCLKABsyavo23hERE7B7TlDl19+OTabjTvuuAPDMAgICGiz3zAMNm/e3GMBSifEZ8ChtcwKLOCVGthWWMncUVGejkpERLxR0gwwLFCRC5WFEJ4IHC+isKekmromG0F+bn8EERHpcW7/JTr//PMxDKM3YpGuis8AINMnD4Cs/AolQyIi4hkBYeaIhcNZkLcO0hYDEBceQGyYPyVVjWwrrGLG8CGejVNEBDeTIbvdzi233MKQIUNUQrs/cQ2TS2nejwWHFl8VERHPSp1jJkO5X7UmQ2AOlftgRwnZ+RVKhkSkX3BrzpDT6WTRokVkZWX1UjjSJVGjwScQX3s9w4xiLWonIiKe1Tpv6Ks2mzNTIgDI0pd2ItJPuJUM+fj4EBUVhfOEhdSkH7BYIXYiAJMshyiuauBIVYOHgxIREa+V4qooV7oT6spbN2e6iiiovLaI9BduV5NbtGgRq1ev7oVQpFtc84bmBR8G0HpDIiLiOcFREDXW/DnveIntSUnhGAYUHKunrKbRQ8GJiBzndgGFcePG8c4773DNNdewcOFCoqOjTyqosHDhwh4LUDrJtfhqpm8uYH7rdt6EWE9GJCIi3ix1DpTtNofKjVsEQFiALyOjQ9h3pIbs/ArOGa/7lIh4ltvJ0N133w1ASUkJGzZsOGm/YRjs3Lmz+5GJe1qKKDTtA5xa1E5ERDwrdQ5s/sdJ84YykiKUDIlIv+F2MvTss8/2RhzSXTETwLAS0FxBPOVsLfDD6XSqDLqIiHhGSxGFw9nQWAP+IQBkJofzn28KyNJwbhHpB9xOhmbMmNEbcUh3+QZAzHgo2Uamby7v1g8l92gdw6KCPR2ZiIh4o/AkCE+Byjwo2AAjzwYgMzkSMIdz60s7EfE0twsotKiurmbt2rW88cYbVFbq251+wTVU7szQIgANlRMREc9qp8T22LhQ/HwsVNY3k3u0zkOBiYiYupQMLV++nPnz53PTTTdx9913U1BQAMAPf/hDVqxY0aMBihtaiyjkAWi9IRER8axUV4nt3OMV5fx8LExMCAMgSyW2RcTD3E6GXnjhBZYvX87ixYt58skn26w5tGDBAj799NOejE/c4SqvbRZRUM+QiIh4WOpc87lgI9iOl9LOcK03pGRIRDzN7TlDL7zwAtdeey133XUXdru9zb7U1FRyc3N7LDhxU+wkAILqi4mkiu1FFmx2Bz7WLo+GFBER6bqhoyA4GmpLofCb1p6izOQIQF/aiYjnuf0pOT8/n/nz57e7Lzg4mKqqqm4HJV0UEAZDRgAw3b+AhmYHe0pqPByUiIh4LcOAFNdQubzj84YyXMnQ9qIqmmwODwQmImJyOxkKDQ2lrKys3X2FhYUMHTq020FJN7iKKCyIOAzoWzcREfGwlqFyJxRRGDY0iPBAX5psDnYXV3soMBGRLiRDs2fP5qmnnqKu7ngFGMMwsNlsrFy5knnz5vVogOIm17yhTB9zuOJWJUMiIuJJLUUU8taDwxxebxhGa+9Qlu5TIuJBbidDP/7xjykqKmLRokU8/PDDGIbB888/z5IlS8jNzeW2227rjTils1wV5VIazSIKWaooJyIinhQ7CfzDoKkainNaN2cmhQOQlVfhocBERLqQDKWmprJy5UpGjBjBypUrcTqdvP7660RGRvLiiy+SkJDQG3FKZ8WZPUNBNbkE0cCekmrqm+ynOUlERKSXWKyQPNP8Oe94ie0MFVEQkX7A7WpyAKNGjeLpp5+mqamJY8eOER4eTkBAQE/HJl0REg2hCRjVRcwOPsya2uFsL6pk2rAhno5MRES8Veoc2Pch5H4Js34EQLqrvPb+0hqqGpoJC/D1YIAi4q3c7hm69957yc/PB8DPz4/Y2NjWRKiwsJB77723ZyMU97mGyp0T3lJEQUPlRETEg1LnmM+568C1PmF0qD+JEYE4nbBN9ykR8RC3k6HXXnuNY8eOtbvv2LFjrF69ursxSXe5Kspl+ppFFLK1qJ2IiHhSwmTwCYC6Mijb27o5MyUCUBEFEfGcHl2Ns7KyEj8/v568pHRFSxGFJrOIgirKiYiIR/n4Q9J08+cT1hvKdA2V05d2IuIpnZoztHHjRtavX9/6+yuvvMLnn3/e5pjGxkbWrFnDyJEjezZCcZ+rvHZw5T78aObQ0Toq6pqICFKiKiIiHpIyGw6tNdcbmnotcLyIQpaSIRHxkE4lQ+vXr+fxxx8HzLUBXnnllXaPS0hI4H/+5396LjrpmvBkCIjAaKjgzIgyPqyIZ2tBJWeMifZ0ZCIi4q1a5w0d7xmalBiGxYCSqkaKKxuIC1cxJhHpW51Khm688Ub+67/+C6fTyZw5c3j66aeZMGFCm2P8/PwIDg7ulSDFTYZhDpU7+DkLwotdyVCFkiEREfGcpOlgWKEyHyryICKFID8fxsSGsqu4mqz8Ci4Ij/N0lCLiZTo1ZyggIIDIyEiGDBnCmjVrmD59OpGRkW0eSoT6mdYiCnmAFl8VEREP8w+BhEzz59zj6w1lar0hEfEgtwsoJCYm9miRhJqaGh555BGuv/56Zs2axdixY1m2bFmPXd9rxWcCkNJoVu3JLqjA6SpnKiIi4hEps83nE4sotCRDmjckIh7gdjLU3NzMX//6Vy666CIyMzMZP358m8e3h8+dTkVFBS+//DJNTU2ce+657oYjHXFVlAuu2IWvxUlpdSPFVQ0eDkpERLxa6lzz+YR5Qy1FFLYWVOJw6Es7EelbnZozdKI//elP/POf/+SMM87g3HPP7XYvUWJiIhs3bsQwDMrLyzssziBuGjoKfIMwmus4K6qKD4+Ek51fSXx4oKcjExERb5Uyy3wu2wM1pRASzeiYEAJ9rdQ02thfWsPo2FDPxigiXsXtZOjdd9/l9ttvZ+nSpT0SgGEYPXId+RaLFWInQcEGzg4vNpOhggoumKTJqSIi4iFBQyBmAhzZAXnrYMJ38bFaSEsMZ8OhcrLyK5QMiUifcnuYXGVlJdOmTeuNWKSnuYbKZfrkAlp8VURE+oGWEtt5x4soZCSHAyqiICJ9z+2eoenTp7Nr1y5mzZrVG/F0m91u79Z5XT2/PzJiJ2EBkhv3AgvZWlBJc7MNi+Xk3rjB2H53qP1q/4nP3qa77ffW9026KGU2bHwKcr9s3ZTRWkRBlU9FpG+5nQzdf//93HbbbSQkJHDWWWf1aGW5npCTk+PR8/uToMoAxgP+pVvxszqpbrDx7pebSQzt+J99MLW/K9R+td+beXv7pY+09AwV50BDFQSEkZEUAcDOw1U0NNsJ8LV6Lj4R8SpuJ0OXXHIJNpuNn/zkJxiGQUBA29WiDcNg8+bNPRagu9LS0rBa3f8jarfbycnJ6fL5/ZJtPM4vl+LbXM2CuCbeL/SnOTSBzMyEkw4dlO13g9qv9qv9XW9/y/kinRKWAJHD4NghyN8Ao88lKTKQqBA/ymqa2HG4iikpkZ6OUkS8hNvJ0Pnnn9+vix5YrdZufZjp7vn9ijUIosdDSQ5nR5TwfmEKOYVVXD41ueNTBlP7u0DtV/vVfu9tv/Sh1LlmMpT7JYw+F8MwyEiKYM2uI2TlVSgZEpE+43Yy9PDDD/dGHNJb4tOhJIcMn1wgRZNTRUTE81JmQ9YL3yqiYCZDuk+JSF9yOxnqDZ999hn19fXU1tYCsG/fPt577z0AzjzzTAIDtTZOl8VnQNYLJDfuA+azvaiKJpsDPx+3CwmKiIj0jJZ5Q4WbobkBfANOKKJQ4bGwRMT7dCoZ2r59u1sXnThxolvH/+pXv6KwsLD19/fee681GVqzZg1JSUluXU9OEGeW1w46up2wAB+qGmzsKalmUmK4hwMTERGvNWQEhMRCTYmZEA2bS0aSeV86dLSOiromIoL6V4EmERmcOpUMXX755Z2aJ+R0OjEMg507d7oVxMcff+zW8eKGuEmAgVFdxLwEeOcAZOVXKBkSERHPMQyzd2j7a5D7FQybS0SQH8OGBnHoaB3ZBZWcOSba01GKiBfoVDL00EMP9XYc0lv8Q81v4Mr3syC8mHeIci2+murpyERExJulzjWTobyvWjdlJkeYyVB+hZIhEekTnUqGLr300t6OQ3pTfAaU73cVUYhia4EWtRMREQ9LmW0+560Huw2sPmQkR7A6q4gszRsSkT6iWfTeIN6cN5TSuBeAPSXV1DXZPBmRiIh4u5gJEBAOzbVQnA3QpoiC0+n0YHAi4i2UDHkDVxGFgLLtxIUF4HDCtsIqDwclIiJezWI53juUa5bYnhAfho/F4GhtEwXH6j0YnIh4CyVD3iA+w3wu38/MRHNkpEqXioiIx7WU2M415w0F+FoZHx8GoPWGRKRPKBnyBsFREJYIwJlhRwDdZEREpB9IcSVDeevA4QAgI9msdqov7USkLygZ8hauoXJmEQUlQyIi0g/EZ4BvENSXQ9luADKTIwHIzlexHxHpfUqGvIWriEJy4z4A8svrKa9t8mREIiLi7Xz8IGma+bNrqFymq2cop7ASm93hqchExEsoGfIWrnlDfqXbGBEVDKh3SERE+oHUueazKxkaERVCiL8P9c129h6p8WBgIuINlAx5C9cwOUp3MiUxCICtGoIgIiKedmIRBacTi8UgPck1b0jr4olIL1My5C3CkyAwEhw2zogoBWCreoZERMTTEqeBxReqi6DCnNfaut6QkiER6WVKhryFYZxQRCEPMIfJaVE7ERHxKL8gSJhs/uwaKpeRFAHAViVDItLLlAx5E9e8ocT6PfhYDMpqmiiqbPBwUCIi/U9tbS2//e1vmTdvHmlpaVxyySW8/fbbng5r8EptWXzVTIYmp0QAsKekmgabiiiISO9RMuRNXMmQz5EcxsWHAlrHQUSkPXfccQerV69m6dKl/P3vfyctLY0777yTN99809OhDU7fKqIQGxZAXFgADifsP2bzYGAiMtgpGfImLUUUSraTkehKhjRvSESkjc8++4wvv/ySX/7yl1x55ZXMmjWL3/zmN8ydO5dHHnkEu93u6RAHn+SZgAHl+6G6BDi++Oq+8mYPBiYig52SIW8ydCT4BkNzHXMjKgD1DImIfNuHH35IUFAQF1xwQZvtl112GUeOHCE7O9tDkQ1igREQO8n8Oc81b8hVROGDA3V8uf+oZ+ISkUHPx9MBSB+yWCFuEuSvJ9MnF4hiW2EVdoeKKIiItNi7dy8jR47Ex6ftLXLs2LGt+6dMmeLWNbvam9Rynjf0Rhkps7CU5OA49BXOcd/loomxPPnZfoprbFzzzEbOGB3FPReMZWxcqKdD7TPe9O/fHrVf7T/xuavnn46SIW8Tlw7564mr20Ogbyw1jTYOlNYwIirI05GJiPQLFRUVJCUlnbQ9PDy8db+7cnJyuhVTd88fCCIc8YwEGnavYWdcFgB/Pm8Ir+6o4f39dXy+t4y1e8tYMCyQKyeGMDTI6tF4+5I3/Pufito/wNvvdGCxN2KxN+C01eNobMDWXI+jqR5HcwOO5gaczfVga8BoedgbsNgbaUqaQ2+3XsmQt4k35w1ZSraSlngxGw6Vk11QqWRIROQEhmF0aV9H0tLSsFrd//But9vJycnp8vkDyqh42PxrAqsOkDluOASEY7fbCffP4WeLJvPnNft5Z1sxHx+q56vCRq6bM4xbzhhOaICvpyPvNV71798Otb+P2u90QHM9NNfhaKyjsb6axvoamutraGqowVZfS3NjLQ7Xw9lUh7O5DqP1UY/VXo/VVo+PowFfez1+jgb8nA34OxsIoKnLoR2oyiHpklu69ffzdJQMeRtXRTkObyV9YhgbDpWztaCCSzPjPRuXiEg/ERER0W7vT2WlueZNSw+RO6xWa7c+zHT3/AEhPAGGjMQo34+1cCOMOb9114iYUP561VS+yTvGQ+/sZOOhYzzx2QFe2lTAj88exQ9mpuLnM3inQXvFv/8peH37LQZWewM01+NorKGxvobGuhqa6mtobqihqaEWe0MN9sYaV8JSB8110FQHtjoszfVYbHVY7Q342OvxddTj62jA33FysmIFfIGQXmpLvdOPOvxpaHkYATRZ/Gm2BNJsCcRmDcDuE4jDJwiHNZCa6Mmk9vK/v5IhbxM93lzpu6GCWUPreAoVURAROdGYMWN46623sNlsbeYN7dmzB4DRo0d7KrTBL3WOWVEu98s2yVCLKSmRvHzLbD7cUcLD7+3iQGktD765g39+dYi7LhjHhZPiutRzJ+JpDY1NFB3YRtWhLdgPbyOwfCfRdfuZ4KjE+mZj63EWIND16A0tyUq9K1lpNAJoMvxptgbSbAnAZg3EbnUlK76BOH2CwC8Iwy8Qwy8Yq7/58AkIwScgBL+AYPyCQvAPDCUgKJggfz+CfK0M8bWc9v9Vu91OVlZWL7X0OCVD3sbHD2LGQXEOGT65QCA7D1fTqEXtREQAOPfcc3n55Zf54IMPuOiii1q3v/baa8TExJCRkeHB6Aa51Dmw5TnIXdfhIYZhsHBiHGePi+HfG/N59KM9HDpax20vfMPklAjuu2g804YN6cOgRTrHZndQcKye/KLDVOVuwVm8jZBju4it38dwRy4jjNOXka93+lGPH3UE0IA/TYYrYbEGYnMlKzZrIE6fABw+wTh8AzH8gsA3CIt/MBb/YKx+ZrLiGxiMr38I/kEh+AWFEhAYTJC/L0F+PkT6WLBYvOOLBSVD3ig+A4pziKrZRWTQDI7VNbO7uNrTUYmI9Atnnnkmc+fO5cEHH6SmpoaUlBTefvtt1q5dyx/+8AevHq7T61LnmM9F35hDfKz+HR7qY7Vw1axUvjc5kb9/foAVnx9gS14Fi/+2jvMnxnLXBeMYGd1bg31E2udwOCmpbuBgaS0HS6uoLNyDUbKN0IpdxDfuZ6yRx3yj7OQTDajHnzyfYZSHjKZx6ASs8ZMoqbYzZtxEAkPDCQgMIdDflyA/KxE+Vq9JVnqbkiFvFJcBPI9xeCvpSQv5bE8pWwsqmRTg6cBERPqHZcuW8ec//5nHHnuMiooKRowYwZ/+9CcWLVrk6dAGt4hUCE2A6iIo3AQpc097Soi/Dz87bwz/NTOFP3+0l5c25vH+9hI+2nmE/29GMj85ZwzRoR0nVSLucjqdHKtr5mBZDQfL6jhYVsPhkhKMIzuIqNrNSMchJljyuNQoIMg4PsTtxNU9j/rEcix0DE1RE/BPSmfoiKmEJ4xmrPX4R/OWYWITx4zSlzC9SMmQN3JVlKN4Kxlp4Xy2p5TsggomjfJsWCIi/UVwcDD3338/999/v6dD8S6GYfYObXsVcr/qVDLUIiYsgIcuS+P6ucP4/Xu7+GjnEZ7/Oo/XvinkljNHcuP84QT56WOPdF5to42DZbVtHodKq7GVHSCx6QDjLblMMPK40sgj2VJqnmShTdLTbPGnMnQ09ugJBCRnEJqSiSVuEkMDIxjqkVbJt+mvgjeKnQQYUH2YadHmglQ5hVUwSsMJRETEw1JnH0+G5rt/+ujYUJ764XS+PnCUh97ZSXZBJX/6cA/Pf53LneeNYfHUJHysg7fynLin0WYnv7yOA6WuZOdobevPddXHGGvkM96Sx3gjj3mWXMYa+QQbjeB38rUaguJxxEzEPzEda3waxKXhO2QEURb16vRnSoa8kX8IDB0FR/eS7pMLwL7SGuqbtdaQiIh4WKqrN6hgI9hPP6G8I7NGDGX17XN5a+thHnl/F/nl9dyzKoenvzjIPReO4+xxMao85yXsDidFFfUcKKvlkKuH50BZLQfLaig8Vo/T6SDZKGW8kct4Sx5nGXmMN3JJCSht93oOqz/ETMASNxFi0yBuEsRMICBIhTsGIiVD3io+HY7uJaJiB4kRkymsqGf/sWZmezouERHxblFjIXAI1JdDcTbd+ahiGAbfyUhg4cRYXvg6j8c+3sveIzXc8K9NzBoxhP++aDzpSRE9Frp4jtPppLSm0Sxc8K2hbblH62iym1Vzg6lv7e1ZaOQy3jePcUY+wUZD+xcOTTCTndhJrc+WISPBqo/Qg4X+Jb1VXDps+4+5+GrSWRRW1LPvmM3TUYmIiLezWCBlNux+GyP3Kwg6o9uX9Pexcv284Vw+NYknPt3PM18e5OsD5Xz38S/5TkYCd50/luQhGh0xEFTWN7uSnJbiBa6fS2upbbKfcKSTJKOUCUYuFxl5TPDLZ5I1j0RncfsXtvqbS4/EpkHsxOMJkHp7Bj0lQ94q3rVORvFWMjIieHdbMfvKm059joiISF9InWMmQ3nrYFz3k6EW4YG+3HPhOK6encofP9jNa1sKeTO7iPe2Heaa2cNYumAUkcHtTAaRPlffZOeLvUf4dGcNL+7P4dDROg6V1XK09uTPKoE0MM7IZ7w1j+mBRUy05pHafBB/R13bA52u59B4M+GJnQRxaebz0FHq7fFS+lf3Vi3JUPkBJseYE0m3H2niwx0lnDMhDl9NLhUREU9JdQ3azv8axvb8ouCJEYH86fuZXD93OA+/u4sv9pXx9BcHeXlTPksXjOKHc4YR4KtJ732tsq6ZNbtKeH97MZ/tKaWhueXfvsb17CTJKGNm0GFmBBYywZpHctNBwuvzMVoyHZvrAWD1g+ixx+f1xLrm+ASrjpscp2TIWwUNgbAkqCogzSefEH8rVY12bn1hC1EhfnwvM5El05IZGxfq6UhFRMTbxGWAbzBGQyWB1QeBKb3yMpMSw3n+xpl8vqeU372zk13F1Tz07i6eXZfLzxeO4XuZiVrYspcdqWrggx1mArRu/1FsDmfrvvlhJSzw38OUkDKSmw4QUb0Xa1MV2DmeH7UIiW0zr4fYSRA1Gqy+fdoeGXiUDHmz+HSoKiDo6HZev/2/+Mtbm/mqyEZZTRNPfXGQp744SHpSOEumJvHdjETCg/QHRURE+oDVB5JnwIFPCDmaA1zeqy93xpho5o6K4rUthfzxg90UVtRz58vZPLX2IP990XjmjY7q1df3NrlHa3l/ezHvbStmS34FzuP5D2NigrklKZfzj60k5PA6aAKqTzjZ4gvR49rO64mdBCHRfd0MGSSUDHmz+AzY/Q4c3sqw6Tfzw4wwHrkqnS/2lfPypnw+3nWErQWVbC2o5H/f3sn5E+NYMjWJuaOisOqbMhER6U2pc+HAJ8Tu/zfGN8Mh8wfgG9BrL2e1GCyemsTF6fE88+VBnvhkPzsOV3HV0+s5Y0w09144jvHxYb32+oOZ0+lk5+Fq3t9ezPvbi9lVXN1mf2ZyBOdPiOHSwC3EZT8CO7LM8yy+VA9JJ2T0bCxx6WYCFDUGfDSvS3qOkiFvFpduPh/Obt3ka7Vw7oRYzp0QS1lNI6u3FPLq5gJ2FVfzZnYRb2YXER8ewOVTklg8NYlhUcEeCl5ERAa1jCtwbngS/9oj8PbP4NOHYObNMO2GXq3wFeBr5bazRnHl9BSWfbyX57/O5fM9pazdW8rlU5L4+cIxxIcH9trrDxYOh5Mt+cd4b1sx728vIa/8eDEDq8Vg1oghnD8xjoVjhxKX9yZ88VMo22Me4BMIU6/FMfNH7D1YRmZmJlg1h0t6h5IhbxbvSoZKd4Ht5Pr6USH+3Dh/BDfMG862wipe2ZzP61lFHK5s4PFP9vH4J/uYMXwIS6YmcVFaPMH++s9JRER6SEQKjts3UfTWwyQVvIFRVQgf/wbW/hmmXAOzb4OIlF57+SHBfvzyOxO5ds4wHnl/N29vPcyrmwt4M7uIG+YN59azRhIWoOHjJ2qyOfj6wFHe217MhztKKK1ubN3n72PhjDHRnD8xjnPGxRDpZ4dvnoN/PQaV+eZBAeEw42aYeSsER4HdDpR5pjHiNfTp1ZuFJR5f2O7ITqD9oW+GYZCWFE5aUjj/fdF4PtpZwsubCli7t5QNB8vZcLCcX76xnUVp8SyZlsz0YZFa1VtERLrPP5QjI5eQ8L0Hse58Hb56DEq2wfonYMMKmHgpzP3x8QqpvSB1aDDLfzCFG+cd46F3drHhUDl//XQ//96Yz4/PHsUPZqbi5+O9FVjrmmx8vqeU97YVs2bXEaobjq9ZGOrvw9njY7hgYhxnjo0myM8HGiph4zL4+gmoLTUPDI6B2bfDtOshQEMRpW8pGfJmhmHeQA58glG8FSynv5kE+Fq5OD2Bi9MTOFxZz6pvCnllUz6HjtbxyuYCXtlcwLChQSyemsTlU5M0lEBERLrP6gsZV0D692H/x2ZSdOBT2Paq+Rh+ppkUjTzHvLf1gskpkbx0yyw+2nmEh9/dyf7SWh58cwf/+OoQd50/jovS4rzmi8CKuibW7DzC+9uL+XzviSWwzVEl502I5YJJccweMfR4olhTCp//FTY+BY1V5raIFJj7E8j8L/DV5wXxDCVD3i4+HQ58AsVbIcG9b9biwwO5fcEobjtrJJtyj/HKpnze3nqYQ0fr+L8P9vDHD/cwf3Q0S6Ymcd6EWK3ZICIi3WMYMOoc83E4G75aBttWwcHPzEfsJJhzB0y6vFdKKhuGwXkTYlkwNpqXNuXz5w/3knu0jttf/IbM5AjuWzSe6cN6bz6TJ5VUNfDBdnP+z7oDR7GfUAI7eUgg50+I4/xJcUxJiWxbZKki3/x3+uZfx4fkR4+DeXfCpMtU+lo8TsmQt3MVUTCKt0JC1y5hGAbThw1h+rAh/PI7E3kn5zCvbC5gw8FyPt9Tyud7SgkP9OW7GQksmZZEWmK413x7JiIivSQ+Ay5/Cs75H3PI1eZ/mUPoXrsF1vwaZt0GU38I/j2/Xp6P1cJ/zUzle5mJ/H3tAVZ8foCs/AqW/G0d502I5e4LxjEqJqTHX7evHSqr5T1XBbgteRVt9o2NDeX8SXGcPzGWCfFhJ9/XS/fAl4/C1pfA4Ro6lzAF5v8cxl4EFu8dWij9i5IhbxefaT6X7ACHvduXC/b3Ycm0ZJZMSyb3aC2vbi7gP5sLKKps4Lmvc3nu61zGxoayZFoSl05OZGiIf7dfU0REvFhEClzwEJx5F2x8GtY/CVWF8MF98NkjMO06c0J+WHyPv3Swvw8/PXcMP5iRwqNr9vLSxnw+3FHCx7uOcOX0ZH5y7mhiQnuvHHhPczqd7DhcxfvbS3h/WzG7S9qWwJ6cEsEFE+M4f2Jcx9Vki7bA2j/BzjcBV+/R8DPMJGj4mb02jFGkq5QMebshI8AvBKOphoDaPGBqj106dWgwP184lp+eO4av9pfxyqYC3ttu/nH9zds7efjdXZw9LoYl05I5a2w0vlZ9SyQiIl0UGAln/AJmLzV7I75aBkf3mr0T65ZD+hXmELqYcT3+0jFhAfzu0jSunzuMh9/dzUc7S3hhfR6vbSnkljNGcuP84f224qrd4eSbvGO8v62Y93cUk19e37rPx2Iwa8RQzp8Yy3kT4ogL7yCxczoh90tY+0dzTleLsYtg/p2QNK2XWyHSdf3i/8za2loeffRR3n33XSorKxkxYgQ333wzixYt8nRog5/FYo6xzv+aoMp9vfISVovB/NHRzB8dTWVdM29sLeLVTflkF1TywY4SPthRQlSIP5dOTmDJtGTGxPb8kAYREfESvgHm8LjJV8Oe98xiC3nrIOt58zH6fLPYQurcHu+lGBUTylM/nMb6A0f53bu7yM6v4M8f7eH59bn87NwxfH9aEj794Iu/JpuDdQeO8t42swR2Wc3xEtgBvhbOGO0qgT0+hoigUyxw6nTCnvfhiz9B/npzm2GFtMUw96cQO6F3GyLSA/pFMnTHHXeQk5PDz3/+c4YNG8Zbb73FnXfeicPh4Dvf+Y6nwxv84tN7NRk6UXiQL1fPSuXqWansLq7m1c35vLalkLKaRv6+9iB/X3uQjOQIlkxN4jsZCYQHamKliIh0gcUC4y4yH/kb4au/wM63YO/75iNhipkUjf8uWHq2wM/MEUNZfdsc3s45zCPv7SavvI7/fi2HZ748yD0XjOOc8TF9Pne2rsnGZ7tLeW97MR9/uwR2gA/njo/l/ImxnDHGVQL7VOw22LEavvizOU8LwOoPk68y39PIYb3WDpGe5vFk6LPPPuPLL7/kj3/8IxdffDEAs2bNoqioiEceeYSLLroIq1Yd7l2u9RkCK/f26cuOjQvlvkUTuOuCcXyy6wivbC7gk11HyM6vIDu/gv99awfnT4xjybQk5o6MwmLROGMREemC5OlwxfNwdD+sexyyXoSib+CVa80P7rOXmuWd/YJ67CUNw+Di9AQWTojjhfW5PLZmL/uO1HDjs5uYOXwI/33ReDKSI3rs9dpTUdfERzuP8N62YtbuLaXRdrwEdnSoPwsnxHL+xDhmnVgC+1RsjZC9Er54FI4dNLf5hcD0G8yCFaFxvdMQkV7k8WToww8/JCgoiAsuuKDN9ssuu4yf//znZGdnM2XKFA9F5yVcFeVCy3PgxSUw8mwYuQBiJvTJREdfq4WFE+NYODGOsppGVm8p5JVNBewuqeaN7CLeyC4iITyAy6cmsXhqEqlDO5i0KSIicipDR8LFf4az/hs2/h02/B2OHYJ3fgGf/A5m3AQzbobgqB57ST8fC9fNHc5lU5L422f7eeaLg6w/WM4ly7/k4vR47jp/HClDey4JK65s4IMdZgW4rw+UtymBnTIkiPMnmmsATU6O7PyXjI01sPmfZiJZfdjcFjgEZv3IfM8CI3ssfpG+5vFkaO/evYwcORIfn7ahjB07tnW/kqFeFjMBZ3wmxuEs2L/GfACExMKIs2DEAjM56oNvfKJC/Llx/ghumDecnMJKXtlUwOtZhRRVNrDs430s+3gfM4cPYcm0ZC5Kizt9V76IiMi3hUTDgv82F/zMetH8kH/sEHz2e/jyL2Yv0ezbzeSph4QH+nL3BeO4elYqf/xgD6u2FPDW1sO8v72Yq2cN446zRxEZfIr5OadwoLTGrAC3vZis/Io2+8bFhXK+qwLc+PhQ94bn1ZXDhhWw/m9Qf8zcFppgFqKY+kPw05eTMvB5/JNkRUUFSUlJJ20PDw9v3e8Ou71r5aFbzuvq+QObgf3aD9j31euM8SnCeugzyF2HUVNiVuTZ+hIAzuhxOEechXP4Akid0+t/BCfGhzLxO+O594IxfLDzCP/ZXMAX+4+y/mA56w+W88vXt3FRWhyLpyQxNTWiW+OvvfvfX+0fKO23O5zY7A6a7E5sDgc2u5Nmu4PmDn5vfbad+LuTZpuDZtfxNoeTxmYbltoG0tK69/dTZMDxCzZ7NqZeBzvfMIstFG2BTU/Dpmdg/HfMhKkHq6ElRATyx+9ncMO84Tz83i4+31PKM18e5JXN+dy+YBTXzhl22kXKnU4n24uqeN+1BtCekpo2+6ekRHDBJDMB6tJoiupiM0Hc9A9ocl17yAiY9zOzKp+PlsWQwcPjyRBwyg+x7n7AzcnJ6VYs3T1/QAsbSTYjYcJ8jLFNhBzbRmjpZsJKNxNUuRejdBdG6S5Y/zcchg+1QyZSFTWVquip1EWMMSvI9JJk4KeTfblqbDSf5tbzycF6imvtvLK5kFc2FxIfYuXsYYGcOSyQoYFdj8Or//3xrvbbnU4abeajwe6k2e7kwOffYHM4sTsxnx20+7vNaSYm3/7d5qDDc20O1zmn+d12wvnf/t15+mZ9i5MAmgikkUCaCDQaO/w53xnD6CG+DOnG/z8iA5bVByZdBhMvhUNfmEnR3g/MBGnnG5AyxywMMPr8HlssdEJCGM9eP4O1e0v53Tu72Hm4ioff3cWzXx3iF+eP5XuZiW2OtzucbM491poAFRxrWwJ79sihnD8xjoUTYokJ6+LaRuUHzZ6xrBfA3mRui00zy2NPuKTHC02I9AceT4YiIiLa7f2prKwEjvcQdVZaWlqXCi7Y7XZycnK6fP5A1377ZwDXA+CoK8c4+Bkc/BTjwKdYKvMJPZpN6NFsEnc/gzMgAobNxzliAc4RZ/VqJZlz55jfim3KPcarmwt5Z1sxh2vsvLCthpXba5g3KorFUxM5d3ws/p2ZEIr+/ftr+5tsDuqb7dQ12alvspnPrb/bqWt2PZ/0u63tce2c13TCRGLPcOJPM4E0EkQjgUZja+ISZJhJSkDLz0YTAVbzOQgziQkwzGODjUaCjKbWfQGY1wlwHeeOxnH/Hz6RJ/fUn07Lfz8iA55hwPD55uPITnOtoq0vQ95X5iNqrDlELP37PdY7Mn90NG/fEcXqrEL+7/3dFFU2cOfL2Ty19iC/WDia/YcbefngNtbsOkJZTVPreQG+Fs4c4yqBPS6W8KBuVF8t2W5Whtv2H3C6/jYmzzLXbRp1rhZKlUHN48nQmDFjeOutt7DZbG3mDe3ZsweA0aNHu3U9q9XarQ9z3T1/oOuw/aHRkL7YfDidUH7AXFjtwKdw8HOMhgrY9SbGrjfN4yOHmYUYRiwwV54OjOjxWGeNjGbWyGh+dYmNt3MO8+qmAjYcKufzvWV8vreM8EBfLslMYMnUZCYlhnWql1H//u613+l00mhzUNeSgLgSDzP5sB3/ualtQnNi0nJywnJ8m83hfl+IuwwDgnytWA0ngX6++Fgt+FkNAi02QixNhFiaCLY0E2Q0EmyYvShBrYlHkyv5aCSQBvydjfg7G/FzNuLvbMDP0Yivo6H14eNowMfegI+9Hqu9AaMLfT1dZvU3K2X5BoFvoOsRDL6BOH0CKXYOISYi0av/+xdpI2Y8fO+vcPb95pyZTf+Ast3wxlL4+Dcw8xaYdn2P3N8sFoPLpiRxUVo8//zqEMs/2ceOw1Vc/6/NriPM+TphrhLYCyfGceaYaAL9uvn/a/5Gc6HUPe8e3zbqXJj/c3M4vIgX8HgydO655/Lyyy/zwQcfcNFFF7Vuf+2114iJiSEjI8OD0Um7DMOcVDp0pDnW2m4zS5Tu/wQOfAIFG82JqJueMR+GxVzPYeQCMzlKmg4+XZsk2p5gfx++Py2Z709L5lBZLa9uLuA/3xRwuLKBZ9fl8uy6XMbFhbJkWjLfy0xgaIh3jXV2Op002R3UNZpJSF2jmWzUupKX2iY7NfVN7D1Uy1cV+2lwJTftJTZttrl6X/ogX8HHYhDoZyXIz0qQnw+BvubPbbb5WQlq3e5jPvsahFNDuKOCEHsVIfYKApsrCGgux7/xGL6N5Vjqj0LtUZqqSvEzbBjN9dBQR1cGpXWZ1d+VnAS5EpbAE5KW4BOSl6AOE5rTnnuK4S0Ou52irCxi9O2vyMnCEuC8X8P8X8A3/4J1f4XqIljzKzORmPJDs6paRHK3XyrA18qtZ47kimnJLPt4H89/fYggX4NF6YlckBbPrBFD8e3uoq1Op3mvXvsnOLTWtdEwh8HNv7N1uQ0Rb+HxZOjMM89k7ty5PPjgg9TU1JCSksLbb7/N2rVr+cMf/qBvKQcCqw8kzzAfZ90NjdXmmOuW5KhsDxRuMh+f/8H8gDZs3vHkKHpsj3XBD4sK5hfnj+Vn543hy31lvLwpnw92lLCruJr/fWsHD7+7k7PHxbBkajJnjY3uFyuBt/h2L0tL0nFi8tJmmyuxqXUlKcf328zE54SEp/M9LNVdjt/fx9I2MfGztiYtbbb5WQny9flWMnNiAtP2nEBf6/H1L2xNUHfU9SiD2jLz59qy47+Xlh//ub78+JCP08Xf0Q6rnyu5CDpF0nG6/adKWII0Dl9kIAgIM4fIzbjFHE721TI4sh2+Xm72HE263JxXFJfW7ZeKDPbjf74zgXsuGEN2dhZTJk/s/uchhwN2vWUmcIezzG0WH8i4Eub+FKLcG4kjMlh4PBkCWLZsGX/+85957LHHqKioYMSIEfzpT39i0aJFng5NusI/FMZeaD4AKgvM4XT7PzGf68qOrwAOEBp/vHz3iLMgJKbbIVgtBmeMieaMMdFU1jXzRnYhr2wuYGtBpav8aAlRIf5cPiWRJdOSGO7GGg8nJi21jbaTk5cmG7WN7W+rb3Y9t5e8NNvbrAfRG05MWIL8rAT5+xDsZyXQ10JDbTWJMVEE+fuclKAcT1J8vpXAHO+psXZlUdymWlcyc8R8rjghqakrM8u6tiY6R6GxsmsNDwiHoChz7ZCgKAgeCkFDW7fZAyLZk1/KmIkZWP1DjictPoFmsi8i0sLHDzL/PzOJ2LcGvvoLHPwccl42HyMWmEnRiAXd/qLPajGwdPfLQnsz5LxiLpRattvVhkCYei3MWQrh7s8TFBlM+sVdPjg4mPvvv5/777/f06FIbwhPgslXmQ+HA0q2mT1G+z+BvHXmAm7ZL5oPgNhJZlI0coFZwaebK4KHB/ly9exhXD17GLuKq3h1UwGvbSmkrKaRJz8/wJOfHyAzOZyUwGZey9vROp+l1jUUrL3EpreHhvn7WAj2N5OMYH8zKQk+IYkJ9j8hoTkhYQn2N5OV4Ha2BflaO+wJs9vtZGVlkZk5qevfPjqd0FB5ck9NSyLTXm+Orf701/02w9ImkTF/HvqtROdb+6ynmVhst1NXk2UuNKzeaBHpDMOA0eeaj6IsswLd9tXm/e3AJ2YP0ZwfmxXqTvc3qDc018OW583qcJX55jb/cJh5M8y8tUcXlhUZyPpFMiRexGKB+HTzMfcn0NxgJkQtyVHxVjNZKtlmrnFg9YOUWcd7juIyulXWdFxcGPdfPIG7LxzHx7uO8MqmAj7ZfYSs/EqyAMhz63otSUuQ3/GhXcH+VgJ9fVwJi2ubq5fF3Gc94Ryf1oTlxB6YfjF8z2E3e2baJDVl7WxzJTl1R8Fhc/91rP6dSGqiju8LiOix0rYiIj0iIRMWPwPn/BK+/it88ywU58Cqm2DNr805RVOuMUdO9LaGStj4tBlHbam5LTjGXER22vXmcD8RaaVkSDzLN8BMckYugPMwP2Af+NSVHH0KVQXm8IODn5uTVQOHwIgzjydHESlde1mrpXVF7tLqRl7fUkDW3jyGJcUTEuDbfo+LK4kJPmF4WJeGhnlSYw3UlJg3yJoj5vC0miMY1SWMKNqHJct2fE5O/TG6VETAL/SkYWhtkpzWn13PfiEq2yoig0NkKlz4ezjzbnPh1vVPmr0y7/83fPZ7mHaD2SsTGtvzr11TCuufgA1PHR9SHJFi9k5NvsqcoygiJ1EyJP1LcBSkLTYfTicc3Xe8EMPBteaE+O2vmQ+AISOPF2IYPt+cG+Km6FB/rps7jKzgCjIzRw+soh1Op7k6eM2R4wlOm2Sn1Py95efmunYvYwEiO3qNwMj2k5r2enOChpoJroiINwsaAmf8P5h9B2z9t1ls4eg++OJP5qiH9CvMJCV6TPdfqyLfvP43zx4fehw9Dub9zCzq4IkheiIDiJIh6b8Mw6xuEzXaHONsb4bCzSeU8N4E5fvNx8anwLBC4tQTSnhPG5g3gZMSnJJvJTvHe3ROleB0yDcYQqLNYRMh5sMRFEXBsUYSx2RgDYk5ntwERqqAgIhIV/kGmIUKJl8Du98x5xXlr4ctz5mPMReaxRZSZrvfQ1621yyKsPXfx4coJ0wx1wgae5GGE4t0kj7lyMBh9TXnD6XMggX3muOiTyzhfXQfFGwwH5/93hyudWIJ76jRnhuOdWKC8+1kpqbEHN7Qsq3miPuFBVoSnJBYCI42k5wTkh3zZ1cC5B9ycnh2O6VZWSROyFQBARGRnmaxwPiLzUfeejMp2vW2udjpnnchcZqZFI27+PSl9ouyzB6mHW/QOpR5+BlmEjT8TA07FnGTkiEZuALCYdwi8wHmUIGWQgwHPjWH1LXcaADCko5XqRtxVvcr6XSU4LT+3JLguJKdLiU4LcmMK8HpKNnxC+5eW0REpG+kzISUF8yenXWPQ9ZKcx2+l6+BISNg9lLI/EHbOT5OJxz60lwjaP+a49vHLjIXSk2a1vftEBkklAzJ4BGRbFbrmXKNWcK7eOsJJby/NosxZD1vPsAse9pSiCFxhrnN+f+3d+9BTZ15H8C/CfECqFxExNfLWtBELimiQrxRlXovFqyiO9MBV0WlFtYVda213YLrda3jCi4ixVW0jqNV9FVrtfW2um8lKFbLqigVtUIrIoqIyC2c949MzhIBRQlJ4Xw/Mxn1nCfk9yQh3/md8+QoAGXFtS4wYNTglOT/9++NbnA619/ssMEhImq5nHoDEzYAI5YC6UlA+hfAwxzg62jg1ErAbzbQfzo65KdBvu0j/aoHQL8k3GuS/jtBnT0sOweiFoDNELVMcrn+Uqf/01cfGBWlNS7hfRrIz9Rf9vReJvB9HOSKtvBqZQ/5N49fvcFp3a7G2Ro2OERE9AraOQMBn+iz6ocv9WeLin4GTq+E/F+r0Vuo1o+zagP4vK+/8ILjG5atmagFYTNE0tDaBuj1tv4G6M/05PxLPHMke/IL2lTdqzG+XY3GplMd379xZoNDRESm09oW0MzRX3772v8C/7cBsl8vQ2dlDZlfOOSDI4H2LpaukqjFYTNE0tTOGXgzRH8TBOjuZyH7x/Po7TMEVh1c2OAQEZFlWCn0y+A834Ou4AYyc+5B7TuUF7chaiJshohkMsBJiaeOpYBDTwYOERFZnkwGdOwF3d0SS1dC1KLxIvRERERERCRJbIaIiIiIiEiS2AwREREREZEksRkiIiIiIiJJYjNERERERESSxGaIiIiIiIgkic0QERERERFJEpshIiIiIiKSJDZDREREREQkSWyGiIiIiIhIktgMERERERGRJLEZIiIiIiIiSWIzREREREREksRmiIiIiIiIJElh6QJMRRAEAIBOp3ut+xvu97r3b+44f86/5p9Sw/k3bv6G+xk+h+m/mE2Nw/lz/jX/lBrO3zzZJBNaSHpVVFQgMzPT0mUQEUmWWq1G69atLV3GbwqziYjIsl6WTS2mGaqurkZVVRXkcjlkMpmlyyEikgxBEFBdXQ2FQgG5nKuva2I2ERFZRkOzqcU0Q0RERERERK+Ch/CIiIiIiEiS2AwREREREZEksRkiIiIiIiJJYjNERERERESSxGaIiIiIiIgkic0QERERERFJEpshIiIiIiKSJEk0Q6mpqVCpVOLNw8MDQ4cOxfz583H79m2jsRcuXMDSpUvx3nvvwcvLCyqVCrm5uZYp3EQaOn+dToetW7di5syZeOutt+Dt7Y1x48bh888/R3FxseUm0ESef16ev2m1WkuX+NqOHj0KlUqFI0eO1Nr37rvvQqVS4ezZs7X2jRw5EhMnTgQAnDp1Cn/+858xYcIEeHp6QqVSNXndptLY+ZeUlGDTpk0IDQ3FkCFD4OPjgwkTJiApKQnl5eXmmEKjmOL1X79+PYKDg+Hn5we1Wo23334bn376KfLy8pq8fqlgNjGb6sJsYjY9j9nUtNmkeO17NkOrVq2Cq6srysvLcfHiRSQmJkKr1eKbb76BnZ0dACAtLQ3nzp2Du7s7bG1tkZ6ebuGqTedl8y8rK0N8fDwCAwMREhICBwcHXL16FZs2bcKpU6ewb98+tG3b1tLTMDnD8/K8Xr16WaAa0/Dz84NMJkNaWhrGjx8vbi8qKsKNGzdgY2MDrVYLf39/cd+9e/dw9+5dTJ8+HQDw3Xff4fLly3B3d0erVq1w5coVs8/jdTV2/r/88gtSUlIQFBSEP/zhD7CxsUFGRgY2btyI77//Hlu3boVMJrPE1BrEFK9/cXEx3nnnHbi5ucHW1hY//fQTNm3ahJMnT+Lw4cNwcHAw+7xaKmYTs6kuzCY9ZhOzqamzSVLNUO/evaFWqwEAGo0GOp0O8fHxOH78OCZNmgQAmDt3LiIjIwEAW7ZsaVGB87L5t23bFidOnDB6I2k0GnTp0gXz5s3DsWPHEBQUZKnym0zN56WlcHR0RO/evWu9f8+fPw+FQoFJkybVOrqYlpYGQP+aA8Dy5cshl+tPHi9btqxZBU5j59+tWzecPHkSNjY24v5BgwbB2toaf/vb35CRkYEBAwY0/URekyle/88++8xov+F5mT17Nk6cOIHJkyc34QykhdnEbKoLs0mP2cRsApo2mySxTK4+hg+ZwsJCcZvhF0wKnp+/lZVVnR31m2++CUDfnVPzodFocOvWLdy/f1/cptVq4eXlhWHDhuHKlSsoKSkR96Wnp8PKykr8IG3uvwuNmb+NjY1R2Bg0p9+Fxr7+dXF0dAQAKBSSOo5mdswmZlNLxmxiNv3Wsql5v6MaybDeumfPnpYtxEIaOn9DV96cT82/SHV1NaqqqoxuOp3O0mU12sCBAwHA6AiMVquFn58f+vXrB5lMhoyMDKN9Hh4eaN++vdlrbQpNMf/m9LtgqvlXVVWhrKwMV69excqVK9GzZ0+MGjXKPJOQKGYTswlgNtXcx2xiNjVlNkmqGTJ8sDx9+hRnz57Fpk2b4Ovri4CAAEuXZhavM//8/HysW7cOXl5eGDFihBmrNZ8pU6bA09PT6NYSlib4+vpCLpeLHziPHj1CdnY2fH19YWtrCw8PD/ED9Ndff0Vubq54GrolMPX8s7KykJycjFGjRqFPnz5mmUNjmGL+BQUF8PT0hLe3NyZOnAidToft27fD1tbW7PNpyZhNzKa6MJuYTcwm82STpNY6TJkyxejfbm5uSEhIkMySj1edf1FREWbNmgVBEPD3v/+92Z+ars+aNWvg5uZmtO23/AXEhrKzs0OfPn3E9bfnz5+HlZUV+vXrB0D/gWT4wDGMaUmBY8r55+bmIiIiAi4uLli+fLkZqm88U8zfwcEBe/fuRUVFBXJycpCcnIywsDDs2LEDzs7OZpxNy8ZsYjbVhdnEbGI2mSebWuYnSD3WrFmDvXv3IiUlBVOnTsXNmzcRHR1t6bLM5lXm//jxY8yYMQP5+fn45z//ie7du5u5WvNxc3ODWq02unl5eVm6LJPQaDS4ffs28vPzodVq4enpKR458fPzw7Vr1/DkyRNotVooFAr079/fwhWblinmn5eXh7CwMFhZWSElJQX29vZmnsXra+z8FQoF1Go1+vfvj5CQEKSkpCA3NxdJSUmWmE6LxWxiNtWF2cRsYjaZJ5sk1QwZPlgGDhyIZcuWISQkBGfPnsXRo0ctXZpZNHT+jx8/xvTp05Gbm4utW7c2i9OuVDfD0ZT09HSkp6fD19dX3Gf4cDl//jy0Wi3UanWLW/7U2Pnn5eUhNDQUALB9+3a4uLiYqXLTMPXr7+LiAmdn51r/Bw41DrOJ2SQ1zCZmE/DbySZJNUPPW7RoEezs7BAXF4fq6mpLl2N2dc3fEDZ3797Fli1b4OHhYeEqqTF8fX1hZWWFY8eOITs7G35+fuK+9u3bw93dHQcOHEBeXl6LWoZg0Jj5//LLLwgNDUV1dTVSUlLQtWtXc5ffaKZ+/e/cuYN79+7hd7/7XVOWLXnMJmZTS8dsYjb9lrJJGguS62FnZ4fZs2dj7dq1OHToEIKCgvDw4UPxS103btwAAJw5cwaOjo5wdHQ0esGau+fnP2bMGMycORNXr17Fxx9/DJ1Oh0uXLonjHR0d0aNHD8sV3ESys7PrvEJPjx49xMs1Nlft2rWDh4cHjh8/DrlcXutUs6+vL1JSUgDUXpObl5eHzMxMAMDPP/8MAOKR2q5duzaLL/K+7vwLCwsRFhaGgoICrFixAoWFhUaXOXZxcWkWR+Jed/5ZWVlYtWoVxowZg+7du0Mul+PGjRvYtm0b7O3tMWPGDLPOQ2qYTcwmgNnEbGI2AebJJkk3QwAQGhqKnTt3IiEhAYGBgcjOzsa8efOMxsTGxgLQr2PcsWOHJcpsMjXn7+PjI37ArFixotbYiRMnYvXq1eYuscktWbKkzu3Lly9HSEiImasxPY1Gg8zMTLi7u6Ndu3ZG+3x9fbFt2za0atUKPj4+Rvu0Wm2t58bwu9Gc3guvM/+ffvoJd+/eBaA/Sv28yMhIREVFNW3hJvI683dycoKzszO2bt2KgoICVFVVwcXFBcOHD0dERAS6dOli7mlIDrOJ2cRsYjYxm8yTTTJBEIRGzYaIiIiIiKgZkvR3hoiIiIiISLrYDBERERERkSSxGSIiIiIiIkliM0RERERERJLEZoiIiIiIiCSJzRAREREREUkSmyEiIiIiIpIkNkNERERERCRJbIbotaWmpkKlUok3Dw8PDB06FPPnz8ft27ctXR4AIDExEcePH6+1XavVQqVSQavVWqAqvZMnTyIiIgKDBw+Gl5cX/Pz8MG3aNBw8eBCVlZUWq+t5dT1XH330EQICApr0cfPz8xEfH49r16416eMQUcvCbGocZtOLMZtaHoWlC6Dmb9WqVXB1dUV5eTkuXryIxMREaLVafPPNN7Czs7NobZs3b8aYMWMwcuRIo+2enp7YvXs3evXqZfaaBEHAxx9/jNTUVAwbNgwfffQRunTpgidPnkCr1SI2NhaPHj3CtGnTzF5bQ82dOxdhYWFN+hj379/Hxo0b0bVrV7i7uzfpYxFRy8NsejXMpoZhNrU8bIao0Xr37g21Wg0A0Gg00Ol0iI+Px/HjxzFp0iQLV1e3du3aoW/fvhZ57OTkZKSmpiIqKgqRkZFG+wICAhAeHo47d+6YtaaysjK0bdu2weN79OjRhNUQETUes+nVMJtIqrhMjkzOED6FhYVG2zMzMxEREQE/Pz+o1WoEBwfjyJEjRmMePnyImJgYjB8/Hj4+Phg0aBDCwsJw4cKFWo9TUVGBjRs3Yty4cVCr1dBoNAgNDcXFixcBACqVCqWlpdi/f7+4XCI0NBRA/UsRTpw4galTp8Lb2xs+Pj6YPn06fvjhB6Mx8fHxUKlUyM7ORnR0NPr374/BgwdjyZIlePLkyQufm8rKSiQnJ8PV1RUffvhhnWM6deqEAQMGiP8uKipCTEwM/P394eXlhbfffhvr169HRUWF0f3Ky8uxbt06BAQEwMvLC/7+/oiNjUVxcbHRuICAAMyZMwfffvstgoODoVarsXHjRgDAzZs3MXPmTHh7e0Oj0eAvf/kLnj59WqvGupYiqFQqLFu2DAcOHMC4cePg7e2Nd999F6dOnTIad+fOHSxZsgSjR4+Gt7c3/P39ERERgevXr4tjtFotJk+eDABYsmSJ+PrFx8eLYxryfiIiMmA21Y/ZxGySMp4ZIpPLzc0FAPTs2VPclpaWhvDwcHh7eyMmJgbt27fHkSNHMH/+fJSVleG9994DoP9wBYDIyEg4OTmhtLQU3333HUJDQ7Ft2zZoNBoAQFVVFcLDw5GRkYGwsDAMHDgQOp0Oly9fxq+//goA2L17N6ZNmwaNRoO5c+cC0B91q8+hQ4ewcOFCDB06FOvWrUNFRQWSk5PFx64ZAgAQFRWF8ePHY/Lkybhx4wbWrVsHQL80oz7/+c9/UFRUhJCQEMhkspc+l+Xl5QgLC8Pdu3cRFRUFlUqFCxcuICkpCdeuXUNSUhIA/fKGuXPnIi0tDbNnz8aAAQNw/fp1xMfH49KlS9i9ezdat24t/twrV67g5s2b+OCDD9CtWzdYW1vjwYMHCA0NhUKhwGeffYaOHTvi0KFD+Otf//rSOg1Onz6NzMxM/PGPf4SNjQ2Sk5MRGRmJo0ePonv37gD0Swzs7e2xYMECODo64vHjx9i/fz+mTJmC/fv3w9XVFZ6enli1ahWWLFmCDz74AMOHDwcAuLi4AGj4+4mIyIDZxGxiNlGdBKLXtG/fPkGpVAqXLl0SKisrhZKSEuHMmTPCkCFDhPfff1+orKwUx44dO1YIDg422iYIgjBnzhxhyJAhgk6nq/MxqqqqhMrKSmHatGnChx9+KG7fv3+/oFQqhT179rywxr59+wqLFy+utT0tLU1QKpVCWlqaIAiCoNPphKFDhwqBgYFGtZSUlAiDBg0Spk6dKm6Li4sTlEql8MUXXxj9zJiYGEGtVgvV1dX11vP1118LSqVS2LVr1wvrNti1a5egVCqFI0eOGG1PSkoSlEql8O9//1sQBEE4c+ZMnTUZHm/37t3ithEjRgju7u5CTk6O0di1a9cKKpVKuHbtmtH26dOnGz1XgiAIixcvFkaMGGE0TqlUCoMHDxaePHkibisoKBD69OkjbN68ud45VlVVCRUVFcLo0aOFlStXitt//PFHQalUCvv27at1n9d9PxFRy8dsYjbVxGyil+EyOWq0KVOmwNPTE/369UN4eDg6dOiAhIQEKBT6E4937txBTk4OJkyYAEB/5Mxwe+utt1BQUIBbt26JP2/Xrl2YOHEi1Go1PDw84OnpiXPnzuHmzZvimLNnz6JNmzYmW/d969Yt3L9/H0FBQZDL//trYWtri9GjR+Py5ct49uyZ0X3qOhVfXl5eawlGY6SlpcHGxgZjx4412m44unTu3DlxXM3tBuPGjYONjY04rmatb7zxhtE2rVaL3r17o0+fPkbbAwMDG1yvRqMxOsLp5OSEjh07Ii8vT9xWVVWFxMREjB8/Hl5eXvDw8ICXlxdu375t9BrX51XfT0QkTcwmPWYTs4lejMvkqNHWrFkDNzc3PH36FEeOHMHu3bsRHR2N5ORkAMCDBw/EcWvWrKnzZzx69AgAsHXrVqxevRq///3vMW/ePDg4OEAul2PDhg3IyckRxz98+BDOzs5G4dAYhsfv1KlTrX3Ozs6orq5GcXExrK2txe329vZG4wyn+svKyup9nC5dugD473KNlykqKoKTk1OtZQsdO3aEQqEQl24UFRVBoVDA0dHRaJxMJoOTk5M4zqCueRYVFaFbt261tjs5OTWoVqD2cwLon5fy8nLx36tXr8bOnTsxa9Ys+Pr6ws7ODjKZDJ988onRuPq8yvuJiKSL2aTHbGI20YuxGaJGc3NzE7+YOnDgQFRXV+Orr77C0aNHMXbsWDg4OAAA5syZg1GjRtX5MwxHgg4ePAg/Pz/ExsYa7X/+i5KOjo7IyMhAdXW1SULHUGNBQUGtfffv34dcLkeHDh0a/TheXl6wt7fHiRMnsGDBgpeuzba3t8fly5chCILR2MLCQlRVVYl129vbo6qqCg8fPjQKHUEQ8ODBA/H1Majrce3t7cUP85rq2tYYBw8eRHBwMKKjo422P3r0qEHP8au8n4hIuphNDcdsYjZJGZfJkcktWrQIdnZ2iIuLQ3V1NVxdXdGzZ09kZWVBrVbXeTOcvpbJZEZfpgSArKwsXLp0yWibv78/ysvLkZqa+sJaWrdu/cKjYQZvvPEGOnfujMOHD0MQBHF7aWkpvv32W/Tt29foyNvratWqFcLDw5GTk4N//OMfdY4pLCxERkYGAGDQoEEoLS2t9Z/zHThwQNxf88+DBw8ajTt27BhKS0vF/S+i0WiQnZ2NrKwso+2HDx9++cRegUwmQ6tWrYy2nT59Gvn5+Ubb6jua+SrvJyIiA2ZT/ZhNzCYp45khMjk7OzvMnj0ba9euxaFDhxAUFITY2FjMmjULM2fOxMSJE9G5c2c8fvwYN2/exJUrVxAXFwcAGD58OBISEhAXFwdfX1/cunULCQkJ6NatG3Q6nfgYgYGBSE1NRUxMDG7dugWNRgNBEHD58mW4ubnhnXfeAQAolUqkp6fj5MmT6NSpE2xtbeHq6lqrZrlcjkWLFmHhwoWYM2cOpk6dioqKCmzZsgXFxcVYsGCByZ4fQ+DEx8cjMzMTgYGB4n9sd/78eezZswdRUVHo378/goODsXPnTixevBh5eXlQKpXIyMjA5s2bMWzYMAwePBgAMGTIEAwdOhSff/45SkpK0K9fP1y/fh1xcXHw8PBAUFDQS+uaNm0a9u3bh9mzZ+NPf/qTeMWemktATGH48OHilXlUKhWuXLmCLVu2iFfjMejRowfatm2LQ4cOwc3NDTY2NnB2dkbnzp0b/H4iIjJgNr0Ys4nZJFVshqhJhIaGYufOnUhISEBgYCAGDhyIr776ComJiVi5ciWKi4thb28PNzc3jBs3TrxfREQEnj17hr179yI5ORm9evVCTEwMjh8/jvT0dHGcQqHAF198gc2bN+Prr79GSkoKbG1t0adPH/j7+4vjli5ditjYWERHR+PZs2fw8/PDjh076qx5woQJsLa2RlJSEubPnw8rKyt4e3tj+/bt6Nevn8meG5lMhlWrVmHkyJHYs2eP+HwY6l+4cKH4ZdM2bdpg+/btWL9+PZKTk/Ho0SN07twZM2bMMPpP8WQyGRISEhAfH4/U1FQkJibC3t4eQUFBiI6OrnVEsy6dOnXCl19+iRUrViAmJgbW1tYYOXIkPv30U/Hyr6awdOlSKBQKJCUlobS0FB4eHoiPj8eGDRuMxllbW2PlypXYuHEjZs6cicrKSkRGRiIqKqrB7yciopqYTfVjNjGbpEom1DzvSkREREREJBH8zhAREREREUkSmyEiIiIiIpIkNkNERERERCRJbIaIiIiIiEiS2AwREREREZEksRkiIiIiIiJJYjNERERERESSxGaIiIiIiIgkic0QERERERFJEpshIiIiIiKSJDZDREREREQkSf8PvYkq9gIBlD4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVeklEQVR4nOzdeXzU5bn//9dnJhvZd7KwhX1JIIgQUEFxrfuu/bUHXKotrdAe7WmV1p5Wv63a9vTUIyCFumu1LkW0rlW0SquERQJhk33JQkjIvieT+f3xmZmsQCaZySSZ9/PxmMdMPsvkuoPmzjX3fV+3Ybfb7YiIiIiIiPgZi68DEBERERER8QUlQyIiIiIi4peUDImIiIiIiF9SMiQiIiIiIn5JyZCIiIiIiPglJUMiIiIiIuKXlAyJiIiIiIhfUjIkIiIiIiJ+ScmQiIiIiIj4JSVDIiIiIiLilwJ8HYAMLhdeeCH5+fnduvb666/nscce80ocEyZMAMBisfDxxx+Tmpra5XVXXHEFBw4cAODZZ5/lnHPO6XRNbm4uL7/8Mhs3bqS4uJiAgABSU1M577zzuP322xk6dOhpYziVRx99lBtuuAGANWvWsHTp0tNeb7FY2L179ynPr127lvvvvx+AX//619x8882nfT9POnDgAC+//DLZ2dkUFhbS0NBAdHQ0kydP5pJLLuGaa64hODi40309/dmKiHSH+qTOMZzKYOiTnG38+uuvT3mN87+JdevWMWzYsB5/L/Vfg4eSIfGohQsXUlVVdcrzdXV1PPfcc9hsNsaNG+fVWAICAmhubmbNmjUsWbKk0/ktW7Zw4MAB13Ud2e12/ud//oennnqKgIAAzjnnHL7xjW/Q1NTE1q1beeaZZ3jllVd47LHH+MY3vnHKOBYvXtzl8UmTJrV7farrNm/ezIYNG5g3b94pv0dhYSG//vWvCQ0Npba29pTXecPy5ctZsWIFLS0tZGZmcv311xMWFkZJSQmbN2/mwQcf5JVXXmHNmjWuezz1sxUROR31SZ0N9j7J29R/DT5KhsSjbr/99lOes9vt/OhHP8Jms3HZZZdx5513ejWWuLg44uPjWbNmDffccw8WS/tZoW+88QaBgYHMmTOHzz//vNP9K1as4KmnniI1NZVVq1Z16ig//PBDfvKTn3DfffcRFRXFnDlzuoyjq06vo0mTJrXriNq69dZbAbjlllu6PG+321m6dCnR0dFccsklPPPMM2f8fp6ycuVKli1bRnJyMv/3f//HtGnTOl3z+eef89RTT7U75qmfrYjI6ahP6mww90l9Qf3X4KM1Q9Jn/u///o8PP/yQyZMn89vf/hbDMADIy8tjwoQJPPDAA+Tl5XHvvfeSlZVFRkYGN9xwA+vWrevx97zpppsoKCjg3//+d7vj1dXVfPDBB1x44YXExcV1uu/YsWOsXLmSwMBAVq5c2eUnhpdddhlLly7FZrPxq1/9ipaWlh7HeSp79+4lJyeHoUOHcsEFF3R5zQsvvMCGDRt49NFHCQ0N9XgMp5KXl8eKFSsIDAxk9erVXSZCAPPmzWuXDPWXn62I+Df1Se7rz31SX+gv/w7iWUqGpE+8++67rFy5koSEBFauXMmQIUM6XZOfn8/NN99Mfn4+1157LVdccQX79u3jnnvu4csvv+zR97366qsZMmQIr7/+ervjf//736mtreWmm27q8r41a9bQ3NzMRRdddNp51jfffDMJCQkcPnyYjRs39ijG03n11VcBswO1Wq2dzh84cIA//OEPLFy4kJkzZ3r8+5/OmjVraGpq4tJLL2X8+PGnvTYoKKjdff3hZysi/kt9Us/05z6pL/SXfwfxLE2TE6/bvn07S5cuJTg4mBUrVpCUlNTldRs3bmTJkiXt5ilfddVV3HXXXTz99NM9GmqOiIjgsssu491336W0tJTY2FgAXn/9dVJSUjjvvPN47733Ot23ZcsWAM4999zTvn9AQABZWVm88847fPXVV8yePbvTNcuWLet0LDU11bVQ9VTq6+t5++23sVgsXS48bW5u5ic/+QnJycncd999p30vb9i8eTOA2/8unvzZioi4S33S4OyT2uqqjU6VlZU9fl/1X4OTkiHxqqKiIn7wgx/Q0NDA73//+1NOpQLzl/H3v//9dsfmzp1LSkoKubm5PY7h5ptvZu3atbz11lvccccd7N69m507d7J48eJOc7adSkpKAE7ZSbblvObEiRNdnl++fHmnY7NmzTpjx/P+++9TWVnJBRdcQHJycqfzK1asYPfu3bz88suEhIScMU5Pc/6M3K2Y48mfrYiIO9QnDd4+qa2u2ugJ6r8GJyVD4jV1dXV8//vfp7i4mO9973tcc801p71+0qRJXQ67JyUlkZOT0+5YV5/6XH/99V2WyTz77LNJS0vjjTfe4I477uC1117DYrFw4403njIWu90O4JpDfjrOa0517elKfJ6OczqCc7FqW9u3b2fVqlXccccdTJ8+vUfv7+TOz7Itd35GPb2vq5/tqlWr+Mc//sGhQ4cICgoiMzOT++6774xT9UTEv6lPMg3WPqmt7pTWbqu7/Yon/x2k/1AyJF5ht9u5//772blzJxdddBH33nvvGe+JiIjo8nhAQECnBYin+mTrVL8sb7rpJn7/+9/z5Zdf8s4773DOOeeQkpJyylgSEhI4ePAgx48fP2PczmsSEhLOeG137d+/n61bt5KUlMT555/f7pxzKsKoUaP4z//8z15/L3d/lk6JiYnd/hm11duf7caNG/nWt75FRkYGdrudJ554gjvuuIN3332X6Ohot2IREf+gPql3BkKf1Bvd7Vd8/e8g3qFkSLziiSee4MMPP2TChAn8/ve/9/gnI+5+snX99dfz+OOP88ADD1BZWXnKRapOM2bMIDs7my+++OK0G8XZbDays7MBOOuss9yK6XT++te/Al0vUq2treXw4cMAZGRkdHn/gw8+yIMPPsjChQv5+c9/ftrv1dNPCWfMmMGGDRvYsGGDW5vp9fZn+/TTT7e77ne/+x1nn302X331FRdeeKGbrRARf6A+qXcGQp/UG93tV3z97yDeoWRIPO7dd9/lySefJC4ujpUrVxIWFubrkIiLi+OCCy7go48+IiYmhosuuui0199www2sWrWKjz76iP379zN27Ngur/vb3/7GiRMnSEtLY9asWR6JtaGhwbVItasOMigo6JQd565du9i1axczZswgLS2t19MVTueGG25g9erVfPjhh3z/+98/5c8IoLGx0VVRztM/25qaGlpaWoiMjOxdg0RkUFKf1DsDpU/ypFP1K778dxDvUTIkHuWs0hMYGMiyZctITU31dUgu999/P9dddx2JiYntSj13Zfjw4Xzve9/jySefZNGiRfzpT3/q9Evv448/5je/+Q1Wq5Vf/vKXp1z46q7333+fiooK5s+f3+Ui1ZCQEH7zm990ee+yZcvYtWsX119/vVujNT0xbNgwFi9ezB//+Ee++93v8n//939dfiro3HT1hRdeADz/s/3Nb37DpEmTBkwnKyJ9R31S7w2UPsmTTtWv+PLfQbxHyZB4THV1tatKT0ZGBl988QVffPHFKa/vTilPTxo+fDjDhw/v9vVLliyhrq6OZ599lmuvvZbzzjuPsWPH0tzczNatW9m2bRshISH84Q9/8OgO06+99hpw6t29+5NFixbR3NzMihUruOmmm5g+fTrp6emEhYVRUlLC5s2bOXz4MOnp6e3u89TP9re//S1btmzhlVde6XKhs4j4L/VJnjGQ+iRPOFO/4qt/B/EeJUPiMeXl5RQXFwOQm5t7xtKj3Snl6UsWi4UHHniAK664gr/85S9s2rSJL7/8EqvVSmpqKnfeeSe33XZbt0psdteBAwfYsmVLl4tU+6vFixdz+eWX8/LLL5Odnc2aNWtobGwkOjqaiRMnctddd3Httde2u8cTP9tHH32Ud999l+eff96tPyhExD+oT+q9gdgn9UZ3+hVf/DuIdxl2Z51AEZEB4te//jXvvfceL774ImPGjPF1OCIiMsCpX/FfGhkSkQHlV7/6FW+//TYrVqwgMjLS9clvaGhov1gYLSIiA4v6Ff+mkSERGVAmTJjQ5fHFixezZMmSPo5GREQGOvUr/k3JkIiIiIiI+CXV+xMREREREb+kZEhERERERPySkiEREREREfFLSoZERERERMQvDZrS2i0tLTQ3N2OxWDAMw9fhiIj4DbvdTktLCwEBAVgs+oytLfVNIiK+0d2+adAkQ83NzWfcXVpERLwnIyODoKAgX4fRr6hvEhHxrTP1TYMmGXJmfBkZGVitVrfvt9ls5Obm9vj+gU7tV/vVfrW/t78/NSrUmfqm3lH71X61X+33dt80aJIh5/QDq9Xaq/9genv/QKf2q/1qv9rfU5oG1pn6Js9Q+9V+tV/t76kz9U36GE9ERERERPySkiEREREREfFLSoZERERERMQvKRkSERERERG/pGRIRERERET8kpIhERERERHxS0qGRERERETELykZEhERERERv6RkSERERERE/FKArwMQERHpC19++SVvv/02W7du5fjx40RERJCens4999xDenp6u2t37tzJ73//e7Zt24bVamX27Nncf//9DB8+3EfRi4iIN2hkSERE/MIrr7xCfn4+CxcuZPXq1fz85z+ntLSUW2+9lS+//NJ13YEDB1iwYAFNTU08/vjjPPLIIxw+fJhvfetblJaW+rAFIiLiaRoZEhERv/DLX/6SuLi4dsfmzp3LpZdeyqpVq5gzZw4ATzzxBEFBQaxatYrw8HAApkyZwmWXXcbTTz/NT37ykz6PXUREvEMjQyIi4hc6JkIAYWFhjBkzhsLCQgCam5v55z//yaWXXupKhABSU1PJysri448/7rN4RUTE+5QMAXa7nZ/+LZc3dlX7OhQREelDVVVV7Nq1i3HjxgFw9OhR6uvrmTBhQqdrx48fz5EjR2hoaOib4CrysLxyK5FF2X3z/URE/JCmyQFVDc387at8DGBpQzORoVZfhyQiIn3goYceoq6ujkWLFgFQXl4OQHR0dKdro6OjsdvtVFRUkJiY6Nb3sdlsbsdmHNmAZf9HJMUWYbv4LrfvHwycP7ee/PwGA7Vf7W/77G962/7u3qdkCIgMCWRoRDBFVQ3sLqwia0ywr0MSEREve/zxx/n73//OL37xi07V5AzDOOV9pzt3Krm5uW7fM6SyhclAaOUBcrZvA8N/J3P05Oc3mKj9ar8/83b7lQw5ZKRGUbTnBLkFFWSNifd1OCIi4kXLly9n5cqV3HvvvfzHf/yH67hzRKisrKzTPeXl5RiGQWRkpNvfLyMjA6vVzVkHtinY/3UP1uYaMoZHYY0f4/b3HehsNhu5ubk9+/kNAmq/2q/297z9zvvPRMmQQ3pqJB/vOcGO/EpfhyIiIl60fPlyli1bxpIlS1zT45xGjBhBSEgIe/fu7XTf3r17GTlyJMHB7s8esFqt7nfmViv2hElwfBvW4p1Yh453+/sOFj36+Q0iar/ar/Z7r/3+O+beQXqK+UnfjvwKH0ciIiLesmLFCpYtW8b3v/99Fi9e3Ol8QEAA8+fP56OPPqK6urWoTkFBAdnZ2VxyySV9GS72pAwAjOP+PU1GRMRbNDLkkJ4aBcCBkhpqGpoJC9aPRkRkMHnmmWd44oknmDt3LhdccAE5OTntzmdmZgKwZMkSbrrpJhYtWsTdd99NY2MjTzzxBDExMdx55519G3TSVACMIiVDIiLeoL/4HRIigokdYqG0roWdBZXMSov1dUgiIuJBn376KQDr169n/fr1nc5//fXXAIwZM4YXX3yR//mf/+FHP/oRVquV2bNns2LFCmJj+7ZvsCc5CjtoZEhExCuUDLUxJiaQ0roGcvMrlAyJiAwyL774YrevTU9P57nnnvNeMN01NB07BkZVIVQXQ3iCryMSERlUtGaojTExgYDWDYmISD8RFE5DWKr5+vh238YiIjIIKRlqY7QjGdqeV+7bQERERBxqo8aaL5QMiYh4nJKhNsbEmLMGD5bUUN3Q7ONoREREoDbSkQwVKhkSEfE0JUNtRIdYSYoMxm6HXQXab0hERHyvLmqc+UJFFEREPE7JUAfOEtu5WjckIiL9QG3UGPPFyf3QUH36i0VExC1Khjpwbr6aq3VDIiLSDzQHx2IPTwLsULTT1+GIiAwqSoY60MiQiIj0O0kZ5rOKKIiIeJSSoQ4yUs2RIRVREBGR/sI+VMmQiIg3KBnqID48mOSoEOx22KnRIRER6QfszpEhVZQTEfEoJUNd0FQ5ERHpV5Kmms8ndoOtybexiIgMIkqGujDVkQztUDIkIiL9QcxICIoAWwOU7PV1NCIig4aSIafSgwTUnwQgfZiZDG1XMiQiIv2BYWktoqCpciIiHqNkCKCpDsufzmHiv38IdjsZjpGhQyqiICIi/UWyY6qciiiIiHiMkiEAwwpAcG0hlB8hPjyYFBVREBGR/sRVXjvXt3GIiAwiSoYAAoIgcbL5ujAHUBEFERHpZ5LajAzZ7b6NRURkkFAy5GBPzgTAKNwG4Joqp2RIRET6hYSJYAmE+gooP+LraEREBgUlQ07J0wAwHCNDGcOUDImISD8SEASJk8zXmionIuIRSoYcnCNDFG5rV0ThYHENVfXa00FERPoB51Q5VZQTEfEIJUNOiZNosQRi1JdD2WHiHEUUAHYWVPo2NhEREVBFORERD1My5GQNoi5itPm6YCvQOlVOm6+KiEi/4CqioGlyIiKeoGSojdro8eYL57ohx1S57XlKhkREpB8YOsV8rsyHmpO+jUVEZBBQMtRGbdQ480VBDtBaXlsjQyIi0i+EREKsYxbD8W2+jUVEZBBQMtRGTfQE80VhTvsiCiUqoiAiIv2EpsqJiHiMkqE26iNGYbcGmXs4lB0iLjyY1OghgIooiIhIP5GUYT6ropyISK8pGWrDbgmERMd8bNdUuUgAcrVuSERE+gPHvniqKCci0ntKhjqwp2SaLzoUUdDmqyIi0i84p8mV7IPGGt/GIiIywCkZ6sj5iZurvHY0oCIKIiLST0QMhbBEwA5Fu3wdjYjIgKZkqAN7Uqb5onBbpyIKlSqiICIi/YFr81VVlBMR6Q0lQx0lTgRrsKuIQmxYUGsRhXwVURARkX5AFeVERDxCyVBH1qDWTe2cU+W035CIiPQnqignIuIRSoa64iyi4KgolzHMTIa2KxkSEZH+wLm+9cQusDX7NhYRkQEswNcBAOzatYvly5ezfft2qqqqSE5O5qqrruI73/kOQ4YM6fuAUqabz46KcukaGRIRkf4kJg2CwqGxGk7ug8RJvo5IRGRA8nkytH//fr75zW+SlpbGz372M2JiYti8eTNPPvkkO3fuZOXKlX0fVHKm+VzQvojCIUcRhciQwL6PSURExMligaHpcGyDOVVOyZCISI/4PBn6+9//TkNDA8uWLWPEiBEAzJkzh+LiYl599VUqKiqIiorq26ASJ5lFFBoqoPQgsXFjSI0eQn55HTvyKzhnTHzfxiMiItJR8lQzGTq+Habd6utoREQGJJ+vGQoMNEdZwsPD2x2PiIjAYrG4zvcpa2BrEYUOm69qqpyIiPQLzopyhSqvLSLSUz5Phq677joiIyP51a9+xbFjx6iurubTTz/l1Vdf5dvf/jahoaG+Ccy5bqhDEYVcldcWEZH+wFlR7ngu2O2+jUVEZIDy+TS5YcOG8de//pXFixdz8cUXu44vWLCAn//8526/n81m61Eczvucz0bSVCyAvWArLTYbU5IjANieV97j79GfdWy/v1H71f62z/6mt+3315+bzyVOAksA1JdDxTGIHuHriEREBhyfJ0N5eXl8//vfJy4ujieeeILY2Fi2bdvGypUrqa2t5ZFHHnHr/XJze7cBnfP+IZVDmAzY8r5i29at0Gh+6nbkZC3/3vQVYYE+H1Tzit7+/AY6tV/t92f+3v4BJyAYEiZBUa5ZREHJkIiI23yeDP3hD3+gurqatWvXuqbEzZw5k5iYGH72s59x3XXXMWvWrG6/X0ZGBlar1e04bDYbubm5rffbpmD/9xICmmvIHBkFsaMZtv4z8srqsMSNJHN0nNvfoz/r1H4/o/ar/Wp/z9vvvF98IHmqmQwdz4VJV/k6GhGRAcfnydDu3bsZM2ZMp7VBGRnmXOh9+/a5lQxZrdZe/THjut9qhaR0yN+C9fg2SBhHRmoUeWV17Cyo4rxxiT3+Hv1Zb39+A53ar/ar/f7b/gHJtW5ou2/jEBEZoHw+1ysxMZH9+/dTU1PT7nhOTg4AQ4cO9UFUDs79hjpsvpqrinIiItIfuCrKKRkSEekJnydDt912G2VlZdx555289957fPnll/zpT3/i0UcfZezYscybN893wXWoKDd1mMpri4hIP5KUbj5X5kFtqW9jEREZgHyeDF100UU899xzhIeH88gjj7Bo0SLefPNNvvnNb/LSSy8RFBTku+BSMs3nwm3Q0kJ6ipkMHT5ZS0Vdk+/iEhERAQiJgphR5mtNlRMRcZvP1wwBzJ49m9mzZ/s6jM4SJoI1GBoqoewQMXFjGBYzxFw3lF/BOWPjfR2hiIj4u6SpUHbYnCo3+gJfRyMiMqD4fGSoX7MGtk5BKNgKQIbWDYmISH+S7Fg3dFwV/URE3KVk6Eyc64YcRRQyhikZEhGRfsRZREHT5ERE3KZk6EycFeUcRRQ0MiQiIv2KMxkq2QuNtb6NRURkgFEydCanKKJwREUURESkP4hIgrAEsLfAid2+jkZEZEBRMnQmCRMhIKS1iEJYEMNjhwCwU6NDIiLia4bRZvPVbb6NRURkgFEydCbWQBjadRGF7UqGRESkP9DmqyIiPaJkqDucU+UcyVC61g2JiEh/oopyIiI9omSoO1wV5czpB1NTowHYoWRIRET6A+fIUNFOaLH5NhYRkQFEyVB3tK0o19JCemok4CiiUKsiCiIi4nllNY388u1d7CttPPPFsWMgMAya66Bkn/eDExEZJJQMdYeziEJjFZQeJDq0tYjCjgKNDomIiOdtOHiSl7KP8uL2qjNfbLG0bhKuqXIiIt2mZKg7rAGtlXocm686p8pp3ZCIiHjDuKERAOw92URDc8uZb1BFORERtykZ6i7XVLkORRTylAyJiIjnjUkIIzYsiKaWbn7wpopyIiJuUzLUXa6KcjlAa3ltjQyJiIg3GIbBrFExAGw6XHrmG1wV5baD3e7FyEREBo+Anty0b98+vvrqK4qKiqivrycmJoaxY8cyc+ZMwsPDPR1j/+AcGSrcBi0trmToaKlZRCEqNNB3sYmIyKB09qgYPthZxMZDZWe+OGESGFaoK4PKfIga5v0ARUQGuG4nQxUVFbz66qu8+uqrFBQUYO/iU6eAgADmzZvHggULmDNnjkcD9bkORRSi4scyIjaUo6W15OZXcN64eF9HKCIig8ysUbEAfHW0DFuLHavFOPXFgSFmX3VipzlVTsmQiMgZdSsZeuGFF1ixYgUAV1xxBbNmzWLKlCnExsYSHBxMRUUFx44dIycnh3Xr1nHnnXdyzjnn8N///d+MHDnSqw3oM84iCnmbzHVD8WPJSI1SMiQiIl4zMSmC0ACD6gYbuwsrXetVTyl5qpkMHd8OE6/omyBFRAawbq0ZevHFF1m6dCn/+te/+OUvf8nll1/OiBEjCA8PJzAwkPj4eKZPn84dd9zBSy+9xIcffkhiYiLvv/++t+PvW66pcjkAZAwzOyVtvioiIt5gtRhMjA8CIPtQN9YNOYsoqLy2iEi3dGtk6P333ycgoPvLi0aMGMGjjz6KzTbIdsFOmW4+q4iCiIj0kUkJgXx1vIGNh07ynfPSTn+xaxsIVZQTEemObo0M7dvXs92srVZrj+7rt5wV5RxFFNJTWosolNd2Y4dwERERN012jAxtOlzW5XrddpzJUMVRqO3GSJKIiJ/rVjJ0/fXXc8MNN/Dyyy9TVdWNnbAHq/gJEDDEUUThAFGhgYyMCwVgR36lj4MTEZHBaExsIMEBFkprGjlQXH36i4dEQ7RjrW7RDq/HJiIy0HUrGfre975HaWkpDz/8MOeddx7/9V//xYYNG7wdW//jLKIArqly6ZoqJyIiXhRoMcgcHg10d92QpsqJiHRXt5Khe++9l08//ZTVq1czf/58/vGPf3DHHXdw0UUX8eSTT1JYWOjtOPsP1+arW4G264bKfROPiIgMes7NVzd2JxlKnmY+H1cyJCJyJt1KhsDcCXvevHk8/vjj/Otf/+LnP/85UVFRPPHEE1x88cV85zvf4YMPPqCpqcmb8fpex4pyGhkSEREvm5lm7je08VBpN9YNqaKciEh3dTsZaisyMpL/+I//YM2aNaxdu5Zvfetb7Nq1i3vvvZd58+Z5Osb+xVVEYXu7IgrHSutUREFERLxi+vAoAiwGhRX15JXVnf5i5zS54q+h6QzXioj4uR4lQ21NnDiRa665hgsvvBCA8vLy3r5l/3aaIgoaHRIREW8IDQpwrVE941S5yBQIjQO7DU7s6oPoREQGrh4nQ6WlpTz33HNcffXV3HLLLbz11lvMnz+fFStWeDK+/qddEQVz3ZCKKIiIiLdlOabKbTp8hmTIMDRVTkSkm7q/kyrQ0tLC559/zt/+9jf++c9/0tTUxKhRo7jvvvu4/vrriY+P91ac/UtKJuRtNCvKTb2FqalRvLu9kB1KhkRExEtmpcWy6vOD3SuikJQBBz9VRTkRkTPoVjJ06NAh/va3v/HWW29RUlJCSEgIV111FTfeeCNnn322t2Psf1Kmm88diihsz1MyJCIi3nH2yFgMAw6W1HCiqp7EiJBTX6yKciIi3dKtZOjyyy8HYOrUqSxZsoQrr7ySsLAwrwbWr7kqym2DlhamOJKhvLI6ymoaiQkL8l1sIiJyStXV1Tz55JPs2bOHXbt2UVZWxuLFi1myZEm76x544AHefPPNTvenpaXxwQcf9FW47USFBjJhaAR7jlex6VAZV05NPvXFzmlyRTuhxQYWa98EKSIywHQrGbrtttu46aabGDdunLfjGRjixzuKKFTDyf1EJYxnVFwoh0/WsqOggrnjEnwdoYiIdKG8vJzXXnuNiRMncvHFF/P666+f8tqQkBCef/75Tsd8KSst1kyGDpeePhmKGwOBodBUCycPQML4vgtSRGQA6VYytHTp0i6PHzx4kLKyMiZNmkRoaKhHA+vXrAGQPBWOZZtT5RLGk54axeGTtWzPUzIkItJfpaamsmnTJgzDoLS09LTJkMViITMzs++C64ZZaXE8/+URss+0bshihaFTIG+TOVVOyZCISJd6VE1u7dq1zJs3jyuvvJL/+I//4NChQwD86Ec/4rXXXvNogP2Wc6qco6Kcc92QiiiIiPRfhmFgGIavw+ixmWkxAOw5XklF3Rk2OXdOlSvc5uWoREQGLreqyQG8//77PPDAA1xwwQXMmzePhx9+2HVuypQpvP/++9xyyy0eDbJfcm6+WpADQMYwldcWERlM6uvrOffccyktLSUhIYGLL76YH/7wh0RHR7v9XjabrUcxOO9zPseFBrqmZW86WML8iYmnvNcYOgULYD++nZYefn9f69h+f6P2q/1tn/1Nb9vf3fvcToZWr17NDTfcwCOPPILNZmuXDI0ePZoXX3zR3bccmJwV5Y5vhxaba68hFVEQERn4Jk6cyMSJE11rZTdu3Mjzzz/Pl19+yRtvvOF2EaHc3N7t99P2/jGRdg6fhHc2fk1MfcEp7wmtDGES0Jy3le1bt5r7Dw1Qvf35DXRqv9rvz7zdfreToQMHDvBf//VfXZ6Ljo6mvLy8tzENDPHjzcWpjiIKkQkTXJ/W5eZXMG+81g2JiAxUt99+e7uvzz33XCZPnswPf/hDXn/99U7nzyQjIwOr1f2Kbjabjdzc3Hb3X9aSz7pDuRypDTj9mqamCdj/tYTAxgoyxyRCZKrb39/Xumq/P1H71X61v+ftd95/Jm4nQ0OGDKGqqqrLc0VFRURFRbn7lgOTxWpuancs25wqlzCBjGHRSoZERAapSy65hNDQUHJycty+12q19uqPmbb3zxljbnCem19Jow2GBJ3ifa3h5gd3xbuxntgFMSN6/P19rbc/v4FO7Vf71X7vtd/tAgrTp0/nL3/5C3a7vdO5NWvWMGvWLI8ENiC49hvKASAjNRJQEQURkcHKbrdjsfSo9pDHDIsZQnJUCM0tdrYeLTv9xcmOIgrafFVEpEtu/0a/5557yMnJ4aabbuLFF1/EMAz+8Y9/sGjRIjZv3syiRYu8EWf/5Fw35Cii4Fw3tD1PyZCIyGDzwQcfUFdXx7Rp03wah2EYzEqLBThziW1VlBMROS23p8llZGTw5z//mYceeojHHnsMgFWrVjFy5EhWr17N+PF+tJeBs6Jc4bZ2RRTyy1VEQUSkv/rss8+oq6ujpqYGgP379/PBBx8AcP7551NaWsqPf/xjrrzySkaMGIFhGGzatInnn3+ecePGcfPNN/syfABmjorlrZwCNp4pGXKNDPn3AmwRkVNxOxkCmD17Nu+//z5Hjx6lpKSEmJgY0tLSPB1b/+csotBU4yqikBYfxqGSGq0bEhHppx566CHy8/NdX3/wwQeuZGjdunVEREQQHx/Ps88+y8mTJ7HZbKSmprJgwQIWLVrULzYZz3KMDG09VkZjcwtBAaeY6DE03XwuPwJ15TAkuk/iExEZKHqUDDmNGDGCESMG7oLMXrNYzSkIxza4iiikp0YpGRIR6cc++eSTM16zfPnyPoik58YmhhMbFkRpTSO5+RXMGBnT9YWhsRA1AiqOmqNDaXP7NlARkX6uW2uG3nvvPbffuKioiC1btrh934Dj2nx1KwBTHVPlcrVuSEREvMQwDM52JECaKici0nPdSoYefvhhrr32Wl5//XWqq6tPe+2OHTt46KGHuOyyy9izZ49HguzXOlSUc64bylVFORER8SJnEYVNh89URCHDfFZFORGRTro1Te6jjz5i2bJl/OY3v+Hhhx9m8uTJTJ48mbi4OIKCgqioqODYsWPk5ORQXFzMuHHjWLZsGXPn+sFwvLOiXOF2aLExxVFeO7+8jtKaRmJVREFERLwgKy0OMJMhW4sdq8Xo+kJXRTklQyIiHXUrGYqIiOBnP/sZ99xzD2vWrOGzzz5j7dq11NXVua4ZPnw4c+fO5eqrr2b27NleC7jfiR8HgWFmEYWSfUQmTmxXROF8rRsSEREvmJQcQXhwAFX1zew5XsmUlFNseu6cJlfyNTTVQ2BI3wUpItLPuVVAISoqijvuuIM77rgDgKqqKurr64mOjiYwMNArAfZ7Fqs5BeHYBnOqXOJEMhxFFHYoGRIRES8JsFo4a2QMn+8tZuOh0lMnQ5GpMCQG6sqgeHfrjAYREXF/09W2IiIiSEhI8N9EyKnD5qsZrs1Xy30Tj4iI+IWs7qwbMgxNlRMROYVeJUPi4Np8NQdoLaKwI7/SN/GIiIhfcBZR2HioFLvdfuoLVVFORKRLSoY8wVVRbhu02EhvU0ThZHWD7+ISEZFBbeqwKIICLJRUN3KwpObUFzpHhlRRTkSkHSVDnuAqolALJfuICAlkdHwYoBLbIiLiPcEBVjKHRwOw6XT7DbmSoR3QYvN+YCIiA4SSIU+wWFunIHSaKqdkSEREvCerzVS5U4ofBwFDzMqnpYf6KDIRkf5PyZCnOKfKFWwFzKkLoJEhERHxLue6oezTJUMWKwydbL4+vq0PohIRGRjcTob+3//7fxw8eNAbsQxsziIKjopyKqIgIiJ94awRMVgtBvnldeSX1536QlWUExHpxO1kaO3atVx55ZXccccdfPzxx6evXuNPnOW1j2+HFhtTUlREQUREvC8sOIB0R59z2nVDySqiICLSkdvJ0Pr163nwwQcpLi5m8eLFXHjhhaxevZrS0tP8AvYHcWPbFFHYaxZRSFARBRER8b5uTZVrOzKkDzJFRIAeJEOhoaF8+9vf5p133uHZZ59lypQp/N///R8XXHABDzzwALm5frqHQdsiCh02X1URBRER8aaZo5xFFE6e+qLEyWBYoLYEqo73UWQiIv1brwoozJkzh+XLl7Nu3TqmT5/OW2+9xS233MLNN9/MJ5984qkYBw7nVDlHRTlnMrQ9T8mQiIh4jzMZOlBcQ8mppmYHhUL8ePO1psqJiAC9TIbq6+t5/fXXWbRoEdnZ2YwZM4Z77rkHm83GPffcw4oVKzwV58DQoaKcRoZERKQvxIQFMWFoBACbD59uqlyG+axkSEQE6GEydPToUR599FHmzZvHL3/5S5KSknjmmWd45513WLx4MWvWrOHuu+/mpZde8nS8/ZuzotzxXLOIQmoUhgEFFfWn/qRORETEA9xeNyQiIu4nQ3fddRff+MY3eOONN7j22mv54IMP+NOf/sQ555zT7rr58+dTVlbmsUAHhA5FFMKDA0iLVxEFERHxvpnd2XxVFeVERNpxOxk6duwYS5cu5fPPP+fnP/85I0aM6PK6cePG8cILL3T7fTdv3szdd9/NzJkzmTp1KpdeeunAm2ZnsULyNPO1o4jCVOdUOa0bEhERL5rlWDe0u7CSyvqmri9yjgyVHYZ69UsiIm4nQx9++CELFiwgLCzstNeFh4cza9asbr3n3//+dxYsWEBERAS//e1vWb16NXfffffA3MPItfmquW7IufmqRoZERMSbkqJCGBkXSosdthw5xcyM0FiIHGa+Pr6j74ITEemnAnwdQFFREf/93//Nrbfeyq9+9SvX8dmzZ/suqN5wFlHoUFFOyZCIiHjbzFGxHDlZy8ZDpcyfkNj1RclToTLPnCo36ty+DVBEpJ9xOxm68MILMQyjy3MWi4WIiAgyMjJYuHAhY8aMOeP7vf7669TW1nL33Xe7G0r/5CyvfTwXbM2uIgqFjiIK8eHBvo1PREQGrVlpsbyxJY9NZyqi8PV7Zj8lIuLn3E6GZs2axcaNGzlx4gRnnXUW8fHxFBcXs3XrVhITE0lOTuajjz7irbfe4sUXXyQjI+O077dp0yaio6M5ePAgP/jBD9i3bx9RUVFccskl/PSnPyU8PNyt+Gw2m7tNandfT+93iUnDEhSO0ViN7cRuhiROZnR8GAeKa9h2tIwLJiT07v29xGPtH6DUfrW/7bO/6W37/fXn1h9lOYoobMsrp77JRkigtfNFzvLaqignIuJ+MnTeeeeRk5PDRx99RHJysut4QUEBd955JxdffDGPPfYYCxYsYNmyZaxevfq071dUVERdXR0/+tGP+N73vkdmZia5ubksW7aMffv28fLLL59yJKorubm9+6Srt/cDjA9PI6I0l6PZf6d0eCOpQ2wcAD7a8jXRdfm9fn9v8kT7BzK1X+33Z/7e/sFgRGwoQyODKapsYOvRcuaMiet8kbOiXPFuaG6AAM1YEBH/5XYy9Kc//YklS5a0S4QAUlJSuOeee3jyySe5/vrruf3223nkkUfO+H52u52GhgYWL17Md7/7XQCysrIIDAzkkUce4csvv+xUtvt0MjIysFq7+CTsDGw2G7m5uT2+vy3jxHmQncvIwDJGZGYyt+Ywnx/dQ0lLKJmZmb16b2/xZPsHIrVf7Vf7e95+5/3ie4ZhMHNULO9sL2TjodKuk6Go4RASDfXlULyntQqqiIgfcjsZOnLkyCmnrkVGRpKfb458pKamUldXd8b3i46OBswRp7bmzZvHI488ws6dO91KhqxWa6/+mOnt/QCkngWApTAHrFamDY8BYGdBZb//Q8sj7R/A1H61X+333/YPFllpZjK06fAp1g0ZhjlV7vB6c6qckiER8WNul9ZOSUnhzTff7PLc3/72N9eIUXl5OVFRUWd8vwkTJnR53FlW22JxO0Tfc1aUcxZRSIl0FVEormrwaWgiIjK4zUozR4O2HCmjydbS9UXOBEibr4qIn3M70/jOd77DBx98wDe/+U2ee+453nnnHZ577jm++c1v8tFHH3HXXXcBkJ2dTXp6+hnf79JLLwXg888/b3fc+fW0aQPwE6u4sRAUDs11ULKXsOAARseb+zLtUIltERHxonGJ4UQNCaSuyXbqPse5+aoqyomIn3N7mtwtt9yC3W5n2bJlPPbYY67j8fHxPPTQQ9x8880ALFq0iKCgoDO+33nnncf8+fNZsWIFLS0tZGZmsmPHDpYvX878+fM5++yz3Q3R9ywW81O3I/829xsaOpmpw6I5UFxDbn4F8yeeYu8HERGRXrJYzHVDH+8uYtPhUqaPiOl8kbOi3PFcaGkx+y0RET/kVjJks9k4evQol19+ObfccgsHDx6kvLyc6OhoRo8e3a7qW3x8fLff9/HHH2f58uW89tprrFixgsTERG6//XYWL17sTnj9S3KmmQwVbIXMb5GeGsWbW/O1+aqIiHhdVpqZDG08VMp353Wx51/8eAgIgcZqKDsEcWfeF1BEZDByKxmy2+1ceeWVrFy5kvPPP79bm6p2R0hICP/1X//Ff/3Xf3nk/fqFlEzzuSAHgIxUc/1Ubp6SIRER8a5Zjv2GNh4qpaXFjsXSYYsKawAkToaCr8x1Q0qGRMRPuTUuHhAQQHx8vKu4gZxGynTzuUMRheOVKqIgIiLeNSUlktAgK5X1zXxdVNX1Rdp8VUTE/QIKV155JWvXrvVCKINM7BgIinAUUfiasOAAxiSYJclVREFERLwpwGphxkhzrdApS2w7N19VRTkR8WNuF1CYOHEi7733HgsXLuTSSy8lISGh3VohaK0Q59csFrOjOfJvc6rc0ClkpEax/0Q12/NUREFERLxr1qhY1u8rIftQKQvnjOp8QZKjWqtGhkTEj7mdDN1///0AFBUVsXHjxk7nDcNg9+7dvY9sMEiZ3lpRbvq3yVARBRER6SMz26wbstvtnT64ZOhkwICaE1BVBBFD+z5IEREfczsZeuGFF7wRx+Dk3Hy1YCsAGcPMIgqaJiciIt6WOTyaIKuF4qoGjpysZZRjvzuXoDCIHwcle82pchGX+CZQEREfcjsZmjVrljfiGJycFeWO7wBbM5OTW4sonKiqJzEixKfhiYjI4BUSaGXa8Cg2HS5j46HSzskQmJuvluyFwm0wTsmQiPifHu+yVlVVxfr163n77bepqNBIR5e6KKIwVkUURESkjzhLbGcfOkURhbabr4qI+KEeJUMrVqxg7ty53H333dx///3k5eUBcNttt7F69WqPBjigWSyQ7Fig6pwq59pvqNJXUYmIiJ+YOcpMhlRRTkSka24nQ3/5y19YsWIFN910E6tWrWq359D8+fP55z//6cn4Br4Om6+mO5Oh/HKfhCMiIv5jxsgYLAYcLa2lsKKu8wXOinKlB6FeH9KJiP/pUTJ0++238+CDD3Leeee1Ozdy5EiOHDniseAGBWcRhcIcAKYOcyZDmiYnIiLeFRESyJQUs9/Z2NVUubA4iEw1Xxft7MPIRET6B7eToWPHjjF37twuz4WFhVFZqU+W2kmZbj4fzzWLKKREYjGgqLKBE5X1vo1NREQGPedUuS6TIWizbkhT5UTE/7idDEVERFBSUtLlufz8fOLi4nod1KASO9pRRKEeivcQGhTAGEcRBY0OiYiItzmLKJxy3VCSY92QNl8VET/kdjI0Z84cnnrqKWpra13HDMOgubmZV155pdPUOb/XtoiCY6qcq4iCkiEREfGymaNiANhbVE1pTWPnC1REQUT8mNvJ0A9/+EMKCgq48soreeyxxzAMg5deeombb76ZI0eO8IMf/MAbcQ5sHYooaPNVERHpK3HhwYxLNGckdDk65Jwmd2I3NHeRLImIDGJuJ0MjR47klVdeYfTo0bzyyivY7XbeeustYmJiePnll0lJSfFGnAObc91Qh/La2/OUDImIiPfNdE6V62rdUPRICImCliYo3tPHkYmI+FZAT24aO3YsTz/9NI2NjZSVlREVFUVISIinYxs8nBXlina0K6JwososopAYqZ+diIh4T1ZaLC9nH2VjVyNDhmGuGzq83iz245w2JyLiB3q06apTUFAQQ4cOVSJ0JrGjITiyXRGFsYkqoiAiIn3DWVFuR34F1Q3NnS9QRTkR8VM9GhnKy8vj/fffp6CggPr69uWhDcPgkUce8Uhwg4aziMLh9eZUuaR00lOj2FtUTW5+BRdNGurrCEVEZBBLiR7CsJgh5JXVseVIGeePT2h/gSrKiYifcjsZ+uc//8nixYtpaWkhNjaWoKCgducNw/BYcIOKMxkqzAEWkJEaxZqv8snVuiEREekDs9JiySvLZ9Oh0s7JkKuiXC60tJgf4omI+AG3k6E//vGPnHXWWfzxj3/UnkLucBVRyAFg6jCV1xYRkb6TlRbLmq/yu958NX48WIOhsQrKD5vTu0VE/IDbH/0cOXKEu+++W4mQu5zJUNEOsDUxOTnKVUShqLL+9PeKiIj00qw0s9/OOVZOfZOt/UlrICROMl9rqpyI+BG3k6GUlJR2G65KN8WktSuiMCTI2lpEQVPlRETEy0bFhRIfHkyjraXrrR20+aqI+CG3k6Hvfe97PPPMM9TV1XkjnsHLWUQBWjdfTY0GNFVORES8zzAMshz7DW08dLLzBUlt1g2JiPgJt9cM5ebmcvLkSS655BKysrKIiYnpdM2DDz7okeAGnZTMDkUUIvnbV2apUxEREW+blRbLu7mFZB8qZXHHk6ooJyJ+yO1k6KWXXnK9fvfddzudNwxDydCpODdfLdgKQIajiMJ2JUMiItIHnPsNfXWkjGZbCwHWNhNEhk4BDKg+DtUnIDzRN0GKiPQht5OhPXv2eCMO/+AsonC8fRGFYkcRhaGR2rxWRES8Z0JSBJEhAVTWN7OrsJKpw6JbTwaHQ9wYOLnfXDc09mKfxSki0le0kUBfikmD4CiwNbiKKIxLjABUREFERLzPajFco0NdltjWVDkR8TPdSoY2bdpETU3NGa8rLS3ljTfe6HVQg5bF0lqtxzFVLj1VU+VERKTvzHIUUcjuKhlSRTkR8TPdSoYWLlzIgQMHXF+3tLSQnp7Orl272l137NgxfvGLX3g2wsEmJdN87rD5qoooiIhIX5jpSIY2Hy6lpcXe/mRShvmsinIi4ie6lQzZ7fZOXzc3N3c6Lt3gXDdUmAO0jgzl5lfo5ykiIl6XnhLFkEArZbVN7C+ubn8yybEFxMkD0FDd+WYRkUFGa4b6mrOinKuIQmSbIgoNPg1NREQGv6AAC2eNjAa6mCoXngARyYAdinb0eWwiIn1NyVBfix3dWkThxG6GBFkZP9RRREFT5UREpA90q4iCpsqJiB9QMtTXDANSHNMQupgqJyIi4m3OIgqbDpV2nqLtXDdUuK2PoxIR6Xvd3mfo4MGDWK1WAGw2m+tYx2ukG5Iz4dDnZhGFsxaSkRrFG1vyyM0r93FgIiLiD6YPjyHQanC8sp5jpXWMiAttPamKciLiR7qdDC1durTTsZ/+9Kftvrbb7RiG0fuoBjtXRbn25bVz8yv1MxQREa8bEmQlIzWKr46Wk33oZPtkyDlN7sRusDWBNdA3QYqI9IFuJUOPPvqot+PwL84iCkU7XUUUrBaDkmqziEJSVIhPwxMRkcFvVlocXx0tZ9PhUm4+e3jrieiREBwJDZVQ/DUkpfsuSBERL+tWMnT99dd7Ow7/4iyi0FBhFlFInsq4xHD2HK8iN79CyZCIiHhdVlosf/rsQOciChaLuW7oyL/NqXJKhkRkEFMBBV9oW0Sh41Q5rRsSEZE+MGNUDIYBh0/WUlRZ3/6kKsqJiJ9QMuQrzqlyjopyU4epopyIiPSdyJBAJiVFAl2U2HZVlFMRBREZ3JQM+UrKdPO5IAfoXERBREQ8r7q6mt/97nfceeedzJ49mwkTJrBs2bIur925cye3334706dP5+yzz2bx4sUcO3asjyP2LleJ7cMdkqHkNiND6pNEZBBTMuQrzopyRTugubFdEYXjHacriIiIR5SXl/Paa6/R2NjIxRdffMrrDhw4wIIFC2hqauLxxx/nkUce4fDhw3zrW9+itLSLjUoHqKy0U2y+Gj8BrEHm2tbyIz6ITESkbygZ8pWYNAiJAlsjFO8mJNDKuMRwAHLzNFVORMQbUlNT2bRpEy+99BL33XffKa974oknCAoKYtWqVZx//vlceumlrFq1irKyMp5++uk+jNi7zh5lJkN7jldRXtvYeiIgCBImmq81VU5EBjG3kqH6+nq++c1v8sUXX3grHv9hGK3rhhxT5TIcU+V2aN2QiIhXGIZxxr3cmpub+ec//8mll15KeHi463hqaipZWVl8/PHH3g6zzyREBDM6IQyAzYfL2p/U5qsi4ge6vekqQEhICHv37sVqtXorHv+SkgmHPnMUUbiNjGFRvL4lj+1KhkREfObo0aPU19czYcKETufGjx/Pv//9bxoaGggODu72e9psth7F4ryvp/d3x8yRMRwsrmHDwRLmT4h3HTeGZmAB7IXbaPHi9z+dvmh/f6b2q/1tn/1Nb9vf3fvcSoYApk+fzvbt28nKynI7KOnANTJkltduOzJkt9vP+OmliIh4Xnl5OQDR0dGdzkVHR2O326moqCAxMbHb75mb27sS1b29/3SGWuoA+GxXPpcnt65ZDasMYSLQdOwrcnNyvPb9u8Ob7R8I1H613595u/1uJ0P3338/P/jBD0hISOCSSy4hLCzMG3H5B1cRhZ3Q3MgkVxGFRo5X1pMcNcSn4YmI+LPTfSDl7odVGRkZPZpVYbPZyM3N7fH93ZEwso4nNn7GwfJmxk1KJyzY8adBwxjsX/wnQfUlZI4bBmHxp38jL+iL9vdnar/ar/b3vP3O+8/E7WTo1ltvpampiaVLl7J06VJCQkLadQqGYbBlyxZ339Y/OYso1FeYRRSSpzEuMZw9x6vYnlehZEhExAecI0JlZWWdzpWXl2MYBpGRkW69p9Vq7dUfM729/3RGxIeTGj2E/PI6tudXcd44R9ITGg2xo6H0ANYTO2DsRV75/t3hzfYPBGq/2q/2e6/9bidDl112maZveYqziMKhz8ypcsnTmDosij3Hq9iRX8FlU5J8HaGIiN8ZMWKEa41sR3v37mXkyJFurRcaCGalxfLm1nw2HjrZmgyBuflq6QFzvyEfJkMiIt7idjL02GOPeSMO/+UsolCQAzPMdUOvbc4jV0UURER8IiAggPnz5/PRRx/xk5/8xFVRrqCggOzsbG6//XbfBugFM0eZyVB2x/2GkqfCrrWqKCcig5bbyZB4WMp087kwB4B0RxGF3DwVURAR8YbPPvuMuro6ampqANi/fz8ffPABAOeffz5DhgxhyZIl3HTTTSxatIi7776bxsZGnnjiCWJiYrjzzjt9Gb5XzHJsvppzrJyGZhvBAY4pKUnTzGftNSQig1SPk6G9e/dy4MABGhoaOp277rrrehOTf3FWlGtTRCHAYnCyppHCinpSorVuSETEkx566CHy8/NdX3/wwQeuZGjdunUMGzaMMWPG8OKLL/I///M//OhHP8JqtTJ79mxWrFhBbGysr0L3mjEJYcSFBXGyppHcvArXZqwkZZjPJ/dDYw0EqWiSiAwubidDdXV1fP/732fDhg0YhoHdbgfaV9ZRMuSGmFEQEg315XBiFyEpmYwbGsHuwkpy8yuUDImIeNgnn3zSrevS09N57rnnvBtMP2EYBrPSYnl/x3GyD5W2JkMRQyF8KFQXmR/aDZ/l20BFRDzM4u4NTz75JPn5+bz00kvY7XaWL1/Os88+yyWXXMLIkSN58803vRHn4GUYrSW2HVPlMlLNKkW5eVo3JCIifWOmIwHadLjDuqGkqeZz4bY+jkhExPvcTobWrVvH3XffzfTp5lqX5ORk5syZwxNPPMGUKVN4+eWXPR7koOfafDUHgIxh0QAqoiAiIn3GuW5o8+EybC321hPJjmTouH9v/Cgig5PbyVB+fj6jR4/GarViGAZ1dXWuc1dffTXr1q3zaIB+wTkyVLAVMCvKAezIr3BNQxQREfGmScmRRAQHUN3QzO7CytYTznVDqignIoOQ28lQREQEtbW1AMTFxXHkyBHXuebmZtc5cYOzotyJXdDcyMSkiHZFFERERLzNajGYMSoGoH2Jbec0uaJdYGvyQWQiIt7jdjI0YcIEDh8+DEBWVharVq1i8+bNbN++nRUrVjBx4kRPxzj4RY80iyjYGs0iCoFWxg2NAGC71g2JiEgfcU6V29Q2GYpJg6AIsDVAyT4fRSYi4h1uJ0M33nija2+G//zP/6Suro4FCxZw6623UlBQwAMPPODxIAe9tkUUHFPlpraZKiciItIXshzJ0MbDpa3TtC0WSEo3X2uqnIgMMm6X1r7iiitcr4cPH86HH37oKrM9ffp0oqOjPRmf/0jOhIP/bN18dVgUr24+piIKIiLSZzJSowkOsFBa08iB4mrGJpqzFEiaCke/NDdfnfZN3wYpIuJBbo8MdRQaGsqFF17I/PnzPZIIvf7660yYMMFVrc5vONcNOSvKOUaGclVEQURE+khQgIXpI6IB2HiorPWEq6KcRoZEZHDpdTLkSUVFRfz2t78lMTHR16H0Pec0uaKd0NzgKqJQWtNIgYooiIhIH5mVFgfAxkMnWw+2rSinD+hEZBDp1jS5iRMnYhhGt97QMAx27drVo2B++ctfcvbZZxMdHc2HH37Yo/cYsJxFFOrLzSIKKdMZPzSCXYWV5OZVkBo9xNcRioiIH3CuG8o+ZK4bMgwDEiaBJRDqK6D8KMSM9HGUIiKe0a1k6J577ul2MtRTb731Fhs3buS9997j8ccf9+r36pcMw5wqd/BTc6pcynQyUqPMZCi/nG+kJ/k6QhER8QPTR0QTYDEorKgnr6yO4bGhEBAEiRPNjVeP5yoZEpFBo1vJ0JIlS7waxMmTJ3nkkUf48Y9/TFKSH//Rn5LpSIa2AneQ4SqiUHmmO0VERDwiNCiA9NQoco6Vs+lwqZkMgVlE4XiuOVVu0lW+DVJExEPcribnDQ899BBpaWl861vf6vV72Wy2Xt3X0/s9YuhUrIC9IIcWm40pyWYVnx155TQ3N3t1dK5ftN+H1H61v+2zv+lt+/315zaYZaXFknOsnI2HSrnhrGHmwaSpwF/MinIiIoOE28nQ2rVrz3jNdddd1+33+/DDD/nkk09Yu3atR/7Yz83N9en9vRFUG0wGYC/aybYtG2kgEKsBpbVNfPTFVySGWb0egy/b3x+o/Wq/P/P39kurWWmxrPr8IBvbbr6qinIiMgi5nQydalPVtolMd5OhmpoaHn74YRYsWEBiYiKVleZ0sKamJgAqKysJCAggNDS02/FlZGRgtbqfNNhsNnJzc3t8v0fY7di/iMFSV8a0lCBIzmTil1+ws7ASe3QqmVO8N4WwX7Tfh9R+tV/t73n7nffL4HH2yFgMAw6W1FBc1UBCRDAMdWy8WpkPNSchLM63QYqIeIDbydC6des6HSsrK2PdunW89957/PGPf+z2e5WVlVFSUsIzzzzDM8880+n8zJkzueiii3jyySe7/Z5Wq7VXf8z09v5eS86Eg59iPb4Nhs0gY1gUOwsr2VlYxRVTU73+7X3efh9T+9V+td9/2y+tokIDmTA0gj3Hq9h0uJQrMpIhJBJi0qDskDk6NGa+r8MUEek1t5Oh1NTOf5CnpqaSnp5Oc3MzL7zwAo899li33ishIYEXXnih0/HVq1ezadMm/vznPxMTE+NuiAObq4hCDgDpqVGw6Rjb8yp8GpaIiPiXrLRY9hyvYuMhRzIE5lQ5JUMiMoh4tIDCnDlz+M///M9uXx8cHExWVlan42+++SZWq7XLc4NeynTzuTAHgKnDogDYkV/Rut+DiIiIl81Mi+X5L4+Q3XbdUFIG7HrLrConIjIIWDz5Zvn5+VgsHn1L/5OcaT4X7YLmBiYkRRBoNSirbSK/vM6noYmIiP+YNcrcfHXP8Uoq6sy1vCRNM59VUU5EBgm3R4Y2bdrU6VhjYyNff/01q1atYs6cOb0O6rHHHuv2VLtBJ3oEDImBujIo2klw6lmMHxrBzoJKcvMqGBbT/WISIiIiPZUYGUJafBiHSmrYcqSUCycOba0od3IfNNZCkPokERnY3E6GFixY0Gmqlt1uB+Ccc87hF7/4hWci81eGYU6VO/CJOVUu9SymDosyk6H8Ci53ztsWERHxslmjYjlUUkP2IUcyFD4UwhKgphhO7IJhZ/s6RBGRXnE7Geqq4EFwcDCpqanEx8d7JCi/l5xpJkMFWwFHEQWOkZuvIgoiItJ3ZqbF8urmY2xyrhsyDHPz1QProHCbkiERGfDcToZmzZrljTikrZRM89lRUS4jVUUURESk72WlmeuGtudVUNdoY0iQ1Zwqd2CdNl8VkUHB7WoHhw4dYuPGjV2e27hxI4cPH+5tTOKsKHdid6ciCnllKqIgIiJ9Y1jMEJKjQmhusbP1aJl5MMmxbkgV5URkEHA7GXrssce63HgV4NNPP/XfwgeeFDUchsRCS5NZRCHAyoSkCMAcHRIREekLhmEw01FVzlVi25kMFe0EW7OPIhMR8Qy3k6Hc3FxmzpzZ5bmZM2eyY8eOXgfl9wyjzVQ5c92Qc6qc1g2JiEhfmuWYKrfpsCMZih0NQeHQXG9WlRMRGcDcToaqqqoIDe26lGZISAgVFfpj3SM6bL6armRIRER8wLlu6KujZTQ2t4DFAkPTzZOaKiciA5zbydDQoUPZvr3rRZPbt28nISGh10EJrZuvOoooTE2NBsxkyFnKXERExNvGJoYTGxZEfVNL6wdySRnmc+E23wUmIuIBbidDF198MatXr2bDhg3tjmdnZ/PnP/+ZSy65xGPB+TXnNLkTu6CpnvFJ4QRaDcpVREFERPqQYRicPTIGaDNVzrn5qirKicgA53YydM8995CSksIdd9zB5Zdf7nq+/fbbSUlJYcmSJd6I0/+4iig0w4n2RRQ0VU5ERPqSc93Qxo5FFI7ngmYriMgA5nYyFBERwauvvsrixYuJioqioKCAqKgolixZwl//+lfCw8O9Eaf/MYzWdUOu/YaiASVDIiLSt7LS4gBzZMjWYofESWAJgLoyqMjzcXQiIj3n9qarAGFhYdxzzz3cc889no5H2krJNDe2a1NR7hVUXltERPrWpOQIwoKsVNU3s+d4JVNSoiBhIhTtMKfKRQ/3dYgiIj3i9siQU1VVFevXr+ftt99WBTlvcRZRcFSUc5bX3p6nIgoiItJ3AqwWZjj2G9rUcapcodYNicjA1aNkaMWKFcydO5e7776b+++/n7w8c4j8tttuY/Xq1R4N0K85p8md2O0qohBktVBRpyIKIiLSt5wltjc6iyg4K8qpvLaIDGBuJ0N/+ctfWLFiBTfddBOrVq1qN0Ixf/58/vnPf3oyPv8WNQxC48wiCkUqoiAiIr7TtoiC3W5XRTkRGRR6lAzdfvvtPPjgg5x33nntzo0cOZIjR454LDi/ZxhtpsqZ64bS20yVExER6StTh0URFGChpLqRQyU1rSNDFcegttS3wYmI9JDbydCxY8eYO3dul+fCwsKorKzsdVDSRoeKclOHmcmQiiiIiEhfCg6wkjk8GnCU2A6JguiR5klNlRORAapHpbVLSkq6PJefn09cXFyvg5I2nJuvdiiikJuvIgoiItK3sjruN6SpciIywLmdDM2ZM4ennnqK2tpa1zHDMGhubuaVV17pNHVOesk5Tc5ZRGFohKuIwrFSFVEQEZG+M9NRUS7bVVFumvmsinIiMkC5nQz98Ic/pKCggCuvvJLHHnsMwzB46aWXuPnmmzly5Ag/+MEPvBGn/4oaBqHxriIKQQEWJiariIKIiPS9s0bGYLUY5JfXkV9ep4pyIjLguZ0MjRw5kldeeYXRo0fzyiuvYLfbeeutt4iJieHll18mJSXFG3H6L8NoM1WufREFJUMiItKXwoMDSE+JBBz7DTmnyZXshSbNVhCRgSegJzeNHTuWp59+msbGRsrKyoiKiiIkJMTTsYlTcibs/xgKzGTIuW5IRRRERKSvzUqLZVteBdmHSrkuM92cvVBbAkW7YNgMX4cnIuKWHm266hQUFMTQoUOVCHmbc2SoYBugIgoiIuI7znVDmw6XmrMXXFPltG5IRAaebo0MrV271q03ve6663oQipySs7x28W5oqutURGFEXKhv4xMREb/hTIb2n6impLqB+OSpcPBTJUMiMiB1Kxl64IEHuv2GhmEoGfK0yNQ20xB2EjTsbCYmR7A9r4Lc/AolQyIi0mdiwoKYMDSCr4uq2Hy4lG8kOdYNqaKciAxA3UqG1q1b5+045HScRRSc64aGnU16ahTb8yrYnl/OlVOTfR2hiIj4kZlpMXxdVMXGQ2V8Y7YjGSraCS02sFh9G5yIiBu6lQylpqZ6Ow45k5TpZjLk2Hx1amoUL6MiCiIi0vdmpcXx0oajbDx8Eq48BwJDoakWTu6HhAm+Dk9EpNt6VE0OoLq6mpycHMrLy4mJiWHatGmEh4d7MjZpy7n5qqOIgqu8dp5ZRMEwDB8FJiIi/maWY93QroJKKhtbiByaDnkbzalySoZEZADpUTL09NNPs3z5curr611/iIeEhPDDH/6QO+64w9MxCrRWlDuxq10Rhcr6Zo6W1jIyLsyn4YmIiP9IigphZFwoR07WsuVIGfOTp5rJ0PHtMPVmX4cnItJtbidDa9eu5fe//z3z5s3j+uuvJzExkRMnTrB27Vp+97vfERMTowIK3hCZCmEJUFPsKqIwKTmCbY4iCkqGRESkL80cFcuRk7VsOlTKfJXXFpEByu19hp577jmuuuoqVq9ezeWXX86MGTO4/PLLWbVqFVdeeSXPP/+8N+IUw2gzVc7cfDW9zX5DIiIifWlWmjlVbuOhUmhbUU7734nIAOJ2MnTw4EGuueaaLs9dc801HDhwoNdBySm4Nl/NAdpsvpqnZEhERPpWliMZ2pZXTn3sBDCsUFcKlQU+jkxEpPvcToZCQkKoqOj6j++KigpCQkJ6HZScgnNkyFFRLmOYmQztyDeLKIiIiPSVEbGhJEYE02Szk1NY31o4QVPlRGQAcTsZmjFjBsuXL6eoqKjd8eLiYlasWMHZZ5/tseCkg5Tp5vOJ3a1FFAJaiyiIiIj0FcMwTj1VTkRkgHC7gMJ9993HN7/5TS699FLmzJlDQkICxcXFbNiwgYCAAJYvX+6NOAUgMqW1iMLxHQQOn8mkJLOIwvY8FVEQEZG+lZUWyzvbC81kaMpU2P5XjQyJyIDi9sjQuHHjeOONN7jooovIzc1lzZo15ObmctFFF/H6668zduxYb8Qp0L6IQhdT5URERPrSrLQ4ALYcKaM5Md08qGRIRAaQHu0zlJaWxv/+7/96OhbpjpTpsP+jzkUUlAyJiEgfG5cYTtSQQCrqmthtH0UGQPlRqCuDITG+Dk9E5IzcHhkSH3NVlOtcXltFFEREpC9ZLAYzR5nrhr4saIboEeaJ47k+jEpEpPt6NDK0a9cu/v73v1NQUEBDQ0O7c4ZhsHLlSo8EJ11wTpMr3tOuiEJVfTNHTtYyKl7rhkREpO9kpcXy8e4iNh4q5btJU82RoeO5kDbP16GJiJyR28nQ2rVrWbp0KRaLhdjYWAIDA9udNwzDY8FJFyJTICwRak60FlFIjmTbsXJy8yuUDImISJ+a6agot+lwGS3zMrDseUcV5URkwHA7GVq5ciXnn38+v/3tb4mKivJGTHI6hmFOldv3D7OIwvCZZKSaydCO/Aqunpbi6whFRMSPTEmJJDTISkVdEwVDxjEMVERBRAYMt9cMnThxgoULFyoR8iXnVDnHuqGpqdEAbM9TEQUREelbgVYLM0aaxRI21KaaB4u/hqZ6H0YlItI9bidDkyZN6rThqvQx5+arjopyziIKOwpUREFERPreLEcRhU8LA2FILNhtcGKXj6MSETkzt5Ohn/70p6xevZo9e/Z4Ix7pDmdFueI90FjLuKHh7YooiIiI9KW264bsyVPNg5oqJyIDgNtrhjIzM7n00ku5/vrrSUhI6DRdzjAM3n77bY8FKF2ISG4tolC0g8Dhs5icHEnOsXK2q4iCiIj0sczh0QRZLZyoaqAyaiJR/FPltUVkQHB7ZGj16tWsWrWKmJgYUlJSiI6ObvfQWqI+4CyiAJ02X92hzVdFRKSPhQRamTbc7Id229PMg6ooJyIDgNsjQy+88AI33ngjDz/8MFar1RsxSXekTG+tKEdrMpSrIgoiIuIDM0fFsulwGZ9XJzMboGgHtNjAor8VRKT/cntkqKamhquuukqJkK91qCiX3mZkqKVFRRRERKRvzXKsG3ovPwwChkBTLZQe9HFUIiKn53YydNZZZ3HgwAFvxCLu6KKIQnCAhaqGZo6UqoiCiIj0rRkjY7AYcLisgcb4SebBwm2+DUpE5AzcToZ+/vOf89e//pWPP/6YxsZGb8Qk3RGRDOFDwd5iFlGwWpiUHAlArtYNiYhIH4sICWRKijlLIT9knHlQFeVEpJ9ze83QjTfeSHNzM0uWLMEwDEJCQtqdNwyDLVu2eCxAOQXDMKfK7fvQLKIwfBYZqVHkHCsnN6+ca6al+DpCERHxMzNHxZKbX8G25hGkgSrKiUi/53YydNlll2EYhjdiEXelZDqSIXPdUMYwRxEFjQyJiPRKdnY2Cxcu7PLcq6++SmZmZt8GNEDMSovlmX8fYl3ZUK4Ds6Kc3W5+gCci0g+5lQzZbDa+973vERsbqxLa/UHKdPO5Q0W5nfmVtLTYsVjU+YiI9MZ9991HVlZWu2Pjxo3zUTT938xRMQD842Q89iFWjNoSqCqESM1WEJH+ya01Q3a7nSuvvJKcnBwvhSNucVaUcxZRSGwtonD4ZI1PQxMRGQxGjhxJZmZmu0dYmDa2PpW48GDGJobTQBA1EaPNg5oqJyL9mFvJUEBAAPHx8djtKt3cL0S2KaJwPJcAq4XJKSqiICIivuMssX0owJEMafNVEenH3K4md+WVV7J27VovhCI94hwd6jBVboeSIRGRXnv44YeZPHkyZ511Ft/5znfYvHmzr0Pq97IcydCm+mHmgeMqry0i/ZfbBRQmTpzIe++9x8KFC7n00ktJSEjoVFDh0ksv9ViAcgYp01srytG6+apGhkREei4iIoKFCxeSlZVFdHQ0R44c4emnn2bhwoWsWrWKuXPnuvV+NputR3E47+vp/b5w1nCzH1pXnsSdQWAv3E6LH7Xfk9R+tb/ts7/pbfu7e5/bydD9998PQFFRERs3bux03jAMdu/e7e7bSk85N191VJSbOsw5MqQiCiIiPTV58mQmT57s+vrss8/mkksu4eqrr+b3v/+928lQbm7v1s309v6+lhhqZUftSACM8iPkbvoXtsDwHr/fQGu/p6n9ar8/83b73U6GXnjhBW/EIT3lnCZX8jU01jA2IZyQQAvVjiIKoxN63vmIiEiryMhILrjgAv76179SX1/faZ+908nIyMBqtbr9PW02G7m5uT2+31fO3b+dN7faqAhKIqrxOBmJBozMdPt9Bmr7PUXtV/vV/p6333n/mbidDM2aNcvtYMSLIpMhPAmqj8PxHQSMyGJSciRbj5aTm1+hZEhExIOcBYTc3W/ParX26o+Z3t7f12aPjuPNrQXsNdKYyXGsRTtg9Lwev99Aa7+nqf1qv9rvvfa7XUDBqaqqivXr1/P2229TUdHz9SlffvklS5cu5Rvf+AaZmZnMnTuX73//++zYsaPH7+l3Ok6Vc64bytO6IRERT6moqOCf//wnkyZNIjg42Nfh9GszR5lFFDbUOfYXUnltEemn3B4ZAlixYgV//vOfqa+vxzAM3njjDaKiorjttts499xz+e53v9vt93rllVcoLy9n4cKFjB07ltLSUp599lluvfVWnnrqKebMmdOTEP1Lcibs/cBVUU5FFEREeufHP/4xycnJpKenExMTw5EjR3jmmWc4efIkjz32mK/D6/fS4sOIDw9me+1ICAKOq7y2iPRPbidDf/nLX1ixYgXf+ta3mDt3Lt/73vdc5+bPn88//vEPt5KhX/7yl8TFxbU7NnfuXC699FJWrVqlZKg7Uqabz46KchmOIgo7C1REQUSkJyZMmMB7773HX//6V2pra4mKimLGjBn87ne/Y+rUqb4Or98zDIOstFi25o4yDxTvgeYGCNCImoj0Lz1Khm6//XZ++tOfdipZN3LkSI4cOeLW+3VMhADCwsIYM2YMhYWF7obnn5zT5LooonDoZA1jtG5IRMQt3/3ud936YE86m5UWy7u5cVRbIghvqYITu1v7KxGRfsLtZOjYsWOnLCkaFhZGZWVlr4Oqqqpi165dzJ492+17/WkvB5fQBCzhSRjVx7EV5GAMn+0qorD9WBmjYoec8S0GdPs9QO1X+9s++5u+2stB/Iu5bshgh20ks40d5lQ5JUMi0s+4nQxFRERQUlLS5bn8/PwuR3rc9dBDD1FXV8eiRYvcvtff9nJwGhOWRnT1cfI3vUfxyRCSghoB+CRnPyPsJ7r9PgO1/Z6i9qv9/szf2y+eNSEpgsiQALY3j2R2wA4o1LohEel/3E6G5syZw1NPPcVFF13kqqZjGAbNzc288sornHfeeb0K6PHHH+fvf/87v/jFL0hPT3f7fn/by8HJqJgHRV8yzFpCamYm81vyeX9/LkWNwWRmZp7x/oHe/t5S+9V+td/7ezmIf7FaDGaOimXXXnPzVVWUE5H+yO1k6Ic//CE33XQTV155JRdffDGGYfDSSy+xe/duCgoKePzxx3sczPLly1m5ciX33nsv//Ef/9Gj9/C3vRxcUs8CwFKYA1Yr04bHALCrsArDsHS7iMKAbb+HqP1qv9rvv+0Xz5uZFsvfvh5lflG0A1pawNLjXT1ERDzO7d9II0eO5JVXXmH06NG88sor2O123nrrLWJiYnj55ZdJSUnpUSDLly9n2bJlLFmypEfT4/yeq4jCXmisYUxCWLsiCiIiIn1tVlosB+3J1BMIjdVQetDXIYmItNOjfYbGjh3L008/TWNjI2VlZURFRRESEtLjIFasWMGyZcv4/ve/z+LFi3v8Pn4tIgkikqGqEI7nEjBiNpOTI/nqaDm5eRWqKCciIn0uPSWKoMAg9rQMJ9Ny0CyiED/W12GJiLi4PTK0dOlSjh07BkBQUBBDhw51JUL5+fksXbrUrfd75plneOKJJ5g7dy4XXHABOTk57R7ihuRM87lgKwBTh0UD2nxVRER8IyjAwlkjo9nVMso8oM1XRaSfcXtk6M033+T/+//+P4YPH97pXFlZGWvXruXRRx/t9vt9+umnAKxfv57169d3Ov/111+7G6L/SsmEve+7Nl9NTzU3X1UyJCIivjJzVCw7D40yv1BFORHpZ3o0Te5UKioqCAoKcuueF1980ZMh+LeU6eZzYQ4AGY5kaGd+BS0t9m4XURAREfGUWWmx/G7dKADsx3NRTyQi/Um3kqFNmzaRnZ3t+vr111/n888/b3dNQ0MD69atY8yYMZ6NULrPOU2uZC80VDMmIYwhgVZqGm0cLKlhbKLWDYmISN+aPjyGA5YR2OwG1poTUHXcXOcqItIPdCsZys7OZvny5YC5p9Drr7/e5XUpKSn893//t+eiE/dEDG1fRGHkHCanRLLlSBk78iuUDImISJ8bEmRlXGoiB4+nMM7IN6fKKRkSkX6iW8nQXXfdxbe//W3sdjvnnHMOTz/9NJMnT253TVBQEGFhYV4JUtyQMh2+LjSnyo2cQ0ZqFFuOlJGbX8F101N9HZ2IiPihWWlx7CwcyTjy4fg2GH+pr0MSEQG6mQyFhIS4KsatW7eOhIQEt9cGSR9JzoSv33MVUXCuG8rNUxEFERHxjay0WL7810ius34Bx3N9HY6IiIvbpbVTU1OVCPVnzs1XHeW1M4Y5iigUmEUURERE+tqMUTHsso8CoDl/m2+DERFpw+1qck1NTfz5z3/mnXfeoaCggIaGhnbnDcNg165dHgtQ3NSpiEK4iiiIiIhPRYYE0pyQDhUQUHEY6isgJMrXYYmIuJ8M/e///i/PPfcc8+bN4+KLL9YoUX8TMRQiUqCqAI7nYh05hykpkWw+UkZufrmSIRER8YmJY9Io2BJLilEKRTth5Dm+DklExP1k6P333+eee+5h8eLF3ohHPCElE74uMKfKjZxDemqUmQzlVXL9dF8HJyIi/igrLZadm0aRYi01K8opGRKRfsDtNUMVFRWcffbZ3ohFPMU5Va7D5qs78lVEQUREfOPsUbGudUMNeVt9G4yIiIPbydDMmTPZs2ePN2IRT0lxDP84KspNdRRR2FFQgU1FFERExAcSIoI5GT4egMY8FVEQkf7B7WTowQcf5I033uAf//gHjY2N3ohJestZUa5kLzRUMTohnNAgK7WNNg6VVPs0NBER8V9ho84CILRiHzTrbwgR8T231wxde+21NDc386Mf/QjDMFz7DzkZhsGWLVs8FqD0QHhihyIK5zA52VlEoYKxiRG+jlBERPzQ+PGTqdgdShS1ULwbkqf5OiQR8XNuJ0OXXXYZhmF4IxbxpJTpjiIKOTDyHDKGmUUUtudVcP30Yb6OTkRE/NDMtDh2tYxijnUXDXk5BCsZEhEfczsZeuyxx7wRh3haSiZ8/a6KKIiISL8xLCaUfwWNYY5tFyf3byZl5m2+DklE/Jzba4ZkgHBWlCswK/Y4k6GdBZUqoiAiIj5jG5oBQEuBiiiIiO91a2Ro586dbr3plClTehSMeJCriMK+TkUUDhZXM26o1g2JiEjfix49AwogtnoftLSARZ/LiojvdCsZuvHGG7u1Tshut2MYBrt37+51YNJL4YkQmQqV+a4iClNSItl02CyioGRIRER8YcKUGTSsDySUWhpKDhCcOM7XIYmIH+tWMvToo496Ow7xhuRMMxkq2AojzyE9NcqVDN1wloooiIhI3xuTFM0uYwRTOEDerg2MUTIkIj7UrWTo+uuv93Yc4g3OIgqOzVed64Zy81REQUREfMMwDMoiJ0DlAcoPfgUXLPB1SCLixzRRdzBLmW4+OyrKTR2mIgoiIuJ7FkdJ7YATuT6ORET8nZKhwcxZUc5RRCEt3iyiUNdkFlEQERHxhaETZgGQUrdPH86JiE8pGRrMwhPMIgrYoXA7VovBlJRIAHK135CIiPjIqMmzaLEbJBjl7Duw39fhiIgfUzI02HWYKpeRGg3Adq0bEhERH7GGhFMUaBbyObIz28fRiIg/UzI02Lk2X80BIGOYOTK0QyNDIiLiQ9WxkwGoPbrVx5GIiD9TMjTYOTdfLTA7G2dFORVREBERXxoyIhOA8LKd2O3qj0TEN5QMDXbOkaGT+11FFMIcRRQOqIiCiIj4yNBxZhGFMbZDHCiu8XE0IuKvlAwNduEJEDmM9kUUtN+QiIj4VuCwTABGW47z1b5jvg1GRPyWkiF/0GGqXLpz81WtGxIREV8Ji6cqKBGAwq83+jgYEfFXSob8gTMZ6rD5qpIhERHxpaaEKQA0F2z3cSQi4q+UDPmDZEd5bUdFOefI0C4VURARER+KGHUWAMPq95NXVuvjaETEHykZ8gfOkaGT+6C+ktHxYSqiICIiPheYmgnAFMthNh4q9W0wIuKXlAz5g7B4RxEF4Ph2LBaDKY7RIW2+KiIiPpOUAcA4I48tB4p8HIyI+CMlQ/7CVUQhB2jdb0ibr4qIiM/EjKIpMIJgo5miQ1o3JCJ9T8mQvzjF5qsqoiAiIj5jGBiO0aHoit0UVzX4OCAR8TdKhvyFs4iCo6JchqOi3M6CCpptLT4KSkRE/F1AyjQAJhtH2HRY64ZEpG8pGfIXriIK+6G+krS4MMKDA6hvatHO3yIi4jvJUwEVURAR31Ay5C/C4iFquPnaUURhckokoKlyIiLiQ0lmMjTJOMKmgyU+DkZE/I2SIX+SbE5F6LRuKK/cRwGJiIjfS5iA3RpEpFFHVdEBKuqafB2RiPgRJUP+JKX95qtTh6mIgoiI+Jg1ECNxEmCuG9pyRFPlRKTvKBnyJ851Q44iCumOkaFdhZUqoiAiIr6T1HbdUJmPgxERf6JkyJ84K8qd3A/1Fe2LKJSoiIKIiPiIIxmabBxh46GTPg5GRPyJkiF/EhYHUSPM14VmEYUpKqIgIiK+1qai3Pa8CuoabT4OSET8hZIhf+PYz8G135BjqtyO/EofBSQiIn5vaDp2DJKMMqJaytl6TFPlRKRvKBnyN8mZ5rOzopyjiMKOAiVDIiLiI8HhGHFjAJhsOaL9hkSkzygZ8jfOIgqOinLOkaHdhZXYWuy+iUlERCQpA4AphjZfFZG+o2TI3ziLKJQegPoKRrUpopBX1ezb2ERExH+1qSj31dEyGptV5VREvE/JkL85TRGFA2Xa6E5ERHzEUUQhw3qU+qYWdhSosI+IeJ+SIX/kLKLgWDfk3Hz1QKlGhkRExEccI0MjKCSUek2VE5E+oWTIH6U4psp12Hx1f2kTLVo3JCIivhCeCOFJWLAz0TiqZEhE+oSSIX/kqiiXA8DUYdEA7C9rIuuxT/nPv27lb1vyOFFV75PwRETET7XZb2jT4VIV9hERrwvwdQDiAykdiyhE8u1Zw/nbV3mU1jSyNqeAtTkFAExKjmTe+HjOH5fAjFExBAdYfRi4iIgMakkZsO8fTAs4yov1zewtqvJ1RCIyyCkZ8kehsRA9AsqPQuE2jLR5PHztFK4e3khLzEj+tf8k6/eVkJtfwe7CSnYXVrLqs4MMCbQyZ0wc88bFM298AmnxYRiG4evWiIjIYOFYNzQj+Bg0wMbDZUwb4uOYRGRQUzLkr5IzzWSoIAfS5gEQaDHITIvlnLEJ/PQbcLK6gX/tL+GzvcWs31dCcVUDn+w5wSd7TgAwLGYIc8clcP74eM4ZG09kSKDv2iMiIgOfY5rciKbDBNDMpsOlTJukD91ExHuUDPmrlEzY/barolxX4sKDuTYzlWszU7Hb7ewurOLzfcV8vreYzYfLyCur45WNR3ll41GsFoPpw6OZNz6BeeMTyEiNwmpRByYiIm6IHgVBEVgbqxhjFLDpcCjfmRjj66hEZBBTMuSvnEUUHBXlzsQwDCanRDI5JZJF54+htrGZ7IOlfLa3mM/3FXOwuIbNR8rYfKSM//1oL9GhgZw3Np5548zkKCkqxGtNERGRQcJiMdcNHf2CaQFHea16BIXVNqb7Oi4RGbSUDPkrVxGFg1BXDkERbt0eGhTA/ImJzJ+YCMCx0lrW7yvh873F/PtACeW1TbyzvZB3thcCMH5ouCsxmpUWS0igCjGIiEgXkqfC0S84P7KQ107CruJGrvB1TCIyaCkZ8lcdiigw8rxevd3w2FC+lTWCb2WNoNnWQs6xcj7fW8xn+0rYnlfO3qJq9hZV89S/DhEcYCFrtFmI4fzxCYxNDFchBhERMSVlAJBhPQrAa7uqqQvezbljE8gaHav1qSLiUUqG/JmziEJhTq+TobYCrBbOHhXL2aNiue/SCZTXNvKv/eao0ed7SzheWe94Xcyv391NclQIcx0V6s4bG090aJDHYhERkQHGUVEutX4fQQEGJ+taeO6LIzz3xREsBmQMi+acMXGcMyaOs0fGMiRIMw1EpOeUDPmzlOmOIgo5Xv020aFBXDU1haumpmC329l3otocNdpbzMZDpRRW1PPa5jxe25yHxTA3gZ033qxSN21YNAFW7Q0sIuI3EiaCJRBrYyVffm80L285SWFLBBsOlnKwpIZtx8rZdqyclf88QJDVwvQR0ZwzJp5zx8YxdVg0QQHqM0Sk+/pFMlRTU8Pjjz/O+++/T0VFBaNHj+a73/0uV155pa9DG9xSMs3nbhZR8ATDMBg/NILxQyO4a+5o6ptsZB8q5fO9xazfV8zeompyjpWTc6ycJ9btIyIkgPPGxjN3XALzxsczLCa0z2IVEREfCAiCxIlwPJfoyq85Z/gwMjOnYLVaKSiv48sDJ/niwEm+OFBCYUU92YdKyT5Uyh8/htAgKzNHxXLu2DjOGRPPpORIVTYVkdPqF8nQkiVLyM3N5cc//jGjRo3inXfe4b777qOlpYWrr77a1+ENXs6KcqUHob7CJyGEBFo5f3wC549PAKCwoo71e0v4bF8x/9pXQkVdE+/vOM77O44DMDohjHnjzOuzRscSGtQv/hMWERFPSpoGx3Mxjm+H6GGuwynRQ7hxxjBunDEMu93O4ZO1fHGghC8OnOTLAycprWnkM8fMA4CoIYHMGR3HOWPNaXVjErRGVUTa8/lfkp999hn//ve/+cMf/sBVV10FwOzZsykoKOB3v/sdV1xxBVar5gN7RWgsRI+E8iNmEQUifR0RyVFDuGXmcG6ZORxbi53teeV8vreEz/cVk3OsnIPFNRwsruG5Lw4TZLUwMy3GVaVuYlKEOjkRkcEgeSrkgHE8F6K7riVnGAZp8WGkxYfx7ayRtLTY+bqoyhw12l9C9qFSKuqa+GDncT7YaX6glhgR7FhvFM+cMXEMj9VsAxF/5/Nk6KOPPiI0NJRvfOMb7Y7fcMMN/PjHP2bbtm2cddZZPorOD6RkQvkRjMIcCJ3n62jasVoMpo+IYfqIGH508Tgq6pr4Yn8JnztKeOeX1/Hv/Sf59/6TPPr+HhIigpnrqFB33th44sKDfd0EERHpCUdFOYpyYWL3brFYDCYlRzIpOZLvnJdGs62F3PwK15S6zYfLOFHVwNqcAtbmFAAwIjaUc8bEMceRICVEqN8Q8Tc+T4b27dvHmDFjCAhoH8qECRNc55UMeVFyJux6y1w3NKZ/JUMdRQ0J5PKMZC7PSMZut3OwpMZVlW7DwVKKqxpY81U+a77KxzAgPSWKeePNjV/PGhlDoAoxiEg3aS2rjw1NB8CoLMDa0LNp3AFWi+sDtXvmj6W+ycZXR8tca45yjpVztLSWo6W1/HXTMcDcE++cMfGcMyaOrNFxRA1RGW+Rwc7nyVB5eTnDhg3rdDwqKsp13h02m61HcTjv6+n9A1bSNKxgjgyNGVjtHxU7hFGzR7Bw9ggamlvYfKSM9ftKWL+vhD3Hq8jNryA3v4IVnx4gPNjKbMfeRnPHxTOiw9QIv/33d1D7e9d+u91Oix1sLXZa7ObD1kKb13ZaWsxrXF+3e+34usWOzd56betrOzbH+RbHMZvjftc9be+322lpMeOx281j5mvaX+t4v2ZbCwF1dWRk9O7352Citaw+FhIJsaOh9CChlfuA83v/loFWR6ITz4+B6oZmNh0qda052lVY6doT77kvDmMxID01ijlj4jh3TDxnj4rROlWRQahf/F99unUe7q4Byc3N7VUsvb1/oLE2WsgEjLLDWBurBnT7w4BvJME3ksIoqwthW1EjOUUNbDveQGWDjY93n+Dj3ScASAqzkpkUTGZSEOkJQQwJNEeNBnL7PcGd9tvtdlrA/KPb8ce/zfUHvPnc3ILrj3qb43Vzmz/kXfec5ljr+7U/1vb9ev89HInGe5+YbXIkDHY7jmdn8kLX5731D9LHpiTkEDtEazS1lrWfSJpqJkMV+73y9uHBAcyfmMj8iYkAlNU0suGgOWr07wMlHCyuYXteBdvzKlj12UECrQbTh8c4ijHEkzlcZbxFBgOfJ0PR0dFdjv5UVJjD4s4Rou7KyMjoUSdls9nIzc3t8f0DmT17JEb5EUIr9jHqwtsGTfvnO55bWuzsLKx0jRp9dbSc4zU2PjhQywcHah0dXDRxAQ3ExcVhYGDH/APYfDbfx475ybrd/KLd185raXt9m/vb3dvl/W3eo4vv1+k9Ony/zvG2/36nut9ubz1XW1tLQFCII5lowdZip7nFTrPNfLa12LG1tLQ7Jt1nMcx1cIZhYDUMLIa5xqHja8NiYO1wrfka81qL4Xovi2E+rBZcrzu+Z8fzVsf9ba81sDOkqYJ5M6d1mrLcHc7fn4OF1rL2E0kZsGstQw+8hrGmBFJnQOpZkDwNgsI8/u1iwoJcU7EBjlfU8+XBEv693yzIUFBRz8bDpWw8XMrjH+9jSKCVmWmxrg1gp6REqYy3yADk82Ro/PjxvPPOOzQ3N7frhPfu3QvAuHHj3Ho/q9Xaqz/me3v/gOQoohBasXdQtt9qhcwRsWSOiGXJReOpqm/iywMn+XxfMZ/vLeFoaS0bD5eZF++v9W2wPlftkXcJtBoEWCwEWAysVsN8tjiOWZ2vDawWC4HtvjYItFrafd3VPQEWgwDr6b8236v91wGOuFzvZTUItFgwaOHggQNMGD+OgABr+wTEmTA4jpmvHcfbJCmu5KXjNY7X/bnSoc1mIycnh4CAgEH3/39PeGMtq6Zw98Doi7B89jsCG8th5xrzAdgNC8SPx54yHVLOwp6caa4xCvBs8YOE8ECumZrMNVPNdapHS+v40jFy9OXBUkprGl3rVgEiQwLISotlzpg45oyOZVxi78t4+/W/P2q/L9pvt7eZUt3FNGzXlOsWe5fTvm321vNtp463ziJpO327zfRv16wNx/kWcwp3ZENzr39/nonPk6GLL76Y1157jX/84x9ccUVr+cw333yTxMREpk2b5sPo/ETKdNj1FqEVe30dSZ+ICAnk0ilJXDolCYAjJ2v47OsT5Ow9QlLSUKwWCwaAYWCYTxiYf9ACrcccB9qed54zr2tzT7v36nhv19/L2YU6j9Hm3tYYzvS9OsdNu1jNa+32Fg4dOsj4sWMJCrS2Txi6SFDafe1IQpzJj2UAfjJqs9kIqTxG5siY/p8M2O1ga4KmWmiqa/Nc18Wx2lMca3+9pbGW0UY0ZLxhfnrg5zy9lhU0hbunrBe/Rlj5HkLLvyas/GtCK/YQVH8SivdgFO+Bba8A0GIEUBc5mtroCdRET6A2egJ14aPA4tn/nicGwsSJcMeEGI5VNrP9RCM7TjSy80QjlfXNfLT7BB85pmNHB1tITwwiIzGIjKFBDA3r+Z9c/vrv79Tf2m+322m2Q7PNTlOLOTW7qcVOk8183dyC4+vW882O803O1y3O+9te3+baFmiymVO57es/b11b6pjN4Zq6bafduU5Tu+3Qgh1aWjCwYbHbCLA3YbGbr612G1Z7E1bHOSs2AmnGSgsBhvk6ABuB2AjARgDNBBrO162PQMc58x7nseb21xkd3qfdcee1Leb7OM59GjiP3LB7vPrv6fNk6Pzzz+fcc8/lV7/6FdXV1YwYMYJ3332X9evX8/vf/77//2EyGDg2X40o2Yrx+e8gYQLEj4O4sRA4xLex9YGRcWF8O2sEU4JLycwc75f/zdlsNnLqC8gcF++X7fcYu/0MiUlX57p7neNYYw3YPfspoQFEG1Za6sshKMmj7z1QeXItK2gKd0+Z7Y9g5EV3utpvqyqEghyMgq/M4j8FW7HUlRJWsZewir0kHPk7APaAIZCUYY4gJU83n+PGgOGZdT7TgWscr5ttLewsqOTLg6V8efAkm4+UUd7Qwr+O1fOvY/UADIsZwpzR5rS62WmxJEaGdLP9/vvv39zczNbtuYyfOJkWDBqbW8yHrYUmm931dYOthSbHcdf5Tl/b233d9tn1Xq6vO57veF/Pp4kbtBBOPeHUEWHUEkEtEUYtkdQRa9S5vo6glnCjjmCaOicXRpvko00C0TZJaZuIBGLDYtidAbR+2joAXBK0k/he/v48E58nQwDLli3jj3/8I0888QTl5eWMHj2a//3f/1UJ076SMh17QAiBjRXw2WNtThgQNdxMjOLHQ/xY8zluHEQktQ5LiAw0tiaorzAfdeVQe5Logh0Yxh6w1XdIRmrPnKC0PdaXDAsEhpkfWgQOgcDQDs9DzLUVHY91uM5mDWZXUROTwxL6Nv5+ytNrWUFTuHurXfujh5mPyWZxC+x2c/Pwgq2Q/5X5XJCD0VgFeRsx8ja2vlFwpLnmKPUsSDnLnBkRPaLX/ZnVauWsUXGcNSqOey4cR0Ozja1Hy10bwOYcKyevrI7Xt+Tz+pZ8AMYmhrs2gJ09Opbo0KDutb8fabK1UNdko67RfNQ22qhrslHf1OZ1o43axmbqmlqoa2w2r3ecr29qva/dPW1em+tgi3zdVAACaCaCWoYadUS2SWYiLfVEW2qJttQTZdQRaakjwnE+nFrC7bWE2msJtdcQYq/D0k/K7tgtAdgtAWAJBEsgdmsAGAFgDQSL49kaiGEJBGsARtuvLQFgddxrDXQ8t/26zfuc8lxX17aesxkWjh+3MdTL//33i2QoLCyMBx98kAcffNDXofinIdG03P4ehf9+hZSgaiwnD0DJXqgvh4qj5uPAuvb3BEW0T46cCVPsaAg886ddIr1it5sjJPXlrQlNfUWHr09zrqmm3dtZgTEAWzwYozX41AlKx2NBod27LrDDddZAz3woYbPRWJXT+/cZJDy9llW8zDAgZpT5mHK9eaylBU7uh4KvWpOk49uhoRIOrzcfTqFxrYmRM0mKGNqrkIIDzO0cZo+O475LxlPT0Mymw6V86ahUt7Ogkv0nqtl/opoXvjyCYcCUlEjOHRPPnDFxzBwVS1hw7/5Es7XYzWTDmaw4E4wOiYd5vpm6xhZqm5qpb+yQrLS5r+171TXa+ryQjtViEGQ115oGBVgJDrAQFOD82uI4Zx5rPWchyGIQZm0i3Kgjwm4mKGH2GkLtdQxpqWGIvYYhtmqCbTUEt9QQ1FxNUHM1gU1VBDRXY22swtpUhaW5/sxB2oHuDN5bAs0S8sGRrc9tX4dE0hIYRl7RSYaNSMMSENQ5kehlQuKcKt9v2WzYi3O8/m36RTIk/UByJkVjITkz01wzYLdD7UkzKSrZ1/p8ch+UHYbGKsenb1s7vJEBMSMdCVKH0aTwRI0mSStbc5skpfwUCc0pEpz6Cmhp7n0MQREwJBp7cCTVzRbCYxIwOiYczuegrhKTUyQtAUPMTkcGJK1lHQQsFkgYbz6mfdM8ZmuG4t2O0SNHklS00+zr9n9kPpwiUhyJ0fTWR2hsj8MJCw7gggmJXDDBLONdXtvIhoOtexztP1HNjvxKduRXsurzgwRYDDKHRzN7dCw1pTX8u+wADbaWTqMpHUdR2iYqDc0tvfkJusViQGhQACGBVkKDrAwJtBISZCU00MqQIMcj0HyEBlkJcRx3vg5tc955fWhgAIEWO/t27+CsyWMZYq/F2lhlJrQNVWZ/0FAJ9ZVtjlW2HqurbH/eE32GU2BohyQmok0SE2V+3SGxMY9FtR7rxgfHdpuN4pwcUp1/m4lXqLeWrhkGhMWbj5HntD/X3AClh8wE6eQ+R7LkeDRUmMlS2eH2HQuYvwScyVH8uNaEKTbN41WApA/Y7ea0MHdHZZxfN3qgcp0lAEKiYUi02QGFOJ5P9/WQaPM5ONKVsLTYbOzNySEzM7NfTkWRvqW1rIOUNcAs152UATNuM4811UPRjvZT7Ir3QFUB7CmAPe+03h+T1n70KHkaBIf3KJTo0CC+kZ7EN9LNNXonKuvNKXUHzFLe+eV1bD5SxuYjjkqnVPWi4RASaCE0KMBMUtq8diUpbRIWV7LiTFI6JixtnkMDAwgJMkdk3FpLZ7dDXRlUn4Dq41BVBKVFUO14VB2H6hPYq4tIqq/A+IenRqCM0yQxkW2SmKgujrW5xxrooXikP1AyJO4LCIbEieajLbsdaorbjCY5RpJK9kLZETNRyt9iPtoyLOb0Btd0u3Gto0lh8RpN8qYWm5mc1JQSWv41HCwzR/26leBUQEtT72MICnc/oXF+HRiq/z7EK7SW1U8EhsCws82HU0M1FG5zzH74ykySyg61PhwlvsEwCw6lnNU6ijQ0vUdTxRMjQ7hueirXTU8F4FhpLf/eX0L2oZMUl5SSkhhPaHDAKROWdqMwgW0TmwCCAyx9V+WzuRFqTjgSmjbJTVdf2xrP+Hbtom47rSw44vQJS1fTzoIjzP7Goo1ypT0lQ+I5hmFOhQtPhFHntT/XVA+lB7seTWqsMs+VHoR9H7a/LyS6dSSp42iSPpkx2e3mKEtduflJW73j2ZnAdPXaeV19JWDHCkzq6fe3BHSRtER3I6FxvNZ0MumHtJbVjwWHw6hzzYdTbSkU5rQp0LAVKvPNUaTiPbDtZfM6SwAMneKYWudIkhImut1fDY8N5ZuzRnDzjFRycnLIzEz33Yik3W5OM+uU3BxvHdmpPmF+XVfq3nuHRJsFmcITIdzxHJEE4UMhfCi2IXHsOFhI+ow5WIPD9OGXeIX+CpG+ERgCQyebj7bsdvOXalejSeXHzD/Y8zaaj7YMq5kQdRxNih/fq3ndPtVU33XC0p0kp5dzoe2BYTRZQwmMTMDoOEpzphGaIHVQIjLIhcbCmAvNh1NVUfvRo4KvzPVHhdvMx5bnzOsCQiBpaps1SGeZW1f4eoTC1mzO5ugyuWk7knMCmuu6/76WAFcyQ/hQsxhFu6+dyc/QM0+Rt9loLmgw12KqnxEvUTIkvmUY5i/GiCRIm9f+XFMdnDzQYSTJkTQ11ZiVgk7uh73vt79vSGzn4g3x483CDt4eTbI1tykGUO5eYtOdKjWnYw2CITGOBCamdYSmq9eu68zjLYaVXK2ZERHpvoihMOEb5gPMD/cqjrUZPfoKCnLMUZWOH+oFRUBKZps1SNMheqRn/uBvqD796I3z65oScKfEc3BUm5GbjiM5zq+Hmv2LrxM9ETcoGZL+K3AIJKWbj7bsdqgq7GI0aZ/ZEdWVwrEN5qMtS4BZ+jt+vPmpXNvpd0GRrde1tDgq0JSfeVTGda7CfN3Yu0WuGJbWJKVtwnK6JMd5rjefnNk8u4mniIjfMQxzz6LoETDlOvNYS4s5Bdw1erTVHDVqrDpFie/p7ct8hzr2/mqxQd3J04zetFmX02HrgNPHbG2d3t7FNDXXyE5YollRU2QQUjIkA49hQGSK+Rh9QftzjTVdjyad3G9WPivZaz46sITGM4UgLB/XmYUB7L0sSRoc2SaRiT5FYhPdOckJitAnaiIig4XF4pilMBam3mIeszWb64zaTrFzlfj+2Hw4bw9PIqOpCcs75WB340OroPDWBKfTNDXn6yRz+p9FswHEvykZksElKAySp5qPtlpazFKpJXuhZH/7Qg6V+Ri1JXSq/xMwpPujMm1fqyiAiIicijWgddbDWQvMY80NZonvfMfUuoKvoHgPRvVxglw3GhCWcIp1OB2+7mHJbxF/pL/YxD9YLBA1zHy0XQAL0FCNrXgv+3ZtZ9zUmVjD4hzTztwvjyoiIuK2gGBInWE+nBqqsR3fwdf7DzFhxjysEUP1QZuIF+j/KpHgcEieRk2R3VECVVMGRETEx4LDYdhM6koCzXU86ptEvEKLE0RERERExC8pGRIREREREb+kZEhERERERPySkiEREREREfFLSoZERERERMQvKRkSERERERG/pGRIRERERET8kpIhERERERHxS0qGRERERETELykZEhERERERv6RkSERERERE/JKSIRERERER8UtKhkRERERExC8pGRIREREREb8U4OsAPMVutwNgs9l6dL/zvp7eP9Cp/Wp/22d/o/b3rv3O+5y/h6WV+qbeUfvV/rbP/kbt75u+ybAPkt6rsbGR3NxcX4chIuK3MjIyCAoK8nUY/Yr6JhER3zpT3zRokqGWlhaam5uxWCwYhuHrcERE/IbdbqelpYWAgAAsFs2+bkt9k4iIb3S3bxo0yZCIiIiIiIg79BGeiIiIiIj4JSVDIiIiIiLil5QMiYiIiIiIX1IyJCIiIiIifknJkIiIiIiI+CUlQyIiIiIi4peUDImIiIiIiF/yi2RozZo1TJgwwfWYPHky5513Hvfeey+HDx9ud+3mzZv5+c9/zg033EB6ejoTJkwgLy/PN4F7SHfbb7PZePbZZ/nOd77DvHnzmDZtGpdffjn/8z//Q2Vlpe8a4CUdfy4dH9nZ2b4Oscc++OADJkyYwHvvvdfp3DXXXMOECRNYv359p3MXX3wx119/PQCffvopP/3pT7n66quZMmUKEyZM8HrcntLb9ldXV7Ny5UoWLFjAueeey/Tp07n66qtZvXo1DQ0NfdGEXvHEv/8f//hHrrvuOmbNmkVGRgYXXXQRv/jFL8jPz/d6/P5CfZP6pq6ob1Lf1JH6Ju/2TQE9vnMAevTRRxk9ejQNDQ189dVX/OlPfyI7O5v333+fqKgoADZs2MCXX37JpEmTCAsLY+PGjT6O2nPO1P76+nqWLVvGVVddxc0330xMTAy7du1i5cqVfPrpp/ztb38jJCTE183wOOfPpaOxY8f6IBrPmDVrFoZhsGHDBq644grX8fLycvbu3UtoaCjZ2dnMnTvXde748eMcO3aMO+64A4CPPvqIbdu2MWnSJAIDA9m5c2eft6Onetv+goICnn/+ea699lpuv/12QkND2bJlC8uXL+eLL77g2WefxTAMXzStWzzx719ZWcmVV17JmDFjCAsLY//+/axcuZJPPvmEd955h5iYmD5v12Clvkl9U1fUN5nUN6lv8nbf5FfJ0Lhx48jIyAAgKysLm83GsmXL+Pjjj7nxxhsB+MEPfsDixYsBePrppwdVh3Om9oeEhLBu3bp2/yFlZWWRnJzMj370Iz788EOuvfZaX4XvNW1/LoNFbGws48aN6/Tf76ZNmwgICODGG2/s9Onihg0bAPPfHODXv/41Fos5ePzwww8PqA6nt+0fNmwYn3zyCaGhoa7zc+bMYciQIfzud79jy5YtnH322d5vSA954t//l7/8Zbvzzp/Ld7/7XdatW8dNN93kxRb4F/VN6pu6or7JpL5JfRN4t2/yi2lyp+L8JXPy5EnXMef/YP6gY/utVmuXGfXUqVMBMzuXgSMrK4tDhw5x4sQJ17Hs7GzS09M5//zz2blzJ9XV1a5zGzduxGq1un6RDvT/F3rT/tDQ0HadjdNA+n+ht//+XYmNjQUgIMCvPkfrc+qb1DcNZuqb1Df1t75pYP8X1UvO+dajRo3ybSA+0t32O7PygTw0fzotLS00Nze3e9hsNl+H1WuzZ88GaPcJTHZ2NrNmzeKss87CMAy2bNnS7tzkyZOJiIjo81i9wRvtH0j/L3iq/c3NzdTX17Nr1y4eeeQRRo0axSWXXNI3jfBT6pvUN4H6prbn1Depb/Jm3+RXyZDzF0tNTQ3r169n5cqVzJw5kwsvvNDXofWJnrS/qKiIP/zhD6SnpzN//vw+jLbv3HLLLUyZMqXdYzBMTZg5cyYWi8X1C6esrIx9+/Yxc+ZMwsLCmDx5susXaGFhIXl5ea5h6MHA0+3fs2cPTz31FJdccgkTJ07skzb0hifaX1xczJQpU5g2bRrXX389NpuNF154gbCwsD5vz2Cmvkl9U1fUN6lvUt/UN32TX811uOWWW9p9PWbMGJ588km/mfLhbvvLy8u5++67sdvtPP744wN+aPpUfvvb3zJmzJh2x/rzAsTuioqKYuLEia75t5s2bcJqtXLWWWcB5i8k5y8c5zWDqcPxZPvz8vJYtGgRSUlJ/PrXv+6D6HvPE+2PiYnhjTfeoLGxkYMHD/LUU0+xcOFCXnzxRRITE/uwNYOb+ib1TV1R36S+SX1T3/RNg/M3yCn89re/5Y033uD555/n1ltv5cCBA9x3332+DqvPuNP+iooK7rzzToqKinjmmWcYPnx4H0fbd8aMGUNGRka7R3p6uq/D8oisrCwOHz5MUVER2dnZTJkyxfXJyaxZs9i9ezdVVVVkZ2cTEBDAjBkzfByxZ3mi/fn5+SxcuBCr1crzzz9PdHR0H7ei53rb/oCAADIyMpgxYwY333wzzz//PHl5eaxevdoXzRm01Depb+qK+ib1Teqb+qZv8qtkyPmLZfbs2Tz88MPcfPPNrF+/ng8++MDXofWJ7ra/oqKCO+64g7y8PJ599tkBMewqXXN+mrJx40Y2btzIzJkzXeecv1w2bdpEdnY2GRkZg276U2/bn5+fz4IFCwB44YUXSEpK6qPIPcPT//5JSUkkJiZ22gNHekd9k/omf6O+SX0T9J++ya+SoY5+8pOfEBUVxRNPPEFLS4uvw+lzXbXf2dkcO3aMp59+msmTJ/s4SumNmTNnYrVa+fDDD9m3bx+zZs1ynYuIiGDSpEmsXbuW/Pz8QTUNwak37S8oKGDBggW0tLTw/PPPk5qa2tfh95qn//2PHDnC8ePHGTlypDfD9nvqm9Q3DXbqm9Q39ae+yT8mJJ9CVFQU3/3ud/n973/P3//+d6699lpKS0tdi7r27t0LwOeff05sbCyxsbHt/sEGuo7tv+yyy/jOd77Drl27+NnPfobNZiMnJ8d1fWxsLCNGjPBdwF6yb9++Liv0jBgxwlWucaAKDw9n8uTJfPzxx1gslk5DzTNnzuT5558HOs/Jzc/PJzc3F4CjR48CuD6pTU1NHRALeXva/pMnT7Jw4UKKi4v5zW9+w8mTJ9uVOU5KShoQn8T1tP179uzh0Ucf5bLLLmP48OFYLBb27t3Lc889R3R0NHfeeWeftsPfqG9S3wTqm9Q3qW+Cvumb/DoZAliwYAF/+ctfePLJJ7nqqqvYt28fP/rRj9pd89BDDwHmPMYXX3zRF2F6Tdv2T58+3fUL5je/+U2na6+//noee+yxvg7R65YuXdrl8V//+tfcfPPNfRyN52VlZZGbm8ukSZMIDw9vd27mzJk899xzBAYGMn369HbnsrOzO/1snP9vDKT/FnrS/v3793Ps2DHA/JS6o8WLF7NkyRLvBu4hPWl/fHw8iYmJPPvssxQXF9Pc3ExSUhIXXHABixYtIjk5ua+b4XfUN6lvUt+kvkl9U9/0TYbdbrf3qjUiIiIiIiIDkF+vGRIREREREf+lZEhERERERPySkiEREREREfFLSoZERERERMQvKRkSERERERG/pGRIRERERET8kpIhERERERHxS0qGRERERETELykZkh5bs2YNEyZMcD0mT57Meeedx7333svhw4d9HR4Af/rTn/j44487Hc/OzmbChAlkZ2f7ICrTJ598wqJFizjnnHNIT09n1qxZ3Hbbbbz99ts0NTX5LK6OuvpZPfDAA1x44YVe/b5FRUUsW7aM3bt3e/X7iMjgor6pd9Q3nZ76psEnwNcByMD36KOPMnr0aBoaGvjqq6/405/+RHZ2Nu+//z5RUVE+jW3VqlVcdtllXHzxxe2OT5kyhVdffZWxY8f2eUx2u52f/exnrFmzhvPPP58HHniA5ORkqqqqyM7O5qGHHqKsrIzbbrutz2Prrh/84AcsXLjQq9/jxIkTLF++nNTUVCZNmuTV7yUig4/6Jveob+oe9U2Dj5Ih6bVx48aRkZEBQFZWFjabjWXLlvHxxx9z4403+ji6roWHh5OZmemT7/3UU0+xZs0alixZwuLFi9udu/DCC7nrrrs4cuRIn8ZUX19PSEhIt68fMWKEF6MREek99U3uUd8k/krT5MTjnJ3PyZMn2x3Pzc1l0aJFzJo1i4yMDK677jree++9dteUlpbyq1/9iiuuuILp06czZ84cFi5cyObNmzt9n8bGRpYvX87ll19ORkYGWVlZLFiwgK+++gqACRMmUFtby5tvvumaLrFgwQLg1FMR1q1bx6233sq0adOYPn06d9xxB1u3bm13zbJly5gwYQL79u3jvvvuY8aMGZxzzjksXbqUqqqq0/5smpqaeOqppxg9ejT33HNPl9ckJCRw9tlnu74uLy/nV7/6FXPnziU9PZ2LLrqIP/7xjzQ2Nra7r6GhgT/84Q9ceOGFpKenM3fuXB566CEqKyvbXXfhhRfyve99j3/84x9cd911ZGRksHz5cgAOHDjAd77zHaZNm0ZWVhb//d//TU1NTacYu5qKMGHCBB5++GHWrl3L5ZdfzrRp07jmmmv49NNP21135MgRli5dyqWXXsq0adOYO3cuixYt4uuvv3Zdk52dzU033QTA0qVLXf9+y5Ytc13Tnf+eRESc1Dedmvom9U3+TCND4nF5eXkAjBo1ynVsw4YN3HXXXUybNo1f/epXRERE8N5773HvvfdSX1/PDTfcAJi/XAEWL15MfHw8tbW1fPTRRyxYsIDnnnuOrKwsAJqbm7nrrrvYsmULCxcuZPbs2dhsNrZt20ZhYSEAr776KrfddhtZWVn/f3t3HhLV18YB/Ds2LaOQk2uBRTl1NRcKW6y0MqiwmtCgDaKiTdtsUUOiIiWyoiIa+w06TUSLiJYaWlFRERVki6CVZIVaRH+UlmamqeOc9w+Z+/O+jkvp+8873w8M4nOfuefMnasP59xzZ7B161YA7bNuXSksLERiYiLCw8Nx8uRJtLS0wGw2y213LAIAEBcXh4ULF2Lp0qV49+4dTp48CaB9aUZXXr9+jbq6OixbtgwqlarHY9nc3Iw1a9bg06dPiIuLg5+fH168eAGTyYQ3b97AZDIBaF/esHXrVhQVFSEmJgaTJ0/G27dvkZaWhpKSEmRnZ2PQoEHyfsvKylBRUYEtW7bAx8cHGo0GNTU1WL16NdRqNQ4ePAh3d3cUFhbi0KFDPfbT5sGDB3j16hV27NgBZ2dnmM1mbN++Hbdu3cLIkSMBtC8x0Gq1SEhIgJubG378+IH8/HwsX74c+fn58PX1RWBgII4cOYK9e/diy5YtiIiIAAAMHz4cQO/PJyIiG9Ym1ibWJrJLEP2l3NxcIUmSKCkpEa2traKhoUE8fPhQhIWFiVWrVonW1lY5NzIyUkRHRytiQggRGxsrwsLCRFtbm902LBaLaG1tFWvXrhXbtm2T4/n5+UKSJJGTk9NtHydOnCiSkpI6xYuKioQkSaKoqEgIIURbW5sIDw8Xer1e0ZeGhgYxffp0sWLFCjlmMBiEJEni7Nmzin0mJyeL4OBgYbVau+zPjRs3hCRJIisrq9t+22RlZQlJksTNmzcVcZPJJCRJEo8fPxZCCPHw4UO7fbK1l52dLcfmzJkjxo8fLyorKxW5x48fF35+fuLNmzeK+Lp16xTHSgghkpKSxJw5cxR5kiSJGTNmiJ8/f8qx6upq4e/vLzIyMrp8jRaLRbS0tIj58+eL1NRUOf7y5UshSZLIzc3t9Jy/PZ+I6P8faxNrU0esTdQTLpOjPlu+fDkCAwMREhKCjRs3YujQoTAajVCr2y88fvz4EZWVlVi8eDGA9pkz22PWrFmorq5GVVWVvL+srCwsWbIEwcHBCAgIQGBgIJ48eYKKigo559GjRxg8eHC/rfuuqqrC169fERUVBSenf/8sXFxcMH/+fJSWlqKpqUnxHHuX4pubmzstweiLoqIiODs7IzIyUhG3zS49efJEzusYt1mwYAGcnZ3lvI59HTNmjCL29OlTjBs3Dv7+/oq4Xq/vdX9DQ0MVM5weHh5wd3fH58+f5ZjFYkF6ejoWLlyIoKAgBAQEICgoCB8+fFC8x1350/OJiBwTa1M71ibWJuoel8lRnx07dgw6nQ6/fv3CzZs3kZ2djfj4eJjNZgBATU2NnHfs2DG7+6itrQUAnD9/HkePHsXKlSuxc+dODBs2DE5OTjh9+jQqKyvl/O/fv8PLy0tRHPrC1r6np2enbV5eXrBaraivr4dGo5HjWq1WkWe71P/79+8u2xkxYgSAf5dr9KSurg4eHh6dli24u7tDrVbLSzfq6uqgVqvh5uamyFOpVPDw8JDzbOy9zrq6Ovj4+HSKe3h49KqvQOdjArQfl+bmZvn3o0ePIjMzE5s2bcKUKVPg6uoKlUqF/fv3K/K68ifnExE5LtamdqxNrE3UPQ6GqM90Op18Y+q0adNgtVpx5coV3Lp1C5GRkRg2bBgAIDY2FvPmzbO7D9tMUEFBAaZOnYqUlBTF9v++UdLNzQ3FxcWwWq39UnRsfayuru607evXr3BycsLQoUP73E5QUBC0Wi3u3buHhISEHtdma7ValJaWQgihyP327RssFovcb61WC4vFgu/fvyuKjhACNTU18vtjY69drVYr/zPvyF6sLwoKChAdHY34+HhFvLa2tlfH+E/OJyJyXKxNvcfaxNrkyLhMjvrdnj174OrqCoPBAKvVCl9fX4wePRrl5eUIDg62+7BdvlapVIqbKQGgvLwcJSUlitjMmTPR3NyMvLy8bvsyaNCgbmfDbMaMGQNvb29cv34dQgg53tjYiDt37mDixImKmbe/NXDgQGzcuBGVlZX4559/7OZ8+/YNxcXFAIDp06ejsbGx05fzXbt2Td7e8WdBQYEi7/bt22hsbJS3dyc0NBTv379HeXm5In79+vWeX9gfUKlUGDhwoCL24MEDfPnyRRHrajbzT84nIiIb1qausTaxNjkyXhmifufq6oqYmBgcP34chYWFiIqKQkpKCjZt2oQNGzZgyZIl8Pb2xo8fP1BRUYGysjIYDAYAQEREBIxGIwwGA6ZMmYKqqioYjUb4+Pigra1NbkOv1yMvLw/JycmoqqpCaGgohBAoLS2FTqfDokWLAACSJOHZs2e4f/8+PD094eLiAl9f3059dnJywp49e5CYmIjY2FisWLECLS0tOHfuHOrr65GQkNBvx8dWcNLS0vDq1Svo9Xr5i+2eP3+OnJwcxMXFYdKkSYiOjkZmZiaSkpLw+fNnSJKE4uJiZGRkYPbs2ZgxYwYAICwsDOHh4Thx4gQaGhoQEhKCt2/fwmAwICAgAFFRUT32a+3atcjNzUVMTAx27dolf2JPxyUg/SEiIkL+ZB4/Pz+UlZXh3Llz8qfx2IwaNQpDhgxBYWEhdDodnJ2d4eXlBW9v716fT0RENqxN3WNtYm1yVBwM0f/E6tWrkZmZCaPRCL1ej2nTpuHKlStIT09Hamoq6uvrodVqodPpsGDBAvl5mzdvRlNTE65evQqz2YyxY8ciOTkZd+/exbNnz+Q8tVqNs2fPIiMjAzdu3MCFCxfg4uICf39/zJw5U87bt28fUlJSEB8fj6amJkydOhWXLl2y2+fFixdDo9HAZDJh9+7dGDBgACZMmICLFy8iJCSk346NSqXCkSNHMHfuXOTk5MjHw9b/xMRE+WbTwYMH4+LFizh16hTMZjNqa2vh7e2N9evXK74UT6VSwWg0Ii0tDXl5eUhPT4dWq0VUVBTi4+M7zWja4+npicuXL+Pw4cNITk6GRqPB3LlzceDAAfnjX/vDvn37oFarYTKZ0NjYiICAAKSlpeH06dOKPI1Gg9TUVJw5cwYbNmxAa2srtm/fjri4uF6fT0REHbE2dY21ibXJUalEx+uuREREREREDoL3DBERERERkUPiYIiIiIiIiBwSB0NEREREROSQOBgiIiIiIiKHxMEQERERERE5JA6GiIiIiIjIIXEwREREREREDomDISIiIiIickgcDBERERERkUPiYIiIiIiIiBwSB0NEREREROSQ/gOwwCI7163+GQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsrElEQVR4nOzdd3xUVf7/8dfMpJEOCQHS6BAgIaE3AQs2QF0VxZ/rurrr7lpAV91iXcvqiuuu66roV6xrARVFVBAUsaFSFEwINXRSIJSQRvrM/P6YTCCmzSQzmUnm/Xw88phw7z03n5PwyM1nzjmfY7BarVZERERERER8jNHTAYiIiIiIiHiCkiEREREREfFJSoZERERERMQnKRkSERERERGfpGRIRERERER8kpIhERERERHxSUqGRERERETEJykZEhERERERn6RkSEREREREfJKSIRERERER8UlKhkRERERExCf5eToAEbvBgwcDYDQa+fzzz4mLi2v0uunTp7Nnzx4AXn31VSZOnNghYsrMzGThwoVs2LCBo0eP4ufnR1xcHGeccQbXXXcdPXr0aDaGpjz22GNcdtllLFmyhLvvvrvZa41GI9u3b2/2mqVLl/LXv/4VgEceeYQrrrii2etdac+ePSxcuJD169dz6NAhKisriYyMZOjQoZx77rlcfPHFBAYGNmjX2u+tiEhz9Fzy3eeSvY87d+5s8pqzzz6b3NxcVq9eTXx8fKu+jp5fnqdkSLyKn58fNTU1LFmyhLlz5zY4v3HjRvbs2VN3XUeIyWq18q9//YuXXnoJPz8/Jk6cyAUXXEB1dTU//fQTr7zyCosWLWLevHlccMEFTcYxZ86cRo8PGTKk7rWpa3788UfWrVvHlClTmu3roUOHeOSRRwgODqasrKzZa13t2WefZf78+VgsFtLS0rj00ksJCQnh2LFj/Pjjj9x3330sWrSIJUuW1LVx1fdWRKQpei757nPJnfT88h5KhsSrREVFER0dzZIlS7jlllswGuvP5Hzvvffw9/dnwoQJfPPNNx0ipvnz5/PSSy8RFxfHCy+8wMCBA+ud//TTT/nzn//MHXfcQUREBBMmTGg0jsYeeKcbMmRI3QPo52bPng3AlVde2WR7q9XK3XffTWRkJOeeey6vvPJKs1/PlZ5//nmeeeYZevXqxX//+19SU1MbXPPNN9/w0ksv1Tvmqu+tiEhT9FzyzeeSu+n55T20ZkjqycjI4NZbb2XSpEkkJyczdepU/va3v5Gfn1/vupycHAYPHsxdd91FTk4Ot99+O+PGjSMlJYXLLruM1atXtzqGWbNmkZeXx3fffVfveGlpKStXruTss88mKiqq0bZWq5X//e9/TJ8+nZSUFCZPnszDDz9MSUkJZ599NmeffXa7xpSdnc3zzz+Pv78/zz//fINfdgDnn38+d999N2azmQcffBCLxdKqGJuSlZVFeno6PXr04Mwzz2zyutdff51169bx2GOPERwc7NIYmpOTk8P8+fPx9/dnwYIFjSZCAFOmTKmXDHnD91ZE3E/PJdfG5A2/O739ueRu3vAzkFOUDEmd999/n//3//4fa9asYfz48Vx77bUkJyezePFiLr/8cvLy8hq0yc3N5YorriA3N5dLLrmE6dOns2vXLm655RbWrl3bqjguuugiunTpwuLFi+sd//jjjykrK2PWrFlNtn3ooYf4xz/+QUlJCbNnz2bmzJl89913XH/99VRXV7cqnrbEtGTJEmpqajjnnHOanWN9xRVX0L17d/bv38+GDRtaHWdj3nnnHcD24DSZTI1es2fPHv79739z7bXXMmbMGJd+/ZYsWbKE6upqzjvvPAYNGtTstQEBAfXaefp7KyLupeeS62Pyht+d3v5ccjdv+BnIKZomJwDs27ePBx54gISEBN544w1iYmLqzq1du5bf/OY3PPLIIzz33HP12m3YsIG5c+fWmxM8c+ZMbrjhBl5++eVWDeuGhYVx/vnns3z5cgoKCujWrRsAixcvJjY2ljPOOINPPvmkQbsff/yRRYsW0adPHxYvXkx4eDgAt99+O9dffz1HjhxpcqGpu2LauHEjAJMmTWr2/n5+fowbN45ly5axadMmxo8f3+CaZ555psGxuLg4LrvssibvW1FRwUcffYTRaGxywWlNTQ1//vOf6dWrF3fccUezcbrDjz/+COD0/xVXfm9FxPvoueSemPRcck5jfbQrLi5u1T31/PIuSoYEgEWLFlFdXc0999xT74EDtj9Szz77bL744gtKS0sJDQ2tOxcXF8dNN91U7/rJkycTGxtLZmZmq+O54oorWLp0KR9++CHXX38927dvZ+vWrcyZM6fB3Gi7Dz74AICbbrqp7oEDttGEO+64g6uvvrrV8bQ2pmPHjgHQs2fPFu9vv+bIkSONnn/22WcbHBs7dmyzD50VK1ZQXFzMmWeeSa9evRq9Zv78+Wzfvp2FCxcSFBTUYpyuZv8eOVsxx5XfWxHxPnouuScmPZec01gf20rPL++iZEgASE9PB2D9+vVs3ry5wfnjx49jsVjYv38/ycnJdceHDBnS6BB3z5496+4Jjb+zcumllzZZinL06NH07duX9957j+uvv553330Xo9HI5Zdf3mQf7KU5R40a1eBcWloafn4N/7s7E1drYrJarQAYDIYmr7GzX9PUtc2V92yKfSqCfaHqz23evJkXXniB66+/nhEjRjh9/9M5+zO2c+Z71Np2jX1vX3jhBT777DP27dtHQEAAaWlp3HHHHS1O1ROR9qHnUstx6bnUvNY+l07nSGnt0znybHHlz0DaTsmQAFBYWAjAyy+/3Ox1Py9rGRYW1uh1fn5+9Rb7NfXuUXO/kGbNmsUTTzzB2rVrWbZsGRMnTiQ2NrbJ60tKSgAaXTBqMpmIjIxscNzZuJyNqXv37uzdu5fDhw83eY2d/Zru3bu3eK0jdu/ezU8//UTPnj2ZOnVqg/P2aQh9+vThj3/8Y5u/Xmt+xgAxMTEOf49O19bv7YYNG7j66qtJSUnBarXy9NNPc/3117N8+fJG/6+ISPvSc8mxuPRcalprn0tt4cizxZM/A2lIyZAA1E0x2LhxY73pBq7SmnePLr30Up566inuuusuiouLm12gCqf6cPz48QZVZ8xmM4WFhQ2mYjkbl7MxjRo1ivXr1/P99983u0mc2Wxm/fr1AIwcOdKpmJry9ttvA00vUC0rK2P//v0ApKSkNHqP++67j/vuu49rr72We++9t9mv15qfMdi+R+vWrWPdunVObaTX1u/tz//A+uc//8no0aPZtGlTq6s7iYjr6Lnknpj0XHIvR54tnvwZSEOqJieAbbgeTi1m9wZRUVGceeaZHD58mK5du3LOOec0e719LwP7wsTTpaenu2QzPGdjuuyyyzCZTKxatYrdu3c3ed3777/PkSNH6Nu3L2PHjm1znJWVlXULVJt6MAYEBDBr1qxGP4YOHQrYfmHPmjWrzVMVmnPZZZfh7+/Pp59+2uz3CKCqqqpeO1d+b0+ePInFYqk3r19EPEfPJffEpOdS+2rs2eKpn4E0TsmQAPDLX/4Sf39/HnvsMfbt29fgfFVVlUceSH/961+ZP38+CxYsqFdWuTG/+MUvANsGnvapCWCL/T//+Y9HYkpISOAPf/gD1dXV3HjjjY3+0vv888959NFHMZlMPPDAA00uenXGihUrKCoqYurUqU0uUA0KCuLRRx9t9MP+7tWll17Ko48+yvTp09scU1Pi4+OZM2cO1dXV/P73v29ygfM333zDDTfcUPdvV39vH330UYYMGdJhHrAinZ2eS+6JSc+l9tXYs8VTPwNpnKbJCQD9+/fn0Ucf5d5772XmzJlMnjyZPn36UFNTQ15eHhs3bqRr166sXLmyXeNKSEggISHBoWvHjh3L7Nmzeeedd5gxYwbnnXce/v7+fPHFF4SFhRETE+OSBYjOxAS2HbrLy8t59dVXueSSSzjjjDMYMGAANTU1/PTTT2RkZBAUFMS///1vl+0w/e677wLN7+ztTW688UZqamqYP39+3Tt+ycnJhISEcOzYMX788ccGi6TBdd/bxx9/nI0bN7Jo0aIm97wQkfal55J7YgI9l9pLc88WT/wMpHFKhqTOJZdcQlJSEq+++irr16/n22+/JTg4mJiYGM4//3wuvPBCT4fYogcffJB+/frx9ttv8/bbbxMZGcm5557LHXfcwZQpU+jdu3e7x2Q0GrnrrruYPn06b731Fj/88ANr167FZDIRFxfHb37zG3796187VGLTEXv27GHjxo1NLlD1VnPmzOHCCy9k4cKFrF+/niVLllBVVUVkZCRJSUnccMMNXHLJJfXauOJ7+9hjj7F8+XL+97//OfXHhIi4n55L7qHnkvu19Gxp75+BNM1gtdf3E+nE9u/fz/nnn8+MGTN48sknPR2OeIlHHnmETz75hDfeeIP+/ft7OhwR8SF6LnVeerZ0LBoZkk7l6NGjREVF1ZtbW15ezj/+8Q8AzjvvPE+FJl7mwQcf5KOPPmL+/PmEh4dz9OhRAIKDgwkJCfFwdCLSWei55Fv0bOl4NDIkncq//vUvli9fztixY+nevTvHjh1j7dq1HD58mDPPPJP/+7//08ZlAsDgwYMbPT5nzhzmzp3bztGISGel55Jv0bOl41EyJJ3K2rVree2119i+fTsnTpzAZDLRt29fZs6cybXXXou/v7+nQxQRER+i55KId1MyJCIiIiIiPklFy0VERERExCepgIKIiHQ627dv5z//+Q9ZWVkUFBQQFBRE3759ufrqqxuUaG/M8ePHeeKJJ/jyyy+pqKggKSmJP/7xj9rvQ0Skk+k0yZDFYqGmpgaj0aiFiCIi7chqtWKxWPDz8/OaXdKLi4vp2bMnM2bMoEePHpSXl/Pxxx/zl7/8hdzcXG6++eYm21ZVVXHddddRXFzMvffeS1RUFG+99RY33HADr776KmPHjnU4Dj2bREQ8w9FnU6dZM1RVVUVmZqanwxAR8VkpKSkEBAR4OoxmXXnllRw5coSvvvqqyWveeustHn74Yd5++21GjBgBQE1NDZdccgnBwcEsXrzY4a+nZ5OIiGe19GzqNCND9owvJSUFk8nkdHuz2UxmZmar23d06r/6r/6r/239/ekto0LN6dq1K8ePH2/2ms8//5y+ffvWJUIAfn5+XHzxxTz55JPk5+fTo0cPh76enk1to/6r/+q/+u/uZ1OnSYbs0w9MJlOb/sO0tX1Hp/6r/+q/+t9a3jgNzGKxYLFYKC4uZsWKFXz77bfcf//9zbbZtWsXo0aNanDcvn/Irl27HE6G9GxyDfVf/Vf/1f/WaunZ1GmSIRERkZ978MEHeeeddwDw9/fn3nvv5aqrrmq2TWFhIREREQ2O248VFhY6HYfZbHa6zentWtu+o1P/1f/TX32N+t+2/jvaTsmQiIh0WjfeeCNXXHEFBQUFfPHFF/z973+nvLyc3/72t822a+6dxNaMgLV13ZCvrztS/9V/X6b+u7f/SoZERKTTio2NJTY2FoCpU6cC8OSTT3LppZfSrVu3RttERkY2OvpTVFQE0OioUUu0Zqh11H/1X/1X/9v6+7MlSoZERMRnDB8+nLfffpvs7Owmk6FBgwaRlZXV4Lj92MCBA53+uloz1Dbqv/qv/qv/7uL9pX9ERERcZP369RiNRhISEpq8Ztq0aezdu5eMjIy6YzU1NXz00UekpqY6XDxBRES8n0aGRESk07n//vsJDQ0lJSWF6OhoTpw4wcqVK/nkk0/47W9/WzcqdM8997B06VJWrVpFXFwcALNmzWLhwoXcdttt3HnnnURFRbFw4UL27dvHq6++6sluiYiIiykZEhGRTictLY0lS5bwwQcfUFJSQnBwMElJSfzzn//kkksuqbvOYrFgNps5ff/xgIAAXnvtNZ544gkeeeQRysvLGTJkCC+++CJjx471RHdERMRNlAyJiEinc/nll3P55Ze3eN28efOYN29eg+PR0dE8/vjj7ghNRES8iNYMiYiIiIiIT1IyJCIiIiIiPknJkIiIiIiI+CQlQyIiIiIi4pOUDImIiIiIiE9SMgRYrVb++n4m720r9XQoIiIiAOQVlvPb/21k06FKT4ciItJpKRkCSipreG9TLm9vLaWsqsbT4YiIiJCeXchXWUd5f7veqBMRcRclQ0B4kD89wgKxAtsOlXg6HBEREQb3DANgb2E1NWaLh6MREemclAzVGhYbDsDWvGIPRyIiIgJ9o0IIC/Kjygy7jmh0SETEHZQM1UqOsyVDW3KLPByJiIgIGI0GhsdFAJCRo2eTiIg7KBmqlRxre+Bs0ciQiIh4ieHxSoZERNxJyVAt+zS53UdKKa8yezgaERGRU8nQZiVDIiJuoWSoVo/wQCIDjVissP2wRodERMTzUmuToaz8ElU7FRFxAyVDtQwGA327+gFaNyQiIt6hR3gQ3brY3qhTgR8REddTMnSa/l39ASVDIiLiPQZ2sz2bMrILPRuIiEgnpGToNP1qk6HMXL37JiIi3mFAbTKUrmRIRMTllAydxp4M7covoaJaRRRERMTz6kaGcgo9G4iISCekZOg00V2MdAv2p8ZiZefhEk+HIyIiQr+u/hgMkF1QzvHSSk+HIyLSqSgZOo3BYGBY7QZ3mVo3JCIiXiDE30j/6BBAJbZFRFxNydDPJNfuN6QiCiIi4i3s+w1p3ZCIiGspGfqZumQoT8mQiIh4B3sypHVDIiKupWToZ5LjbMnQzsMlVNaoiIKIiHheanwkYCuvbbVaPRuMiEgnomToZ+IiuxDRxZ9qs5Wsw6WeDkdERITBPcMIMBk5UVZNdkG5p8MREek0lAz9jMFgIKW2iIKmyomIiDcI9DMypHYat6bKiYi4jpKhRiSropyIiHiZNPu6IRVREBFxGSVDjbCvG1JFORER8RapCZGARoZERFxJyVAj7NPkdhwqodps8XA0IiIip5KhzNwiavRsEhFxCSVDjUjsFkxYkB9VZgtZ+SWeDkdERIS+USGEBflRUW0hK18FfkREXEHJUCMMBgPJsbbRoa25xR6ORkREBIxGw6kS25oqJyLiEkqGmpASryIKIiLiXVITVERBRMSVlAw1YVhtCVMlQyIi4i3sI0PpSoZERFxCyVAT7EUUth8q1kJVERHxCvYiCln5JZRV1Xg2GBGRTkDJUBP6RIUQGuhHZY2F3Ue1UFVERDyvR3gQPcODsFhhi9a0ioi0mZKhJhiNBobap8rlaKqciIh4B60bEhFxHSVDzbBPlduap3ffRETEO2jzVRER11Ey1Ax7MqQiCiIi4i3SVF5bRMRllAw1IznONk1uW14xZovVw9GIiIhAcnwEBgNkF5RzvLTS0+GIiHRoXpcMLV68mMGDBzNixAhPh0Lf6FCCA0yUV5vZqyIKIiLiBcKD/OnfPRSAzVrTKiLSJl6VDOXn5/P4448TExPj6VAAMBkN2m9IRES8jvYbEhFxDa9Khh544AFGjx7NpEmTPB1KnWGxWjckIiLeJc1eUU7rhkRE2sRrkqEPP/yQDRs28OCDD3o6lHrqKsppPwcREfESdRXlsguxWrWmVUSktfw8HQDA8ePH+cc//sGdd95Jz54923Qvs9ncpnY/bz+0l21e9ta8IqqrazAaDW2Kz1s11X9fof6r/6e/+pq29t9Xv2+elNQznACTkRNl1WQXlJMYFezpkEREOiSvSIYeeugh+vbty9VXX93me2VmZrq0vdliJcAEJ6vMfPLtRuLDveJb5jZt/f51dOq/+u/LOlP/165dy0cffcRPP/3E4cOHCQsLIzk5mVtuuYXk5ORm2y5ZsoS777670XPffvst3bt3d0fITgnwMzIkNpyM7ELScwqVDImItJLH/7L/9NNP+eKLL1i6dCkGQ9tHXVJSUjCZTE63M5vNZGZmNtp+2A/r+OlgIZaIWNJSY9scozdqrv++QP1X/9X/1vff3t6bLFq0iMLCQq699loGDBhAQUEBr776KrNnz+all15iwoQJLd7jscceo1+/fvWORUZGuili56XFR5CRXUhGdiEXd9Jnk4iIu3k0GTp58iQPP/wwv/rVr4iJiaG42LYup7q6GoDi4mL8/PwIDnb8HS+TydSmP2Yaaz88LoKfDhayNa+ES0d27j+U2vr96+jUf/Vf/e8c/X/ggQeIioqqd2zy5Mmcd955vPDCCw4lQwMHDiQlJcVdIbZZakIkrD1AhirKiYi0mkeToRMnTnDs2DFeeeUVXnnllQbnx4wZwznnnMNzzz3ngehOGRaninIiIh3JzxMhgJCQEPr378+hQ4c8EJHr2YsobMkrosZswc/kNTWRREQ6DI8mQ927d+f1119vcHzBggX88MMPvPjii3Tt2tUDkdVnryi3La8Yi8XaaYsoiIh0ZiUlJWzbto3x48c7dP2NN95IQUEBYWFhjB07lltvvZVBgwa16mu7urgPQGJkEGFBfpRU1LDjUBFDeoW36mt4MxU3Uf9Pf/U16n/7FPfxaDIUGBjIuHHjGhz/4IMPMJlMjZ7zhAExoQT4GSmprOFAQRl9o0M8HZKIiDjpoYceory8nBtvvLHZ66Kjo7nxxhtJS0sjNDSUrKwsFixYwOzZs1m0aBFJSUlOf21XF/ex6xtuZHMFLFu7hcp+nbeIgretSWtv6r/678vc3X+PF1DoCPxNRob0slXt2ZJbpGRIRKSDeeqpp/j444+5//77W6wmN2XKFKZMmVL37zFjxjB16lQuuugi/vvf//L88887/fXdUdwHYNKRLDYf2UuBIZy0tOb71RGpuIn6r/6r/+4u7uOVydC8efOYN2+ep8OoJyXuVDJ0kar2iIh0GM8++yzPP/88t99+O9dcc02r7hEfH8+oUaPIyMhoVXt3FPcBGJFom0q+OaeoU/+x1JmKe7SG+q/+q//u679WWzooOVZFFEREOppnn32WZ555hrlz57Y4Pa4lVqsVo9G7HptptUUUsvJLKKuq8WwwIiIdkHf9VvdiybVFFLbkFmG1Wj0cjYiItGT+/Pk888wz3HTTTcyZM6dN98rOzmbTpk2kpqa6KDrXiAkPoldEEBYrbMkt9nQ4IiIdjldOk/NGg3qEEWAyUlxRQ3ZBuXb7FhHxYq+88gpPP/00kydP5swzzyQ9Pb3e+bS0NADuueceli5dyqpVq4iLiwPguuuuY/To0SQlJRESEkJWVhYvvfQSBoOB2267rZ170rLh8REcKqogI7uQsX27eTocEZEORcmQgwL8jAzuGUZmbhGZuUVKhkREvNiXX34JwJo1a1izZk2D8zt37gTAYrFgNpvrjfgPGjSIFStW8Morr1BZWUm3bt0YP348N998M3379m2fDjghNSGST7fmk55T6OlQREQ6HCVDTkiOiyAzt4gteUXMGN7L0+GIiEgT3njjDYeua6xgzz333OOOkNwmLT4SgIzsQo/GISLSEWnNkBNSTls3JCIi4g2S4yMwGCDnRDnHSys9HY6ISIeiZMgJyXG23b0zVURBRES8RHiQP/27hwK2EtsiIuI4JUNOGNwzDH+TgcKyanILyz0djoiICACptVPl0jVVTkTEKUqGnBDoZ2JQjzBAU+VERMR7pCXYpnFnqIiCiIhTlAw5SZuvioiIt0mt3Xw1I7tQ07hFRJygZMhJyfH2Igra3E5ERLxDUs9wAkxGTpRVk12gadwiIo5SMuSk0yvK6d03ERHxBgF+RobG2or8aL8hERHHKRlyUlLPMExGA8dPVnGoqMLT4YiIiACQWjtzQfsNiYg4TsmQk4L8TQyMsZUwVREFERHxFqevGxIREccoGWoFbb4qIiLexp4Mbckrotps8WwwIiIdhJKhVkiOU0U5ERHxLn2jQggL8qOi2kJWfomnwxER6RCUDLWCPRnakqeKciIi4h2MRkPd5qubc/RmnYiII5QMtcLQXuEYDXC0pJL8YhVREBER75CaoCIKIiLOUDLUCl0CTAxQEQUREfEy9pGhdCVDIiIOUTLUSlo3JCIi3iattohCVn4JZVU1ng1GRKQDUDLUSsmxqignIiLeJSY8iF4RQVissCVX61pFRFri15pGu3btYtOmTeTn51NRUUHXrl0ZMGAAY8aMITQ01NUxeqWUeHsypIeNiIh4j9T4SA4VHSYju5Cxfbt5OhwREa/mcDJUVFTEO++8wzvvvENeXh5Wq7Xhzfz8mDJlCr/61a+YMGGCSwP1NkN7hWMwwOHiCo6WVNI9LNDTIYmIiJCaEMnKrYdJzyn0dCgiIl7PoWTo9ddfZ/78+QBMnz6dsWPHMmzYMLp160ZgYCBFRUVkZ2eTnp7O6tWr+c1vfsPEiRP529/+Ru/evd3aAU8JCfSjX3QIe46eZEtuEWclxXg6JBEREVLjVVFORMRRDiVDb7zxBnfffTczZszA39+/wfno6Giio6MZMWIE119/PQcPHuT5559nxYoV3HjjjS4P2lukxEUoGRIREa+SHB+BwQA5J8o5VlpJdKhmLoiINMWhZGjFihX4+Tm+vCgxMZHHHnsMs9nc6sA6guS4CJam56minIiIeI3wIH/6dw9l95FSNucUcnZSD0+HJCLitRyqJrdr165W3dxkMrWqXUdhL6+tinIiIuJNTu03pOeTiEhzHEqGLr30Ui677DIWLlxISUmJu2PqMIbFhgOQV1TB8dJKD0cjIiJik5Zge7Nus4ooiIg0y6Fk6A9/+AMFBQU8/PDDnHHGGfzpT39i3bp17o7N64UF+dMvOgSALXkqsS0iIt4htXbz1Yzswkarv4qIiI1DydDtt9/Ol19+yYIFCzjrrLP47LPPuP766znnnHN47rnnOHTokLvjdL8T+/GrKHC62TBNlRMRES+T1DOcAJORE2XVZBeUezocERGv5VAyBGAwGJgyZQpPPfUU3377Lffeey8RERE8/fTTTJs2jd/+9resXLmS6upqd8brHtXlGJ+fQNJ3c8FqcappSpxtqpySIRER8RYBfkaG1k7l1n5DIiJNczgZOl14eDjXXHMNS5YsYenSpVx99dVs27aN22+/nSlTprg6RvczmMBgJLDsEBzLcqqpvYiCKsqJiIg3STttqpyIiDSuVcnQ6ZKSkrj44os5++yzASgsLGzrLdufXwDEjwbAkO3cWqhhsbZkKOdEOSdOVrk8NBERkdZITdDmqyIiLXF886CfKSgo4KOPPuL9999n9+7dmEwmzjrrLGbNmuXK+NqNNWEchv1r4OB6GPNbh9tFdPGnd1QwB46XsTWvmDMGRrsxShEREccMry2vvSWviGqzBX9Tm9//FBHpdJxKhiwWC9988w3vv/8+X331FdXV1fTp04c77riDSy+9lOjojpsIWBPGA2DIXut02+TYCA4cLyMzt0jJkIiIeIW+USGEBflRUlFDVn5J3UwGERE5xaFkaN++fbz//vt8+OGHHDt2jKCgIGbOnMnll1/O6NGj3R1j+4gfgxUjhsKDUJQLEXEON02Oi2B55iG25GndkIiIeAej0UBqfCTf7j5GRnaRkiERkUY4lAxdeOGFAAwfPpy5c+cyY8YMQkJC3BpYuwsMoyyiPyFFuyB7HURc7nDTFJXXFhERL5SaEFGbDBVy9bhET4cjIuJ1HEqGfv3rXzNr1iwGDhzo7ng8qrRbii0ZOrAWkh1PhobVli89cLyMovJqIrr4uytEERERh6XWrhvKUHltEZFGObSa8u677240Edq7dy8bN26krKzM5YF5Qmm3FNsnB52rKNc1JID4rl0A2KqpciIi4iXs5bWz8ksoq6rxbDAiIl6oVaVlli5dypQpU5gxYwbXXHMN+/btA+C2227j3XffdWmA7akuGcrfAuWFTrXVVDkREfE2MeFB9IoIwmKFLbnFng5HRMTrOJ0MrVixgrvuuouhQ4dy//33Y7Va684NGzaMFStWuDTA9lQT1A1rt36AFXJ+cKrtqc1X9bARERHvUTdVTvsNiYg04HQytGDBAi677DL+7//+j9mzZ9c7169fP3bv3u2y4DzBmjDO9slB50ps25OhrRoZEhERL5JaO1UuXeuGREQacDoZ2rNnDzNmzGj0XGRkJIWFhW2NybNq9xvigJPJUG0Rhb3HTlJSUe3qqERERFolNcH2Zp1GhkREGnI6GerSpQslJSWNnsvPzyciomPvY2BNnGD7JHcj1FQ63C4qNJDYiCAAtuZpqpyIiHiHlLgIDAbIOVHOsVLHn2siIr7A6WRoxIgRvPXWW/XWCtktWbKEsWPHuiQwj+nWH4KjwVwJeelONU1WEQUREfEyYUH+9O8eCsBmTZUTEanH6WTolltuIT09nVmzZvHGG29gMBj47LPPuPHGG/nxxx+58cYb3RFn+zEYILF2qtzB751qqopyIiLijexFFNKz9XwSETmd08lQSkoKL774ImVlZcybNw+r1coLL7zAvn37WLBgAYMGDXJHnO2r90Tbq5P7DZ2qKKeHjYiIJ61du5a7776bCy64gLS0NCZPnsxNN93Eli1bHGp//Phx7rrrLsaNG0dqaiqzZ89m7Vrn1pJ6kzStGxIRaZRfaxqNHz+eFStWcPDgQY4dO0bXrl3p27evq2PznLqRoXVgsYDRsZzRngztPXaSk5U1hAS26tsrIiJttGjRIgoLC7n22msZMGAABQUFvPrqq8yePZuXXnqJCRMmNNm2qqqK6667juLiYu69916ioqJ46623uOGGG3j11Vc75HRwe0W5jJxCrFYrBoPBswGJiHiJNv21npiYSGJioqti8R49h4N/MFQUwtEd0GOoQ826hwXSMzyIw8UVbDtUzJg+3dwbp4iINOqBBx4gKiqq3rHJkydz3nnn8cILLzSbDC1evJisrCzefvttRowYAcC4ceO45JJLeOKJJ1i8eLFbY3eHpJ7hBJiMFJZVk11QTmJUsKdDEhHxCg4NeXzyySdO3zg/P5+NGzc63c4rmPwhfoztc6f3G7KV2M7M0VQ5ERFP+XkiBBASEkL//v05dOhQs20///xz+vbtW5cIAfj5+XHxxRezefNm8vPzXR6vuwX4GRlauwWE9hsSETnFoZGhhx9+mBdeeIFrrrmGCy+8kNDQ0Cav3bJlC++//z4ffPABf/7znxk1apTLgm1XiRNg39e2qXJjfutws+S4CD7ffoQteUqGRES8SUlJCdu2bWP8+PHNXrdr165Gn12DBw+uO9+jRw+nvrbZbHbq+p+3a2370w2PDyc9u5D0gwXMSHYufk9xZf87IvVf/T/91de0tf+OtnMoGVq1ahXPPPMMjz76KA8//DBDhw5l6NChREVFERAQQFFREdnZ2aSnp3P06FEGDhzIM888w+TJk1sVvFeoWzfk7OarqignIuKNHnroIcrLy1uselpYWNjonnn2Y63ZXDwzM9PpNq5sDxBpLgfg+x15pMd2rP2GXNH/jkz9V/99mbv771AyFBYWxj333MMtt9zCkiVL+Prrr1m6dCnl5eV11yQkJDB58mQuuuiiFt916xDix4DBBEXZUJgNkQkONUuJtz0sdx8ppayqhuAAFVEQEfG0p556io8//pj777+f5OTkFq9vrsBAa4oPpKSkYDKZnG5nNpvJzMxsdfvTRcSf5OkNa9hfbGZYynD8TU4XlG13rux/R6T+q//qf+v7b2/fEqf+Uo+IiOD666/n+uuvB2xTDioqKoiMjMTf39/pIL1aYCj0Gg55P0H2eoeToR7hQXQPC+RoSSXbD5UwqndXNwcqIiLNefbZZ3n++ee5/fbbueaaa1q8PjIystHRn6Ii24h/Y6NGLTGZTG36Y6at7QH6dQ8jPMiP4ooa9hwrY1is8/3wFFf0vyNT/9V/9d99/W/T20JhYWF079698yVCdom11YYOOLf5anLtIlVNlRMR8axnn32WZ555hrlz5zq8KfigQYPIyspqcNx+bODAgS6Nsb0YjQaG126+mqHNV0VEgDYmQ52ePRlycvPVlDitGxIR8bT58+fzzDPPcNNNNzFnzhyH202bNo29e/eSkZFRd6ympoaPPvqI1NRUp4sneJNUbb4qIlKPkqHm2IsoHNkG5SccbmbffDVTyZCIiEe88sorPP3000yePJkzzzyT9PT0eh9299xzD0OHDiU3N7fu2KxZsxg4cCC33XYbH3/8Md9//z1//OMf2bdvH3/605880BvXSbWPDKm8togI0MZNVzu90Bjo1h8K9kD2Bhh0vkPN7MnQriOlVFSbCfL33XmeIiKe8OWXXwKwZs0a1qxZ0+D8zp07AbBYLJjNZqxWa925gIAAXnvtNZ544gkeeeQRysvLGTJkCC+++CJjx45tnw64SVpCJABZ+SWcrKwhJFB/BoiIb9NvwZb0nmBLhg6udTgZ6hURRFRIAMdPVrHjcEndw0dERNrHG2+84dB18+bNY968eQ2OR0dH8/jjj7s6LI+LCQ+iV0QQh4oq2JJbxLh+DTenFRHxJZom15JWrBsyGAyaKiciIl7JPlVuc46eTyIiTidDf//739m7d687YvFO9mQodyNUVzjcLDmutqKcHjYiIuJFUmtnK6Rr3ZCIiPPJ0NKlS5kxYwbXX389n3/+eb151p1St34QEgPmKtueQw6qqyiXp2RIRES8hyrKiYic4nQytGbNGu677z6OHj3KnDlzOPvss1mwYAEFBQXuiM/zDIZTVeUOrnW4mX2aXFZ+CZU1ZndEJiIi4rSUuAgMBsg5Uc6x0kpPhyMi4lFOJ0PBwcH88pe/ZNmyZbz66qsMGzaM//73v5x55pncddddZGZmOnW/7du38/vf/54zzzyT4cOHM3bsWGbPns2HH37obGjuU7duyPFkKC6yC5HB/lSbrew8XOKmwERERJwTFuTPgO6hAGzWVDkR8XFtKqAwYcIEnn32WVavXs2IESP48MMPufLKK7niiiv44osvHLpHcXExPXv25Pbbb2fBggU8/vjjxMXF8Ze//IXnnnuuLeG5Tm97MrQeLBaHmhgMhtM2Xy12V2QiIiJOG15bRCE9W1O5RcS3tam0dkVFBR9//DFvvfUWO3bsYMCAAVxwwQV88cUX3HLLLcyZM4dbbrml2XuMGzeOcePG1Tt21llnkZOTw7vvvsvNN9/clhBdo0cK+IdAZREc3Q49hjnULDkugjW7jqminIiIeJW0hAje35SjdUMi4vNaNTJ08OBBHnvsMaZMmcIDDzxAz549eeWVV1i2bBlz5sxhyZIl/O53v+PNN99sdWBdu3bFZPKSzUpNfpAwxvb5ge8dbpYcax8ZUjIkIiJOyt+K8d+DiNn7nstvba8ol5FT2PkLIYmINMPpkaEbbriB77//ni5dunDZZZfxq1/9isTExAbXnXXWWSxYsMDh+1osFiwWC8XFxaxYsYJvv/2W+++/39nwMJtbV6zA3q6p9oaE8Rj3foXlwFqso37j0D2H9rLNyd55uJjyymoC/Lx3W6eW+t/Zqf/q/+mvvqat/ffV75vbFR/CUHaMHnveA+vfXXrrpJ7hBJiMFJZVc7CgjN5RIS69v4hIR+F0MpSdnc3dd9/NZZddRkhI0788Bw4cyOuvv+7wfR988EHeeecdAPz9/bn33nu56qqrnA3P6QIOjrYPq4pmEFCzZw2Z6ekO3ctqtRLib+BktZVlazbSr6t/m2JrD239/nV06r/678t8vf9ep88krP7BBFQcwXx4M8SPdNmtA/yMDI0NJz27kPTsQiVDIuKznE6GPv30U4euCw0NZezYsQ7f98Ybb+SKK66goKCAL774gr///e+Ul5fz29/+1qn4UlJSWjW9zmw2k5mZ2XT7qoFY199FQMUR0vpEQWSCQ/cdvmkDa/cWUB3ak7Q0x9p4Qov97+TUf/Vf/W99/+3txcX8u0D/s2HHMgw7l7s0GQJIS4gkPbuQjOwiLkmLc+m9RUQ6ijYVUHCl2NhYYmNjAZg6dSoATz75JJdeeindunVz+D4mk6lNf8w02b5LOPRKhdyNmHI3QFQfh+43PD6StXsL2Ha4pEP8kdXW719Hp/6r/+q/7/bfG1kHz8SwYxmGHcvhHOenjjfHvvmqymuLiC9zOhk6++yzMRgMjZ4zGo2EhYWRkpLCtddeS//+/Vsd2PDhw3n77bfJzs52Khlyq8QJkLvRVkRh+JUONRlWW147U+W1RUTESdaB52E1GDEc3Q7H90BU65+rP5daW157S14R1WYL/ibvXdcqIuIuTv/mGzt2LFarlfz8fOLi4khNTSU2Npb8/HzMZjO9evVi1apVXH755W2aNrF+/XqMRiMJCV40tSxxvO314DqHm9j3Gtp+qJhqs2N7FImIiADQJZKSqDTb5zs/cemt+0SFEB7kR0W1hax8bQ4uIr7J6ZGhM844g/T0dFatWkWvXr3qjufl5fGb3/yGadOmMW/ePH71q1/xzDPPtFhR7v777yc0NJSUlBSio6M5ceIEK1eu5JNPPuG3v/2t94wKgW1kCGx7DZUVQHDLsfXuFkxYoB8llTXsPlLKkF7hbg5SREQ6k8Kekwg/tgl2LIeJc112X6PRQGpCJGt2HSMju4hhtdtBiIj4EqdHhv7v//6PuXPn1kuEwLbm55ZbbmHBggWEhYVx3XXXke5A1bW0tDQ2b97Mww8/zPXXX899993HsWPH+Oc//8lf/vIXZ8Nzr5BoiBpo+zx7vUNNjEYDQ2NtCZA2XxUREWcV9pxk++TgOig96tJ726fKafNVEfFVTo8MHThwgNDQ0EbPhYeHk5ubC0BcXBzl5eUt3u/yyy/n8ssvdzYMz0kcD8d3wcG1MPhCh5qkxEWwfl8BW3OLYLQXTfsTERGvV90lBmuvNAyH0iFrBYy81mX3Hh5vGw3KUBEFEfFRTo8MxcbG8sEHHzR67v33368bMSosLCQiohMOufeeaHt1Zt1QvL2IgkaGRETEedbB022f7Fju0vumJUQCkJVfwsnKGpfeW0SkI3A6Gfrtb3/LypUrueqqq3jttddYtmwZr732GldddRWrVq3ihhtuAGwFEJKTk10esMfZiyjkboLqlke+gLp52NsOFVOjIgoiIuIk6+AZtk/2fAmVpS67b0x4EL0igrBYYYvesBMRH+T0NLkrr7wSq9XKM888w7x58+qOR0dH89BDD3HFFVcAtk1UAwICXBept+jaF0J7QulhW0LUZ1KLTfpFhxASYOJklZm9x04yqEdYOwQqIiKdRvck6NYPCvbC7s9h2C9cduvU+EgOFR0mI6eQcf2iXHZfEZGOwKlkyGw2c/DgQS688EKuvPJK9u7dS2FhIZGRkfTr16/e/kPR0dEuD9YrGAy20aFtS23rhhxIhoxGA8NiI9iwv4DMnCIlQyIi4hyDAZJmwPfP2KbKuTIZSohk5dbDZGRrZEhEfI9T0+SsViszZszgp59+wmAw0L9/f0aNGkX//v2b3Ii1U7KX2D641uEmw+JUUU5ERNogaabtNetTMFe77LapCbap3OmqKCciPsipZMjPz4/o6GisVqu74ukYetcmQ9kbwGJ2qIl989WteUqGRESkFeLHQEh3qCyC/d+67LYpcREYDJBbWM6x0kqX3VdEpCNwuoDCjBkzWLp0qRtC6UBihkFAGFQWw5FtDjU5lQwVY7b4eDIpIiLOM5pObengwqpyYUH+DOhu2zJjs0psi4iPcToZSkpK4qeffuLaa6/lzTff5NNPP+Wzzz6r99HpmfwgYYzt8wOOTZXr1z2ULv4myqrM7DvmukpAIiLiQ+xT5XYsBxfO0kitLbGdrnVDIuJjnK4m99e//hWA/Px8NmzY0OC8wWBg+/btbY/M2yVOhD1f2NYNjft9i5ebjAaGxoaz8cAJtuQWMyBGRRRERMRJfadCQCiU5EHeTxA30iW3TU2I5L2NOWRo3ZCI+Bink6HXX3/dHXF0PPb9hg6utb0750ABieTaZCgzt4hfjIhzc4AiItLp+AfBgGm2iqY7lrsuGardHDwjpxCr1epbRZFExKc5nQyNHTvWHXF0PHGjwOgPJYeg8AB07dNik+TadUOqKCciIq2WNLM2GVoG59zvmlv2DCfAZKSwrJqDBWX0jgpxyX1FRLyd02uG7EpKSlizZg0fffQRRUU++Md9QDDEptk+P7jOoSYpte+8bcsrxqIiCiIi0hoDzwWjHxzdAcd2u+SWAX5GhsbatoBQiW0R8SWtSobmz5/P5MmT+d3vfsdf//pXcnJyAPj1r3/NggULXBqgVzt9qpwDBnQPJdDPSGllDfuPn3RjYCIi0ml1iYQ+k22f73RdVbm02iIK2nxVRHyJ08nQW2+9xfz585k1axYvvPBCvT2HzjrrLL766itXxufd7JuvOlhRzs9kZEgvbb4qIiJtlDTD9urCEtv2zVczVF5bRHxIq5Kh6667jvvuu48zzjij3rnevXtz4MABlwXn9RJqR4aO7YSTxx1qcvp+QyIiIq0yeLrtNXsDlOS75Jap8ZEAbMktotpscck9RUS8ndPJUHZ2NpMnT270XEhICMXFPvRHfkgURA+2fZ693qEmyXG1I0M5GhkSEZFWioiD2JGAFbJWuOSWfaJCCA/yo7LGQlZ+iUvuKSLi7ZxOhsLCwjh27Fij53Jzc4mKimpzUB1K3bqh7x263F5RbkteUb0phiIiIk4ZctoGrC5gNBrqNl/VuiER8RVOJ0MTJkzgpZdeoqysrO6YwWCgpqaGRYsWNZg61+n1nmh7dbCi3KAeYQSYjJRU1HCwoKzlBiIiIo1Jqk2G9n4FFa6ZlWGfKqfNV0XEVzidDN16663k5eUxY8YM5s2bh8Fg4M033+SKK67gwIED3Hzzze6I03vZR4by0qGq5eTG32QkqVcYoCIKIiLSBtGDIGoAmKtg9+cuuWXdyJCKKIiIj3A6GerduzeLFi2iX79+LFq0CKvVyocffkjXrl1ZuHAhsbGx7ojTe0X2hrBeYKmG3I0ONambKpfrQ+urRETEtQwGl1eVS63dDy8rv4STlTUuuaeIiDfza02jAQMG8PLLL1NVVcWJEyeIiIggKCjI1bF1DAaDrcT21iW2qXJ9Gy8ucbqUumRII0MiItIGSTPhu//Crs+gpgr8Atp0u5jwIHpFBHGoqIItuUWM6+dj64BFxOe0atNVu4CAAHr06OG7iZCdfb8hBzdfTY61JUOZuSqiICIibRA3GkJioLIY9q9xyS3r1g1pqpyI+IBWjQzl5OSwYsUK8vLyqKioqHfOYDDwj3/8wyXBdRj2dUPZG8BiBqOp2csH9QzF32SgqLyanBPlJHQLbocgRUSk0zEaIWk6bHzNNlVuwDltvmVqQiQrtx5WRTkR8QlOJ0NfffUVc+bMwWKx0K1bNwIC6g/JGwwGlwXXYfQYBoHhtnfm8rdAr9RmLw/0MzG4ZxhbcovZklukZEhERFov6SJbMrTzE5j+L1uC1AapCbbZC+mqKCciPsDpZOg///kPI0eO5D//+Y/v7SnUFKMJEsbaqvkcXNdiMgS2qXJbcovJzC3iwpRe7RCkiIjvKC0t5bnnnmPHjh1s27aNEydOMGfOHObOndti2yVLlnD33Xc3eu7bb7+le/furg63bfpOhoAwKDkEeT9B/Kg23S4lLgKDAXILyzlaUkn3sEAXBSoi4n2cfvvowIED/O53v1Mi9HP2qXIHnN18VRXlRERcrbCwkHfffZeqqiqmTZvWqns89thjvPPOO/U+IiMjXRuoK/gFwsBzbZ/v+LjNtwsL8mdA91AANmvdkIh0ck6PDMXGxtbbcFVqJZ62+arVaqsy14zk0yrKWa1W35xeKCLiJnFxcfzwww8YDAYKCgpYvHix0/cYOHAgKSkpbojODZJm2Kqa7lgO0x5s8+1SEyLZdaSUjJwizhnSo+3xiYh4KadHhv7whz/wyiuvUF5e7o54Oq64kWD0h9LDcGJ/i5cn9QzDz2ig4GQVeUUVLV4vIiKOMxgMvvUm08Bzbc+gY1lwNKvNt6vbfFXrhkSkk3N6ZCgzM5Pjx49z7rnnMm7cOLp27drgmvvuu88lwXUo/l0gdgTkbLCV2O7Wt9nLg/xNDOwRxvZDtiIKcZFd2ilQERFxxI033khBQQFhYWGMHTuWW2+9lUGDBrXqXmazuU3tWmzvH4qx72QMe77Asn0Z1m63terr2aXEhgG2ZKimpsZjiaXD/e+k1H/1//RXX9PW/jvazulk6M0336z7fPnyhjteGwwG30yGAHpPOJUMpV3d4uXJseF1ydD5w3q2Q4AiItKS6OhobrzxRtLS0ggNDSUrK4sFCxYwe/ZsFi1aRFJSktP3zMzMbFNMjrSPDh5Ob76g7KfF7AyZ2qavV22x4m+EwvJqPv1uIz1DW7UTh8u09fvX0an/6r8vc3f/nf7ttmPHDnfE0TkkTrDtBH7Asc1XU+IjWLwxh8xc7eUgIuItpkyZwpQpU+r+PWbMGKZOncpFF13Ef//7X55//nmn75mSkoLJ1PwedI0xm81kZmY61r5/D8h8itAT20jr3xPC2vYm27ANa0nPLqIqLJa01Ng23au1nOp/J6T+q//qf+v7b2/fEs++1dPZJIyzvR7fBSePQUh0s5eriIKISMcQHx/PqFGjyMjIaFV7k8nUpj9mHGofGQ/xYyDnB0y7P4XRv2n11wNIS+hKenYRmbklXDrSs3+ItfX719Gp/+q/+u++/jtUQOGHH37g5MmTLV5XUFDAe++91+agOqzgbtB9iO3zg+tavHxIz3CMBjhWWkV+caWbgxMRkbawWq0Y27ihqdslzbC97mg4jd1Z9s1XM1ReW0Q6MYd+q1977bXs2bOn7t8Wi4Xk5GS2bdtW77rs7Gzuv/9+10bY0dj3GzrY8lS5LgEmBsbYFqlqqpyIiPfKzs5m06ZNpKa2vKm2RyXNtL3u/Roq2vZcSY2PBGyzF6rNljYGJiLinRxKhqxWa4N/19TUNDgu2NYNgUPJENSfKiciIq7z9ddfs3LlSr788ksAdu/ezcqVK1m5cmXd9hD33HMPQ4cOJTc3t67dddddx7PPPsvnn3/O2rVr+d///sfVV1+NwWDgttvaVqXN7aIHQvQgsFTDrlVtulWfqBDCg/yorLGw83CJiwIUEfEuWjPkar1rk6FDGVB1EgJCmr08OS6c9zcpGRIRcbWHHnqoXpJjT4QAVq9eTXx8PBaLBbPZXO/NvUGDBrFixQpeeeUVKisr6datG+PHj+fmm2+mb9/mt03wCkkz4Nss21S5lFmtvo3RaCA1IZI1u46RkVNY9+adiEhnomTI1SISIDwOinMh50fo13x505Tah4umyYmIuNYXX3zR4jXz5s1j3rx59Y7dc8897gqpfSTNhG//YxsZqqkEv8BW3yo1vjYZyi7kl+N6uzBIERHv4OUrQTsgg+G0dUMtF1EYGhuOwQBHSio5Ulzh5uBERKTTix0JoT2hqgT2rWnTrVITIgHYnKM37ESkc3J4ZGjv3r11Ze3sO7ru3bu3wTWCbd3QlvcdWjcUHOBH/+6h7D5Sypa8Is4OD2qHAEVEpNMyGm1T5X58GXYsg4HTWn2r1Hjb7IWs/BJOVtYQEqgJJSLSuTj8W+3uu+9ucOwvf/lLvX9rr5xa9iIKOT+AuQZMzX+bU+IibMlQbjFnJ/VohwBFRKRTsydDOz+BGU/aEqRWiAkPIjYiiLyiCrbkFjGuX5SLAxUR8SyHkqHHHnvM3XF0LjFDIDACKosgPxNiRzR7eXJcBB/8lKt1QyIi4hp9JkNgOJTmQ+6PkDC21bdKTYgkr+gwGTmFSoZEpNNxKBm69NJL3R1H52I0QeI42PWZbd1QS8lQbDiginIiIuIifgEw8DzY8p5tqlwbkqHh8ZGs2HKYjGw9o0Sk81EBBXexF1E48H2Llw6Li8BggENFFRwrrXRzYCIi4hOSZthety+DNuwLmJpgWzeUnl3ogqBERLyLkiF3SZxoez24rsWHUGigH32jbfsRaXRIRERcYsA0MAVAwR44ltXq26TUvmGXW1jO0RK9YScinYuSIXeJHWF7CJ08AgUtV9lLjrW986ZkSEREXCIoHPrW7nW3Y1mrbxMW5M+A7qEAbM4pdEFgIiLeQ8mQu/gH2fZ6AIdKbNs3X92SW+zOqERExJfYp8rtWN6m29j3G8rQVDkR6WSUDLlT79oS2w4kQ8PibEUUVFFORERcZvB0wAC5G6E4r9W3sSdD6dp8VUQ6GaeSoYqKCq666iq+/77logDCqf2GDq5r8dLk2pGh3MJyTpyscmdUIiLiK8J6nKokt/OTVt8mLT4SsE2Ts7ahGIOIiLdxKhkKCgoiKysLk8nkrng6l4SxgAGO74bSI81eGh7kT5+oYAC25OmdNxERcZHTq8q10uCeYQT4GSksq+ZgQZmLAhMR8Tynp8mNGDGCzZs3uyOWzqdLV4gZavvcgdGhYbWjQ5oqJyIiLpM00/a6fw2UF7bqFgF+RobV7omnEtsi0pk4nQz99a9/5Z133mHp0qWcPHnSHTF1Lvb9hhxIhk4VUVAyJCIiLhLVH7ongaUGdq1q9W1Sa6fKafNVEelM/JxtMHv2bKqrq7n77ru5++67CQoKwmAw1J03GAxs3LjRpUF2aIkT4MeX4WDL66xUUU5ERNwiaQYc3WErsT38ilbdwr75aobKa4tIJ+J0MnT++efXS36kBfaKcoc2Q2UpBIY2eal9CsLBgjKKyqqJCPZvjwhFRKSzS5oBa/4Nuz+H6grb9g9Oso8Mbcktotpswd+kgrQi0vE5nQzNmzfPHXF0XhHxEJEARdmQ+yP0O7PJSyODA0jo1oXsgnK25BUxaUB0+8UpIiKdV+xICIuFkjzY9w0MOs/pW/SJCiE8yI/iihp2Hi6pq4IqItKR6W2d9mBfN3TAmc1XNSdbRERcxGA4bQPW1lWVMxoNpzZf1VQ5EekknB4ZssvKymLPnj1UVlY2OPeLX/yiLTF1PokTIHOxY5uvxkbwSeZhVZQTERHXSpoBP7xo22/I8h8wOr9NRmp8JGt2HSMju5BfjuvthiBFRNqX08lQeXk5N910E+vWrcNgMNRtvnb6OiIlQz9j33w150cwV4Op6bVAGhkSERG36HMGBEbAyaOQ88OpWQtOqBsZUkU5EekknJ4m99xzz5Gbm8ubb76J1Wrl2Wef5dVXX+Xcc8+ld+/efPDBB+6Is2PrngRBkVB9Eg43v0eTfQ72/uNlFFdUt0NwIiLiE0z+MOh82+etnCqXGm97Ru06UsLJyhpXRSYi4jFOJ0OrV6/md7/7HSNGjACgV69eTJgwgaeffpphw4axcOFClwfZ4RmNDu831C0kgLjILgBsVYltERFxJfu6oe3LoHZmhzNiwoOIjQjCYtUMBhHpHJxOhnJzc+nXrx8mkwmDwUB5eXnduYsuuojVq1e7NMBOoy4ZanndUHKcrcT21jw9aERExIUGTANTIJzYZ9t3qBVUREFEOhOnk6GwsDDKysoAiIqK4sCBA3Xnampq6s7Jz9jXDR1Y2+K7cfZ1QyqiICIiLhUYCv3Psn3e2qlyWjckIp2I08nQ4MGD2b9/PwDjxo3jhRde4Mcff2Tz5s3Mnz+fpKQkV8fYOcSOsL0bV3YMju9p9tJhSoZERMRd6kpsL29Vc/vmq+nZha6JR0TEg5xOhi6//HJOnjwJwB//+EfKy8v51a9+xezZs8nLy+Ouu+5yeZCdgl8gxI2yfX7w+2YvTY61JUP7jp2kVAtURUTElQZdCBgg7ycoynG6eUp8BAYD5BaWc7Sk4fYaIiIdidOltadPn173eUJCAp9++mldme0RI0YQGRnp1P3Wrl3LRx99xE8//cThw4cJCwsjOTmZW265heTkZGfD826J422J0MF1MPLaJi/rHhZIz/AgDhdXsC2vmLF9u7VjkCIi0qmFdq99Hq2FHZ/AuN871zzQjwHdQ9l1pJTNOYWcM6SHmwIVEXE/p0eGfi44OJizzz6bs846y+lECGDRokXk5uZy7bXXsmDBAu69914KCgqYPXs2a9e2XGygQ+k90fbqUBEFTZUTERE3qZsq19Z1Q4WuiUdExEOcHhlytQceeICoqKh6xyZPnsx5553HCy+8wIQJEzwUmRvEjwEMULAXSvIhrOl301LiIvh8ez5blQyJiIirDZ4On90H+7+F8hPQpatTzVMTInlvYw7pOXpGiUjH5lAylJSUhMFgcOiGBoOBbdu2ORzAzxMhgJCQEPr378+hQ4ccvk+H0CUSegyD/C220aFhv2jyUnt5bY0MiYiIy0X1h5ihcGQbZH0GqbOdap5WW0QhI7sQq9Xq8N8IIiLexqFk6JZbbmnXX3QlJSVs27aN8ePHt9vXbDeJE2qToXXNJkP28tp7jpZSVlVDcIDHB/FERKQzSZphS4Z2LHM6GRrcM4wAPyNF5dUcOF5Gn+gQNwUpIuJeDv2FPXfuXHfHUc9DDz1EeXk5N954o9NtzWZzq76mvV1r2zvKED8W4w8vYj3wPZZmvlZUiD8xYYEcKalkS04ho3o7N4XBWe3Vf2+l/qv/p7/6mrb231e/bx1e0kz45gnYvRqqy8G/i8NNA/yMDIsN56eDhWTkFCoZEpEOy+uGG5566ik+/vhj7r///lZVk8vMzGzT129r+5b4l4czHOBwJpt//B6LX3CT1yaEwpES+HTDNkwn2udB4+7+ezv1X/33Zb7ef5/TKxXC46E4B/Z+DYMvcKp5anykLRnKLuKStDg3BSki4l5OJ0NLly5t8Zpf/OIXrQgFnn32WZ5//nluv/12rrnmmlbdIyUlBZPJ5HQ7s9lMZmZmq9s7w/pjIobCgwzvVgn9JjZ53cRju9h4aA8nDGGkpQ13a0zt2X9vpP6r/+p/6/tvby8djMFgmyq34QXbVDknk6E0e0W5nELXxyYi0k6cToaa2lT19DVFrUmGnn32WZ555hnmzp3bqulxdiaTqU1/zLS1vUMSJ0DhQUzZ62HgtCYvG55gmxq37VBJu/2B1i7992Lqv/qv/vtu/32SPRnauQIsZjA6/vO3l9fekltEtdmCv6nNu3WIiLQ7p5Oh1atXNzh24sQJVq9ezSeffMJ//vMfp4OYP38+zzzzDDfddBNz5sxxun2HkzgeNr/T4n5D9opyu46UUlFtJshff6SIiIgL9Z4IQZFQdgyy15/aD88BfaKCCQ/yo7iihp2HS+r2xxMR6UicTobi4hrOC46LiyM5OZmamhpef/115s2b5/D9XnnlFZ5++mkmT57MmWeeSXp6er3zaWlpzobo/RJrHzY5P4K5Gkz+jV7WMzyI6NAAjpVWse1QMSMT3VtEQUREfIzJHwZdAJvfhh3LnUqGDAYDqQmRrNl1jIycQiVDItIhuXRMe8KECXzxxRdOtfnyyy8BWLNmDbNnz27w0SlFD7JtcFdTDocymrzMYDDUPVy0+aqIiLhF0gzb645lYLU61TT1tP2GREQ6IpdWk8vNzcVodC6/euONN1wZQsdgNELCeMhaYZsqFz+6yUuTYyP4audRbb4qIiLuMeAc8AuCE/tt+w71GOZwU/u6oYxsPaNEpGNyOhn64YcfGhyrqqpi586dvPDCC0yYMMElgXV6vSfUJkPrYGLT+zjZR4Yyc4vbKzIREfElASHQ/2zY+YltqpwzyVC87RmVdaSE0soaQgO9bscOEZFmOf1b61e/+lW9ynEA1tph9YkTJ3L//fe7JrLOLrE2aTy41jYt4WffU7uU2gfNrvwSFVEQERH3SJpRmwwtg6l/cbhZTHgQsRFB5BVVsCW3iPH9otwYpIiI6zmdDL3++usNjgUGBhIXF0d0dLRLgvIJvdJs0xLKjsOxXdB9UKOXxUYE0TXYnxNl1ew8XFI3JUFERJpWWlrKc889x44dO9i2bRsnTpxgzpw5zJ3b9Ej86Y4fP84TTzzBl19+SUVFBUlJSfzxj3/svLMfBl0ABqNtHWvhQYhMdLhpakIkeUWHycguVDIkIh2O0wUUxo4d2+AjNTVViZCz/AIgrnatUDMltk8vorAlT3OyRUQcUVhYyLvvvktVVRXTpjW9n1tjqqqquO6661i7di333nsvzz33HFFRUdxwww1s2LDBTRF7WEj0qRkLOz5xqmmqNl8VkQ7M6WRo3759TT4MNmzYwP79+9sak+9IHG97bXG/odpkSEUUREQcEhcXxw8//MCbb77JHXfc4VTbxYsXk5WVxVNPPcXFF1/MpEmTePrpp+nTpw9PPPGEmyL2AqdXlXPCqYpyekaJSMfjdDI0b968RjdeBVuZbGf2GPJ5vU9bN9SMlLoiCnrQiIg4wmAwNFjf6qjPP/+cvn37MmLEiLpjfn5+XHzxxWzevJn8/HxXheldBk+3vR74HsoKHG6WEh+BwQC5heUcLal0U3AiIu7hdDKUmZnJmDFjGj03ZswYtmzZ0uagfEb8WNsc7RP7ofhQk5fZk6Gdh0uoqrG0U3AiIr5p165dDB48uMFx+7Fdu3a1d0jto1tf6JEMVjNkfepws9BAPwbGhAKwWVPlRKSDcbqAQklJCcHBwY2eCwoKoqhIoxcOCwq3lTA9nGkbHUq+rNHL4rt2IaKLP0Xl1WTll2iXbxERNyosLCQiouHvWfuxwsJCp+9pNptbFYu9XWvbO8sweDrG/C1Yty/DknKlw+1S4iLIyi/lp4MnOHOQ69YQt3f/vY36r/6f/upr2tp/R9s5nQz16NGDzZs3M3HixAbnNm/eTPfu3Z29pW9LnFibDK1rMhmyFVEI57vdx8nMLVIyJCLiZs1NsWvN9LvMzMy2hNPm9o7qwgCGAtZdq8j4cR1WvyCH2nWjDIBvt2VzVvRJl8fVXv33Vuq/+u/L3N1/p5OhadOmsWDBAtLS0hg/fnzd8fXr1/Piiy8ya9YslwbY6SWOhw0vOFRE4bvdx1VEQUTEzSIjIxsd/bHPfGhs1KglKSkpmEzO7xNnNpvJzMxsdXunWVOxZvwdY1E2qWEnYPCFDjUzdS/ixU1r2VdsJTU1tdXrtX6u3fvvZdR/9V/9b33/7e1b4nQydMstt/Dtt99y/fXX06dPH3r27Mnhw4fZv38/AwYMcHgPB6llL2WavwUqim1T5xqRHKuKciIi7WHQoEFkZWU1OG4/NnDgQKfvaTKZ2vTHTFvbOyVpJqx/HlPWJzB0pkNNhsZGEuBnpKi8mpzCSvpEh7g0pHbtvxdS/9V/9d99/Xe6gEJYWBjvvPMOc+bMISIigry8PCIiIpg7dy5vv/02oaGh7oiz8wrvBV37gNUCOU3vX2EvorD9cAnVZhVREBFxl2nTprF3714yMjLqjtXU1PDRRx+RmppKjx49PBhdO7CX2N65Asw1DjUJ8DMyLNb2Zp72GxKRjsTpkSGAkJAQbrnlFm655RZXx+ObEifYKsodXAcDGt8csHdUMGFBfpRU1LArv5ShsY2PIImIiM3XX39NeXk5J0/a1rDs3r2blStXAjB16lS6dOnCPffcw9KlS1m1ahVxcXEAzJo1i4ULF3Lbbbdx5513EhUVxcKFC9m3bx+vvvqqx/rTbhInQJeuUF4A2eugzxkONUuNj+Sng4WkZxdySVqcm4MUEXGNViVDYKsql56ezokTJ5g6dWqr5lBLrcTxkLEIDjS9bshgMDAsNpx1ewvYklukZEhEpAUPPfQQubm5df9euXJlXTK0evVq4uPjsVgsmM1mrFZr3XUBAQG89tprPPHEEzzyyCOUl5czZMgQXnzxRcaOHdvu/Wh3Jj8YdCFkLIQdyx1OhtISIgHIyC50X2wiIi7WqmRo/vz5vPjii1RUVGAwGHjvvfeIiIjg17/+NZMmTeL3v/+9q+Ps3BJrK/Pl/gg1VeAX0OhlKXERrNtbQGZuEVeOSWjHAEVEOp4vvviixWvmzZvX6Gbh0dHRPP744+4Iq2MYMrM2GVoG5/8DHCiIkFqbDG3NK6babMHf5PRMfBGRduf0b6q33nqL+fPnM2vWLF544YV676adddZZfPXVV66MzzdED4Qu3aCmAg5lNHmZvaT2ljwVURARETfqdxb4dYHCg7YCPw7oExVMeJAflTUWdh4ucXOAIiKu0apk6LrrruO+++7jjDPqD5337t2bAwcOuCw4n2EwnKoqd/D7Ji+zJ0PbDxVToyIKIiLiLgHBMOAc2+c7ljvUxGAw1I0OqYiCiHQUTidD2dnZTJ48udFzISEhFBcXtzkon9Tbngyta/KSvlEhhAb6UVFtYffR0nYKTEREfJK9qtyOZQ43SY2PBLRuSEQ6jlaV1j527Fij53Jzc4mKimpzUD4p8bRkyNL4qI/RaKgrnLAlV0mniIi40aALwGCEw5m2iqcOqBsZytZ0bhHpGJxOhiZMmMBLL71EWVlZ3TGDwUBNTQ2LFi1qMHVOHNRzuG1+dnkBHGu42Z+dNl8VEZF2EdwNek+yfb7jE4eapMbbnlFZR0oorXRsjyIREU9yOhm69dZbycvLY8aMGcybNw+DwcCbb77JFVdcwYEDB7j55pvdEWfn5xcA8aNtnx9susR2SrxtZChTyZCIiLhb3VQ5x9YNxYQHERsRhNWqN+1EpGNwOhnq3bs3ixYtol+/fixatAir1cqHH35I165dWbhwIbGxse6I0zfUTZVrOhmyjwxtyyvGbLE2eZ2IiEib2ZOhg9/DyeMONUnVfkMi0oG0ap+hAQMG8PLLL1NVVcWJEyeIiIggKCjI1bH5nsTxttdmkqF+3UMJDjBRVmVm79FSBvYIa6fgRETE50Qm2qZxH94MWSthxC9bbJKaEMmKLYdVUU5EOoQ27YgWEBBAjx49lAi5SsJY22LVwoNQlNvoJSajgaG9aosoaL8hERFxt6SZtlcHp8qdqiinZ5SIeD+HRoaWLl3q1E1/8YtftCIUITAMeqbYNl49uBZSZjV6WXJcBD8eOEFmTjGXjmjnGEVExLckzYCv/gF7voCqMtseRM1IiY/AYIDcwnKOllTSPSywnQIVEXGeQ8nQXXfd5fANDQaDkqG2SJxQmwytazYZAi1OFRGRdtBjGET2hsIDsGc1DLmo2ctDA/0YGBNKVn4pm3MKOWdIj3YKVETEeQ4lQ6tXr3Z3HGKXOAHW/1+zm6+m1CZDW/OKsFisGI2G9opORER8jcFgmyq3br5tqlwLyRDYpspl5ZeSka1kSES8m0PJUFxcnLvjEDt7EYX8LVBeCF0iG1zSv3sIQf5GTlaZ2Xf8JP27h7ZriCIi4mOSZtiSoZ0rwFwDpub/fEhNiGTxxhzSczSDQUS8W6sLKJSWlvLtt9+ybNkyvvvuO0pLS10Zl+8K6wld+wJWyPmh0Uv8TEaG2IsoaKqciIi4W+J4CI6CikJbme0WnCqiUIjVqm0gRMR7tSoZevnll5k8eTK/+93v+NOf/sQNN9zA5MmTefXVV10dn2/qPdH22tzmq1o3JCIi7cVogsEX2j53oKrc4J5hBPgZKSqv5sDxMjcHJyLSek4nQ0uXLuWJJ55gzJgxPPnkk7z11ls8+eSTjB07ln/+859OV56TRtinyh1oefPVTCVDIiLSHk4vsd3CaE+An5FhsbYZDNpvSES8mdPJ0GuvvcbMmTNZsGABF154IaNGjeLCCy/khRdeYMaMGfzvf/9zR5y+JXGC7TV3I9RUNnqJvaLc1txiLBZNQRARETfrdyb4B0NRtm0T1hbYp8qlZxe6NSwRkbZwOhnau3cvF198caPnLr74Yvbs2dPmoHxe1AAIjgZzJeSlN3rJwB6hBPgZKams4WCBpiCIiIib+XeBAefYPndgqlxaQiRgWzckIuKtnE6GgoKCKCpqfGpWUVERQUFBbQ7K5xkMp6bKNbFQ1d9kZEjPMEBT5UREpJ3Yp8ptX9bipam1ydCWvGKqzRY3BiUi0npOJ0OjRo3i2WefJT8/v97xo0ePMn/+fEaPHu2y4HyafapcM/sNafNVERFpVwPPA4MJjmyFgr3NXtonKpjwID+qaizsPFzSTgGKiDjHoX2GTnfHHXdw1VVXcd555zFhwgS6d+/O0aNHWbduHX5+fjz77LPuiNP39D4tGbJYwNgwb62rKJenZEhERNpBcDfoMwn2fQM7PoGJc5q81GAwkJoQyZpdx0jPLqx7A09ExJs4PTI0cOBA3nvvPc455xwyMzNZsmQJmZmZnHPOOSxevJgBAwa4I07f03O4baFqRSEc3dHoJadGhoq1j4OIiLSPpItsr06sG9qsinIi4qWcHhkC6Nu3L08++aSrY5HTmfwhfrTt3beDa6HH0AaXDOoRhr/JQFF5NdkF5SRGBXsgUBER8SlJ02HFnyF7HZQehdDuTV56avNVzWAQEe/Uqk1XpZ0k2jdfbXzdUICfkcG1RRQ0VU5ERNpFRDz0SgOrBbJWNnvp8ATbDIasIyWUVta0Q3AiIs5p1cjQtm3b+Pjjj8nLy6Oysv4+OAaDgeeff94lwfm8uopyTW++mhIXwZbcYjJzi5ie0qudAhMREZ+WNBMOpdumyo38VZOXxYQFERsRRF5RBVtyixjfL6r9YhQRcYDTydDSpUu5++67MRqNdOvWDX9//3rnDQaDy4LzefFjbFV7irKhMBsiExpcYls3lK2KciIi0n6SZsCXj8CeL6CyFAJDm7w0NSGSvKLDZGQXKhkSEa/jdDL0/PPPM3XqVB5//HEiIlQZxq0CQ6HXcMj7CbLXN54MxZ4qr221WpWMioiI+8UMga594cQ+2LMahl7S5KWpCZGs2HKYDBVREBEv5PSaoSNHjnDttdcqEWov9v2GDjS++ergnmH4GQ2cKKsmt7C8HQMTERGfZTDYRoegxapyKqIgIt7M6WRoyJAhDTZcFTeqWzfUeBGFIH8Tg3rUFlHILW6vqERExNclzbS9Zq0Ec3WTl6XER2AwQG5hOUdKKtopOBERxzidDP3lL39hwYIF7NjR+N434mL2kaEj26D8RKOXJMeFA2jdkIiItJ+EsRDSHSqK4MB3TV4WGujHwBjbmqLNGh0SES/j9JqhtLQ0zjvvPC699FK6d+/eYLqcwWDgo48+clmAPi80Brr1h4I9kL0BBp3f4JKUuAje/TGHTCVDIiLSXowmGHwhbHrdNlWu35lNXpoaH0lWfikZOYVMG9qj/WIUEWmB0yNDCxYs4IUXXqBr167ExsYSGRlZ70Nridygd+3oUBMltm0V5U4VURAREWkX9qlyO5ZDM8+f1IRIADJy9KadiHgXp0eGXn/9dS6//HIefvhhTCaTO2KSn0ucAD+92eS6oSG9wjEZDRw/WcXh4gp6RXRp5wBFRMQn9Z0K/iFQnGvbdyh2RKOXpdmToexCVT4VEa/i9MjQyZMnmTlzphKh9mRfN5S7EaobLj4N8jfVzcfO1LtuIiLSXvyDYOA02+fblzV52eCeYQT4GSkqr+bA8bJ2Ck5EpGVOJ0MjR45kz5497ohFmtKtH4TEgLnKtudQI+qmyuWpopyIiLSj06fKNcHfZGRYrK3Yj/YbEhFv4nQydO+99/L222/z+eefU1VV5Y6Y5OcMhtNKbDexbihWFeVERMQDBp4LRj84uh2ON/1mqX2/ofTswvaJS0TEAU6vGbr88supqalh7ty5GAwGgoKC6p03GAxs3LjRZQFKrcQJsP2jJpOhlHjbyJAqyomISLvq0hX6TIa9X9pGhybd2uhlp68bEhHxFk4nQ+eff74WPnpCXUW59WCxgLH+oN6QXuEYDXC0pJIjxRXEhAc1chMRERE3SJrRYjJkryi3Ja+YarMFf5PTk1NERFzOqWTIbDbzhz/8gW7duqmEdnvrkWKr2FNZZJuK0GNYvdPBAX707x7KriOlZOYWcY6SIRERaS+Dp8Mnf4Ls9VB6xLZH3s/0iQomPMiP4ooadh4uqVvrKiLiSU69LWO1WpkxYwbp6eluCkeaZPKDhDG2zw983+glKXGaKiciIh4QEQexIwEr7FzR6CUGg6FudEjrhkTEWziVDPn5+REdHa2NPT0lcaLttYn9hk5tvqqKciIi0s6SZthem6kqp3VDIuJtnJ6wO2PGDJYuXeqGUKRFp1eUayQhPZUMaWRIROTkyZM8+uijnHHGGaSkpHDJJZewfHnTf6jbLVmyhMGDBzf6cfTo0XaIvIOyl9je+yVUljR6ib2inMpri4i3cLqAQlJSEp988gnXXnst5513Ht27d29QUOG8885zWYBymvjRtvKlxblQlA2RifVOD40Nx2CAw8UVHC2ppHtYoIcCFRHxvLlz55KZmcmdd95Jnz59WLZsGXfccQcWi4WLLrqoxfaPPfYY/fr1q3csMjLSTdF2At0HQ7f+ULAHdn8Owy5tcMnwBNubdruOlFJaWUNooNN/hoiIuJTTv4X++te/ApCfn8+GDRsanDcYDGzfvr3tkUlDASHQKxVyN9qmyv0sGQoN9KNvdAh7j55kS14RZw1uuIBVRMQXfP3113z33Xf8+9//ZuZM24jF+PHjycvL45///CfTp0/HZDI1e4+BAweSkpLSHuF2DgYDDJkJ3/3XNlWukWQoJiyIuMgu5BaWsyW3iPH9ojwQqIjIKU4nQ6+//ro74hBHJU6wJUMHvofhVzY4nRIXYUuGcpQMiYjvWrVqFcHBwVxwwQX1jl922WXceeedZGRkMHLkSA9F14kl1SZDWZ9BTRX4BTS4ZHh8BLmF5WRkFyoZEhGPczoZGjt2rDviEEcljoe1zzZZRCElLoIP0/NUUU5EfNquXbvo378/fn71H3ODBw+uO99SMnTjjTdSUFBAWFgYY8eO5dZbb2XQoEFui7lTiBsNITFw8ggc+Bb6n93gktSESFZsOax1QyLiFVo9WbekpIT09HROnDjB1KlTte9Qe0ms3Xz16HYoK4DgbvVOD4u1/Ry25qminIj4rsLCQuLj4xsctz+rCgsLm2wbHR3NjTfeSFpaGqGhoWRlZbFgwQJmz57NokWLSEpKcjoes9nsdJvT27W2vScYBl+IcdP/sGxfhrXP1AbnU2LDAFt57Zb61RH770rqv/p/+quvaWv/HW3XqmRo/vz5vPjii1RUVGAwGHjvvfeIiIjg17/+NZMmTeL3v/99a24rjgiJhqiBcHyXbXO7wRfWOz0sLhyA3MJyCk5W0S2k4RQFERFf8PPiPo6emzJlClOmTKn795gxY5g6dSoXXXQR//3vf3n++eedjiUzM9PpNq5s357C/ZIYCNRs+ZDMnv8PDPUL11qrLRiAvMIKvly3ka5Bza/dgo7Vf3dQ/9V/X+bu/judDL311lvMnz+fq6++msmTJ/OHP/yh7txZZ53FZ5995lQyVFpaynPPPceOHTvYtm0bJ06cYM6cOcydO9fZ0HxH4nhbMnRwbYNkKDzIn77RIew7dpItuUVMGdTdQ0GKiHhOZGRko6M/RUW2KcTOzmaIj49n1KhRZGRktCqelJSUFgs2NMZsNpOZmdnq9h5RMwRr+qMEVBwjLcYKcWkNLhnw/bfsOlKKJSKBtCFNr2/tkP13IfVf/Vf/W99/e/uWtCoZuu666/jLX/7SYPipd+/eHDhwwKn7FRYW8u6775KUlMS0adNYvHixsyH5nt4T4ac3mlw3NCw2nH3HTpKpZEhEfNSgQYNYtmwZNTU19dYNZWVlAbZKcc6yWq0YjU5vzweAyWRq0x8zbW3frkzBMPBc2PoBpqwVkNhwrXFaQiS7jpSSmVfMecm9Wr5lR+q/G6j/6r/6777+O/1bPTs7m8mTJzd6LiQkhOJi59aqxMXF8cMPP/Dmm29yxx13OBuOb7Jvvpq7CarLG5xO0earIuLjpk2bRllZGZ999lm94x988AExMTGkpqY6db/s7Gw2bdrkdDufZd+AdUfjm9ymJkQCtnVDIiKe5PTIUFhYGMeOHWv0XG5uLlFRzpXJbG7etjSha18I7QGl+baEqM+keqfrkqE8JUMi4pumTp3KpEmTePDBByktLSUxMZHly5ezZs0annjiibp3Ge+55x6WLl3KqlWriIuLA+C6665j9OjRJCUlERISQlZWFi+99BIGg4HbbrvNk93qOAaeC0Z/OLYTju2C6PojcWm1yVBGdiFWq1V/C4iIxzg9MjRhwgReeuklysrK6o4ZDAZqampYtGgRZ5xxhksDlEYYDKeqyh1c2+C0vaJcdkE5hWVV7RmZiIjXeOaZZ7j44ot5+umnueGGG8jIyODJJ5/k4osvrrvGYrFgNpuxWq11xwYNGsSKFSv4y1/+wg033MBLL73E+PHjef/991Va21FBEdC3tghFI6NDg3uGEeBnpLiihv3HyxqcFxFpL06PDN16663MmjWLGTNmMG3aNAwGA2+++Sbbt28nLy+Pp556yg1hOs5XypcaEsZh3LYU64Hvsfws5tBAI4ndunCwoJzN2SeYNCC6xft1tP67mvqv/p/+6mvaq3xpewsJCeG+++7jvvvua/KaefPmMW/evHrH7rnnHneH5huSZsCe1bZk6Iw/1jvlbzKSHBvOpoOFbM4ppG90iGdiFBGf53Qy1Lt3bxYtWsRjjz3GokWLsFqtfPjhh4wbN45//etfxMbGuiNOh/lK+dIuZV0ZClgOrCP9p41gqL+wLC7YysECWPXjDkJKQx2+b0fpv7uo/+q/L/P1/ouLDZ4Oy++AnB+g5DCE9ax3enh8JJsOFpKeXcglaXEeClJEfF2r9hkaMGAAL7/8MlVVVZw4cYKIiAiCgoJcHVur+Ez5Uksy1vV/wlRVSlqvQOiZXO/0GUV7WZuTxXFCSUtLa/F2Ha7/Lqb+q//qv/vLl4qPCe8FcaMh90fYuQJGX1/v9OnrhkREPMXpZOjuu+/m5ptvJiEhgYCAAHr06FF3Ljc3l2effZbHHnvMpUE6w2fKl5pMkDAW9nyBKWc9xNWvcDS89iGzNa/Yqf50mP67ifqv/qv/vtt/cYOkGbZkaMeyBsmQvaLclrxiqs0W/E2tK1suItIWTv/m+eCDDzhx4kSj506cOMHSpUvbGpM4qpkiCsm1RRQOHC+jqLy6PaMSERGxsZfY3vs1VNTfeqNPVDDhQX5U1VjYebjEA8GJiLQiGWpOUVERAQEBTrf7+uuvWblyJV9++SUAu3fvZuXKlaxcuZLy8ob76Eit05Oh0yohAXQNCSAusgsAW1ViW0REPKH7IIgeBJZq2L2q3imDwaD9hkTE4xyaJvfDDz+wfv36un8vXryYb775pt41lZWVrF69mv79+zsdxEMPPURubm7dv+2JEMDq1auJj493+p4+IW4UGP2g5BAUHoCufeqdTomLILewnC25RUzs33JFOREREZdLmgHfZtmqyiVfXu9UWkIka3YdIyO7kGvG9/ZQgCLiyxxKhtavX8+zzz4L2N7JWbx4caPXxcbG8re//c3pIL744gun2wgQEAy90mzzsQ+ua5AMJceFs3LrYbbkFjfaXERExO2SZsK3/4Gsz6CmEvwC606lxkcCkJFT6JnYRMTnOZQM3XDDDfzyl7/EarUyceJEXn75ZYYOHVrvmoCAAEJCtE9Au+s9oTYZWgupV9U7lRxnWze0JVfT5ERExENiR0JoTyg9DPvXwIBpdaeGJ9ieU7uOlFJaWUNoYKuK3IqItJpDa4aCgoLo2rUr3bp1Y/Xq1YwZM4auXbvW+1Ai5CH2dUMHGimiUJsM7T12kpIKFVEQEREPMBohabrt8x3L652KCQsiLrILVitk5uiNOxFpf04XUIiLi2tVkQRxk4TxttdjO+Hk8XqnokMD6RVh2/9pW56myomIiIckzbC97vgELJZ6p1JrR4c0VU5EPMHpZKi6uprnnnuO6dOnk5aWxpAhQ+p9/Hz6nLhZSBRED7Z9nr2+wWn76FCmpsqJiIin9JkCgeG2qXK5G+udsq8b2qxkSEQ8wOnJuU8++SSvvfYaU6ZMYdq0aRol8gaJ420jQwe/PzUVoVZKXASrtuVr3ZCIiHiOXwAMPBe2vG/bgDVhTN2p4fYiCtl6TolI+3M6GVqxYgW33HILc+bMcUc80hqJE2DT/2wV5X4mOS4csO3wLSIi4jFJM2uToeVw7kN1h1PiIzAYILewnCMlFcSEBXkwSBHxNU5PkysqKmL06NHuiEVaq3dtEYW8dKgqq3fKPk1uz9FSTlbWtHNgIiIitQZMA1MAHN8FR7PqDocG+jEwJhSAzRodEpF25nQyNGbMGHbs2OGOWKS1IntDWC/bDt8/m4sdExZEj/BArFbYfkijQyIi4iFB4dB3qu3zHcvqndJ+QyLiKU4nQ/fddx/vvfcen332GVVVVe6ISZxlMJwqsd3YVLlYFVEQEREvUFdVrn6J7dSESADSswvbNx4R8XlOrxm65JJLqKmp4bbbbsNgMBAUVH9ur8FgYOPGjU20FrdJnABbl9g2X/2Z5LgIVu84omRIREQ8a/B0WHa7bbPw4kMQ3guAtNpkKCO7EKvVisFg8GCQIuJLnE6Gzj//fP2S8kaJtfsNZW8AixmMprpTKbXrhrbmapqciIh4UFgPiB8DORtg53IYcwMAg3uGEeBnpLiihv3Hy+gbrY3cRaR9OJ0MzZs3zx1xSFv1GGbbw6GyGPK3QK/UulP2Igq7jpRQXmWmS4CpqbuIiIi4V9IMWzK041Qy5G8ykhwbzqaDhWRkFyoZEpF24/SaIfFSRhMkjLV9fqD+VLke4YFEhwZiscI2FVEQERFPGnKR7XXfN1BeWHdY64ZExBMcGhnaunWrUzcdNmxYq4KRNkocD7s/t60bGn9j3WGDwUBKXDhf7jzK1rwiRvXu6sEgRUTEp0X1h+5JcHSH7ZmVMgs4tW5osyrKiUg7cigZuvzyyx1aJ2Rf9Lh9+/Y2ByatkDjR9npwHVittipztZLjIvhy51Eyc1REQUREPCxphi0Z2rGsLhkaXltee0teMdVmC/4mTV4REfdzKBl67LHH3B2HuELcSDD6Q+lhOLEPuvWrO2VfN6SKciIi4nFJM2DNv2HXKqipBL9A+kQFEx7kR3FFDTsPl9Q9t0RE3MmhZOjSSy91dxziCv5dIHaEbWHqwXWNJkO7jpRSUW0myF9FFERExEN6jYCwWCjJs60dGnguBoOB1IRI1uw6Rnp2oZIhEWkXGoPubHrbN1+tX0QhNiKIbiEBmC1Wdhwu8UBgIiIitYxGSJpu+3zHsrrDp+83JCLSHpQMdTaJtcnQzyrKGQwGTZUTERHvkTTD9rrjE9v+eEBq7bqhDBVREJF2omSos0kYZ3s9vgtOHqt3Kjk2HICtSoZERMTT+kyGwAg4eQRyfgRgeMKpKd2llTWejE5EfISSoc4muBt0H2L7/OC6eqdSNDIkIiLewuQPg863fV47VS4mLIi4yC5Yraj6qYi0CyVDnVHieNvrz9YN2afJZeWXUFljbu+oRERE6qubKrfMtiUEkFo7OqSpciLSHpQMdUaJjRdRiO/ahYgu/lSbrWQdLvVAYCIiIqcZcA6YAqFgLxzdCZy2bkhFFESkHSgZ6ozsFeUOZUDVybrDBoNBU+VERMR7BIZBvzNtn9dOlUtVRTkRaUdKhjqjiAQIjwNLTd2iVDtVlBMREa9SN1VuOWBb32o0QF5RBUdLKj0YmIj4AiVDnZHBcNq6ofpFFJLjaivK5SkZEhERLzD4QsAAeZugKJeQQD8GxIQCsFlFFETEzZQMdVZNrBuyT5PbcaiEqhpLe0clIiJSX2jMqW0hdn4CnL7fkJIhEXEvJUOdlT0ZyvkBzKf2akjsFkxYkB9VZgu7jpR4KDgREZHTDJlpe/3ZuqHNqignIm6mZKizihli28yuqhTyM+sOGwwGkmNto0NbtG5IRES8weDpttf930L5CdLsRRRyirDWltwWEXEHJUOdldEEibXTDn6++Wq8iiiIiIgXieoPMUNthX92rWJwzzAC/IwUV9RwqFT74omI+ygZ6szsRRQOfF/vsL2i3Jbc4vaOSEREpHGnbcDqbzKSHGsr+LO7oNqDQYlIZ6dkqDOrK6Kwrm5nb6DuAbP9UDE1ZhVREBERL2BPhnZ9DtUVdeuGth6t8lxMItLpKRnqzGJHgikATh6x7e5dq09UCKGBflTWWNh1pNSDAYqIiNTqlWbbI6/6JOz7mnF9owD4fF85f30/k9LKmubbi4i0gpKhzsw/yJYQQb0S20ajgaG1o0MqoiAiIl7BYDg1OrT9Y84f1oObpvbDALy3KZcL//sNP+4v8GiIItL5KBnq7Oo2X218vyElQyIi4jWSakts71yBwWrhT+cN4uEzuxEXGUR2QTlXvrCWf326k2pN8RYRF1Ey1Nn1nmh7/XlFuThVlBORzu3kyZM8+uijnHHGGaSkpHDJJZewfPlyh9oeP36cu+66i3HjxpGamsrs2bNZu3Ztyw2lbXpPhKBIKDsG2RsAGNo9gOVzz+DykfFYrPDsl7u57Lnv2a1p3iLiAkqGOruEsbbX47uh9Ejd4eQ42zS5bYeKMVu0h4OIdD5z585l6dKlzJkzhxdffJGUlBTuuOMOPv7442bbVVVVcd1117F27VruvfdennvuOaKiorjhhhvYsGFDO0Xvo0z+MOgC2+e1G7AChAX58e8rU3n+lyOJDPYnM7eImc+s4fW1+7UPkYi0iZKhzq5LV9veDVBvdKhvdCjBASYqqi3sOap310Skc/n666/57rvveOCBB7jqqqsYP348jzzyCJMmTeKf//wnZnPTe9csXryYrKwsnnrqKS6++GImTZrE008/TZ8+fXjiiSfasRc+qq7E9vJ6lVABLkzpxad/nMKUQd2pqLbwtw+3ct2rP3CkuMIDgYpIZ6BkyBecXmK7lsloYFhtEYXMHE2VE5HOZdWqVQQHB3PBBRfUO37ZZZdx5MgRMjIymmz7+eef07dvX0aMGFF3zM/Pj4svvpjNmzeTn5/vtrgFGHAO+AXBiX1wdHuD0z3Cg/jf9WN46OJhBPoZ+TrrKOc/9Q0rtxzyQLAi0tH5eToAaQeJE+DHl+Fg/c1Xh8VG8MP+E2zJK+IXab08FJyIiOvt2rWL/v374+dX/zE3ePDguvMjR45ssu2oUaMaHD+9bY8ePZyKp7mRKEfatbZ9h2QKwtj3TAy7VmLdvgwizmu0/9eMS2B8367c8e5mth4q5sY3N3H5yDjunzGEsKDO8eeNT/78T6P+q/+nv7a2fUs6x28LaZ69otyhzVBZCoGhgCrKiUjnVVhYSHx8fIPjERERdeeba2u/ztm2TcnMzHS6jSvbdzRRwSn0YSWVGUtgynnN9v/+iV14d6uZpTtO8v6mXNbsOMyt4yIYEh3QjhG7l6/9/H9O/Vf/3UnJkC+ITICIBCjKhtwfod+ZAKTE2x7sW/NUREFEOh+DwdCqc21t25iUlBRMJpPT7cxmM5mZma1u32ENjMe6+d+EFGXhX5ZP0rhpzfZ/zEiYvf8Ed763mZwT5fztqwL+MKUft549gAC/jrsiwGd//rXU/87bf4vFSkFZFcdKqzhSUsHRkiqOllRytLSSIyWVHCup5FhpFSO7wz/+38Q2/f5siZIhX5E4HjKz4cDaumSoX3QIQf5GyqrM7D9+0rPxiYi4UGRkZKMjOEVFtpHwxkZ+XNG2KSaTqU1/zLS1fYcT3sM2xfvAd3Q9/C0m0/kt9n9c/2hW3DaZhz7exnsbc3j+672s2X2Mp2anMSAmrJ0Cdw+f+/n/jPrfcfpfUW3maIktoTlaUsnRkop6/z5SUsmRkgqOlVY59Ea8v9Xf7f1XMuQrEsdD5uJ6m6/6mYwM7RXOpoOFbMktprcHwxMRcaVBgwaxbNkyampq6q0bysrKAmDgwIHNtrVfdzpH2ooLJc2AA98Rt+0FCK6GqX+B0O7NNgkL8udfV6QybUgMdy3JZEtuMTOe/pa7L0zi1xP7tGpUT8TXWa1WCsuqbaM2xZUcLa2wvdZLcmxJT3FFjVP3jgoJoHtYYN1HTFhQ7WsgUSH+UHDATb06RcmQr0is3Xw150cwV9v2csC2bmjTwUK25BXRO9aD8YmIuNC0adN49913+eyzz5g+fXrd8Q8++ICYmBhSU1ObbfvQQw+RkZFRd11NTQ0fffQRqampThdPkFYadR3WvV9h3PUZ/LAAMhbCxFthwi11a1+bckFyL0YkduXP723mm6yjPPjxNlbvOMK/rkilR3hQO3VAxLtV1Vg4WlqbzBRXnJbsnHo9Wnu82uz4cooAPyMxdcnNqSQnJtSPnkFmegRWER1QTVdTBX7VpVBZAJUlto+qUigrhhMlWCpK2B84FBjR4tdsCyVDvqJ7km1X74pCOLwZ4myVkobFnVo3NCM20HPxiYi40NSpU5k0aRIPPvggpaWlJCYmsnz5ctasWcMTTzxRN+XinnvuYenSpaxatYq4uDgAZs2axcKFC7ntttu48847iYqKYuHChezbt49XX33Vk93yLQEhWK56mz2fv8LA/W9iOJQOX/0DfngJzvwrjPx13Rt7jbGX4H597QH+8cl21uw6xvlPfcM/Lk1heooqqErnZLVaKa6o4WhJxWlT1RqO4BwpqaSwrNqROxJINVGU06tLDfHBNcQF19AzoJqYwCqi/Crp6l9FuKGcMEM5wdZy/GtKMdiTm6JSOHJaouMEI9ArbBNwe2u+FQ5TMuQrjEbbVLmslbb9hmqToZTTkiGLNdqTEYqIuNQzzzzDf/7zH55++mkKCwvp168fTz75JDNmzKi7xmKxYDabsZ62uWdAQACvvfYaTzzxBI888gjl5eUMGTKEF198kbFjx3qiKz6tJHoklnOuw7TjY1j9sG3/oeV3wtr5cM7fYOgvoInpbwaDgV9P7MOkAVH88Z10tuQWc/Nbm7h8ZDwPXjyUsKCmkykRb1JjtnCstKpBQmP/9+mJT2WNBSMWQqgglHJCDOWEUU6ooZxwyomt/XeIqZwIYwXR/pV086sk0lRJmMF2fRdLGYHmk/jVnMRoqU2arMDJ2o+2MPpDUDgEhkFAmO21kQ+Lfwh7qmMZ0sYv1xIlQ77Engwd+N42zQAYGBNKoJ+R0kozh0t9s469iHROISEh3Hfffdx3331NXjNv3jzmzZvX4Hh0dDSPP/64O8MTZxiMkHwZDLkINr4GXz8OBXth8XUQOxLOfRj6Tm6y+YCYMJbcNIn/rs7i+a/28P6mHNbvO86TV6Yxtm+3duuGSHMsFivZJ8rYlldMVk4+xw7upOhYHm8s/wwqi22JDRWEGsoJrU1qBlFOKGWEGmyJT6ip9sNQ4cQXBqocuK4ucQn9WeJiT2xCGx6rd33tMT/HZiJZzWYq09Md70crKRnyJYkTbK8H14HVCgYDfiYjSb3CycguZO8JR4ZLRUREPMTkD2N/B6n/D9Y+C98/A3mb4H8zYcC5MO1B6JncaNMAPyN/Pj+JswbHcPu76WQXlDN7wVpunNqf26cN6tAluKXjqaiqYd/+/eTu20ZRXhY1x/fRpeQgsdbDjDIc4UJDYf0GrR3EtI/CBIT+LEE5PVFp7Hh4/eQmINQ2y6gTUjLkS2JHgCkQyo7B8T0QPQCAlDhbMrRHyZCIiHQEgaFw5l0w+jfwzRPw4yuwexXs/hyGz4az74XIxEabju7TjU9unczDH29j8cYcnv9qD99kHeWp2WkM7NGxS3CLl6mpgqJsSg7t4uiBHZzM3wUF+wkpy6GH+RBDDJX1p4AZaj9qVfqFU+4XQUBYN/yCI/DvEoEh6GdJSr1RmEZGZhwchfFlSoZ8iV+gba3Qwe9tH7XJUHKsbd3QvkLnyiGKiIh4VGgMTH8Cxt0IXzwCW5fA5rdtr2N/D5PvhOCG0+DCgvx54opUzhkSw91LMtmaV8zMZ77lrguT+PWEPhiNKsEtDqoogoJ9cGIf1oL9nDy8i8oje/ArPkBYZT5GLIQBDdJsA1gwUGDqTmlwAnTrS0jPAXSLG4Qpuh907YNfQDh70tNJS0vrMPsMdURKhnxN4vjaZGgdjLwWgOTaIgrbj1Xxj092cM2EPvSNDvFklCIiIo6L6g9XvAoT58LnD8C+b2zT6Da9Dmf8EcbdBAHBDZpdkNyLkbUluL/OOspDH2/jix1HeGJWKj0jVIJbAIsFSvJqE579tgIeJ/ZjKdiH5fhe/CoL6y41AKG1H3Zl1kAOWmM46t+LytBE/KL7ERk3kNh+Q+keP5Bov0CaLF9l1lru9qBkyNf0ngjfPllv89WknmEM7RXGtkMlvPzdfl7+bj+TB0bzy3G9mTYkBj9T55wjKiIinUzcSLj2I9jzhS0pOpxpq0C34UU4825I+yWY6v/pExMexGvXj+HNdQd49GcluGcMVwlun1BdDicO2BKd05Oegn1QeADMDasLGGs/AI5aIzhojeGAtQe59KA6IpHA7gOIThhM3z79SIoNJ0mVC72WkiFfEz8GMNiq8JTkQ1gP/ExGlt48kVdXrmftUX++3nWUNbuOsWbXMXqGB3HV2ASuGpOod8lERMT7GQww4BzodxZseQ+++DsUHoSPb7WNFp3zACTNqFeO22Aw8KsJfZjQP5rb30knM7eIWxZuYvX2OB68ZBjh+kO2Y7Naoex4w0TH/nnJoWabV1tN5FijOWjtUZf0HLTGUBAQR2jPAQyI78HQ2HCGxoZzUfdQ/PUmcoeiZMjXdImEHsMgf4ttdGjYLwAwGQ2Mjg3ihulp5BVVsnDDQd79IZvDxRU89fkunvliN9OGxHDN+N5M6h+t+dQiIuLdjEYYfiUMvcRWYOHrf8KxLHjnl5AwDqY9BL0n1GsyICaUJTdP5OnVu5j/5W6W/JTL+n0FPHllKuP6RXmoI+IQczUUZdsSnHpJz37b51UlzTY/aQjhgDWGfebuP0t6enDI2o3YbqEM7RXO0F4RjIsN5/rYcGIjgjA0sceVdBxKhnxR4oTaZGhdXTJ0uoRuwfz1giT+OG0gK7cc5q11B9mwv4BPt+bz6dZ8+kaHcPXYRGaNiqdrSED7xy8iIuIov0AYfxOkXQ3fPW3brDV7Pbx6AQyebhspikmqu9zfZOTO8wZz5uDu3P5OBgcLyrjqxXX8fko/7jh3EIF+WsjuMZUldcUKTiU9tZ8XZoO16TU2VgycDIwh39SL3TXd2VrelX3mU6M8hYQCBvxNBgbGhDE0NpxpvWyjPUN6hRPRRaODnZWSIV+UOB5+eNFWSKEZgX4mLkmL45K0OHYeLuGt9QdYsimXfcdO8ugn23nis53MHN6La8b3ZkRCpN4dERER7xUUAefcD2NusG3auul12PmJbTPytKvhzHsgIq7u8lG9u/HJbZN5+OOtvPtjDi98vZdvso7x36vSGKQS3O5ltUL+Vgw7PqHPrnUYNxXaEp6y48038wuiJjyRwsA4cgw92VkVxcbiCDaVRJJj7U5lRf03cMOD/BgaG85lvSJs09x6hTMgJlR7TvkYJUO+yL756uFM27ssgS3/Uh/cM4yHL0nmrxck8WF6Hm+uO8C2Q8Us2ZTLkk25DIsN55rxvbkkLZbgAP23EhERLxXeCy56CsbfDF88DNs/hp/ehMz3bCW6z/gjdOkKQGigH/+clco5Q3pw95JMth+qLcF9QRLXTVQJbpeyWm0b6G77CLZ/BAV7MQINJicGR0HXvli69qEgIJb9lhi2lEexoTCc7/P9KMxrfHQoLrJLXcJjf43v2kVv5IqSIZ8UEWfbjK7wIOT8AP3PdrhpSKAfV49L5P+NTeCn7ELeXHeAZZsPsTWvmLuXZPKP5du5bGQcvxzfW++ciYiI9+o+CGa/Cdk/wKq/2WZLfPcUbHzNtj/R2N+Dv61w0PnDejIiMZK/vLeZr3Ye5eFlthLc/7pCJbjbxGK2TVnc9pEtKS3OOXXOFIi1/9nkmhLoOnAc+6w9ySiNIOOohW2Hisn6qZQqs+VnNzTjZzQwICa0LuEZFhvB0F7hRARrmps0TsmQr0qcYEuGDqx1KhmyMxgMjEzsysjErtw/YyjvbczhrfUH2H+8jP+tPcD/1h5gbN9uXDO+NxcM66khZxER8U4JY+D6TyDrU/j8QTi6HVbdD+tfgLPvheGzwWgiJiyIV68bw5vrD/Lo8m18u9tWgvvRS5OZOTzW073oOMzVsH+NLfnZvgxOHjl1zj8E68BzOZpwPl+Y0/hmfzkb9xwl/yczUFT7cUpYoB9DfjbaM7BHqNZ1iVOUDPmqxPGw+Z16+w21VteQAH43pR+/PaMv3+05xpvrDvD59iNs2FfAhn0FRIcGcOXoBP7f2EQSujXc9E5ERMSjDAYYfAEMPBcy3oYvH7WNUiy9Cb5/BqY9CAPPs5XgHt+bif2juP2ddDbnFDFn4U+s3n6Eh1SCu2k1lbDnS9v0t52fQPmJU+cCIyjvfx4ZoVP4sCSJr/eUkLepAthX7xaxEUE/m+YWQUI3TXOTtlMy5KsSJ9pec360vUtD20dujEYDkwd2Z/LA7hwuqmDRhoO8/cNB8osree6rPTz/9R7OGhzDNeMTmTooBpPmWouIiDcxmmDELyH5MtiwANb8G45sg4VXQu8z4NyHIH40/buH8v5NE3lm9S6e/XI3H/yUy4Z9Bfz7ylTGqwS3TdVJ2LXKNgKU9Wm90taW4Gjyep7NV4bxLDzam22bKmvPHAXA32SbfTKhXzciqo9z0eQRRId18UAnxBcoGfJV0YNsC0TLT8ChDOg1wqW37xkRxO3nDmLO2QNYvT2fN9cd5Nvdx/hixxG+2HGEuMguXD0ukStHJ9A9LNClX1tERKRN/LvApNtg5LXw7X9g3f/BgW/hpXNgyMVwzt/wjx7IHecNZurgGO54N50Dx8v4fy+u4/eT+3HHeT5agruiyJb4bPsQdq+GmvK6U1VderA1YgrvV4zi3SPxVBXY34StxGCAob3COWNANBMHRDOmT1eCA/wwm82kp5fSNVjbeIj7KBnyVUYjJIyHrBW2qXIuTobs/E1GLkjuxQXJvdh7tJSF6w+yeGMOuYXlPPHpTp76PIvzh/XkmvG9Gde3m4a7RUTEe3TpCuc+bCum8OVjkLHQNtVrx3JbonTmXYzq3ZNPbp3M35dt4+0fsnnhm718s+sYT81OY3BPHygkdPI47FxuK4Kw9yuwVNedKg6KY43/BN4oHM76E/2wnjg1C6VPVDATB0QzqX80E/pH0U37FoqHeEUydPLkSZ566ilWrFhBUVER/fr14/e//z0zZszwdGidW+8JtcnQOhh3s9u/XL/uodw3cyh/On8wyzYf4s11B0jPLmTZ5kMs23yIgTGhXDO+N5eOjNO8axER8R4R8fCL+TDhFlj9sO3ZufFV29rbCbcQMvFW5l0+nLOTYrirtgT3Rc9+y1/OH8xvJvXtfCW4iw/BjmW2xHD/d/U2Oz3sn8jH1aNZWjmarRW9AVvfo0MDmFSb/EwcEEV8V60hFu/gFcnQ3LlzyczM5M4776RPnz4sW7aMO+64A4vFwkUXXeTp8Dov+35DB9fa6vu3kyB/E7NGxTNrVDxbcot4a/0Blv6Ux64jpTzw0VbmrdjBL0bE8stxvUmOi2i3uERERJrVYyhc/bYtAfj8Adv2FN88AT++AlP+zHmjf8OIP07hr+9v5osdR3hk+Xa+3Gkrwd0rooOveTlxoLYC3EeQvQE49XdDlqEvH1WNZoVlLHsqbBvXhgb6cU7fbkwcEM0ZA6IZ1CNUsz/EK3k8Gfr666/57rvv+Pe//83MmTMBGD9+PHl5efzzn/9k+vTpmEw+OO+2PfRKA78g247Ox3d5JITkuAgeu2w4d08fwgebcnlz3QF2HSll0YZsFm3IJi0hkmvG92bm8F4E+ev/gYiIeIE+k+C3q2yjI58/ZHuGrrwL1j1P97Pv5+VrL2PhDzk8smw73+0+zvn/+YZHLk3h4tQOVoL72C5b8rPtIziUXu/UT5YBrDCPYaVlLAetPfA3GRjRpyuXDIhm0oAohsdH4m/Sthri/TyeDK1atYrg4GAuuOCCescvu+wy7rzzTjIyMhg5cqSHouvk/AIgbjQc+BZD9jowDPdYKOFB/vx6Yh+undCbDfsKeHP9QVZuOUR6diHp2YX8fdk2rhgVzy/H96ZvdIjH4hQREQFs5biHXASDLoSf3oCv5kHhAVhyA4bv/8svpz3EhFvP4PZ30snIKeLWRT+xens+D1+STEQXL50KbrVC/lbY/hGWbR9iPLqj7pTZauAHaxIrzGP51DyafEMUQ3uFc8GAaCadVvRApKPx+P/aXbt20b9/f/z86ocyePDguvPOJENms7nli5pp19r2HZUhYRzGA99iPfA99BnuFf0f3TuS0b0jOTZ9MIs35rBoQza5hRW89O0+Xvp2H5P6R/HLcQmckxSDn4vedfLVn7+d+q/+n/7a2vYiPsnkB6Ovh+FXwrrn4bv/wuFMePMy+vU7k/d+8QDPbI9h/pe7+TA9jx/2FfCvK1OZ2D/a05HbWK2Quwnrtg+p2vIhgcX7AduGG9VWE99bhrHSMobPzKMJjerFpAHR3K+iB9KJeDwZKiwsJD4+vsHxiIiIuvPOyMzMbFM8bW3f0YRXd2cgULNnDfS50ev6PyECxk6LIP1wECt3l/PT4Uq+23Oc7/Ycp1uQkWn9ujCtXzBRXVwzhc7b+t/e1H/1X0RaKSAEpvwJRl0Pa/4FG16EvV/hv/cr7ki+nPOuvpVbVpzgwPEyfvnSen43uR93eqoEt8WM9eA6Sn5agmnnMkIqDmMAAoFKqz/fWIazwjyGn7qMJ2VAH84YEM0tKnognZTHkyGg2QV1zi62S0lJadUaI7PZTGZmZqvbd1iV/bBuuIfAskP4VxwjacxZXtn/UcBvgeyCMt7+IZt3N+ZScLKKd7ed5P0dZZyTFMMvxyUwsV9Uq6r2+OzPv5b677v9t1qtVFbXsG3rFlKHD2/T708RAUKi4ILHYNwf4Mt/wOZ3Ycv7JG/7iM9HXMfj5Rfx0qZSFnyzl2+yjvLUVWkk9Qx3f1zmak5s+4LCje8RnfM5YTUF2L/qSWsgX1pG8KVhHBV9zmHkoER+PyCKwT3CVPRAOj2PJ0ORkZGNjv4UFRUBp0aIHGUymdr0x0xb23c4wV2hxzA4nElowRZMpmle3f8+3cO4a/pQbj9vMCu3HOatdQfZsL+Az7bl89m2fPpEBfPLcb2ZNSqerq0Yvu/0P3+LGapKbTuDV52EyhLba0UJkYd2YgrKwWQ02ebCYzjt1Xja5zRzrrl2jbQ3GJto19Q5WtnOfq7xOK1mMxZzNTVWAzVmK9VmK2aLlRqLxfZa9++fHa89d/q/zebGr7Pdx3LaOetp927kuMVSe+/Tj1uajKXa/LPr6t2//vGa0/pnqS0IFRNiYtVQKxEBnfj/v0h76toHLlsAE+bA6odg9+f4b3yR+wIW8f9G/YZfb///7d15eFNl2vjxb5ZuCdhSSinDIrSSli6WrS07iChbsaACM7+ZFhVERBgG1FFcxuKgiIhoywDWIoLy4wWl8LKJbCo4YwPCgMjWyiYUZS9t6ZrkvH+kCQ0tUOgS2tyf68qV5Dnn5Dz3SXru3uc8J4ni8O+5PJL8b/4+oGa+gjs3L4+j6etQDv0vQZd20EjJpVHptBxFx1alE5mN+6ILeYiuIc15R770QLggpxdDBoOBdevWYTKZHK4bysjIAKBt27bO6prraNW1tBiqO0d2PbQa4to3J659c478nstS40nS9mRx4mI+b204xKxNR4i9vxl/6XIvHVr61M0jWxbztaKlOM+xiCnOg6K8G0wvW+xct1yZXwMvSwMEAfxYmwHePbRAFFC43o08vMhTvLiKp+NjxcvheS5eXLW3Wee9ihe5pdNNzt+93haTpfa+Xl8Il9LsfvjLSjj2HWz+B/y2l6ADSWzX+fH/ff5E4pkopq8/xLbD1q/g/oPPnX8Fd5HJzL6jZ/h991oandxI+8KdtFdd2+9fUO5hl0dXslsP5A/tH6L/fQEMky89EC7O6X8B/fr1Y8WKFWzatIlBgwbZ21etWoW/vz+RkZFO7J2LaNUVdqbg89v3qDa/Bhp30LhZ79Va62O1W2lbJR6rtddew7a8xr10uvbaY/sZiKoJDmjIm3HhvDQghP/de4bP009y8Lcc0vZkkbYni9Bm9/CXLvcS1/4P6D1q6CNvsUDJ1TIFStlCJbeSRUyZ5Yrybli4VAuVBjwagHsDcNejuOm5WliMXq+znrhRFEBxvFcspY+54TRFUVAUCxZFQbFYHyuKgmKx2KdZ763LKdcte/16VfZ1Wv9RV6GU3kCNpfSn/K612aZrVHf2j72nqgRPSvBT5dz5ti1VjDsFai8K1XoKS++L1TqKNDqKNXqKNHpMGh3F2gaYtNZ7s1aPyc16b3bTY3ZrgMWtAWqtO1qNCq1ahUatLr1XodWU3lfQrlWry0xTVby8WoVWo0alWMg89DMNaurvQwgBgb3h6W/g4GrY+ibqy8f5S34ycb6teD33UVYfjWLAB9v559Bw4to3r9RLWiwKB3/LYdfh4xQd3EDghW30ZB/RqmLrDCo4r/Il0/cBVKGPEBz9MAMbynU/QpTl9MzXu3dvunfvTmJiInl5ebRq1Yr169ezY8cOZs2aVb+HLN0t7u2GolLjXnge0ufV7rrVpYWSRluJIuv6Nq1DkaVXu/H/NO78KUTL2ZZm9p3J58DZAorOqTm6RsOcDe5EtPIj5r6mBPg0dHwtlYZ7zmagOnDcWoSUK2LKDCmrqJApya+5baTS2IsWawGjv/a83L3eoci5Ns363OKmp1DtSYFZS6FZoaDYTGGJmauFJfx8OINmLVtTZLaQX2ymoNhMfumtoNhkfVxiazc5Ti+xthWWWGpuO5ThoVWjc9egc9fi5a5B567By01TQZsanZsGvbva+thdjc5NbZ3uVtrmpsZDDccO/8T9hntxtxSiKclFU3IVdXFuaQGbay1Qi3IcnxeXthWVthXngakQAHeKcbcU4225UvWAtZ7W99CjofX99bjnuucNwb1hxc9t89nuNeW/0tdsNqOp5uE5QogKqNUQ/iiExMKexfDdTBpe/ZUPNB8w3sPAG/nDmfQ/JrYeOsc/48Jp4OE4ZE1RFE5ezOf7Xy6wL+MoDY5/TS/TD/xZ/TPuKnPpMGS44NaMCy3706jT4zRt150mahn6JsSNOL0YAkhOTmbOnDkkJSWRnZ1NYGAg77//PoMHD3Z211xDwwAsIz7n3J71NPVrjFoxg7kYLCVgNpXeF4O5BCwm6725+NpjS0lpW8m1ZSpaXqngH2VL6TIl1ReOCggovfXXYB0DZnOq9HYdDdAWYGdVV662/hN6w8JE7zi9tFgxuekpVntRqPakCB0FKk/yVdbhVvlmDUUmCwUlZgqKrfeFpbeCYjOFJjMFORbrc1t76bQik4WC4lwKSrIpKDFTbLpVsXK5ihvgGp2tIHHXoHO7VqBY27To3DTl2xwKm+uXKW1z01T7P+5ms5nfshqhbxpY9QMw5pLSYulGhZStcMotMy33poUVpkLrLf9C1YPVejoWRx4NUbs34A80gcgPq/76Qohb07pD9NMQ+Uf44V/w7yQMJRksc3+L7yyRvPPTHxlw4hLvPhZBUaGZNfvO8MOxSxzJzOT+vB0MVO/kT+pD1rPgpbusbF0bTCGxNO78OH7NIvGri8PDhXCCu6IY0uv1vPbaa7z22mvO7orrMgzgTH4A/u3bQ02djbNY7qCwuu6xxXSD5a8v3BwfK+YSLuTkkXXhCpfz8tEoZtww46Ux46/X4OeloqSkGJ2PPyqPhvahY2Y3nXUoU+mtSOVFocqLwtJiJR9P8hQP6zUlZk/yzBoKTdcKFuuZFwsFhWYKcs0U2QqV0sLG9tx6vUZx6a3qQ7Qqw12rxsvNWnh4uKnBVIyvdwP01xchbtoyxYhjMVO2SNG5Xzsz4+mmrpvXaVUHjRvofK23qrIVVg5FVUWFVEWF1XUF2fWF1dXz9tWogGaAOe8V8Knc8BwhRDXwaAh9XobOT8F378LuRfRmHz09fmJVfnemLhoOQH/1p4zQ7KKjKhO127VhwPm+oXjcPwxNWBw+TYKdFYUQddpdUQwJF6FWg9oDtB61vmoV0KT09vuVQpbt/JX/2fUrZ3OKoNB66VKAXoOqyM1avJSecVFueumJGbhaequmfqqwFyiebho8S4d0eWqtRYenfZq1kPEsM61sYePldv38pc+11tfz0DqeXTGbzezdu5f27dvL0NS7SS0VVpaCK/xyoZighgFVX48Q4vY18IfB70GXZ2HbdNQH0nhM8z1x6v+gVTme0Tc374wmNA7aDUHn28ZJHRai/pBiSLicAG9PJj9kYELf+9h66Cyfp//K979c4Lc8M9YCpzw3jQpPrbX48CpTkFwrMq4VH7ZCxVaQeLg5LmMrYuxFSpkixkPrwmdURM26SWGlmM3k7t1b+30SQjhqHATDF0G3ibDlDbTHt6Oghnu7ogqNg5BYNN5y9laI6iTFkHBZbho1A8KbMSC8GSfO57J9989EtAtG7+nmcGbG000jv7sghBCi9jTvCAlrMJ87ws9HTxMec3f+ILoQ9YEUQ0IALX11hDVx5/4W3pJwhBBCOJ9KBX5tMZ2uvqHYQojy5HC3EEIIIYQQwiVJMSSEEEIIIYRwSVIMCSGEEEIIIVySFENCCCGEEEIIlyTFkBBCCCGEEMIlSTEkhBBCCCGEcElSDAkhhBBCCCFckhRDQgghhBBCCJckP7oqhBCi3rl69SoffPABX331FVeuXCEwMJCxY8cyePDgWy6blpbG1KlTK5z2/fff06RJk+rurhBCCCeRYkgIIUS9M3HiRPbv38/zzz9P69atWbduHVOmTMFisTBkyJBKvcaMGTMIDAx0aPPx8amB3gohhHAWKYaEEELUK9999x3//ve/mT17NrGxsQB06dKFM2fO8O677zJo0CA0Gs0tX6dt27ZERETUdHeFEEI4kVwzJIQQol7ZvHkzOp2OAQMGOLQ/+uijnDt3jn379jmpZ0IIIe42cmZICCFEvZKZmUlQUBBarWOKCw4Otk/v2LHjLV9n3LhxXLp0iYYNGxIdHc1f//pXDAbDHfXJbDZXabk7Xb6uk/gl/rL3rkbir1r8lV1OiiEhhBD1SnZ2Ni1atCjX7u3tbZ9+M35+fowbN4727dvToEEDMjIySElJYeTIkSxbtoyQkJDb7tP+/ftve5nqXL6uk/glflcm8dds/PWmGFIUBZCjb3dK4pf4y967Gom/eo6+2fbD1cloNJKQkFCpeVevXk27du0AUKlUN5zvZtMAevXqRa9evezPo6Ki6N27N0OGDOHDDz9k/vz5leoPXNsmoaGhlbpO6Xpms5mDBw/e8fJ1ncQv8Uv8En9V95+3yk31phiyWCyAHH2rKolf4ndlEn/V4rfth6tTmzZtmD59eqXmbdasGWD9xreKzv5cuXIFuHaG6Ha0aNGCTp063fb1RrZtcvDgwdteZ1lVXb6uk/glflcm8Vct/lvlpnpTDGm1WiIiIlCr1bc86ieEEKL6KIqCxWIpd41OdfD392f48OG3tYzBYGDdunWYTCaHPmVkZADWb4m7E4qioFbf3vcOSW4SQgjnqGxuqjfFkFqtxt3d3dndEEII4WT9+vVjxYoVbNq0iUGDBtnbV61ahb+/P5GRkbf9mqdOnWLPnj1069bttpaT3CSEEHe3elMMCSGEEAC9e/eme/fuJCYmkpeXR6tWrVi/fj07duxg1qxZDmPPX3nlFVavXs3mzZtp3rw5AE888QSdO3cmJCQEvV5PRkYGqampqFQqJk2a5KywhBBC1AAphoQQQtQ7ycnJzJkzh6SkJLKzswkMDOT9999n8ODBDvNZLBbMZrPDBbYGg4GvvvqKTz75hKKiInx9fenSpQvjx4+nTZs2tR2KEEKIGqRSauLrf4QQQgghhBDiLnd7V4IKIYQQQgghRD0hxZAQQgghhBDCJUkxJIQQQgghhHBJUgwJIYQQQgghXJJLFENpaWkEBwfbb6GhofTo0YPJkydz4sQJh3l//PFHXn31VR599FHCw8MJDg7m9OnTzul4Nals/GazmUWLFjF69Gh69epFZGQkAwcO5L333iMnJ8d5AdSQ67fL9Tej0ejsLt6xjRs3EhwczIYNG8pNe+SRRwgODmbHjh3lpvXr149hw4YB8M033/D3v/+dIUOGEBYWRnBwcI33u7pUNf68vDzmz59PfHw83bt3p0OHDgwZMoSUlBSKiopqI4QqqY73f86cOQwdOpTo6GgiIiJ48MEHef3118nKyqrx/rsKyU2SmyoiuUly0/UkN9VsbnKpr9aeMWMGgYGBFBUVsWfPHhYsWIDRaOSrr77C29sbgPT0dH744QfatWuHXq9n586dTu519blV/IWFhSQnJxMbG8vw4cNp1KgRBw8eZP78+XzzzTesXLkST09PZ4dR7Wzb5Xr33XefE3pTPaKjo1GpVKSnpzv86GR2djYZGRnodDqMRiM9e/a0T/v99985deoUTz75JACbN29m3759tGvXDjc3Nw4cOFDrcdypqsZ/5swZFi9eTFxcHE888QQ6nY7du3czd+5c/vOf/7Bo0SJUKpUzQquU6nj/c3JyGDx4MEFBQej1en755Rfmz5/Ptm3bWLduHY0aNar1uOoryU2SmyoiuclKcpPkpprOTS5VDLVt25aIiAgAYmJiMJvNJCcns2XLFh577DEAxo8fz4QJEwBYuHBhvUo4t4rf09OTrVu3OnyQYmJiaNasGZMmTeLrr78mLi7OWd2vMWW3S33h6+tL27Zty31+d+3ahVar5bHHHit3dDE9PR2wvucA06dPR622njx+880361TCqWr8LVq0YNu2beh0Ovv0rl274uXlxbvvvsvu3bvp3LlzzQdyh6rj/X/jjTccptu2y9ixY9m6dSuPP/54DUbgWiQ3SW6qiOQmK8lNkpugZnOTSwyTuxHbTubixYv2NtsfmCu4Pn6NRlNhRX3//fcD1upc1B0xMTEcP36cc+fO2duMRiPh4eH07t2bAwcOkJeXZ5+2c+dONBqNfUda1/8WqhK/TqdzSDY2delvoarvf0V8fX0B0Gpd6jharZPcJLmpPpPcJLnpbstNdfsTVUW28datW7d2bkecpLLx26ryunxq/mYsFgsmk8nhZjabnd2tKuvSpQuAwxEYo9FIdHQ0HTt2RKVSsXv3bodpoaGhNGzYsNb7WhNqIv669LdQXfGbTCYKCws5ePAgb7/9Nq1bt+ahhx6qnSBclOQmyU0guansNMlNkptqMje5VDFk27FcvXqVHTt2MH/+fKKioujbt6+zu1Yr7iT+s2fPMnv2bMLDw3nggQdqsbe1Z8SIEYSFhTnc6sPQhKioKNRqtX2Hc/nyZTIzM4mKikKv1xMaGmrfgf7222+cPn3afhq6Pqju+A8fPkxqaioPPfQQISEhtRJDVVRH/OfPnycsLIzIyEiGDRuG2WxmyZIl6PX6Wo+nPpPcJLmpIpKbJDdJbqqd3ORSYx1GjBjh8DwoKIh58+a5zJCP240/Ozubp59+GkVR+OCDD+r8qekbmTlzJkFBQQ5td/MFiJXl7e1NSEiIffztrl270Gg0dOzYEbDukGw7HNs89SnhVGf8p0+fZty4cQQEBDB9+vRa6H3VVUf8jRo14ssvv6S4uJhjx46RmppKQkICn332Gf7+/rUYTf0muUlyU0UkN0luktxUO7mpfu5BbmDmzJl8+eWXLF68mJEjR3L06FGmTJni7G7VmtuJ/8qVKzz11FOcPXuWTz75hJYtW9Zyb2tPUFAQERERDrfw8HBnd6taxMTEcOLECc6ePYvRaCQsLMx+5CQ6OppDhw6Rm5uL0WhEq9XSqVMnJ/e4elVH/FlZWSQkJKDRaFi8eDE+Pj61HMWdq2r8Wq2WiIgIOnXqxPDhw1m8eDGnT58mJSXFGeHUW5KbJDdVRHKT5CbJTbWTm1yqGLLtWLp06cKbb77J8OHD2bFjBxs3bnR212pFZeO/cuUKTz75JKdPn2bRokV14rSrqJjtaMrOnTvZuXMnUVFR9mm2ncuuXbswGo1ERETUu+FPVY0/KyuL+Ph4AJYsWUJAQEAt9bx6VPf7HxAQgL+/f7nfwBFVI7lJcpOrkdwkuQnuntzkUsXQ9V588UW8vb1JSkrCYrE4uzu1rqL4bcnm1KlTLFy4kNDQUCf3UlRFVFQUGo2Gr7/+mszMTKKjo+3TGjZsSLt27Vi9ejVZWVn1ahiCTVXiP3PmDPHx8VgsFhYvXkzz5s1ru/tVVt3v/8mTJ/n999+59957a7LbLk9yk+Sm+k5yk+Smuyk3ucaA5Bvw9vZm7NixzJo1i7Vr1xIXF8elS5fsF3VlZGQAsH37dnx9ffH19XV4w+q66+Pv378/o0eP5uDBg7zyyiuYzWb27t1rn9/X15dWrVo5r8M1JDMzs8Jv6GnVqpX96xrrqgYNGhAaGsqWLVtQq9XlTjVHRUWxePFioPyY3KysLPbv3w/Ar7/+CmA/Utu8efM6cSHvncZ/8eJFEhISOH/+PG+99RYXL150+JrjgICAOnEk7k7jP3z4MDNmzKB///60bNkStVpNRkYGn376KT4+Pjz11FO1GoerkdwkuQkkN0luktwEtZObXLoYAoiPj2fp0qXMmzeP2NhYMjMzmTRpksM806ZNA6zjGD/77DNndLPGlI2/Q4cO9h3MW2+9VW7eYcOG8c4779R2F2vc1KlTK2yfPn06w4cPr+XeVL+YmBj2799Pu3btaNCggcO0qKgoPv30U9zc3OjQoYPDNKPRWG7b2P426tJn4U7i/+WXXzh16hRgPUp9vQkTJjBx4sSa7Xg1uZP4/fz88Pf3Z9GiRZw/fx6TyURAQAB9+vRh3LhxNGvWrLbDcDmSmyQ3SW6S3CS5qXZyk0pRFKVK0QghhBBCCCFEHeTS1wwJIYQQQgghXJcUQ0IIIYQQQgiXJMWQEEIIIYQQwiVJMSSEEEIIIYRwSVIMCSGEEEIIIVySFENCCCGEEEIIlyTFkBBCCCGEEMIlSTEkhBBCCCGEcElSDIk7lpaWRnBwsP0WGhpKjx49mDx5MidOnHB29wBYsGABW7ZsKdduNBoJDg7GaDQ6oVdW27ZtY9y4cXTr1o3w8HCio6MZNWoUa9asoaSkxGn9ul5F2+rll1+mb9++Nbres2fPkpyczKFDh2p0PUKI+kVyU9VIbro5yU31j9bZHRB134wZMwgMDKSoqIg9e/awYMECjEYjX331Fd7e3k7t20cffUT//v3p16+fQ3tYWBjLly/nvvvuq/U+KYrCK6+8QlpaGr179+bll1+mWbNm5ObmYjQamTZtGpcvX2bUqFG13rfKGj9+PAkJCTW6jnPnzjF37lyaN29Ou3btanRdQoj6R3LT7ZHcVDmSm+ofKYZElbVt25aIiAgAYmJiMJvNJCcns2XLFh577DEn965iDRo0oH379k5Zd2pqKmlpaUycOJEJEyY4TOvbty9jxozh5MmTtdqnwsJCPD09Kz1/q1atarA3QghRdZKbbo/kJuGqZJicqHa25HPx4kWH9v379zNu3Diio6OJiIhg6NChbNiwwWGeS5cukZiYyKBBg+jQoQNdu3YlISGBH3/8sdx6iouLmTt3LgMHDiQiIoKYmBji4+PZs2cPAMHBweTn57Nq1Sr7cIn4+HjgxkMRtm7dysiRI4mMjKRDhw48+eST/Pe//3WYJzk5meDgYDIzM5kyZQqdOnWiW7duTJ06ldzc3Jtum5KSElJTUwkMDOS5556rcJ4mTZrQuXNn+/Ps7GwSExPp2bMn4eHhPPjgg8yZM4fi4mKH5YqKipg9ezZ9+/YlPDycnj17Mm3aNHJychzm69u3L8888wybNm1i6NChREREMHfuXACOHj3K6NGjiYyMJCYmhn/84x9cvXq1XB8rGooQHBzMm2++yerVqxk4cCCRkZE88sgjfPPNNw7znTx5kqlTp/Lwww8TGRlJz549GTduHEeOHLHPYzQaefzxxwGYOnWq/f1LTk62z1OZz5MQQthIbroxyU2Sm1yZnBkS1e706dMAtG7d2t6Wnp7OmDFjiIyMJDExkYYNG7JhwwYmT55MYWEhjz76KGDduQJMmDABPz8/8vPz2bx5M/Hx8Xz66afExMQAYDKZGDNmDLt37yYhIYEuXbpgNpvZt28fv/32GwDLly9n1KhRxMTEMH78eMB61O1G1q5dywsvvECPHj2YPXs2xcXFpKam2tddNgkATJw4kUGDBvH444+TkZHB7NmzAevQjBv5+eefyc7OZvjw4ahUqltuy6KiIhISEjh16hQTJ04kODiYH3/8kZSUFA4dOkRKSgpgHd4wfvx40tPTGTt2LJ07d+bIkSMkJyezd+9eli9fjru7u/11Dxw4wNGjR3n22Wdp0aIFXl5eXLhwgfj4eLRaLW+88QaNGzdm7dq1/POf/7xlP22+/fZb9u/fz1//+ld0Oh2pqalMmDCBjRs30rJlS8A6xMDHx4fnn38eX19frly5wqpVqxgxYgSrVq0iMDCQsLAwZsyYwdSpU3n22Wfp06cPAAEBAUDlP09CCGEjuUlyk+QmUSFFiDu0cuVKxWAwKHv37lVKSkqUvLw8Zfv27Ur37t2VP//5z0pJSYl93gEDBihDhw51aFMURXnmmWeU7t27K2azucJ1mEwmpaSkRBk1apTy3HPP2dtXrVqlGAwGZcWKFTftY/v27ZWXXnqpXHt6erpiMBiU9PR0RVEUxWw2Kz169FBiY2Md+pKXl6d07dpVGTlypL0tKSlJMRgMyscff+zwmomJiUpERIRisVhu2J/169crBoNBWbZs2U37bbNs2TLFYDAoGzZscGhPSUlRDAaD8v333yuKoijbt2+vsE+29S1fvtze9sADDyjt2rVTjh075jDvrFmzlODgYOXQoUMO7U8++aTDtlIURXnppZeUBx54wGE+g8GgdOvWTcnNzbW3nT9/XgkJCVE++uijG8ZoMpmU4uJi5eGHH1befvtte/tPP/2kGAwGZeXKleWWudPPkxCi/pPcJLmpLMlN4lZkmJyoshEjRhAWFkbHjh0ZM2YM99xzD/PmzUOrtZ54PHnyJMeOHWPIkCGA9ciZ7darVy/Onz/P8ePH7a+3bNkyhg0bRkREBKGhoYSFhfHDDz9w9OhR+zw7duzAw8Oj2sZ9Hz9+nHPnzhEXF4dafe3PQq/X8/DDD7Nv3z4KCgoclqnoVHxRUVG5IRhVkZ6ejk6nY8CAAQ7ttqNLP/zwg32+su02AwcORKfT2ecr29c2bdo4tBmNRtq2bUtISIhDe2xsbKX7GxMT43CE08/Pj8aNG5OVlWVvM5lMLFiwgEGDBhEeHk5oaCjh4eGcOHHC4T2+kdv9PAkhXJPkJivJTZKbxM3JMDlRZTNnziQoKIirV6+yYcMGli9fzpQpU0hNTQXgwoUL9vlmzpxZ4WtcvnwZgEWLFvHOO+/wxz/+kUmTJtGoUSPUajUffvghx44ds89/6dIl/P39HZJDVdjW36RJk3LT/P39sVgs5OTk4OXlZW/38fFxmM92qr+wsPCG62nWrBlwbbjGrWRnZ+Pn51du2ELjxo3RarX2oRvZ2dlotVp8fX0d5lOpVPj5+dnns6kozuzsbFq0aFGu3c/Pr1J9hfLbBKzbpaioyP78nXfeYenSpTz99NNERUXh7e2NSqXitddec5jvRm7n8ySEcF2Sm6wkN0luEjcnxZCosqCgIPuFqV26dMFisfDFF1+wceNGBgwYQKNGjQB45plneOihhyp8DduRoDVr1hAdHc20adMcpl9/oaSvry+7d+/GYrFUS9Kx9fH8+fPlpp07dw61Ws0999xT5fWEh4fj4+PD1q1bef755285NtvHx4d9+/ahKIrDvBcvXsRkMtn77ePjg8lk4tKlSw5JR1EULly4YH9/bCpar4+Pj31nXlZFbVWxZs0ahg4dypQpUxzaL1++XKltfDufJyGE65LcVHmSmyQ3uTIZJieq3Ysvvoi3tzdJSUlYLBYCAwNp3bo1hw8fJiIiosKb7fS1SqVyuJgS4PDhw+zdu9ehrWfPnhQVFZGWlnbTvri7u9/0aJhNmzZtaNq0KevWrUNRFHt7fn4+mzZton379g5H3u6Um5sbY8aM4dixY/zrX/+qcJ6LFy+ye/duALp27Up+fn65H+dbvXq1fXrZ+zVr1jjM9/XXX5Ofn2+ffjMxMTFkZmZy+PBhh/Z169bdOrDboFKpcHNzc2j79ttvOXv2rEPbjY5m3s7nSQghbCQ33ZjkJslNrkzODIlq5+3tzdixY5k1axZr164lLi6OadOm8fTTTzN69GiGDRtG06ZNuXLlCkePHuXAgQMkJSUB0KdPH+bNm0dSUhJRUVEcP36cefPm0aJFC8xms30dsbGxpKWlkZiYyPHjx4mJiUFRFPbt20dQUBCDBw8GwGAwsHPnTrZt20aTJk3Q6/UEBgaW67NarebFF1/khRde4JlnnmHkyJEUFxezcOFCcnJyeP7556tt+9gSTnJyMvv37yc2Ntb+w3a7du1ixYoVTJw4kU6dOjF06FCWLl3KSy+9RFZWFgaDgd27d/PRRx/Ru3dvunXrBkD37t3p0aMH7733Hnl5eXTs2JEjR46QlJREaGgocXFxt+zXqFGjWLlyJWPHjuVvf/ub/Rt7yg4BqQ59+vSxfzNPcHAwBw4cYOHChfZv47Fp1aoVnp6erF27lqCgIHQ6Hf7+/jRt2rTSnychhLCR3HRzkpskN7kqKYZEjYiPj2fp0qXMmzeP2NhYunTpwhdffMGCBQt4++23ycnJwcfHh6CgIAYOHGhfbty4cRQUFPDll1+SmprKfffdR2JiIlu2bGHnzp32+bRaLR9//DEfffQR69evZ/Hixej1ekJCQujZs6d9vldffZVp06YxZcoUCgoKiI6O5rPPPquwz0OGDMHLy4uUlBQmT56MRqMhMjKSJUuW0LFjx2rbNiqVihkzZtCvXz9WrFhh3x62/r/wwgv2i009PDxYsmQJc+bMITU1lcuXL9O0aVOeeuophx/FU6lUzJs3j+TkZNLS0liwYAE+Pj7ExcUxZcqUckc0K9KkSRM+//xz3nrrLRITE/Hy8qJfv368/vrr9q9/rQ6vvvoqWq2WlJQU8vPzCQ0NJTk5mQ8//NBhPi8vL95++23mzp3L6NGjKSkpYcKECUycOLHSnychhChLctONSW6S3OSqVErZ865CCCGEEEII4SLkmiEhhBBCCCGES5JiSAghhBBCCOGSpBgSQgghhBBCuCQphoQQQgghhBAuSYohIYQQQgghhEuSYkgIIYQQQgjhkqQYEkIIIYQQQrgkKYaEEEIIIYQQLkmKISGEEEIIIYRLkmJICCGEEEII4ZKkGBJCCCGEEEK4pP8DSpcUfjt7xmEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHbCAYAAAAJakHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACo5UlEQVR4nOzdeXyU1dn/8c/MZN9DFiALWyCsCWEXFRRQXNBaRdTautXaqqh9ahf1UevSp3Xpr7ZVqZVW6447uOMCLmiRTULCDgFDFhISsu/JzPz+uDMhIRPIJJNMkvm+X695zWTOfe5cJ2juXHOfcx2T3W63IyIiIiIi4mXMng5ARERERETEE5QMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQyIiIiIi4pWUDImIiIiIiFdSMiQiIiIiIl5JyZCIiIiIiHglJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiJvMnz+f+fPnd7l/bm4uY8eO5c4773RjVK7r7jhERKRv0HVJ5OR8PB2AeIexY8cCYDab+eyzz4iPj3d63Pnnn09WVhYA//nPfzj11FO7/D1LS0v57LPP+OKLL9i7dy+FhYX4+vqSnJzMJZdcwuLFizGb9XlAf5GVlcUrr7zChg0bOHz4MPX19URERDBhwgTOPvtsfvCDH+Dv79+uX2ZmJq+88gobN26kqKgIHx8f4uPjOf3007n22msZPHiwB0YjIp6m65J0leO/nT179nR4zPz588nLy2PNmjUkJCR0+XvpGtbz9H+c9BofHx9sNhtvv/220/YtW7aQlZWFj497cvTVq1dzzz33sG3bNlJTU7nmmmtYuHAh+/bt45577uGXv/wldrvdLd9LetaTTz7JBRdcwEsvvURwcDAXX3wx119/PWeccQbZ2dncc889/OhHP2rTx2638+c//5lLL72Ud999l1GjRnHVVVdx6aWXEhAQwLPPPss555zD6tWrPTQqEfE0XZekr9I1rPfozpD0mqioKKKjo3n77bdZunRpu0+/3nzzTXx9fZk9ezZfffVVt7/fiBEjWLZsGfPmzcNisbS8f/vtt7NkyRI++eQTPv74Y84999xufy/pOU899RRPPPEEQ4cO5e9//zuTJ09ud8xXX33Fv//97zbvLVu2jH//+9/Ex8fz9NNPM2bMmDbtH3/8Mb/97W+5/fbbCQ8PZ/bs2T06DhHpe3Rdkr5K17DeoztDXmTbtm3cdtttnHbaaUyaNIkzzjiD3//+9xQWFrY5rvUc4dzcXH71q18xa9YsUlJSuOSSS1izZk2XY7j00kvJz8/nm2++afN+VVUVq1evZv78+URFRTnta7fbef755zn//PNJSUlhzpw5PPjgg1RWVjqdTzx79mzOOuusNhccgJiYGK644goANm7c6FL8drudl156iUWLFrXE8MADD1BZWdlhnw8//JArr7ySadOmkZqaygUXXMA///lP6uvrO+yTlZXFzTffzMyZM0lLS+NHP/oRX3/9dbvjWv9bdbZPV8cBkJGRwf/8z/8wZ84cJk2axOmnn85Pf/pTPvzwwxP266rc3FyWLVuGr68vy5cvd5oIAcydO7dNMpSTk8NTTz2Fr68vTz31VLuLCMA555zDXXfdhdVq5f7778dms/XIGESkY7ouGXRd6j/Xpd6ga1jvUjLkJd566y1+9KMfsW7dOk455RSuvvpqJk2axBtvvMHixYvJz89v1ycvL48lS5aQl5fHRRddxPnnn8++fftYunQp69ev71IcF154IYGBgbzxxhtt3n/vvfeoqanh0ksv7bDvAw88wJ/+9CcqKyu5/PLLueCCC/jmm2+47rrraGxsdCkOX19fAJenPvzxj3/kD3/4A+Xl5Vx++eUsWrSIr7/+mmuvvZaGhoZ2x//5z3/mV7/6FQcPHuTCCy/kxz/+MXa7nb/+9a/89Kc/ddonNzeXK664grKyMi6//HLOPfdcduzYwQ033NDhL3dX+7g6DoDXX3+dK664gs8++4wpU6bw05/+lDPOOIPi4mJWrFjh0s+xs95++20aGxtZuHAhycnJJzzWz8+vTb+mpiYWLFjQMrfbmSVLlhATE8P333/v8h8gItI9ui61petS/7gu9QZdw3qZXQa8AwcO2CdOnGhfuHChvbCwsE3bf//7X/u4cePsN910U8t7OTk59uTkZHtycrL9iSeeaHP8V199ZU9OTrZff/31LsWQnJxsnzNnjt1ut9t/97vf2SdOnGg/evRoS/vFF19sP/PMM+1Wq9V+xx132JOTk+3ffPNNS/umTZvsycnJ9oULF9rLy8tb3q+vr7dfeeWV9uTkZPu8efM6FUtjY6P9ggsusCcnJ9u/+uqrTo9hy5Yt9uTkZPtZZ51lLy0tbXm/rq7Oftlll7WLYfPmzS3vFRcXt/n+N9xwgz05Odn+j3/8o+X91j/3hx9+uM33zsjIsE+YMME+ffp0e2VlZbf6uDoOu91u37dvn33ChAn2GTNm2Pfu3dvuZ5Ofn3+Sn17XXHXVVfbk5GT766+/3qV+r7322kmPvf322+3Jycn2ZcuWdTVMEXGRrktt6brUf65Ldru9ZXyPP/54h49p06bZk5OT7Tk5OS6fX9ew3qU7Q15gxYoVNDY28r//+7/Exsa2aZs9ezbz58/n888/p6qqqk1bfHw8N910U5v35syZQ1xcHJmZmV2OZ8mSJTQ2NvLOO+8AsGvXLnbs2MEll1zSYRWdlStXAnDTTTcRFhbW8r6fnx+33367S9//L3/5C3v37mXu3LnMmTOn0/0cC2xvvPFGIiIiWt739/d3GoPj+JtuuqnNFAsfHx/uvPNOzGYzb775Zrt+oaGhLF26tM17KSkpXHjhhVRUVPDpp592q4+r4wDjv6GmpiZuvvlmp7frhw4d6rRfdxUXFwO4XC3H0W/IkCEnPdZxzJEjR1yMTkS6SteltnRd6j/XpdaefPLJDh8nm953IrqG9S4VUPAC6enpAGzYsIGMjIx27UePHsVms/H9998zadKklvfHjx/fbl4zGP/jOc4J8MQTT7Q75uKLL+6wlOT06dMZOXIkb775Jtdddx2vv/46ZrOZxYsXdziGXbt2ATBt2rR2bWlpaZ2eVvDcc8/x7LPPMnLkSB555JE2bScbx86dOwGYOXOm0zEdH4Mj5lmzZrU7ftSoUQwZMoTc3FwqKiraXEgnTJhASEhIuz4zZ85k5cqV7Ny5k4svvrhNmyt9XB0HHPtvyJWL9PFc/e8EaKmqZDKZXPpervRzHNP62KeffppPPvmEgwcP4ufnR1paGrfffvtJp+qJSOfounSMrkv967rUWmdKax+vM9eX7l7DxDVKhrxAWVkZAM8888wJj6upqWnzdWhoqNPjHKVIHZ588sl2x8ycOfOEv0wuvfRS/vznP7N+/Xref/99Tj31VOLi4jo83vEJi7NFrBaLpc0nSR15/vnneeihh0hKSuL5559n0KBBbdpPNg5XY3AcHx0d7TSemJgY8vPzqaysbHPR6eh4x/vHf1Lqap+u/Cwdfbqzn0FX/juJjY3lwIEDFBQUuPS9YmJiOt3PcUxMTEzLexs3buTKK68kJSUFu93O448/znXXXccHH3zQqf/WROTEdF0y6LrUNq7+cF3qrs5cX7p7DRPXKBnyAo5PZrZs2eL0U5ruOtEnIx25+OKL+dvf/sadd95JRUXFCReowrExHD16lKCgoDZtVquVsrKyE/5CfOaZZ3j00UdJTk7mueeec/oL92TjcFyEOxuD4/ji4mKGDRvW7nxFRUVtjnNw3B4/nuN9Z/+GrvRxdRyt+xQWFnb5v6Gu/Hcybdo0vv32W7799luWLFniUr8NGzbw3//+94T9rFYrGzZsAGDq1Kkt7x//B9qjjz7K9OnT+e6777QLuogb6Lqk61J/vS51V2euL929holrtGbIC6SlpQGwefNmzwbSSlRUFGeeeSYFBQVERkayYMGCEx4/fvx4wLhwHi89PZ2mpqYO+z799NM8+uijjB8/nueff77DEqknM2HCBMB52dPNmze3i8ERs+MXVWvZ2dkUFBSQkJDQ5tM3MKYLOPuUzfF9HXF0tY+r44Bj/w11VBK1p1xyySX4+vry8ccfs3///hMe27ra0CWXXILFYuHTTz89Yb+33nqLI0eOMHLkSKfTMxyqq6ux2Wzt/q1EpGt0XdJ1qb9el9zN2fXF3dcwOTElQ17gxz/+Mb6+vjz00EMcPHiwXXtDQ4NHLkh33HEHy5YtY/ny5W3KIjvzwx/+EDA24Gy9KLGhoYG//vWvHfZbtmwZjz32GBMnTuS5555rNwXBFY65zf/85z9bpngA1NfX89hjj7U73jHX/KmnnqKkpKTlfavVyiOPPILNZnP6yWNlZSXLli1r815mZibvvfceoaGhnH322d3q4+o4AH70ox/h4+PDP/7xD7Kystq1uzqNrbMSEhK45ZZbaGxs5Oc//3mHC6S/+uorfvazn7V8nZiYyC9+8QsaGxu58cYbnV5MPvvsM/74xz9isVi47777OlwkDUbJ1/HjxzNlypTuD0pEdF3SdanfXpfczdn1xd3XMDkxTZPzAklJSfzxj3/k7rvv5oILLmDOnDmMGDGCpqYm8vPz2bJlC5GRkaxevbpX40pMTCQxMbFTx86cOZPLL7+c1157jUWLFrFw4UJ8fX1Zu3YtoaGhxMbGtls8uHLlSh5//HEsFgvTp0/nxRdfbHfe+Ph4Lrnkkk7FMG3aNK666ipefPFFLrjgAs4991x8fHxYs2YNYWFh7ebrTp06lZ/97Gf8+9//5oILLuCcc84hMDCQdevWsXfvXqZNm8b111/f7vvMmDGDN998k4yMDKZOnUpRUREffvghNpuNBx980Ol0AFf6uDoOgNGjR3Pfffdx33338cMf/pD58+czYsQISktLyczMJCQkxOnP1x1uvPFGmpqaWLZsGZdeeilTpkxh0qRJBAcHU1xczObNm9stsga49dZbqa2t5T//+Q8XXXQRp59+OqNHj6apqYmtW7eybds2AgIC+Mtf/nLCnbsfeeQRtmzZwooVK5wu3BYR1+m6pOtSf74uucuJri/uuobJySkZ8hIXXXQR48aN4z//+Q8bNmzg66+/JigoiNjYWM455xzOO+88T4d4Uvfffz+jRo3i1Vdf5dVXXyUiIoKzzz6b22+/nblz5zJ8+PA2x+fm5gLGJ17PP/+803POnDmz0xcdgLvvvpsRI0bw8ssvt4vhoosuanf8b3/7WyZMmMBLL73EqlWraGpqYtiwYfzP//wPP/3pT51+8piQkMADDzzA//t//49XX32VhoYGJkyYwNKlSzusmuNqH1fHAXDZZZcxZswYnn32WTZu3MiaNWuIiIhg7NixLq3n6YpbbrmF8847j1deeYUNGzbw9ttv09DQQEREBOPGjeNnP/tZu7jNZjN33nkn559/Pi+//DKbNm1i/fr1WCwW4uPj+elPf8o111xzwtKlDz30EB988AHPP/98p/9AEpHO0XVJ16XujAM8e13qrpNdX9xxDZPOMdkd9ftE+qnvv/+ec845h0WLFnV4O32gys3NZcGCBVx88cU8/PDDng5nQPm///s/PvzwQ1588UWSkpI8HY6I9CO6Lum6dCK6vvQtujMk/UZRURFRUVFt5sXW1tbypz/9CYCFCxd6KjQZYO6//37effddli1bRlhYWEuFpaCgIIKDgz0cnYj0Fbouiat0fel7lAxJv/H888/zwQcfMHPmTGJiYiguLmb9+vUUFBRw5plncs4553g6RBkgVqxYAcC1117b5v1bbrmFW2+91QMRiUhfpOuSuErXl75HyZD0G6eddhr79u1j/fr1lJaWYrFYGDlyJFdffTVXX321dl8Wt/HE3hMi0v/ouiSu0vWl79GaIRERERER8UoqSi4iIiIiIl5JyZCIiIiIiHilAbNmyGaz0dTUhNls1hxdEZFeZLfbsdls+Pj4aBf04+jaJCLiGZ29Ng2YZKipqYnMzExPhyEi4rVSUlKcbtjozXRtEhHxrJNdmwZMMuTI+FJSUrBYLC73t1qtZGZmdrl/f6fxa/wav8bf3d+fuivUnq5N3aPxa/wav8bf09cmjydDGzZs4Oqrr3ba9tprr5GWltap8zimH1gslm79B9Pd/v2dxq/xa/waf1dpGlh7uja5h8av8Wv8Gn9Xneza5PFkyOH2229n1qxZbd4bM2aMh6IREREREZGBrs8kQ8OHD+/0XSAREREREZHu0gRvERERERHxSn3mztCDDz7I7bffTkBAAFOmTOGmm25i+vTpLp/HarV26fs7+nW1f3+n8Wv8rZ+9jcbfvfF7689NRET6P48nQ6GhoVx99dXMmjWLiIgIsrOzeeaZZ7j66qt5+umnmTNnjkvn624JU28vgarxa/zeTOP37vGLiIj38XgyNGHCBCZMmNDy9fTp0zn77LO58MIL+fOf/+xyMqTypV2j8Wv8Gr/G393fnyIiIv2Nx5MhZ8LCwjjzzDN59dVXqaurIyAgoNN9Vb60ezR+jV/j1/hFRES8RZ8toGC32wHtWyEiIiIiIj2jTyZD5eXlfPHFF4wfPx5/f39PhyMiIiIiIgOQx6fJ/frXv2bo0KFMmjSJyMhIsrOzefbZZzl69CgPP/ywp8MTEREREZEByuPJ0NixY/nwww959dVXqampITw8nGnTpvHoo4+Smprq6fBERERERGSA8ngy9POf/5yf//znng5DRERERES8TJ9cMyQiIiIiItLTlAxhVK67461M3txZ5elQREREAMgvq+X657ew5XC9p0MRERmwlAwBlfVNvPldHq/uqKKqvsnT4YiIiLD1UBlf7C3i7V36oE5EpKcoGQLCAnwZGh6AHcjMK/d0OCIiIiQPDgHgYFkTVpvdw9GIiAxMSoaapSWGA5CRq2RIREQ8b1RMCEF+FuqtdrKKdHdIRKQnKBlqlpoQAUB6jpIhERHxPIvZxMS4MAC251d4OBoRkYFJyVCztATjztC2nDLPBiIiItIsJd5IhjSFW0SkZygZajYpPgwzUFhZT0F5nafDERERISXe+KAuM093hkREeoKSoWZBfj4khht70KbnlHo4GhERkWPJ0M78CpqsNg9HIyIy8CgZamXMIF8AtmqqnIiI9AHDBwUR5GOivsnGviMqoiAi4m5KhloZE2UkQ1o3JCIifYHZbGJkpHFtylS1UxERt1My1IrjzlBmbrn2dBARkT4hKdKYwp2RV+bZQEREBiAlQ60khPkQ7GehusHKfk1HEBGRPmD0IN0ZEhHpKUqGWrGYTExqXqyqIgoiItIXJDVPk9t1uJKGJhVREBFxJyVDx5mc4EiGyjwbiIiICDA42EJYgA8NVht7Cys9HY6IyICiZOg4aYmOZEjTEURExPNMJlNLie0MTZUTEXErJUPHmZwQAcCeggpqGpo8G4yIiAiQEh8GQKaKKIiIuJWSoeMMCQ9gcJg/NrsWq4qISN/guDOUmafrkoiIOykZciItMQKAbbllHo1DREQEjiVDewoqqWu0ejgaEZGBQ8mQE2mJkYCKKIiISN8QFxHAoGA/Gq129hSoiIKIiLsoGXJisqOIwqEyzwYiIiLCcUUUNFVORMRtlAw5kZoQgckE+eV1HKmo83Q4IiLiYW+88QZjx45lypQpHoshtXnrh0xN4RYRcRslQ06E+PswJjYE0FQ5ERFvV1hYyCOPPEJsbKxH41B5bRER91My1AFHEQUlQyIi3u2+++5j+vTpnHbaaR6NI6X5ztC+I1XUNqiIgoiIOygZ6oCjiIIqyomIeK933nmHjRs3cv/993s6FIaEBRAd4o/VZmfn4QpPhyMiMiD4eDqAvspRRCEjpxybzY7ZbPJwRCIi0puOHj3Kn/70J379618zZMiQbp3Lau3anRxHP8dzSnwYn+8pYltOKWkJYd2KqT84fvzeRuPX+Fs/e5vujr+z/ZQMdWDs4FACfS1U1jeRVVTFmMGhng5JRER60QMPPMDIkSO58soru32uzMxMt/SPsdQA8FXmQSYHlnY7rv6iuz+//k7j1/i9WU+PX8lQB3wsZlLiw9n4fQnpOWVKhkREvMjHH3/M2rVrWbVqFSZT92cGpKSkYLFYXO5ntVrJzMxs6V8ScITXd35HXq0PaWlp3Y6rrzt+/N5G49f4Nf6uj9/R/2SUDJ3A5MRjydCS6YmeDkdERHpBdXU1Dz74IFdddRWxsbFUVBjrcxobGwGoqKjAx8eHoKCgTp/TYrF0648ZR//JzetZ9xdVUddkJ9jfOy7j3f359Xcav8av8ffc+L3jt2gXGUUUDqqinIiIFyktLaW4uJhnn32WZ599tl37jBkzWLBgAf/4xz96PbbYsACGhAVQUFHHzsMVzBgxqNdjEBEZSJQMnUDasAgAdhdUUtdoJcDXe7NyERFvERMTwwsvvNDu/eXLl7Np0yb+9a9/ERkZ6YHIDCkJ4RTsrCMjt1zJkIhINykZOoG4cKOMaXFVPdvzypmui46IyIDn7+/PrFmz2r2/cuVKLBaL07belBofzqc7C8nU1g8iIt2mfYZOwGQyafNVERHpUxybr2bklXs4EhGR/k/J0ElMaZ4qp2RIRMS7Pfzww2zdutXTYZASbyRDB4qqqaxr9HA0IiL9m5Khk5icEAEoGRIRkb4hKsSf+IhAALbnVXg4GhGR/k3J0EmkJoZjMkFuaS3FVfWeDkdERKTl7lBmXplnAxER6eeUDJ1EWIAvSTEhAGzT3SEREekDWtYN5WrdkIhIdygZ6gRNlRMRkb4kNcFxZ0jJkIhIdygZ6oQ0FVEQEZE+xDFNLvtoDeU1KqIgItJVSoY6YUpzee1tOWXYbHbPBiMiIl4vIsiPYYOCAN0dEhHpDiVDnTB2SCj+PmYq6po4eLTa0+GIiIi02m+ozLOBiIj0Y0qGOsHXYmZS85SE9ENlng1GREQESG2+Lm3XnSERkS5TMuTQVA/2jqfApTmmyuWW9U48IiIiJ6CKciIi3efj6QD6BGsj5ienMtYnCqZ85fSQyc3JkIooiIhIX+CYsZBbWktJdQODgv08HJGISP+jO0MA1kaoKiSkdDtU5Dk9xFFEYdfhCuoarb0YnIiISHthAb6Mig4GVERBRKSrlAwB+AVB7ETjde5mp4ckRAYSFexHo9XOzsMVvRiciIiIc46pcpmawi0i0iVKhprZE2YAYMrb5LTdZDIdmyqnIgoiItIHOPYb0rohEZGuUTLk4EiGcp0nQ6AiCiIi0rekJkQAmiYnItJVSoaa2eOnGy8OZxiV5ZxIUxEFERHpQybGhWEyweHyOo5U1nk6HBGRfkfJkMOgUTT5hmGy1kNBptNDJjd/Apd9tIaS6oZeDE5ERKS9YH8fkmJCAO03JCLSFUqGHEwmqiInGK87mCoXHnSsco+myomISF+QqnVDIiJdpmSolWpHMpSzscNjVERBRET6kmMV5ZQMiYi4SslQKy3JUAfltUHrhkREpG9JbU6GMjRNTkTEZUqGWqmOHIfdZIbyQ1BZ4PSY1hXl7HZ7L0YnIiLS3oSh4ZhNUFRZT2GFiiiIiLhCyVArNp8giBlvfNHBVLlxQ0Pxs5gpq2kk+2hNL0YnIiLSXqCfheTBoYDWDYmIuErJ0HHsCc0ltjsoouDvY2FCXBigqXIiItI3ODZfzVRxHxERl/S5ZOiNN95g7NixTJkyxTMBNG++2lEyBFo3JCIifYvWDYmIdE2fSoYKCwt55JFHiI2N9VgMLZuv5m8Fa6PTY5QMiYhIX5LSvA9eZm651rOKiLigTyVD9913H9OnT+e0007zXBBRoyEgAprqOtx81ZEM7cyvoL7J2nuxiYiIODFuSCg+ZhNHqxvIL1cRBRGRzuozydA777zDxo0buf/++z0biMncaqqc8xLbw6OCiAjypcFqY/fhyl4MTkREpL0AXwtjhxhFFLRuSESk83w8HQDA0aNH+dOf/sSvf/1rhgwZ0q1zWa1du1Pj6Ge1WjHFT8O8/1NsORuwT7/e6fGp8eF8ta+Y77JLmBQX2uV4+4rW4/dGGr/G3/rZ23R3/N76c+trUuLD2ZFfQUZuOedOGurpcERE+oU+kQw98MADjBw5kiuvvLLb58rMdD61zZX+ofWDSAYaD3zD9vR0p8cN8a0F4POMg6QGlnbre/Yl3f359Xcav8bvzbx9/P1dSkI4r27KIVNFFEREOs3jydDHH3/M2rVrWbVqFSaTqdvnS0lJwWKxuNzParWSmZlp9G8chf3bO/CvOUza6DgIaV/QoSywiNd3biGnxkxaWlq34/a0NuPvws+vv9P4NX6Nv+vjd/QXz0qNjwCMvYbsdrtbrqkiIgOdR5Oh6upqHnzwQa666ipiY2OpqKgAoLHRqOJWUVGBj48PQUFBnT6nxWLp1h8zFosFi18kxIyDol1YDn8H4xa1O27K8EEAHCyuoareRniQb5e/Z1/S3Z9ff6fxa/wav/eOv79LHhKCn8VMeW0jOSW1DIvq/LVTRMRbebSAQmlpKcXFxTz77LPMmDGj5fH+++9TU1PDjBkz+M1vfuOZ4E6y+eqgYD+GN19o0rVYVUREPMzfx8K4ocYa1oy8Ms8GIyLST3j0zlBMTAwvvPBCu/eXL1/Opk2b+Ne//kVkZKQHIgMSZ8LWFyHnxJuvZh+tYVtOGWckx/RicCIiIu2lxIeTkVtOZl45F6TGeTocEZE+z6PJkL+/P7NmzWr3/sqVK7FYLE7bek3CTOM5/zuwNoGl/Y9qckIE76Tna/NVERHpE1ITwnl5g7H5qoiInFyXkqF9+/bx3XffUVhYSF1dHZGRkYwePZoZM2YQEhLi7hg9IzoZ/MOhvhyO7IChk9sdkjYsAoD0nDItVhUREY9LaS6ikJlXjs1mx2zWdUlE5EQ6nQyVl5fz2muv8dprr5Gfn4/dbm9/Mh8f5s6dy1VXXcXs2bO7HNTDDz/Mww8/3OX+bmE2Q8I0yFoLORudJkMThobhazFRUt1AbmktiYO0WFVERDxnzOAQ/H3MVNY1kV1Sw8joYE+HJCLSp3UqGXrhhRdYtmwZAOeffz4zZ85k4sSJDBo0CH9/f8rLy8nJySE9PZ01a9bw05/+lFNPPZXf//73DB8+vEcH0KMSZhjJUO5mmHlDu+YAXwvjh4aRkVvO1pwyJUMiIuJRvhYzE+LC2HqojIzcMiVDIiIn0alqci+++CJ33XUXX3/9Nffddx/nnXcew4YNIyQkBF9fX6Kjo5kyZQrXXXcdL730Eh9//DGxsbF89NFHPR1/z3KsG8rd2OEhaYkRAKQfKuv5eERERE4iNT4c0LohEZHO6NSdoY8++ggfn84vLxo2bBgPPfQQVqu1y4H1CQnTjOeSA1B9FIKj2h2SlhjBC+uz2aby2iIi0gekJEQA2WTkKRkSETmZTt0Z2rdvX5dO3u837wuMNAopQIf7DU1uvjO0Pa+cRqutlwITERFxLjXBuDO0I68cq639+l4RETmmU8nQxRdfzCWXXMIrr7xCZWVlT8fUt5xkqtzIqGDCAnyob7Kxp8DLfjYiItLnJMWEEOhrobrBysHiKk+HIyLSp3UqGfrFL35BSUkJDz74IKeffjq/+c1v+Pbbb3s6tr4hYbrx3MGdIbPZ1HJ3aKv2GxIREQ+zmE1MjAsDIEPrhkRETqhTydCvfvUrPv/8c5YvX868efP45JNPuO6661iwYAH/+Mc/OHz4cE/H6TmJzXeG8r4Dm/M1UCqiICIifUlK81Q5JUMiIifWqWQIwGQyMXfuXP72t7/x9ddfc/fddxMeHs7jjz/OWWedxfXXX8/q1atpbGzsyXh7X8w48AuFhio4ssvpIY5kSEUURESkL3CsG8pUEQURkRPqdDLUWlhYGD/5yU94++23WbVqFVdeeSU7d+7kV7/6FXPnznV3jJ5ltkD8VON1B+uGHNPksoqqqKgbYMmgiIj0OynxEQDszK+gScV9REQ61KVkqLVx48bxgx/8gPnz5wNQVlbW3VP2PY6pcrmbnTZHh/iTEBmI3Q4ZOfoUTkREPGtUdDDBfhZqG61kFVV7OhwRkT6r85sHHaekpIR3332Xt956i/3792OxWJg3bx6XXnqpO+PrGxJmGM85J958Nbe0lm25ZZw+JrqXAhMREWnPbDYxKT6cDQdLyMgtY+yQUE+HJCLSJ7mUDNlsNr766iveeustvvjiCxobGxkxYgS33347F198MdHRAzQJcCRDR/dBTQkEDWp3SFpiBO9nHGariiiIiEgfkJpgJEOZeeUsmZ7o6XBERPqkTiVDBw8e5K233uKdd96huLiYgIAALrjgAhYvXsz06dN7OkbPCxoEg5KgJAvytsCYs9sd0lJRLqcMu92OyWTq5SBFRESOSUmIAFRRTkTkRDqVDJ133nkApKamcuutt7Jo0SKCg4N7NLA+J3GmkQzlbHSaDE2KD8diNlFcVU9+eR3xEYEeCFJERMSQGm9UlNt5uIJGqw1fS7eXCYuIDDidSoauueYaLr30UsaMGdPT8fRdCdNh24oON18N8LUwbkgoO/IrSD9UpmRIREQ8anhUEKEBPlTWNbG3sJKJceGeDklEpM/p1MdEd911l9NE6MCBA2zZsoWamhq3B9bnJDg2X90CNudlSo9NlSvtpaBEREScM5lMx/Yb0lQ5ERGnunTPfNWqVcydO5dFixbxk5/8hIMHDwLwy1/+ktdff92tAfYZsRPANxjqK6B4j9NDWjZfVXltERHpAyY1T5XL0OarIiJOuZwMffTRR9x5551MmDCBe++9F7vd3tI2ceJEPvroI7cG2GdYfI5tvtpBiW1HMpSZV65N7kRExONSmzdf1Z0hERHnXE6Gli9fziWXXMI///lPLr/88jZto0aNYv/+/W4Lrs9xlNjOdZ4MJcWEEOrvQ22jlT2Flb0YmIiISHuOaXK7Cyqob7J6OBoRkb7H5WQoKyuLRYsWOW2LiIigrKysuzH1XS3J0GanzWazidRE48KjqXIiIuJpCZGBRAT50mi1s6dAH9KJiBzP5WQoMDCQykrnv1ALCwsJDx/A1WocyVDRbqgtc3rI5OZ9HVREQUREPM1kMpHiWDekqXIiIu24nAxNmTKFl19+uc1aIYe3336bmTNnuiWwPikkBiJHGK/ztjg9pPXmqyIiIp7mmCq3XUUURETacTkZWrp0Kenp6Vx66aW8+OKLmEwmPvnkE2688UY2b97MjTfe2BNx9h2OEtsd7DfkSIb2Hamiqr6pl4ISERFxLqW5iILuDImItOdyMpSSksK//vUvampqePjhh7Hb7Tz99NMcPHiQ5cuXk5yc3BNx9h2JJ06GYsMCiAsPwG6HjNyy3otLRETECcedob2FldQ1qoiCiEhrPl3pdMopp/DRRx9x6NAhiouLiYyMZOTIke6OrW9KmG48524yNl81t88n04ZFkJ9ZQHpOGacmRfdygCIi0l27du3ir3/9K3v37qWkpISAgABGjhzJlVdeyUUXXeTp8FwyNDyA6BA/iqsa2HW4ginDIj0dkohIn9GlZMhh2LBhDBs2zF2x9A+DJ4FPINSVw9F9EDO23SFpiRF8mFnANq0bEhHplyoqKhgyZAiLFi1i8ODB1NbW8t577/G73/2OvLw8br75Zk+H2GmOIgqf7ykiM69cyZCISCudSoY+/PBDzj//fJdOXFhYSG5uLtOmTetSYH2WxRfipsCh/xp3h5wkQ8cqypX1bmwiIuIWs2bNYtasWW3emzdvHrm5ubz++uu9lww1VIGTgkWuSkmI4PM9RVo3JCJynE6tGXrwwQe56KKLeOONN6iqqjrhsdu3b+eBBx7gnHPOYffu3W4Jss9JbC6xneN889WUhHAsZhOFFfUcLq/txcBERKQnRUZGYrFYeueb5W7G/OdRxO15ttunSm0ur52pZEhEpI1O3Rn69NNPeeKJJ/jjH//Igw8+yIQJE5gwYQJRUVH4+flRXl5OTk4O6enpFBUVMWbMGJ544gnmzJnT0/F7xkk2Xw3y8yF5cCi7DlewLaeMoeGBvRiciIi4i81mw2azUVFRwUcffcTXX3/Nvffe6/J5rNYuFC6oKcViayIq5xOsTd2rTjphaAgA+45UUllbT5Bft2bJ9xrHz61LP78BQOPX+Fs/e5vujr+z/Tr12zA0NJT//d//ZenSpbz99tt8+eWXrFq1itraY3c9EhMTmTNnDhdeeCGnnHJKl4LuNxzltY/shLoKCAhrd0haYji7DlewNaeMcycN7eUARUTEHe6//35ee+01AHx9fbn77ru54oorXD5PZmamy31MTUGkmX3xqytix/r3qQsd4fI5WosMMFNaZ+Pdr75jXLRft87V27ry8xtINH6N35v19Phd+mgoPDyc6667juuuuw6AyspK6urqiIiIwNfXt0cC7JNCB0PEMCg7BPnfwagz2x2SlhjBio05pB8q6/XwRETEPW688UaWLFlCSUkJa9eu5Q9/+AO1tbVcf/31Lp0nJSWla9Prdp8GB79grE8eprQfut6/lamZW1izu4jaoFjS0kZ061y9xWq1kpmZ2fWfXz+n8Wv8Gn/Xx+/ofzLduk8eGhpKaGhod07RfyXMMJKhnE0dJENGtZ7MvHKsNjsWs6mXAxQRke6Ki4sjLi4OgDPOOAOAxx57jIsvvphBgwZ1+jwWi6VLF3Nb0jw4+AWWg19gOv02l/u3lpoQyZrdRezIr+x3f1h19ec3UGj8Gr/G33Pjd3nTVWnmmCqX67yIwujYEIL9LNQ0WNl3pLIXAxMRkZ6SmppKU1MTOTk5vfL97KMWGC+y/wuNdd06l2PzVW0ILiJyjJKhrmoporDJadlTi9lESvOFR1PlREQGhg0bNmA2m0lMTOydbxg7ngb/KExNtXBofbdONam5otyB4mqq6rtXkEFEZKDoH+Vk+qIhKeATALWlcDQLoke3OyQtMZJvD5SwLbeMK2Z62ea0IiL92L333ktISAgpKSlER0dTWlrK6tWr+fDDD7n++utdmiLXLSYTFTHTic79GLLWQtK8Lp8qJtSfuPAA8svr2JFXzqxRUW4MVESkf1Iy1FU+fjA0DXK+Ne4OOU2GjE/hturOkIhIv5KWlsbbb7/NypUrqaysJCgoiHHjxvHoo49y0UUX9WosbZIh/tCtc6UkhJNfXkemkiEREUDJUPckTG9OhjZC2o/aNTuKKOwtrKSmoanf7OsgIuLtFi9ezOLFiz0dBgCVMdOMF4XbobIAQod0+VypCRF8vKOQDG2+KiICdGHN0B/+8AcOHDjQE7H0P4mOIgqbnDYPCQ9gSFgANrt2/RYRka5p8o/APmSy8UXW5906V0rzuqHMPF2TRESgC8nQqlWrWLRoEddddx2fffYZdifFA7yGo4hC4Q6or3J6yOTmqXLpOWW9FJSIiAw09qT5xoustd06jyMZOlhcTXltY3fDEhHp91xOhtatW8c999xDUVERt9xyC/Pnz2f58uWUlJT0RHx9W1gchCWA3WZsvuqEY6rcNpUyFRGRLrKPai6ckLUWbLYunycy2I/EQYEA7NDdIRER15OhoKAgfvzjH/P+++/zn//8h4kTJ/L3v/+dM888kzvvvLNTO70OKAnTjecOpsq13BlSEQUREemqxJngGww1xVDYvetsanwEABlKhkREurfP0OzZs3nyySdZs2YNU6ZM4Z133uGyyy5jyZIlrF3bvVv5/YZj3VCO82QoNSECkwnyy+s4UtG9DfNERMRLWfxg5Bzj9f413TqVY78hrWUVEelmMlRXV8cbb7zBjTfeyIYNG0hKSmLp0qVYrVaWLl3KsmXL3BVn35XQqoiCk/VTIf4+JMeGAlo3JCIi3ZC0wHju5rqh1OYNwTPyyroZkIhI/9elZOjQoUM89NBDzJ07l/vuu48hQ4bw7LPP8v7773PLLbfw9ttvc8MNN/DSSy+5O96+Z2iq8YldTTGUHnR6iIooiIhItzmKKBz6tsOiPZ0xKc64JuWU1FJa3eCOyERE+i2Xk6Gf/exnnHvuubz55ptcdNFFrF69mn/+85+ceuqpbY6bN28epaWlbgu0z/Lxh6HNJU9zNzs9xFFEQcmQiIh0WVQSRAwDWyNkf9Pl04QH+TIiKghQiW0REZeToZycHO666y6++uor7r77boYNG+b0uDFjxvDCCy90O8B+wVFiO2ej0+a0xAgAMnLLsdm8uBS5iIh0ncl07O5QN9cNpSREAEqGRERcToY+/vhjrrrqKoKDg094XEhICDNnzuxyYP2KIxnKdZ4MJQ8OIdDXQlV9E1lFXZ/aICIiXs5d64ZUREFEBOhmAQVp5kiGCrZDQ027Zh+LuWWju62aKiciIl01ci6YLHB0H5Qd6vJpUpqLKOjOkIh4Ox9XO8yfPx+TyeS0zWw2ExoaSkpKCldffTVJSUndDrBfCE+A0KFQeRjyt8KI09odkjYsgo3fl7Atp4zLpid6IEgREen3AiOM/e1yNhh3h6Zd26XTTIwLw2SCvLJaiqvqiQ7xd2uYIiL9hct3hmbOnIndbqewsJD4+HgmT55MXFwchYWFWK1Whg4dyqeffsrixYu9ZwNWk6nVVLkONl9tnp+tIgoiItItblg3FBrgy6hoY7q77g6JiDdzORk6/fTT8fPz49NPP+WFF17gscce48UXX+STTz7Bz8+Ps846i48//pgRI0bwxBNP9ETMfdNJkqG0YREA7C6opLbB2ktBiYjIgONYN3TwS7A2dfk0qY4iClo3JCJezOVk6J///Ce33norQ4cObfN+XFwcS5cuZfny5YSGhnLttdeSnp7urjj7vsQTb74aFx5ATKg/VpudHfm68IiISBfFTYGAcKgrh/zvunwax1rWDCVDIuLFXE6GsrOzCQkJcdoWFhZGXl4eAPHx8dTW1nYvuv5k6GQw+0BVodNFrSaTSVPlRESk+yw+MOpM43U3qsqlthRRKOt+TCIi/ZTLyVBcXBwrV6502vbWW2+13DEqKysjPDy8e9H1J76BMCTVeN3BVLkpzVPlVFFORES6xQ3rhibEhWE2QWFFPYUVdW4KTESkf3E5Gbr++utZvXo1V1xxBc899xzvv/8+zz33HFdccQWffvopP/vZzwDYsGEDkyZNcnvAfdrJ1g01b766TcmQiIh0hyMZytsMtWVdOkWQnw+jY42ZHlo3JCLeyuXS2pdddhl2u50nnniChx9+uOX96OhoHnjgAZYsWQLAjTfeiJ+fn/si7Q8SZ8LGpyHH+earKQnhmEyQW6pSpiIi0g0RwyBqjLHf0MEvYcJFXTpNSnwEewuryMgr56wJg90cpIhI3+dSMmS1Wjl06BDnnXcel112GQcOHKCsrIyIiAhGjRrVZv+h6Ohotwfb57VsvpoBjbXG1LlWwgJ8SYoJYf+RKtIPlenCIyIiXTd6gZEMZa3tcjKUmhDOW9/lkplb5t7YRET6CZemydntdhYtWsTWrVsxmUwkJSUxbdo0kpKSOtyI9WR27drFz3/+c84880xSU1OZOXMml19+Oe+8806XzudREcMgOBZsTXB4m9NDWqbK6cIjIiLd0bJuaK3TKqadkdJSRKECexfPISLSn7mUDPn4+BAdHe3WX5gVFRUMGTKEX/3qVyxfvpxHHnmE+Ph4fve73/GPf/zDbd+nV5hMbUtsOzG5ORlSRTkREemWEaeD2RfKD8HRrC6dYsLQMCxmE8VV9RSoiIKIeCGX1wwtWrSIVatWceaZZ7olgFmzZjFr1qw2782bN4/c3Fxef/11br75Zrd8n16TMB12v9/huqEprZIhm82O2dy1O2oiIuLl/IJh2Cnw/TrIWgPRo10+RYCvheTBoew6XEFGbjlDwwNP3klEZABxORkaN24cH374IVdffTULFy4kJiam3RS5hQsXdjuwyMhIjh492u3z9LqE4zZfPe5nM3ZIKP4+Zirrmjh4tJqkGOd7NomIiJzU6AXNydBamPWLLp0iNT6cXYcryMwt55yJQ9wcoIhI3+ZyMnTHHXcAUFhYyMaN7e9+mEwmdu3a5XIgNpsNm81GRUUFH330EV9//TX33nuvy+exWq0u92ndr6v9WwxJxWyyYKo8jLX0EIQntGk2AxPjwvjuUBnfZZcwYlDf+BTObePvpzR+jb/1s7fp7vi99efWJyTNh8/uh4ProKkBfFyv4pqSEM5rm3PIyFN5bRHxPi4nQy+88EJPxMH999/Pa6+9BoCvry933303V1xxhcvnyczM7FYc3e0PMC5sFMHl+8j+5k1K485s1x7n38B3wJqtWYwyFXX7+7mTO8bfn2n8Gr838/bx90uDUyA4BqqLIGcDjJzj8ilSHUUUcsuw2+1dLogkItIfuZwMzZw5syfi4MYbb2TJkiWUlJSwdu1a/vCHP1BbW8v111/v0nlSUlKwWCwuf3+r1UpmZmaX+7dmOnwGbN7HCJ8ihqeltWs/23yY9/dtI6/OhzQn7Z7gzvH3Rxq/xq/xd338jv7iAWYzjJoHma8b64a6kAyNHRKKr8VEaU0juaW1JA4K6oFARUT6JpeTIYfKykrS09MpLS3ljDPOIDw8vFuBxMXFERcXB8AZZ5wBwGOPPcbFF1/MoEGDOn0ei8XSrT9mutsfMCrKbf435rzN4ORcU4cb49ldUEmjzVjA2le4Zfz9mMav8Wv83jv+fmv0guZkaC2cdb/L3f19LIwbEkZmXjmZeeVKhkTEq7hUWtth2bJlzJkzhxtuuIE77riD3NxcAK655hqWL1/ulsBSU1NpamoiJyfHLefrVYnNm68e3gZN9e2aEyIDiQr2o9FqZ+fhil4OTkREBpRR84znw9ugqmtTrx37DWXkat2QiHgXl5Ohl19+mWXLlnHppZfy9NNPt9lzaN68eXzxxRduCWzDhg2YzWYSExPdcr5eFTkSgqLA2gCHM9o1m0ymls1X0w+V9W5sIiIysIQONtYOARz4okunSIl3bL5a5p6YRET6CZenyb388stce+21/O53v2tXQWj48OFkZ2e7dL57772XkJAQUlJSiI6OprS0lNWrV/Phhx9y/fXXuzRFrs8wmYwS23s/gtyNx+4UtTI5MYI1u49o81UREem+pHlQmGmsG0pd4nJ3RzKUkVuuIgoi4lVcToZycnKYM8f5As3g4GAqKlyb9pWWlsbbb7/NypUrqaysJCgoiHHjxvHoo49y0UUXuRpe35E4ozkZ2uS02XFnaFtuWe/FJCIiA9PoBfDfx411Q072uDuZ5MGh+DXvgZd9tIYR0cE9FKiISN/icjIUGhpKcXGx07a8vDyioqJcOt/ixYtZvHixq2H0fQnNd4NynCdDkxMiAMg+WkNJdQODgl3fG0JERASAxFPAJxCqCqFwBwyZ5FJ3Px8z44eGsS2njMy8ciVDIuI1XF4zNHv2bP79739TU1PT8p7JZKKpqYkVK1Zw+umnuzXAfituKpjMUJELFfntmsODfBnVfLHZpqlyIiLSHb4BMKL5+pu1tkunSG1ZN6QiCiLiPVxOhm677Tby8/NZtGgRDz/8MCaTiZdeeoklS5aQnZ3NzTff3BNx9j/+IRA70Xh9kqlyWjckIiLdljTfeM5a06XuxyrKlbkpIBGRvs/lZGj48OGsWLGCUaNGsWLFCux2O++88w6RkZG88sorLXsFCccKJ+RsdNo8WcmQiIi4y+gFxnP2emioOfGxTqQ2J0Pb8yqw2ewnOVpEZGDo0qaro0eP5plnnqGhoYHS0lLCw8MJCAhwd2z9X8IM2Pws5G522ty6iIKq94iISLdEJ0NYPFTkQfZ/YcxZLnUfHRNCgK+ZqvomDh6tJikmpIcCFRHpO7q06aqDn58fgwcPViLUkYSZxnP+VmhqaNc8fmgYfhYzZTWNZB91/VM8ERGRFiZTq6lyrq8b8rGYmRjXvG5Im6+KiJfo0p2h3NxcPvroI/Lz86mrq2vTZjKZ+NOf/uSW4Pq9qCQIjITaUmP/h/hpbZr9fMxMiAsjPaeM9JwyVe8REZHuSZoPW1/s+rqh+HC2ZJeSkVvOD6fEuzk4EZG+x+Vk6IsvvuCWW27BZrMxaNAg/PzaloTWVK9WTCZjqty+T4wS28clQ2BMlXMkQ7rwiIhIt4w6EzBB0W4oz4Nw164rjnVDmXllbg9NRKQvcjkZ+utf/8rUqVP561//6vKeQl4pYaaRDOVuAm5s1zxlWATP/VdFFERExA2CBkH8VMjbYkyVm3qVS91bF1Gw2uxYzPqAU0QGNpfXDGVnZ3PDDTcoEeqshOnGc24HFeWaN1/dmV9BfZO1l4ISEZEBK6m5qlwX1g2NjA4h2M9CbaOVrKIqNwcmItL3uJwMxcXFtdlwVU4ifhpggrJDUFnYrnl4VBCRQb40WG3sOlzZ+/GJiMjA4iiicOBzsLn2IZvFbGopopChIgoi4gVcToZ+8Ytf8Oyzz1JbW9sT8Qw8AWEQO9547WTzVZPJ1LLf0DZNlRMRke5KmA7+YUbxnsPpLnd3bL6aqc1XRcQLuLxmKDMzk6NHj3L22Wcza9YsIiMj2x1zzz33uCW4ASNhBhzZaUyVG39Bu+bJCRF8saeI9JwyrvFAeCIiMoBYfGHkXNj9Puxf67R4z4kcK6KgO0MiMvC5nAy99NJLLa8/+OCDdu0mk0nJ0PESZ8J3z3e8+eqwCEBFFERExE2S5hvJUNZaOOO3LnVNiTeSoR35FTRZbfhYurUloYhIn+ZyMrR79+6eiGNgS5hhPOd9B9ZG41O7VtKaiygcLK6mrKaBiCA/REREusyxbih3I9RVGFO2O2lEVDCh/j5U1jex70gV44d2vq+ISH+jj3t6Q9QYCAiHploo3NGuOTLYj+FRQQBs04JVERHprkEjYdAosDXB9+tc6mo2m5gU71g3pGuSiAxsnUqGNm3aRHV19UmPKykp4c033+x2UAOO2QzxjhLb7YsogLH5KkD6obLeiUlERAY2x92h/Wtc7upYN5ShzVdFZIDrVDJ09dVXk5WV1fK1zWZj0qRJ7Ny5s81xOTk53Hvvve6NcKBInGk85zjfb8iRDG1T9R4REXGHbuw3dKyinO4MicjA1qlkyG63t/u6qamp3ftyAo51Qx3cGXKU107PKdPPVUREum/E6WD2gdKDUHLApa6p8REA7DpcSUOTrQeCExHpG7RmqLc4SpuWHoSqonbNE4aG4WsxUVLdQE6J9nASEZFuCgiDxFnGaxfvDiUOCiQ80NgQfG+hNgQXkYFLyVBvCYyAmHHG67z2JbYDfC1MaK7Yk66pciIi4g5J84zn/a4lQyaT6di6IU2VE5EBTMlQb0poLqLQwbqhySqiICIi7uRYN3TwK2NrBxc49hvKVBEFERnAOr3P0IEDB7BYLABYrdaW944/Rk4gYSZsfemEFeVeWJ9Nek5pLwcmIiID0tDJEDgIakuMa8/wUzvd1ZEM6c6QiAxknU6G7rrrrnbv/e53v2vztd1ux2QydT+qgarN5qtNYGn743dUlNueX0Gj1Yavdv0WEZHuMFuMqXLb3zLWDbmSDDVPk9tTUEldo5UAX0tPRSki4jGdSoYeeuihno7DO8SMA/8wqK+AIzthaGqb5hFRwYQF+FBR18Tuw5UtFyIREZEuS5pvJEP718D8ezrdLT4ikEHBfpRUN7CnoLJlKreIyEDSqWTo4osv7uk4vIPZbFSVO/C5MV3huGTIbDYxOTGCdfuKSc8pVTIkIiLd59h8NX8r1JRA0KBOdTOZTKTEh/Pl3iIy8sqVDInIgKR5WL3tJPsNTWnZb0hztEVExA3C4iBmPGA3PoxzQWrL5qtl7o9LRKQP6PSaIXGTxJnG80k3X1URBRERT1m/fj3vvvsuW7dupaCggNDQUCZNmsTSpUuZNGmSp8Nz3egFULTLWDc0aXGnu6mIgogMdLoz1Nscm68e3W9MVziOIxnKKqqmos61MqgiIuIeK1asIC8vj6uvvprly5dz9913U1JSwuWXX8769es9HZ7rWu83ZLd3ultqQgQA+45UUdtg7YHAREQ8S3eGelvQIIgaA0f3Qe5mSF7Ypjk6xJ+EyEByS2vJyCnn9DHRHgpURMR73XfffURFRbV5b86cOSxcuJCnn36a2bNneyiyLhp+Glj8oTIfivZA7LhOdRsc5k9MqD9FlfXsPFzBtOGRPRyoiEjv0p0hT2hZN+R889U0TZUTEfGo4xMhgODgYJKSkjh8+LAHIuom38BjZbWz1nS6m8lkIjVe64ZEZOBy6c5QXV0d1157Lbfddhunntr5vQrkOIkzYNsrkNNxMvR+xmEVURAR6UMqKyvZuXMnp5xyist9HZuVd7VfV/u3Zho1D/OBz7HvX4Nt5o2d7jcpLow1u4+wLbfMLXG4wp3j7480fo2/9bO36e74O9vPpWQoICCAvXv3YrFo47VuSWguopD3HdisxqZ4rRy7M1SmjWxFRPqIBx54gNraWm68sfOJhENmZma3vnd3+wMENMYxEbAf/JptWzZit/h1ql9wQx0Am7KOkJ6e3u04usId4+/PNH6N35v19PhdXjM0ZcoUMjIymDVrVk/E4x1ix4NfCDRUQtFuGDyxTfOk+HB8zCaKq+rJK6slITLIQ4GKiAjA3/72N9577z3uvffeLlWTS0lJ6dIHiVarlczMzC73b8M+GfuWezBXFTA5sgZGzexUt/ikev709efkVTYxZvwkgv17b7mxW8ffD2n8Gr/G3/XxO/qfjMu/0e644w5uvvlmYmJiOPvsswkODnY5OK9ntkD8VDj4lVFi+7hkKMDXwrihoWzPq2BbTrmSIRERD3ryySd56qmn+NWvfsVPfvKTLp3DYrF064+Z7vZvkTQftr2C5eDnMGZBp7oMiQhiaHgAh8vr2F1YzcyRndu01Z3cNv5+SuPX+DX+nhu/ywUULr/8cgoKCrjrrruYPn06U6ZMYerUqS2PadOm9UScA4+jiEJOB/sNNZczVREFERHPefLJJ3niiSe49dZbuzQ9rs8Z3ZwAZbm2+eqklv2GytwckIiIZ7l8Z+icc87RGhZ3SDjx5qtpiRG8vOEQ6TllvReTiIi0WLZsGU888QQ33XQTt9xyi6fDcY9RZwImKNwOlQUQOqRT3VLjw/l0ZyHb81TYR0QGFpeToYcffrgn4vA+CdON5+I9UFsKgW33bpgyLAKAzLxymqw2fCyqgi4i0lueffZZHn/8cebMmcOZZ57ZrnBAWlqaR+LqtuBoGDoZDqcbd4fSftSpbikJzXeGlAyJyACjTVc9JTgaBo2CkgOQuwXGnNWmeVR0CKH+PlTWN7GnsJKJceEeClRExPt8/rkxjWzdunWsW7euXfuePXt6OyT3SZrfnAyt6Xwy1DxN7kBRNZV1jYQG+PZggCIivafLydDevXvJysqivr6+XdsPf/jD7sTkPRJmNidDm9olQ2azidTEcL7Zf5T0nDIlQyIivejFF1/0dAg9Z/QC+Pox486QzQbmk888iArxJz4ikLyyWrbnVTA7qf2mtCIi/ZHLyVBtbS033XQT3377LSaTCbvdDtBmHZGSoU5KmA4Zr0Jux5uvfrP/KNtyyvjxrOG9HJyIiAxICTON7R1qiqEgA+LSOtUtNSGcvLJaMvPKlAyJyIDh8kKUf/zjH+Tl5fHSSy9ht9t58skn+c9//sPZZ5/N8OHDWblyZU/EOTAlOooobDE+nTvOsYpyZb0Xk4iIDGw+fjBijvE6a22nu7WsG8rVuiERGThcTobWrFnDDTfcwJQpUwAYOnQos2fP5vHHH2fixIm88sorbg9ywIqdCL5BUF8OxXvbNac1F1HYd6SKyrrGXg5OREQGrKT5xrMLyVBqfARgFPYRERkoXE6G8vLyGDVqFBaLBZPJRG1tbUvbhRdeyJo1a9wa4IBm8YG4qcZrJyW2Y0MDiI8IxG7XxUdERNzIsd/QoW+hvqpTXRxFFLKP1lBeow/oRGRgcDkZCg0NpaamBoCoqCiys7Nb2pqamlrapJMSmzdf7WDd0ORE4+KjqXIiIuI2g0ZBxDCwNcL3X3eqS3iQL8OjggB9QCciA4fLydDYsWP5/vvvAZg1axZPP/00mzdvJiMjg2XLljFu3Dh3xziwJTQnQzkdb74KkH6orHfiERGRgc9kgqTmu0OurBuKd+w3VNYDQYmI9D6Xk6HFixdTXV0NwP/8z/9QW1vLVVddxeWXX05+fj533nmn24Mc0BzJUNFuqGv/SVtaorEZ67bcsl4MSkREBryWdUOdn96e2lxEIVNFFERkgHC5tPb555/f8joxMZGPP/64pcz2lClTiIiIcGd8A19ILEQMh7JsyNty7OLUbFJ8GBazicKKeg6X1zI0PNBDgYqIyIAyci6YLHB0P5RmQ+TJt3CYFK+KciIysLh8Z+h4QUFBzJ8/n3nz5ikR6qqWEtub2zUF+fmQPDgU0FQ5ERFxo8AIY7876PRUOUcylFdWS0l1Qw8FJiLSe7qdDIkbtKwb6njzVYB0TZUTERF3cnHdUFiAL6OigwEVURCRgaFT0+TGjRuHyWTq1AlNJhM7d+7sVlBex5EM5W4yNl81t81R0xLDWbFRd4ZERMTNkubDF3+CA1+CtcnY8uEkUhLCOVBcTWZuGWckx/RCkCIiPadTydDSpUs7nQxJFwxJAZ8AqCuDkiyIHtOm2VFEITOvHKvNjsWsfwsREXGD+KkQEG4U8Mn/7ti07RNIiQ/nnfR8rRsSkQGhU8nQrbfe2tNxeDeLL8RNgUPrjalyxyVDo2NDCPazUN1gZd+RSsYNCfNQoCIiMqCYLTDqTNj5Duxf06lkKDUhAtA0OREZGLRmqK9oPVXuOBaziZTmcqaaKiciIm7l4rqhiXFhmExwuLyOI5V1PRiYiEjPc7m09qpVq056zA9/+MMuhOLlTpAMgTFV7tsDJaTnlHHFzGG9GJiIiAxoji0d8jZDbSkERp7w8GB/H0bHhLDvSBXb88qZPy6gF4IUEekZLidDHW2q2npNkZKhLnAkQ0d2Qn0l+Ie2aW6pKJdT1rtxiYjIwBaRCNHJULwXDn4FEy46aZeUhHD2HakiI7ec+eMG90KQIiI9w+VkaM2a9jtVl5aWsmbNGj788EP++te/uiUwrxM2FMIToTwH8r6DUWe0aXYkQ3sLK6mubyLY3+V/OhEREeeS5hvJ0P41nUqGUuPDefu7PDJVREFE+jmX/6KOj493+t6kSZNoamrihRde4OGHH+70+davX8+7777L1q1bKSgoIDQ0lEmTJrF06VImTZrkanj9W8IMIxnK3dguGRoSHsCQsAAKKurYnlfOrFFRHgpSREQGnKQFsOGfkPU52O1wkgqyKc1FFDLyyrHb7ao4KyL9llsLKMyePZu1azu3ANNhxYoV5OXlcfXVV7N8+XLuvvtuSkpKuPzyy1m/fr07w+v7HFV8cjc7bZ6c2FxEQVPlRETEnUacBhY/KD8ER/ef9PAJQ8OwmE0UVdZTWFHfCwGKiPQMt861ysvLw2x2Lb+67777iIpqe5djzpw5LFy4kKeffprZs2e7M8S+rXURBSefzKUlRvLxjkIlQyIi4l5+wTDsFGPNUNbadls8HC/Qz8KY2BB2F1SSkVvGkPAhvRSoiIh7uZwMbdrUvtpZQ0MDe/bs6VLycnwiBBAcHExSUhKHDx92Nbz+bUgqWPyh5iiUHICopDbNjnVD25QMiYiIuyXNN5Kh/Wtg1i9OenhKfDi7CyrJzCtn4UQlQyLSP7mcDF111VXt5gbb7XYATj31VO69995uB1VZWcnOnTs55ZRTun2ufsXHD4ZONtYM5W5qlwylJIRjMkF+eR1HKuqIDVM5UxERcZOkBfDZ/fD9OmiqBx//Ex6emhDOG1tytfmqiPRrLidDL7zwQrv3/P39iY+PJzo62i1BPfDAA9TW1nLjjTe63NdqtXbpezr6dbW/u5gSpmPO3YgtZyP2SUvatAX6mBgTG8Lewiq2ZJewcIL7ypn2lfF7isav8bd+9jbdHb+3/twGnMGTIDgGqosgZwOMnHvCwx1FFDJzVURBRPovl5OhmTNn9kQcLf72t7/x3nvvce+993apmlxmZma3vn93+3dXRGMMSUDd3i/ZNTS9XXtikJW9wKdb9hLb4P5phJ4ev6dp/Bq/N/P28Xs9s9mYKpfxmrFu6CTJ0LghofiYTRytbiC/vI74iMBeClRExH1cToYOHjxIUVGR06Ro48aNxMbGMmLEiC4F8+STT/LUU0/xq1/9ip/85CddOkdKSgoWi8XlflarlczMzC73d5tRMbDlAQIrD5I2YYyxqLWVeQ05rDm4g8MN/qSlpbnt2/aZ8XuIxq/xa/xdH7+jvwwAjmRo/xo46/4THhrga2HskFB25FeQmVumZEhE+iWXk6GHH36YESNGOE2GPv/8cw4ePMg///lPlwN58skneeKJJ7j11lu7ND3OwWKxdOuPme7277bIYRAWj6kiD0thBow4vU3z1OGDAMjMqwCTGYvZvdMSPD5+D9P4NX6N33vHL8CoecZzQQZUFUFIzAkPT00IZ0d+BRm55Zw7aWgvBCgi4l4u7zOUmZnJjBkznLbNmDGD7du3uxzEsmXLeOKJJ7jpppu45ZZbXO4/4CRMN55zNrZrSh4cQqCvhar6Jg4UVfVyYCIiMqCFDobBKcbrA5+f9PCU+AgAFVEQkX7L5WSosrKSoKAgp20BAQGUl7v2C/HZZ5/l8ccfZ86cOZx55pmkp6e3eXilhI43X/WxmEmJNzZf3aoS2yIi4m6j5xvPWSffRD01wbgeZTQXURAR6W9cniY3ePBgMjIyOPXUU9u1ZWRkEBNz4lvqx/v8c+OTp3Xr1rFu3bp27Xv27HE1xP6vZfPVjc43Xx0WwcbvS0jPKeOy6YkeCFBERAaspPnwzd+NZMjJNai15MGh+FnMlNc2klNSy7Ao5x+Wioj0VS4nQ2eddRbLly8nLS2tzT5AGzZs4F//+heXXnqpS+d78cUXXQ1h4Bs6Gcy+RnnTsmyIHNGmWZuviohIjxk2G3wCoaoQCnfAkI4ru/r5mBk/NJRtueVk5JUpGRKRfsflaXJLly4lLi6O6667jvPOO6/l+dprryUuLo5bb721J+L0Lr4BRkIEkLOpXfPk5mRod0EltQ3a30NERNzIx/9Y8Z6sNSc9PKV5qlxmrtYNiUj/43IyFBoaymuvvcYtt9xCeHg4+fn5hIeHc+utt/Lqq68SEhLSE3F6n9ZT5Y4TFx5ATKg/Vpud7fm6+IiIiJuNXmA8d2bdUHMRhQwlQyLSD7k8TQ4gODiYpUuXsnTpUnfHIw6JM2DDU5Db/s6QyWQiLTGCT3cWsi2njBkjBnkgQBERGbCSmosoZK+Hhhrw63j626Tmoj7b88qx2eyY3bzlg4hIT3L5zpBDZWUl69at491333W5gpx0guPOUEEmNNa2a3asG1JFORERcbvoZAhLAGs9ZP/3hIeOGRyCv4+ZyvomsktqeilAERH36FIytGzZMubMmcMNN9zAHXfcQW5uLgDXXHMNy5cvd2uAXis8EUKGgK0J8tPbNTuSofRDZb0aloiIeAGTCZKaN2A9ybohX4uZCXFhAGTklvVwYCIi7uVyMvTyyy+zbNkyLr30Up5++uk2+wrMmzePL774wp3xeS+T6djmq07WDaUkhGMyQV5ZLUWV9b0cnIiIDHgurRtSEQUR6Z+6lAxde+213HPPPZx++ult2oYPH052drbbgvN6iY7NV9uvGwoL8CUpxihWoRLbIiLidiPPAJMZinZDee4JD01JiAAgI0/JkIj0Ly4nQzk5OcyZM8dpW3BwMBUVFd0OSpolNCdDOZuMje+O0zJVTsmQiIi4W9AgiJtqvM76/ISHpjaX196RV47V1v56JSLSV3WptHZxcbHTtry8PKKiorodlDSLSwOzD1QVQHlOu+aWzVc1R1tERHqCo6rcSabKJcWEEOhrobrBysHiql4ITETEPVxOhmbPns2///1vamqOVYwxmUw0NTWxYsWKdlPnpBt8A2FIivHayVS51neGbPokTkRE3M2xbujA52DreJNvi9nEpHhHEQVNlROR/sPlZOi2224jPz+fRYsW8fDDD2MymXjppZdYsmQJ2dnZ3HzzzT0Rp/dylNjOaZ8MjR0SapQzrWviQHF1LwcmIiIDXvw08A+D2lI4nH7CQ1O0+aqI9EMuJ0PDhw9nxYoVjBo1ihUrVmC323nnnXeIjIzklVdeIS4urifi9F4JHRdR8LWYSWmu4KMiCiIi4nYWXxg513i9/8RT5RzrhjJVREFE+hGfrnQaPXo0zzzzDA0NDZSWlhIeHk5AQIC7YxM4Vl778DZorAPftj/nyYkRbM4uJT2njMXTEjwQoIiIDGhJ82H3+8a6oTN+2+FhKY4iCvnlNFlt+Fi6vK+7iEiv6dZvKj8/PwYPHqxEqCdFjoDgGLA1QkFGu2ZVlBMRkR7lWDeUuxHqOq4YOzIqmBB/H+oabewvUhEFEekfOnVnaNWqVS6d9Ic//GEXQhGnTCZjqtyeDyBn47G9h5o5kqFdhyuoa7QS4GvxQJAiIjJgRY6AQaOg5AB8vw7GLXJ6mLm5iMK3B0rIyC1n3JCw3o1TRKQLOpUM3XnnnZ0+oclkUjLkbgnTjWQod2P7pshAooL9OFrdwI78CqYNj/RAgCIiMqAlLTCSof1rOkyGAFLiw/n2QAnb88q5bHpiLwYoItI1nUqG1qxZ09NxyIk47gblbm7XZDKZSEuMYM3uI6TnlCkZEhER90uaD5v+ddL9hlISIgBVlBOR/qNTyVB8fHxPxyEnEjcFTBaoyIPyPAhv++8xuTkZUkU5ERHpESPnGJuAlx407hANGuX0sNTmCqc7D1fQaLXhqyIKItLHdfm3VFVVFV9//TXvv/8+33zzDVVVWizZY/yCYfBE4/VJNl8VERFxO/9QSJxlvD7B3aHhUUGEBvjQ0GRjb2FlLwUnItJ1XUqGnnnmGebMmcMNN9zAb37zG372s58xZ84c/vOf/7g7PnFI7Hi/ocnN0xIOldRQUt3Qi0GJiIjXSJpvPJ9gvyGTyXRsvyFNlRORfsDlZGjVqlX8+c9/ZsaMGTz22GO8/PLLPPbYY8ycOZNHH33U5cpz0kkJM4xnJ8lQeJAvo6KDAW2+KiIiPcSRDB38CqyNHR6WEh8BQIY2XxWRfsDlZOi5557jggsuYPny5Zx33nlMmzaN8847j6effppFixbx/PPP90Sc4kiG8tOhqf3dH8dUua1KhkREpCcMTYPAQdBQ6fSDOQfdGRKR/sTlZOjAgQP84Ac/cNr2gx/8gKysrG4HJU4MGgVBUWCtd7756rAIQHeGRESkh5jNkDTPeH2CdUMpzUUUdhdUUN9k7Y3IRES6zOVkKCAggPJy55/2lJeXExAQ0O2gxAmT6YRT5RzrhrbllmG323sxMBER8RpJC4zn/R1vuZEQGUhkkC+NVjt7ClREQUT6NpeToWnTpvHkk09SWFjY5v2ioiKWLVvG9OnT3RacHCeh+Web037z1fFDw/DzMVNW08j3R2t6OTAREfEKjjtD+VuhpsTpISaTSfsNiUi/0al9hlq7/fbbueKKK1i4cCGzZ88mJiaGoqIivv32W3x8fHjyySd7Ik4BSOh481U/HzMT48LYeqiMbTlljGwuqCAiIuI2YXEQOwGO7IQDn8OkxU4PS40P56u9RVo3JCJ9nst3hsaMGcObb77JggULyMzM5O233yYzM5MFCxbwxhtvMHr06J6IUwDip4LJDOWHoLKgXbNjqpz2GxIRkR7jqCp3onVDzUUUVFFORPo6l+8MAYwcOZLHHnvM3bHIyfiHGp/IFW431g2Nv7BN85RhETz3X1WUExGRHpQ0H9Y/aew3ZLcba1qP4yiisK+wkrpGKwG+lt6OUkSkU7q06ap4kKOIgpN1Q47y2rvyVcFHRER6yPBTwScAKvOhaI/TQ4aGBxAd4keTzc6uwxW9HKCISOd16c7Qzp07ee+998jPz6e+vr5Nm8lk4qmnnnJLcOJEwgzY8h+nFeWGDQoiMsiX0ppGdh2ubEmORETENVVVVfzjH/9g9+7d7Ny5k9LSUm655RZuvfVWT4fmeb6BRkKUtRay1kDsuHaHmEwmUuLD+XxPEZl55UwZFumBQEVETs7lO0OrVq1i8eLFvPDCC3z33Xfs3bu33UN6UGJzEYX8re12ADeZTExuToDSD5X2cmAiIgNHWVkZr7/+Og0NDZx11lmeDqfv6dS6oQhAFeVEpG9z+c7QU089xRlnnMEjjzxCeHh4T8QkJzIoCQIioK4MCjKNogqtpCVG8MWeIrbp4iMi0mXx8fFs2rQJk8lESUkJb7zxhqdD6luSFgD3wPffQGMd+LbfYzC1ed2QKsqJSF/m8p2hI0eOcPXVVysR8hSzudXmq+1LbLfcGVIRBRGRLjOZTJicFAaQZrHjIXQoNNXCofVOD3FUlNt3pJKahqbejE5EpNNcvjM0fvz4dhuuSi9LnAn7P4XcjTDr522a0pqnJRwsrqaspoGIID8PBCgiIq1ZrV0rauPo19X+Pck06kzM21Zg2/8Z9hFz27VHB/syONSfwsp6MnPLmD7c9XVDfXn8vUHj1/hbP3ub7o6/s/1cToZ+97vfcddddzF+/HjGjWu/aFJ6QcJ049lJEYXIYD9GRAXx/dEatuWWc0ZyTC8HJyIix8vMzPRo/54QaRnFKKBux4fsir7E6THDQqGwElZv3IlPadc3A++L4+9NGr/G7816evwuJ0NpaWksXLiQiy++mJiYmHbT5UwmE++++67bAhQn4qcBJij9HqqKIKRtwjM5MYLvj9aQfqhMyZCISB+QkpKCxeL6XjtWq5XMzMwu9+9RyYnYv/sTQRUHSEsaAqFD2h1yWsl+NuXvp5RQ0tJSXf4WfXr8vUDj1/g1/q6P39H/ZFxOhpYvX87TTz/NoEGDiIuLw9fX1+XgpJsCwiFmHBTtMqbKjVvUpjktMYJ30vNJz1FFORGRvsBisXTrj5nu9u8RobEwdDIcTsfy/VeQ9qN2h0xuLqmdmVc+8MbfizR+jV/j77nxu5wMvfDCCyxevJgHH3zQq/9hPC5xRnMytMlpMgSwLbccu92uRcAiItIzRi+Aw+nGfkNOkqGU5opyB4qrqaxrJDRAH6CKSN/icjW56upqLrjgAiVCnuaoKJfTft3Q+KFh+FpMlFQ3kFNS28uBiYiI12jZb+hzsNnaNUeH+BMfEYjdDjvyK3o5OBGRk3M5GZo6dSpZWVk9EYu4IsGx+ep3YG1bsjTA18KEoWEAbNVUORGRLvnyyy9ZvXo1n3/+OQD79+9n9erVrF69mtpafdAEGNcivxCoKYaCDKeHOO4Obc/TfkMi0ve4PE3u7rvv5rbbbmPIkCHMnTsXPz+VbvaI6GTwD4f6cjiyw5i33UpaYgTbcsvZllPORWnxHgpSRKT/euCBB8jLy2v52pEIAaxZs4aEhARPhdZ3+PjBiDmw9yPIWgtxae0OSUkIZ/WOAjK0+aqI9EEuJ0OLFy+mqamJW2+9FZPJREBA212nTSYTW7ZscVuA0gGzGRKmGRefnI3tkqHJiRGwPltFFEREumjt2rWeDqF/GL3gWDI05/Z2zY47Q5m6MyQifZDLydA555yjBfl9RcJM4+KTuxlm3tCmyVFEYXt+BQ1NNvx8XJ4RKSIicnKOdUOHvoX6KvAPadPsSIYOFldTXttIeKCKKIhI3+FSMmS1WvnFL37BoEGD2u0vJB7gKKKQu7Fd08joYMICfKioa2JPQSUpCfr3EhGRHjBoFEQMh7Js+P5rGHtum+bIYD8SBwWSU1LLjrxyTh0d7aFARUTac+l2gd1uZ9GiRaSnp/dQOOKShGnGc8kBqD7apslkMhlT5UBT5UREpOeYTK2qyjmfWpgaHwFAhqbKiUgf41Iy5OPjQ3R0NHa7vafiEVcERkL0WON1bvsS21Oak6GtOWW9F5OIiHif0QuM56w1TpsdsxMyVURBRPoYlxeSLFq0iFWrVvVAKNIlLVPl2idDjjtD25QMiYhITxo5F0wWOLofSrPbNac2rxvKyCvr5cBERE7M5QIK48aN48MPP+Tqq69m4cKFxMTEtCuosHDhQrcFKCeROAPSX3K6bshRRCGrSItWRUSkBwWEGx/O5XxrTJWbfl2b5onNyVBOSS2l1Q1EBmtbDhHpG1xOhu644w4ACgsL2bix/R/gJpOJXbt2dT8y6RzHnaG878BmBbOlpSkqxL9l0Wpmbjmnj9GiVRER6SFJ8ztMhsIDfRkZHczB4moy88qZmxzjoSBFRNpyORl64YUXeiIO6aqYceAXCg2VcGQXDJnUpnlyQgQ5JbWk55QqGRIRkZ4zegF88Sc48CVYm8DS9k+MlPhwJUMi0ue4nAzNnDmzJ+KQrjJbIH4qHPzSmCp3XDKUlhjB+xmHSde6IRER6UlxUyAgAurKIP87SGz790JqQjjvbssnI7fME9GJiDjV5Z04KysrWbduHe+++y7l5aoO41GOC07u5nZNU4ZFAJCeU64qgCIi0nPMFhh1pvF6f/uqco7NV7fnVfRiUCIiJ9alZGjZsmXMmTOHG264gTvuuIPc3FwArrnmGpYvX+7WAKUTEpqToZz2a7gmxoXjYzZRXFVPXlltLwcmIiJepaXEdvv9hibGh2MyQV5ZLcVV9b0cmIiIcy4nQy+//DLLli3j0ksv5emnn25zt2HevHl88cUX7oxPOiNhuvF8dB/UlLRpCvC1MG5oKICmyomISM9ybL6atxlq2274HeLvw6joYAAytfmqiPQRXUqGrr32Wu655x5OP/30Nm3Dhw8nO7v9/gLSw4IGQdRo43XelnbNadpvSEREekN4grEZuN0GB79q15yaEAFo81UR6TtcToZycnKYM2eO07bg4GAqKjQX2CMcJbadTJWb3Hzx0Z0hERHpcY67QydYN5ShZEhE+giXk6HQ0FCKi4udtuXl5REVFdXtoKQLHMlQ7qZ2TY4iCpl55TRabb0YlIiIeJ2WdUOfw3GFe1ITjGQoM6+sl4MSEXHO5WRo9uzZ/Pvf/6ampqblPZPJRFNTEytWrGg3de5kqqqqePTRR/npT3/KKaecwtixY3niiSdcDUtaNl/dAra2Cc+o6BBC/X2oa7Sxt7DSA8GJiIjXGH4qWPyg/BAc3d+maUJcGGYTFFbUU1hR56EARUSOcTkZuu2228jPz2fRokU8/PDDmEwmXnrpJZYsWUJ2djY333yzS+crKyvj9ddfp6GhgbPOOsvVcMQhdgL4BkN9BRTvadNkNptITTQ+jdNUORER6VF+wTBstvH6uKpyQX4+jIk1ivpo3ZCI9AUuJ0PDhw9nxYoVjBo1ihUrVmC323nnnXeIjIzklVdeIS4uzqXzxcfHs2nTJl566SVuv/12V8MRB4uPsfkqOF035CiikH6orPdiEhER73SidUPNU+UyVFFORPoAn650Gj16NM888wwNDQ2UlpYSHh5OQEBAlwIwmUxd6idOJMyA79cZ64amXdOmKS0xEoBt2vlbRER62ugF8Nl9xjWpqR58/FuaUhPCeXNLLpm6HolIH+ByMnTXXXdx8803k5iYiJ+fH4MHD25py8vL48knn+Shhx5ya5CusFqt3erX1f59Qvx0LIA9ZyO248aREmdMS9h3pIqy6npCA9r+0w+I8XeDxq/xt372Nt0dv7f+3OQEYidCcCxUH4GcDTBybkuTo6JcZl45drtdH4qKiEe5nAytXLmSH/3oRyQmJrZrKy0tZdWqVR5NhjIzMz3a35N86v2ZDJiK95C56WusviFt2qODzBTX2Fj11RZSYv2dnqM/j98dNH6N35t5+/jFjcxmY6pcxqvGuqFWydD4oWH4mE0UVzVwuLyOuIhADwYqIt6uS9PkOlJeXo6fn587T+mylJQULBaLy/2sViuZmZld7t9X2DeNxFR6kJRBDZCU1qZt5q50PtxeQLV/DGlpo9q0DZTxd5XGr/Fr/F0fv6O/SBuOZGj/Gjjr/pa3A3wtJA8OZefhCjLzypUMiYhHdSoZ2rRpExs2bGj5+o033uCrr9ruLF1fX8+aNWtISkpyb4Quslgs3fpjprv9PS5hBpQexJK/BZLPbtOUNiyCD7cXsC23vMMx9vvxd5PGr/Fr/N47fnGzpHnGc0EGVBVBSExLU2pCuJEM5ZZzzsQhHgpQRKSTydCGDRt48sknAaPgwRtvvOH0uLi4OH7/+9+7LzpxXeJMyHzd6earjiIK6TllmqctIiI9KyQWhqRAQSYc+BxSL2tpmhQfDptyVFFORDyuU8nQz372M3784x9jt9s59dRTeeaZZ5gwYUKbY/z8/AgODu6RIMUFjs1XczcZm6+aj1VPnxQfhsVs4khlPQUVdQwN19QEERHpQUkLjGQoa22bZCi1ubx2Zq4+nBMRz+pUMhQQENBSOnvNmjXExMS4dW3Ql19+SW1tLdXV1QDs37+f1atXA3DGGWcQGKg/2jtt8ETwCYS6cmPn75jklqYgPx+SB4ey63AF6YfKGJqin6uIiPSgpPnwzd+MZMhuh+akZ+yQUHwtJkprGsktrSVxUJBn4xQRr+VyAYX4+Hi3B/HAAw+Ql5fX8vXq1atbkqE1a9aQkJDg9u85YFl8jc1Xs7+B3I1tkiEwNl/ddbiC9JwyzksZ6qEgRUTEKww7BXyDoKoQCnfAkEkA+PtYGDckjMy8cjLzypUMiYjHuJwMNTY28q9//Yv333+f/Px86uvr27SbTCZ27tzp0jnXrl3rahhyIgnTjWQoZyNM+UmbpimJEazYeIj0nDLPxCYiIt7Dxx9GnA77PoGsNS3JEEBKQjiZeeVk5JZzvj6cExEPcTkZeuyxx3juueeYO3cuZ511lsdLaYsTCTON59zN7ZomJ0YAxmZ3Vpsdi1nztEVEpAclLWhOhtbCab9seTs1PpxXgMy8Mo+FJiLicjL00UcfsXTpUm655ZaeiEfcwVFE4chOqKuAgLCWptGxIQT7WahusLK3sJLxQ8M6OImIiIgbJM03nrPXQ0MN+BlT4lKaiyhk5JariIKIeIz55Ie0VV5ezvTp03siFnGX0MEQMQywQ/53bZosZhOpCREAbNNUORER6WnRYyA8Eaz1kP3flreTB4fi52Omsq6J7KM1HgxQRLyZy8nQjBkz2L17d0/EIu7kmCqX036/IcdUOa0bEhGRHmcyHduANWtNy9u+FjMTmmcnaL8hEfEUl5Ohe+65hzfffJNPPvmEhoaGnohJ3KH1fkPHSVMyJCIivSlpgfGc1bZgUuv9hkREPMHlNUMXXXQRTU1N/PKXv8RkMrXsP+RgMpnYsmWL2wKULkpslQy12tsBjiVDewsrqa5vItjf5f8MREREOm/UGWAyQ9FuKM+FcGPLjJT4Y+uGREQ8weW/gs855xwtcuwPBqeATwDUlsDRLIge3dI0JDyAIWEBFFTUkZlXzimjojwYqIiIDHiBkRA/zfiALutzmHoVQMsa1h35FdhsdsyqcCoivczlZOjhhx/uiTjE3Xz8YGga5HxrXHxaJUNg3B1avaOA9JwyJUMiItLzkuY3J0NrWpKhpJhgAnzNVNU3cfBoNUkxIR4OUkS8jctrhqQfaZkqt7Fdk6OIgirKiYhIr3CsGzrwBdisAPhYzEyMc6wb0lQ5Eel9nboztGPHDpdOOnHixC4FI26mIgoiItJXxE8D/3CoLYX8dEiYBhjrhrZkl5KRW84Pp8R7NkYR8TqdSoYWL17cqXVCjk3Tdu3a1e3AxA0c5bULd0B9Ffgfm36QmhCO2QSHy+sorKgjOtjXQ0GKiIhXsPjAqLmw6z2jqlxzMtRSUS6vzIPBiYi36lQy9NBDD/V0HNITwoZCWAJU5EL+Vhg5p6Up2N+HMbGh7CmsJD2njLPGxXgwUBER8QpJ85uToTVwxm+BY8nQ9rwKrDY7FhVREJFe1Klk6OKLL+7pOKSnJM6AHbnGuqFWyRAYU+WUDImISK9Jmm8852yEugoICGNkdAjBfhaqG6xkFVWRPDjUszGKiFdRAYWBzrFuKMfJuqFhEYCKKIiISC+JHAGDksBuhYNfAWAxm5io/YZExEOUDA10jnVDjs1XW5ncvL9DRm45VpsdERGRHje6uapc1tqWt1LjHRXlyjwQkIh4MyVDA93QVLD4QU0xlB5s05Q8OIRAXwtV9U1kFVV5KEAREfEqjqlyWWta3kppXjeUkac7QyLSu5QMDXQ+/jB0svE6d3PbJov52AVIUxNERKQ3jJgDZl8o/R5KDgCQ2jxTYWd+BY1Wm+diExGvo2TIGzimyuW033z12H5DSoZERKQX+IdA4izj9X7j7tDwQUGEBvhQ32RjX6FmKohI71Ey5A0SphvPJ9h8dZvmaYuISG8Z7Zgq9zkAZrOJlHhHiW19OCcivUfJkDdIdGy+uh0aato0OZKhPYVV1DepiIKIiPQCx7qhg1+BtRFovW6ozENBiYg3UjLkDcLiIXQo2JqMzVdbGRoeQEyoP1abnQNljR4KUEREvMqQyRAUBQ2VLbMWUloqyunOkIj0HiVD3sBkOrbf0HFT5UwmU8vdoX1HlQyJiEgvMJth1DzjdfO6odT4CAB2Ha6koUlFFESkdygZ8haJrfYbOk5LMlSiZEhERHrJcfsNJQ4KJDzQlwarjb2FlR4MTES8iZIhb9H6ztBxm686kqHdxQ1U1CohEhGRXuC4M5S/FaqPYjKZSNV2DyLSy5QMeYuhk419HaoKoexQm6bJiRGEB/pSUmfjgie/YUt2qYeCFBERrxE2FGInAnY4+AXQat2QiiiISC9RMuQtfANhSIrx+ripciH+Pjx37XQGB1vIK6vjsqfXs+zz/dhsqi4nIiI9KMmxbsiYKqc7QyLS25QMeZMTrBtKTQjn/50dxQWpQ7Da7Pz54z1c/exGjlTW9XKQIiLiNVqvG7LbSUmIAGBPQSV1jVbPxSUiXkPJkDdxrBvK2ei0OcjXzN8um8yji1MJ8DXz9f5izv/7Or7cW9SLQYqIiNcYNht8AqAyH4p2ExceQFSwH002O7sLVERBRHqekiFv4kiGCjKgsdbpISaTictmJPL+raczbkgoxVUNXPPsRh76cJdKnYqIiHv5BsLw04zXWWsxmUwtm69m5pZ5Li4R8RpKhrxJxDAIGWxsvnp42wkPHR0byqqlp3HVKcMBePqrAyx5ej2Hjtb0RqQiIuItkuYbzy37DWndkIj0HiVD3uQEm686E+Br4Q8/nMQ/fzKVsAAftuWUsejxdby3Lb+HAxUR8azq6mr++Mc/cvrpp5OSksJFF13EBx984OmwBibHuqHsb6CxrmXdUGaekiER6XlKhrzNSdYNOXPupKF8+Ms5TBseSWV9E7eu2Mqdb2VQ26DFrSIyMN16662sWrWKW265hX/961+kpKRw++23895773k6tIEnZhyExkFTHRz6b0tFuX1HqnSdEZEep2TI25xg89UTdosM4rWfn8It80ZjMsGrm3L4wZNfs7ugoocCFRHxjC+//JJvvvmG++67jyuuuIJTTjmF//u//+O0007j0UcfxWrVH+huZTIdmyqXtZbBYQHEhPpjtdnZpWuMiPQwJUPeJm4KmH2g8jBU5LnU1cdi5jfnjOXl62cRE+rPviNVXPTkN7y8IRu7C4mViEhf9umnnxIUFMS5557b5v1LLrmEI0eOsG3biddcShccv99Qy+arSoZEpGcpGfI2fkEweJLx2oWpcq2dOjqaj345hzPHxlDfZOPuldu5+eXvKK9tdGOgIiKesW/fPpKSkvDx8Wnz/tixY1vaxc1GzQNMcGQHVBYcqyindUMiA57dbsdms9NktVHfZKWu0UpNQxPV9U298mG7z8kPkQEnYQYcTofczTDpki6dIjrEn2evmcEzXx/kkdW7+Wh7ARm55Tz+oylMGx7p3nhFRHpRWVkZCQkJ7d4PDw9vaXdVV6fWOfoN+Kl5ARGYh6ZhOrwV277PmDTUKKqQmVsOo0MH/vg74DX//h3wxvE3NNnILqlh/5Eq9hVW8n1eJR/k7QIT2Oxgs9ux24xnmx2sdruRTDja7I42472WNtuxNuvxbcedo6XNduyc1uZzdnh+x9e21l+f5PytYu7I7IQAnk/t3u/Pk1Ey5I0SZ8Kmf0Fu1+4MOZjNJm6YO4qZIwdx64qtHCqp4bKn1/PrhcncODcJs9nkpoBFRHqXydTx768TtXUkMzOzO+F0u39/EBcygaFspXTL2zAhGYCsompqm4K9YvwnovEPvPE3Wu3kVzWRW9FETkUTOeXG68NVVqztkoNqT4TYzI4PVvxowp8G/GnE39SIP4340djm65b3Wr5uffxx/U0n6M+x9g3VZ5KZGdGjI1Qy5I0SphvPh7dBUz34+HfrdJMTI/jgttP535XbeW9bPo+u3sN/9x/lscsnExsa4IaARUR6T0REhNO7P+XlxpQtxx0iV6SkpGCxWFzuZ7VayczM7HL/fiXyR7DvZQaVpjNv1hSGfPUVBeV1HCxt4vL50wb++J3wqn9/JwbC+OsarRwoqmZ/URX7jlSxr7CK/UVVHCqpxWpzfksk2M/C6NgQRkUHYasuIT46Aj8a8aURX3sjvvZ6/OyN+Ngb8LU34kO98WxrwNfegI+9ER9bPT72BnxsxsNia8DHbjxb7PX4WB2vGzBbG7DY6o2HtQGzrQFzy+t6THZbL//UjpkdfJiAbv7+PBklQ94ociQERUNNMRzOgMQZ3T5laIAvj1+RxpzR0fz+3e18vb+Y8/++jr9clsYZyTFuCFpEpHckJyfz/vvv09TU1Gbd0N69ewEYM2aMy+e0WCzd+mOuu/37heGngF8IppqjWI7sIDU+nILyOrJKG71j/Ceg8ff98dc0NJF1pJp9Ryqbkx7j+VBJTYfTwEIDfBgTG8KEaF+mhhxlnG8hCdZcQqsOYjq6D/uBLEwNVZDTu2M5IYsfWPyND9J9Alo9+x33tX8Hxzl5z3J8X+N8VpMv+3IqSOvhf38lQ97Isfnq3o+MqXJuSIaM05q4bEYiU4dHcMsrW9ldUMk1z27kF2eM4jcLx+JrUb0OEen7zjrrLF5//XU++eQTzj///Jb3V65cSWxsLJMnT/ZgdAOYxRdGzoU9H0LWGlITfsAnOwv5JKuGtIzDnJ8Sh5+PriPiWVX1TS3refYfMe727C2sJLe0tsM+4YG+jI0NYmpkLVOCihhtPszQxlwCKw9gKt4PO3Od9ms3Idfsc5Ikwr+DZMOV5OUE57P4g7kX/x+0WiE3vce/jZIhb5XoSIY2uf3Uo2NDWbX0NP74wS5e/Dabp788wLcHSnjiiikMiwpy+/cTEXGnM844g9NOO43777+fqqoqhg0bxgcffMC6dev485//3Oc/oe7XkuY3J0Ofc+bZP+PxtfvJr7LyP69t448f7uZHMxK5ctZwhoRrCrb0rPLaRvYfqWL/kUr2FVa13O3JL6/rsE9UsB+Tos2cEl7CJP8jjCCfmPoc/MuzMB3NgsKOEyYCB0H0GOMRZTxbI0eReaCAlCnTsfgFgVm/e3qCkiFvlTDTeM5xfzIEEOBr4Q8/nMRpo6P43ZsZbMspY9Hj6/jTJSlcODmuR76niIi7PPHEE/z1r3/l8ccfp6ysjFGjRvHYY4+xaNEiT4c2sDk2Xz30LZOiLXx++1z+9v4mvjjURFFlPY+v3c+yL7JYOGEwV80ezuxRUV0qaCHiUFbT0LKWZ98R427P3sJKCivqO+wzOMSH2VE1TA85yjjfAhJteQyqPYRvWRYUHobCDjqafWHQSIhOhqjRbRIfgga1P95qxZpbA75KhHqSkiFvFTcFTGaoyIWKfAge3CPf5txJQ5kUH84vX01nS3Ypt67Yyjf7i7nvwokE+ul/bBHpm4KDg7nnnnu45557PB2Kd4lKgsgRUPo9fP81Q0afzRUTQ/nDFal8truIF9Zns/FgCR9tL+Cj7QWMiQ3hqtnDuXhKPKEBvp6OXvqwo1X1RtJzpIr9hZXsbb7bU1zVcdIzOtTK6ZElpAUVM8ZSwNCmHMKrs7GUHoDC+o6TnuAY5wlPxHCw6E/vvkb/It7KPwQGT4SCTGOq3NgLeuxbJUQG8drPT+Fvn+1j2Rf7eXVTDluyS3niyimMGxLWY99XRET6oaT5sPlZyFoDo88GwNdi5oLUOC5IjWN3QQUvrs9m5dY89h2p4vfv7OCRj3Zz8dR4rp49guTBoR4egHiK3W6nqKqe/Y5pbUeMpGf/kSpKqhuc9rFgZXpYBbPCS0gNOMJIDhPbcIjgyoOYa4rgSAffzOJnJDvHJzxRoyEwosfGKO6nZMibJczolWQIwMdi5jfnjGV2UhT/81o6+45UcdGT3/D7Cydw5cxhmuYgIiKGpAXNydBap83jhoTxx4tTuOO8cby9JZcXv80mq6ial749xEvfHmLWyEFcPXsECycOVuGeAcput1NYUW9UbmtOfPY3Jz7ltY1O+0RQyezwEmaEHGW8XwHDbPlE1WXjX3kIU0MjFHXwzUKHOk94IoZp6toAoWTImyXMNC44PbRuyJnTRkfz0S/n8Js3tvHFniLuXrmdr/cV8/DiVMIDNcVBRMTrjZwDJgsc3Q9lhzo8LCzAl2tPG8k1p47gv1lHeWH993y6s5ANB0vYcLCEwWH+/GjmMK6cOYzYMBVc6I/sdjtFNVa+3FvEgeKalnU9+45UUVnX1O54X5oYYy5kVuhR0oKKSfYpIN6aS3h1Nj71pVCP8TieT2BzwjO6bcITNRoCNINloFMy5M0Smktq528Fq/Pbxz0hOsSfZ6+ZwTNfH+SR1bv5aHsBGbnlPP6jKUwbHtlrcYiISB8UEA6JM+HQekwH1oI57YSHm0wmThsdzWmjo8kvq+WVDYd4ddMhCivq+dtn+3hy7X7OmTSEq08ZzsyRgzQToY+rqm/iyz1FfLarkM93H6GstpG2t23sRFPBRMthZoQcJTXgCKPMhxnckENwTS4mu7XjpCcsoX3CEz3GeL83S0ZLn6JkyJtFJRmlHGtLoHA70Hu/CMxmEzfMHcXMkYO4dcVWDpXUcNnT6/n1wmRunJuE2ayLlYiI10qabyRDWWthTFqnu8VFBPKbc8Zy24IxfLT9MC+uz2ZzdikfZBzmg4zDjB0cyk9mD+eSKfEE++tPoL6isKKOT3cW8unOQtZnHaXBagNgmKmQUy3ZTA8pZoLfEYbb84mqP4RfY4XR0VnS4xvsPOGJGg1+wb06Lukf9JvAmzk2X933MabcTeA3q9dDmJwYwQe3nc7/rtzOe9vyeXT1Hv67/yiPXT6Z2FBNaxAR8UpJC+DzP8LBryDply539/Mxc1FaPBelxbMjv5yXvs1m1dZ89hRWcu+q7Tzy0W4WT43nqtnDGR2rggu9zW63s6ewkk93FPLZrkK25Za3tAVQzy/CtvITv89JrMo03myX9JggIvG4hCfZeB061Pj7RqSTlAx5u+ZkiNzNMKr3kyGA0ABfHr8ijTmjo/n9u9v5en8x5/99HX+5LI0zkmM8EpOIiHhQXBoERmKqLSW4bBcwrcunmhgXzkOXpHLneeN5c0suL32bzcHiap5fn83z67M5NSmKq2cP56zxg/FRwYUe02S1sen7UuMO0K4CckqObUBqMsEPh5Tw08AvmVD8MZaGCmgAu8lCTfhoAhMnY3YkO9FjYNAo8A304GhkIFEy5O0SjXVDprxNMMpzYZhMJi6bkcjU4RHc8spWdhdUcs2zG/nFGaP4zcKxqggkIuJNzBYYdSbsWElUzifQeAlYuncHJzzQl+tPH8l1p47g6/3FvLA+m7W7C/lv1lH+m3WUoeEBXDlzGFfMHEZMqL97xuHlquqb+GpvEZ/uLGTt7iNtKr35+Zg5a1Qw14RvYWrRKnwL0qG0uTFiOEy7BlvKFezOKiAtLQ0sqtwmPUPJkLeLmwqYMJUdwqeuxNPRMDo2lFVLT+OPH+zixW+zefrLA2w4UMITP5pC4qAgT4cnIiK9ZfRZsGMlMYfex/7YOBh/IaRcCiPP7NbGlWazibnJMcxNjiG3tKa54EIOh8vr+Mune3l87T7OmzSUq2cPZ9rwSBVccFFhRR2f7TLW//x3/7H1PwCRQb7MHxvL4qFFzCx5F5+db8OhKqPR7AvjFsG0a2HkGUZBA6sVKPDIOMR7KBnydgFhEDsBjuwguHQnMN/TERHga+EPP5zEaaOj+N2bGaTnlHH+39fx0OIULkiN83R4IiLSG1KWYCvNpnHTC/jXFsC2FcYjOBYmXQIpl0H81G6tD0mIDOJ3547jl2eN4cPMw7ywPputh8p4d1s+727LZ/zQMK46ZTg/nBJHkJ/+ZHLGbrezt7CKT3cW8OmuI2zLKWvTPiIqiLMnDOacpECmlH+GZeuDsCvz2AGDkmDaNTD5SgjR1Hjpffo/W4ypckd2EFK609ORtHHupKFMig/nl6+msyW7lFte2co3+4v5/QUTCfTT7XIRkQHNxx/7GXeyPewc0qIbsOx4C7a/DdVHYMM/jcegJEhZAqmXGRVSu8jfx8LFUxK4eEoC2/PKeWH997yTns+uwxX878pMHvpoF5dOS+CqU4YzKibEjYPsn5qsNjZnl7ZUgDtUUtOmPS0xgrMnDGbh+FhGN+zC9N0yeOttaGw+zuIPE34AU6+BEaer4IF4lJIhMYoobHmOkJLtYLd7Opo2EiKDeO3np/C3z/ax7Iv9rNiYw+bvS3nyyqmMHaIKQCIiA57JBImzYMSpcO7DkLUWMl6HPR9CSRZ8+bDxiJtqJEUTL4HQwV3+dpPiw3n00sn87/njeWNzLi9tyCb7aA3/+eZ7/vPN98wZE81VpwxnwfjBWLxoG4jq1ut/9hyhrKbt+p/TR0dz9oTBLBgfS6ylxvg3eus5KNp17CQx44wEaPIVEDSo9wch4oSSIYGEmQCElG7H/vdJMOZsGH22sXi1D+y87GMx85tzxjI7KYr/eS2dfUeq+MGTX/P7Cydw5cxhms8tIuItLL6QfI7xqK+C3R9A5htGgpT/nfH4+H+NNSepl8G4C7p8HYsI8uOGuaO4/vSRfLmviBfXZ/P5niOs21fMun3FxEcEcuWsYVwxI5GokIFZcOFIRR2f7TrCpzsL+CbrKA1Nx9b/RAT5Mn9cLAsnDGbOmBiC/SyQ/V/49P9gxyqwNtfC9gkwEtRp1xhJra7Z0sf0iWSourqav/3tb3z00UeUl5czatQofv7zn7No0SJPh+Ydosdgm3ot9m2vYqk8DN+9YDzMPjBsNoxZaDxixnr0l9hpo6P56Jdz+PXr2/hybxF3r9zO1/uKeXhxKuGBvh6LS0REPMA/BCZfbjyqimDHSsh8HXI3wYHPjYfPr2Dsecb6otFngY+fy9/GbDYxb2ws88bGcuhoDS9vyOa1zTnkldXy54/38PfP9rEodShXzR7OlMSIfv0Bnd1uZ9+RKj7dWcgnOwvbrf8ZHhXE2eMHc/aEwUwbHmmUIq8+Cluegi3Pw9F9xw4ePMkohpCyBAIjenMYIi7pE8nQrbfeSmZmJr/+9a8ZMWIE77//Prfffjs2m40LL7zQ0+ENfCYT9kWPsW3IFUyOrMaStQb2fQJH98P364zHp/dC+DAYc5aRGI2c65GdnKND/PnPtTP499cHeHT1Hj7aXkBGbjmP/2gK04ZH9no8IiLSB4TEwKyfG4+SA5D5pjFN6+g+I0nasRICImDiD43EaNhso1qZi4ZFBXHX+eP51dnJvLctnxe/zSYjt5yVW/NYuTWPiXFhXD17OD+YHN9v1rY61v98trOQT3cVkn3U+fqfsycMZkxsiJHs2Wzw/VdGArT7fbA2GAf7BkPKYph6bbeLW4j0Fo8nQ19++SXffPMNf/nLX7jgggsAOOWUU8jPz+fRRx/l/PPPx6La8r3CbvGDUTONhOfch+BoFuz/zEiMvv8ayg/B5meNh8XPWPTouGvUjYWrrjKbTfx8bhIzR0Zx24qtHCqp4bKn1/PrhcncODcJsxfN4RYRkeMMGgVn/A7m/hYOp0PGG7D9LagqgC3PGY/wRJi02JhKN3iiy98iwNfCkumJLJmeyLacMl5Yn817GfnsyK/gjrcy+dOHu1kyLYGfnDKcEdG9/8HhyVTXN7FuXxGf7Czk891HKD1u/c9pSVGcPWEIZ42PJTYs4FjHykJIf9mYPVJ68Nj7cVOMtUApl4K/1vNK/+LxZOjTTz8lKCiIc889t837l1xyCb/+9a/Ztm0bU6dO9VB0Xi4qyXjM+gU01BgJ0b5PYN/HUHbImKOdtRZW32lcfMYsNNYajTitV3aGTkuM4IPbTud/V27nvW35PLp6D//df5THLp9MbGjAyU8gIiIDl8lk/JEeNwUW/sGY5ZDxBux6F8pz4Ju/GY/YiZC6BCZdChGJLn+byYkR/CUxgrsXjef1zTm89G02uaW1/Pvrg/z764OckRzD1bOHc+bYWI8WXDhSWceaXUf4dGchX+8vPvH6H/9Wfx7abHBgrZFE7vkIbE3G+36hRjI57RoYOrl3ByPiRh5Phvbt20dSUhI+Pm1DGTt2bEu7kqE+wC8IkhcaD/ufoXhfc2L0ibFgsuTAsVKnPoHGNLoxZxuPyBE9FlZogC+PX5HGnNHR/P7d7Xy9v5jz/76Ov1yWxhnJ2q9ATsxms1Pd0ERFTQMFVU0cKqnB57g70Y5ZHo51AKbj329+59jXxw5y2taJc2FyvU/r2SgnjM3Juex2O/Y+VklSxK3MFqMo0KgzYdH/g70fG4UX9n0CR3bAZzvgs/th+GnGGpcJF7lc7WxQsB83npHEDXNG8cWeI7ywPpsv9xa1PBIiA/nJKcO5bHoig4JdX7vkKrvdzv4jVXzSXP46/bj1P8MGBbVMf5vuWP/TWkU+bG2+C1R+6Nj7CTOMtUATL/bIdHkRd/N4MlRWVkZCQkK798PDw1vaXWG1WrsUh6NfV/v3dy6Pf1ASzLrJeNRXwvfrMO3/1HhU5Bt3j/Z9DIA9Ohn76LOwjz7bmKdtcf9FYPHUOCYnhHHbq+nsKazimmc38vM5I7n97DH4Hv8L3gn9+/eP8dvtduqbbFTVN1FV30R1vZXq+iaq65uoajj2urreSlXDsdfV9U1UNzRR1XK8leqGJmoajhvvR195ZmB9QFyIhQ/HNRAa6Pr/n339vxuRNnwDjbVDE38ItaWw8x3jjlH215D9jfH48LfGh3kpS4wCDC7MdrCYTSwYP5gF4wfzfXE1L32bzeubc8gtreXhj3bz2Kd7uTA1jqtmDyctMcKtQ7Pa7Gz+voTPdhkJ0PfHrf+ZnBjBwgmDOWv8YJIHh7Qv9mBtMqbHb3nOuIbbm+8eBYRD6hXGXaAuTCsU6cs8ngwBJ6y84mpVlszMzJMf1IP9+7uujz8O4q+BuKsJqDxI+JENhB/ZSEhJJqbivZiK98K3/8BqCaQiZioVsbMoj51FY6B7797cd1owL2yzsTqrhuXrDvL5jlx+dUo4g4M795+6/v3dP/4mm53aJju1jXbqmmwtr2ub7NQ22ahred3RMXbqGm0tr209cAPDYgJfs8m4VWIHx7ewO161fWp5dvp+B8easGHGjgUb5navbViwY8KGpflhMtmPvebYazP25uPb9jWbbK3et5/wtRkbFlPbtqLGODK2RxHs6/qicpF+KzDSuMsx7VoozzXWFmW8AYWZxj5Gez40poONv9CYSjfyDOMuUyeNiA7mngsm8OuFY3l3Wx4vrM9mR34Fb32Xy1vf5ZKaEM5VpwznwslxBPh2bX10TUMTX+0tNvb/2V3Ydv2Pxcypo6M4uzkBGhzWwRTyshzY+iJ89yJU5h97f9ipRgI04aJemf4u4gkeT4YiIiKc3v0pLy8Hjt0h6qyUlJQuFVywWq1kZmZ2uX9/597xTwEuAcBWVw4HvjDuGGWtwVJVSGTBN0QWfAOAPXYC9tFnG3eNEmYYe0h006xp8PGOAu58ezv7Shr53Zoy/nTxRBalDO2wj/79j43fZDJT09jqjkvzXRSX78LUGce1npfeXSZsBNCIP40M8rMS4WcjwreJcF8b4b5WwnyaCPVpIsRsJcTSSLCliSBzI4GmRgJMTQTQgL+pEX97A7404Gurx9fWgMlaS3VFGcFBAZjsduPTUJvVeLZbj/u6+b3WX7c+1mY1Ni9udYzJ3j/unDQkX4ElPN7lfo7/fkT6tfAEOO2XxuPILqMaXeabxhSxba8Yj5DBRuGFlCXGWqROfmAb6Gfh8hnDuGx6IltzynhxfTYfZBwmI7ec376ZwR8/3MXl0xP5ySnDSRwUdNLzHamsY22r9T/1rX7Phgf6smBcLGdPGMyc5BhC/Dv4U8/aCHtXGxXh9n9Gy0c3gYMg7UqYerWxpYbIAOfxZCg5OZn333+fpqamNuuG9u7dC8CYMWNcOp/FYunWH7Pd7d/fuX38wYMg5RLjYbNBQQbs+9SYp523GdORnZiO7IT//h38wyFpXnMhhrO6tYP4+anxpCZG8stX09mSXcptr25j/YESfn/BxBOWOx2I//52u53y2kaKKuuNR1V9y+sjLc91FJXX0PDOWmoarZxs+YgZm5FY0GAkJ6bmZxoIo5EYU0NzeyP+lkYCaCDI3ESYTxMhFuMRZG4i2NxIoLmJQJNxbAAN+NGIn70BX3sDPrZ6LLZ6LLYGzE11mGwNbQNpan7Udv/nFApQ0v3zdIvJAiaz8clzy2tzN99v/tpsMf5wa3l97H07UGANJzYsbsD99y/SJbHj4az7YP69kLPB2L9ox0qoKoRv/2E8okYbSVHKkk5XVDWZTEwdFsnUYZHcvWg8r23K4ZUNh8grq+Xprw6wfN0B5o2N5arZwzljzLGZE8b6n8o2639a/55OHBTI2eOHcPaEwcwY4WT9T2slB411QOkvG+NxGDnXqAg3/kLwGZibyIo44/Fk6KyzzuL111/nk08+4fzzz295f+XKlcTGxjJ5siqUDBhmM8SlGY8zfgs1JUY1un2fGJ9K1RyFnauMBxjVaRylu+OnuTQ1ASAhMojXfn4Kf/tsH8u+2M+KjTls/r6UJ6+cytgh/b/0Z12jtU1C0zrJKaqsa5P8NFpbZzd2oqgg3lRMvKmY8aYizjIVE2mqMhIYn0YCmpOTQMddleZEx59G/Oz1WOjinQ47xxKY7jL7GDubOx6+AR187W8U9fDxN6Z5OPnaZvbnYE4eI0YlYbH4nDR5MF47SzZO9L6lOVE5QRLjITarlfz0dGK1J4hIW2YzDJ9tPM59BLLWGHeM9nxk7MX3xUPGI36asX/RpEvg/7d353FNXfnfwD8JYQdBBMSfikqUsKW4Qdyo+45F69aZPmBdqtRqrdtYazuibbXWWqfgoFIcRceXjxv6uFXr1p90RqJisVRFcRdUNkVEZAv3+eOaSAQUZYmQz/v1ui/LuSfknJtwv/3ec+65Ns5V+tWONub4uHdbhPaU4+jFdGyKv4m4lCwcS87AseQMuDpY4T2/Fki+nos/jsWVv/+nhd3TBRBcKr7/p6ySIvF5QGdjgGu/Piu3dgLavy+OAtXhIzKI3iQGT4Z69uyJ7t27IywsDHl5eXB1dcX+/fsRFxeH5cuX8yplQ2blID6TQDlKnE505/enK9QdBu6cBe6eE7cTy8V53W2fPvBV3hewblKlt5CZSDFnoAJd5U3w6dZEpGTk4Z1Vv+Hvw7zwV3/XN+5J4ZpSAdmPyyY15Udysp7+96PCijMKKUrhjAdoLsmCnyQTzSVZaCHLQitZNlpIs+EiZMJcKKx6o152j47UtIIk47nE5AWJiP7PVUlunm4mNXf6EjQa5GgSAY/2AM85RFQRmZm4mIJisLhwUPJ+MTG6dhxISxC3Q5+LK9a9NQbwGFqlZ+6YSCUY4O2CAd4uuJaZh03xN7EjIRW37ufju0OXdfXMTKToKn92/4+LXRUeIZF1BTi7AUjcAuRnPS2UAPI+4r1A7oPFfhEZMYMnQwAQERGBlStXIjw8HDk5OXBzc8MPP/yAoUOHGrppVFekJkCLzuLW+3MgLwO4clRMjq4eFVf8SdoubpCIV+HaDRBX+2nW/qVX1bu3dcTPMwIwe9s5/O/lTCzY9Sf+cyULS999C3aW1b9P6UUEQcCjwhL9BKfcSI6Y6Nx/XPjSBQJMUQIXSTZ8pFloZZINd/MHaCXLRnNkwbk0HXbFGTCp7B6Vsrfv2LgA9q6AfUuUNmqBtJwiNG/dFlJTy5cnIrpExuKVR+yIiOo9c1vA9z1xy8sA/owVp9KlJYgx6+pR8UKPxxBxGp28b5WSDjcnGywc5o25AxX4f4l3sPfcHciKH2NMdw/08mha+f0/ZRUXiM9SSogRV8jTsnEBOgYDHYKBxq2q0XmihuWNSIasra3xxRdf4IsvvjB0U+hNYeMMtP+LuGlKgNTTwJWn9xrdSwLSzojbr0vEYf62T59pJO8tjiJVwNHGHOs/8EP0b9fw3cFLOJB0D+duP0TEXzvAt3mjV25iUUkpsvLKTFPTJTkF5RKeguKqLyJgKSmEl1UuPC1zIDe9j5bSbDRDJhxL7qFR4T1YFGRAUna4pqJpZxITwK45YCcmO7BrqUt8YNdSvFG4zJxwQaNBRmIi/qd9e46MEBG9ChtnoEuouGVfFS/a/bENuH9VXJ3uz53iogTew8WpdC1VL72AZ2Umw1/8XTGmU3MkJiaivY/Ly2fKZFwUE6A//q94AREQp+C27S+ultduQI2OqBM1FPyroDefiezZnO2+fxcfBHflyNNRo1+Bx5nPVvqRmAAt/Z8+8HUA0NRHb7UfqVSCyW/L4d+mCT7Z8jtu3c/H6DUnMatfO/g3ElBaKuBhQdGzRQUqG8nJK0ROmeVLq8LWXAYnW3O0tC6BwuI+2pjcR3NpFpqWZqBx8T3YPLkLi8dpkD7JBjQA8l50TMzLJDlPE52yiY9tMwY9IqK61kQO9PoM6DlPnPqdtF1MhvLSgTP/Ejc7V3F6+FtjxIUaqqMoX7zPNmGDuNCDVqMWT0eB/o948YuIKsX/W6L6p9H/iDd7dgwRbwq9rX52r1HmReDWSXE7ulhMCrSJUZuegIU4AtS+pT32fdIDn8cmYd8fd7H8l8uwMZOgIPYXlLzCg2xkUgmcbM3hbGsOJ1tzONmYwdU8H61kT0dzNBmwL7wHyyd3IMtNFZ/lkP7w5b/YzLbiER17V/FfayeD3nBPREQvIJEAzTuKW/+vgBsnxOcXXdwrLtX92w/i1lQpPr/IZ+SrJS33ksQE6I/tQOHTmCIxEe9n6vSBeE8QpzATVQmTIarfZGZAmwBxG/AVkHPr6dLdh4Hr/ws8uisuIXp2o3ijv2sX3Qp1jZwUiPhLBwS0c8TCPeeRV/RsKltjK1MxubE1h5ONOZwbWcDJxhxONjI0N3mIpkImHIrTYfXkDqQPb4lJzsPbwO3bQEkV1nm2dKh4REeb+FjYV/n5FURE9AYzkYnJibwPEPiDuBJd0nYxTqUnAYeTgMMLgVbdxcTIK6ji6d6FeeIoU8IGcZEhLftW4mII7d8HbF3qrFtEDQWTIWpY7F0Bv4niVlwA3Prvs+caZV8BbsSJ2+EvATtXSNr1x9h2A9DnUz8cO3sF3dsr4IwHMMt7OoqTc0tMcjJuASm3gYdpQGkVpseVWZzg2VS2Vs/u1zG3qf1jQUREbxZTS3H5bZ93xcdLXNgtPtj15n/ExQ5u/gYcmCtetFOOBtr2h1XOJUj2x4iJUNHT+dNSU3G1uk4fiLMeOFOA6LUxGaKGy9Ti2dW4QUvFG1u19xpdjxOnKpxZB5xZB0cTc4wwtYXpf7L1FyeoyCsuTkBERFSOlQPQeYK45dwG/twhTnvLOC8+Eyh5H6Qm5vDUlHkUgoNcHAXy/Stg41T57yaiKmMyRMajiVzcVFPEm05vxD0dNToESc4tmGkDDhcnICKiumTfEugxU9zSz4ur0SXtgCQ3FaVSU8ArCNJOHwCte3AKNVEN4//RkXEyswLcB4qbsByajEu4nHQG7n59YdLIhcGGiIgMo6k30H8R0HchNOnnkXQjC0r/t/nYA6JawkmmRBIJ4NgO+Y09xedFMBEiIiJDk0oBZy9ozF79OXhEVHVMhoiIiIiIyCgxGSIiIiIiIqPEZIiIiIiIiIwSkyEiIiIiIjJKTIaIiIiIiMgoMRkiIiIiIiKjxGSIiIiIiIiMEpMhIiIiIiIySkyGiIiIiIjIKDEZIiIiIiIio8RkiIiIiIiIjBKTISIiIiIiMkpMhoiIiIiIyCgxGSIiIiIiIqMkM3QDaoogCAAAjUbzWq/Xvu51X1/fsf/sf9l/jQ37X73+a1+nPQ/TM4xN1cP+s/9l/zU27H/dxCaJ0ECiV1FREZKSkgzdDCIio6VUKmFmZmboZrxRGJuIiAzrZbGpwSRDpaWlKCkpgVQqhUQiMXRziIiMhiAIKC0thUwmg1TK2ddlMTYRERlGVWNTg0mGiIiIiIiIXgUv4RERERERkVFiMkREREREREaJyRARERERERklJkNERERERGSUmAwREREREZFRYjJERERERERGickQEREREREZJaNIhmJjY6FQKHSbl5cXevTogZkzZ+LGjRt6dc+cOYMFCxbg3XffhY+PDxQKBVJTUw3T8BpS1f5rNBqsX78eEydOxNtvvw1fX18MHjwY33//PXJzcw3XgVry/HF5flOr1YZu4ms7ePAgFAoFDhw4UG7fO++8A4VCgbi4uHL7+vXrhxEjRgAAjh8/jr/97W8YNmwYvL29oVAoar3dNaW6/c/Ly8Pq1asRHByM7t27o0OHDhg2bBiioqJQWFhYF12olpr4/FeuXInhw4fD398fSqUSffv2xZdffom0tLRab7+xYGxibKoIYxNj0/MYm2o3Nsle+5X10NKlS+Hm5obCwkKcPXsWa9asgVqtxs8//ww7OzsAQHx8PE6ePAlPT09YW1vj1KlTBm51zXlZ/wsKChAREYHAwECMHj0ajRs3xoULF7B69WocP34cO3fuhIWFhaG7UeO0x+V5bdu2NUBraoa/vz8kEgni4+MxZMgQXXlOTg4uX74MKysrqNVqBAQE6Pbdu3cPt2/fxvjx4wEAhw8fxrlz5+Dp6QlTU1OcP3++zvvxuqrb/zt37iAmJgZBQUH44IMPYGVlhYSEBKxatQr//e9/sX79ekgkEkN0rUpq4vPPzc3F0KFDIZfLYW1tjStXrmD16tU4duwY9u3bh8aNG9d5vxoqxibGpoowNokYmxibajs2GVUy1K5dOyiVSgCASqWCRqNBREQEjhw5gpEjRwIApk6dimnTpgEA1q1b16ACzsv6b2FhgaNHj+p9kVQqFZo1a4YZM2bg0KFDCAoKMlTza03Z49JQODg4oF27duW+v6dPn4ZMJsPIkSPLXV2Mj48HIH7mAPD1119DKhUHjxcvXlyvAk51+9+iRQscO3YMVlZWuv1du3aFpaUlvvvuOyQkJKBz586135HXVBOf/8KFC/X2a4/L5MmTcfToUYwaNaoWe2BcGJsYmyrC2CRibGJsAmo3NhnFNLnKaE8y2dnZujLtH5gxeL7/JiYmFWbUb731FgAxO6f6Q6VS4fr168jIyNCVqdVq+Pj4oGfPnjh//jzy8vJ0+06dOgUTExPdibS+/y1Up/9WVlZ6wUarPv0tVPfzr4iDgwMAQCYzqutodY6xibGpIWNsYmx602JT/f5GVZN2vnXr1q0N2xADqWr/tVl5fR6af5HS0lKUlJTobRqNxtDNqrYuXboAgN4VGLVaDX9/f3Ts2BESiQQJCQl6+7y8vGBra1vnba0NtdH/+vS3UFP9LykpQUFBAS5cuIAlS5agdevW6N+/f910wkgxNjE2AYxNZfcxNjE21WZsMqpkSHtiefz4MeLi4rB69Wr4+fmhT58+hm5anXid/qenp2PFihXw8fFB796967C1dWfMmDHw9vbW2xrC1AQ/Pz9IpVLdCefBgwdISUmBn58frK2t4eXlpTuB3r17F6mpqbph6IagpvufnJyM6Oho9O/fHx4eHnXSh+qoif5nZmbC29sbvr6+GDFiBDQaDTZu3Ahra+s6709DxtjE2FQRxibGJsamuolNRjXXYcyYMXo/y+VyREZGGs2Uj1ftf05ODj788EMIgoB//OMf9X5oujLLli2DXC7XK3uTb0CsKjs7O3h4eOjm354+fRomJibo2LEjAPGEpD3haOs0pIBTk/1PTU1FaGgoXFxc8PXXX9dB66uvJvrfuHFj7NixA0VFRbh27Rqio6MREhKCTZs2wdnZuQ5707AxNjE2VYSxibGJsaluYlPDPINUYtmyZdixYwdiYmIwduxYXL16FbNmzTJ0s+rMq/T/4cOHmDBhAtLT0/Gvf/0LLVu2rOPW1h25XA6lUqm3+fj4GLpZNUKlUuHGjRtIT0+HWq2Gt7e37sqJv78/Ll68iEePHkGtVkMmk6FTp04GbnHNqon+p6WlISQkBCYmJoiJiYG9vX0d9+L1Vbf/MpkMSqUSnTp1wujRoxETE4PU1FRERUUZojsNFmMTY1NFGJsYmxib6iY2GVUypD2xdOnSBYsXL8bo0aMRFxeHgwcPGrppdaKq/X/48CHGjx+P1NRUrF+/vl4Mu1LFtFdTTp06hVOnTsHPz0+3T3tyOX36NNRqNZRKZYOb/lTd/qelpSE4OBgAsHHjRri4uNRRy2tGTX/+Li4ucHZ2LvcMHKoexibGJmPD2MTYBLw5scmokqHnzZ07F3Z2dggPD0dpaamhm1PnKuq/Ntjcvn0b69atg5eXl4FbSdXh5+cHExMTHDp0CCkpKfD399fts7W1haenJ3bv3o20tLQGNQ1Bqzr9v3PnDoKDg1FaWoqYmBg0b968rptfbTX9+d+8eRP37t1Dq1atarPZRo+xibGpoWNsYmx6k2KTcUxIroSdnR0mT56M5cuXY+/evQgKCsL9+/d1N3VdvnwZAHDixAk4ODjAwcFB7wOr757v/8CBAzFx4kRcuHABn3/+OTQaDRITE3X1HRwc4OrqargG15KUlJQKV+hxdXXVLddYX9nY2MDLywtHjhyBVCotN9Ts5+eHmJgYAOXn5KalpSEpKQkAcOvWLQDQXalt3rx5vbiR93X7n52djZCQEGRmZuKbb75Bdna23jLHLi4u9eJK3Ov2Pzk5GUuXLsXAgQPRsmVLSKVSXL58GRs2bIC9vT0mTJhQp/0wNoxNjE0AYxNjE2MTUDexyaiTIQAIDg7G5s2bERkZicDAQKSkpGDGjBl6dRYtWgRAnMe4adMmQzSz1pTtf4cOHXQnmG+++aZc3REjRuDbb7+t6ybWuvnz51dY/vXXX2P06NF13Jqap1KpkJSUBE9PT9jY2Ojt8/Pzw4YNG2BqaooOHTro7VOr1eWOjfZvoz59F16n/1euXMHt27cBiFepnzdt2jRMnz69dhteQ16n/46OjnB2dsb69euRmZmJkpISuLi4oFevXggNDUWzZs3quhtGh7GJsYmxibGJsaluYpNEEAShWr0hIiIiIiKqh4z6niEiIiIiIjJeTIaIiIiIiMgoMRkiIiIiIiKjxGSIiIiIiIiMEpMhIiIiIiIySkyGiIiIiIjIKDEZIiIiIiIio8RkiIiIiIiIjBKTIXptsbGxUCgUus3Lyws9evTAzJkzcePGDUM3DwCwZs0aHDlypFy5Wq2GQqGAWq02QKtEx44dQ2hoKLp16wYfHx/4+/tj3Lhx2LNnD4qLiw3WrudVdKw+++wz9OnTp1bfNz09HREREbh48WKtvg8RNSyMTdXD2PRijE0Nj8zQDaD6b+nSpXBzc0NhYSHOnj2LNWvWQK1W4+eff4adnZ1B27Z27VoMHDgQ/fr10yv39vbG1q1b0bZt2zpvkyAI+PzzzxEbG4uePXvis88+Q7NmzfDo0SOo1WosWrQIDx48wLhx4+q8bVU1depUhISE1Op7ZGRkYNWqVWjevDk8PT1r9b2IqOFhbHo1jE1Vw9jU8DAZompr164dlEolAEClUkGj0SAiIgJHjhzByJEjDdy6itnY2KB9+/YGee/o6GjExsZi+vTpmDZtmt6+Pn36YNKkSbh582adtqmgoAAWFhZVru/q6lqLrSEiqj7GplfD2ETGitPkqMZpg092drZeeVJSEkJDQ+Hv7w+lUonhw4fjwIEDenXu37+PsLAwDBkyBB06dEDXrl0REhKCM2fOlHufoqIirFq1CoMHD4ZSqYRKpUJwcDDOnj0LAFAoFMjPz8euXbt00yWCg4MBVD4V4ejRoxg7dix8fX3RoUMHjB8/Hr///rtenYiICCgUCqSkpGDWrFno1KkTunXrhvnz5+PRo0cvPDbFxcWIjo6Gm5sbPv744wrrODk5oXPnzrqfc3JyEBYWhoCAAPj4+KBv375YuXIlioqK9F5XWFiIFStWoE+fPvDx8UFAQAAWLVqE3NxcvXp9+vTBlClT8Msvv2D48OFQKpVYtWoVAODq1auYOHEifH19oVKp8Pe//x2PHz8u18aKpiIoFAosXrwYu3fvxuDBg+Hr64t33nkHx48f16t38+ZNzJ8/HwMGDICvry8CAgIQGhqKS5cu6eqo1WqMGjUKADB//nzd5xcREaGrU5XvExGRFmNT5RibGJuMGUeGqMalpqYCAFq3bq0ri4+Px6RJk+Dr64uwsDDY2triwIEDmDlzJgoKCvDuu+8CEE+uADBt2jQ4OjoiPz8fhw8fRnBwMDZs2ACVSgUAKCkpwaRJk5CQkICQkBB06dIFGo0G586dw927dwEAW7duxbhx46BSqTB16lQA4lW3yuzduxdz5sxBjx49sGLFChQVFSE6Olr33mWDAABMnz4dQ4YMwahRo3D58mWsWLECgDg1ozJ//vkncnJyMHr0aEgkkpcey8LCQoSEhOD27duYPn06FAoFzpw5g6ioKFy8eBFRUVEAxOkNU6dORXx8PCZPnozOnTvj0qVLiIiIQGJiIrZu3QozMzPd7z1//jyuXr2Kjz76CC1atIClpSWysrIQHBwMmUyGhQsXokmTJti7dy+++uqrl7ZT69dff0VSUhI++eQTWFlZITo6GtOmTcPBgwfRsmVLAOIUA3t7e8yePRsODg54+PAhdu3ahTFjxmDXrl1wc3ODt7c3li5divnz5+Ojjz5Cr169AAAuLi4Aqv59IiLSYmxibGJsogoJRK9p586dgru7u5CYmCgUFxcLeXl5wokTJ4Tu3bsL77//vlBcXKyrO2jQIGH48OF6ZYIgCFOmTBG6d+8uaDSaCt+jpKREKC4uFsaNGyd8/PHHuvJdu3YJ7u7uwrZt217Yxvbt2wvz5s0rVx4fHy+4u7sL8fHxgiAIgkajEXr06CEEBgbqtSUvL0/o2rWrMHbsWF1ZeHi44O7uLvz00096vzMsLExQKpVCaWlppe3Zv3+/4O7uLmzZsuWF7dbasmWL4O7uLhw4cECvPCoqSnB3dxd+++03QRAE4cSJExW2Sft+W7du1ZX17t1b8PT0FK5du6ZXd/ny5YJCoRAuXryoVz5+/Hi9YyUIgjBv3jyhd+/eevXc3d2Fbt26CY8ePdKVZWZmCh4eHsLatWsr7WNJSYlQVFQkDBgwQFiyZImu/I8//hDc3d2FnTt3lnvN636fiKjhY2xibCqLsYlehtPkqNrGjBkDb29vdOzYEZMmTUKjRo0QGRkJmUwceLx58yauXbuGYcOGARCvnGm3t99+G5mZmbh+/bru923ZsgUjRoyAUqmEl5cXvL29cfLkSVy9elVXJy4uDubm5jU27/v69evIyMhAUFAQpNJnfxbW1tYYMGAAzp07hydPnui9pqKh+MLCwnJTMKojPj4eVlZWGDRokF659urSyZMndfXKlmsNHjwYVlZWunpl29qmTRu9MrVajXbt2sHDw0OvPDAwsMrtValUelc4HR0d0aRJE6SlpenKSkpKsGbNGgwZMgQ+Pj7w8vKCj48Pbty4ofcZV+ZVv09EZJwYm0SMTYxN9GKcJkfVtmzZMsjlcjx+/BgHDhzA1q1bMWvWLERHRwMAsrKydPWWLVtW4e948OABAGD9+vX49ttv8d5772HGjBlo3LgxpFIpfvzxR1y7dk1X//79+3B2dtYLDtWhfX8nJ6dy+5ydnVFaWorc3FxYWlrqyu3t7fXqaYf6CwoKKn2fZs2aAXg2XeNlcnJy4OjoWG7aQpMmTSCTyXRTN3JyciCTyeDg4KBXTyKRwNHRUVdPq6J+5uTkoEWLFuXKHR0dq9RWoPwxAcTjUlhYqPv522+/xebNm/Hhhx/Cz88PdnZ2kEgk+OKLL/TqVeZVvk9EZLwYm0SMTYxN9GJMhqja5HK57sbULl26oLS0FNu3b8fBgwcxaNAgNG7cGAAwZcoU9O/fv8Lfob0StGfPHvj7+2PRokV6+5+/UdLBwQEJCQkoLS2tkaCjbWNmZma5fRkZGZBKpWjUqFG138fHxwf29vY4evQoZs+e/dK52fb29jh37hwEQdCrm52djZKSEl277e3tUVJSgvv37+sFHUEQkJWVpft8tCp6X3t7e93JvKyKyqpjz549GD58OGbNmqVX/uDBgyod41f5PhGR8WJsqjrGJsYmY8ZpclTj5s6dCzs7O4SHh6O0tBRubm5o3bo1kpOToVQqK9y0w9cSiUTvZkoASE5ORmJiol5ZQEAACgsLERsb+8K2mJmZvfBqmFabNm3QtGlT7Nu3D4Ig6Mrz8/Pxyy+/oH379npX3l6XqakpJk2ahGvXruGf//xnhXWys7ORkJAAAOjatSvy8/PLPZxv9+7duv1l/92zZ49evUOHDiE/P1+3/0VUKhVSUlKQnJysV75v376Xd+wVSCQSmJqa6pX9+uuvSE9P1yur7Grmq3yfiIi0GJsqx9jE2GTMODJENc7Ozg6TJ0/G8uXLsXfvXgQFBWHRokX48MMPMXHiRIwYMQJNmzbFw4cPcfXqVZw/fx7h4eEAgF69eiEyMhLh4eHw8/PD9evXERkZiRYtWkCj0ejeIzAwELGxsQgLC8P169ehUqkgCALOnTsHuVyOoUOHAgDc3d1x6tQpHDt2DE5OTrC2toabm1u5NkulUsydOxdz5szBlClTMHbsWBQVFWHdunXIzc3F7Nmza+z4aANOREQEkpKSEBgYqHuw3enTp7Ft2zZMnz4dnTp1wvDhw7F582bMmzcPaWlpcHd3R0JCAtauXYuePXuiW7duAIDu3bujR48e+P7775GXl4eOHTvi0qVLCA8Ph5eXF4KCgl7arnHjxmHnzp2YPHkyPv30U92KPWWngNSEXr166VbmUSgUOH/+PNatW6dbjUfL1dUVFhYW2Lt3L+RyOaysrODs7IymTZtW+ftERKTF2PRijE2MTcaKyRDViuDgYGzevBmRkZEIDAxEly5dsH37dqxZswZLlixBbm4u7O3tIZfLMXjwYN3rQkND8eTJE+zYsQPR0dFo27YtwsLCcOTIEZw6dUpXTyaT4aeffsLatWuxf/9+xMTEwNraGh4eHggICNDVW7BgARYtWoRZs2bhyZMn8Pf3x6ZNmyps87Bhw2BpaYmoqCjMnDkTJiYm8PX1xcaNG9GxY8caOzYSiQRLly5Fv379sG3bNt3x0LZ/zpw5uptNzc3NsXHjRqxcuRLR0dF48OABmjZtigkTJug9FE8ikSAyMhIRERGIjY3FmjVrYG9vj6CgIMyaNavcFc2KODk54d///je++eYbhIWFwdLSEv369cOXX36pW/61JixYsAAymQxRUVHIz8+Hl5cXIiIi8OOPP+rVs7S0xJIlS7Bq1SpMnDgRxcXFmDZtGqZPn17l7xMRUVmMTZVjbGJsMlYSoey4KxERERERkZHgPUNERERERGSUmAwREREREZFRYjJERERERERGickQEREREREZJSZDRERERERklJgMERERERGRUWIyRERERERERonJEBERERERGSUmQ0REREREZJSYDBERERERkVFiMkREREREREbp/wMMlVekcPGoiwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "%matplotlib inline\n", + "\n", + "sns.set_style(\"whitegrid\")\n", + "plt.rcParams[\"font.size\"] = 12\n", + "\n", + "for mof_name, mof_df in df.groupby(\"mof_name\"):\n", + " # Sort by region and distance\n", + " df_co2 = mof_df[mof_df[\"gas\"] == \"CO2\"].sort_values([\"region\", \"dist\"])\n", + " df_h2o = mof_df[mof_df[\"gas\"] == \"H2O\"].sort_values([\"region\", \"dist\"])\n", + " region_order = {\"R\": 0, \"E\": 1, \"P\": 2}\n", + " df_co2 = df_co2.sort_values(by=[\"region\", \"dist\"], key=lambda x: x.map(region_order))\n", + " df_h2o = df_h2o.sort_values(by=[\"region\", \"dist\"], key=lambda x: x.map(region_order))\n", + "\n", + " # Plot\n", + " fig, axes = plt.subplots(1, 2, figsize=(10, 5)) \n", + " # CO2\n", + " ax = axes[0]\n", + " sns.lineplot(data=df_co2, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"true_ie\", ax=ax)\n", + " sns.lineplot(data=df_co2, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"pred_ie\", ax=ax)\n", + " ax.set_title(f\"{mof_name} - CO$_2$\")\n", + " ax.set_ylabel(\"Intermolecular Energy (eV)\")\n", + " ax.set_xlabel(\"Reaction Coordinate\")\n", + " # H2O\n", + " ax = axes[1]\n", + " sns.lineplot(data=df_h2o, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"true_ie\", ax=ax)\n", + " sns.lineplot(data=df_h2o, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"pred_ie\", ax=ax)\n", + " axes[1].set_title(f\"{mof_name} - H$_2$O\")\n", + " axes[1].set_ylabel(None)\n", + " axes[1].set_xlabel(\"Reaction Coordinate\")\n", + " plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/benchmarks/mof/structures/Al-MIL53.cif b/benchmarks/mof/structures/Al-MIL53.cif new file mode 100644 index 0000000000000000000000000000000000000000..6467a56520f2d1359288706c78546576abf42146 --- /dev/null +++ b/benchmarks/mof/structures/Al-MIL53.cif @@ -0,0 +1,218 @@ +data_SABVOH_manual +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 17.1290 +_cell_length_b 6.6284 +_cell_length_c 12.1816 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +O1 O 0.08295 0.92756 0.08189 0.00000 Uiso 1.00 +O2 O 0.43312 0.92799 0.39387 0.00000 Uiso 1.00 +C3 C 0.22872 0.93670 0.19502 0.00000 Uiso 1.00 +C4 C 0.29944 0.93681 0.25417 0.00000 Uiso 1.00 +H5 H 0.20344 0.07928 0.17100 0.00000 Uiso 1.00 +H6 H 0.32573 0.07955 0.27542 0.00000 Uiso 1.00 +O7 O 0.41958 0.08310 0.57835 0.00000 Uiso 1.00 +O8 O 0.07025 0.08486 0.89497 0.00000 Uiso 1.00 +C9 C 0.27318 0.07140 0.69256 0.00000 Uiso 1.00 +C10 C 0.20192 0.07178 0.75098 0.00000 Uiso 1.00 +H11 H 0.29906 0.92886 0.67006 0.00000 Uiso 1.00 +H12 H 0.17610 0.92868 0.77357 0.00000 Uiso 1.00 +O13 O 0.91868 0.42746 0.91654 0.00000 Uiso 1.00 +O14 O 0.56964 0.42801 0.60310 0.00000 Uiso 1.00 +C15 C 0.77142 0.43670 0.80673 0.00000 Uiso 1.00 +C16 C 0.70082 0.43685 0.74719 0.00000 Uiso 1.00 +H17 H 0.79674 0.57957 0.83025 0.00000 Uiso 1.00 +H18 H 0.67486 0.57972 0.72493 0.00000 Uiso 1.00 +O19 O 0.58352 0.58315 0.41688 0.00000 Uiso 1.00 +O20 O 0.93250 0.58439 0.09914 0.00000 Uiso 1.00 +C21 C 0.72987 0.57114 0.30225 0.00000 Uiso 1.00 +C22 C 0.80087 0.57158 0.24361 0.00000 Uiso 1.00 +H23 H 0.70477 0.42860 0.32652 0.00000 Uiso 1.00 +H24 H 0.82731 0.42877 0.22221 0.00000 Uiso 1.00 +O25 O 0.91829 0.08423 0.91904 0.00000 Uiso 1.00 +O26 O 0.57171 0.08591 0.59858 0.00000 Uiso 1.00 +C27 C 0.77155 0.07344 0.80614 0.00000 Uiso 1.00 +C28 C 0.70097 0.07362 0.74645 0.00000 Uiso 1.00 +H29 H 0.79709 0.93047 0.82929 0.00000 Uiso 1.00 +H30 H 0.67514 0.93071 0.72384 0.00000 Uiso 1.00 +O31 O 0.58293 0.92635 0.41246 0.00000 Uiso 1.00 +O32 O 0.93337 0.92749 0.10242 0.00000 Uiso 1.00 +C33 C 0.72994 0.93450 0.30253 0.00000 Uiso 1.00 +C34 C 0.80090 0.93487 0.24420 0.00000 Uiso 1.00 +H35 H 0.70489 0.07746 0.32704 0.00000 Uiso 1.00 +H36 H 0.82734 0.07745 0.22321 0.00000 Uiso 1.00 +O37 O 0.08348 0.58500 0.07900 0.00000 Uiso 1.00 +O38 O 0.43136 0.58522 0.39797 0.00000 Uiso 1.00 +C39 C 0.22857 0.57340 0.19548 0.00000 Uiso 1.00 +C40 C 0.29926 0.57338 0.25488 0.00000 Uiso 1.00 +H41 H 0.20314 0.43077 0.17175 0.00000 Uiso 1.00 +H42 H 0.32534 0.43037 0.27655 0.00000 Uiso 1.00 +O43 O 0.41998 0.42618 0.58233 0.00000 Uiso 1.00 +O44 O 0.06916 0.42744 0.89141 0.00000 Uiso 1.00 +C45 C 0.27313 0.43452 0.69225 0.00000 Uiso 1.00 +C46 C 0.20191 0.43507 0.75039 0.00000 Uiso 1.00 +H47 H 0.29897 0.57742 0.66955 0.00000 Uiso 1.00 +H48 H 0.17617 0.57802 0.77264 0.00000 Uiso 1.00 +Al49 Al 0.00184 0.00815 -0.00109 0.00000 Uiso 1.00 +Al50 Al 0.50246 0.00700 0.49631 0.00000 Uiso 1.00 +Al51 Al 0.00180 0.50804 -0.00372 0.00000 Uiso 1.00 +Al52 Al 0.50149 0.50826 0.49995 0.00000 Uiso 1.00 +O53 O 0.00033 0.75904 0.93824 0.00000 Uiso 1.00 +C54 C 0.40499 0.75581 0.36276 0.00000 Uiso 1.00 +C55 C 0.11410 0.75578 0.10647 0.00000 Uiso 1.00 +C56 C 0.33504 0.75518 0.28738 0.00000 Uiso 1.00 +C57 C 0.19073 0.75512 0.16757 0.00000 Uiso 1.00 +O58 O 0.50752 0.25915 0.43997 0.00000 Uiso 1.00 +C59 C 0.09648 0.25525 0.85941 0.00000 Uiso 1.00 +C60 C 0.38857 0.25366 0.60574 0.00000 Uiso 1.00 +C61 C 0.16579 0.25390 0.78301 0.00000 Uiso 1.00 +C62 C 0.31116 0.25317 0.66510 0.00000 Uiso 1.00 +O63 O 0.00901 0.25908 0.05589 0.00000 Uiso 1.00 +C64 C 0.59727 0.25599 0.63482 0.00000 Uiso 1.00 +C65 C 0.88710 0.25546 0.89295 0.00000 Uiso 1.00 +C66 C 0.66547 0.25545 0.71300 0.00000 Uiso 1.00 +C67 C 0.80956 0.25497 0.83393 0.00000 Uiso 1.00 +O68 O 0.50121 0.75932 0.55804 0.00000 Uiso 1.00 +C69 C 0.90602 0.75505 0.13439 0.00000 Uiso 1.00 +C70 C 0.61417 0.75373 0.38894 0.00000 Uiso 1.00 +C71 C 0.83658 0.75367 0.21089 0.00000 Uiso 1.00 +C72 C 0.69136 0.75312 0.32891 0.00000 Uiso 1.00 +H73 H 0.51416 0.26019 0.36979 0.00000 Uiso 1.00 +H74 H 0.50215 0.76047 0.62887 0.00000 Uiso 1.00 +H75 H 0.01841 0.26004 0.12543 0.00000 Uiso 1.00 +H76 H -0.00035 0.76007 0.86745 0.00000 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +O1 C55 1.293 . A +O1 Al49 1.799 1_565 A +O2 C54 1.295 . A +O2 Al50 1.801 1_565 A +C3 C4 1.409 . A +C3 C57 1.409 . A +C3 H5 1.080 1_565 A +C4 C56 1.409 . A +C4 H6 1.079 1_565 A +H5 C3 1.080 1_545 A +H6 C4 1.079 1_545 A +O7 Al50 1.808 . S +O7 C60 1.293 . A +O8 C59 1.290 . A +O8 Al49 1.799 1_556 A +C9 C10 1.413 . A +C9 C62 1.410 . A +C9 H11 1.079 1_545 A +C10 C61 1.412 . A +C10 H12 1.082 1_545 A +H11 C9 1.079 1_565 A +H12 C10 1.082 1_565 A +O13 C65 1.294 . A +O13 Al51 1.804 1_656 A +O14 C64 1.294 . A +O14 Al52 1.796 . S +C15 C16 1.410 . A +C15 C67 1.410 . A +C15 H17 1.080 . S +C16 C66 1.409 . A +C16 H18 1.081 . S +O19 Al52 1.801 . S +O19 C70 1.292 . A +O20 C69 1.292 . A +O20 Al51 1.799 1_655 A +C21 C22 1.410 . A +C21 C72 1.413 . A +C21 H23 1.079 . S +C22 C71 1.411 . A +C22 H24 1.081 . S +O25 C65 1.294 . A +O25 Al49 1.803 1_656 S +O26 C64 1.287 . A +O26 Al50 1.798 . S +C27 C28 1.411 . A +C27 C67 1.409 . A +C27 H29 1.081 1_545 A +C28 C66 1.410 . A +C28 H30 1.081 1_545 A +H29 C27 1.081 1_565 A +H30 C28 1.081 1_565 A +O31 C70 1.295 . A +O31 Al50 1.797 1_565 S +O32 C69 1.295 . A +O32 Al49 1.803 1_665 S +C33 C34 1.408 . A +C33 C72 1.409 . A +C33 H35 1.082 1_565 A +C34 C71 1.407 . A +C34 H36 1.079 1_565 A +H35 C33 1.082 1_545 A +H36 C34 1.079 1_545 A +O37 Al51 1.798 . S +O37 C55 1.292 . A +O38 C54 1.291 . A +O38 Al52 1.802 . S +C39 C40 1.411 . A +C39 C57 1.409 . A +C39 H41 1.080 . S +C40 C56 1.409 . A +C40 H42 1.081 . S +O43 Al52 1.803 . S +O43 C60 1.296 . A +O44 C59 1.294 . A +O44 Al51 1.802 1_556 S +C45 C46 1.411 . A +C45 C62 1.407 . A +C45 H47 1.081 . S +C46 C61 1.408 . A +C46 H48 1.080 . S +Al49 O63 1.806 . S +Al49 O1 1.799 1_545 A +Al49 O8 1.799 1_554 A +Al49 O25 1.803 1_454 S +Al49 O32 1.803 1_445 S +Al49 O53 1.809 1_544 A +Al50 O58 1.809 . S +Al50 O2 1.801 1_545 A +Al50 O31 1.797 1_545 S +Al50 O68 1.806 1_545 A +Al51 O63 1.807 . S +Al51 O13 1.804 1_454 A +Al51 O20 1.799 1_455 A +Al51 O44 1.802 1_554 S +Al51 O53 1.808 1_554 A +Al52 O68 1.808 . S +Al52 O58 1.809 . S +O53 H76 0.862 . S +O53 Al49 1.809 1_566 A +O53 Al51 1.808 1_556 A +C54 C56 1.510 . S +C55 C57 1.509 . S +O58 H73 0.862 . S +C59 C61 1.509 . S +C60 C62 1.510 . S +O63 H75 0.862 . S +C64 C66 1.507 . S +C65 C67 1.510 . S +O68 H74 0.863 . S +O68 Al50 1.806 1_565 A +C69 C71 1.511 . S +C70 C72 1.511 . S diff --git a/benchmarks/mof/structures/CALF20.cif b/benchmarks/mof/structures/CALF20.cif new file mode 100644 index 0000000000000000000000000000000000000000..a8cd85afe688a75219deeefab1c92e6649f848f5 --- /dev/null +++ b/benchmarks/mof/structures/CALF20.cif @@ -0,0 +1,79 @@ +data_CALF20 +_audit_creation_date 2025-01-03 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P21/C' +_symmetry_Int_Tables_number 14 +_symmetry_cell_setting monoclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z + -x,y+1/2,-z+1/2 + -x,-y,-z + x,-y+1/2,z+1/2 +_cell_length_a 8.9138 +_cell_length_b 9.6935 +_cell_length_c 9.4836 +_cell_angle_alpha 90.0000 +_cell_angle_beta 115.8950 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.17588 0.05771 0.43679 0.01878 Uani 1.00 +N1 N 0.03080 -0.11080 0.36830 0.02235 Uani 1.00 +N2 N -0.09220 -0.14750 0.41000 0.02454 Uani 1.00 +N3 N -0.09920 -0.29140 0.22590 0.02563 Uani 1.00 +O1 O 0.40980 0.07610 0.61020 0.03235 Uani 1.00 +O2 O 0.67530 0.03070 0.67320 0.02972 Uani 1.00 +C1 C 0.02150 -0.19830 0.25880 0.02987 Uani 1.00 +H1A H 0.09320 -0.19550 0.20860 0.03600 Uiso 1.00 +C2 C -0.16550 -0.25540 0.32320 0.02964 Uani 1.00 +H2A H -0.25590 -0.30290 0.32890 0.03600 Uiso 1.00 +C3 C 0.52480 0.03080 0.58150 0.02323 Uani 1.00 +loop_ +_atom_site_aniso_label +_atom_site_aniso_U_11 +_atom_site_aniso_U_22 +_atom_site_aniso_U_33 +_atom_site_aniso_U_12 +_atom_site_aniso_U_13 +_atom_site_aniso_U_23 +Zn1 0.01910 0.01960 0.02120 -0.00037 0.01210 0.00021 +N1 0.02510 0.02230 0.02770 -0.00420 0.01900 -0.00430 +N2 0.02610 0.02640 0.02940 -0.00570 0.01980 -0.00540 +N3 0.02870 0.02630 0.02900 -0.00580 0.01920 -0.00810 +O1 0.01990 0.04770 0.03200 0.00370 0.01370 -0.00870 +O2 0.02170 0.03940 0.02870 0.00180 0.01160 -0.00580 +C1 0.03180 0.03110 0.03860 -0.01080 0.02640 -0.01070 +C2 0.03200 0.03190 0.03800 -0.01230 0.02730 -0.01110 +C3 0.01980 0.02350 0.02720 0.00070 0.01100 0.00160 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +Zn1 N1 2.007 . S +Zn1 O1 2.022 . S +Zn1 N3 2.016 2 S +Zn1 N2 2.091 3_556 S +Zn1 O2 2.189 3_656 S +N1 C1 1.315 . S +N1 N2 1.365 . S +N2 C2 1.315 . S +N2 Zn1 2.091 3_556 S +N3 C1 1.333 . S +N3 C2 1.341 . S +N3 Zn1 2.016 2_545 S +O1 C3 1.250 . S +O2 C3 1.240 . S +O2 Zn1 2.189 3_656 S +C1 H1A 0.950 . S +C2 H2A 0.950 . S +C3 C3 1.531 3_656 S diff --git a/benchmarks/mof/structures/HKUST-1.cif b/benchmarks/mof/structures/HKUST-1.cif new file mode 100644 index 0000000000000000000000000000000000000000..d7d2adad361d09830475837f67f22b7ca9a53f4d --- /dev/null +++ b/benchmarks/mof/structures/HKUST-1.cif @@ -0,0 +1,180 @@ +data_FIQCEN_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 18.6273 +_cell_length_b 18.6273 +_cell_length_c 18.6273 +_cell_angle_alpha 60.0000 +_cell_angle_beta 60.0000 +_cell_angle_gamma 60.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Cu1 Cu 0.57057 -0.00000 0.42943 0.01267 Uiso 1.00 +Cu2 Cu 0.00000 0.57057 0.00000 0.01267 Uiso 1.00 +Cu3 Cu 0.42943 0.00000 0.57057 0.01267 Uiso 1.00 +Cu4 Cu 0.00000 0.42943 0.00000 0.01267 Uiso 1.00 +Cu5 Cu 0.57057 0.42943 -0.00000 0.01267 Uiso 1.00 +Cu6 Cu 0.00000 1.00000 0.42943 0.01267 Uiso 1.00 +Cu7 Cu 0.42943 0.57057 -0.00000 0.01267 Uiso 1.00 +Cu8 Cu 0.00000 0.00000 0.57057 0.01267 Uiso 1.00 +Cu9 Cu 0.57057 1.00000 -0.00000 0.01267 Uiso 1.00 +Cu10 Cu 0.00000 0.42943 0.57057 0.01267 Uiso 1.00 +Cu11 Cu 0.42943 1.00000 0.00000 0.01267 Uiso 1.00 +Cu12 Cu 0.00000 0.57057 0.42943 0.01267 Uiso 1.00 +H1 H 0.72800 0.72800 0.51160 0.01267 Uiso 1.00 +H2 H 0.72800 0.72800 0.03240 0.01267 Uiso 1.00 +H3 H 0.51160 0.03240 0.72800 0.01267 Uiso 1.00 +H4 H 0.03240 0.51160 0.72800 0.01267 Uiso 1.00 +H5 H 0.72800 0.51160 0.03240 0.01267 Uiso 1.00 +H6 H 0.72800 0.03240 0.51160 0.01267 Uiso 1.00 +H7 H 0.51160 0.72800 0.72800 0.01267 Uiso 1.00 +H8 H 0.03240 0.72800 0.72800 0.01267 Uiso 1.00 +H9 H 0.72800 0.03240 0.72800 0.01267 Uiso 1.00 +H10 H 0.72800 0.51160 0.72800 0.01267 Uiso 1.00 +H11 H 0.51160 0.72800 0.03240 0.01267 Uiso 1.00 +H12 H 0.03240 0.72800 0.51160 0.01267 Uiso 1.00 +H13 H 0.27200 0.27200 0.48840 0.01267 Uiso 1.00 +H14 H 0.27200 0.27200 0.96760 0.01267 Uiso 1.00 +H15 H 0.96760 0.48840 0.27200 0.01267 Uiso 1.00 +H16 H 0.48840 0.96760 0.27200 0.01267 Uiso 1.00 +H17 H 0.48840 0.27200 0.96760 0.01267 Uiso 1.00 +H18 H 0.96760 0.27200 0.48840 0.01267 Uiso 1.00 +H19 H 0.27200 0.48840 0.27200 0.01267 Uiso 1.00 +H20 H 0.27200 0.96760 0.27200 0.01267 Uiso 1.00 +H21 H 0.96760 0.27200 0.27200 0.01267 Uiso 1.00 +H22 H 0.48840 0.27200 0.27200 0.01267 Uiso 1.00 +H23 H 0.27200 0.48840 0.96760 0.01267 Uiso 1.00 +H24 H 0.27200 0.96760 0.48840 0.01267 Uiso 1.00 +C1 C 0.25700 0.96900 0.38700 0.01267 Uiso 1.00 +C2 C 0.96900 0.25700 0.38700 0.01267 Uiso 1.00 +C3 C 0.38700 0.38700 0.25700 0.01267 Uiso 1.00 +C4 C 0.38700 0.38700 0.96900 0.01267 Uiso 1.00 +C5 C 0.25700 0.38700 0.38700 0.01267 Uiso 1.00 +C6 C 0.96900 0.38700 0.38700 0.01267 Uiso 1.00 +C7 C 0.38700 0.25700 0.96900 0.01267 Uiso 1.00 +C8 C 0.38700 0.96900 0.25700 0.01267 Uiso 1.00 +C9 C 0.25700 0.38700 0.96900 0.01267 Uiso 1.00 +C10 C 0.96900 0.38700 0.25700 0.01267 Uiso 1.00 +C11 C 0.38700 0.96900 0.38700 0.01267 Uiso 1.00 +C12 C 0.38700 0.25700 0.38700 0.01267 Uiso 1.00 +C13 C 0.03100 0.74300 0.61300 0.01267 Uiso 1.00 +C14 C 0.74300 0.03100 0.61300 0.01267 Uiso 1.00 +C15 C 0.61300 0.61300 0.74300 0.01267 Uiso 1.00 +C16 C 0.61300 0.61300 0.03100 0.01267 Uiso 1.00 +C17 C 0.61300 0.74300 0.61300 0.01267 Uiso 1.00 +C18 C 0.61300 0.03100 0.61300 0.01267 Uiso 1.00 +C19 C 0.74300 0.61300 0.03100 0.01267 Uiso 1.00 +C20 C 0.03100 0.61300 0.74300 0.01267 Uiso 1.00 +C21 C 0.61300 0.74300 0.03100 0.01267 Uiso 1.00 +C22 C 0.61300 0.03100 0.74300 0.01267 Uiso 1.00 +C23 C 0.03100 0.61300 0.61300 0.01267 Uiso 1.00 +C24 C 0.74300 0.61300 0.61300 0.01267 Uiso 1.00 +C25 C 0.56870 0.56870 0.83770 0.01267 Uiso 1.00 +C26 C 0.56870 0.56870 0.02490 0.01267 Uiso 1.00 +C27 C 0.83770 0.02490 0.56870 0.01267 Uiso 1.00 +C28 C 0.02490 0.83770 0.56870 0.01267 Uiso 1.00 +C29 C 0.56870 0.83770 0.02490 0.01267 Uiso 1.00 +C30 C 0.56870 0.02490 0.83770 0.01267 Uiso 1.00 +C31 C 0.83770 0.56870 0.56870 0.01267 Uiso 1.00 +C32 C 0.02490 0.56870 0.56870 0.01267 Uiso 1.00 +C33 C 0.56870 0.02490 0.56870 0.01267 Uiso 1.00 +C34 C 0.56870 0.83770 0.56870 0.01267 Uiso 1.00 +C35 C 0.83770 0.56870 0.02490 0.01267 Uiso 1.00 +C36 C 0.02490 0.56870 0.83770 0.01267 Uiso 1.00 +C37 C 0.43130 0.43130 0.16230 0.01267 Uiso 1.00 +C38 C 0.43130 0.43130 0.97510 0.01267 Uiso 1.00 +C39 C 0.97510 0.16230 0.43130 0.01267 Uiso 1.00 +C40 C 0.16230 0.97510 0.43130 0.01267 Uiso 1.00 +C41 C 0.16230 0.43130 0.97510 0.01267 Uiso 1.00 +C42 C 0.97510 0.43130 0.16230 0.01267 Uiso 1.00 +C43 C 0.43130 0.16230 0.43130 0.01267 Uiso 1.00 +C44 C 0.43130 0.97510 0.43130 0.01267 Uiso 1.00 +C45 C 0.97510 0.43130 0.43130 0.01267 Uiso 1.00 +C46 C 0.16230 0.43130 0.43130 0.01267 Uiso 1.00 +C47 C 0.43130 0.16230 0.97510 0.01267 Uiso 1.00 +C48 C 0.43130 0.97510 0.16230 0.01267 Uiso 1.00 +C49 C 0.30060 0.96840 0.43040 0.01267 Uiso 1.00 +C50 C 0.96840 0.30060 0.30060 0.01267 Uiso 1.00 +C51 C 0.43040 0.30060 0.30060 0.01267 Uiso 1.00 +C52 C 0.30060 0.43040 0.96840 0.01267 Uiso 1.00 +C53 C 0.30060 0.43040 0.30060 0.01267 Uiso 1.00 +C54 C 0.96840 0.30060 0.43040 0.01267 Uiso 1.00 +C55 C 0.43040 0.30060 0.96840 0.01267 Uiso 1.00 +C56 C 0.30060 0.96840 0.30060 0.01267 Uiso 1.00 +C57 C 0.30060 0.30060 0.96840 0.01267 Uiso 1.00 +C58 C 0.96840 0.43040 0.30060 0.01267 Uiso 1.00 +C59 C 0.43040 0.96840 0.30060 0.01267 Uiso 1.00 +C60 C 0.30060 0.30060 0.43040 0.01267 Uiso 1.00 +C61 C 0.03160 0.69940 0.56960 0.01267 Uiso 1.00 +C62 C 0.69940 0.03160 0.69940 0.01267 Uiso 1.00 +C63 C 0.69940 0.56960 0.69940 0.01267 Uiso 1.00 +C64 C 0.56960 0.69940 0.03160 0.01267 Uiso 1.00 +C65 C 0.56960 0.69940 0.69940 0.01267 Uiso 1.00 +C66 C 0.69940 0.03160 0.56960 0.01267 Uiso 1.00 +C67 C 0.69940 0.56960 0.03160 0.01267 Uiso 1.00 +C68 C 0.03160 0.69940 0.69940 0.01267 Uiso 1.00 +C69 C 0.69940 0.69940 0.03160 0.01267 Uiso 1.00 +C70 C 0.56960 0.03160 0.69940 0.01267 Uiso 1.00 +C71 C 0.03160 0.56960 0.69940 0.01267 Uiso 1.00 +C72 C 0.69940 0.69940 0.56960 0.01267 Uiso 1.00 +O1 O 0.61201 0.49247 0.87425 0.01267 Uiso 1.00 +O2 O 0.49247 0.61201 0.02127 0.01267 Uiso 1.00 +O3 O 0.87425 0.02127 0.61201 0.01267 Uiso 1.00 +O4 O 0.02127 0.87425 0.49247 0.01267 Uiso 1.00 +O5 O 0.61201 0.87425 0.02127 0.01267 Uiso 1.00 +O6 O 0.49247 0.02127 0.87425 0.01267 Uiso 1.00 +O7 O 0.87425 0.61201 0.49247 0.01267 Uiso 1.00 +O8 O 0.02127 0.49247 0.61201 0.01267 Uiso 1.00 +O9 O 0.61201 0.02127 0.49247 0.01267 Uiso 1.00 +O10 O 0.49247 0.87425 0.61201 0.01267 Uiso 1.00 +O11 O 0.87425 0.49247 0.02127 0.01267 Uiso 1.00 +O12 O 0.02127 0.61201 0.87425 0.01267 Uiso 1.00 +O13 O 0.50753 0.38799 0.12575 0.01267 Uiso 1.00 +O14 O 0.38799 0.50753 0.97873 0.01267 Uiso 1.00 +O15 O 0.97873 0.12575 0.38799 0.01267 Uiso 1.00 +O16 O 0.12575 0.97873 0.50753 0.01267 Uiso 1.00 +O17 O 0.12575 0.38799 0.97873 0.01267 Uiso 1.00 +O18 O 0.97873 0.50753 0.12575 0.01267 Uiso 1.00 +O19 O 0.38799 0.12575 0.50753 0.01267 Uiso 1.00 +O20 O 0.50753 0.97873 0.38799 0.01267 Uiso 1.00 +O21 O 0.97873 0.38799 0.50753 0.01267 Uiso 1.00 +O22 O 0.12575 0.50753 0.38799 0.01267 Uiso 1.00 +O23 O 0.50753 0.12575 0.97873 0.01267 Uiso 1.00 +O24 O 0.38799 0.97873 0.12575 0.01267 Uiso 1.00 +O25 O 0.38799 0.50753 0.12575 0.01267 Uiso 1.00 +O26 O 0.50753 0.38799 0.97873 0.01267 Uiso 1.00 +O27 O 0.12575 0.97873 0.38799 0.01267 Uiso 1.00 +O28 O 0.97873 0.12575 0.50753 0.01267 Uiso 1.00 +O29 O 0.38799 0.12575 0.97873 0.01267 Uiso 1.00 +O30 O 0.50753 0.97873 0.12575 0.01267 Uiso 1.00 +O31 O 0.12575 0.38799 0.50753 0.01267 Uiso 1.00 +O32 O 0.97873 0.50753 0.38799 0.01267 Uiso 1.00 +O33 O 0.38799 0.97873 0.50753 0.01267 Uiso 1.00 +O34 O 0.50753 0.12575 0.38799 0.01267 Uiso 1.00 +O35 O 0.12575 0.50753 0.97873 0.01267 Uiso 1.00 +O36 O 0.97873 0.38799 0.12575 0.01267 Uiso 1.00 +O37 O 0.49247 0.61201 0.87425 0.01267 Uiso 1.00 +O38 O 0.61201 0.49247 0.02127 0.01267 Uiso 1.00 +O39 O 0.02127 0.87425 0.61201 0.01267 Uiso 1.00 +O40 O 0.87425 0.02127 0.49247 0.01267 Uiso 1.00 +O41 O 0.87425 0.61201 0.02127 0.01267 Uiso 1.00 +O42 O 0.02127 0.49247 0.87425 0.01267 Uiso 1.00 +O43 O 0.61201 0.87425 0.49247 0.01267 Uiso 1.00 +O44 O 0.49247 0.02127 0.61201 0.01267 Uiso 1.00 +O45 O 0.02127 0.61201 0.49247 0.01267 Uiso 1.00 +O46 O 0.87425 0.49247 0.61201 0.01267 Uiso 1.00 +O47 O 0.49247 0.87425 0.02127 0.01267 Uiso 1.00 +O48 O 0.61201 0.02127 0.87425 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/MOF-5.cif b/benchmarks/mof/structures/MOF-5.cif new file mode 100644 index 0000000000000000000000000000000000000000..f49b1517443dde7d85b82c5e5835d479cc451062 --- /dev/null +++ b/benchmarks/mof/structures/MOF-5.cif @@ -0,0 +1,130 @@ +data_EDUSIF_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 18.2660 +_cell_length_b 18.2660 +_cell_length_c 18.2660 +_cell_angle_alpha 60.0000 +_cell_angle_beta 60.0000 +_cell_angle_gamma 60.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.29338 0.29338 0.29338 0.01267 Uiso 1.00 +Zn2 Zn 0.29338 0.29338 0.11986 0.01267 Uiso 1.00 +Zn3 Zn 0.29338 0.11986 0.29338 0.01267 Uiso 1.00 +Zn4 Zn 0.11986 0.29338 0.29338 0.01267 Uiso 1.00 +Zn5 Zn 0.70662 0.70662 0.70662 0.01267 Uiso 1.00 +Zn6 Zn 0.70662 0.70662 0.88014 0.01267 Uiso 1.00 +Zn7 Zn 0.88014 0.70662 0.70662 0.01267 Uiso 1.00 +Zn8 Zn 0.70662 0.88014 0.70662 0.01267 Uiso 1.00 +H1 H 0.15460 0.45520 0.45520 0.01267 Uiso 1.00 +H2 H 0.45520 0.15460 0.93500 0.01267 Uiso 1.00 +H3 H 0.45520 0.93500 0.15460 0.01267 Uiso 1.00 +H4 H 0.93500 0.45520 0.45520 0.01267 Uiso 1.00 +H5 H 0.15460 0.45520 0.93500 0.01267 Uiso 1.00 +H6 H 0.45520 0.93500 0.45520 0.01267 Uiso 1.00 +H7 H 0.45520 0.15460 0.45520 0.01267 Uiso 1.00 +H8 H 0.93500 0.45520 0.15460 0.01267 Uiso 1.00 +H9 H 0.15460 0.93500 0.45520 0.01267 Uiso 1.00 +H10 H 0.45520 0.45520 0.15460 0.01267 Uiso 1.00 +H11 H 0.45520 0.45520 0.93500 0.01267 Uiso 1.00 +H12 H 0.93500 0.15460 0.45520 0.01267 Uiso 1.00 +H13 H 0.54480 0.84540 0.54480 0.01267 Uiso 1.00 +H14 H 0.84540 0.54480 0.06500 0.01267 Uiso 1.00 +H15 H 0.06500 0.54480 0.84540 0.01267 Uiso 1.00 +H16 H 0.54480 0.06500 0.54480 0.01267 Uiso 1.00 +H17 H 0.54480 0.84540 0.06500 0.01267 Uiso 1.00 +H18 H 0.06500 0.54480 0.54480 0.01267 Uiso 1.00 +H19 H 0.84540 0.54480 0.54480 0.01267 Uiso 1.00 +H20 H 0.54480 0.06500 0.84540 0.01267 Uiso 1.00 +H21 H 0.06500 0.84540 0.54480 0.01267 Uiso 1.00 +H22 H 0.54480 0.54480 0.84540 0.01267 Uiso 1.00 +H23 H 0.54480 0.54480 0.06500 0.01267 Uiso 1.00 +H24 H 0.84540 0.06500 0.54480 0.01267 Uiso 1.00 +C1 C 0.09270 0.47310 0.47310 0.01267 Uiso 1.00 +C2 C 0.47310 0.09270 0.96110 0.01267 Uiso 1.00 +C3 C 0.47310 0.96110 0.09270 0.01267 Uiso 1.00 +C4 C 0.96110 0.47310 0.47310 0.01267 Uiso 1.00 +C5 C 0.09270 0.47310 0.96110 0.01267 Uiso 1.00 +C6 C 0.47310 0.96110 0.47310 0.01267 Uiso 1.00 +C7 C 0.47310 0.09270 0.47310 0.01267 Uiso 1.00 +C8 C 0.96110 0.47310 0.09270 0.01267 Uiso 1.00 +C9 C 0.09270 0.96110 0.47310 0.01267 Uiso 1.00 +C10 C 0.47310 0.47310 0.09270 0.01267 Uiso 1.00 +C11 C 0.47310 0.47310 0.96110 0.01267 Uiso 1.00 +C12 C 0.96110 0.09270 0.47310 0.01267 Uiso 1.00 +C13 C 0.52690 0.90730 0.52690 0.01267 Uiso 1.00 +C14 C 0.90730 0.52690 0.03890 0.01267 Uiso 1.00 +C15 C 0.03890 0.52690 0.90730 0.01267 Uiso 1.00 +C16 C 0.52690 0.03890 0.52690 0.01267 Uiso 1.00 +C17 C 0.52690 0.90730 0.03890 0.01267 Uiso 1.00 +C18 C 0.03890 0.52690 0.52690 0.01267 Uiso 1.00 +C19 C 0.90730 0.52690 0.52690 0.01267 Uiso 1.00 +C20 C 0.52690 0.03890 0.90730 0.01267 Uiso 1.00 +C21 C 0.03890 0.90730 0.52690 0.01267 Uiso 1.00 +C22 C 0.52690 0.52690 0.90730 0.01267 Uiso 1.00 +C23 C 0.52690 0.52690 0.03890 0.01267 Uiso 1.00 +C24 C 0.90730 0.03890 0.52690 0.01267 Uiso 1.00 +C25 C 0.11130 0.38870 0.38870 0.01267 Uiso 1.00 +C26 C 0.05380 0.44620 0.44620 0.01267 Uiso 1.00 +C27 C 0.38870 0.11130 0.11130 0.01267 Uiso 1.00 +C28 C 0.44620 0.05380 0.05380 0.01267 Uiso 1.00 +C29 C 0.11130 0.38870 0.11130 0.01267 Uiso 1.00 +C30 C 0.05380 0.44620 0.05380 0.01267 Uiso 1.00 +C31 C 0.38870 0.11130 0.38870 0.01267 Uiso 1.00 +C32 C 0.44620 0.05380 0.44620 0.01267 Uiso 1.00 +C33 C 0.11130 0.11130 0.38870 0.01267 Uiso 1.00 +C34 C 0.05380 0.05380 0.44620 0.01267 Uiso 1.00 +C35 C 0.38870 0.38870 0.11130 0.01267 Uiso 1.00 +C36 C 0.44620 0.44620 0.05380 0.01267 Uiso 1.00 +C37 C 0.61130 0.88870 0.61130 0.01267 Uiso 1.00 +C38 C 0.55380 0.94620 0.55380 0.01267 Uiso 1.00 +C39 C 0.88870 0.61130 0.88870 0.01267 Uiso 1.00 +C40 C 0.94620 0.55380 0.94620 0.01267 Uiso 1.00 +C41 C 0.61130 0.88870 0.88870 0.01267 Uiso 1.00 +C42 C 0.55380 0.94620 0.94620 0.01267 Uiso 1.00 +C43 C 0.88870 0.61130 0.61130 0.01267 Uiso 1.00 +C44 C 0.94620 0.55380 0.55380 0.01267 Uiso 1.00 +C45 C 0.88870 0.88870 0.61130 0.01267 Uiso 1.00 +C46 C 0.94620 0.94620 0.55380 0.01267 Uiso 1.00 +C47 C 0.61130 0.61130 0.88870 0.01267 Uiso 1.00 +C48 C 0.55380 0.55380 0.94620 0.01267 Uiso 1.00 +O1 O 0.25000 0.25000 0.25000 0.01267 Uiso 1.00 +O2 O 0.75000 0.75000 0.75000 0.01267 Uiso 1.00 +O3 O 0.19777 0.36600 0.36600 0.01267 Uiso 1.00 +O4 O 0.36600 0.19777 0.07023 0.01267 Uiso 1.00 +O5 O 0.36600 0.07023 0.19777 0.01267 Uiso 1.00 +O6 O 0.07023 0.36600 0.36600 0.01267 Uiso 1.00 +O7 O 0.19777 0.36600 0.07023 0.01267 Uiso 1.00 +O8 O 0.36600 0.07023 0.36600 0.01267 Uiso 1.00 +O9 O 0.36600 0.19777 0.36600 0.01267 Uiso 1.00 +O10 O 0.07023 0.36600 0.19777 0.01267 Uiso 1.00 +O11 O 0.19777 0.07023 0.36600 0.01267 Uiso 1.00 +O12 O 0.36600 0.36600 0.19777 0.01267 Uiso 1.00 +O13 O 0.36600 0.36600 0.07023 0.01267 Uiso 1.00 +O14 O 0.07023 0.19777 0.36600 0.01267 Uiso 1.00 +O15 O 0.63400 0.80223 0.63400 0.01267 Uiso 1.00 +O16 O 0.80223 0.63400 0.92977 0.01267 Uiso 1.00 +O17 O 0.92977 0.63400 0.80223 0.01267 Uiso 1.00 +O18 O 0.63400 0.92977 0.63400 0.01267 Uiso 1.00 +O19 O 0.63400 0.80223 0.92977 0.01267 Uiso 1.00 +O20 O 0.92977 0.63400 0.63400 0.01267 Uiso 1.00 +O21 O 0.80223 0.63400 0.63400 0.01267 Uiso 1.00 +O22 O 0.63400 0.92977 0.80223 0.01267 Uiso 1.00 +O23 O 0.92977 0.80223 0.63400 0.01267 Uiso 1.00 +O24 O 0.63400 0.63400 0.80223 0.01267 Uiso 1.00 +O25 O 0.63400 0.63400 0.92977 0.01267 Uiso 1.00 +O26 O 0.80223 0.92977 0.63400 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/SIFSIX-3-Cu.cif b/benchmarks/mof/structures/SIFSIX-3-Cu.cif new file mode 100644 index 0000000000000000000000000000000000000000..a90ea36c24c944c89b8b1a16c7d9db3db6dec34f --- /dev/null +++ b/benchmarks/mof/structures/SIFSIX-3-Cu.cif @@ -0,0 +1,468 @@ + data_SIFIX-3-Cu_Mohamed_EDDAOUDI_FMD3_KAUST + +#============================================================================= + +# 1. SUBMISSION DETAILS + +_publ_contact_author_name 'Prof. Mohamed EDDAOUDI' +_publ_contact_author_address +; +Functional Material Design, development & Discovery (FMD3), Advanced Membrane & +Porous Materials (AMPM); King Abdullah University of Science and Technology +(KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia +; +_publ_contact_author_email ' Mohamed.eddaoudi@kaust.edu.sa ' +_publ_contact_author_fax ? +_publ_contact_author_phone ? + +_publ_contact_letter +; ? +; + +_publ_requested_journal ' Nature Communications ' +_publ_requested_coeditor_name ? +_publ_requested_category ? # Acta C: one of CI/CM/CO/FI/FM/FO + + +# Definition of non standard CIF items (Reliability indices used in FULLPROF) + +loop_ +_publ_manuscript_incl_extra_item +_publ_manuscript_incl_extra_info +_publ_manuscript_incl_extra_defn +# Name Explanation Standard? +# ------ ----------- --------- + '_pd_proc_ls_prof_cR_factor' 'Prof. R-factor CORRECTED for background' no + '_pd_proc_ls_prof_cwR_factor' 'wProf.R-factor CORRECTED for background' no + '_pd_proc_ls_prof_cwR_expected' 'wProf.Expected CORRECTED for background' no + '_pd_proc_ls_prof_chi2' 'Chi-square for all considered points' no + '_pd_proc_ls_prof_echi2' 'Chi-2 for points with Bragg contribution' no +#============================================================================= + +# 3. TITLE AND AUTHOR LIST + +_publ_section_title +; ' SIFIX-3-Cu' +; +_publ_section_title_footnote +; +; + +# The loop structure below should contain the names and addresses of all +# authors, in the required order of publication. Repeat as necessary. + +loop_ + _publ_author_name + _publ_author_footnote + _publ_author_address +? #<--'Last name, first name' +; ? +; +; ? +; + +#============================================================================= + +# 4. TEXT + +_publ_section_synopsis +; ? +; +_publ_section_abstract +; ? +; +_publ_section_comment +; ? +; +_publ_section_exptl_prep # Details of the preparation of the sample(s) + # should be given here. +; ? +; +_publ_section_exptl_refinement +; ? +; +_publ_section_references +; ? +; +_publ_section_figure_captions +; ? +; +_publ_section_acknowledgements +; ? +; + +#============================================================================= + +#============================================================================= +# If more than one structure is reported, the remaining sections should be +# completed per structure. For each data set, replace the '?' in the +# data_? line below by a unique identifier. + +data_SIFIX-3-Cu_Mohamed_EDDAOUDI_KAUST + +#============================================================================= + +# 5. CHEMICAL DATA + +_chemical_name_systematic +; ? +; +_chemical_name_common ? +_chemical_formula_moiety ' C8 H8 Cu F6 N4 Si ' +_chemical_formula_sum ' C8 H8 Cu F6 N4 Si ' +_chemical_formula_weight 365.82 + +loop_ + _atom_type_symbol + _atom_type_scat_Cromer_Mann_a1 + _atom_type_scat_Cromer_Mann_b1 + _atom_type_scat_Cromer_Mann_a2 + _atom_type_scat_Cromer_Mann_b2 + _atom_type_scat_Cromer_Mann_a3 + _atom_type_scat_Cromer_Mann_b3 + _atom_type_scat_Cromer_Mann_a4 + _atom_type_scat_Cromer_Mann_b4 + _atom_type_scat_Cromer_Mann_c + _atom_type_scat_dispersion_real + _atom_type_scat_dispersion_imag + _atom_type_scat_source +n 12.21260 0.00570 3.13220 9.89330 2.01250 28.99750 + 1.16630 0.58260 -11.52900 0.02900 0.01800 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 +c 2.31000 20.84390 1.02000 10.20750 1.58860 0.56870 + 0.86500 51.65120 0.21560 0.01700 0.00900 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 +h 0.49300 10.51090 0.32291 26.12570 0.14019 3.14236 + 0.04081 57.79970 0.00304 0.00000 0.00000 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 +cu 13.33800 3.58280 7.16760 0.24700 5.61580 11.39660 + 1.67350 64.81260 1.19100 -2.01900 0.58900 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 +f 3.53920 10.28250 2.64120 4.29440 1.51700 0.26150 + 1.02430 26.14760 0.27760 0.06900 0.05300 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 +si 6.29150 2.43860 3.03530 32.33370 1.98910 0.67850 + 1.54100 81.69370 1.14070 0.24400 0.33000 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 +o 3.04850 13.27710 2.28680 5.70110 1.54630 0.32390 + 0.86700 32.90890 0.25080 0.04700 0.03200 + International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5 + +#============================================================================= + +# 6. POWDER SPECIMEN AND CRYSTAL DATA + +_symmetry_cell_setting Tetragonal +_symmetry_space_group_name_H-M 'P 4/m m m' +_symmetry_space_group_name_Hall '-P 4 2' + +loop_ + _symmetry_equiv_pos_as_xyz #<--must include 'x,y,z' +'x,y,z' +'-y,x,z' +'-x,-y,z' +'y,-x,z' +'-x,y,z' +'y,x,z' +'x,-y,z' +'-y,-x,z' +'-x,-y,-z' +'y,-x,-z' +'x,y,-z' +'-y,x,-z' +'x,-y,-z' +'-y,-x,-z' +'-x,y,-z' +'y,x,-z' + +_cell_length_a 6.9186(2) +_cell_length_b 6.9186(2) +_cell_length_c 7.9061(3) +_cell_angle_alpha 90.00000 +_cell_angle_beta 90.00000 +_cell_angle_gamma 90.00000 +_cell_volume 378.44(2) +_cell_formula_units_Z 1 +_cell_measurement_temperature 298 +_cell_special_details +; ? +; +# The next three fields give the specimen dimensions in mm. The equatorial +# plane contains the incident and diffracted beam. + +_pd_spec_size_axial ? # perpendicular to + # equatorial plane +_pd_spec_size_equat ? # parallel to + # scattering vector + # in transmission +_pd_spec_size_thick ? # parallel to + # scattering vector + # in reflection + +# The next five fields are character fields that describe the specimen. + +_pd_spec_mounting # This field should be + # used to give details of the + # container. +; ? +; +_pd_spec_mount_mode ? # options are 'reflection' + # or 'transmission' +_pd_spec_shape ? # options are 'cylinder' + # 'flat_sheet' or 'irregular' +_pd_char_particle_morphology ? +_pd_char_colour ? # use ICDD colour descriptions + +# The following three fields describe the preparation of the specimen. +# The cooling rate is in K/min. The pressure at which the sample was +# prepared is in kPa. The temperature of preparation is in K. + +_pd_prep_cool_rate ? +_pd_prep_pressure ? +_pd_prep_temperature ? + +# The next four fields are normally only needed for transmission experiments. + +_exptl_absorpt_coefficient_mu ? +_exptl_absorpt_correction_type ? +_exptl_absorpt_process_details ? +_exptl_absorpt_correction_T_min ? +_exptl_absorpt_correction_T_max ? + +#============================================================================= + +# 7. EXPERIMENTAL DATA + +_exptl_special_details +; ? +; + +# The following item is used to identify the equipment used to record +# the powder pattern when the diffractogram was measured at a laboratory +# other than the authors' home institution, e.g. when neutron or synchrotron +# radiation is used. + +_pd_instr_location +; ? +; +_pd_calibration_special_details # description of the method used + # to calibrate the instrument +; ? +; + +_diffrn_ambient_temperature 298 +_diffrn_source 'classical X-ray tube' +_diffrn_radiation_type 'Cu K\a' +_diffrn_radiation_wavelength 1.5418 +_diffrn_radiation_monochromator ? +_diffrn_measurement_device_type ? +_diffrn_measurement_method ? +_diffrn_detector_area_resol_mean ? # Not in version 2.0.1 +_diffrn_detector ' X PANanalytical' +_diffrn_detector_type ' CCD' +_pd_meas_scan_method 'step-scan ' +_pd_meas_special_details +; ? +; + +# The following four items give details of the measured (not processed) +# powder pattern. Angles are in degrees. + +_pd_meas_number_of_points 1501 +_pd_meas_2theta_range_min 3.00000 +_pd_meas_2theta_range_max 78.00000 +_pd_meas_2theta_range_inc 0.050000 + +#============================================================================= + +# 8. REFINEMENT DATA + +_refine_special_details +; ? +; + +# Use the next field to give any special details about the fitting of the +# powder pattern. + +_pd_proc_ls_special_details +; ? +; + +# The next three items are given as text. + +_pd_proc_ls_profile_function ? +_pd_proc_ls_background_function ? +_pd_proc_ls_pref_orient_corr +; ? +; + +# The following profile R-factors are NOT CORRECTED for background +# The sum is extended to all non-excluded points. +# These are the current CIF standard + +_pd_proc_ls_prof_R_factor 1.8180 +_pd_proc_ls_prof_wR_factor 2.7928 +_pd_proc_ls_prof_wR_expected 0.6200 + +# The following profile R-factors are CORRECTED for background +# The sum is extended to all non-excluded points. +# These items are not in the current CIF standard, but are defined above + +_pd_proc_ls_prof_cR_factor 15.1079 +_pd_proc_ls_prof_cwR_factor 12.3179 +_pd_proc_ls_prof_cwR_expected 2.7348 + +# The following items are not in the CIF standard, but are defined above + +_pd_proc_ls_prof_chi2 20.2879 +_pd_proc_ls_prof_echi2 20.7262 + +# Items related to LS refinement + +_refine_ls_R_I_factor 5.1628 +_refine_ls_number_reflns 192 +_refine_ls_number_parameters 91 +_refine_ls_number_restraints 0 +_refine_ls_goodness_of_fit_all 20.7 + +# The following four items apply to angular dispersive measurements. +# 2theta minimum, maximum and increment (in degrees) are for the +# intensities used in the refinement. + +_pd_proc_2theta_range_min 3.1108 +_pd_proc_2theta_range_max 78.1108 +_pd_proc_2theta_range_inc 0.050000 +_pd_proc_wavelength 1.540510 + +_pd_block_diffractogram_id ? # The id used for the block containing + # the powder pattern profile (section 11) + +# Give appropriate details in the next two text fields. + +_pd_proc_info_excluded_regions ? +_pd_proc_info_data_reduction ? + +# The following items are used to identify the programs used. + +_computing_cell_refinement 'McMaille (Le Bail, 2004)' +_computing_structure_solution 'ESPOIR (Le Bail, 2001)' +_computing_structure_refinement 'FULLPROF (Rodriguez-Carvajal, 1993)' +_computing_molecular_graphics 'DIAMOND, ' +_computing_publication_material 'PLATON (Spek, 2003)' + +#============================================================================= + +# 9. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS + +loop_ + _atom_site_label + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_U_iso_or_equiv + _atom_site_occupancy + _atom_site_adp_type # Not in version 2.0.1 + _atom_site_type_symbol + N1 0.50000 0.217(2) 0.50000 0.099(8) 1.00000 Uiso N + C1 0.50000 0.0893(1) 0.3843(1) 0.121(1) 1.00000 Uiso C + H1 0.50000 0.14010 0.27980 0.1665 1.00000 Uiso H + Cu1 0.50000 0.50000 0.50000 0.098(3) 1.00000 Uiso Cu + F1 0.50000 0.50000 0.232(3) 0.119(8) 1.00000 Uiso F + F2 0.3313(15) 0.3313(15) 0.00000 0.204(8) 1.00000 Uiso F + Si1 0.50000 0.50000 0.00000 0.158(7) 1.00000 Uiso Si + + +# Note: if the displacement parameters were refined anisotropically +# the U matrices should be given as for single-crystal studies. + +#============================================================================= + +## 10. DISTANCES AND ANGLES / MOLECULAR GEOMETRY + +_geom_special_details ? + +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_1 +_geom_bond_site_symmetry_2 +_geom_bond_publ_flag + Cu1 F1 2.12(1) . . no + Cu1 N1 1.96(1) . . no + Si1 F1 1.83(1) . . no + Si1 F2 1.65(1) . . no + N1 C1 1.27(1) . . no + C1 C1 1.235(1) . 3_655 no + C1 H1 0.9000 . . no + + +loop_ +_geom_angle_atom_site_label_1 +_geom_angle_atom_site_label_2 +_geom_angle_atom_site_label_3 +_geom_angle +_geom_angle_site_symmetry_1 +_geom_angle_site_symmetry_2 +_geom_angle_site_symmetry_3 +_geom_angle_publ_flag + F1 Cu1 N1 90.00 . . . no + F1 Cu1 F1 180.00 . . . no + N1 Cu1 N1 90.00 . . 2_655 no + N1 Cu1 N1 180.00 . . 3_665 no + F1 Si1 F2 90.00 . . . no + F1 Si1 F1 180.00 . . . no + Cu1 F1 Si1 180.00 . . . no + Cu1 N1 C1 134.0(3) . . . no + C1 N1 C1 91.99 . . . no + N1 C1 H1 113.00 . . . no + C1 C1 H1 113.00 3_655 . . no + + + +loop_ +_geom_torsion_atom_site_label_1 +_geom_torsion_atom_site_label_2 +_geom_torsion_atom_site_label_3 +_geom_torsion_atom_site_label_4 +_geom_torsion_site_symmetry_1 +_geom_torsion_site_symmetry_2 +_geom_torsion_site_symmetry_3 +_geom_torsion_site_symmetry_4 +_geom_torsion +_geom_torsion_publ_flag +? ? ? ? ? ? ? ? ? ? + +loop_ +_geom_hbond_atom_site_label_D +_geom_hbond_atom_site_label_H +_geom_hbond_atom_site_label_A +_geom_hbond_site_symmetry_D +_geom_hbond_site_symmetry_H +_geom_hbond_site_symmetry_A +_geom_hbond_distance_DH +_geom_hbond_distance_HA +_geom_hbond_distance_DA +_geom_hbond_angle_DHA +_geom_hbond_publ_flag +? ? ? ? ? ? ? ? ? ? ? + +#============================================================================= + +#============================================================================= +# Additional structures (last six sections and associated data_? identifiers) +# may be added at this point. +#============================================================================= + +# The following lines are used to test the character set of files sent by +# network email or other means. They are not part of the CIF data set. +# abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 +# !@#$%^&*()_+{}:"~<>?|\-=[];'`,./ + +# start Validation Reply Form +_vrf_PLAT601_SIFIX-3-Cu_Mohamed_EDDAOUDI_KAUST +; +PROBLEM: Structure Contains Solvent Accessible VOIDS of . 108 Ang3 +RESPONSE: Highly disordered water molecules are localized within channels. +; +# end Validation Reply Form diff --git a/benchmarks/mof/structures/UiO-66.cif b/benchmarks/mof/structures/UiO-66.cif new file mode 100644 index 0000000000000000000000000000000000000000..60010d7dc80d744953041eb301c315922eab83e4 --- /dev/null +++ b/benchmarks/mof/structures/UiO-66.cif @@ -0,0 +1,138 @@ +data_RUBTAK02_clean_h\(2) +_audit_creation_date 2015-05-11 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 14.6675 +_cell_length_b 14.6675 +_cell_length_c 14.6675 +_cell_angle_alpha 60.0000 +_cell_angle_beta 60.0000 +_cell_angle_gamma 60.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +C1 C 0.91980 0.08020 0.44840 0.01267 Uiso 1.00 +O2 O 0.92340 0.07660 0.26860 0.01267 Uiso 1.00 +H3 H 0.85249 0.14751 0.40954 0.01267 Uiso 1.00 +C4 C 0.08020 0.91980 0.55160 0.01267 Uiso 1.00 +O5 O 0.07660 0.92340 0.73140 0.01267 Uiso 1.00 +H6 H 0.14751 0.85249 0.59046 0.01267 Uiso 1.00 +C7 C 0.44840 0.55160 0.91980 0.01267 Uiso 1.00 +O8 O 0.26860 0.73140 0.92340 0.01267 Uiso 1.00 +H9 H 0.40954 0.59046 0.85249 0.01267 Uiso 1.00 +C10 C 0.55160 0.44840 0.08020 0.01267 Uiso 1.00 +O11 O 0.73140 0.26860 0.07660 0.01267 Uiso 1.00 +H12 H 0.59046 0.40954 0.14751 0.01267 Uiso 1.00 +C13 C 0.44840 0.91980 0.08020 0.01267 Uiso 1.00 +O14 O 0.26860 0.92340 0.07660 0.01267 Uiso 1.00 +H15 H 0.40954 0.85249 0.14751 0.01267 Uiso 1.00 +C16 C 0.55160 0.08020 0.91980 0.01267 Uiso 1.00 +O17 O 0.73140 0.07660 0.92340 0.01267 Uiso 1.00 +H18 H 0.59046 0.14751 0.85249 0.01267 Uiso 1.00 +C19 C 0.91980 0.44840 0.55160 0.01267 Uiso 1.00 +O20 O 0.92340 0.26860 0.73140 0.01267 Uiso 1.00 +H21 H 0.85249 0.40954 0.59046 0.01267 Uiso 1.00 +C22 C 0.08020 0.55160 0.44840 0.01267 Uiso 1.00 +O23 O 0.07660 0.73140 0.26860 0.01267 Uiso 1.00 +H24 H 0.14751 0.59046 0.40954 0.01267 Uiso 1.00 +C25 C 0.08020 0.44840 0.91980 0.01267 Uiso 1.00 +O26 O 0.07660 0.26860 0.92340 0.01267 Uiso 1.00 +H27 H 0.14751 0.40954 0.85249 0.01267 Uiso 1.00 +C28 C 0.91980 0.55160 0.08020 0.01267 Uiso 1.00 +O29 O 0.92340 0.73140 0.07660 0.01267 Uiso 1.00 +H30 H 0.85249 0.59046 0.14751 0.01267 Uiso 1.00 +C31 C 0.55160 0.91980 0.44840 0.01267 Uiso 1.00 +O32 O 0.73140 0.92340 0.26860 0.01267 Uiso 1.00 +H33 H 0.59046 0.85249 0.40954 0.01267 Uiso 1.00 +C34 C 0.44840 0.08020 0.55160 0.01267 Uiso 1.00 +O35 O 0.26860 0.07660 0.73140 0.01267 Uiso 1.00 +H36 H 0.40954 0.14751 0.59046 0.01267 Uiso 1.00 +C37 C 0.08020 0.91980 0.44840 0.01267 Uiso 1.00 +O38 O 0.07660 0.92340 0.26860 0.01267 Uiso 1.00 +H39 H 0.14751 0.85249 0.40954 0.01267 Uiso 1.00 +C40 C 0.91980 0.08020 0.55160 0.01267 Uiso 1.00 +O41 O 0.92340 0.07660 0.73140 0.01267 Uiso 1.00 +H42 H 0.85249 0.14751 0.59046 0.01267 Uiso 1.00 +C43 C 0.55160 0.44840 0.91980 0.01267 Uiso 1.00 +O44 O 0.73140 0.26860 0.92340 0.01267 Uiso 1.00 +H45 H 0.59046 0.40954 0.85249 0.01267 Uiso 1.00 +C46 C 0.44840 0.55160 0.08020 0.01267 Uiso 1.00 +O47 O 0.26860 0.73140 0.07660 0.01267 Uiso 1.00 +H48 H 0.40954 0.59046 0.14751 0.01267 Uiso 1.00 +C49 C 0.91980 0.44840 0.08020 0.01267 Uiso 1.00 +O50 O 0.92340 0.26860 0.07660 0.01267 Uiso 1.00 +H51 H 0.85249 0.40954 0.14751 0.01267 Uiso 1.00 +C52 C 0.08020 0.55160 0.91980 0.01267 Uiso 1.00 +O53 O 0.07660 0.73140 0.92340 0.01267 Uiso 1.00 +H54 H 0.14751 0.59046 0.85249 0.01267 Uiso 1.00 +C55 C 0.44840 0.91980 0.55160 0.01267 Uiso 1.00 +O56 O 0.26860 0.92340 0.73140 0.01267 Uiso 1.00 +H57 H 0.40954 0.85249 0.59046 0.01267 Uiso 1.00 +C58 C 0.55160 0.08020 0.44840 0.01267 Uiso 1.00 +O59 O 0.73140 0.07660 0.26860 0.01267 Uiso 1.00 +H60 H 0.59046 0.14751 0.40954 0.01267 Uiso 1.00 +C61 C 0.44840 0.08020 0.91980 0.01267 Uiso 1.00 +O62 O 0.26860 0.07660 0.92340 0.01267 Uiso 1.00 +H63 H 0.40954 0.14751 0.85249 0.01267 Uiso 1.00 +C64 C 0.55160 0.91980 0.08020 0.01267 Uiso 1.00 +O65 O 0.73140 0.92340 0.07660 0.01267 Uiso 1.00 +H66 H 0.59046 0.85249 0.14751 0.01267 Uiso 1.00 +C67 C 0.91980 0.55160 0.44840 0.01267 Uiso 1.00 +O68 O 0.92340 0.73140 0.26860 0.01267 Uiso 1.00 +H69 H 0.85249 0.59046 0.40954 0.01267 Uiso 1.00 +C70 C 0.08020 0.44840 0.55160 0.01267 Uiso 1.00 +O71 O 0.07660 0.26860 0.73140 0.01267 Uiso 1.00 +H72 H 0.14751 0.40954 0.59046 0.01267 Uiso 1.00 +Zr73 Zr 0.87960 0.12040 0.12040 0.01267 Uiso 1.00 +Zr74 Zr 0.12040 0.87960 0.87960 0.01267 Uiso 1.00 +Zr75 Zr 0.12040 0.87960 0.12040 0.01267 Uiso 1.00 +Zr76 Zr 0.87960 0.12040 0.87960 0.01267 Uiso 1.00 +Zr77 Zr 0.12040 0.12040 0.87960 0.01267 Uiso 1.00 +Zr78 Zr 0.87960 0.87960 0.12040 0.01267 Uiso 1.00 +C79 C -0.00000 0.00000 0.29460 0.01267 Uiso 1.00 +C80 C -0.00000 0.00000 0.40380 0.01267 Uiso 1.00 +C81 C 0.00000 -0.00000 0.70540 0.01267 Uiso 1.00 +C82 C 0.00000 -0.00000 0.59620 0.01267 Uiso 1.00 +C83 C 0.29460 0.70540 -0.00000 0.01267 Uiso 1.00 +C84 C 0.40380 0.59620 -0.00000 0.01267 Uiso 1.00 +C85 C 0.70540 0.29460 0.00000 0.01267 Uiso 1.00 +C86 C 0.59620 0.40380 0.00000 0.01267 Uiso 1.00 +C87 C 0.29460 -0.00000 0.00000 0.01267 Uiso 1.00 +C88 C 0.40380 -0.00000 -0.00000 0.01267 Uiso 1.00 +C89 C 0.70540 0.00000 -0.00000 0.01267 Uiso 1.00 +C90 C 0.59620 0.00000 -0.00000 0.01267 Uiso 1.00 +C91 C -0.00000 0.29460 0.70540 0.01267 Uiso 1.00 +C92 C -0.00000 0.40380 0.59620 0.01267 Uiso 1.00 +C93 C -0.00000 0.70540 0.29460 0.01267 Uiso 1.00 +C94 C -0.00000 0.59620 0.40380 0.01267 Uiso 1.00 +C95 C -0.00000 0.29460 -0.00000 0.01267 Uiso 1.00 +C96 C -0.00000 0.40380 -0.00000 0.01267 Uiso 1.00 +C97 C -0.00000 0.70540 -0.00000 0.01267 Uiso 1.00 +C98 C -0.00000 0.59620 -0.00000 0.01267 Uiso 1.00 +C99 C 0.70540 -0.00000 0.29460 0.01267 Uiso 1.00 +C100 C 0.59620 -0.00000 0.40380 0.01267 Uiso 1.00 +C101 C 0.29460 -0.00000 0.70540 0.01267 Uiso 1.00 +C102 C 0.40380 -0.00000 0.59620 0.01267 Uiso 1.00 +O103 O 0.94390 0.16830 0.94390 0.01267 Uiso 1.00 +O104 O 0.05610 0.83170 0.05610 0.01267 Uiso 1.00 +O105 O 0.16830 0.94390 0.94390 0.01267 Uiso 1.00 +O106 O 0.83170 0.05610 0.05610 0.01267 Uiso 1.00 +O107 O 0.94390 0.94390 0.94390 0.01267 Uiso 1.00 +O108 O 0.05610 0.05610 0.05610 0.01267 Uiso 1.00 +O109 O 0.94390 0.94390 0.16830 0.01267 Uiso 1.00 +O110 O 0.05610 0.05610 0.83170 0.01267 Uiso 1.00 +H111 H 0.09200 0.09200 0.09200 0.00000 Uiso 1.00 +H112 H 0.09200 0.09200 0.72400 0.00000 Uiso 1.00 +H113 H 0.09200 0.72400 0.09200 0.00000 Uiso 1.00 +H114 H 0.72400 0.09200 0.09200 0.00000 Uiso 1.00 diff --git a/benchmarks/mof/structures/ZIF-7.cif b/benchmarks/mof/structures/ZIF-7.cif new file mode 100644 index 0000000000000000000000000000000000000000..3a5cdd04e9841307919e7afc8a78814db019cd26 --- /dev/null +++ b/benchmarks/mof/structures/ZIF-7.cif @@ -0,0 +1,546 @@ +data_image0 +_cell_length_a 22.989 +_cell_length_b 22.989 +_cell_length_c 15.763 +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 120 + +_symmetry_space_group_name_H-M "P 1" +_symmetry_int_tables_number 1 + +loop_ + _symmetry_equiv_pos_as_xyz + 'x, y, z' + +loop_ + _atom_site_label + _atom_site_occupancy + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_thermal_displace_type + _atom_site_B_iso_or_equiv + _atom_site_type_symbol + C1 1.0000 0.69950 0.02850 0.17630 Biso 1.000 C + H1 1.0000 0.73820 0.07030 0.17200 Biso 1.000 H + C2 1.0000 0.60880 0.94520 0.22640 Biso 1.000 C + C3 1.0000 0.55290 0.90140 0.27220 Biso 1.000 C + H2 1.0000 0.54360 0.91310 0.32480 Biso 1.000 H + C4 1.0000 0.51170 0.83960 0.23700 Biso 1.000 C + H3 1.0000 0.47380 0.80870 0.26670 Biso 1.000 H + C5 1.0000 0.52510 0.82150 0.15630 Biso 1.000 C + H4 1.0000 0.49600 0.77900 0.13450 Biso 1.000 H + C6 1.0000 0.62220 0.92740 0.14630 Biso 1.000 C + C7 1.0000 0.58000 0.86540 0.11010 Biso 1.000 C + H5 1.0000 0.58860 0.85410 0.05670 Biso 1.000 H + C8 1.0000 0.80820 0.20120 0.33980 Biso 1.000 C + H6 1.0000 0.82440 0.18970 0.38710 Biso 1.000 H + C9 1.0000 0.80340 0.25700 0.23610 Biso 1.000 C + C10 1.0000 0.81400 0.30390 0.17010 Biso 1.000 C + H7 1.0000 0.85440 0.34400 0.16580 Biso 1.000 H + C11 1.0000 0.74430 0.19720 0.24000 Biso 1.000 C + C12 1.0000 0.69050 0.17970 0.18020 Biso 1.000 C + H8 1.0000 0.65050 0.13890 0.18320 Biso 1.000 H + C13 1.0000 0.76370 0.28860 0.11380 Biso 1.000 C + H9 1.0000 0.77020 0.31940 0.07140 Biso 1.000 H + C14 1.0000 0.70170 0.22710 0.11750 Biso 1.000 C + H10 1.0000 0.66830 0.21840 0.07800 Biso 1.000 H + N1 1.0000 0.65890 0.01130 0.24330 Biso 1.000 N + N2 1.0000 0.74800 0.16040 0.30920 Biso 1.000 N + N3 1.0000 0.68120 0.98190 0.11520 Biso 1.000 N + N4 1.0000 0.84450 0.25900 0.30060 Biso 1.000 N + Zn1 1.0000 0.67190 0.07047 0.34160 Biso 1.000 Zn + C15 1.0000 0.36617 0.36183 0.50963 Biso 1.000 C + H11 1.0000 0.40487 0.40363 0.50533 Biso 1.000 H + C16 1.0000 0.27547 0.27853 0.55973 Biso 1.000 C + C17 1.0000 0.21957 0.23473 0.60553 Biso 1.000 C + H12 1.0000 0.21027 0.24643 0.65813 Biso 1.000 H + C18 1.0000 0.17837 0.17293 0.57033 Biso 1.000 C + H13 1.0000 0.14047 0.14203 0.60003 Biso 1.000 H + C19 1.0000 0.19177 0.15483 0.48963 Biso 1.000 C + H14 1.0000 0.16267 0.11233 0.46783 Biso 1.000 H + C20 1.0000 0.28887 0.26073 0.47963 Biso 1.000 C + C21 1.0000 0.24667 0.19873 0.44343 Biso 1.000 C + H15 1.0000 0.25527 0.18743 0.39003 Biso 1.000 H + C22 1.0000 0.47487 0.53453 0.67313 Biso 1.000 C + H16 1.0000 0.49107 0.52303 0.72043 Biso 1.000 H + C23 1.0000 0.47007 0.59033 0.56943 Biso 1.000 C + C24 1.0000 0.48067 0.63723 0.50343 Biso 1.000 C + H17 1.0000 0.52107 0.67733 0.49913 Biso 1.000 H + C25 1.0000 0.41097 0.53053 0.57333 Biso 1.000 C + C26 1.0000 0.35717 0.51303 0.51353 Biso 1.000 C + H18 1.0000 0.31717 0.47223 0.51653 Biso 1.000 H + C27 1.0000 0.43037 0.62193 0.44713 Biso 1.000 C + H19 1.0000 0.43687 0.65273 0.40473 Biso 1.000 H + C28 1.0000 0.36837 0.56043 0.45083 Biso 1.000 C + H20 1.0000 0.33497 0.55173 0.41133 Biso 1.000 H + N5 1.0000 0.32557 0.34463 0.57663 Biso 1.000 N + N6 1.0000 0.41467 0.49373 0.64253 Biso 1.000 N + N7 1.0000 0.34787 0.31523 0.44853 Biso 1.000 N + N8 1.0000 0.51117 0.59233 0.63393 Biso 1.000 N + Zn2 1.0000 0.33857 0.40380 0.67493 Biso 1.000 Zn + C29 1.0000 0.03283 0.69517 0.84297 Biso 1.000 C + H21 1.0000 0.07153 0.73697 0.83867 Biso 1.000 H + C30 1.0000 0.94213 0.61187 0.89307 Biso 1.000 C + C31 1.0000 0.88623 0.56807 0.93887 Biso 1.000 C + H22 1.0000 0.87693 0.57977 0.99147 Biso 1.000 H + C32 1.0000 0.84503 0.50627 0.90367 Biso 1.000 C + H23 1.0000 0.80713 0.47537 0.93337 Biso 1.000 H + C33 1.0000 0.85843 0.48817 0.82297 Biso 1.000 C + H24 1.0000 0.82933 0.44567 0.80117 Biso 1.000 H + C34 1.0000 0.95553 0.59407 0.81297 Biso 1.000 C + C35 1.0000 0.91333 0.53207 0.77677 Biso 1.000 C + H25 1.0000 0.92193 0.52077 0.72337 Biso 1.000 H + C36 1.0000 0.14153 0.86787 0.00647 Biso 1.000 C + H26 1.0000 0.15773 0.85637 0.05377 Biso 1.000 H + C37 1.0000 0.13673 0.92367 0.90277 Biso 1.000 C + C38 1.0000 0.14733 0.97057 0.83677 Biso 1.000 C + H27 1.0000 0.18773 0.01067 0.83247 Biso 1.000 H + C39 1.0000 0.07763 0.86387 0.90667 Biso 1.000 C + C40 1.0000 0.02383 0.84637 0.84687 Biso 1.000 C + H28 1.0000 0.98383 0.80557 0.84987 Biso 1.000 H + C41 1.0000 0.09703 0.95527 0.78047 Biso 1.000 C + H29 1.0000 0.10353 0.98607 0.73807 Biso 1.000 H + C42 1.0000 0.03503 0.89377 0.78417 Biso 1.000 C + H30 1.0000 0.00163 0.88507 0.74467 Biso 1.000 H + N9 1.0000 0.99223 0.67797 0.90997 Biso 1.000 N + N10 1.0000 0.08133 0.82707 0.97587 Biso 1.000 N + N11 1.0000 0.01453 0.64857 0.78187 Biso 1.000 N + N12 1.0000 0.17783 0.92567 0.96727 Biso 1.000 N + Zn3 1.0000 0.00523 0.73714 0.00827 Biso 1.000 Zn + C43 1.0000 0.97150 0.67100 0.17630 Biso 1.000 C + H31 1.0000 0.92970 0.66790 0.17200 Biso 1.000 H + C44 1.0000 0.05480 0.66360 0.22640 Biso 1.000 C + C45 1.0000 0.09860 0.65150 0.27220 Biso 1.000 C + H32 1.0000 0.08690 0.63050 0.32480 Biso 1.000 H + C46 1.0000 0.16040 0.67210 0.23700 Biso 1.000 C + H33 1.0000 0.19130 0.66510 0.26670 Biso 1.000 H + C47 1.0000 0.17850 0.70360 0.15630 Biso 1.000 C + H34 1.0000 0.22100 0.71700 0.13450 Biso 1.000 H + C48 1.0000 0.07260 0.69480 0.14630 Biso 1.000 C + C49 1.0000 0.13460 0.71460 0.11010 Biso 1.000 C + H35 1.0000 0.14590 0.73450 0.05670 Biso 1.000 H + C50 1.0000 0.79880 0.60700 0.33980 Biso 1.000 C + H36 1.0000 0.81030 0.63470 0.38710 Biso 1.000 H + C51 1.0000 0.74300 0.54640 0.23610 Biso 1.000 C + C52 1.0000 0.69610 0.51010 0.17010 Biso 1.000 C + H37 1.0000 0.65600 0.51040 0.16580 Biso 1.000 H + C53 1.0000 0.80280 0.54710 0.24000 Biso 1.000 C + C54 1.0000 0.82030 0.51080 0.18020 Biso 1.000 C + H38 1.0000 0.86110 0.51160 0.18320 Biso 1.000 H + C55 1.0000 0.71140 0.47510 0.11380 Biso 1.000 C + H39 1.0000 0.68060 0.45080 0.07140 Biso 1.000 H + C56 1.0000 0.77290 0.47460 0.11750 Biso 1.000 C + H40 1.0000 0.78160 0.44990 0.07800 Biso 1.000 H + N13 1.0000 0.98870 0.64760 0.24330 Biso 1.000 N + N14 1.0000 0.83960 0.58760 0.30920 Biso 1.000 N + N15 1.0000 0.01810 0.69930 0.11520 Biso 1.000 N + N16 1.0000 0.74100 0.58550 0.30060 Biso 1.000 N + Zn4 1.0000 0.92953 0.60143 0.34160 Biso 1.000 Zn + C57 1.0000 0.63817 0.00433 0.50963 Biso 1.000 C + H41 1.0000 0.59637 0.00123 0.50533 Biso 1.000 H + C58 1.0000 0.72147 0.99693 0.55973 Biso 1.000 C + C59 1.0000 0.76527 0.98483 0.60553 Biso 1.000 C + H42 1.0000 0.75357 0.96383 0.65813 Biso 1.000 H + C60 1.0000 0.82707 0.00543 0.57033 Biso 1.000 C + H43 1.0000 0.85797 0.99843 0.60003 Biso 1.000 H + C61 1.0000 0.84517 0.03693 0.48963 Biso 1.000 C + H44 1.0000 0.88767 0.05033 0.46783 Biso 1.000 H + C62 1.0000 0.73927 0.02813 0.47963 Biso 1.000 C + C63 1.0000 0.80127 0.04793 0.44343 Biso 1.000 C + H45 1.0000 0.81257 0.06783 0.39003 Biso 1.000 H + C64 1.0000 0.46547 0.94033 0.67313 Biso 1.000 C + H46 1.0000 0.47697 0.96803 0.72043 Biso 1.000 H + C65 1.0000 0.40967 0.87973 0.56943 Biso 1.000 C + C66 1.0000 0.36277 0.84343 0.50343 Biso 1.000 C + H47 1.0000 0.32267 0.84373 0.49913 Biso 1.000 H + C67 1.0000 0.46947 0.88043 0.57333 Biso 1.000 C + C68 1.0000 0.48697 0.84413 0.51353 Biso 1.000 C + H48 1.0000 0.52777 0.84493 0.51653 Biso 1.000 H + C69 1.0000 0.37807 0.80843 0.44713 Biso 1.000 C + H49 1.0000 0.34727 0.78413 0.40473 Biso 1.000 H + C70 1.0000 0.43957 0.80793 0.45083 Biso 1.000 C + H50 1.0000 0.44827 0.78323 0.41133 Biso 1.000 H + N17 1.0000 0.65537 0.98093 0.57663 Biso 1.000 N + N18 1.0000 0.50627 0.92093 0.64253 Biso 1.000 N + N19 1.0000 0.68477 0.03263 0.44853 Biso 1.000 N + N20 1.0000 0.40767 0.91883 0.63393 Biso 1.000 N + Zn5 1.0000 0.59620 0.93476 0.67493 Biso 1.000 Zn + C71 1.0000 0.30483 0.33767 0.84297 Biso 1.000 C + H51 1.0000 0.26303 0.33457 0.83867 Biso 1.000 H + C72 1.0000 0.38813 0.33027 0.89307 Biso 1.000 C + C73 1.0000 0.43193 0.31817 0.93887 Biso 1.000 C + H52 1.0000 0.42023 0.29717 0.99147 Biso 1.000 H + C74 1.0000 0.49373 0.33877 0.90367 Biso 1.000 C + H53 1.0000 0.52463 0.33177 0.93337 Biso 1.000 H + C75 1.0000 0.51183 0.37027 0.82297 Biso 1.000 C + H54 1.0000 0.55433 0.38367 0.80117 Biso 1.000 H + C76 1.0000 0.40593 0.36147 0.81297 Biso 1.000 C + C77 1.0000 0.46793 0.38127 0.77677 Biso 1.000 C + H55 1.0000 0.47923 0.40117 0.72337 Biso 1.000 H + C78 1.0000 0.13213 0.27367 0.00647 Biso 1.000 C + H56 1.0000 0.14363 0.30137 0.05377 Biso 1.000 H + C79 1.0000 0.07633 0.21307 0.90277 Biso 1.000 C + C80 1.0000 0.02943 0.17677 0.83677 Biso 1.000 C + H57 1.0000 0.98933 0.17707 0.83247 Biso 1.000 H + C81 1.0000 0.13613 0.21377 0.90667 Biso 1.000 C + C82 1.0000 0.15363 0.17747 0.84687 Biso 1.000 C + H58 1.0000 0.19443 0.17827 0.84987 Biso 1.000 H + C83 1.0000 0.04473 0.14177 0.78047 Biso 1.000 C + H59 1.0000 0.01393 0.11747 0.73807 Biso 1.000 H + C84 1.0000 0.10623 0.14127 0.78417 Biso 1.000 C + H60 1.0000 0.11493 0.11657 0.74467 Biso 1.000 H + N21 1.0000 0.32203 0.31427 0.90997 Biso 1.000 N + N22 1.0000 0.17293 0.25427 0.97587 Biso 1.000 N + N23 1.0000 0.35143 0.36597 0.78187 Biso 1.000 N + N24 1.0000 0.07433 0.25217 0.96727 Biso 1.000 N + Zn6 1.0000 0.26286 0.26810 0.00827 Biso 1.000 Zn + C85 1.0000 0.32900 0.30050 0.17630 Biso 1.000 C + H61 1.0000 0.33210 0.26180 0.17200 Biso 1.000 H + C86 1.0000 0.33640 0.39120 0.22640 Biso 1.000 C + C87 1.0000 0.34850 0.44710 0.27220 Biso 1.000 C + H62 1.0000 0.36950 0.45640 0.32480 Biso 1.000 H + C88 1.0000 0.32790 0.48830 0.23700 Biso 1.000 C + H63 1.0000 0.33490 0.52620 0.26670 Biso 1.000 H + C89 1.0000 0.29640 0.47490 0.15630 Biso 1.000 C + H64 1.0000 0.28300 0.50400 0.13450 Biso 1.000 H + C90 1.0000 0.30520 0.37780 0.14630 Biso 1.000 C + C91 1.0000 0.28540 0.42000 0.11010 Biso 1.000 C + H65 1.0000 0.26550 0.41140 0.05670 Biso 1.000 H + C92 1.0000 0.39300 0.19180 0.33980 Biso 1.000 C + H66 1.0000 0.36530 0.17560 0.38710 Biso 1.000 H + C93 1.0000 0.45360 0.19660 0.23610 Biso 1.000 C + C94 1.0000 0.48990 0.18600 0.17010 Biso 1.000 C + H67 1.0000 0.48960 0.14560 0.16580 Biso 1.000 H + C95 1.0000 0.45290 0.25570 0.24000 Biso 1.000 C + C96 1.0000 0.48920 0.30950 0.18020 Biso 1.000 C + H68 1.0000 0.48840 0.34950 0.18320 Biso 1.000 H + C97 1.0000 0.52490 0.23630 0.11380 Biso 1.000 C + H69 1.0000 0.54920 0.22980 0.07140 Biso 1.000 H + C98 1.0000 0.52540 0.29830 0.11750 Biso 1.000 C + H70 1.0000 0.55010 0.33170 0.07800 Biso 1.000 H + N25 1.0000 0.35240 0.34110 0.24330 Biso 1.000 N + N26 1.0000 0.41240 0.25200 0.30920 Biso 1.000 N + N27 1.0000 0.30070 0.31880 0.11520 Biso 1.000 N + N28 1.0000 0.41450 0.15550 0.30060 Biso 1.000 N + Zn7 1.0000 0.39857 0.32810 0.34160 Biso 1.000 Zn + C99 1.0000 0.99567 0.63383 0.50963 Biso 1.000 C + H71 1.0000 0.99877 0.59513 0.50533 Biso 1.000 H + C100 1.0000 0.00307 0.72453 0.55973 Biso 1.000 C + C101 1.0000 0.01517 0.78043 0.60553 Biso 1.000 C + H72 1.0000 0.03617 0.78973 0.65813 Biso 1.000 H + C102 1.0000 0.99457 0.82163 0.57033 Biso 1.000 C + H73 1.0000 0.00157 0.85953 0.60003 Biso 1.000 H + C103 1.0000 0.96307 0.80823 0.48963 Biso 1.000 C + H74 1.0000 0.94967 0.83733 0.46783 Biso 1.000 H + C104 1.0000 0.97187 0.71113 0.47963 Biso 1.000 C + C105 1.0000 0.95207 0.75333 0.44343 Biso 1.000 C + H75 1.0000 0.93217 0.74473 0.39003 Biso 1.000 H + C106 1.0000 0.05967 0.52513 0.67313 Biso 1.000 C + H76 1.0000 0.03197 0.50893 0.72043 Biso 1.000 H + C107 1.0000 0.12027 0.52993 0.56943 Biso 1.000 C + C108 1.0000 0.15657 0.51933 0.50343 Biso 1.000 C + H77 1.0000 0.15627 0.47893 0.49913 Biso 1.000 H + C109 1.0000 0.11957 0.58903 0.57333 Biso 1.000 C + C110 1.0000 0.15587 0.64283 0.51353 Biso 1.000 C + H78 1.0000 0.15507 0.68283 0.51653 Biso 1.000 H + C111 1.0000 0.19157 0.56963 0.44713 Biso 1.000 C + H79 1.0000 0.21587 0.56313 0.40473 Biso 1.000 H + C112 1.0000 0.19207 0.63163 0.45083 Biso 1.000 C + H80 1.0000 0.21677 0.66503 0.41133 Biso 1.000 H + N29 1.0000 0.01907 0.67443 0.57663 Biso 1.000 N + N30 1.0000 0.07907 0.58533 0.64253 Biso 1.000 N + N31 1.0000 0.96737 0.65213 0.44853 Biso 1.000 N + N32 1.0000 0.08117 0.48883 0.63393 Biso 1.000 N + Zn8 1.0000 0.06524 0.66143 0.67493 Biso 1.000 Zn + C113 1.0000 0.66233 0.96717 0.84297 Biso 1.000 C + H81 1.0000 0.66543 0.92847 0.83867 Biso 1.000 H + C114 1.0000 0.66973 0.05787 0.89307 Biso 1.000 C + C115 1.0000 0.68183 0.11377 0.93887 Biso 1.000 C + H82 1.0000 0.70283 0.12307 0.99147 Biso 1.000 H + C116 1.0000 0.66123 0.15497 0.90367 Biso 1.000 C + H83 1.0000 0.66823 0.19287 0.93337 Biso 1.000 H + C117 1.0000 0.62973 0.14157 0.82297 Biso 1.000 C + H84 1.0000 0.61633 0.17067 0.80117 Biso 1.000 H + C118 1.0000 0.63853 0.04447 0.81297 Biso 1.000 C + C119 1.0000 0.61873 0.08667 0.77677 Biso 1.000 C + H85 1.0000 0.59883 0.07807 0.72337 Biso 1.000 H + C120 1.0000 0.72633 0.85847 0.00647 Biso 1.000 C + H86 1.0000 0.69863 0.84227 0.05377 Biso 1.000 H + C121 1.0000 0.78693 0.86327 0.90277 Biso 1.000 C + C122 1.0000 0.82323 0.85267 0.83677 Biso 1.000 C + H87 1.0000 0.82293 0.81227 0.83247 Biso 1.000 H + C123 1.0000 0.78623 0.92237 0.90667 Biso 1.000 C + C124 1.0000 0.82253 0.97617 0.84687 Biso 1.000 C + H88 1.0000 0.82173 0.01617 0.84987 Biso 1.000 H + C125 1.0000 0.85823 0.90297 0.78047 Biso 1.000 C + H89 1.0000 0.88253 0.89647 0.73807 Biso 1.000 H + C126 1.0000 0.85873 0.96497 0.78417 Biso 1.000 C + H90 1.0000 0.88343 0.99837 0.74467 Biso 1.000 H + N33 1.0000 0.68573 0.00777 0.90997 Biso 1.000 N + N34 1.0000 0.74573 0.91867 0.97587 Biso 1.000 N + N35 1.0000 0.63403 0.98547 0.78187 Biso 1.000 N + N36 1.0000 0.74783 0.82217 0.96727 Biso 1.000 N + Zn9 1.0000 0.73190 0.99477 0.00827 Biso 1.000 Zn + C127 1.0000 0.30050 0.97150 0.82370 Biso 1.000 C + H91 1.0000 0.26180 0.92970 0.82800 Biso 1.000 H + C128 1.0000 0.39120 0.05480 0.77360 Biso 1.000 C + C129 1.0000 0.44710 0.09860 0.72780 Biso 1.000 C + H92 1.0000 0.45640 0.08690 0.67520 Biso 1.000 H + C130 1.0000 0.48830 0.16040 0.76300 Biso 1.000 C + H93 1.0000 0.52620 0.19130 0.73330 Biso 1.000 H + C131 1.0000 0.47490 0.17850 0.84370 Biso 1.000 C + H94 1.0000 0.50400 0.22100 0.86550 Biso 1.000 H + C132 1.0000 0.37780 0.07260 0.85370 Biso 1.000 C + C133 1.0000 0.42000 0.13460 0.88990 Biso 1.000 C + H95 1.0000 0.41140 0.14590 0.94330 Biso 1.000 H + C134 1.0000 0.19180 0.79880 0.66020 Biso 1.000 C + H96 1.0000 0.17560 0.81030 0.61290 Biso 1.000 H + C135 1.0000 0.19660 0.74300 0.76390 Biso 1.000 C + C136 1.0000 0.18600 0.69610 0.82990 Biso 1.000 C + H97 1.0000 0.14560 0.65600 0.83420 Biso 1.000 H + C137 1.0000 0.25570 0.80280 0.76000 Biso 1.000 C + C138 1.0000 0.30950 0.82030 0.81980 Biso 1.000 C + H98 1.0000 0.34950 0.86110 0.81680 Biso 1.000 H + C139 1.0000 0.23630 0.71140 0.88620 Biso 1.000 C + H99 1.0000 0.22980 0.68060 0.92860 Biso 1.000 H + C140 1.0000 0.29830 0.77290 0.88250 Biso 1.000 C + H100 1.0000 0.33170 0.78160 0.92200 Biso 1.000 H + N37 1.0000 0.34110 0.98870 0.75670 Biso 1.000 N + N38 1.0000 0.25200 0.83960 0.69080 Biso 1.000 N + N39 1.0000 0.31880 0.01810 0.88480 Biso 1.000 N + N40 1.0000 0.15550 0.74100 0.69940 Biso 1.000 N + Zn10 1.0000 0.32810 0.92953 0.65840 Biso 1.000 Zn + C141 1.0000 0.96717 0.30483 0.15703 Biso 1.000 C + H101 1.0000 0.92847 0.26303 0.16133 Biso 1.000 H + C142 1.0000 0.05787 0.38813 0.10693 Biso 1.000 C + C143 1.0000 0.11377 0.43193 0.06113 Biso 1.000 C + H102 1.0000 0.12307 0.42023 0.00853 Biso 1.000 H + C144 1.0000 0.15497 0.49373 0.09633 Biso 1.000 C + H103 1.0000 0.19287 0.52463 0.06663 Biso 1.000 H + C145 1.0000 0.14157 0.51183 0.17703 Biso 1.000 C + H104 1.0000 0.17067 0.55433 0.19883 Biso 1.000 H + C146 1.0000 0.04447 0.40593 0.18703 Biso 1.000 C + C147 1.0000 0.08667 0.46793 0.22323 Biso 1.000 C + H105 1.0000 0.07807 0.47923 0.27663 Biso 1.000 H + C148 1.0000 0.85847 0.13213 0.99353 Biso 1.000 C + H106 1.0000 0.84227 0.14363 0.94623 Biso 1.000 H + C149 1.0000 0.86327 0.07633 0.09723 Biso 1.000 C + C150 1.0000 0.85267 0.02943 0.16323 Biso 1.000 C + H107 1.0000 0.81227 0.98933 0.16753 Biso 1.000 H + C151 1.0000 0.92237 0.13613 0.09333 Biso 1.000 C + C152 1.0000 0.97617 0.15363 0.15313 Biso 1.000 C + H108 1.0000 0.01617 0.19443 0.15013 Biso 1.000 H + C153 1.0000 0.90297 0.04473 0.21953 Biso 1.000 C + H109 1.0000 0.89647 0.01393 0.26193 Biso 1.000 H + C154 1.0000 0.96497 0.10623 0.21583 Biso 1.000 C + H110 1.0000 0.99837 0.11493 0.25533 Biso 1.000 H + N41 1.0000 0.00777 0.32203 0.09003 Biso 1.000 N + N42 1.0000 0.91867 0.17293 0.02413 Biso 1.000 N + N43 1.0000 0.98547 0.35143 0.21813 Biso 1.000 N + N44 1.0000 0.82217 0.07433 0.03273 Biso 1.000 N + Zn11 1.0000 0.99477 0.26286 0.99173 Biso 1.000 Zn + C155 1.0000 0.63383 0.63817 0.49037 Biso 1.000 C + H111 1.0000 0.59513 0.59637 0.49467 Biso 1.000 H + C156 1.0000 0.72453 0.72147 0.44027 Biso 1.000 C + C157 1.0000 0.78043 0.76527 0.39447 Biso 1.000 C + H112 1.0000 0.78973 0.75357 0.34187 Biso 1.000 H + C158 1.0000 0.82163 0.82707 0.42967 Biso 1.000 C + H113 1.0000 0.85953 0.85797 0.39997 Biso 1.000 H + C159 1.0000 0.80823 0.84517 0.51037 Biso 1.000 C + H114 1.0000 0.83733 0.88767 0.53217 Biso 1.000 H + C160 1.0000 0.71113 0.73927 0.52037 Biso 1.000 C + C161 1.0000 0.75333 0.80127 0.55657 Biso 1.000 C + H115 1.0000 0.74473 0.81257 0.60997 Biso 1.000 H + C162 1.0000 0.52513 0.46547 0.32687 Biso 1.000 C + H116 1.0000 0.50893 0.47697 0.27957 Biso 1.000 H + C163 1.0000 0.52993 0.40967 0.43057 Biso 1.000 C + C164 1.0000 0.51933 0.36277 0.49657 Biso 1.000 C + H117 1.0000 0.47893 0.32267 0.50087 Biso 1.000 H + C165 1.0000 0.58903 0.46947 0.42667 Biso 1.000 C + C166 1.0000 0.64283 0.48697 0.48647 Biso 1.000 C + H118 1.0000 0.68283 0.52777 0.48347 Biso 1.000 H + C167 1.0000 0.56963 0.37807 0.55287 Biso 1.000 C + H119 1.0000 0.56313 0.34727 0.59527 Biso 1.000 H + C168 1.0000 0.63163 0.43957 0.54917 Biso 1.000 C + H120 1.0000 0.66503 0.44827 0.58867 Biso 1.000 H + N45 1.0000 0.67443 0.65537 0.42337 Biso 1.000 N + N46 1.0000 0.58533 0.50627 0.35747 Biso 1.000 N + N47 1.0000 0.65213 0.68477 0.55147 Biso 1.000 N + N48 1.0000 0.48883 0.40767 0.36607 Biso 1.000 N + Zn12 1.0000 0.66143 0.59620 0.32507 Biso 1.000 Zn + C169 1.0000 0.02850 0.32900 0.82370 Biso 1.000 C + H121 1.0000 0.07030 0.33210 0.82800 Biso 1.000 H + C170 1.0000 0.94520 0.33640 0.77360 Biso 1.000 C + C171 1.0000 0.90140 0.34850 0.72780 Biso 1.000 C + H122 1.0000 0.91310 0.36950 0.67520 Biso 1.000 H + C172 1.0000 0.83960 0.32790 0.76300 Biso 1.000 C + H123 1.0000 0.80870 0.33490 0.73330 Biso 1.000 H + C173 1.0000 0.82150 0.29640 0.84370 Biso 1.000 C + H124 1.0000 0.77900 0.28300 0.86550 Biso 1.000 H + C174 1.0000 0.92740 0.30520 0.85370 Biso 1.000 C + C175 1.0000 0.86540 0.28540 0.88990 Biso 1.000 C + H125 1.0000 0.85410 0.26550 0.94330 Biso 1.000 H + C176 1.0000 0.20120 0.39300 0.66020 Biso 1.000 C + H126 1.0000 0.18970 0.36530 0.61290 Biso 1.000 H + C177 1.0000 0.25700 0.45360 0.76390 Biso 1.000 C + C178 1.0000 0.30390 0.48990 0.82990 Biso 1.000 C + H127 1.0000 0.34400 0.48960 0.83420 Biso 1.000 H + C179 1.0000 0.19720 0.45290 0.76000 Biso 1.000 C + C180 1.0000 0.17970 0.48920 0.81980 Biso 1.000 C + H128 1.0000 0.13890 0.48840 0.81680 Biso 1.000 H + C181 1.0000 0.28860 0.52490 0.88620 Biso 1.000 C + H129 1.0000 0.31940 0.54920 0.92860 Biso 1.000 H + C182 1.0000 0.22710 0.52540 0.88250 Biso 1.000 C + H130 1.0000 0.21840 0.55010 0.92200 Biso 1.000 H + N49 1.0000 0.01130 0.35240 0.75670 Biso 1.000 N + N50 1.0000 0.16040 0.41240 0.69080 Biso 1.000 N + N51 1.0000 0.98190 0.30070 0.88480 Biso 1.000 N + N52 1.0000 0.25900 0.41450 0.69940 Biso 1.000 N + Zn13 1.0000 0.07047 0.39857 0.65840 Biso 1.000 Zn + C183 1.0000 0.69517 0.66233 0.15703 Biso 1.000 C + H131 1.0000 0.73697 0.66543 0.16133 Biso 1.000 H + C184 1.0000 0.61187 0.66973 0.10693 Biso 1.000 C + C185 1.0000 0.56807 0.68183 0.06113 Biso 1.000 C + H132 1.0000 0.57977 0.70283 0.00853 Biso 1.000 H + C186 1.0000 0.50627 0.66123 0.09633 Biso 1.000 C + H133 1.0000 0.47537 0.66823 0.06663 Biso 1.000 H + C187 1.0000 0.48817 0.62973 0.17703 Biso 1.000 C + H134 1.0000 0.44567 0.61633 0.19883 Biso 1.000 H + C188 1.0000 0.59407 0.63853 0.18703 Biso 1.000 C + C189 1.0000 0.53207 0.61873 0.22323 Biso 1.000 C + H135 1.0000 0.52077 0.59883 0.27663 Biso 1.000 H + C190 1.0000 0.86787 0.72633 0.99353 Biso 1.000 C + H136 1.0000 0.85637 0.69863 0.94623 Biso 1.000 H + C191 1.0000 0.92367 0.78693 0.09723 Biso 1.000 C + C192 1.0000 0.97057 0.82323 0.16323 Biso 1.000 C + H137 1.0000 0.01067 0.82293 0.16753 Biso 1.000 H + C193 1.0000 0.86387 0.78623 0.09333 Biso 1.000 C + C194 1.0000 0.84637 0.82253 0.15313 Biso 1.000 C + H138 1.0000 0.80557 0.82173 0.15013 Biso 1.000 H + C195 1.0000 0.95527 0.85823 0.21953 Biso 1.000 C + H139 1.0000 0.98607 0.88253 0.26193 Biso 1.000 H + C196 1.0000 0.89377 0.85873 0.21583 Biso 1.000 C + H140 1.0000 0.88507 0.88343 0.25533 Biso 1.000 H + N53 1.0000 0.67797 0.68573 0.09003 Biso 1.000 N + N54 1.0000 0.82707 0.74573 0.02413 Biso 1.000 N + N55 1.0000 0.64857 0.63403 0.21813 Biso 1.000 N + N56 1.0000 0.92567 0.74783 0.03273 Biso 1.000 N + Zn14 1.0000 0.73714 0.73190 0.99173 Biso 1.000 Zn + C197 1.0000 0.36183 0.99567 0.49037 Biso 1.000 C + H141 1.0000 0.40363 0.99877 0.49467 Biso 1.000 H + C198 1.0000 0.27853 0.00307 0.44027 Biso 1.000 C + C199 1.0000 0.23473 0.01517 0.39447 Biso 1.000 C + H142 1.0000 0.24643 0.03617 0.34187 Biso 1.000 H + C200 1.0000 0.17293 0.99457 0.42967 Biso 1.000 C + H143 1.0000 0.14203 0.00157 0.39997 Biso 1.000 H + C201 1.0000 0.15483 0.96307 0.51037 Biso 1.000 C + H144 1.0000 0.11233 0.94967 0.53217 Biso 1.000 H + C202 1.0000 0.26073 0.97187 0.52037 Biso 1.000 C + C203 1.0000 0.19873 0.95207 0.55657 Biso 1.000 C + H145 1.0000 0.18743 0.93217 0.60997 Biso 1.000 H + C204 1.0000 0.53453 0.05967 0.32687 Biso 1.000 C + H146 1.0000 0.52303 0.03197 0.27957 Biso 1.000 H + C205 1.0000 0.59033 0.12027 0.43057 Biso 1.000 C + C206 1.0000 0.63723 0.15657 0.49657 Biso 1.000 C + H147 1.0000 0.67733 0.15627 0.50087 Biso 1.000 H + C207 1.0000 0.53053 0.11957 0.42667 Biso 1.000 C + C208 1.0000 0.51303 0.15587 0.48647 Biso 1.000 C + H148 1.0000 0.47223 0.15507 0.48347 Biso 1.000 H + C209 1.0000 0.62193 0.19157 0.55287 Biso 1.000 C + H149 1.0000 0.65273 0.21587 0.59527 Biso 1.000 H + C210 1.0000 0.56043 0.19207 0.54917 Biso 1.000 C + H150 1.0000 0.55173 0.21677 0.58867 Biso 1.000 H + N57 1.0000 0.34463 0.01907 0.42337 Biso 1.000 N + N58 1.0000 0.49373 0.07907 0.35747 Biso 1.000 N + N59 1.0000 0.31523 0.96737 0.55147 Biso 1.000 N + N60 1.0000 0.59233 0.08117 0.36607 Biso 1.000 N + Zn15 1.0000 0.40380 0.06524 0.32507 Biso 1.000 Zn + C211 1.0000 0.67100 0.69950 0.82370 Biso 1.000 C + H151 1.0000 0.66790 0.73820 0.82800 Biso 1.000 H + C212 1.0000 0.66360 0.60880 0.77360 Biso 1.000 C + C213 1.0000 0.65150 0.55290 0.72780 Biso 1.000 C + H152 1.0000 0.63050 0.54360 0.67520 Biso 1.000 H + C214 1.0000 0.67210 0.51170 0.76300 Biso 1.000 C + H153 1.0000 0.66510 0.47380 0.73330 Biso 1.000 H + C215 1.0000 0.70360 0.52510 0.84370 Biso 1.000 C + H154 1.0000 0.71700 0.49600 0.86550 Biso 1.000 H + C216 1.0000 0.69480 0.62220 0.85370 Biso 1.000 C + C217 1.0000 0.71460 0.58000 0.88990 Biso 1.000 C + H155 1.0000 0.73450 0.58860 0.94330 Biso 1.000 H + C218 1.0000 0.60700 0.80820 0.66020 Biso 1.000 C + H156 1.0000 0.63470 0.82440 0.61290 Biso 1.000 H + C219 1.0000 0.54640 0.80340 0.76390 Biso 1.000 C + C220 1.0000 0.51010 0.81400 0.82990 Biso 1.000 C + H157 1.0000 0.51040 0.85440 0.83420 Biso 1.000 H + C221 1.0000 0.54710 0.74430 0.76000 Biso 1.000 C + C222 1.0000 0.51080 0.69050 0.81980 Biso 1.000 C + H158 1.0000 0.51160 0.65050 0.81680 Biso 1.000 H + C223 1.0000 0.47510 0.76370 0.88620 Biso 1.000 C + H159 1.0000 0.45080 0.77020 0.92860 Biso 1.000 H + C224 1.0000 0.47460 0.70170 0.88250 Biso 1.000 C + H160 1.0000 0.44990 0.66830 0.92200 Biso 1.000 H + N61 1.0000 0.64760 0.65890 0.75670 Biso 1.000 N + N62 1.0000 0.58760 0.74800 0.69080 Biso 1.000 N + N63 1.0000 0.69930 0.68120 0.88480 Biso 1.000 N + N64 1.0000 0.58550 0.84450 0.69940 Biso 1.000 N + Zn16 1.0000 0.60143 0.67190 0.65840 Biso 1.000 Zn + C225 1.0000 0.33767 0.03283 0.15703 Biso 1.000 C + H161 1.0000 0.33457 0.07153 0.16133 Biso 1.000 H + C226 1.0000 0.33027 0.94213 0.10693 Biso 1.000 C + C227 1.0000 0.31817 0.88623 0.06113 Biso 1.000 C + H162 1.0000 0.29717 0.87693 0.00853 Biso 1.000 H + C228 1.0000 0.33877 0.84503 0.09633 Biso 1.000 C + H163 1.0000 0.33177 0.80713 0.06663 Biso 1.000 H + C229 1.0000 0.37027 0.85843 0.17703 Biso 1.000 C + H164 1.0000 0.38367 0.82933 0.19883 Biso 1.000 H + C230 1.0000 0.36147 0.95553 0.18703 Biso 1.000 C + C231 1.0000 0.38127 0.91333 0.22323 Biso 1.000 C + H165 1.0000 0.40117 0.92193 0.27663 Biso 1.000 H + C232 1.0000 0.27367 0.14153 0.99353 Biso 1.000 C + H166 1.0000 0.30137 0.15773 0.94623 Biso 1.000 H + C233 1.0000 0.21307 0.13673 0.09723 Biso 1.000 C + C234 1.0000 0.17677 0.14733 0.16323 Biso 1.000 C + H167 1.0000 0.17707 0.18773 0.16753 Biso 1.000 H + C235 1.0000 0.21377 0.07763 0.09333 Biso 1.000 C + C236 1.0000 0.17747 0.02383 0.15313 Biso 1.000 C + H168 1.0000 0.17827 0.98383 0.15013 Biso 1.000 H + C237 1.0000 0.14177 0.09703 0.21953 Biso 1.000 C + H169 1.0000 0.11747 0.10353 0.26193 Biso 1.000 H + C238 1.0000 0.14127 0.03503 0.21583 Biso 1.000 C + H170 1.0000 0.11657 0.00163 0.25533 Biso 1.000 H + N65 1.0000 0.31427 0.99223 0.09003 Biso 1.000 N + N66 1.0000 0.25427 0.08133 0.02413 Biso 1.000 N + N67 1.0000 0.36597 0.01453 0.21813 Biso 1.000 N + N68 1.0000 0.25217 0.17783 0.03273 Biso 1.000 N + Zn17 1.0000 0.26810 0.00523 0.99173 Biso 1.000 Zn + C239 1.0000 0.00433 0.36617 0.49037 Biso 1.000 C + H171 1.0000 0.00123 0.40487 0.49467 Biso 1.000 H + C240 1.0000 0.99693 0.27547 0.44027 Biso 1.000 C + C241 1.0000 0.98483 0.21957 0.39447 Biso 1.000 C + H172 1.0000 0.96383 0.21027 0.34187 Biso 1.000 H + C242 1.0000 0.00543 0.17837 0.42967 Biso 1.000 C + H173 1.0000 0.99843 0.14047 0.39997 Biso 1.000 H + C243 1.0000 0.03693 0.19177 0.51037 Biso 1.000 C + H174 1.0000 0.05033 0.16267 0.53217 Biso 1.000 H + C244 1.0000 0.02813 0.28887 0.52037 Biso 1.000 C + C245 1.0000 0.04793 0.24667 0.55657 Biso 1.000 C + H175 1.0000 0.06783 0.25527 0.60997 Biso 1.000 H + C246 1.0000 0.94033 0.47487 0.32687 Biso 1.000 C + H176 1.0000 0.96803 0.49107 0.27957 Biso 1.000 H + C247 1.0000 0.87973 0.47007 0.43057 Biso 1.000 C + C248 1.0000 0.84343 0.48067 0.49657 Biso 1.000 C + H177 1.0000 0.84373 0.52107 0.50087 Biso 1.000 H + C249 1.0000 0.88043 0.41097 0.42667 Biso 1.000 C + C250 1.0000 0.84413 0.35717 0.48647 Biso 1.000 C + H178 1.0000 0.84493 0.31717 0.48347 Biso 1.000 H + C251 1.0000 0.80843 0.43037 0.55287 Biso 1.000 C + H179 1.0000 0.78413 0.43687 0.59527 Biso 1.000 H + C252 1.0000 0.80793 0.36837 0.54917 Biso 1.000 C + H180 1.0000 0.78323 0.33497 0.58867 Biso 1.000 H + N69 1.0000 0.98093 0.32557 0.42337 Biso 1.000 N + N70 1.0000 0.92093 0.41467 0.35747 Biso 1.000 N + N71 1.0000 0.03263 0.34787 0.55147 Biso 1.000 N + N72 1.0000 0.91883 0.51117 0.36607 Biso 1.000 N + Zn18 1.0000 0.93476 0.33857 0.32507 Biso 1.000 Zn diff --git a/benchmarks/mof/structures/ZIF-8.cif b/benchmarks/mof/structures/ZIF-8.cif new file mode 100644 index 0000000000000000000000000000000000000000..40827d68c164e2d0a42d3bab95593837ad0d53fc --- /dev/null +++ b/benchmarks/mof/structures/ZIF-8.cif @@ -0,0 +1,162 @@ +data_OFERUN_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 14.7138 +_cell_length_b 14.7138 +_cell_length_c 14.7138 +_cell_angle_alpha 109.4710 +_cell_angle_beta 109.4710 +_cell_angle_gamma 109.4710 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.25000 0.75000 0.50000 0.01267 Uiso 1.00 +Zn2 Zn 0.75000 0.25000 0.50000 0.01267 Uiso 1.00 +Zn3 Zn 0.50000 0.75000 0.25000 0.01267 Uiso 1.00 +Zn4 Zn 0.50000 0.25000 0.75000 0.01267 Uiso 1.00 +Zn5 Zn 0.75000 0.50000 0.25000 0.01267 Uiso 1.00 +Zn6 Zn 0.25000 0.50000 0.75000 0.01267 Uiso 1.00 +H1 H 0.42240 0.65640 0.53660 0.01267 Uiso 1.00 +H2 H 0.31040 0.79410 0.24430 0.01267 Uiso 1.00 +H3 H 0.11980 0.88580 0.46340 0.01267 Uiso 1.00 +H4 H 0.54980 0.06610 0.75570 0.01267 Uiso 1.00 +H5 H 0.88020 0.34360 0.76600 0.01267 Uiso 1.00 +H6 H 0.45020 0.20590 0.51630 0.01267 Uiso 1.00 +H7 H 0.57760 0.11420 0.23400 0.01267 Uiso 1.00 +H8 H 0.68960 0.93390 0.48370 0.01267 Uiso 1.00 +H9 H 0.76600 0.88020 0.34360 0.01267 Uiso 1.00 +H10 H 0.51630 0.45020 0.20590 0.01267 Uiso 1.00 +H11 H 0.23400 0.57760 0.11420 0.01267 Uiso 1.00 +H12 H 0.48370 0.68960 0.93390 0.01267 Uiso 1.00 +H13 H 0.53660 0.42240 0.65640 0.01267 Uiso 1.00 +H14 H 0.24430 0.31040 0.79410 0.01267 Uiso 1.00 +H15 H 0.46340 0.11980 0.88580 0.01267 Uiso 1.00 +H16 H 0.75570 0.54980 0.06610 0.01267 Uiso 1.00 +H17 H 0.88580 0.46340 0.11980 0.01267 Uiso 1.00 +H18 H 0.06610 0.75570 0.54980 0.01267 Uiso 1.00 +H19 H 0.65640 0.53660 0.42240 0.01267 Uiso 1.00 +H20 H 0.79410 0.24430 0.31040 0.01267 Uiso 1.00 +H21 H 0.11420 0.23400 0.57760 0.01267 Uiso 1.00 +H22 H 0.93390 0.48370 0.68960 0.01267 Uiso 1.00 +H23 H 0.34360 0.76600 0.88020 0.01267 Uiso 1.00 +H24 H 0.20590 0.51630 0.45020 0.01267 Uiso 1.00 +H25 H 0.88580 0.11980 0.46340 0.01267 Uiso 1.00 +H26 H 0.06610 0.54980 0.75570 0.01267 Uiso 1.00 +H27 H 0.65640 0.42240 0.53660 0.01267 Uiso 1.00 +H28 H 0.79410 0.31040 0.24430 0.01267 Uiso 1.00 +H29 H 0.11420 0.57760 0.23400 0.01267 Uiso 1.00 +H30 H 0.93390 0.68960 0.48370 0.01267 Uiso 1.00 +H31 H 0.34360 0.88020 0.76600 0.01267 Uiso 1.00 +H32 H 0.20590 0.45020 0.51630 0.01267 Uiso 1.00 +H33 H 0.42240 0.53660 0.65640 0.01267 Uiso 1.00 +H34 H 0.31040 0.24430 0.79410 0.01267 Uiso 1.00 +H35 H 0.11980 0.46340 0.88580 0.01267 Uiso 1.00 +H36 H 0.54980 0.75570 0.06610 0.01267 Uiso 1.00 +H37 H 0.88020 0.76600 0.34360 0.01267 Uiso 1.00 +H38 H 0.45020 0.51630 0.20590 0.01267 Uiso 1.00 +H39 H 0.57760 0.23400 0.11420 0.01267 Uiso 1.00 +H40 H 0.68960 0.48370 0.93390 0.01267 Uiso 1.00 +H41 H 0.76600 0.34360 0.88020 0.01267 Uiso 1.00 +H42 H 0.51630 0.20590 0.45020 0.01267 Uiso 1.00 +H43 H 0.23400 0.11420 0.57760 0.01267 Uiso 1.00 +H44 H 0.48370 0.93390 0.68960 0.01267 Uiso 1.00 +H45 H 0.53660 0.65640 0.42240 0.01267 Uiso 1.00 +H46 H 0.24430 0.79410 0.31040 0.01267 Uiso 1.00 +H47 H 0.46340 0.88580 0.11980 0.01267 Uiso 1.00 +H48 H 0.75570 0.06610 0.54980 0.01267 Uiso 1.00 +H49 H 0.37010 0.88180 0.37010 0.01267 Uiso 1.00 +H50 H 0.51170 0.00000 0.62990 0.01267 Uiso 1.00 +H51 H 0.48830 0.11820 0.48830 0.01267 Uiso 1.00 +H52 H 0.62990 0.00000 0.51170 0.01267 Uiso 1.00 +H53 H 0.48830 0.48830 0.11820 0.01267 Uiso 1.00 +H54 H 0.51170 0.62990 -0.00000 0.01267 Uiso 1.00 +H55 H 0.37010 0.37010 0.88180 0.01267 Uiso 1.00 +H56 H 0.62990 0.51170 -0.00000 0.01267 Uiso 1.00 +H57 H 0.00000 0.62990 0.51170 0.01267 Uiso 1.00 +H58 H 0.88180 0.37010 0.37010 0.01267 Uiso 1.00 +H59 H 0.00000 0.51170 0.62990 0.01267 Uiso 1.00 +H60 H 0.11820 0.48830 0.48830 0.01267 Uiso 1.00 +C1 C 0.41456 0.68356 0.47280 0.01267 Uiso 1.00 +C2 C 0.21076 0.94176 0.52720 0.01267 Uiso 1.00 +C3 C 0.78924 0.31644 0.73100 0.01267 Uiso 1.00 +C4 C 0.58544 0.05824 0.26900 0.01267 Uiso 1.00 +C5 C 0.73100 0.78924 0.31644 0.01267 Uiso 1.00 +C6 C 0.26900 0.58544 0.05824 0.01267 Uiso 1.00 +C7 C 0.47280 0.41456 0.68356 0.01267 Uiso 1.00 +C8 C 0.52720 0.21076 0.94176 0.01267 Uiso 1.00 +C9 C 0.94176 0.52720 0.21076 0.01267 Uiso 1.00 +C10 C 0.68356 0.47280 0.41456 0.01267 Uiso 1.00 +C11 C 0.05824 0.26900 0.58544 0.01267 Uiso 1.00 +C12 C 0.31644 0.73100 0.78924 0.01267 Uiso 1.00 +C13 C 0.94176 0.21076 0.52720 0.01267 Uiso 1.00 +C14 C 0.68356 0.41456 0.47280 0.01267 Uiso 1.00 +C15 C 0.05824 0.58544 0.26900 0.01267 Uiso 1.00 +C16 C 0.31644 0.78924 0.73100 0.01267 Uiso 1.00 +C17 C 0.41456 0.47280 0.68356 0.01267 Uiso 1.00 +C18 C 0.21076 0.52720 0.94176 0.01267 Uiso 1.00 +C19 C 0.78924 0.73100 0.31644 0.01267 Uiso 1.00 +C20 C 0.58544 0.26900 0.05824 0.01267 Uiso 1.00 +C21 C 0.73100 0.31644 0.78924 0.01267 Uiso 1.00 +C22 C 0.26900 0.05824 0.58544 0.01267 Uiso 1.00 +C23 C 0.47280 0.68356 0.41456 0.01267 Uiso 1.00 +C24 C 0.52720 0.94176 0.21076 0.01267 Uiso 1.00 +C25 C 0.37300 0.75680 0.37300 0.01267 Uiso 1.00 +C26 C 0.31950 0.80580 0.31950 0.01267 Uiso 1.00 +C27 C 0.38380 1.00000 0.62700 0.01267 Uiso 1.00 +C28 C 0.48630 1.00000 0.68050 0.01267 Uiso 1.00 +C29 C 0.61620 0.24320 0.61620 0.01267 Uiso 1.00 +C30 C 0.51370 0.19420 0.51370 0.01267 Uiso 1.00 +C31 C 0.62700 -0.00000 0.38380 0.01267 Uiso 1.00 +C32 C 0.68050 0.00000 0.48630 0.01267 Uiso 1.00 +C33 C 0.61620 0.61620 0.24320 0.01267 Uiso 1.00 +C34 C 0.51370 0.51370 0.19420 0.01267 Uiso 1.00 +C35 C 0.38380 0.62700 -0.00000 0.01267 Uiso 1.00 +C36 C 0.48630 0.68050 -0.00000 0.01267 Uiso 1.00 +C37 C 0.37300 0.37300 0.75680 0.01267 Uiso 1.00 +C38 C 0.31950 0.31950 0.80580 0.01267 Uiso 1.00 +C39 C 0.62700 0.38380 -0.00000 0.01267 Uiso 1.00 +C40 C 0.68050 0.48630 -0.00000 0.01267 Uiso 1.00 +C41 C 0.00000 0.62700 0.38380 0.01267 Uiso 1.00 +C42 C 0.00000 0.68050 0.48630 0.01267 Uiso 1.00 +C43 C 0.75680 0.37300 0.37300 0.01267 Uiso 1.00 +C44 C 0.80580 0.31950 0.31950 0.01267 Uiso 1.00 +C45 C 0.00000 0.38380 0.62700 0.01267 Uiso 1.00 +C46 C 0.00000 0.48630 0.68050 0.01267 Uiso 1.00 +C47 C 0.24320 0.61620 0.61620 0.01267 Uiso 1.00 +C48 C 0.19420 0.51370 0.51370 0.01267 Uiso 1.00 +N1 N 0.35145 0.72798 0.44533 0.01267 Uiso 1.00 +N2 N 0.28265 0.90612 0.55467 0.01267 Uiso 1.00 +N3 N 0.71735 0.27202 0.62347 0.01267 Uiso 1.00 +N4 N 0.64855 0.09388 0.37653 0.01267 Uiso 1.00 +N5 N 0.62347 0.71735 0.27202 0.01267 Uiso 1.00 +N6 N 0.37653 0.64855 0.09388 0.01267 Uiso 1.00 +N7 N 0.44533 0.35145 0.72798 0.01267 Uiso 1.00 +N8 N 0.55467 0.28265 0.90612 0.01267 Uiso 1.00 +N9 N 0.90612 0.55467 0.28265 0.01267 Uiso 1.00 +N10 N 0.72798 0.44533 0.35145 0.01267 Uiso 1.00 +N11 N 0.09388 0.37653 0.64855 0.01267 Uiso 1.00 +N12 N 0.27202 0.62347 0.71735 0.01267 Uiso 1.00 +N13 N 0.90612 0.28265 0.55467 0.01267 Uiso 1.00 +N14 N 0.72798 0.35145 0.44533 0.01267 Uiso 1.00 +N15 N 0.09388 0.64855 0.37653 0.01267 Uiso 1.00 +N16 N 0.27202 0.71735 0.62347 0.01267 Uiso 1.00 +N17 N 0.35145 0.44533 0.72798 0.01267 Uiso 1.00 +N18 N 0.28265 0.55467 0.90612 0.01267 Uiso 1.00 +N19 N 0.71735 0.62347 0.27202 0.01267 Uiso 1.00 +N20 N 0.64855 0.37653 0.09388 0.01267 Uiso 1.00 +N21 N 0.62347 0.27202 0.71735 0.01267 Uiso 1.00 +N22 N 0.37653 0.09388 0.64855 0.01267 Uiso 1.00 +N23 N 0.44533 0.72798 0.35145 0.01267 Uiso 1.00 +N24 N 0.55467 0.90612 0.28265 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/Zn-MOF-74.cif b/benchmarks/mof/structures/Zn-MOF-74.cif new file mode 100644 index 0000000000000000000000000000000000000000..953e34ed02614ec1700b98900c6193935f42c29d --- /dev/null +++ b/benchmarks/mof/structures/Zn-MOF-74.cif @@ -0,0 +1,186 @@ +data_image0 +_cell_length_a 26.179 +_cell_length_b 26.179 +_cell_length_c 6.652 +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 120 + +_symmetry_space_group_name_H-M "P 1" +_symmetry_int_tables_number 1 + +loop_ + _symmetry_equiv_pos_as_xyz + 'x, y, z' + +loop_ + _atom_site_label + _atom_site_occupancy + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_thermal_displace_type + _atom_site_B_iso_or_equiv + _atom_site_type_symbol + Zn1 1.0000 0.38790 0.35068 0.15211 Biso 1.000 Zn + C1 1.0000 0.32290 0.20386 0.28779 Biso 1.000 C + C2 1.0000 0.34291 0.22040 0.09164 Biso 1.000 C + C3 1.0000 0.35335 0.18320 0.97052 Biso 1.000 C + H1 1.0000 0.36889 0.19605 0.81817 Biso 1.000 H + C4 1.0000 0.31168 0.24386 0.41805 Biso 1.000 C + O1 1.0000 0.32032 0.29230 0.35040 Biso 1.000 O + O2 1.0000 0.29364 0.22895 0.59490 Biso 1.000 O + O3 1.0000 0.35220 0.27243 0.01900 Biso 1.000 O + Zn2 1.0000 0.05457 0.68401 0.48544 Biso 1.000 Zn + C5 1.0000 0.98957 0.53719 0.62112 Biso 1.000 C + C6 1.0000 0.00958 0.55373 0.42497 Biso 1.000 C + C7 1.0000 0.02002 0.51653 0.30385 Biso 1.000 C + H2 1.0000 0.03556 0.52938 0.15150 Biso 1.000 H + C8 1.0000 0.97835 0.57719 0.75138 Biso 1.000 C + O4 1.0000 0.98699 0.62563 0.68373 Biso 1.000 O + O5 1.0000 0.96031 0.56228 0.92823 Biso 1.000 O + O6 1.0000 0.01887 0.60576 0.35233 Biso 1.000 O + Zn3 1.0000 0.72123 0.01735 0.81878 Biso 1.000 Zn + C9 1.0000 0.65623 0.87053 0.95446 Biso 1.000 C + C10 1.0000 0.67624 0.88707 0.75831 Biso 1.000 C + C11 1.0000 0.68668 0.84987 0.63719 Biso 1.000 C + H3 1.0000 0.70222 0.86272 0.48484 Biso 1.000 H + C12 1.0000 0.64501 0.91053 0.08472 Biso 1.000 C + O7 1.0000 0.65365 0.95897 0.01707 Biso 1.000 O + O8 1.0000 0.62697 0.89562 0.26157 Biso 1.000 O + O9 1.0000 0.68553 0.93910 0.68567 Biso 1.000 O + Zn4 1.0000 0.64932 0.03722 0.15211 Biso 1.000 Zn + C13 1.0000 0.79614 0.11904 0.28779 Biso 1.000 C + C14 1.0000 0.77960 0.12251 0.09164 Biso 1.000 C + C15 1.0000 0.81680 0.17015 0.97052 Biso 1.000 C + H4 1.0000 0.80395 0.17284 0.81817 Biso 1.000 H + C16 1.0000 0.75614 0.06782 0.41805 Biso 1.000 C + O10 1.0000 0.70770 0.02802 0.35040 Biso 1.000 O + O11 1.0000 0.77105 0.06469 0.59490 Biso 1.000 O + O12 1.0000 0.72757 0.07977 0.01900 Biso 1.000 O + Zn5 1.0000 0.31599 0.37055 0.48544 Biso 1.000 Zn + C17 1.0000 0.46281 0.45237 0.62112 Biso 1.000 C + C18 1.0000 0.44627 0.45584 0.42497 Biso 1.000 C + C19 1.0000 0.48347 0.50348 0.30385 Biso 1.000 C + H5 1.0000 0.47062 0.50617 0.15150 Biso 1.000 H + C20 1.0000 0.42281 0.40115 0.75138 Biso 1.000 C + O13 1.0000 0.37437 0.36135 0.68373 Biso 1.000 O + O14 1.0000 0.43772 0.39802 0.92823 Biso 1.000 O + O15 1.0000 0.39424 0.41310 0.35233 Biso 1.000 O + Zn6 1.0000 0.98265 0.70389 0.81878 Biso 1.000 Zn + C21 1.0000 0.12947 0.78571 0.95446 Biso 1.000 C + C22 1.0000 0.11293 0.78918 0.75831 Biso 1.000 C + C23 1.0000 0.15013 0.83682 0.63719 Biso 1.000 C + H6 1.0000 0.13728 0.83951 0.48484 Biso 1.000 H + C24 1.0000 0.08947 0.73449 0.08472 Biso 1.000 C + O16 1.0000 0.04103 0.69469 0.01707 Biso 1.000 O + O17 1.0000 0.10438 0.73136 0.26157 Biso 1.000 O + O18 1.0000 0.06090 0.74644 0.68567 Biso 1.000 O + Zn7 1.0000 0.96278 0.61210 0.15211 Biso 1.000 Zn + C25 1.0000 0.88096 0.67710 0.28779 Biso 1.000 C + C26 1.0000 0.87749 0.65709 0.09164 Biso 1.000 C + C27 1.0000 0.82985 0.64665 0.97052 Biso 1.000 C + H7 1.0000 0.82716 0.63111 0.81817 Biso 1.000 H + C28 1.0000 0.93218 0.68832 0.41805 Biso 1.000 C + O19 1.0000 0.97198 0.67968 0.35040 Biso 1.000 O + O20 1.0000 0.93531 0.70636 0.59490 Biso 1.000 O + O21 1.0000 0.92023 0.64780 0.01900 Biso 1.000 O + Zn8 1.0000 0.62945 0.94543 0.48544 Biso 1.000 Zn + C29 1.0000 0.54763 0.01043 0.62112 Biso 1.000 C + C30 1.0000 0.54416 0.99042 0.42497 Biso 1.000 C + C31 1.0000 0.49652 0.97998 0.30385 Biso 1.000 C + H8 1.0000 0.49383 0.96444 0.15150 Biso 1.000 H + C32 1.0000 0.59885 0.02165 0.75138 Biso 1.000 C + O22 1.0000 0.63865 0.01301 0.68373 Biso 1.000 O + O23 1.0000 0.60198 0.03969 0.92823 Biso 1.000 O + O24 1.0000 0.58690 0.98113 0.35233 Biso 1.000 O + Zn9 1.0000 0.29611 0.27877 0.81878 Biso 1.000 Zn + C33 1.0000 0.21429 0.34377 0.95446 Biso 1.000 C + C34 1.0000 0.21082 0.32376 0.75831 Biso 1.000 C + C35 1.0000 0.16318 0.31332 0.63719 Biso 1.000 C + H9 1.0000 0.16049 0.29778 0.48484 Biso 1.000 H + C36 1.0000 0.26551 0.35499 0.08472 Biso 1.000 C + O25 1.0000 0.30531 0.34635 0.01707 Biso 1.000 O + O26 1.0000 0.26864 0.37303 0.26157 Biso 1.000 O + O27 1.0000 0.25356 0.31447 0.68567 Biso 1.000 O + Zn10 1.0000 0.61210 0.64932 0.84789 Biso 1.000 Zn + C37 1.0000 0.67710 0.79614 0.71221 Biso 1.000 C + C38 1.0000 0.65709 0.77960 0.90836 Biso 1.000 C + C39 1.0000 0.64665 0.81680 0.02948 Biso 1.000 C + H10 1.0000 0.63111 0.80395 0.18183 Biso 1.000 H + C40 1.0000 0.68832 0.75614 0.58195 Biso 1.000 C + O28 1.0000 0.67968 0.70770 0.64960 Biso 1.000 O + O29 1.0000 0.70636 0.77105 0.40510 Biso 1.000 O + O30 1.0000 0.64780 0.72757 0.98100 Biso 1.000 O + Zn11 1.0000 0.27877 0.98265 0.18122 Biso 1.000 Zn + C41 1.0000 0.34377 0.12947 0.04554 Biso 1.000 C + C42 1.0000 0.32376 0.11293 0.24169 Biso 1.000 C + C43 1.0000 0.31332 0.15013 0.36281 Biso 1.000 C + H11 1.0000 0.29778 0.13728 0.51516 Biso 1.000 H + C44 1.0000 0.35499 0.08947 0.91528 Biso 1.000 C + O31 1.0000 0.34635 0.04103 0.98293 Biso 1.000 O + O32 1.0000 0.37303 0.10438 0.73843 Biso 1.000 O + O33 1.0000 0.31447 0.06090 0.31433 Biso 1.000 O + Zn12 1.0000 0.94543 0.31599 0.51456 Biso 1.000 Zn + C45 1.0000 0.01043 0.46281 0.37888 Biso 1.000 C + C46 1.0000 0.99042 0.44627 0.57503 Biso 1.000 C + C47 1.0000 0.97998 0.48347 0.69615 Biso 1.000 C + H12 1.0000 0.96444 0.47062 0.84850 Biso 1.000 H + C48 1.0000 0.02165 0.42281 0.24862 Biso 1.000 C + O34 1.0000 0.01301 0.37437 0.31627 Biso 1.000 O + O35 1.0000 0.03969 0.43772 0.07177 Biso 1.000 O + O36 1.0000 0.98113 0.39424 0.64767 Biso 1.000 O + Zn13 1.0000 0.35068 0.96278 0.84789 Biso 1.000 Zn + C49 1.0000 0.20386 0.88096 0.71221 Biso 1.000 C + C50 1.0000 0.22040 0.87749 0.90836 Biso 1.000 C + C51 1.0000 0.18320 0.82985 0.02948 Biso 1.000 C + H13 1.0000 0.19605 0.82716 0.18183 Biso 1.000 H + C52 1.0000 0.24386 0.93218 0.58195 Biso 1.000 C + O37 1.0000 0.29230 0.97198 0.64960 Biso 1.000 O + O38 1.0000 0.22895 0.93531 0.40510 Biso 1.000 O + O39 1.0000 0.27243 0.92023 0.98100 Biso 1.000 O + Zn14 1.0000 0.01735 0.29611 0.18122 Biso 1.000 Zn + C53 1.0000 0.87053 0.21429 0.04554 Biso 1.000 C + C54 1.0000 0.88707 0.21082 0.24169 Biso 1.000 C + C55 1.0000 0.84987 0.16318 0.36281 Biso 1.000 C + H14 1.0000 0.86272 0.16049 0.51516 Biso 1.000 H + C56 1.0000 0.91053 0.26551 0.91528 Biso 1.000 C + O40 1.0000 0.95897 0.30531 0.98293 Biso 1.000 O + O41 1.0000 0.89562 0.26864 0.73843 Biso 1.000 O + O42 1.0000 0.93910 0.25356 0.31433 Biso 1.000 O + Zn15 1.0000 0.68401 0.62945 0.51456 Biso 1.000 Zn + C57 1.0000 0.53719 0.54763 0.37888 Biso 1.000 C + C58 1.0000 0.55373 0.54416 0.57503 Biso 1.000 C + C59 1.0000 0.51653 0.49652 0.69615 Biso 1.000 C + H15 1.0000 0.52938 0.49383 0.84850 Biso 1.000 H + C60 1.0000 0.57719 0.59885 0.24862 Biso 1.000 C + O43 1.0000 0.62563 0.63865 0.31627 Biso 1.000 O + O44 1.0000 0.56228 0.60198 0.07177 Biso 1.000 O + O45 1.0000 0.60576 0.58690 0.64767 Biso 1.000 O + Zn16 1.0000 0.03722 0.38790 0.84789 Biso 1.000 Zn + C61 1.0000 0.11904 0.32290 0.71221 Biso 1.000 C + C62 1.0000 0.12251 0.34291 0.90836 Biso 1.000 C + C63 1.0000 0.17015 0.35335 0.02948 Biso 1.000 C + H16 1.0000 0.17284 0.36889 0.18183 Biso 1.000 H + C64 1.0000 0.06782 0.31168 0.58195 Biso 1.000 C + O46 1.0000 0.02802 0.32032 0.64960 Biso 1.000 O + O47 1.0000 0.06469 0.29364 0.40510 Biso 1.000 O + O48 1.0000 0.07977 0.35220 0.98100 Biso 1.000 O + Zn17 1.0000 0.70389 0.72123 0.18122 Biso 1.000 Zn + C65 1.0000 0.78571 0.65623 0.04554 Biso 1.000 C + C66 1.0000 0.78918 0.67624 0.24169 Biso 1.000 C + C67 1.0000 0.83682 0.68668 0.36281 Biso 1.000 C + H17 1.0000 0.83951 0.70222 0.51516 Biso 1.000 H + C68 1.0000 0.73449 0.64501 0.91528 Biso 1.000 C + O49 1.0000 0.69469 0.65365 0.98293 Biso 1.000 O + O50 1.0000 0.73136 0.62697 0.73843 Biso 1.000 O + O51 1.0000 0.74644 0.68553 0.31433 Biso 1.000 O + Zn18 1.0000 0.37055 0.05457 0.51456 Biso 1.000 Zn + C69 1.0000 0.45237 0.98957 0.37888 Biso 1.000 C + C70 1.0000 0.45584 0.00958 0.57503 Biso 1.000 C + C71 1.0000 0.50348 0.02002 0.69615 Biso 1.000 C + H18 1.0000 0.50617 0.03556 0.84850 Biso 1.000 H + C72 1.0000 0.40115 0.97835 0.24862 Biso 1.000 C + O52 1.0000 0.36135 0.98699 0.31627 Biso 1.000 O + O53 1.0000 0.39802 0.96031 0.07177 Biso 1.000 O + O54 1.0000 0.41310 0.01887 0.64767 Biso 1.000 O diff --git a/benchmarks/mof/structures/dac/CFA-1-OH(Zn).cif b/benchmarks/mof/structures/dac/CFA-1-OH(Zn).cif new file mode 100644 index 0000000000000000000000000000000000000000..a3ff22601cb7723f498e7708d58de1a53faebc47 --- /dev/null +++ b/benchmarks/mof/structures/dac/CFA-1-OH(Zn).cif @@ -0,0 +1,194 @@ +data_Zn-CFA-1-OH +_audit_creation_date 2024-02-27 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 17.7500 +_cell_length_b 17.7500 +_cell_length_c 19.1920 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 120.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +C1 C 0.13251 0.47278 0.60099 0.01267 Uiso 1.00 +C2 C 0.52717 0.65924 0.60145 0.01267 Uiso 1.00 +C3 C 0.34054 0.86768 0.60110 0.01267 Uiso 1.00 +C4 C 0.47278 0.13251 0.39901 0.01267 Uiso 1.00 +C5 C 0.65924 0.52717 0.39855 0.01267 Uiso 1.00 +C6 C 0.86768 0.34054 0.39890 0.01267 Uiso 1.00 +C7 C 0.18881 0.43840 0.60309 0.01267 Uiso 1.00 +C8 C 0.56134 0.74988 0.60338 0.01267 Uiso 1.00 +C9 C 0.24988 0.81128 0.60314 0.01267 Uiso 1.00 +C10 C 0.43840 0.18881 0.39691 0.01267 Uiso 1.00 +C11 C 0.74988 0.56134 0.39662 0.01267 Uiso 1.00 +C12 C 0.81128 0.24988 0.39686 0.01267 Uiso 1.00 +C13 C 0.16934 0.36248 0.56642 0.01267 Uiso 1.00 +C14 C 0.63720 0.80647 0.56673 0.01267 Uiso 1.00 +C15 C 0.19332 0.83058 0.56649 0.01267 Uiso 1.00 +C16 C 0.36248 0.16934 0.43358 0.01267 Uiso 1.00 +C17 C 0.80647 0.63720 0.43327 0.01267 Uiso 1.00 +C18 C 0.83058 0.19332 0.43351 0.01267 Uiso 1.00 +C19 C 0.09438 0.32519 0.52709 0.01267 Uiso 1.00 +C20 C 0.67462 0.76899 0.52736 0.01267 Uiso 1.00 +C21 C 0.23088 0.90552 0.52715 0.01267 Uiso 1.00 +C22 C 0.32519 0.09438 0.47291 0.01267 Uiso 1.00 +C23 C 0.76899 0.67462 0.47264 0.01267 Uiso 1.00 +C24 C 0.90551 0.23088 0.47286 0.01267 Uiso 1.00 +C25 C 0.03841 0.36098 0.52299 0.01267 Uiso 1.00 +C26 C 0.63892 0.67723 0.52316 0.01267 Uiso 1.00 +C27 C 0.32263 0.96162 0.52307 0.01267 Uiso 1.00 +C28 C 0.36098 0.03841 0.47701 0.01267 Uiso 1.00 +C29 C 0.67723 0.63892 0.47685 0.01267 Uiso 1.00 +C30 C 0.96162 0.32263 0.47693 0.01267 Uiso 1.00 +C31 C 0.05648 0.43436 0.56136 0.01267 Uiso 1.00 +C32 C 0.56569 0.62180 0.56167 0.01267 Uiso 1.00 +C33 C 0.37804 0.94371 0.56146 0.01267 Uiso 1.00 +C34 C 0.43436 0.05648 0.43864 0.01267 Uiso 1.00 +C35 C 0.62180 0.56569 0.43833 0.01267 Uiso 1.00 +C36 C 0.94371 0.37804 0.43854 0.01267 Uiso 1.00 +C37 C 0.09165 0.61513 0.83198 0.01267 Uiso 1.00 +C38 C 0.38223 0.47632 0.83322 0.01267 Uiso 1.00 +C39 C 0.52377 0.90807 0.83233 0.01267 Uiso 1.00 +C40 C 0.61513 0.09165 0.16802 0.01267 Uiso 1.00 +C41 C 0.47632 0.38224 0.16679 0.01267 Uiso 1.00 +C42 C 0.90807 0.52377 0.16767 0.01267 Uiso 1.00 +C43 C 0.14157 0.62308 0.89145 0.01267 Uiso 1.00 +C44 C 0.37545 0.51853 0.89300 0.01267 Uiso 1.00 +C45 C 0.48126 0.85826 0.89172 0.01267 Uiso 1.00 +C46 C 0.62308 0.14157 0.10855 0.01267 Uiso 1.00 +C47 C 0.51853 0.37545 0.10700 0.01267 Uiso 1.00 +C48 C 0.85826 0.48126 0.10828 0.01267 Uiso 1.00 +C49 C 0.10720 0.60993 0.95871 0.01267 Uiso 1.00 +C50 C 0.38919 0.49669 0.95983 0.01267 Uiso 1.00 +C51 C 0.50192 0.89238 0.95910 0.01267 Uiso 1.00 +C52 C 0.60993 0.10720 0.04130 0.01267 Uiso 1.00 +C53 C 0.49669 0.38919 0.04017 0.01267 Uiso 1.00 +C54 C 0.89238 0.50192 0.04090 0.01267 Uiso 1.00 +C55 C 0.02065 0.58763 0.96512 0.01267 Uiso 1.00 +C56 C 0.40977 0.43115 0.96556 0.01267 Uiso 1.00 +C57 C 0.56671 0.97874 0.96561 0.01267 Uiso 1.00 +C58 C 0.58763 0.02065 0.03488 0.01267 Uiso 1.00 +C59 C 0.43115 0.40977 0.03444 0.01267 Uiso 1.00 +C60 C 0.97874 0.56671 0.03439 0.01267 Uiso 1.00 +C61 C 0.97123 0.58133 0.90446 0.01267 Uiso 1.00 +C62 C 0.41439 0.38765 0.90455 0.01267 Uiso 1.00 +C63 C 0.61033 0.02818 0.90506 0.01267 Uiso 1.00 +C64 C 0.58132 0.97123 0.09554 0.01267 Uiso 1.00 +C65 C 0.38765 0.41439 0.09545 0.01267 Uiso 1.00 +C66 C 0.02818 0.61033 0.09494 0.01267 Uiso 1.00 +C67 C 0.00475 0.59477 0.83802 0.01267 Uiso 1.00 +C68 C 0.40121 0.40880 0.83841 0.01267 Uiso 1.00 +C69 C 0.59049 0.99487 0.83854 0.01267 Uiso 1.00 +C70 C 0.59477 0.00475 0.16198 0.01267 Uiso 1.00 +C71 C 0.40880 0.40121 0.16159 0.01267 Uiso 1.00 +C72 C 0.99487 0.59049 0.16146 0.01267 Uiso 1.00 +H73 H 0.63846 0.32288 0.95223 0.01267 Uiso 1.00 +H74 H 0.32288 0.63846 0.04777 0.01267 Uiso 1.00 +H75 H 0.61542 0.00736 0.40399 0.01267 Uiso 1.00 +H76 H 0.99385 0.60840 0.40307 0.01267 Uiso 1.00 +H77 H 0.39126 0.38543 0.40039 0.01267 Uiso 1.00 +H78 H 0.00736 0.61542 0.59601 0.01267 Uiso 1.00 +H79 H 0.60840 0.99385 0.59693 0.01267 Uiso 1.00 +H80 H 0.38543 0.39126 0.59961 0.01267 Uiso 1.00 +H81 H 0.21170 0.33489 0.56893 0.01267 Uiso 1.00 +H82 H 0.66452 0.87637 0.56937 0.01267 Uiso 1.00 +H83 H 0.12341 0.78803 0.56904 0.01267 Uiso 1.00 +H84 H 0.33489 0.21170 0.43107 0.01267 Uiso 1.00 +H85 H 0.87637 0.66452 0.43063 0.01267 Uiso 1.00 +H86 H 0.78803 0.12341 0.43096 0.01267 Uiso 1.00 +H87 H 0.07809 0.26752 0.49664 0.01267 Uiso 1.00 +H88 H 0.73228 0.81052 0.49696 0.01267 Uiso 1.00 +H89 H 0.18942 0.92163 0.49663 0.01267 Uiso 1.00 +H90 H 0.26752 0.07809 0.50336 0.01267 Uiso 1.00 +H91 H 0.81052 0.73228 0.50304 0.01267 Uiso 1.00 +H92 H 0.92163 0.18942 0.50338 0.01267 Uiso 1.00 +H93 H 0.01291 0.46062 0.56161 0.01267 Uiso 1.00 +H94 H 0.53969 0.55202 0.56179 0.01267 Uiso 1.00 +H95 H 0.44784 0.98737 0.56164 0.01267 Uiso 1.00 +H96 H 0.46062 0.01291 0.43839 0.01267 Uiso 1.00 +H97 H 0.55202 0.53969 0.43821 0.01267 Uiso 1.00 +H98 H 0.98737 0.44784 0.43837 0.01267 Uiso 1.00 +H99 H 0.14705 0.61492 1.00324 0.01267 Uiso 1.00 +H100 H 0.38769 0.53261 1.00499 0.01267 Uiso 1.00 +H101 H 0.46562 0.85264 1.00331 0.01267 Uiso 1.00 +H102 H 0.61492 0.14705 -0.00324 0.01267 Uiso 1.00 +H103 H 0.53261 0.38769 -0.00499 0.01267 Uiso 1.00 +H104 H 0.85264 0.46562 -0.00331 0.01267 Uiso 1.00 +H105 H 0.90433 0.56575 0.91138 0.01267 Uiso 1.00 +H106 H 0.42832 0.33513 0.91094 0.01267 Uiso 1.00 +H107 H 0.66186 0.09497 0.91211 0.01267 Uiso 1.00 +H108 H 0.56575 0.90433 0.08862 0.01267 Uiso 1.00 +H109 H 0.33513 0.42832 0.08906 0.01267 Uiso 1.00 +H110 H 0.09497 0.66186 0.08789 0.01267 Uiso 1.00 +H111 H 0.96647 0.58994 0.79241 0.01267 Uiso 1.00 +H112 H 0.40509 0.37550 0.79231 0.01267 Uiso 1.00 +H113 H 0.62424 0.03324 0.79304 0.01267 Uiso 1.00 +H114 H 0.58994 0.96647 0.20759 0.01267 Uiso 1.00 +H115 H 0.37550 0.40509 0.20769 0.01267 Uiso 1.00 +H116 H 0.03324 0.62424 0.20696 0.01267 Uiso 1.00 +N117 N 0.25674 0.49225 0.64454 0.01267 Uiso 1.00 +N118 N 0.50751 0.76408 0.64475 0.01267 Uiso 1.00 +N119 N 0.23574 0.74326 0.64447 0.01267 Uiso 1.00 +N120 N 0.49225 0.25674 0.35546 0.01267 Uiso 1.00 +N121 N 0.76408 0.50751 0.35525 0.01267 Uiso 1.00 +N122 N 0.74326 0.23574 0.35553 0.01267 Uiso 1.00 +N123 N 0.24275 0.55512 0.66652 0.01267 Uiso 1.00 +N124 N 0.44483 0.68730 0.66694 0.01267 Uiso 1.00 +N125 N 0.31262 0.75734 0.66644 0.01267 Uiso 1.00 +N126 N 0.55512 0.24275 0.33348 0.01267 Uiso 1.00 +N127 N 0.68730 0.44483 0.33306 0.01267 Uiso 1.00 +N128 N 0.75734 0.31262 0.33356 0.01267 Uiso 1.00 +N129 N 0.16861 0.54513 0.64175 0.01267 Uiso 1.00 +N130 N 0.45493 0.62308 0.64236 0.01267 Uiso 1.00 +N131 N 0.37683 0.83158 0.64181 0.01267 Uiso 1.00 +N132 N 0.54513 0.16861 0.35825 0.01267 Uiso 1.00 +N133 N 0.62308 0.45493 0.35764 0.01267 Uiso 1.00 +N134 N 0.83158 0.37683 0.35819 0.01267 Uiso 1.00 +N135 N 0.14403 0.62971 0.77592 0.01267 Uiso 1.00 +N136 N 0.36824 0.51498 0.77747 0.01267 Uiso 1.00 +N137 N 0.48603 0.85580 0.77619 0.01267 Uiso 1.00 +N138 N 0.62971 0.14403 0.22408 0.01267 Uiso 1.00 +N139 N 0.51498 0.36825 0.22253 0.01267 Uiso 1.00 +N140 N 0.85580 0.48603 0.22381 0.01267 Uiso 1.00 +N141 N 0.22093 0.64541 0.79950 0.01267 Uiso 1.00 +N142 N 0.35368 0.57666 0.80145 0.01267 Uiso 1.00 +N143 N 0.42437 0.77904 0.79964 0.01267 Uiso 1.00 +N144 N 0.64541 0.22093 0.20050 0.01267 Uiso 1.00 +N145 N 0.57666 0.35368 0.19855 0.01267 Uiso 1.00 +N146 N 0.77904 0.42437 0.20036 0.01267 Uiso 1.00 +N147 N 0.22162 0.64202 0.86845 0.01267 Uiso 1.00 +N148 N 0.35736 0.58043 0.87053 0.01267 Uiso 1.00 +N149 N 0.41996 0.77840 0.86857 0.01267 Uiso 1.00 +N150 N 0.64202 0.22162 0.13155 0.01267 Uiso 1.00 +N151 N 0.58043 0.35736 0.12947 0.01267 Uiso 1.00 +N152 N 0.77840 0.41996 0.13143 0.01267 Uiso 1.00 +O153 O 0.68765 0.33426 0.98063 0.01267 Uiso 1.00 +O154 O 0.33426 0.68765 0.01937 0.01267 Uiso 1.00 +O155 O 0.60710 0.01200 0.35502 0.01267 Uiso 1.00 +O156 O 0.98814 0.59581 0.35401 0.01267 Uiso 1.00 +O157 O 0.40473 0.39279 0.35148 0.01267 Uiso 1.00 +O158 O 0.01200 0.60710 0.64498 0.01267 Uiso 1.00 +O159 O 0.59581 0.98814 0.64599 0.01267 Uiso 1.00 +O160 O 0.39279 0.40473 0.64852 0.01267 Uiso 1.00 +Zn161 Zn 0.33310 0.66750 0.73393 0.01267 Uiso 1.00 +Zn162 Zn 0.66750 0.33310 0.26607 0.01267 Uiso 1.00 +Zn163 Zn 0.33330 0.66822 0.92337 0.01267 Uiso 1.00 +Zn164 Zn 0.66822 0.33330 0.07663 0.01267 Uiso 1.00 +Zn165 Zn 0.12297 0.62905 0.67054 0.01267 Uiso 1.00 +Zn166 Zn 0.37052 0.49432 0.67149 0.01267 Uiso 1.00 +Zn167 Zn 0.50635 0.87704 0.67074 0.01267 Uiso 1.00 +Zn168 Zn 0.62905 0.12297 0.32946 0.01267 Uiso 1.00 +Zn169 Zn 0.49432 0.37052 0.32851 0.01267 Uiso 1.00 +Zn170 Zn 0.87704 0.50635 0.32926 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/dac/NbOFFIVE-1-Ni.cif b/benchmarks/mof/structures/dac/NbOFFIVE-1-Ni.cif new file mode 100644 index 0000000000000000000000000000000000000000..785ba17d0ab68c7cfdeceacc15b93774c0832d42 --- /dev/null +++ b/benchmarks/mof/structures/dac/NbOFFIVE-1-Ni.cif @@ -0,0 +1,136 @@ +data_image0 +_cell_length_a 9.8884 +_cell_length_b 9.8884 +_cell_length_c 15.7829 +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 90 + +_symmetry_space_group_name_H-M "P 1" +_symmetry_int_tables_number 1 + +loop_ + _symmetry_equiv_pos_as_xyz + 'x, y, z' + +loop_ + _atom_site_label + _atom_site_occupancy + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_thermal_displace_type + _atom_site_B_iso_or_equiv + _atom_site_type_symbol + C1 1.0000 0.24340 0.15710 0.18870 Biso 1.000 C + H1 1.0000 0.24100 0.09370 0.14520 Biso 1.000 H + C2 1.0000 0.74340 0.65710 0.68870 Biso 1.000 C + H2 1.0000 0.74100 0.59370 0.64520 Biso 1.000 H + C3 1.0000 0.75660 0.84290 0.18870 Biso 1.000 C + H3 1.0000 0.75900 0.90630 0.14520 Biso 1.000 H + C4 1.0000 0.25660 0.34290 0.68870 Biso 1.000 C + H4 1.0000 0.25900 0.40630 0.64520 Biso 1.000 H + C5 1.0000 0.84290 0.24340 0.18870 Biso 1.000 C + H5 1.0000 0.90630 0.24100 0.14520 Biso 1.000 H + C6 1.0000 0.34290 0.74340 0.68870 Biso 1.000 C + H6 1.0000 0.40630 0.74100 0.64520 Biso 1.000 H + C7 1.0000 0.15710 0.75660 0.18870 Biso 1.000 C + H7 1.0000 0.09370 0.75900 0.14520 Biso 1.000 H + C8 1.0000 0.65710 0.25660 0.68870 Biso 1.000 C + H8 1.0000 0.59370 0.25900 0.64520 Biso 1.000 H + C9 1.0000 0.75660 0.15710 0.31130 Biso 1.000 C + H9 1.0000 0.75900 0.09370 0.35480 Biso 1.000 H + C10 1.0000 0.25660 0.65710 0.81130 Biso 1.000 C + H10 1.0000 0.25900 0.59370 0.85480 Biso 1.000 H + C11 1.0000 0.24340 0.84290 0.31130 Biso 1.000 C + H11 1.0000 0.24100 0.90630 0.35480 Biso 1.000 H + C12 1.0000 0.74340 0.34290 0.81130 Biso 1.000 C + H12 1.0000 0.74100 0.40630 0.85480 Biso 1.000 H + C13 1.0000 0.15710 0.24340 0.31130 Biso 1.000 C + H13 1.0000 0.09370 0.24100 0.35480 Biso 1.000 H + C14 1.0000 0.65710 0.74340 0.81130 Biso 1.000 C + H14 1.0000 0.59370 0.74100 0.85480 Biso 1.000 H + C15 1.0000 0.84290 0.75660 0.31130 Biso 1.000 C + H15 1.0000 0.90630 0.75900 0.35480 Biso 1.000 H + C16 1.0000 0.34290 0.25660 0.81130 Biso 1.000 C + H16 1.0000 0.40630 0.25900 0.85480 Biso 1.000 H + C17 1.0000 0.75660 0.84290 0.81130 Biso 1.000 C + H17 1.0000 0.75900 0.90630 0.85480 Biso 1.000 H + C18 1.0000 0.25660 0.34290 0.31130 Biso 1.000 C + H18 1.0000 0.25900 0.40630 0.35480 Biso 1.000 H + C19 1.0000 0.24340 0.15710 0.81130 Biso 1.000 C + H19 1.0000 0.24100 0.09370 0.85480 Biso 1.000 H + C20 1.0000 0.74340 0.65710 0.31130 Biso 1.000 C + H20 1.0000 0.74100 0.59370 0.35480 Biso 1.000 H + C21 1.0000 0.15710 0.75660 0.81130 Biso 1.000 C + H21 1.0000 0.09370 0.75900 0.85480 Biso 1.000 H + C22 1.0000 0.65710 0.25660 0.31130 Biso 1.000 C + H22 1.0000 0.59370 0.25900 0.35480 Biso 1.000 H + C23 1.0000 0.84290 0.24340 0.81130 Biso 1.000 C + H23 1.0000 0.90630 0.24100 0.85480 Biso 1.000 H + C24 1.0000 0.34290 0.74340 0.31130 Biso 1.000 C + H24 1.0000 0.40630 0.74100 0.35480 Biso 1.000 H + C25 1.0000 0.24340 0.84290 0.68870 Biso 1.000 C + H25 1.0000 0.24100 0.90630 0.64520 Biso 1.000 H + C26 1.0000 0.74340 0.34290 0.18870 Biso 1.000 C + H26 1.0000 0.74100 0.40630 0.14520 Biso 1.000 H + C27 1.0000 0.75660 0.15710 0.68870 Biso 1.000 C + H27 1.0000 0.75900 0.09370 0.64520 Biso 1.000 H + C28 1.0000 0.25660 0.65710 0.18870 Biso 1.000 C + H28 1.0000 0.25900 0.59370 0.14520 Biso 1.000 H + C29 1.0000 0.84290 0.75660 0.68870 Biso 1.000 C + H29 1.0000 0.90630 0.75900 0.64520 Biso 1.000 H + C30 1.0000 0.34290 0.25660 0.18870 Biso 1.000 C + H30 1.0000 0.40630 0.25900 0.14520 Biso 1.000 H + C31 1.0000 0.15710 0.24340 0.68870 Biso 1.000 C + H31 1.0000 0.09370 0.24100 0.64520 Biso 1.000 H + C32 1.0000 0.65710 0.74340 0.18870 Biso 1.000 C + H32 1.0000 0.59370 0.74100 0.14520 Biso 1.000 H + Nb1 1.0000 0.00000 0.00000 0.00000 Biso 1.000 Nb + Nb2 1.0000 0.50000 0.50000 0.50000 Biso 1.000 Nb + Nb3 1.0000 0.00000 0.00000 0.50000 Biso 1.000 Nb + Nb4 1.0000 0.50000 0.50000 0.00000 Biso 1.000 Nb + Ni1 1.0000 0.00000 0.00000 0.25000 Biso 1.000 Ni + Ni2 1.0000 0.50000 0.50000 0.75000 Biso 1.000 Ni + Ni3 1.0000 0.00000 0.00000 0.75000 Biso 1.000 Ni + Ni4 1.0000 0.50000 0.50000 0.25000 Biso 1.000 Ni + O1 1.0000 0.00000 0.00000 0.12230 Biso 1.000 O + F1 1.0000 0.00000 0.00000 0.37770 Biso 1.000 F + O2 1.0000 0.50000 0.50000 0.62230 Biso 1.000 O + F2 1.0000 0.50000 0.50000 0.87770 Biso 1.000 F + O3 1.0000 0.00000 0.00000 0.87770 Biso 1.000 O + F3 1.0000 0.00000 0.00000 0.62230 Biso 1.000 F + O4 1.0000 0.50000 0.50000 0.37770 Biso 1.000 O + F4 1.0000 0.50000 0.50000 0.12230 Biso 1.000 F + F5 1.0000 0.19200 0.01930 0.00000 Biso 1.000 F + F6 1.0000 0.69200 0.51930 0.50000 Biso 1.000 F + F7 1.0000 0.80800 0.98070 0.00000 Biso 1.000 F + F8 1.0000 0.30800 0.48070 0.50000 Biso 1.000 F + F9 1.0000 0.98070 0.19200 0.00000 Biso 1.000 F + F10 1.0000 0.48070 0.69200 0.50000 Biso 1.000 F + F11 1.0000 0.01930 0.80800 0.00000 Biso 1.000 F + F12 1.0000 0.51930 0.30800 0.50000 Biso 1.000 F + F13 1.0000 0.80800 0.01930 0.50000 Biso 1.000 F + F14 1.0000 0.30800 0.51930 0.00000 Biso 1.000 F + F15 1.0000 0.19200 0.98070 0.50000 Biso 1.000 F + F16 1.0000 0.69200 0.48070 0.00000 Biso 1.000 F + F17 1.0000 0.01930 0.19200 0.50000 Biso 1.000 F + F18 1.0000 0.51930 0.69200 0.00000 Biso 1.000 F + F19 1.0000 0.98070 0.80800 0.50000 Biso 1.000 F + F20 1.0000 0.48070 0.30800 0.00000 Biso 1.000 F + N1 1.0000 0.15180 0.15180 0.25000 Biso 1.000 N + N2 1.0000 0.65180 0.65180 0.75000 Biso 1.000 N + N3 1.0000 0.84820 0.84820 0.25000 Biso 1.000 N + N4 1.0000 0.34820 0.34820 0.75000 Biso 1.000 N + N5 1.0000 0.84820 0.15180 0.25000 Biso 1.000 N + N6 1.0000 0.34820 0.65180 0.75000 Biso 1.000 N + N7 1.0000 0.15180 0.84820 0.25000 Biso 1.000 N + N8 1.0000 0.65180 0.34820 0.75000 Biso 1.000 N + N9 1.0000 0.84820 0.84820 0.75000 Biso 1.000 N + N10 1.0000 0.34820 0.34820 0.25000 Biso 1.000 N + N11 1.0000 0.15180 0.15180 0.75000 Biso 1.000 N + N12 1.0000 0.65180 0.65180 0.25000 Biso 1.000 N + N13 1.0000 0.15180 0.84820 0.75000 Biso 1.000 N + N14 1.0000 0.65180 0.34820 0.25000 Biso 1.000 N + N15 1.0000 0.84820 0.15180 0.75000 Biso 1.000 N + N16 1.0000 0.34820 0.65180 0.25000 Biso 1.000 N diff --git a/benchmarks/mof/structures/dac/SGU-29.cif b/benchmarks/mof/structures/dac/SGU-29.cif new file mode 100644 index 0000000000000000000000000000000000000000..fb15f604b05ccdc345c547ca5cc415b848701fef --- /dev/null +++ b/benchmarks/mof/structures/dac/SGU-29.cif @@ -0,0 +1,995 @@ +data_sgu-29b_1\(2) +_audit_creation_date 2025-02-06 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 20.8200 +_cell_length_b 20.8190 +_cell_length_c 14.6970 +_cell_angle_alpha 90.0000 +_cell_angle_beta 110.7300 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Si1 Si 0.24909 0.06259 0.24949 0.00000 Uiso 1.00 +O2 O 0.37297 0.87246 0.00024 0.00000 Uiso 1.00 +O3 O 0.31082 0.10699 0.31523 0.00000 Uiso 1.00 +O4 O 0.43778 0.35840 0.18606 0.00000 Uiso 1.00 +O5 O 0.53049 0.76657 0.18649 0.00000 Uiso 1.00 +O6 O 0.43915 0.85680 0.18418 0.00000 Uiso 1.00 +O7 O 0.18809 0.10887 0.18562 0.00000 Uiso 1.00 +O8 O 0.21990 0.01612 0.31305 0.00000 Uiso 1.00 +O9 O 0.27771 0.01820 0.18331 0.00000 Uiso 1.00 +O10 O 0.47221 0.26806 0.31627 0.00000 Uiso 1.00 +O11 O 0.24662 0.99791 0.99886 0.00000 Uiso 1.00 +O12 O 0.49794 0.25289 0.50055 0.00000 Uiso 1.00 +O13 O 0.12201 0.12220 0.99919 0.00000 Uiso 1.00 +Cu14 Cu 0.37361 0.37328 0.50133 0.00000 Uiso 1.00 +Si15 Si 0.25762 0.96125 0.10339 0.00000 Uiso 1.00 +Si16 Si 0.36206 0.85698 0.10386 0.00000 Uiso 1.00 +Si17 Si 0.18420 0.01989 0.39513 0.00000 Uiso 1.00 +Si18 Si 0.43514 0.26839 0.39631 0.00000 Uiso 1.00 +Si19 Si 0.50622 0.71051 0.10427 0.00000 Uiso 1.00 +Si20 Si 0.42111 0.41440 0.10420 0.00000 Uiso 1.00 +Si21 Si 0.11160 0.10500 0.10374 0.00000 Uiso 1.00 +Si22 Si 0.33078 0.16403 0.39571 0.00000 Uiso 1.00 +O23 O 0.39390 0.33193 0.39620 0.00000 Uiso 1.00 +O24 O 0.32810 0.92030 0.13270 0.00000 Uiso 1.00 +O25 O 0.48780 0.45070 0.10450 0.00000 Uiso 1.00 +O26 O 0.38650 0.20540 0.36660 0.00000 Uiso 1.00 +O27 O 0.19360 0.92010 0.10310 0.00000 Uiso 1.00 +O28 O 0.07510 0.03850 0.10390 0.00000 Uiso 1.00 +O29 O 0.13050 0.96040 0.36510 0.00000 Uiso 1.00 +O30 O 0.32090 0.79310 0.10440 0.00000 Uiso 1.00 +O31 O 0.26670 0.20480 0.39540 0.00000 Uiso 1.00 +O32 O 0.14760 0.08654 0.39450 0.00000 Uiso 1.00 +O33 O 0.44000 0.67410 0.10510 0.00000 Uiso 1.00 +O34 O 0.57300 0.66390 0.13370 0.00000 Uiso 1.00 +Na35 Na 0.76421 0.81238 0.30670 0.00000 Uiso 1.00 +Na36 Na 0.61250 0.43394 0.18653 0.00000 Uiso 1.00 +Na37 Na 0.64365 0.69124 0.31112 0.00000 Uiso 1.00 +Si38 Si 0.74909 0.56259 0.24949 0.00000 Uiso 1.00 +O39 O 0.87297 0.37246 0.00024 0.00000 Uiso 1.00 +O40 O 0.81082 0.60699 0.31523 0.00000 Uiso 1.00 +O41 O 0.93778 0.85840 0.18606 0.00000 Uiso 1.00 +O42 O 0.03049 0.26657 0.18649 0.00000 Uiso 1.00 +O43 O 0.93915 0.35680 0.18418 0.00000 Uiso 1.00 +O44 O 0.68809 0.60887 0.18562 0.00000 Uiso 1.00 +O45 O 0.71990 0.51612 0.31305 0.00000 Uiso 1.00 +O46 O 0.77771 0.51820 0.18331 0.00000 Uiso 1.00 +O47 O 0.97221 0.76806 0.31627 0.00000 Uiso 1.00 +O48 O 0.74662 0.49791 0.99886 0.00000 Uiso 1.00 +O49 O 0.99794 0.75289 0.50055 0.00000 Uiso 1.00 +O50 O 0.62201 0.62220 0.99919 0.00000 Uiso 1.00 +Cu51 Cu 0.87361 0.87328 0.50133 0.00000 Uiso 1.00 +Si52 Si 0.75762 0.46125 0.10339 0.00000 Uiso 1.00 +Si53 Si 0.86206 0.35698 0.10386 0.00000 Uiso 1.00 +Si54 Si 0.68420 0.51989 0.39513 0.00000 Uiso 1.00 +Si55 Si 0.93514 0.76839 0.39631 0.00000 Uiso 1.00 +Si56 Si 0.00622 0.21051 0.10427 0.00000 Uiso 1.00 +Si57 Si 0.92111 0.91440 0.10420 0.00000 Uiso 1.00 +Si58 Si 0.61160 0.60500 0.10374 0.00000 Uiso 1.00 +Si59 Si 0.83078 0.66403 0.39571 0.00000 Uiso 1.00 +O60 O 0.89390 0.83193 0.39620 0.00000 Uiso 1.00 +O61 O 0.82810 0.42030 0.13270 0.00000 Uiso 1.00 +O62 O 0.98780 0.95070 0.10450 0.00000 Uiso 1.00 +O63 O 0.88650 0.70540 0.36660 0.00000 Uiso 1.00 +O64 O 0.69360 0.42010 0.10310 0.00000 Uiso 1.00 +O65 O 0.57510 0.53850 0.10390 0.00000 Uiso 1.00 +O66 O 0.63050 0.46040 0.36510 0.00000 Uiso 1.00 +O67 O 0.82090 0.29310 0.10440 0.00000 Uiso 1.00 +O68 O 0.76670 0.70480 0.39540 0.00000 Uiso 1.00 +O69 O 0.64760 0.58654 0.39450 0.00000 Uiso 1.00 +O70 O 0.94000 0.17410 0.10510 0.00000 Uiso 1.00 +O71 O 0.07300 0.16390 0.13370 0.00000 Uiso 1.00 +Na72 Na 0.26421 0.31238 0.30670 0.00000 Uiso 1.00 +Na73 Na 0.11250 0.93394 0.18653 0.00000 Uiso 1.00 +Na74 Na 0.14365 0.19124 0.31112 0.00000 Uiso 1.00 +Na75 Na 0.98990 0.56290 0.20950 0.00000 Uiso 1.00 +Si76 Si 0.75091 0.06259 0.25051 0.00000 Uiso 1.00 +O77 O 0.62703 0.87246 0.49976 0.00000 Uiso 1.00 +O78 O 0.68918 0.10699 0.18477 0.00000 Uiso 1.00 +O79 O 0.56222 0.35840 0.31394 0.00000 Uiso 1.00 +O80 O 0.46951 0.76657 0.31351 0.00000 Uiso 1.00 +O81 O 0.56085 0.85680 0.31582 0.00000 Uiso 1.00 +O82 O 0.81191 0.10887 0.31438 0.00000 Uiso 1.00 +O83 O 0.78010 0.01612 0.18695 0.00000 Uiso 1.00 +O84 O 0.72229 0.01820 0.31669 0.00000 Uiso 1.00 +O85 O 0.52779 0.26806 0.18373 0.00000 Uiso 1.00 +O86 O 0.75338 0.99791 0.50114 0.00000 Uiso 1.00 +O87 O 0.50206 0.25289 0.99945 0.00000 Uiso 1.00 +O88 O 0.87799 0.12220 0.50081 0.00000 Uiso 1.00 +Cu89 Cu 0.62639 0.37328 0.99867 0.00000 Uiso 1.00 +Si90 Si 0.74238 0.96125 0.39661 0.00000 Uiso 1.00 +Si91 Si 0.63794 0.85698 0.39614 0.00000 Uiso 1.00 +Si92 Si 0.81580 0.01989 0.10487 0.00000 Uiso 1.00 +Si93 Si 0.56486 0.26839 0.10369 0.00000 Uiso 1.00 +Si94 Si 0.49378 0.71051 0.39573 0.00000 Uiso 1.00 +Si95 Si 0.57889 0.41440 0.39580 0.00000 Uiso 1.00 +Si96 Si 0.88840 0.10500 0.39626 0.00000 Uiso 1.00 +Si97 Si 0.66922 0.16403 0.10429 0.00000 Uiso 1.00 +O98 O 0.60610 0.33193 0.10380 0.00000 Uiso 1.00 +O99 O 0.67190 0.92030 0.36730 0.00000 Uiso 1.00 +O100 O 0.51220 0.45070 0.39550 0.00000 Uiso 1.00 +O101 O 0.61350 0.20540 0.13340 0.00000 Uiso 1.00 +O102 O 0.80640 0.92010 0.39690 0.00000 Uiso 1.00 +O103 O 0.92490 0.03850 0.39610 0.00000 Uiso 1.00 +O104 O 0.86950 0.96040 0.13490 0.00000 Uiso 1.00 +O105 O 0.67910 0.79310 0.39560 0.00000 Uiso 1.00 +O106 O 0.73330 0.20480 0.10460 0.00000 Uiso 1.00 +O107 O 0.85240 0.08654 0.10550 0.00000 Uiso 1.00 +O108 O 0.56000 0.67410 0.39490 0.00000 Uiso 1.00 +O109 O 0.42700 0.66390 0.36630 0.00000 Uiso 1.00 +Na110 Na 0.23579 0.81238 0.19330 0.00000 Uiso 1.00 +Na111 Na 0.38750 0.43394 0.31347 0.00000 Uiso 1.00 +Na112 Na 0.35635 0.69124 0.18888 0.00000 Uiso 1.00 +Na113 Na 0.51010 0.06290 0.29050 0.00000 Uiso 1.00 +Si114 Si 0.25091 0.56259 0.25051 0.00000 Uiso 1.00 +O115 O 0.12703 0.37246 0.49976 0.00000 Uiso 1.00 +O116 O 0.18918 0.60699 0.18477 0.00000 Uiso 1.00 +O117 O 0.06222 0.85840 0.31394 0.00000 Uiso 1.00 +O118 O 0.96951 0.26657 0.31351 0.00000 Uiso 1.00 +O119 O 0.06085 0.35680 0.31582 0.00000 Uiso 1.00 +O120 O 0.31191 0.60887 0.31438 0.00000 Uiso 1.00 +O121 O 0.28010 0.51612 0.18695 0.00000 Uiso 1.00 +O122 O 0.22229 0.51820 0.31669 0.00000 Uiso 1.00 +O123 O 0.02779 0.76806 0.18373 0.00000 Uiso 1.00 +O124 O 0.25338 0.49791 0.50114 0.00000 Uiso 1.00 +O125 O 0.00206 0.75289 0.99945 0.00000 Uiso 1.00 +O126 O 0.37799 0.62220 0.50081 0.00000 Uiso 1.00 +Cu127 Cu 0.12639 0.87328 0.99867 0.00000 Uiso 1.00 +Si128 Si 0.24238 0.46125 0.39661 0.00000 Uiso 1.00 +Si129 Si 0.13794 0.35698 0.39614 0.00000 Uiso 1.00 +Si130 Si 0.31580 0.51989 0.10487 0.00000 Uiso 1.00 +Si131 Si 0.06486 0.76839 0.10369 0.00000 Uiso 1.00 +Si132 Si 0.99378 0.21051 0.39573 0.00000 Uiso 1.00 +Si133 Si 0.07889 0.91440 0.39580 0.00000 Uiso 1.00 +Si134 Si 0.38840 0.60500 0.39626 0.00000 Uiso 1.00 +Si135 Si 0.16922 0.66403 0.10429 0.00000 Uiso 1.00 +O136 O 0.10610 0.83193 0.10380 0.00000 Uiso 1.00 +O137 O 0.17190 0.42030 0.36730 0.00000 Uiso 1.00 +O138 O 0.01220 0.95070 0.39550 0.00000 Uiso 1.00 +O139 O 0.11350 0.70540 0.13340 0.00000 Uiso 1.00 +O140 O 0.30640 0.42010 0.39690 0.00000 Uiso 1.00 +O141 O 0.42490 0.53850 0.39610 0.00000 Uiso 1.00 +O142 O 0.36950 0.46040 0.13490 0.00000 Uiso 1.00 +O143 O 0.17910 0.29310 0.39560 0.00000 Uiso 1.00 +O144 O 0.23330 0.70480 0.10460 0.00000 Uiso 1.00 +O145 O 0.35240 0.58654 0.10550 0.00000 Uiso 1.00 +O146 O 0.06000 0.17410 0.39490 0.00000 Uiso 1.00 +O147 O 0.92700 0.16390 0.36630 0.00000 Uiso 1.00 +Na148 Na 0.73579 0.31238 0.19330 0.00000 Uiso 1.00 +Na149 Na 0.88750 0.93394 0.31347 0.00000 Uiso 1.00 +Na150 Na 0.85635 0.19124 0.18888 0.00000 Uiso 1.00 +Si151 Si 0.75091 0.93741 0.75051 0.00000 Uiso 1.00 +O152 O 0.62703 0.12754 0.99976 0.00000 Uiso 1.00 +O153 O 0.68918 0.89301 0.68477 0.00000 Uiso 1.00 +O154 O 0.56222 0.64160 0.81394 0.00000 Uiso 1.00 +O155 O 0.46951 0.23343 0.81351 0.00000 Uiso 1.00 +O156 O 0.56085 0.14320 0.81582 0.00000 Uiso 1.00 +O157 O 0.81191 0.89113 0.81438 0.00000 Uiso 1.00 +O158 O 0.78010 0.98388 0.68695 0.00000 Uiso 1.00 +O159 O 0.72229 0.98180 0.81669 0.00000 Uiso 1.00 +O160 O 0.52779 0.73194 0.68373 0.00000 Uiso 1.00 +O161 O 0.75338 0.00209 0.00114 0.00000 Uiso 1.00 +O162 O 0.50206 0.74711 0.49945 0.00000 Uiso 1.00 +O163 O 0.87799 0.87780 0.00081 0.00000 Uiso 1.00 +Cu164 Cu 0.62639 0.62672 0.49867 0.00000 Uiso 1.00 +Si165 Si 0.74238 0.03875 0.89661 0.00000 Uiso 1.00 +Si166 Si 0.63794 0.14302 0.89614 0.00000 Uiso 1.00 +Si167 Si 0.81580 0.98011 0.60487 0.00000 Uiso 1.00 +Si168 Si 0.56486 0.73161 0.60369 0.00000 Uiso 1.00 +Si169 Si 0.49378 0.28949 0.89573 0.00000 Uiso 1.00 +Si170 Si 0.57889 0.58560 0.89580 0.00000 Uiso 1.00 +Si171 Si 0.88840 0.89500 0.89626 0.00000 Uiso 1.00 +Si172 Si 0.66922 0.83597 0.60429 0.00000 Uiso 1.00 +O173 O 0.60610 0.66807 0.60380 0.00000 Uiso 1.00 +O174 O 0.67190 0.07970 0.86730 0.00000 Uiso 1.00 +O175 O 0.51220 0.54930 0.89550 0.00000 Uiso 1.00 +O176 O 0.61350 0.79460 0.63340 0.00000 Uiso 1.00 +O177 O 0.80640 0.07990 0.89690 0.00000 Uiso 1.00 +O178 O 0.92490 0.96150 0.89610 0.00000 Uiso 1.00 +O179 O 0.86950 0.03960 0.63490 0.00000 Uiso 1.00 +O180 O 0.67910 0.20690 0.89560 0.00000 Uiso 1.00 +O181 O 0.73330 0.79520 0.60460 0.00000 Uiso 1.00 +O182 O 0.85240 0.91346 0.60550 0.00000 Uiso 1.00 +O183 O 0.56000 0.32590 0.89490 0.00000 Uiso 1.00 +O184 O 0.42700 0.33610 0.86630 0.00000 Uiso 1.00 +Na185 Na 0.23579 0.18762 0.69330 0.00000 Uiso 1.00 +Na186 Na 0.38750 0.56606 0.81347 0.00000 Uiso 1.00 +Na187 Na 0.35635 0.30876 0.68888 0.00000 Uiso 1.00 +Si188 Si 0.25091 0.43741 0.75051 0.00000 Uiso 1.00 +O189 O 0.12703 0.62754 0.99976 0.00000 Uiso 1.00 +O190 O 0.18918 0.39301 0.68477 0.00000 Uiso 1.00 +O191 O 0.06222 0.14160 0.81394 0.00000 Uiso 1.00 +O192 O 0.96951 0.73343 0.81351 0.00000 Uiso 1.00 +O193 O 0.06085 0.64320 0.81582 0.00000 Uiso 1.00 +O194 O 0.31191 0.39113 0.81438 0.00000 Uiso 1.00 +O195 O 0.28010 0.48388 0.68695 0.00000 Uiso 1.00 +O196 O 0.22229 0.48180 0.81669 0.00000 Uiso 1.00 +O197 O 0.02779 0.23194 0.68373 0.00000 Uiso 1.00 +O198 O 0.25338 0.50209 0.00114 0.00000 Uiso 1.00 +O199 O 0.00206 0.24711 0.49945 0.00000 Uiso 1.00 +O200 O 0.37799 0.37780 0.00081 0.00000 Uiso 1.00 +Cu201 Cu 0.12639 0.12672 0.49867 0.00000 Uiso 1.00 +Si202 Si 0.24238 0.53875 0.89661 0.00000 Uiso 1.00 +Si203 Si 0.13794 0.64302 0.89614 0.00000 Uiso 1.00 +Si204 Si 0.31580 0.48011 0.60487 0.00000 Uiso 1.00 +Si205 Si 0.06486 0.23161 0.60369 0.00000 Uiso 1.00 +Si206 Si 0.99378 0.78949 0.89573 0.00000 Uiso 1.00 +Si207 Si 0.07889 0.08560 0.89580 0.00000 Uiso 1.00 +Si208 Si 0.38840 0.39500 0.89626 0.00000 Uiso 1.00 +Si209 Si 0.16922 0.33597 0.60429 0.00000 Uiso 1.00 +O210 O 0.10610 0.16807 0.60380 0.00000 Uiso 1.00 +O211 O 0.17190 0.57970 0.86730 0.00000 Uiso 1.00 +O212 O 0.01220 0.04930 0.89550 0.00000 Uiso 1.00 +O213 O 0.11350 0.29460 0.63340 0.00000 Uiso 1.00 +O214 O 0.30640 0.57990 0.89690 0.00000 Uiso 1.00 +O215 O 0.42490 0.46150 0.89610 0.00000 Uiso 1.00 +O216 O 0.36950 0.53960 0.63490 0.00000 Uiso 1.00 +O217 O 0.17910 0.70690 0.89560 0.00000 Uiso 1.00 +O218 O 0.23330 0.29520 0.60460 0.00000 Uiso 1.00 +O219 O 0.35240 0.41346 0.60550 0.00000 Uiso 1.00 +O220 O 0.06000 0.82590 0.89490 0.00000 Uiso 1.00 +O221 O 0.92700 0.83610 0.86630 0.00000 Uiso 1.00 +Na222 Na 0.73579 0.68762 0.69330 0.00000 Uiso 1.00 +Na223 Na 0.88750 0.06606 0.81347 0.00000 Uiso 1.00 +Na224 Na 0.85635 0.80876 0.68888 0.00000 Uiso 1.00 +Na225 Na 0.01010 0.43710 0.79050 0.00000 Uiso 1.00 +Si226 Si 0.24909 0.93741 0.74949 0.00000 Uiso 1.00 +O227 O 0.37297 0.12754 0.50024 0.00000 Uiso 1.00 +O228 O 0.31082 0.89301 0.81523 0.00000 Uiso 1.00 +O229 O 0.43778 0.64160 0.68606 0.00000 Uiso 1.00 +O230 O 0.53049 0.23343 0.68649 0.00000 Uiso 1.00 +O231 O 0.43915 0.14320 0.68418 0.00000 Uiso 1.00 +O232 O 0.18809 0.89113 0.68562 0.00000 Uiso 1.00 +O233 O 0.21990 0.98388 0.81305 0.00000 Uiso 1.00 +O234 O 0.27771 0.98180 0.68331 0.00000 Uiso 1.00 +O235 O 0.47221 0.73194 0.81627 0.00000 Uiso 1.00 +O236 O 0.24662 0.00209 0.49886 0.00000 Uiso 1.00 +O237 O 0.49794 0.74711 0.00055 0.00000 Uiso 1.00 +O238 O 0.12201 0.87780 0.49919 0.00000 Uiso 1.00 +Cu239 Cu 0.37361 0.62672 0.00133 0.00000 Uiso 1.00 +Si240 Si 0.25762 0.03875 0.60339 0.00000 Uiso 1.00 +Si241 Si 0.36206 0.14302 0.60386 0.00000 Uiso 1.00 +Si242 Si 0.18420 0.98011 0.89513 0.00000 Uiso 1.00 +Si243 Si 0.43514 0.73161 0.89631 0.00000 Uiso 1.00 +Si244 Si 0.50622 0.28949 0.60427 0.00000 Uiso 1.00 +Si245 Si 0.42111 0.58560 0.60420 0.00000 Uiso 1.00 +Si246 Si 0.11160 0.89500 0.60374 0.00000 Uiso 1.00 +Si247 Si 0.33078 0.83597 0.89571 0.00000 Uiso 1.00 +O248 O 0.39390 0.66807 0.89620 0.00000 Uiso 1.00 +O249 O 0.32810 0.07970 0.63270 0.00000 Uiso 1.00 +O250 O 0.48780 0.54930 0.60450 0.00000 Uiso 1.00 +O251 O 0.38650 0.79460 0.86660 0.00000 Uiso 1.00 +O252 O 0.19360 0.07990 0.60310 0.00000 Uiso 1.00 +O253 O 0.07510 0.96150 0.60390 0.00000 Uiso 1.00 +O254 O 0.13050 0.03960 0.86510 0.00000 Uiso 1.00 +O255 O 0.32090 0.20690 0.60440 0.00000 Uiso 1.00 +O256 O 0.26670 0.79520 0.89540 0.00000 Uiso 1.00 +O257 O 0.14760 0.91346 0.89450 0.00000 Uiso 1.00 +O258 O 0.44000 0.32590 0.60510 0.00000 Uiso 1.00 +O259 O 0.57300 0.33610 0.63370 0.00000 Uiso 1.00 +Na260 Na 0.76421 0.18762 0.80670 0.00000 Uiso 1.00 +Na261 Na 0.61250 0.56606 0.68653 0.00000 Uiso 1.00 +Na262 Na 0.64365 0.30876 0.81112 0.00000 Uiso 1.00 +Na263 Na 0.48990 0.93710 0.70950 0.00000 Uiso 1.00 +Si264 Si 0.74909 0.43741 0.74949 0.00000 Uiso 1.00 +O265 O 0.87297 0.62754 0.50024 0.00000 Uiso 1.00 +O266 O 0.81082 0.39301 0.81523 0.00000 Uiso 1.00 +O267 O 0.93778 0.14160 0.68606 0.00000 Uiso 1.00 +O268 O 0.03049 0.73343 0.68649 0.00000 Uiso 1.00 +O269 O 0.93915 0.64320 0.68418 0.00000 Uiso 1.00 +O270 O 0.68809 0.39113 0.68562 0.00000 Uiso 1.00 +O271 O 0.71990 0.48388 0.81305 0.00000 Uiso 1.00 +O272 O 0.77771 0.48180 0.68331 0.00000 Uiso 1.00 +O273 O 0.97221 0.23194 0.81627 0.00000 Uiso 1.00 +O274 O 0.74662 0.50209 0.49886 0.00000 Uiso 1.00 +O275 O 0.99794 0.24711 0.00055 0.00000 Uiso 1.00 +O276 O 0.62201 0.37780 0.49919 0.00000 Uiso 1.00 +Cu277 Cu 0.87361 0.12672 0.00133 0.00000 Uiso 1.00 +Si278 Si 0.75762 0.53875 0.60339 0.00000 Uiso 1.00 +Si279 Si 0.86206 0.64302 0.60386 0.00000 Uiso 1.00 +Si280 Si 0.68420 0.48011 0.89513 0.00000 Uiso 1.00 +Si281 Si 0.93514 0.23161 0.89631 0.00000 Uiso 1.00 +Si282 Si 0.00622 0.78949 0.60427 0.00000 Uiso 1.00 +Si283 Si 0.92111 0.08560 0.60420 0.00000 Uiso 1.00 +Si284 Si 0.61160 0.39500 0.60374 0.00000 Uiso 1.00 +Si285 Si 0.83078 0.33597 0.89571 0.00000 Uiso 1.00 +O286 O 0.89390 0.16807 0.89620 0.00000 Uiso 1.00 +O287 O 0.82810 0.57970 0.63270 0.00000 Uiso 1.00 +O288 O 0.98780 0.04930 0.60450 0.00000 Uiso 1.00 +O289 O 0.88650 0.29460 0.86660 0.00000 Uiso 1.00 +O290 O 0.69360 0.57990 0.60310 0.00000 Uiso 1.00 +O291 O 0.57510 0.46150 0.60390 0.00000 Uiso 1.00 +O292 O 0.63050 0.53960 0.86510 0.00000 Uiso 1.00 +O293 O 0.82090 0.70690 0.60440 0.00000 Uiso 1.00 +O294 O 0.76670 0.29520 0.89540 0.00000 Uiso 1.00 +O295 O 0.64760 0.41346 0.89450 0.00000 Uiso 1.00 +O296 O 0.94000 0.82590 0.60510 0.00000 Uiso 1.00 +O297 O 0.07300 0.83610 0.63370 0.00000 Uiso 1.00 +Na298 Na 0.26421 0.68762 0.80670 0.00000 Uiso 1.00 +Na299 Na 0.11250 0.06606 0.68653 0.00000 Uiso 1.00 +Na300 Na 0.14365 0.80876 0.81112 0.00000 Uiso 1.00 +Si301 Si 0.50000 0.31328 0.25000 0.00000 Uiso 1.00 +Si302 Si 0.50000 0.81163 0.25000 0.00000 Uiso 1.00 +Na303 Na 0.50000 0.56280 0.25000 0.00000 Uiso 1.00 +Si304 Si 0.00000 0.81328 0.25000 0.00000 Uiso 1.00 +Si305 Si 0.00000 0.31163 0.25000 0.00000 Uiso 1.00 +Na306 Na 0.00000 0.06280 0.25000 0.00000 Uiso 1.00 +Si307 Si 0.50000 0.68672 0.75000 0.00000 Uiso 1.00 +Si308 Si 0.50000 0.18837 0.75000 0.00000 Uiso 1.00 +Na309 Na 0.50000 0.43720 0.75000 0.00000 Uiso 1.00 +Si310 Si -0.00000 0.18672 0.75000 0.00000 Uiso 1.00 +Si311 Si -0.00000 0.68837 0.75000 0.00000 Uiso 1.00 +Na312 Na -0.00000 0.93720 0.75000 0.00000 Uiso 1.00 +Cu313 Cu 0.25000 0.75000 -0.00000 0.00000 Uiso 1.00 +Cu314 Cu 0.75000 0.75000 0.50000 0.00000 Uiso 1.00 +Cu315 Cu 0.25000 0.25000 0.50000 0.00000 Uiso 1.00 +Cu316 Cu 0.75000 0.25000 0.00000 0.00000 Uiso 1.00 +Cu317 Cu 0.50000 0.50000 -0.00000 0.00000 Uiso 1.00 +Cu318 Cu 0.00000 0.00000 0.00000 0.00000 Uiso 1.00 +Cu319 Cu 0.50000 0.50000 0.50000 0.00000 Uiso 1.00 +Cu320 Cu 0.00000 0.00000 0.50000 0.00000 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +Si1 O3 1.600 . S +Si1 O7 1.606 . S +Si1 O8 1.606 . S +Si1 O9 1.602 . S +O2 Si16 1.649 . S +O2 Si247 1.659 1_554 S +O3 Si22 1.623 . S +O4 Si20 1.622 . S +O4 Si301 1.607 . S +O5 Si19 1.626 . S +O5 Si302 1.604 . S +O6 Si16 1.621 . S +O6 Si302 1.599 . S +O7 Si21 1.623 . S +O8 Si17 1.627 . S +O9 Si15 1.616 1_545 S +O10 Si18 1.619 . S +O10 Si301 1.603 . S +O11 Si15 1.657 1_556 S +O11 Si242 1.658 . S +O12 Si18 1.656 . S +O12 Si244 1.658 . S +O13 Si21 1.665 1_556 S +O13 Si207 1.652 . S +Cu14 O23 1.941 . S +Cu14 O219 1.928 . S +Cu14 Na187 3.199 . S +Cu14 O258 1.928 . S +Cu14 Na111 3.141 . S +Cu14 O140 1.935 . S +Cu14 Na72 3.220 . S +Si15 O11 1.657 1_554 S +Si15 O9 1.616 1_565 S +Si15 O24 1.618 . S +Si15 O27 1.583 . S +Si16 O24 1.622 . S +Si16 O30 1.584 . S +Si17 O29 1.622 1_545 S +Si17 O32 1.582 . S +Si17 O236 1.658 . S +Si18 O23 1.577 . S +Si18 O26 1.620 . S +Si19 O33 1.577 . S +Si19 O34 1.624 . S +Si19 O237 1.658 . S +Si20 O25 1.579 . S +Si20 O200 1.652 . S +Si20 O142 1.618 . S +Si21 O13 1.665 1_554 S +Si21 O28 1.580 . S +Si21 O71 1.611 . S +Si22 O26 1.619 . S +Si22 O31 1.580 . S +Si22 O227 1.659 . S +O23 Na72 2.583 . S +O23 Na111 2.427 . S +O25 Na36 2.470 . S +O25 Cu317 1.937 . S +O27 Cu127 1.935 1_554 S +O27 Na73 2.430 . S +O27 Na110 2.595 . S +O28 Cu318 1.931 . S +O28 Na73 2.480 1_545 S +O29 Si17 1.622 1_565 S +O29 Si133 1.618 . S +O29 Na73 2.576 . S +O30 Cu313 1.933 . S +O30 Na110 2.578 . S +O30 Na112 2.436 . S +O31 Cu315 1.936 . S +O31 Na72 2.583 . S +O31 Na74 2.435 . S +O32 Cu201 1.928 . S +O32 Na74 2.488 . S +O33 Cu239 1.928 . S +O33 Na112 2.489 . S +O34 Na37 2.564 . S +O34 Si58 1.611 . S +Na35 Na37 3.575 . S +Na35 Cu51 3.220 . S +Na35 O60 2.583 . S +Na35 O102 2.595 . S +Na35 O105 2.578 . S +Na35 O68 2.583 . S +Na35 Na149 3.581 . S +Na35 Cu314 3.231 . S +Na36 Cu317 3.217 . S +Na36 Cu89 3.141 1_554 S +Na36 O98 2.427 . S +Na36 O64 2.430 . S +Na36 O65 2.480 . S +Na36 O66 2.576 . S +Na36 Na148 3.581 . S +Na37 Cu164 3.199 . S +Na37 O105 2.436 . S +Na37 O68 2.435 . S +Na37 O69 2.488 . S +Na37 O108 2.489 . S +Na37 Cu314 3.123 . S +Si38 O40 1.600 . S +Si38 O44 1.606 . S +Si38 O45 1.606 . S +Si38 O46 1.602 . S +O39 Si53 1.649 . S +O39 Si285 1.659 1_554 S +O40 Si59 1.623 . S +O41 Si57 1.622 . S +O41 Si304 1.607 1_655 S +O42 Si56 1.626 . S +O42 Si305 1.604 . S +O43 Si53 1.621 . S +O43 Si305 1.599 1_655 S +O44 Si58 1.623 . S +O45 Si54 1.627 . S +O46 Si52 1.616 . S +O47 Si55 1.619 . S +O47 Si304 1.603 1_655 S +O48 Si52 1.657 1_556 S +O48 Si280 1.658 . S +O49 Si55 1.656 . S +O49 Si282 1.658 1_655 S +O50 Si58 1.665 1_556 S +O50 Si170 1.652 . S +Cu51 O60 1.941 . S +Cu51 O182 1.928 . S +Cu51 Na224 3.199 . S +Cu51 O296 1.928 . S +Cu51 Na149 3.141 . S +Cu51 O102 1.935 . S +Si52 O48 1.657 1_554 S +Si52 O61 1.618 . S +Si52 O64 1.583 . S +Si53 O61 1.622 . S +Si53 O67 1.584 . S +Si54 O66 1.622 . S +Si54 O69 1.582 . S +Si54 O274 1.658 . S +Si55 O60 1.577 . S +Si55 O63 1.620 . S +Si56 O70 1.577 1_455 S +Si56 O71 1.624 . S +Si56 O275 1.658 1_455 S +Si57 O62 1.579 . S +Si57 O163 1.652 . S +Si57 O104 1.618 . S +Si58 O50 1.665 1_554 S +Si58 O65 1.580 . S +Si59 O63 1.619 . S +Si59 O68 1.580 . S +Si59 O265 1.659 . S +O60 Na149 2.427 . S +O62 Na73 2.470 1_655 S +O62 Cu318 1.937 1_665 S +O64 Cu89 1.935 1_554 S +O64 Na148 2.595 . S +O65 Cu317 1.931 . S +O66 Si95 1.618 . S +O67 Cu316 1.933 . S +O67 Na148 2.578 . S +O67 Na150 2.436 . S +O68 Cu314 1.936 . S +O69 Cu164 1.928 . S +O70 Si56 1.577 1_655 S +O70 Cu277 1.928 . S +O70 Na150 2.489 . S +O71 Na74 2.564 . S +Na72 Na74 3.575 . S +Na72 O140 2.595 . S +Na72 O143 2.578 . S +Na72 Na111 3.581 . S +Na72 Cu315 3.231 . S +Na73 O62 2.470 1_455 S +Na73 Cu318 3.217 1_565 S +Na73 Cu127 3.141 1_554 S +Na73 O136 2.427 . S +Na73 O28 2.480 1_565 S +Na73 Na110 3.581 . S +Na74 Cu201 3.199 . S +Na74 O143 2.436 . S +Na74 O146 2.489 . S +Na74 Cu315 3.123 . S +Si76 O78 1.600 . S +Si76 O82 1.606 . S +Si76 O83 1.606 . S +Si76 O84 1.602 . S +O77 Si91 1.649 . S +O77 Si172 1.659 . S +O78 Si97 1.623 . S +O79 Si95 1.622 . S +O79 Si301 1.607 . S +O80 Si94 1.626 . S +O80 Si302 1.604 . S +O81 Si91 1.621 . S +O81 Si302 1.599 . S +O82 Si96 1.623 . S +O83 Si92 1.627 . S +O84 Si90 1.616 1_545 S +O85 Si93 1.619 . S +O85 Si301 1.603 . S +O86 Si90 1.657 . S +O86 Si167 1.658 . S +O87 Si93 1.656 1_556 S +O87 Si169 1.658 . S +O88 Si96 1.665 . S +O88 Si283 1.652 . S +Cu89 O98 1.941 1_556 S +Cu89 O295 1.928 . S +Cu89 Na262 3.199 . S +Cu89 O183 1.928 . S +Cu89 Na36 3.141 1_556 S +Cu89 O64 1.935 1_556 S +Cu89 Na148 3.220 1_556 S +Si90 O84 1.616 1_565 S +Si90 O99 1.618 . S +Si90 O102 1.583 . S +Si91 O99 1.622 . S +Si91 O105 1.584 . S +Si92 O104 1.622 1_545 S +Si92 O107 1.582 . S +Si92 O161 1.658 . S +Si93 O87 1.656 1_554 S +Si93 O98 1.577 . S +Si93 O101 1.620 . S +Si94 O108 1.577 . S +Si94 O109 1.624 . S +Si94 O162 1.658 . S +Si95 O100 1.579 . S +Si95 O276 1.652 . S +Si96 O103 1.580 . S +Si96 O147 1.611 . S +Si97 O101 1.619 . S +Si97 O106 1.580 . S +Si97 O152 1.659 1_554 S +O98 Cu89 1.941 1_554 S +O98 Na148 2.583 . S +O100 Na111 2.470 . S +O100 Cu319 1.937 . S +O102 Na149 2.430 . S +O103 Cu320 1.931 1_655 S +O103 Na149 2.480 1_545 S +O104 Si92 1.622 1_565 S +O104 Na149 2.576 . S +O105 Cu314 1.933 . S +O106 Cu316 1.936 . S +O106 Na148 2.583 . S +O106 Na150 2.435 . S +O107 Cu277 1.928 . S +O107 Na150 2.488 . S +O108 Cu164 1.928 . S +O109 Na112 2.564 . S +O109 Si134 1.611 . S +Na110 Na112 3.575 . S +Na110 Cu127 3.220 1_554 S +Na110 O136 2.583 . S +Na110 O144 2.583 . S +Na110 Cu313 3.231 . S +Na111 Cu319 3.217 . S +Na111 O140 2.430 . S +Na111 O141 2.480 . S +Na111 O142 2.576 . S +Na112 Cu239 3.199 . S +Na112 O144 2.435 . S +Na112 O145 2.488 . S +Na112 Cu313 3.123 . S +Si114 O116 1.600 . S +Si114 O120 1.606 . S +Si114 O121 1.606 . S +Si114 O122 1.602 . S +O115 Si129 1.649 . S +O115 Si209 1.659 . S +O116 Si135 1.623 . S +O117 Si133 1.622 . S +O117 Si304 1.607 . S +O118 Si132 1.626 . S +O118 Si305 1.604 1_655 S +O119 Si129 1.621 . S +O119 Si305 1.599 . S +O120 Si134 1.623 . S +O121 Si130 1.627 . S +O122 Si128 1.616 . S +O123 Si131 1.619 . S +O123 Si304 1.603 . S +O124 Si128 1.657 . S +O124 Si204 1.658 . S +O125 Si131 1.656 1_556 S +O125 Si206 1.658 1_455 S +O126 Si134 1.665 . S +O126 Si245 1.652 . S +Cu127 O136 1.941 1_556 S +Cu127 O257 1.928 . S +Cu127 Na300 3.199 . S +Cu127 O220 1.928 . S +Cu127 Na73 3.141 1_556 S +Cu127 O27 1.935 1_556 S +Cu127 Na110 3.220 1_556 S +Si128 O137 1.618 . S +Si128 O140 1.583 . S +Si129 O137 1.622 . S +Si129 O143 1.584 . S +Si130 O142 1.622 . S +Si130 O145 1.582 . S +Si130 O198 1.658 . S +Si131 O125 1.656 1_554 S +Si131 O136 1.577 . S +Si131 O139 1.620 . S +Si132 O146 1.577 1_655 S +Si132 O147 1.624 . S +Si132 O199 1.658 1_655 S +Si133 O138 1.579 . S +Si133 O238 1.652 . S +Si134 O141 1.580 . S +Si135 O139 1.619 . S +Si135 O144 1.580 . S +Si135 O189 1.659 1_554 S +O136 Cu127 1.941 1_554 S +O138 Na149 2.470 1_455 S +O138 Cu320 1.937 1_565 S +O141 Cu319 1.931 . S +O143 Cu315 1.933 . S +O144 Cu313 1.936 . S +O145 Cu239 1.928 . S +O146 Si132 1.577 1_455 S +O146 Cu201 1.928 . S +O147 Na150 2.564 . S +Na148 Na150 3.575 . S +Na148 Cu89 3.220 1_554 S +Na148 Cu316 3.231 . S +Na149 O138 2.470 1_655 S +Na149 Cu320 3.217 1_665 S +Na149 O103 2.480 1_565 S +Na150 Cu277 3.199 . S +Na150 Cu316 3.123 . S +Si151 O153 1.600 . S +Si151 O157 1.606 . S +Si151 O158 1.606 . S +Si151 O159 1.602 . S +O152 Si166 1.649 . S +O152 Si97 1.659 1_556 S +O153 Si172 1.623 . S +O154 Si170 1.622 . S +O154 Si307 1.607 . S +O155 Si169 1.626 . S +O155 Si308 1.604 . S +O156 Si166 1.621 . S +O156 Si308 1.599 . S +O157 Si171 1.623 . S +O158 Si167 1.627 . S +O159 Si165 1.616 1_565 S +O160 Si168 1.619 . S +O160 Si307 1.603 . S +O161 Si165 1.657 1_554 S +O162 Si168 1.656 . S +O163 Si171 1.665 1_554 S +Cu164 O173 1.941 . S +Cu164 Na261 3.141 . S +Cu164 O290 1.935 . S +Cu164 Na222 3.220 . S +Si165 O161 1.657 1_556 S +Si165 O159 1.616 1_545 S +Si165 O174 1.618 . S +Si165 O177 1.583 . S +Si166 O174 1.622 . S +Si166 O180 1.584 . S +Si167 O179 1.622 1_565 S +Si167 O182 1.582 . S +Si168 O173 1.577 . S +Si168 O176 1.620 . S +Si169 O183 1.577 . S +Si169 O184 1.624 . S +Si170 O175 1.579 . S +Si170 O292 1.618 . S +Si171 O163 1.665 1_556 S +Si171 O178 1.580 . S +Si171 O221 1.611 . S +Si172 O176 1.619 . S +Si172 O181 1.580 . S +O173 Na222 2.583 . S +O173 Na261 2.427 . S +O175 Na186 2.470 . S +O175 Cu317 1.937 1_556 S +O177 Cu277 1.935 1_556 S +O177 Na223 2.430 . S +O177 Na260 2.595 . S +O178 Cu318 1.931 1_666 S +O178 Na223 2.480 1_565 S +O179 Si167 1.622 1_545 S +O179 Si283 1.618 . S +O179 Na223 2.576 . S +O180 Cu316 1.933 1_556 S +O180 Na260 2.578 . S +O180 Na262 2.436 . S +O181 Cu314 1.936 . S +O181 Na222 2.583 . S +O181 Na224 2.435 . S +O182 Na224 2.488 . S +O183 Na262 2.489 . S +O184 Na187 2.564 . S +O184 Si208 1.611 . S +Na185 Na187 3.575 . S +Na185 Cu201 3.220 . S +Na185 O210 2.583 . S +Na185 O252 2.595 . S +Na185 O255 2.578 . S +Na185 O218 2.583 . S +Na185 Na299 3.581 . S +Na185 Cu315 3.231 . S +Na186 Cu317 3.217 1_556 S +Na186 Cu239 3.141 1_556 S +Na186 O248 2.427 . S +Na186 O214 2.430 . S +Na186 O215 2.480 . S +Na186 O216 2.576 . S +Na186 Na298 3.581 . S +Na187 O255 2.436 . S +Na187 O218 2.435 . S +Na187 O219 2.488 . S +Na187 O258 2.489 . S +Na187 Cu315 3.123 . S +Si188 O190 1.600 . S +Si188 O194 1.606 . S +Si188 O195 1.606 . S +Si188 O196 1.602 . S +O189 Si203 1.649 . S +O189 Si135 1.659 1_556 S +O190 Si209 1.623 . S +O191 Si207 1.622 . S +O191 Si310 1.607 . S +O192 Si206 1.626 . S +O192 Si311 1.604 1_655 S +O193 Si203 1.621 . S +O193 Si311 1.599 . S +O194 Si208 1.623 . S +O195 Si204 1.627 . S +O196 Si202 1.616 . S +O197 Si205 1.619 . S +O197 Si310 1.603 . S +O198 Si202 1.657 1_554 S +O199 Si205 1.656 . S +O199 Si132 1.658 1_455 S +O200 Si208 1.665 1_554 S +Cu201 O210 1.941 . S +Cu201 Na299 3.141 . S +Cu201 O252 1.935 . S +Si202 O198 1.657 1_556 S +Si202 O211 1.618 . S +Si202 O214 1.583 . S +Si203 O211 1.622 . S +Si203 O217 1.584 . S +Si204 O216 1.622 . S +Si204 O219 1.582 . S +Si205 O210 1.577 . S +Si205 O213 1.620 . S +Si206 O220 1.577 1_655 S +Si206 O221 1.624 . S +Si206 O125 1.658 1_655 S +Si207 O212 1.579 . S +Si207 O254 1.618 . S +Si208 O200 1.665 1_556 S +Si208 O215 1.580 . S +Si209 O213 1.619 . S +Si209 O218 1.580 . S +O210 Na299 2.427 . S +O212 Na223 2.470 1_455 S +O212 Cu318 1.937 1_556 S +O214 Cu239 1.935 1_556 S +O214 Na298 2.595 . S +O215 Cu317 1.931 1_556 S +O216 Si245 1.618 . S +O217 Cu313 1.933 1_556 S +O217 Na298 2.578 . S +O217 Na300 2.436 . S +O218 Cu315 1.936 . S +O220 Si206 1.577 1_455 S +O220 Na300 2.489 . S +O221 Na224 2.564 . S +Na222 Na224 3.575 . S +Na222 O290 2.595 . S +Na222 O293 2.578 . S +Na222 Na261 3.581 . S +Na222 Cu314 3.231 . S +Na223 O212 2.470 1_655 S +Na223 Cu318 3.217 1_656 S +Na223 Cu277 3.141 1_556 S +Na223 O286 2.427 . S +Na223 O178 2.480 1_545 S +Na223 Na260 3.581 . S +Na224 O293 2.436 . S +Na224 O296 2.489 . S +Na224 Cu314 3.123 . S +Si226 O228 1.600 . S +Si226 O232 1.606 . S +Si226 O233 1.606 . S +Si226 O234 1.602 . S +O227 Si241 1.649 . S +O228 Si247 1.623 . S +O229 Si245 1.622 . S +O229 Si307 1.607 . S +O230 Si244 1.626 . S +O230 Si308 1.604 . S +O231 Si241 1.621 . S +O231 Si308 1.599 . S +O232 Si246 1.623 . S +O233 Si242 1.627 . S +O234 Si240 1.616 1_565 S +O235 Si243 1.619 . S +O235 Si307 1.603 . S +O236 Si240 1.657 . S +O237 Si243 1.656 1_554 S +O238 Si246 1.665 . S +Cu239 O248 1.941 1_554 S +Cu239 Na186 3.141 1_554 S +Cu239 O214 1.935 1_554 S +Cu239 Na298 3.220 1_554 S +Si240 O234 1.616 1_545 S +Si240 O249 1.618 . S +Si240 O252 1.583 . S +Si241 O249 1.622 . S +Si241 O255 1.584 . S +Si242 O254 1.622 1_565 S +Si242 O257 1.582 . S +Si243 O237 1.656 1_556 S +Si243 O248 1.577 . S +Si243 O251 1.620 . S +Si244 O258 1.577 . S +Si244 O259 1.624 . S +Si245 O250 1.579 . S +Si246 O253 1.580 . S +Si246 O297 1.611 . S +Si247 O251 1.619 . S +Si247 O256 1.580 . S +Si247 O2 1.659 1_556 S +O248 Cu239 1.941 1_556 S +O248 Na298 2.583 . S +O250 Na261 2.470 . S +O250 Cu319 1.937 . S +O252 Na299 2.430 . S +O253 Cu320 1.931 1_565 S +O253 Na299 2.480 1_565 S +O254 Si242 1.622 1_545 S +O254 Na299 2.576 . S +O255 Cu315 1.933 . S +O256 Cu313 1.936 1_556 S +O256 Na298 2.583 . S +O256 Na300 2.435 . S +O257 Na300 2.488 . S +O259 Na262 2.564 . S +O259 Si284 1.611 . S +Na260 Na262 3.575 . S +Na260 Cu277 3.220 1_556 S +Na260 O286 2.583 . S +Na260 O294 2.583 . S +Na260 Cu316 3.231 1_556 S +Na261 Cu319 3.217 . S +Na261 O290 2.430 . S +Na261 O291 2.480 . S +Na261 O292 2.576 . S +Na262 O294 2.435 . S +Na262 O295 2.488 . S +Na262 Cu316 3.123 1_556 S +Si264 O266 1.600 . S +Si264 O270 1.606 . S +Si264 O271 1.606 . S +Si264 O272 1.602 . S +O265 Si279 1.649 . S +O266 Si285 1.623 . S +O267 Si283 1.622 . S +O267 Si310 1.607 1_655 S +O268 Si282 1.626 . S +O268 Si311 1.604 . S +O269 Si279 1.621 . S +O269 Si311 1.599 1_655 S +O270 Si284 1.623 . S +O271 Si280 1.627 . S +O272 Si278 1.616 . S +O273 Si281 1.619 . S +O273 Si310 1.603 1_655 S +O274 Si278 1.657 . S +O275 Si281 1.656 1_554 S +O275 Si56 1.658 1_655 S +O276 Si284 1.665 . S +Cu277 O286 1.941 1_554 S +Cu277 Na223 3.141 1_554 S +Cu277 O177 1.935 1_554 S +Cu277 Na260 3.220 1_554 S +Si278 O287 1.618 . S +Si278 O290 1.583 . S +Si279 O287 1.622 . S +Si279 O293 1.584 . S +Si280 O292 1.622 . S +Si280 O295 1.582 . S +Si281 O275 1.656 1_556 S +Si281 O286 1.577 . S +Si281 O289 1.620 . S +Si282 O296 1.577 1_455 S +Si282 O297 1.624 . S +Si282 O49 1.658 1_455 S +Si283 O288 1.579 . S +Si284 O291 1.580 . S +Si285 O289 1.619 . S +Si285 O294 1.580 . S +Si285 O39 1.659 1_556 S +O286 Cu277 1.941 1_556 S +O288 Na299 2.470 1_655 S +O288 Cu320 1.937 1_655 S +O291 Cu319 1.931 . S +O293 Cu314 1.933 . S +O294 Cu316 1.936 1_556 S +O296 Si282 1.577 1_655 S +O297 Na300 2.564 . S +Na298 Na300 3.575 . S +Na298 Cu239 3.220 1_556 S +Na298 Cu313 3.231 1_556 S +Na299 O288 2.470 1_455 S +Na299 Cu320 3.217 . S +Na299 O253 2.480 1_545 S +Na300 Cu313 3.123 1_556 S +Si304 O41 1.607 1_455 S +Si304 O47 1.603 1_455 S +Si305 O118 1.604 1_455 S +Si305 O43 1.599 1_455 S +Si310 O267 1.607 1_455 S +Si310 O273 1.603 1_455 S +Si311 O192 1.604 1_455 S +Si311 O269 1.599 1_455 S +Cu313 O217 1.933 1_554 S +Cu313 O256 1.936 1_554 S +Cu313 Na298 3.231 1_554 S +Cu313 Na300 3.123 1_554 S +Cu316 O180 1.933 1_554 S +Cu316 O294 1.936 1_554 S +Cu316 Na260 3.231 1_554 S +Cu316 Na262 3.123 1_554 S +Cu317 O175 1.937 1_554 S +Cu317 Na186 3.217 1_554 S +Cu317 O215 1.931 1_554 S +Cu318 O62 1.937 1_445 S +Cu318 O212 1.937 1_554 S +Cu318 Na73 3.217 1_545 S +Cu318 Na223 3.217 1_454 S +Cu318 O178 1.931 1_444 S +Cu320 O138 1.937 1_545 S +Cu320 O288 1.937 1_455 S +Cu320 Na149 3.217 1_445 S +Cu320 O103 1.931 1_455 S +Cu320 O253 1.931 1_545 S diff --git a/benchmarks/mof/structures/dac/SIFSIX-18-Ni-beta.cif b/benchmarks/mof/structures/dac/SIFSIX-18-Ni-beta.cif new file mode 100644 index 0000000000000000000000000000000000000000..8064cb6205bfad2d25c855ba32a89ec915d8e901 --- /dev/null +++ b/benchmarks/mof/structures/dac/SIFSIX-18-Ni-beta.cif @@ -0,0 +1,330 @@ +data_1888095 +_audit_creation_date 2025-01-20 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 14.1630 +_cell_length_b 13.8690 +_cell_length_c 7.4930 +_cell_angle_alpha 90.0000 +_cell_angle_beta 94.7800 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +F1 F 0.41747 0.41536 0.50000 0.01000 Uiso 1.00 +F2 F 0.50989 0.50002 0.73391 0.01000 Uiso 1.00 +F3 F 0.41747 0.58464 0.50000 0.01000 Uiso 1.00 +C4 C 0.68052 0.14651 0.63773 0.01000 Uiso 1.00 +H5 H 0.70881 0.16808 0.52958 0.01000 Uiso 1.00 +H6 H 0.62907 0.19030 0.66309 0.01000 Uiso 1.00 +H7 H 0.65572 0.08087 0.61944 0.01000 Uiso 1.00 +C8 C 0.75349 0.14693 0.79106 0.01000 Uiso 1.00 +C9 C 0.75910 0.19535 0.95517 0.01000 Uiso 1.00 +C10 C 0.68990 0.26364 0.01986 0.01000 Uiso 1.00 +C11 C 0.67841 0.36082 0.97210 0.01000 Uiso 1.00 +C12 C 0.73167 0.42231 0.85120 0.01000 Uiso 1.00 +H13 H 0.68691 0.45856 0.77008 0.01000 Uiso 1.00 +H14 H 0.77105 0.38119 0.78101 0.01000 Uiso 1.00 +H15 H 0.77202 0.46766 0.92291 0.01000 Uiso 1.00 +N16 N 0.83080 0.09220 0.78621 0.01000 Uiso 1.00 +H17 H 0.84388 0.05483 0.69639 0.01000 Uiso 1.00 +N18 N 0.60784 0.39589 0.06070 0.01000 Uiso 1.00 +C19 C 0.89121 0.19126 0.22266 0.01000 Uiso 1.00 +H20 H 0.90027 0.13294 0.29596 0.01000 Uiso 1.00 +H21 H 0.85176 0.23729 0.28233 0.01000 Uiso 1.00 +H22 H 0.95280 0.22070 0.20663 0.01000 Uiso 1.00 +C23 C 0.84413 0.16539 0.04519 0.01000 Uiso 1.00 +C24 C 0.62253 0.24419 0.14141 0.01000 Uiso 1.00 +C25 C 0.59980 0.15257 0.23376 0.01000 Uiso 1.00 +H26 H 0.59482 0.16551 0.36145 0.01000 Uiso 1.00 +H27 H 0.65011 0.10528 0.22019 0.01000 Uiso 1.00 +H28 H 0.53968 0.12683 0.18061 0.01000 Uiso 1.00 +N29 N 0.88530 0.10320 0.93930 0.01000 Uiso 1.00 +N30 N 0.57469 0.32598 0.16335 0.01000 Uiso 1.00 +H31 H 0.52867 0.33305 0.23421 0.01000 Uiso 1.00 +F32 F 0.91747 0.91536 0.50000 0.01000 Uiso 1.00 +F33 F 0.00989 0.00002 0.73391 0.01000 Uiso 1.00 +F34 F 0.91747 0.08464 0.50000 0.01000 Uiso 1.00 +C35 C 0.18052 0.64651 0.63773 0.01000 Uiso 1.00 +H36 H 0.20881 0.66808 0.52958 0.01000 Uiso 1.00 +H37 H 0.12907 0.69030 0.66309 0.01000 Uiso 1.00 +H38 H 0.15572 0.58087 0.61944 0.01000 Uiso 1.00 +C39 C 0.25349 0.64693 0.79106 0.01000 Uiso 1.00 +C40 C 0.25910 0.69535 0.95517 0.01000 Uiso 1.00 +C41 C 0.18990 0.76364 0.01986 0.01000 Uiso 1.00 +C42 C 0.17841 0.86082 0.97210 0.01000 Uiso 1.00 +C43 C 0.23167 0.92231 0.85120 0.01000 Uiso 1.00 +H44 H 0.18691 0.95856 0.77008 0.01000 Uiso 1.00 +H45 H 0.27105 0.88119 0.78101 0.01000 Uiso 1.00 +H46 H 0.27202 0.96766 0.92291 0.01000 Uiso 1.00 +N47 N 0.33080 0.59220 0.78621 0.01000 Uiso 1.00 +H48 H 0.34388 0.55483 0.69639 0.01000 Uiso 1.00 +N49 N 0.10784 0.89589 0.06070 0.01000 Uiso 1.00 +C50 C 0.39121 0.69126 0.22266 0.01000 Uiso 1.00 +H51 H 0.40027 0.63294 0.29596 0.01000 Uiso 1.00 +H52 H 0.35176 0.73729 0.28233 0.01000 Uiso 1.00 +H53 H 0.45280 0.72070 0.20663 0.01000 Uiso 1.00 +C54 C 0.34413 0.66539 0.04519 0.01000 Uiso 1.00 +C55 C 0.12253 0.74419 0.14141 0.01000 Uiso 1.00 +C56 C 0.09980 0.65257 0.23376 0.01000 Uiso 1.00 +H57 H 0.09482 0.66551 0.36145 0.01000 Uiso 1.00 +H58 H 0.15011 0.60528 0.22019 0.01000 Uiso 1.00 +H59 H 0.03968 0.62683 0.18061 0.01000 Uiso 1.00 +N60 N 0.38530 0.60320 0.93930 0.01000 Uiso 1.00 +N61 N 0.07469 0.82598 0.16335 0.01000 Uiso 1.00 +H62 H 0.02867 0.83305 0.23421 0.01000 Uiso 1.00 +F63 F 0.58253 0.41536 0.50000 0.01000 Uiso 1.00 +F64 F 0.49011 0.50002 0.26609 0.01000 Uiso 1.00 +F65 F 0.58253 0.58464 0.50000 0.01000 Uiso 1.00 +C66 C 0.31948 0.14651 0.36227 0.01000 Uiso 1.00 +H67 H 0.29119 0.16808 0.47042 0.01000 Uiso 1.00 +H68 H 0.37093 0.19030 0.33691 0.01000 Uiso 1.00 +H69 H 0.34428 0.08087 0.38056 0.01000 Uiso 1.00 +C70 C 0.24651 0.14693 0.20894 0.01000 Uiso 1.00 +C71 C 0.24090 0.19535 0.04483 0.01000 Uiso 1.00 +C72 C 0.31010 0.26364 0.98014 0.01000 Uiso 1.00 +C73 C 0.32159 0.36082 0.02790 0.01000 Uiso 1.00 +C74 C 0.26833 0.42231 0.14880 0.01000 Uiso 1.00 +H75 H 0.31309 0.45856 0.22992 0.01000 Uiso 1.00 +H76 H 0.22895 0.38119 0.21899 0.01000 Uiso 1.00 +H77 H 0.22798 0.46766 0.07709 0.01000 Uiso 1.00 +N78 N 0.16920 0.09220 0.21379 0.01000 Uiso 1.00 +H79 H 0.15612 0.05483 0.30361 0.01000 Uiso 1.00 +N80 N 0.39216 0.39589 0.93930 0.01000 Uiso 1.00 +C81 C 0.10879 0.19126 0.77734 0.01000 Uiso 1.00 +H82 H 0.09973 0.13294 0.70404 0.01000 Uiso 1.00 +H83 H 0.14824 0.23729 0.71767 0.01000 Uiso 1.00 +H84 H 0.04720 0.22070 0.79337 0.01000 Uiso 1.00 +C85 C 0.15587 0.16539 0.95481 0.01000 Uiso 1.00 +C86 C 0.37747 0.24419 0.85859 0.01000 Uiso 1.00 +C87 C 0.40020 0.15257 0.76624 0.01000 Uiso 1.00 +H88 H 0.40518 0.16551 0.63855 0.01000 Uiso 1.00 +H89 H 0.34989 0.10528 0.77981 0.01000 Uiso 1.00 +H90 H 0.46032 0.12683 0.81939 0.01000 Uiso 1.00 +N91 N 0.11470 0.10320 0.06070 0.01000 Uiso 1.00 +N92 N 0.42531 0.32598 0.83665 0.01000 Uiso 1.00 +H93 H 0.47133 0.33305 0.76579 0.01000 Uiso 1.00 +F94 F 0.08253 0.91536 0.50000 0.01000 Uiso 1.00 +F95 F 0.99011 0.00002 0.26609 0.01000 Uiso 1.00 +F96 F 0.08253 0.08464 0.50000 0.01000 Uiso 1.00 +C97 C 0.81948 0.64651 0.36227 0.01000 Uiso 1.00 +H98 H 0.79119 0.66808 0.47042 0.01000 Uiso 1.00 +H99 H 0.87093 0.69030 0.33691 0.01000 Uiso 1.00 +H100 H 0.84428 0.58087 0.38056 0.01000 Uiso 1.00 +C101 C 0.74651 0.64693 0.20894 0.01000 Uiso 1.00 +C102 C 0.74090 0.69535 0.04483 0.01000 Uiso 1.00 +C103 C 0.81010 0.76364 0.98014 0.01000 Uiso 1.00 +C104 C 0.82159 0.86082 0.02790 0.01000 Uiso 1.00 +C105 C 0.76833 0.92231 0.14880 0.01000 Uiso 1.00 +H106 H 0.81309 0.95856 0.22992 0.01000 Uiso 1.00 +H107 H 0.72895 0.88119 0.21899 0.01000 Uiso 1.00 +H108 H 0.72798 0.96766 0.07709 0.01000 Uiso 1.00 +N109 N 0.66920 0.59220 0.21379 0.01000 Uiso 1.00 +H110 H 0.65612 0.55483 0.30361 0.01000 Uiso 1.00 +N111 N 0.89216 0.89589 0.93930 0.01000 Uiso 1.00 +C112 C 0.60879 0.69126 0.77734 0.01000 Uiso 1.00 +H113 H 0.59973 0.63294 0.70404 0.01000 Uiso 1.00 +H114 H 0.64824 0.73729 0.71767 0.01000 Uiso 1.00 +H115 H 0.54720 0.72070 0.79337 0.01000 Uiso 1.00 +C116 C 0.65587 0.66539 0.95481 0.01000 Uiso 1.00 +C117 C 0.87747 0.74419 0.85859 0.01000 Uiso 1.00 +C118 C 0.90020 0.65257 0.76624 0.01000 Uiso 1.00 +H119 H 0.90518 0.66551 0.63855 0.01000 Uiso 1.00 +H120 H 0.84989 0.60528 0.77981 0.01000 Uiso 1.00 +H121 H 0.96032 0.62683 0.81939 0.01000 Uiso 1.00 +N122 N 0.61470 0.60320 0.06070 0.01000 Uiso 1.00 +N123 N 0.92531 0.82598 0.83665 0.01000 Uiso 1.00 +H124 H 0.97133 0.83305 0.76579 0.01000 Uiso 1.00 +Si125 Si 0.50000 0.50002 0.50000 0.01000 Uiso 1.00 +Si126 Si 0.00000 0.00002 0.50000 0.01000 Uiso 1.00 +Ni127 Ni 0.50000 0.50000 -0.00000 0.01000 Uiso 1.00 +Ni128 Ni 0.00000 0.00000 -0.00000 0.01000 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +F1 Si125 1.657 . S +F2 Si125 1.747 . S +F2 Ni127 2.010 1_556 S +F3 Si125 1.656 . S +C4 H5 0.980 . S +C4 H6 0.979 . S +C4 H7 0.981 . S +C4 C8 1.480 . S +C8 C9 1.398 . D +C8 N16 1.335 . S +C9 C10 1.474 1_556 S +C9 C23 1.394 1_556 S +C10 C9 1.474 1_554 S +C10 C11 1.400 1_554 S +C10 C24 1.399 . D +C11 C10 1.400 1_556 S +C11 C12 1.494 . S +C11 N18 1.337 1_556 D +C12 H13 0.980 . S +C12 H14 0.981 . S +C12 H15 0.980 . S +N16 H17 0.881 . S +N16 N29 1.337 . S +N18 C11 1.337 1_554 D +N18 N30 1.346 . S +N18 Ni127 2.123 . S +C19 H20 0.980 . S +C19 H21 0.980 . S +C19 H22 0.980 . S +C19 C23 1.481 . S +C23 C9 1.394 1_554 S +C23 N29 1.338 1_554 D +C24 C25 1.495 . S +C24 N30 1.338 . S +C25 H26 0.982 . S +C25 H27 0.980 . S +C25 H28 0.977 . S +N29 C23 1.338 1_556 D +N29 Ni128 2.184 1_656 S +N30 H31 0.880 . S +F32 Si126 1.657 1_665 S +F33 Si126 1.747 . S +F33 Ni128 2.010 1_556 S +F34 Si126 1.656 1_655 S +C35 H36 0.980 . S +C35 H37 0.979 . S +C35 H38 0.981 . S +C35 C39 1.480 . S +C39 C40 1.398 . D +C39 N47 1.335 . S +C40 C41 1.474 1_556 S +C40 C54 1.394 1_556 S +C41 C40 1.474 1_554 S +C41 C42 1.400 1_554 S +C41 C55 1.399 . D +C42 C41 1.400 1_556 S +C42 C43 1.494 . S +C42 N49 1.337 1_556 D +C43 H44 0.980 . S +C43 H45 0.981 . S +C43 H46 0.980 . S +N47 H48 0.881 . S +N47 N60 1.337 . S +N49 C42 1.337 1_554 D +N49 N61 1.346 . S +N49 Ni128 2.123 1_565 S +C50 H51 0.980 . S +C50 H52 0.980 . S +C50 H53 0.980 . S +C50 C54 1.481 . S +C54 C40 1.394 1_554 S +C54 N60 1.338 1_554 D +C55 C56 1.495 . S +C55 N61 1.338 . S +C56 H57 0.982 . S +C56 H58 0.980 . S +C56 H59 0.977 . S +N60 C54 1.338 1_556 D +N60 Ni127 2.184 1_556 S +N61 H62 0.880 . S +F63 Si125 1.657 . S +F64 Si125 1.747 . S +F64 Ni127 2.010 . S +F65 Si125 1.656 . S +C66 H67 0.980 . S +C66 H68 0.979 . S +C66 H69 0.981 . S +C66 C70 1.480 . S +C70 C71 1.398 . D +C70 N78 1.335 . S +C71 C72 1.474 1_554 S +C71 C85 1.394 1_554 S +C72 C71 1.474 1_556 S +C72 C73 1.400 1_556 S +C72 C86 1.399 . D +C73 C72 1.400 1_554 S +C73 C74 1.494 . S +C73 N80 1.337 1_554 D +C74 H75 0.980 . S +C74 H76 0.981 . S +C74 H77 0.980 . S +N78 H79 0.881 . S +N78 N91 1.337 . S +N80 C73 1.337 1_556 D +N80 N92 1.346 . S +N80 Ni127 2.123 1_556 S +C81 H82 0.980 . S +C81 H83 0.980 . S +C81 H84 0.980 . S +C81 C85 1.481 . S +C85 C71 1.394 1_556 S +C85 N91 1.338 1_556 D +C86 C87 1.495 . S +C86 N92 1.338 . S +C87 H88 0.982 . S +C87 H89 0.980 . S +C87 H90 0.977 . S +N91 C85 1.338 1_554 D +N91 Ni128 2.184 . S +N92 H93 0.880 . S +F94 Si126 1.657 1_565 S +F95 Si126 1.747 1_655 S +F95 Ni128 2.010 1_655 S +F96 Si126 1.656 . S +C97 H98 0.980 . S +C97 H99 0.979 . S +C97 H100 0.981 . S +C97 C101 1.480 . S +C101 C102 1.398 . D +C101 N109 1.335 . S +C102 C103 1.474 1_554 S +C102 C116 1.394 1_554 S +C103 C102 1.474 1_556 S +C103 C104 1.400 1_556 S +C103 C117 1.399 . D +C104 C103 1.400 1_554 S +C104 C105 1.494 . S +C104 N111 1.337 1_554 D +C105 H106 0.980 . S +C105 H107 0.981 . S +C105 H108 0.980 . S +N109 H110 0.881 . S +N109 N122 1.337 . S +N111 C104 1.337 1_556 D +N111 N123 1.346 . S +N111 Ni128 2.123 1_666 S +C112 H113 0.980 . S +C112 H114 0.980 . S +C112 H115 0.980 . S +C112 C116 1.481 . S +C116 C102 1.394 1_556 S +C116 N122 1.338 1_556 D +C117 C118 1.495 . S +C117 N123 1.338 . S +C118 H119 0.982 . S +C118 H120 0.980 . S +C118 H121 0.977 . S +N122 C116 1.338 1_554 D +N122 Ni127 2.184 . S +N123 H124 0.880 . S +Si126 F32 1.657 1_445 S +Si126 F94 1.657 1_545 S +Si126 F95 1.747 1_455 S +Si126 F34 1.656 1_455 S +Ni127 N80 2.123 1_554 S +Ni127 F2 2.010 1_554 S +Ni127 N60 2.184 1_554 S +Ni128 N49 2.123 1_545 S +Ni128 N111 2.123 1_444 S +Ni128 F33 2.010 1_554 S +Ni128 F95 2.010 1_455 S +Ni128 N29 2.184 1_454 S diff --git a/benchmarks/mof/structures/dac/SIFSIX-3-Cu.cif b/benchmarks/mof/structures/dac/SIFSIX-3-Cu.cif new file mode 100644 index 0000000000000000000000000000000000000000..9424b82a24a24891f93584c1e45b478ffe8443fd --- /dev/null +++ b/benchmarks/mof/structures/dac/SIFSIX-3-Cu.cif @@ -0,0 +1,95 @@ +data_SIFSIX-3-Cu +_audit_creation_date 2025-01-20 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 6.9186 +_cell_length_b 6.9186 +_cell_length_c 7.9061 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +N1 N 0.50000 0.21700 0.50000 0.09900 Uiso 1.00 +N2 N 0.50000 0.78300 0.50000 0.09900 Uiso 1.00 +N3 N 0.78300 0.50000 0.50000 0.09900 Uiso 1.00 +N4 N 0.21700 0.50000 0.50000 0.09900 Uiso 1.00 +C5 C 0.50000 0.08930 0.38430 0.12100 Uiso 1.00 +H6 H 0.50000 0.14010 0.27980 0.16650 Uiso 1.00 +C7 C 0.50000 0.91070 0.38430 0.12100 Uiso 1.00 +H8 H 0.50000 0.85990 0.27980 0.16650 Uiso 1.00 +C9 C 0.91070 0.50000 0.38430 0.12100 Uiso 1.00 +H10 H 0.85990 0.50000 0.27980 0.16650 Uiso 1.00 +C11 C 0.08930 0.50000 0.38430 0.12100 Uiso 1.00 +H12 H 0.14010 0.50000 0.27980 0.16650 Uiso 1.00 +C13 C 0.50000 0.08930 0.61570 0.12100 Uiso 1.00 +H14 H 0.50000 0.14010 0.72020 0.16650 Uiso 1.00 +C15 C 0.50000 0.91070 0.61570 0.12100 Uiso 1.00 +H16 H 0.50000 0.85990 0.72020 0.16650 Uiso 1.00 +C17 C 0.08930 0.50000 0.61570 0.12100 Uiso 1.00 +H18 H 0.14010 0.50000 0.72020 0.16650 Uiso 1.00 +C19 C 0.91070 0.50000 0.61570 0.12100 Uiso 1.00 +H20 H 0.85990 0.50000 0.72020 0.16650 Uiso 1.00 +Cu21 Cu 0.50000 0.50000 0.50000 0.09800 Uiso 1.00 +F22 F 0.50000 0.50000 0.23200 0.11900 Uiso 1.00 +F23 F 0.50000 0.50000 0.76800 0.11900 Uiso 1.00 +F24 F 0.33130 0.33130 0.00000 0.20400 Uiso 1.00 +F25 F 0.66870 0.66870 0.00000 0.20400 Uiso 1.00 +F26 F 0.66870 0.33130 0.00000 0.20400 Uiso 1.00 +F27 F 0.33130 0.66870 0.00000 0.20400 Uiso 1.00 +Si28 Si 0.50000 0.50000 0.00000 0.15800 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +N1 Cu21 1.958 . S +N1 C5 1.272 . S +N1 C13 1.272 . S +N2 Cu21 1.958 . S +N2 C7 1.272 . S +N2 C15 1.272 . S +N3 Cu21 1.958 . S +N3 C9 1.272 . S +N3 C19 1.272 . S +N4 Cu21 1.958 . S +N4 C11 1.272 . S +N4 C17 1.272 . S +C5 H6 0.898 . S +C5 C7 1.236 1_545 S +C7 H8 0.898 . S +C7 C5 1.236 1_565 S +C9 H10 0.898 . S +C9 C11 1.236 1_655 S +C11 H12 0.898 . S +C11 C9 1.236 1_455 S +C13 H14 0.898 . S +C13 C15 1.236 1_545 S +C15 H16 0.898 . S +C15 C13 1.236 1_565 S +C17 H18 0.898 . S +C17 C19 1.236 1_455 S +C19 H20 0.898 . S +C19 C17 1.236 1_655 S +Cu21 F22 2.119 . S +Cu21 F23 2.119 . S +F22 Si28 1.834 . S +F23 Si28 1.834 1_556 S +F24 Si28 1.651 . S +F25 Si28 1.651 . S +F26 Si28 1.651 . S +F27 Si28 1.651 . S +Si28 F23 1.834 1_554 S diff --git a/benchmarks/mof/structures/dac/TIFSIX-3-Ni.cif b/benchmarks/mof/structures/dac/TIFSIX-3-Ni.cif new file mode 100644 index 0000000000000000000000000000000000000000..d32e9bd37e2680036b0f0b41649a289d12c3f7d9 --- /dev/null +++ b/benchmarks/mof/structures/dac/TIFSIX-3-Ni.cif @@ -0,0 +1,95 @@ +data_1517365 +_audit_creation_date 2024-01-26 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 7.0012 +_cell_length_b 7.0012 +_cell_length_c 7.4979 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +C1 C 0.90026 0.49844 0.65431 0.03390 Uiso 1.00 +H2 H 0.81423 0.49723 0.77818 0.04060 Uiso 1.00 +C3 C 0.50124 0.90015 0.65433 0.03390 Uiso 1.00 +H4 H 0.50222 0.81403 0.77815 0.04060 Uiso 1.00 +C5 C 0.90056 0.50154 0.34578 0.03390 Uiso 1.00 +H6 H 0.81477 0.50278 0.22176 0.04060 Uiso 1.00 +C7 C 0.49876 0.90067 0.34580 0.03390 Uiso 1.00 +H8 H 0.49779 0.81497 0.22172 0.04060 Uiso 1.00 +C9 C 0.09955 0.50035 0.34574 0.03390 Uiso 1.00 +H10 H 0.18543 0.50060 0.22177 0.04060 Uiso 1.00 +C11 C 0.49897 0.09954 0.34575 0.03390 Uiso 1.00 +H12 H 0.49795 0.18541 0.22177 0.04060 Uiso 1.00 +C13 C 0.09963 0.49965 0.65428 0.03390 Uiso 1.00 +H14 H 0.18557 0.49940 0.77821 0.04060 Uiso 1.00 +C15 C 0.50118 0.09964 0.65428 0.03390 Uiso 1.00 +H16 H 0.50190 0.18559 0.77820 0.04060 Uiso 1.00 +Ni17 Ni 0.50000 0.50000 0.50000 0.01300 Uiso 1.00 +Ti18 Ti 0.50000 0.50000 0.00000 0.03680 Uiso 1.00 +F19 F 0.50000 0.50000 0.76510 0.02310 Uiso 1.00 +F20 F 0.50000 0.50000 0.23490 0.02310 Uiso 1.00 +F21 F 0.66555 0.66555 0.00000 0.05180 Uiso 1.00 +F22 F 0.33445 0.33445 0.00000 0.05180 Uiso 1.00 +F23 F 0.33445 0.66555 0.00000 0.05180 Uiso 1.00 +F24 F 0.66555 0.33445 0.00000 0.05180 Uiso 1.00 +N25 N 0.80390 0.50001 0.49996 0.01620 Uiso 1.00 +N26 N 0.19610 0.50000 0.50000 0.01620 Uiso 1.00 +N27 N 0.50000 0.80390 0.50000 0.01620 Uiso 1.00 +N28 N 0.50000 0.19610 0.50000 0.01620 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +C1 N25 1.340 . S +C1 H2 1.107 . S +C1 C13 1.396 1_655 S +C3 N27 1.339 . S +C3 H4 1.107 . S +C3 C15 1.397 1_565 S +C5 N25 1.340 . S +C5 H6 1.107 . S +C5 C9 1.393 1_655 S +C7 N27 1.340 . S +C7 H8 1.107 . S +C7 C11 1.392 1_565 S +C9 N26 1.340 . S +C9 H10 1.107 . S +C9 C5 1.393 1_455 S +C11 N28 1.340 . S +C11 H12 1.107 . S +C11 C7 1.392 1_545 S +C13 N26 1.340 . S +C13 H14 1.107 . S +C13 C1 1.396 1_455 S +C15 N28 1.339 . S +C15 H16 1.107 . S +C15 C3 1.397 1_545 S +Ni17 F19 1.988 . S +Ni17 F20 1.988 . S +Ni17 N25 2.128 . S +Ni17 N26 2.128 . S +Ni17 N27 2.128 . S +Ni17 N28 2.128 . S +Ti18 F19 1.761 1_554 S +Ti18 F20 1.761 . S +Ti18 F21 1.639 . S +Ti18 F22 1.639 . S +Ti18 F23 1.639 . S +Ti18 F24 1.639 . S +F19 Si18 1.761 1_556 S diff --git a/benchmarks/mof/structures/dac/en-Mg2(dobpdc).cif b/benchmarks/mof/structures/dac/en-Mg2(dobpdc).cif new file mode 100644 index 0000000000000000000000000000000000000000..4470ea3df77d2ec207e5152475ac417957132270 --- /dev/null +++ b/benchmarks/mof/structures/dac/en-Mg2(dobpdc).cif @@ -0,0 +1,492 @@ +data_image0 +_cell_length_a 36.6982 +_cell_length_b 36.6982 +_cell_length_c 6.93828 +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 120 + +_symmetry_space_group_name_H-M "P 1" +_symmetry_int_tables_number 1 + +loop_ + _symmetry_equiv_pos_as_xyz + 'x, y, z' + +loop_ + _atom_site_label + _atom_site_occupancy + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_thermal_displace_type + _atom_site_B_iso_or_equiv + _atom_site_type_symbol + C1 1.0000 0.01357 0.58780 0.71593 Biso 1.000 C + C2 1.0000 0.50638 0.98341 0.74715 Biso 1.000 C + C3 1.0000 0.65006 0.81037 0.58606 Biso 1.000 C + C4 1.0000 0.18963 0.83969 0.58606 Biso 1.000 C + C5 1.0000 0.16031 0.34994 0.58606 Biso 1.000 C + C6 1.0000 0.68813 0.89017 0.97288 Biso 1.000 C + C7 1.0000 0.10983 0.79796 0.97288 Biso 1.000 C + C8 1.0000 0.20204 0.31187 0.97287 Biso 1.000 C + C9 1.0000 0.47703 0.49362 0.74715 Biso 1.000 C + C10 1.0000 0.31187 0.10983 0.02712 Biso 1.000 C + C11 1.0000 0.79796 0.68813 0.02713 Biso 1.000 C + C12 1.0000 0.35482 0.22350 0.30643 Biso 1.000 C + C13 1.0000 0.77650 0.13131 0.30643 Biso 1.000 C + C14 1.0000 0.86869 0.64518 0.30643 Biso 1.000 C + C15 1.0000 0.97852 0.44314 0.36028 Biso 1.000 C + C16 1.0000 0.55686 0.53538 0.36028 Biso 1.000 C + C17 1.0000 0.46462 0.02148 0.36028 Biso 1.000 C + C18 1.0000 0.89017 0.20204 0.02712 Biso 1.000 C + C19 1.0000 0.01659 0.52297 0.74715 Biso 1.000 C + C20 1.0000 0.49362 0.01659 0.25285 Biso 1.000 C + C21 1.0000 0.52297 0.50638 0.25285 Biso 1.000 C + C22 1.0000 0.48498 0.00329 0.05850 Biso 1.000 C + C23 1.0000 0.00329 0.51831 0.94150 Biso 1.000 C + C24 1.0000 0.48169 0.48498 0.94150 Biso 1.000 C + C25 1.0000 0.51502 0.99671 0.94150 Biso 1.000 C + C26 1.0000 0.66336 0.81501 0.39171 Biso 1.000 C + C27 1.0000 0.18499 0.84835 0.39171 Biso 1.000 C + C28 1.0000 0.15165 0.33664 0.39171 Biso 1.000 C + C29 1.0000 0.68324 0.85628 0.08033 Biso 1.000 C + C30 1.0000 0.14372 0.82696 0.08033 Biso 1.000 C + C31 1.0000 0.17304 0.31676 0.08033 Biso 1.000 C + C32 1.0000 0.31676 0.14372 0.91967 Biso 1.000 C + C33 1.0000 0.85628 0.17304 0.91967 Biso 1.000 C + C34 1.0000 0.82696 0.68324 0.91967 Biso 1.000 C + C35 1.0000 0.34994 0.18963 0.41394 Biso 1.000 C + C36 1.0000 0.81037 0.16031 0.41394 Biso 1.000 C + C37 1.0000 0.83969 0.65006 0.41394 Biso 1.000 C + C38 1.0000 0.98341 0.47703 0.25285 Biso 1.000 C + C39 1.0000 0.02148 0.55686 0.63972 Biso 1.000 C + C40 1.0000 0.51831 0.51502 0.05850 Biso 1.000 C + C41 1.0000 0.44314 0.46462 0.63972 Biso 1.000 C + C42 1.0000 0.64518 0.77650 0.69357 Biso 1.000 C + C43 1.0000 0.77310 0.78457 0.42273 Biso 1.000 C + C44 1.0000 0.21543 0.98853 0.42273 Biso 1.000 C + C45 1.0000 0.29734 0.46199 0.19013 Biso 1.000 C + C46 1.0000 0.53801 0.83535 0.19013 Biso 1.000 C + C47 1.0000 0.16465 0.70266 0.19013 Biso 1.000 C + C48 1.0000 0.70266 0.53801 0.80987 Biso 1.000 C + C49 1.0000 0.46199 0.16465 0.80986 Biso 1.000 C + C50 1.0000 0.01147 0.22690 0.42273 Biso 1.000 C + C51 1.0000 0.83535 0.29734 0.80987 Biso 1.000 C + C52 1.0000 0.20468 0.16868 0.52353 Biso 1.000 C + C53 1.0000 0.83132 0.03600 0.52352 Biso 1.000 C + C54 1.0000 0.36932 0.87133 0.14310 Biso 1.000 C + C55 1.0000 0.12867 0.49799 0.14310 Biso 1.000 C + C56 1.0000 0.50202 0.63068 0.14310 Biso 1.000 C + C57 1.0000 0.63068 0.12867 0.85690 Biso 1.000 C + C58 1.0000 0.87133 0.50201 0.85690 Biso 1.000 C + C59 1.0000 0.96400 0.79532 0.52352 Biso 1.000 C + C60 1.0000 0.45124 0.34479 0.91065 Biso 1.000 C + C61 1.0000 0.89355 0.54876 0.91065 Biso 1.000 C + C62 1.0000 0.65521 0.10645 0.91065 Biso 1.000 C + C63 1.0000 0.22350 0.86869 0.69357 Biso 1.000 C + C64 1.0000 0.13131 0.35482 0.69357 Biso 1.000 C + C65 1.0000 0.49798 0.36932 0.85690 Biso 1.000 C + C66 1.0000 0.16868 0.96400 0.47648 Biso 1.000 C + C67 1.0000 0.79532 0.83132 0.47647 Biso 1.000 C + C68 1.0000 0.32187 0.43977 0.24391 Biso 1.000 C + C69 1.0000 0.56022 0.88210 0.24391 Biso 1.000 C + C70 1.0000 0.11790 0.67813 0.24391 Biso 1.000 C + C71 1.0000 0.67813 0.56023 0.75609 Biso 1.000 C + C72 1.0000 0.43978 0.11790 0.75609 Biso 1.000 C + C73 1.0000 0.88210 0.32187 0.75609 Biso 1.000 C + C74 1.0000 0.98853 0.77310 0.57727 Biso 1.000 C + C75 1.0000 0.22690 0.21543 0.57727 Biso 1.000 C + C76 1.0000 0.78457 0.01147 0.57727 Biso 1.000 C + C77 1.0000 0.34479 0.89355 0.08935 Biso 1.000 C + C78 1.0000 0.10645 0.45124 0.08935 Biso 1.000 C + C79 1.0000 0.54876 0.65521 0.08935 Biso 1.000 C + C80 1.0000 0.53538 0.97852 0.63972 Biso 1.000 C + C81 1.0000 0.99671 0.48169 0.05850 Biso 1.000 C + C82 1.0000 0.03600 0.20468 0.47648 Biso 1.000 C + C83 1.0000 0.81501 0.15165 0.60829 Biso 1.000 C + C84 1.0000 0.90755 0.65309 0.38257 Biso 1.000 C + C85 1.0000 0.74554 0.09245 0.38257 Biso 1.000 C + C86 1.0000 0.34691 0.25446 0.38257 Biso 1.000 C + C87 1.0000 0.09245 0.34691 0.61743 Biso 1.000 C + C88 1.0000 0.25446 0.90755 0.61743 Biso 1.000 C + C89 1.0000 0.65309 0.74554 0.61743 Biso 1.000 C + C90 1.0000 0.24089 0.31976 0.04908 Biso 1.000 C + C91 1.0000 0.31976 0.07887 0.95092 Biso 1.000 C + C92 1.0000 0.07887 0.75911 0.04908 Biso 1.000 C + C93 1.0000 0.42577 0.01357 0.28407 Biso 1.000 C + C94 1.0000 0.58780 0.57423 0.28407 Biso 1.000 C + C95 1.0000 0.98643 0.41220 0.28407 Biso 1.000 C + C96 1.0000 0.57423 0.98643 0.71593 Biso 1.000 C + C97 1.0000 0.41220 0.42577 0.71593 Biso 1.000 C + C98 1.0000 0.66760 0.91756 0.24680 Biso 1.000 C + C99 1.0000 0.08244 0.75004 0.24680 Biso 1.000 C + C100 1.0000 0.68024 0.92113 0.04908 Biso 1.000 C + C101 1.0000 0.92113 0.24089 0.95092 Biso 1.000 C + C102 1.0000 0.75911 0.68024 0.95092 Biso 1.000 C + C103 1.0000 0.31468 0.04448 0.08100 Biso 1.000 C + C104 1.0000 0.84835 0.66336 0.60829 Biso 1.000 C + C105 1.0000 0.37782 0.39646 0.58578 Biso 1.000 C + C106 1.0000 0.01863 0.62218 0.58578 Biso 1.000 C + C107 1.0000 0.06314 0.35197 0.74759 Biso 1.000 C + C108 1.0000 0.28883 0.93686 0.74759 Biso 1.000 C + C109 1.0000 0.64803 0.71117 0.74759 Biso 1.000 C + C110 1.0000 0.93686 0.64803 0.25241 Biso 1.000 C + C111 1.0000 0.71117 0.06314 0.25241 Biso 1.000 C + C112 1.0000 0.35197 0.28883 0.25241 Biso 1.000 C + C113 1.0000 0.39646 0.01863 0.41422 Biso 1.000 C + C114 1.0000 0.60354 0.98137 0.58578 Biso 1.000 C + C115 1.0000 0.62218 0.60354 0.41422 Biso 1.000 C + C116 1.0000 0.98137 0.37782 0.41422 Biso 1.000 C + C117 1.0000 0.04448 0.72980 0.91900 Biso 1.000 C + C118 1.0000 0.68532 0.95552 0.91900 Biso 1.000 C + C119 1.0000 0.72980 0.68532 0.08100 Biso 1.000 C + C120 1.0000 0.95552 0.27020 0.08100 Biso 1.000 C + C121 1.0000 0.24996 0.33240 0.24680 Biso 1.000 C + C122 1.0000 0.33240 0.08244 0.75320 Biso 1.000 C + C123 1.0000 0.27020 0.31468 0.91900 Biso 1.000 C + C124 1.0000 0.75004 0.66760 0.75320 Biso 1.000 C + C125 1.0000 0.00359 0.45059 0.97986 Biso 1.000 C + C126 1.0000 0.54941 0.55300 0.97986 Biso 1.000 C + C127 1.0000 0.44700 0.99641 0.97986 Biso 1.000 C + C128 1.0000 0.99641 0.54941 0.02014 Biso 1.000 C + C129 1.0000 0.45059 0.44700 0.02014 Biso 1.000 C + C130 1.0000 0.55300 0.00359 0.02014 Biso 1.000 C + C131 1.0000 0.67024 0.78391 0.31315 Biso 1.000 C + C132 1.0000 0.88634 0.67024 0.68685 Biso 1.000 C + C133 1.0000 0.21609 0.88634 0.31315 Biso 1.000 C + C134 1.0000 0.14836 0.81831 0.27470 Biso 1.000 C + C135 1.0000 0.18169 0.33005 0.27470 Biso 1.000 C + C136 1.0000 0.33005 0.14837 0.72530 Biso 1.000 C + C137 1.0000 0.85164 0.18169 0.72530 Biso 1.000 C + C138 1.0000 0.81831 0.66995 0.72530 Biso 1.000 C + C139 1.0000 0.91756 0.24996 0.75320 Biso 1.000 C + C140 1.0000 0.33664 0.18499 0.60829 Biso 1.000 C + C141 1.0000 0.66995 0.85163 0.27470 Biso 1.000 C + C142 1.0000 0.78391 0.11366 0.68685 Biso 1.000 C + C143 1.0000 0.11366 0.32976 0.31315 Biso 1.000 C + C144 1.0000 0.78034 0.66308 0.64670 Biso 1.000 C + C145 1.0000 0.74910 0.08338 0.58029 Biso 1.000 C + C146 1.0000 0.32976 0.21609 0.68685 Biso 1.000 C + C147 1.0000 0.33428 0.25090 0.58029 Biso 1.000 C + C148 1.0000 0.91662 0.66572 0.58029 Biso 1.000 C + C149 1.0000 0.99907 0.41577 0.08638 Biso 1.000 C + C150 1.0000 0.58423 0.58330 0.08638 Biso 1.000 C + C151 1.0000 0.00093 0.58423 0.91362 Biso 1.000 C + C152 1.0000 0.41577 0.41670 0.91362 Biso 1.000 C + C153 1.0000 0.58330 0.99907 0.91362 Biso 1.000 C + C154 1.0000 0.41670 0.00093 0.08638 Biso 1.000 C + C155 1.0000 0.25090 0.91662 0.41971 Biso 1.000 C + C156 1.0000 0.08338 0.33428 0.41971 Biso 1.000 C + C157 1.0000 0.66308 0.88275 0.35330 Biso 1.000 C + C158 1.0000 0.11725 0.78034 0.35330 Biso 1.000 C + C159 1.0000 0.88275 0.21966 0.64670 Biso 1.000 C + C160 1.0000 0.21966 0.33692 0.35330 Biso 1.000 C + C161 1.0000 0.66572 0.74910 0.41971 Biso 1.000 C + C162 1.0000 0.33692 0.11725 0.64670 Biso 1.000 C + H1 1.0000 0.47813 0.60416 0.87858 Biso 1.000 H + H2 1.0000 0.26735 0.43892 0.12244 Biso 1.000 H + H3 1.0000 0.14480 0.93748 0.21195 Biso 1.000 H + H4 1.0000 0.79268 0.85520 0.21195 Biso 1.000 H + H5 1.0000 0.87397 0.47813 0.12142 Biso 1.000 H + H6 1.0000 0.52187 0.39584 0.12142 Biso 1.000 H + H7 1.0000 0.60416 0.12603 0.12142 Biso 1.000 H + H8 1.0000 0.12603 0.52187 0.87858 Biso 1.000 H + H9 1.0000 0.56108 0.82843 0.12244 Biso 1.000 H + H10 1.0000 0.06252 0.20732 0.21195 Biso 1.000 H + H11 1.0000 0.17157 0.73265 0.12244 Biso 1.000 H + H12 1.0000 0.10560 0.50491 0.21080 Biso 1.000 H + H13 1.0000 0.43892 0.17157 0.87756 Biso 1.000 H + H14 1.0000 0.82843 0.26735 0.87756 Biso 1.000 H + H15 1.0000 0.93401 0.77224 0.45585 Biso 1.000 H + H16 1.0000 0.22776 0.16176 0.45585 Biso 1.000 H + H17 1.0000 0.83824 0.06599 0.45585 Biso 1.000 H + H18 1.0000 0.39931 0.89440 0.21080 Biso 1.000 H + H19 1.0000 0.49509 0.60069 0.21080 Biso 1.000 H + H20 1.0000 0.60069 0.10560 0.78920 Biso 1.000 H + H21 1.0000 0.89440 0.49509 0.78920 Biso 1.000 H + H22 1.0000 0.39584 0.87397 0.87858 Biso 1.000 H + H23 1.0000 0.50491 0.39931 0.78920 Biso 1.000 H + H24 1.0000 0.73265 0.56108 0.87756 Biso 1.000 H + H25 1.0000 0.85520 0.06252 0.78805 Biso 1.000 H + H26 1.0000 0.16277 0.14399 0.74937 Biso 1.000 H + H27 1.0000 0.93748 0.79268 0.78805 Biso 1.000 H + H28 1.0000 0.06599 0.22776 0.54415 Biso 1.000 H + H29 1.0000 0.31456 0.50390 0.41601 Biso 1.000 H + H30 1.0000 0.49610 0.81066 0.41601 Biso 1.000 H + H31 1.0000 0.18934 0.68544 0.41601 Biso 1.000 H + H32 1.0000 0.68544 0.49610 0.58399 Biso 1.000 H + H33 1.0000 0.50390 0.18934 0.58399 Biso 1.000 H + H34 1.0000 0.81066 0.31456 0.58399 Biso 1.000 H + H35 1.0000 0.98122 0.83723 0.74937 Biso 1.000 H + H36 1.0000 0.85601 0.01878 0.74937 Biso 1.000 H + H37 1.0000 0.35209 0.82942 0.91723 Biso 1.000 H + H38 1.0000 0.17058 0.52267 0.91723 Biso 1.000 H + H39 1.0000 0.20732 0.14480 0.78805 Biso 1.000 H + H40 1.0000 0.47733 0.64791 0.91723 Biso 1.000 H + H41 1.0000 0.82942 0.47733 0.08277 Biso 1.000 H + H42 1.0000 0.52267 0.35209 0.08277 Biso 1.000 H + H43 1.0000 0.01878 0.16277 0.25063 Biso 1.000 H + H44 1.0000 0.83723 0.85601 0.25063 Biso 1.000 H + H45 1.0000 0.14399 0.98122 0.25063 Biso 1.000 H + H46 1.0000 0.27082 0.45935 0.45465 Biso 1.000 H + H47 1.0000 0.54065 0.81147 0.45465 Biso 1.000 H + H48 1.0000 0.18853 0.72918 0.45465 Biso 1.000 H + H49 1.0000 0.72918 0.54065 0.54535 Biso 1.000 H + H50 1.0000 0.45935 0.18853 0.54535 Biso 1.000 H + H51 1.0000 0.81147 0.27082 0.54535 Biso 1.000 H + H52 1.0000 0.64791 0.17058 0.08277 Biso 1.000 H + H53 1.0000 0.77224 0.83824 0.54415 Biso 1.000 H + H54 1.0000 0.69507 0.58325 0.64119 Biso 1.000 H + H55 1.0000 0.31487 0.48650 0.08131 Biso 1.000 H + H56 1.0000 0.56662 0.63436 0.32733 Biso 1.000 H + H57 1.0000 0.06774 0.43338 0.32733 Biso 1.000 H + H58 1.0000 0.36564 0.93226 0.32733 Biso 1.000 H + H59 1.0000 0.26561 0.23328 0.33929 Biso 1.000 H + H60 1.0000 0.96767 0.73439 0.33929 Biso 1.000 H + H61 1.0000 0.89997 0.30103 0.99407 Biso 1.000 H + H62 1.0000 0.40106 0.10003 0.99407 Biso 1.000 H + H63 1.0000 0.69897 0.59894 0.99407 Biso 1.000 H + H64 1.0000 0.63436 0.06774 0.67267 Biso 1.000 H + H65 1.0000 0.10003 0.69897 0.00593 Biso 1.000 H + H66 1.0000 0.30103 0.40106 0.00593 Biso 1.000 H + H67 1.0000 0.22402 0.01962 0.36396 Biso 1.000 H + H68 1.0000 0.79560 0.77598 0.36396 Biso 1.000 H + H69 1.0000 0.98038 0.20440 0.36396 Biso 1.000 H + H70 1.0000 0.44265 0.31370 0.96944 Biso 1.000 H + H71 1.0000 0.87106 0.55735 0.96944 Biso 1.000 H + H72 1.0000 0.68630 0.12894 0.96944 Biso 1.000 H + H73 1.0000 0.55735 0.68630 0.03056 Biso 1.000 H + H74 1.0000 0.59894 0.89997 0.00593 Biso 1.000 H + H75 1.0000 0.12894 0.44265 0.03056 Biso 1.000 H + H76 1.0000 0.93226 0.56662 0.67267 Biso 1.000 H + H77 1.0000 0.03233 0.26561 0.66071 Biso 1.000 H + H78 1.0000 0.98284 0.22910 0.67725 Biso 1.000 H + H79 1.0000 0.42040 0.31616 0.65614 Biso 1.000 H + H80 1.0000 0.89576 0.57960 0.65614 Biso 1.000 H + H81 1.0000 0.68384 0.10424 0.65614 Biso 1.000 H + H82 1.0000 0.57960 0.68384 0.34386 Biso 1.000 H + H83 1.0000 0.10424 0.42040 0.34386 Biso 1.000 H + H84 1.0000 0.31616 0.89576 0.34386 Biso 1.000 H + H85 1.0000 0.75374 0.98284 0.32275 Biso 1.000 H + H86 1.0000 0.43338 0.36564 0.67267 Biso 1.000 H + H87 1.0000 0.22910 0.24626 0.32275 Biso 1.000 H + H88 1.0000 0.91294 0.35051 0.01057 Biso 1.000 H + H89 1.0000 0.43757 0.08706 0.01057 Biso 1.000 H + H90 1.0000 0.64949 0.56243 0.01057 Biso 1.000 H + H91 1.0000 0.08706 0.64949 0.98943 Biso 1.000 H + H92 1.0000 0.56243 0.91294 0.98943 Biso 1.000 H + H93 1.0000 0.35051 0.43757 0.98943 Biso 1.000 H + H94 1.0000 0.23328 0.96767 0.66071 Biso 1.000 H + H95 1.0000 0.73439 0.76672 0.66071 Biso 1.000 H + H96 1.0000 0.01716 0.77090 0.32275 Biso 1.000 H + H97 1.0000 0.31370 0.87106 0.03056 Biso 1.000 H + H98 1.0000 0.77598 0.98038 0.63604 Biso 1.000 H + H99 1.0000 0.20440 0.22402 0.63604 Biso 1.000 H + H100 1.0000 0.30493 0.41675 0.35881 Biso 1.000 H + H101 1.0000 0.16171 0.98153 0.58533 Biso 1.000 H + H102 1.0000 0.81982 0.83829 0.58533 Biso 1.000 H + H103 1.0000 0.01847 0.18018 0.58533 Biso 1.000 H + H104 1.0000 0.50496 0.35179 0.74807 Biso 1.000 H + H105 1.0000 0.84682 0.49504 0.74807 Biso 1.000 H + H106 1.0000 0.64821 0.15318 0.74807 Biso 1.000 H + H107 1.0000 0.49504 0.64821 0.25193 Biso 1.000 H + H108 1.0000 0.58325 0.88818 0.35881 Biso 1.000 H + H109 1.0000 0.15318 0.50496 0.25193 Biso 1.000 H + H110 1.0000 0.83829 0.01847 0.41467 Biso 1.000 H + H111 1.0000 0.18018 0.16171 0.41467 Biso 1.000 H + H112 1.0000 0.98153 0.81982 0.41467 Biso 1.000 H + H113 1.0000 0.82837 0.31487 0.91869 Biso 1.000 H + H114 1.0000 0.48650 0.17163 0.91869 Biso 1.000 H + H115 1.0000 0.68513 0.51350 0.91869 Biso 1.000 H + H116 1.0000 0.17163 0.68513 0.08131 Biso 1.000 H + H117 1.0000 0.51350 0.82837 0.08131 Biso 1.000 H + H118 1.0000 0.35179 0.84682 0.25193 Biso 1.000 H + H119 1.0000 0.11182 0.69507 0.35881 Biso 1.000 H + H120 1.0000 0.41675 0.11182 0.64119 Biso 1.000 H + H121 1.0000 0.88818 0.30493 0.64119 Biso 1.000 H + H122 1.0000 0.01962 0.79560 0.63604 Biso 1.000 H + H123 1.0000 0.89068 0.35296 0.69729 Biso 1.000 H + H124 1.0000 0.46228 0.10932 0.69729 Biso 1.000 H + H125 1.0000 0.64704 0.53772 0.69729 Biso 1.000 H + H126 1.0000 0.10932 0.64704 0.30271 Biso 1.000 H + H127 1.0000 0.53772 0.89068 0.30271 Biso 1.000 H + H128 1.0000 0.35296 0.46228 0.30271 Biso 1.000 H + H129 1.0000 0.22151 0.97160 0.30782 Biso 1.000 H + H130 1.0000 0.75008 0.77849 0.30782 Biso 1.000 H + H131 1.0000 0.02840 0.24992 0.30782 Biso 1.000 H + H132 1.0000 0.44516 0.36173 0.02555 Biso 1.000 H + H133 1.0000 0.91657 0.55484 0.02555 Biso 1.000 H + H134 1.0000 0.63827 0.08343 0.02555 Biso 1.000 H + H135 1.0000 0.55484 0.63827 0.97445 Biso 1.000 H + H136 1.0000 0.08343 0.44516 0.97445 Biso 1.000 H + H137 1.0000 0.36173 0.91657 0.97445 Biso 1.000 H + H138 1.0000 0.77849 0.02840 0.69218 Biso 1.000 H + H139 1.0000 0.24992 0.22151 0.69218 Biso 1.000 H + H140 1.0000 0.97160 0.75008 0.69218 Biso 1.000 H + H141 1.0000 0.16176 0.93401 0.54415 Biso 1.000 H + H142 1.0000 0.76672 0.03233 0.33929 Biso 1.000 H + H143 1.0000 0.24626 0.01716 0.67725 Biso 1.000 H + H144 1.0000 0.63491 0.77286 0.84321 Biso 1.000 H + H145 1.0000 0.43949 0.47125 0.49006 Biso 1.000 H + H146 1.0000 0.03176 0.56051 0.49006 Biso 1.000 H + H147 1.0000 0.80460 0.69840 0.17678 Biso 1.000 H + H148 1.0000 0.89381 0.19540 0.17678 Biso 1.000 H + H149 1.0000 0.30160 0.10619 0.17678 Biso 1.000 H + H150 1.0000 0.86205 0.63491 0.15679 Biso 1.000 H + H151 1.0000 0.77286 0.13795 0.15679 Biso 1.000 H + H152 1.0000 0.36509 0.22714 0.15679 Biso 1.000 H + H153 1.0000 0.52875 0.96824 0.49006 Biso 1.000 H + H154 1.0000 0.13795 0.36509 0.84321 Biso 1.000 H + H155 1.0000 0.01302 0.45171 0.83023 Biso 1.000 H + H156 1.0000 0.77090 0.75374 0.67725 Biso 1.000 H + H157 1.0000 0.83329 0.18957 0.34557 Biso 1.000 H + H158 1.0000 0.35628 0.16671 0.34557 Biso 1.000 H + H159 1.0000 0.81043 0.64372 0.34557 Biso 1.000 H + H160 1.0000 0.83336 0.14378 0.98808 Biso 1.000 H + H161 1.0000 0.31043 0.16664 0.98808 Biso 1.000 H + H162 1.0000 0.85622 0.68957 0.98808 Biso 1.000 H + H163 1.0000 0.22714 0.86205 0.84321 Biso 1.000 H + H164 1.0000 0.96824 0.43949 0.50994 Biso 1.000 H + H165 1.0000 0.56051 0.52875 0.50994 Biso 1.000 H + H166 1.0000 0.47125 0.03176 0.50994 Biso 1.000 H + H167 1.0000 0.54829 0.56132 0.83023 Biso 1.000 H + H168 1.0000 0.65365 0.88163 0.50292 Biso 1.000 H + H169 1.0000 0.22799 0.34635 0.50292 Biso 1.000 H + H170 1.0000 0.11837 0.77201 0.50292 Biso 1.000 H + H171 1.0000 0.34635 0.11837 0.49708 Biso 1.000 H + H172 1.0000 0.77202 0.65365 0.49708 Biso 1.000 H + H173 1.0000 0.88163 0.22799 0.49708 Biso 1.000 H + H174 1.0000 0.98698 0.54829 0.16977 Biso 1.000 H + H175 1.0000 0.56132 0.01302 0.16977 Biso 1.000 H + H176 1.0000 0.45171 0.43868 0.16977 Biso 1.000 H + H177 1.0000 0.67968 0.78502 0.16354 Biso 1.000 H + H178 1.0000 0.10534 0.32032 0.16354 Biso 1.000 H + H179 1.0000 0.21498 0.89466 0.16354 Biso 1.000 H + H180 1.0000 0.32032 0.21498 0.83646 Biso 1.000 H + H181 1.0000 0.89466 0.67968 0.83646 Biso 1.000 H + H182 1.0000 0.78502 0.10534 0.83646 Biso 1.000 H + H183 1.0000 0.19540 0.30160 0.82322 Biso 1.000 H + H184 1.0000 0.10619 0.80460 0.82322 Biso 1.000 H + H185 1.0000 0.69840 0.89381 0.82322 Biso 1.000 H + H186 1.0000 0.16664 0.85622 0.01192 Biso 1.000 H + H187 1.0000 0.68957 0.83336 0.01192 Biso 1.000 H + H188 1.0000 0.43868 0.98698 0.83023 Biso 1.000 H + H189 1.0000 0.16671 0.81043 0.65443 Biso 1.000 H + H190 1.0000 0.14378 0.31043 0.01192 Biso 1.000 H + H191 1.0000 0.97706 0.49994 0.32129 Biso 1.000 H + H192 1.0000 0.50006 0.47712 0.32129 Biso 1.000 H + H193 1.0000 0.47712 0.97706 0.67871 Biso 1.000 H + H194 1.0000 0.52288 0.02294 0.32129 Biso 1.000 H + H195 1.0000 0.49994 0.52288 0.67871 Biso 1.000 H + H196 1.0000 0.18957 0.35628 0.65443 Biso 1.000 H + H197 1.0000 0.64372 0.83329 0.65443 Biso 1.000 H + H198 1.0000 0.02294 0.50006 0.67871 Biso 1.000 H + Mg1 1.0000 0.29846 0.30760 0.52720 Biso 1.000 Mg + Mg2 1.0000 0.96512 0.64094 0.86059 Biso 1.000 Mg + Mg3 1.0000 0.67582 0.03488 0.86059 Biso 1.000 Mg + Mg4 1.0000 0.35906 0.32418 0.86059 Biso 1.000 Mg + Mg5 1.0000 0.70154 0.69240 0.47280 Biso 1.000 Mg + Mg6 1.0000 0.99085 0.29846 0.47280 Biso 1.000 Mg + Mg7 1.0000 0.30761 0.00915 0.47280 Biso 1.000 Mg + Mg8 1.0000 0.00915 0.70154 0.52720 Biso 1.000 Mg + Mg9 1.0000 0.03488 0.35906 0.13941 Biso 1.000 Mg + Mg10 1.0000 0.32418 0.96512 0.13941 Biso 1.000 Mg + Mg11 1.0000 0.64094 0.67582 0.13941 Biso 1.000 Mg + Mg12 1.0000 0.63180 0.97428 0.19390 Biso 1.000 Mg + Mg13 1.0000 0.34248 0.36820 0.19390 Biso 1.000 Mg + Mg14 1.0000 0.02572 0.65752 0.19390 Biso 1.000 Mg + Mg15 1.0000 0.36820 0.02572 0.80610 Biso 1.000 Mg + Mg16 1.0000 0.65752 0.63180 0.80610 Biso 1.000 Mg + Mg17 1.0000 0.69239 0.99085 0.52720 Biso 1.000 Mg + Mg18 1.0000 0.97428 0.34248 0.80610 Biso 1.000 Mg + N1 1.0000 0.95429 0.81467 0.68512 Biso 1.000 N + N2 1.0000 0.80628 0.28762 0.64827 Biso 1.000 N + N3 1.0000 0.48134 0.19372 0.64827 Biso 1.000 N + N4 1.0000 0.28762 0.48134 0.35173 Biso 1.000 N + N5 1.0000 0.19372 0.71238 0.35173 Biso 1.000 N + N6 1.0000 0.51866 0.80628 0.35173 Biso 1.000 N + N7 1.0000 0.71238 0.51866 0.64827 Biso 1.000 N + N8 1.0000 0.24481 0.99503 0.58316 Biso 1.000 N + N9 1.0000 0.47294 0.62097 0.98149 Biso 1.000 N + N10 1.0000 0.86039 0.04571 0.68512 Biso 1.000 N + N11 1.0000 0.32838 0.41689 0.08351 Biso 1.000 N + N12 1.0000 0.58311 0.91149 0.08351 Biso 1.000 N + N13 1.0000 0.08851 0.67162 0.08351 Biso 1.000 N + N14 1.0000 0.67162 0.58311 0.91649 Biso 1.000 N + N15 1.0000 0.41689 0.08851 0.91649 Biso 1.000 N + N16 1.0000 0.91149 0.32838 0.91649 Biso 1.000 N + N17 1.0000 0.99503 0.75022 0.41684 Biso 1.000 N + N18 1.0000 0.24978 0.24481 0.41684 Biso 1.000 N + N19 1.0000 0.75519 0.00497 0.41684 Biso 1.000 N + N20 1.0000 0.33829 0.91644 0.24977 Biso 1.000 N + N21 1.0000 0.08356 0.42186 0.24977 Biso 1.000 N + N22 1.0000 0.18533 0.13961 0.68512 Biso 1.000 N + N23 1.0000 0.57814 0.66171 0.24977 Biso 1.000 N + N24 1.0000 0.91644 0.57814 0.75023 Biso 1.000 N + N25 1.0000 0.42186 0.33829 0.75023 Biso 1.000 N + N26 1.0000 0.00497 0.24978 0.58316 Biso 1.000 N + N27 1.0000 0.13961 0.95429 0.31488 Biso 1.000 N + N28 1.0000 0.81467 0.86039 0.31488 Biso 1.000 N + N29 1.0000 0.04571 0.18533 0.31488 Biso 1.000 N + N30 1.0000 0.52706 0.37903 0.01851 Biso 1.000 N + N31 1.0000 0.85197 0.47294 0.01851 Biso 1.000 N + N32 1.0000 0.62097 0.14803 0.01851 Biso 1.000 N + N33 1.0000 0.14803 0.52706 0.98149 Biso 1.000 N + N34 1.0000 0.37903 0.85197 0.98149 Biso 1.000 N + N35 1.0000 0.66171 0.08356 0.75023 Biso 1.000 N + N36 1.0000 0.75022 0.75519 0.58316 Biso 1.000 N + O1 1.0000 0.95572 0.25935 0.25478 Biso 1.000 O + O2 1.0000 0.28901 0.92601 0.92138 Biso 1.000 O + O3 1.0000 0.98890 0.34951 0.34709 Biso 1.000 O + O4 1.0000 0.65050 0.63939 0.34709 Biso 1.000 O + O5 1.0000 0.36061 0.01110 0.34709 Biso 1.000 O + O6 1.0000 0.67778 0.98382 0.98619 Biso 1.000 O + O7 1.0000 0.01618 0.69396 0.98619 Biso 1.000 O + O8 1.0000 0.34109 0.05549 0.66578 Biso 1.000 O + O9 1.0000 0.94451 0.28560 0.66578 Biso 1.000 O + O10 1.0000 0.71440 0.65891 0.66578 Biso 1.000 O + O11 1.0000 0.65891 0.94451 0.33422 Biso 1.000 O + O12 1.0000 0.05549 0.71440 0.33422 Biso 1.000 O + O13 1.0000 0.28560 0.34109 0.33422 Biso 1.000 O + O14 1.0000 0.00778 0.38883 0.99897 Biso 1.000 O + O15 1.0000 0.61117 0.61895 0.99897 Biso 1.000 O + O16 1.0000 0.38105 0.99222 0.99897 Biso 1.000 O + O17 1.0000 0.32557 0.27784 0.66765 Biso 1.000 O + O18 1.0000 0.72216 0.04773 0.66765 Biso 1.000 O + O19 1.0000 0.95227 0.67442 0.66765 Biso 1.000 O + O20 1.0000 0.67443 0.72216 0.33235 Biso 1.000 O + O21 1.0000 0.27784 0.95227 0.33235 Biso 1.000 O + O22 1.0000 0.04773 0.32558 0.33235 Biso 1.000 O + O23 1.0000 0.99222 0.61117 0.00103 Biso 1.000 O + O24 1.0000 0.38883 0.38105 0.00103 Biso 1.000 O + O25 1.0000 0.61895 0.00778 0.00103 Biso 1.000 O + O26 1.0000 0.63939 0.98890 0.65291 Biso 1.000 O + O27 1.0000 0.63700 0.71099 0.92138 Biso 1.000 O + O28 1.0000 0.34950 0.36061 0.65291 Biso 1.000 O + O29 1.0000 0.69396 0.67778 0.01381 Biso 1.000 O + O30 1.0000 0.07399 0.36300 0.92138 Biso 1.000 O + O31 1.0000 0.36300 0.28901 0.07862 Biso 1.000 O + O32 1.0000 0.71099 0.07399 0.07862 Biso 1.000 O + O33 1.0000 0.92601 0.63700 0.07862 Biso 1.000 O + O34 1.0000 0.30363 0.04428 0.25477 Biso 1.000 O + O35 1.0000 0.74065 0.69637 0.25478 Biso 1.000 O + O36 1.0000 0.02966 0.62236 0.41201 Biso 1.000 O + O37 1.0000 0.37764 0.40730 0.41201 Biso 1.000 O + O38 1.0000 0.59270 0.97034 0.41201 Biso 1.000 O + O39 1.0000 0.97034 0.37764 0.58799 Biso 1.000 O + O40 1.0000 0.62236 0.59270 0.58799 Biso 1.000 O + O41 1.0000 0.40730 0.02966 0.58799 Biso 1.000 O + O42 1.0000 0.69637 0.95572 0.74523 Biso 1.000 O + O43 1.0000 0.04428 0.74065 0.74522 Biso 1.000 O + O44 1.0000 0.25935 0.30363 0.74522 Biso 1.000 O + O45 1.0000 0.65556 0.68285 0.68047 Biso 1.000 O + O46 1.0000 0.31715 0.97271 0.68047 Biso 1.000 O + O47 1.0000 0.02729 0.34444 0.68047 Biso 1.000 O + O48 1.0000 0.34444 0.31715 0.31953 Biso 1.000 O + O49 1.0000 0.68285 0.02729 0.31953 Biso 1.000 O + O50 1.0000 0.97271 0.65556 0.31953 Biso 1.000 O + O51 1.0000 0.32222 0.01618 0.01381 Biso 1.000 O + O52 1.0000 0.98382 0.30604 0.01381 Biso 1.000 O + O53 1.0000 0.01110 0.65049 0.65291 Biso 1.000 O + O54 1.0000 0.30604 0.32222 0.98619 Biso 1.000 O diff --git a/benchmarks/mof/structures/flue_gas/Al-PyrMOF.cif b/benchmarks/mof/structures/flue_gas/Al-PyrMOF.cif new file mode 100644 index 0000000000000000000000000000000000000000..60b9a8538959bd6fe9bf4dc74c3e61cd29368b86 --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/Al-PyrMOF.cif @@ -0,0 +1,185 @@ +data_image0 +_chemical_formula_structural OC4OC4OC4OC5O2COCOCOC5OC4OC4OC4OCOCOCOAl4OHOHOHOHC2HC5HC5HC5HC5HC5HC5HC5HC5HC2HC2HC2H33 +_chemical_formula_sum "O20 C88 Al4 H48" +_cell_length_a 30.779 +_cell_length_b 6.6323 +_cell_length_c 15.589 +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 90 + +_space_group_name_H-M_alt "P 1" +_space_group_IT_number 1 + +loop_ + _space_group_symop_operation_xyz + 'x, y, z' + +loop_ + _atom_site_type_symbol + _atom_site_label + _atom_site_symmetry_multiplicity + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_occupancy + O O1 1.0 0.20590 0.34840 0.09560 1.0000 + C C1 1.0 0.17159 0.39543 0.26965 1.0000 + C C2 1.0 0.14561 0.38868 0.34163 1.0000 + C C3 1.0 0.09895 0.61376 0.27998 1.0000 + C C4 1.0 0.12493 0.62051 0.20801 1.0000 + O O2 1.0 0.70590 0.84840 0.09560 1.0000 + C C5 1.0 0.67159 0.89543 0.26965 1.0000 + C C6 1.0 0.64561 0.88868 0.34163 1.0000 + C C7 1.0 0.59895 0.11376 0.27998 1.0000 + C C8 1.0 0.62493 0.12051 0.20801 1.0000 + O O3 1.0 0.79410 0.65160 0.09560 1.0000 + C C9 1.0 0.82841 0.60457 0.26965 1.0000 + C C10 1.0 0.85439 0.61132 0.34163 1.0000 + C C11 1.0 0.90105 0.38624 0.27998 1.0000 + C C12 1.0 0.87507 0.37949 0.20801 1.0000 + O O4 1.0 0.29410 0.15160 0.09560 1.0000 + C C13 1.0 0.33875 0.98866 0.20284 1.0000 + C C14 1.0 0.32841 0.10457 0.26965 1.0000 + C C15 1.0 0.35439 0.11132 0.34163 1.0000 + C C16 1.0 0.40105 0.88624 0.27998 1.0000 + C C17 1.0 0.37507 0.87949 0.20801 1.0000 + O O5 1.0 0.79410 0.34840 0.90440 1.0000 + O O6 1.0 0.29410 0.84840 0.90440 1.0000 + C C18 1.0 0.33875 0.01134 0.79716 1.0000 + O O7 1.0 0.20590 0.65160 0.90440 1.0000 + C C19 1.0 0.16125 0.48866 0.79716 1.0000 + O O8 1.0 0.70590 0.15160 0.90440 1.0000 + C C20 1.0 0.66125 0.98866 0.79716 1.0000 + O O9 1.0 0.79410 0.65160 0.90440 1.0000 + C C21 1.0 0.83875 0.48866 0.79716 1.0000 + C C22 1.0 0.82841 0.60457 0.73035 1.0000 + C C23 1.0 0.85439 0.61132 0.65837 1.0000 + C C24 1.0 0.90105 0.38624 0.72002 1.0000 + C C25 1.0 0.87507 0.37949 0.79199 1.0000 + O O10 1.0 0.29410 0.15160 0.90440 1.0000 + C C26 1.0 0.32841 0.10457 0.73035 1.0000 + C C27 1.0 0.35439 0.11132 0.65837 1.0000 + C C28 1.0 0.40105 0.88624 0.72002 1.0000 + C C29 1.0 0.37507 0.87949 0.79199 1.0000 + O O11 1.0 0.20590 0.34840 0.90440 1.0000 + C C30 1.0 0.17159 0.39543 0.73035 1.0000 + C C31 1.0 0.14561 0.38868 0.65837 1.0000 + C C32 1.0 0.09895 0.61376 0.72002 1.0000 + C C33 1.0 0.12493 0.62051 0.79199 1.0000 + O O12 1.0 0.70590 0.84840 0.90440 1.0000 + C C34 1.0 0.67159 0.89543 0.73035 1.0000 + C C35 1.0 0.64561 0.88868 0.65837 1.0000 + C C36 1.0 0.59895 0.11376 0.72002 1.0000 + C C37 1.0 0.62493 0.12051 0.79199 1.0000 + O O13 1.0 0.20590 0.65160 0.09560 1.0000 + C C38 1.0 0.16125 0.48866 0.20284 1.0000 + O O14 1.0 0.70590 0.15160 0.09560 1.0000 + C C39 1.0 0.66125 0.98866 0.20284 1.0000 + O O15 1.0 0.79410 0.34840 0.09560 1.0000 + C C40 1.0 0.83875 0.51134 0.20284 1.0000 + O O16 1.0 0.29410 0.84840 0.09560 1.0000 + Al Al1 1.0 0.25000 0.25000 0.00000 1.0000 + Al Al2 1.0 0.75000 0.75000 0.00000 1.0000 + Al Al3 1.0 0.75000 0.25000 0.00000 1.0000 + Al Al4 1.0 0.25000 0.75000 0.00000 1.0000 + O O17 1.0 0.28370 0.50000 0.00000 1.0000 + H H1 1.0 0.31560 0.50000 0.00000 1.0000 + O O18 1.0 0.78370 0.00000 0.00000 1.0000 + H H2 1.0 0.81560 0.00000 0.00000 1.0000 + O O19 1.0 0.71630 0.50000 0.00000 1.0000 + H H3 1.0 0.68440 0.50000 0.00000 1.0000 + O O20 1.0 0.21630 0.00000 0.00000 1.0000 + H H4 1.0 0.18440 0.00000 0.00000 1.0000 + C C41 1.0 0.19440 0.50000 0.12230 1.0000 + C C42 1.0 0.02490 0.50000 0.33930 1.0000 + H H5 1.0 0.04160 0.50000 0.28920 1.0000 + C C43 1.0 0.09010 0.50000 0.42570 1.0000 + C C44 1.0 0.04410 0.50000 0.42130 1.0000 + C C45 1.0 0.10929 0.50000 0.34679 1.0000 + C C46 1.0 0.69440 0.00000 0.12230 1.0000 + C C47 1.0 0.52490 0.00000 0.33930 1.0000 + H H6 1.0 0.54160 0.00000 0.28920 1.0000 + C C48 1.0 0.59010 0.00000 0.42570 1.0000 + C C49 1.0 0.54410 0.00000 0.42130 1.0000 + C C50 1.0 0.60929 0.00000 0.34679 1.0000 + C C51 1.0 0.80560 0.50000 0.12230 1.0000 + C C52 1.0 0.97510 0.50000 0.33930 1.0000 + H H7 1.0 0.95840 0.50000 0.28920 1.0000 + C C53 1.0 0.90990 0.50000 0.42570 1.0000 + C C54 1.0 0.95590 0.50000 0.42130 1.0000 + C C55 1.0 0.89071 0.50000 0.34679 1.0000 + C C56 1.0 0.30560 0.00000 0.12230 1.0000 + C C57 1.0 0.47510 0.00000 0.33930 1.0000 + H H8 1.0 0.45840 0.00000 0.28920 1.0000 + C C58 1.0 0.40990 0.00000 0.42570 1.0000 + C C59 1.0 0.45590 0.00000 0.42130 1.0000 + C C60 1.0 0.39071 0.00000 0.34679 1.0000 + C C61 1.0 0.80560 0.50000 0.87770 1.0000 + C C62 1.0 0.97510 0.50000 0.66070 1.0000 + H H9 1.0 0.95840 0.50000 0.71080 1.0000 + C C63 1.0 0.90990 0.50000 0.57430 1.0000 + C C64 1.0 0.95590 0.50000 0.57870 1.0000 + C C65 1.0 0.89071 0.50000 0.65321 1.0000 + C C66 1.0 0.30560 0.00000 0.87770 1.0000 + C C67 1.0 0.47510 0.00000 0.66070 1.0000 + H H10 1.0 0.45840 0.00000 0.71080 1.0000 + C C68 1.0 0.40990 0.00000 0.57430 1.0000 + C C69 1.0 0.45590 0.00000 0.57870 1.0000 + C C70 1.0 0.39071 0.00000 0.65321 1.0000 + C C71 1.0 0.19440 0.50000 0.87770 1.0000 + C C72 1.0 0.02490 0.50000 0.66070 1.0000 + H H11 1.0 0.04160 0.50000 0.71080 1.0000 + C C73 1.0 0.09010 0.50000 0.57430 1.0000 + C C74 1.0 0.04410 0.50000 0.57870 1.0000 + C C75 1.0 0.10929 0.50000 0.65321 1.0000 + C C76 1.0 0.69440 0.00000 0.87770 1.0000 + C C77 1.0 0.52490 0.00000 0.66070 1.0000 + H H12 1.0 0.54160 0.00000 0.71080 1.0000 + C C78 1.0 0.59010 0.00000 0.57430 1.0000 + C C79 1.0 0.54410 0.00000 0.57870 1.0000 + C C80 1.0 0.60929 0.00000 0.65321 1.0000 + C C81 1.0 0.02240 0.50000 0.50000 1.0000 + C C82 1.0 0.11390 0.50000 0.50000 1.0000 + H H13 1.0 0.14480 0.50000 0.50000 1.0000 + C C83 1.0 0.52240 0.00000 0.50000 1.0000 + C C84 1.0 0.61390 0.00000 0.50000 1.0000 + H H14 1.0 0.64480 0.00000 0.50000 1.0000 + C C85 1.0 0.97760 0.50000 0.50000 1.0000 + C C86 1.0 0.88610 0.50000 0.50000 1.0000 + H H15 1.0 0.85520 0.50000 0.50000 1.0000 + C C87 1.0 0.47760 0.00000 0.50000 1.0000 + C C88 1.0 0.38610 0.00000 0.50000 1.0000 + H H16 1.0 0.35520 0.00000 0.50000 1.0000 + H H17 1.0 0.70417 0.81367 0.26919 1.0000 + H H18 1.0 0.65486 0.78752 0.39786 1.0000 + H H19 1.0 0.56789 0.20721 0.28279 1.0000 + H H20 1.0 0.61712 0.23049 0.15396 1.0000 + H H21 1.0 0.20417 0.31367 0.26919 1.0000 + H H22 1.0 0.15486 0.28752 0.39786 1.0000 + H H23 1.0 0.06789 0.70721 0.28279 1.0000 + H H24 1.0 0.11712 0.73049 0.15396 1.0000 + H H25 1.0 0.79583 0.68633 0.26919 1.0000 + H H26 1.0 0.84514 0.71248 0.39786 1.0000 + H H27 1.0 0.93211 0.29279 0.28279 1.0000 + H H28 1.0 0.88288 0.26951 0.15396 1.0000 + H H29 1.0 0.29765 0.20023 0.26786 1.0000 + H H30 1.0 0.34514 0.21248 0.39786 1.0000 + H H31 1.0 0.43211 0.79279 0.28279 1.0000 + H H32 1.0 0.38509 0.77836 0.15229 1.0000 + H H33 1.0 0.79765 0.70023 0.73214 1.0000 + H H34 1.0 0.84514 0.71248 0.60214 1.0000 + H H35 1.0 0.93211 0.29279 0.71721 1.0000 + H H36 1.0 0.88509 0.27836 0.84771 1.0000 + H H37 1.0 0.29583 0.18633 0.73081 1.0000 + H H38 1.0 0.34514 0.21248 0.60214 1.0000 + H H39 1.0 0.43211 0.79279 0.71721 1.0000 + H H40 1.0 0.38288 0.76951 0.84604 1.0000 + H H41 1.0 0.20417 0.31367 0.73081 1.0000 + H H42 1.0 0.15486 0.28752 0.60214 1.0000 + H H43 1.0 0.06789 0.70721 0.71721 1.0000 + H H44 1.0 0.11712 0.73049 0.84604 1.0000 + H H45 1.0 0.70417 0.81367 0.73081 1.0000 + H H46 1.0 0.65486 0.78752 0.60214 1.0000 + H H47 1.0 0.56789 0.20721 0.71721 1.0000 + H H48 1.0 0.61712 0.23049 0.84604 1.0000 diff --git a/benchmarks/mof/structures/flue_gas/CALF20.cif b/benchmarks/mof/structures/flue_gas/CALF20.cif new file mode 100644 index 0000000000000000000000000000000000000000..a8cd85afe688a75219deeefab1c92e6649f848f5 --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/CALF20.cif @@ -0,0 +1,79 @@ +data_CALF20 +_audit_creation_date 2025-01-03 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P21/C' +_symmetry_Int_Tables_number 14 +_symmetry_cell_setting monoclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z + -x,y+1/2,-z+1/2 + -x,-y,-z + x,-y+1/2,z+1/2 +_cell_length_a 8.9138 +_cell_length_b 9.6935 +_cell_length_c 9.4836 +_cell_angle_alpha 90.0000 +_cell_angle_beta 115.8950 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.17588 0.05771 0.43679 0.01878 Uani 1.00 +N1 N 0.03080 -0.11080 0.36830 0.02235 Uani 1.00 +N2 N -0.09220 -0.14750 0.41000 0.02454 Uani 1.00 +N3 N -0.09920 -0.29140 0.22590 0.02563 Uani 1.00 +O1 O 0.40980 0.07610 0.61020 0.03235 Uani 1.00 +O2 O 0.67530 0.03070 0.67320 0.02972 Uani 1.00 +C1 C 0.02150 -0.19830 0.25880 0.02987 Uani 1.00 +H1A H 0.09320 -0.19550 0.20860 0.03600 Uiso 1.00 +C2 C -0.16550 -0.25540 0.32320 0.02964 Uani 1.00 +H2A H -0.25590 -0.30290 0.32890 0.03600 Uiso 1.00 +C3 C 0.52480 0.03080 0.58150 0.02323 Uani 1.00 +loop_ +_atom_site_aniso_label +_atom_site_aniso_U_11 +_atom_site_aniso_U_22 +_atom_site_aniso_U_33 +_atom_site_aniso_U_12 +_atom_site_aniso_U_13 +_atom_site_aniso_U_23 +Zn1 0.01910 0.01960 0.02120 -0.00037 0.01210 0.00021 +N1 0.02510 0.02230 0.02770 -0.00420 0.01900 -0.00430 +N2 0.02610 0.02640 0.02940 -0.00570 0.01980 -0.00540 +N3 0.02870 0.02630 0.02900 -0.00580 0.01920 -0.00810 +O1 0.01990 0.04770 0.03200 0.00370 0.01370 -0.00870 +O2 0.02170 0.03940 0.02870 0.00180 0.01160 -0.00580 +C1 0.03180 0.03110 0.03860 -0.01080 0.02640 -0.01070 +C2 0.03200 0.03190 0.03800 -0.01230 0.02730 -0.01110 +C3 0.01980 0.02350 0.02720 0.00070 0.01100 0.00160 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +Zn1 N1 2.007 . S +Zn1 O1 2.022 . S +Zn1 N3 2.016 2 S +Zn1 N2 2.091 3_556 S +Zn1 O2 2.189 3_656 S +N1 C1 1.315 . S +N1 N2 1.365 . S +N2 C2 1.315 . S +N2 Zn1 2.091 3_556 S +N3 C1 1.333 . S +N3 C2 1.341 . S +N3 Zn1 2.016 2_545 S +O1 C3 1.250 . S +O2 C3 1.240 . S +O2 Zn1 2.189 3_656 S +C1 H1A 0.950 . S +C2 H2A 0.950 . S +C3 C3 1.531 3_656 S diff --git a/benchmarks/mof/structures/flue_gas/MIL-120.cif b/benchmarks/mof/structures/flue_gas/MIL-120.cif new file mode 100644 index 0000000000000000000000000000000000000000..21eedbae0ed0f1bb90b66e8d264f8cbb672b6ae2 --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/MIL-120.cif @@ -0,0 +1,64 @@ +data_BUSQIQ_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 6.9941 +_cell_length_b 7.4890 +_cell_length_c 11.1461 +_cell_angle_alpha 107.8220 +_cell_angle_beta 106.3640 +_cell_angle_gamma 95.4664 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Al1 Al 0.29518 0.29518 0.59036 0.01267 Uiso 1.00 +Al2 Al 0.70482 0.70482 0.40964 0.01267 Uiso 1.00 +Al3 Al 0.00000 0.50000 0.50000 0.01267 Uiso 1.00 +Al4 Al 0.50000 1.00000 0.50000 0.01267 Uiso 1.00 +H1 H 0.99400 0.31000 0.64800 0.01267 Uiso 1.00 +H2 H 0.14200 0.97300 0.47800 0.01267 Uiso 1.00 +H3 H 0.65400 0.33800 0.64800 0.01267 Uiso 1.00 +H4 H 0.33600 0.50500 0.47800 0.01267 Uiso 1.00 +H5 H 0.00600 0.69000 0.35200 0.01267 Uiso 1.00 +H6 H 0.85800 0.02700 0.52200 0.01267 Uiso 1.00 +H7 H 0.34600 0.66200 0.35200 0.01267 Uiso 1.00 +H8 H 0.66400 0.49500 0.52200 0.01267 Uiso 1.00 +H9 H 0.55190 0.31210 -0.00000 0.01267 Uiso 1.00 +H10 H 0.44810 0.68790 -0.00000 0.01267 Uiso 1.00 +C1 C 0.42680 0.06950 0.75140 0.01267 Uiso 1.00 +C2 C 0.45580 0.03390 0.88040 0.01267 Uiso 1.00 +C3 C 0.32460 0.68190 0.75140 0.01267 Uiso 1.00 +C4 C 0.42460 0.84650 0.88040 0.01267 Uiso 1.00 +C5 C 0.57320 0.93050 0.24860 0.01267 Uiso 1.00 +C6 C 0.54420 0.96610 0.11960 0.01267 Uiso 1.00 +C7 C 0.67540 0.31810 0.24860 0.01267 Uiso 1.00 +C8 C 0.57540 0.15350 0.11960 0.01267 Uiso 1.00 +C9 C 0.53070 0.18490 0.00000 0.01267 Uiso 1.00 +C10 C 0.46930 0.81510 0.00000 0.01267 Uiso 1.00 +O1 O 0.02770 0.31620 0.58360 0.01267 Uiso 1.00 +O2 O 0.23550 0.04250 0.46700 0.01267 Uiso 1.00 +O3 O 0.32790 0.19900 0.73560 0.01267 Uiso 1.00 +O4 O 0.50340 0.97020 0.66940 0.01267 Uiso 1.00 +O5 O 0.55590 0.26740 0.58360 0.01267 Uiso 1.00 +O6 O 0.23150 0.42450 0.46700 0.01267 Uiso 1.00 +O7 O 0.40770 0.53660 0.73560 0.01267 Uiso 1.00 +O8 O 0.16600 0.69920 0.66940 0.01267 Uiso 1.00 +O9 O 0.97230 0.68380 0.41640 0.01267 Uiso 1.00 +O10 O 0.76450 0.95750 0.53300 0.01267 Uiso 1.00 +O11 O 0.67210 0.80100 0.26440 0.01267 Uiso 1.00 +O12 O 0.49660 0.02980 0.33060 0.01267 Uiso 1.00 +O13 O 0.44410 0.73260 0.41640 0.01267 Uiso 1.00 +O14 O 0.76850 0.57550 0.53300 0.01267 Uiso 1.00 +O15 O 0.59230 0.46340 0.26440 0.01267 Uiso 1.00 +O16 O 0.83400 0.30080 0.33060 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/flue_gas/MIL-96(Al).cif b/benchmarks/mof/structures/flue_gas/MIL-96(Al).cif new file mode 100644 index 0000000000000000000000000000000000000000..49b82762d6755cb6aa5dc3cfe2b6ce16d412db6d --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/MIL-96(Al).cif @@ -0,0 +1,1120 @@ +data_cm7b03203_si_003 +_audit_creation_date 2025-01-21 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 14.2900 +_cell_length_b 14.2900 +_cell_length_c 31.3000 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 120.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +O1 O 0.82863 0.99283 0.70681 0.05110 Uani 1.00 +O2 O 0.62232 0.05854 0.59420 0.05078 Uani 1.00 +O3 O 0.56890 0.95117 0.53712 0.06411 Uani 1.00 +C4 C 0.70600 0.93630 0.63241 0.05891 Uani 1.00 +H5 H 0.72690 0.00440 0.64510 0.07100 Uiso 1.00 +C6 C 0.64390 0.90620 0.59422 0.05929 Uani 1.00 +C7 C 0.60910 0.97520 0.57378 0.05387 Uani 1.00 +H8 H 0.39645 0.79395 0.49614 0.00000 Uiso 1.00 +H9 H 0.86732 0.66988 0.72275 0.00000 Uiso 1.00 +H10 H 0.77462 0.54924 0.95020 0.00000 Uiso 1.00 +O11 O 0.00717 0.83580 0.70681 0.05110 Uani 1.00 +O12 O 0.94146 0.56378 0.59420 0.05078 Uani 1.00 +O13 O 0.04883 0.61773 0.53712 0.06411 Uani 1.00 +C14 C 0.06370 0.76970 0.63241 0.05891 Uani 1.00 +H15 H 0.99560 0.72250 0.64510 0.07100 Uiso 1.00 +C16 C 0.09380 0.73770 0.59422 0.05929 Uani 1.00 +C17 C 0.02480 0.63390 0.57378 0.05387 Uani 1.00 +H18 H 0.20605 0.60250 0.49614 0.00000 Uiso 1.00 +H19 H 0.45075 0.22537 0.95019 0.00000 Uiso 1.00 +O20 O 0.16420 0.17137 0.70681 0.05110 Uani 1.00 +O21 O 0.43622 0.37768 0.59420 0.05078 Uani 1.00 +O22 O 0.38227 0.43110 0.53712 0.06411 Uani 1.00 +C23 C 0.23030 0.29400 0.63241 0.05891 Uani 1.00 +H24 H 0.27750 0.27310 0.64510 0.07100 Uiso 1.00 +C25 C 0.26230 0.35610 0.59422 0.05929 Uani 1.00 +C26 C 0.36610 0.39090 0.57378 0.05387 Uani 1.00 +H27 H 0.39750 0.60355 0.49614 0.00000 Uiso 1.00 +H28 H 0.80165 0.13109 0.72240 0.00000 Uiso 1.00 +H29 H 0.63445 0.14726 0.84378 0.00000 Uiso 1.00 +O30 O 0.17137 0.00717 0.20681 0.05110 Uani 1.00 +O31 O 0.37768 0.94146 0.09420 0.05078 Uani 1.00 +O32 O 0.43110 0.04883 0.03712 0.06411 Uani 1.00 +C33 C 0.29400 0.06370 0.13241 0.05891 Uani 1.00 +H34 H 0.27310 0.99560 0.14510 0.07100 Uiso 1.00 +C35 C 0.35610 0.09380 0.09422 0.05929 Uani 1.00 +C36 C 0.39090 0.02480 0.07378 0.05387 Uani 1.00 +H37 H 0.60355 0.20605 0.99614 0.00000 Uiso 1.00 +H38 H 0.13339 0.32882 0.22106 0.00000 Uiso 1.00 +H39 H 0.14968 0.51499 0.33850 0.00000 Uiso 1.00 +O40 O 0.99283 0.16420 0.20681 0.05110 Uani 1.00 +O41 O 0.05854 0.43622 0.09420 0.05078 Uani 1.00 +O42 O 0.95117 0.38227 0.03712 0.06411 Uani 1.00 +C43 C 0.93630 0.23030 0.13241 0.05891 Uani 1.00 +H44 H 0.00440 0.27750 0.14510 0.07100 Uiso 1.00 +C45 C 0.90620 0.26230 0.09422 0.05929 Uani 1.00 +C46 C 0.97520 0.36610 0.07378 0.05387 Uani 1.00 +H47 H 0.79395 0.39750 0.99614 0.00000 Uiso 1.00 +O48 O 0.83580 0.82863 0.20681 0.05110 Uani 1.00 +O49 O 0.56378 0.62232 0.09420 0.05078 Uani 1.00 +O50 O 0.61773 0.56890 0.03712 0.06411 Uani 1.00 +C51 C 0.76970 0.70600 0.13241 0.05891 Uani 1.00 +H52 H 0.72250 0.72690 0.14510 0.07100 Uiso 1.00 +C53 C 0.73770 0.64390 0.09422 0.05929 Uani 1.00 +C54 C 0.63390 0.60910 0.07378 0.05387 Uani 1.00 +H55 H 0.60250 0.39645 0.99614 0.00000 Uiso 1.00 +H56 H 0.22545 0.77455 0.45030 0.00000 Uiso 1.00 +O57 O 0.99283 0.82863 0.29319 0.05110 Uani 1.00 +O58 O 0.05854 0.62232 0.40580 0.05078 Uani 1.00 +O59 O 0.95117 0.56890 0.46288 0.06411 Uani 1.00 +C60 C 0.93630 0.70600 0.36759 0.05891 Uani 1.00 +H61 H 0.00440 0.72690 0.35490 0.07100 Uiso 1.00 +C62 C 0.90620 0.64390 0.40578 0.05929 Uani 1.00 +C63 C 0.97520 0.60910 0.42622 0.05387 Uani 1.00 +H64 H 0.79395 0.39645 0.50386 0.00000 Uiso 1.00 +H65 H 0.67316 0.87405 0.27918 0.00000 Uiso 1.00 +H66 H 0.54906 0.77453 0.04968 0.00000 Uiso 1.00 +H67 H 0.48717 0.85271 0.15622 0.00000 Uiso 1.00 +O68 O 0.83580 0.00717 0.29319 0.05110 Uani 1.00 +O69 O 0.56378 0.94146 0.40580 0.05078 Uani 1.00 +O70 O 0.61773 0.04883 0.46288 0.06411 Uani 1.00 +C71 C 0.76970 0.06370 0.36759 0.05891 Uani 1.00 +H72 H 0.72250 0.99560 0.35490 0.07100 Uiso 1.00 +C73 C 0.73770 0.09380 0.40578 0.05929 Uani 1.00 +C74 C 0.63390 0.02480 0.42622 0.05387 Uani 1.00 +H75 H 0.60250 0.20605 0.50386 0.00000 Uiso 1.00 +H76 H 0.36531 0.51499 0.16150 0.00000 Uiso 1.00 +O77 O 0.17137 0.16420 0.29319 0.05110 Uani 1.00 +O78 O 0.37768 0.43622 0.40580 0.05078 Uani 1.00 +O79 O 0.43110 0.38227 0.46288 0.06411 Uani 1.00 +C80 C 0.29400 0.23030 0.36759 0.05891 Uani 1.00 +H81 H 0.27310 0.27750 0.35490 0.07100 Uiso 1.00 +C82 C 0.35610 0.26230 0.40578 0.05929 Uani 1.00 +C83 C 0.39090 0.36610 0.42622 0.05387 Uani 1.00 +H84 H 0.60355 0.39750 0.50386 0.00000 Uiso 1.00 +H85 H 0.13151 0.80505 0.28094 0.00000 Uiso 1.00 +O86 O 0.00717 0.17137 0.79319 0.05110 Uani 1.00 +O87 O 0.94146 0.37768 0.90580 0.05078 Uani 1.00 +O88 O 0.04883 0.43110 0.96288 0.06411 Uani 1.00 +C89 C 0.06370 0.29400 0.86759 0.05891 Uani 1.00 +H90 H 0.99560 0.27310 0.85490 0.07100 Uiso 1.00 +C91 C 0.09380 0.35610 0.90578 0.05929 Uani 1.00 +C92 C 0.02480 0.39090 0.92622 0.05387 Uani 1.00 +H93 H 0.20605 0.60355 0.00386 0.00000 Uiso 1.00 +H94 H 0.32728 0.12552 0.77857 0.00000 Uiso 1.00 +O95 O 0.16420 0.99283 0.79319 0.05110 Uani 1.00 +O96 O 0.43622 0.05854 0.90580 0.05078 Uani 1.00 +O97 O 0.38227 0.95117 0.96288 0.06411 Uani 1.00 +C98 C 0.23030 0.93630 0.86759 0.05891 Uani 1.00 +H99 H 0.27750 0.00440 0.85490 0.07100 Uiso 1.00 +C100 C 0.26230 0.90620 0.90578 0.05929 Uani 1.00 +C101 C 0.36610 0.97520 0.92622 0.05387 Uani 1.00 +H102 H 0.39750 0.79395 0.00386 0.00000 Uiso 1.00 +H103 H 0.67622 0.47466 0.65259 0.00000 Uiso 1.00 +O104 O 0.82863 0.83580 0.79319 0.05110 Uani 1.00 +O105 O 0.62232 0.56378 0.90580 0.05078 Uani 1.00 +O106 O 0.56890 0.61773 0.96288 0.06411 Uani 1.00 +C107 C 0.70600 0.76970 0.86759 0.05891 Uani 1.00 +H108 H 0.72690 0.72250 0.85490 0.07100 Uiso 1.00 +C109 C 0.64390 0.73770 0.90578 0.05929 Uani 1.00 +C110 C 0.60910 0.63390 0.92622 0.05387 Uani 1.00 +H111 H 0.39645 0.60250 0.00386 0.00000 Uiso 1.00 +H112 H 0.77463 0.22537 0.54981 0.00000 Uiso 1.00 +H113 H 0.84500 0.36774 0.65751 0.00000 Uiso 1.00 +O114 O 0.17137 0.00717 0.29319 0.05110 Uani 1.00 +O115 O 0.37768 0.94146 0.40580 0.05078 Uani 1.00 +O116 O 0.43110 0.04883 0.46288 0.06411 Uani 1.00 +C117 C 0.29400 0.06370 0.36759 0.05891 Uani 1.00 +H118 H 0.27310 0.99560 0.35490 0.07100 Uiso 1.00 +C119 C 0.35610 0.09380 0.40578 0.05929 Uani 1.00 +C120 C 0.39090 0.02480 0.42622 0.05387 Uani 1.00 +H121 H 0.60355 0.20605 0.50386 0.00000 Uiso 1.00 +H122 H 0.13339 0.32878 0.27898 0.00000 Uiso 1.00 +H123 H 0.22544 0.45087 0.04972 0.00000 Uiso 1.00 +H124 H 0.14968 0.51499 0.16150 0.00000 Uiso 1.00 +O125 O 0.99283 0.16420 0.29319 0.05110 Uani 1.00 +O126 O 0.05854 0.43622 0.40580 0.05078 Uani 1.00 +O127 O 0.95117 0.38227 0.46288 0.06411 Uani 1.00 +C128 C 0.93630 0.23030 0.36759 0.05891 Uani 1.00 +H129 H 0.00440 0.27750 0.35490 0.07100 Uiso 1.00 +C130 C 0.90620 0.26230 0.40578 0.05929 Uani 1.00 +C131 C 0.97520 0.36610 0.42622 0.05387 Uani 1.00 +H132 H 0.79395 0.39750 0.50386 0.00000 Uiso 1.00 +O133 O 0.83580 0.82863 0.29319 0.05110 Uani 1.00 +O134 O 0.56378 0.62232 0.40580 0.05078 Uani 1.00 +O135 O 0.61773 0.56890 0.46288 0.06411 Uani 1.00 +C136 C 0.76970 0.70600 0.36759 0.05891 Uani 1.00 +H137 H 0.72250 0.72690 0.35490 0.07100 Uiso 1.00 +C138 C 0.73770 0.64390 0.40578 0.05929 Uani 1.00 +C139 C 0.63390 0.60910 0.42622 0.05387 Uani 1.00 +H140 H 0.60250 0.39645 0.50386 0.00000 Uiso 1.00 +H141 H 0.22545 0.77455 0.04971 0.00000 Uiso 1.00 +O142 O 0.82863 0.99283 0.79319 0.05110 Uani 1.00 +O143 O 0.62232 0.05854 0.90580 0.05078 Uani 1.00 +O144 O 0.56890 0.95117 0.96288 0.06411 Uani 1.00 +C145 C 0.70600 0.93630 0.86759 0.05891 Uani 1.00 +H146 H 0.72690 0.00440 0.85490 0.07100 Uiso 1.00 +C147 C 0.64390 0.90620 0.90578 0.05929 Uani 1.00 +C148 C 0.60910 0.97520 0.92622 0.05387 Uani 1.00 +H149 H 0.39645 0.79395 0.00386 0.00000 Uiso 1.00 +H150 H 0.86750 0.67305 0.78065 0.00000 Uiso 1.00 +H151 H 0.77462 0.54924 0.54980 0.00000 Uiso 1.00 +O152 O 0.00717 0.83580 0.79319 0.05110 Uani 1.00 +O153 O 0.94146 0.56378 0.90580 0.05078 Uani 1.00 +O154 O 0.04883 0.61773 0.96288 0.06411 Uani 1.00 +C155 C 0.06370 0.76970 0.86759 0.05891 Uani 1.00 +H156 H 0.99560 0.72250 0.85490 0.07100 Uiso 1.00 +C157 C 0.09380 0.73770 0.90578 0.05929 Uani 1.00 +C158 C 0.02480 0.63390 0.92622 0.05387 Uani 1.00 +H159 H 0.20605 0.60250 0.00386 0.00000 Uiso 1.00 +H160 H 0.45074 0.22537 0.54981 0.00000 Uiso 1.00 +O161 O 0.16420 0.17137 0.79319 0.05110 Uani 1.00 +O162 O 0.43622 0.37768 0.90580 0.05078 Uani 1.00 +O163 O 0.38227 0.43110 0.96288 0.06411 Uani 1.00 +C164 C 0.23030 0.29400 0.86759 0.05891 Uani 1.00 +H165 H 0.27750 0.27310 0.85490 0.07100 Uiso 1.00 +C166 C 0.26230 0.35610 0.90578 0.05929 Uani 1.00 +C167 C 0.36610 0.39090 0.92622 0.05387 Uani 1.00 +H168 H 0.39750 0.60355 0.00386 0.00000 Uiso 1.00 +H169 H 0.79810 0.12329 0.78023 0.00000 Uiso 1.00 +H170 H 0.63448 0.14732 0.65622 0.00000 Uiso 1.00 +O171 O 0.00717 0.17137 0.70681 0.05110 Uani 1.00 +O172 O 0.94146 0.37768 0.59420 0.05078 Uani 1.00 +O173 O 0.04883 0.43110 0.53712 0.06411 Uani 1.00 +C174 C 0.06370 0.29400 0.63241 0.05891 Uani 1.00 +H175 H 0.99560 0.27310 0.64510 0.07100 Uiso 1.00 +C176 C 0.09380 0.35610 0.59422 0.05929 Uani 1.00 +C177 C 0.02480 0.39090 0.57378 0.05387 Uani 1.00 +H178 H 0.20605 0.60355 0.49614 0.00000 Uiso 1.00 +H179 H 0.32680 0.12639 0.72066 0.00000 Uiso 1.00 +O180 O 0.16420 0.99283 0.70681 0.05110 Uani 1.00 +O181 O 0.43622 0.05854 0.59420 0.05078 Uani 1.00 +O182 O 0.38227 0.95117 0.53712 0.06411 Uani 1.00 +C183 C 0.23030 0.93630 0.63241 0.05891 Uani 1.00 +H184 H 0.27750 0.00440 0.64510 0.07100 Uiso 1.00 +C185 C 0.26230 0.90620 0.59422 0.05929 Uani 1.00 +C186 C 0.36610 0.97520 0.57378 0.05387 Uani 1.00 +H187 H 0.39750 0.79395 0.49614 0.00000 Uiso 1.00 +H188 H 0.67625 0.47461 0.84742 0.00000 Uiso 1.00 +O189 O 0.82863 0.83580 0.70681 0.05110 Uani 1.00 +O190 O 0.62232 0.56378 0.59420 0.05078 Uani 1.00 +O191 O 0.56890 0.61773 0.53712 0.06411 Uani 1.00 +C192 C 0.70600 0.76970 0.63241 0.05891 Uani 1.00 +H193 H 0.72690 0.72250 0.64510 0.07100 Uiso 1.00 +C194 C 0.64390 0.73770 0.59422 0.05929 Uani 1.00 +C195 C 0.60910 0.63390 0.57378 0.05387 Uani 1.00 +H196 H 0.39645 0.60250 0.49614 0.00000 Uiso 1.00 +H197 H 0.77462 0.22538 0.95020 0.00000 Uiso 1.00 +H198 H 0.84507 0.36775 0.84249 0.00000 Uiso 1.00 +O199 O 0.99283 0.82863 0.20681 0.05110 Uani 1.00 +O200 O 0.05854 0.62232 0.09420 0.05078 Uani 1.00 +O201 O 0.95117 0.56890 0.03712 0.06411 Uani 1.00 +C202 C 0.93630 0.70600 0.13241 0.05891 Uani 1.00 +H203 H 0.00440 0.72690 0.14510 0.07100 Uiso 1.00 +C204 C 0.90620 0.64390 0.09422 0.05929 Uani 1.00 +C205 C 0.97520 0.60910 0.07378 0.05387 Uani 1.00 +H206 H 0.79395 0.39645 0.99614 0.00000 Uiso 1.00 +H207 H 0.67306 0.87529 0.22127 0.00000 Uiso 1.00 +H208 H 0.54911 0.77456 0.45029 0.00000 Uiso 1.00 +H209 H 0.48716 0.85268 0.34378 0.00000 Uiso 1.00 +O210 O 0.83580 0.00717 0.20681 0.05110 Uani 1.00 +O211 O 0.56378 0.94146 0.09420 0.05078 Uani 1.00 +O212 O 0.61773 0.04883 0.03712 0.06411 Uani 1.00 +C213 C 0.76970 0.06370 0.13241 0.05891 Uani 1.00 +H214 H 0.72250 0.99560 0.14510 0.07100 Uiso 1.00 +C215 C 0.73770 0.09380 0.09422 0.05929 Uani 1.00 +C216 C 0.63390 0.02480 0.07378 0.05387 Uani 1.00 +H217 H 0.60250 0.20605 0.99614 0.00000 Uiso 1.00 +H218 H 0.22546 0.45092 0.45031 0.00000 Uiso 1.00 +H219 H 0.36531 0.51499 0.33850 0.00000 Uiso 1.00 +O220 O 0.17137 0.16420 0.20681 0.05110 Uani 1.00 +O221 O 0.37768 0.43622 0.09420 0.05078 Uani 1.00 +O222 O 0.43110 0.38227 0.03712 0.06411 Uani 1.00 +C223 C 0.29400 0.23030 0.13241 0.05891 Uani 1.00 +H224 H 0.27310 0.27750 0.14510 0.07100 Uiso 1.00 +C225 C 0.35610 0.26230 0.09422 0.05929 Uani 1.00 +C226 C 0.39090 0.36610 0.07378 0.05387 Uani 1.00 +H227 H 0.60355 0.39750 0.99614 0.00000 Uiso 1.00 +H228 H 0.13294 0.80252 0.22304 0.00000 Uiso 1.00 +Al229 Al 0.92604 0.07396 0.75000 0.04466 Uani 1.00 +O230 O 0.85142 0.14877 0.75172 0.04842 Uani 1.00 +Al231 Al 0.92604 0.85208 0.75000 0.04466 Uani 1.00 +O232 O 0.84727 0.70269 0.75126 0.04842 Uani 1.00 +Al233 Al 0.14792 0.07396 0.75000 0.04466 Uani 1.00 +O234 O 0.29741 0.14791 0.74980 0.04842 Uani 1.00 +Al235 Al 0.07396 0.92604 0.25000 0.04466 Uani 1.00 +O236 O 0.15246 0.85517 0.25159 0.04842 Uani 1.00 +Al237 Al 0.07396 0.14792 0.25000 0.04466 Uani 1.00 +O238 O 0.15325 0.29733 0.25002 0.04842 Uani 1.00 +Al239 Al 0.85208 0.92604 0.25000 0.04466 Uani 1.00 +O240 O 0.70260 0.85255 0.25005 0.04842 Uani 1.00 +Al241 Al 0.50000 -0.00000 0.50000 0.04422 Uani 1.00 +Al242 Al 0.00000 0.50000 0.50000 0.04422 Uani 1.00 +Al243 Al 0.50000 0.50000 0.50000 0.04422 Uani 1.00 +Al244 Al 0.50000 -0.00000 0.00000 0.04422 Uani 1.00 +Al245 Al 0.00000 0.50000 0.00000 0.04422 Uani 1.00 +Al246 Al 0.50000 0.50000 0.00000 0.04422 Uani 1.00 +Al247 Al 0.41534 0.83068 0.41659 0.04683 Uani 1.00 +O248 O 0.43275 0.86550 0.47476 0.04364 Uani 1.00 +O249 O 0.40497 0.81158 0.35797 0.07053 Uani 1.00 +Al250 Al 0.16932 0.58466 0.41659 0.04683 Uani 1.00 +O251 O 0.13450 0.56725 0.47476 0.04364 Uani 1.00 +O252 O 0.18870 0.59435 0.35503 0.07053 Uani 1.00 +Al253 Al 0.41534 0.58466 0.41659 0.04683 Uani 1.00 +O254 O 0.43275 0.56725 0.47476 0.04364 Uani 1.00 +O255 O 0.40565 0.59435 0.35503 0.07053 Uani 1.00 +Al256 Al 0.58466 0.16932 0.91659 0.04683 Uani 1.00 +O257 O 0.56725 0.13450 0.97476 0.04364 Uani 1.00 +O258 O 0.59334 0.18834 0.85797 0.07053 Uani 1.00 +Al259 Al 0.83068 0.41534 0.91659 0.04683 Uani 1.00 +O260 O 0.86550 0.43275 0.97476 0.04364 Uani 1.00 +O261 O 0.80483 0.40764 0.85843 0.07053 Uani 1.00 +Al262 Al 0.58466 0.41534 0.91659 0.04683 Uani 1.00 +O263 O 0.56725 0.43275 0.97476 0.04364 Uani 1.00 +O264 O 0.59921 0.40486 0.85834 0.07053 Uani 1.00 +Al265 Al 0.83068 0.41534 0.58341 0.04683 Uani 1.00 +O266 O 0.86550 0.43275 0.52524 0.04364 Uani 1.00 +O267 O 0.80486 0.40772 0.64158 0.07053 Uani 1.00 +Al268 Al 0.58466 0.16932 0.58341 0.04683 Uani 1.00 +O269 O 0.56725 0.13450 0.52524 0.04364 Uani 1.00 +O270 O 0.59336 0.18839 0.64203 0.07053 Uani 1.00 +Al271 Al 0.58466 0.41534 0.58341 0.04683 Uani 1.00 +O272 O 0.56725 0.43275 0.52524 0.04364 Uani 1.00 +O273 O 0.59920 0.40488 0.64166 0.07053 Uani 1.00 +Al274 Al 0.16932 0.58466 0.08341 0.04683 Uani 1.00 +O275 O 0.13450 0.56725 0.02524 0.04364 Uani 1.00 +O276 O 0.18870 0.59435 0.14497 0.07053 Uani 1.00 +Al277 Al 0.41534 0.83068 0.08341 0.04683 Uani 1.00 +O278 O 0.43275 0.86550 0.02524 0.04364 Uani 1.00 +O279 O 0.40498 0.81161 0.14203 0.07053 Uani 1.00 +Al280 Al 0.41534 0.58466 0.08341 0.04683 Uani 1.00 +O281 O 0.43275 0.56725 0.02524 0.04364 Uani 1.00 +O282 O 0.40565 0.59435 0.14497 0.07053 Uani 1.00 +O283 O 0.00000 0.00000 0.75000 0.03909 Uani 1.00 +O284 O 0.00000 0.00000 0.25000 0.03909 Uani 1.00 +O285 O 0.26387 0.73613 0.43201 0.05318 Uani 1.00 +O286 O 0.26387 0.52775 0.43201 0.05318 Uani 1.00 +O287 O 0.47226 0.73613 0.43200 0.05318 Uani 1.00 +O288 O 0.73614 0.26386 0.93201 0.05318 Uani 1.00 +O289 O 0.73614 0.47228 0.93201 0.05318 Uani 1.00 +O290 O 0.52772 0.26386 0.93201 0.05318 Uani 1.00 +O291 O 0.73614 0.26386 0.56799 0.05318 Uani 1.00 +O292 O 0.52772 0.26386 0.56799 0.05318 Uani 1.00 +O293 O 0.73614 0.47227 0.56799 0.05318 Uani 1.00 +O294 O 0.26387 0.73613 0.06799 0.05318 Uani 1.00 +O295 O 0.47224 0.73612 0.06798 0.05318 Uani 1.00 +O296 O 0.26386 0.52773 0.06800 0.05318 Uani 1.00 +C297 C 0.73650 0.86825 0.65150 0.05511 Uani 1.00 +C298 C 0.61800 0.80900 0.57680 0.06433 Uani 1.00 +H299 H 0.57900 0.78950 0.55070 0.07700 Uiso 1.00 +C300 C 0.80300 0.90150 0.69154 0.05253 Uani 1.00 +C301 C 0.13175 0.86825 0.65150 0.05511 Uani 1.00 +C302 C 0.19100 0.80900 0.57680 0.06433 Uani 1.00 +H303 H 0.21050 0.78950 0.55070 0.07700 Uiso 1.00 +C304 C 0.09850 0.90150 0.69154 0.05253 Uani 1.00 +C305 C 0.13175 0.26350 0.65150 0.05511 Uani 1.00 +C306 C 0.19100 0.38200 0.57680 0.06433 Uani 1.00 +H307 H 0.21050 0.42100 0.55070 0.07700 Uiso 1.00 +C308 C 0.09850 0.19700 0.69154 0.05253 Uani 1.00 +C309 C 0.26350 0.13175 0.15150 0.05511 Uani 1.00 +C310 C 0.38200 0.19100 0.07680 0.06433 Uani 1.00 +H311 H 0.42100 0.21050 0.05070 0.07700 Uiso 1.00 +C312 C 0.19700 0.09850 0.19154 0.05253 Uani 1.00 +C313 C 0.86825 0.13175 0.15150 0.05511 Uani 1.00 +C314 C 0.80900 0.19100 0.07680 0.06433 Uani 1.00 +H315 H 0.78950 0.21050 0.05070 0.07700 Uiso 1.00 +C316 C 0.90150 0.09850 0.19154 0.05253 Uani 1.00 +C317 C 0.86825 0.73650 0.15150 0.05511 Uani 1.00 +C318 C 0.80900 0.61800 0.07680 0.06433 Uani 1.00 +H319 H 0.78950 0.57900 0.05070 0.07700 Uiso 1.00 +C320 C 0.90150 0.80300 0.19154 0.05253 Uani 1.00 +C321 C 0.86825 0.73650 0.34850 0.05511 Uani 1.00 +C322 C 0.80900 0.61800 0.42320 0.06433 Uani 1.00 +H323 H 0.78950 0.57900 0.44930 0.07700 Uiso 1.00 +C324 C 0.90150 0.80300 0.30846 0.05253 Uani 1.00 +C325 C 0.86825 0.13175 0.34850 0.05511 Uani 1.00 +C326 C 0.80900 0.19100 0.42320 0.06433 Uani 1.00 +H327 H 0.78950 0.21050 0.44930 0.07700 Uiso 1.00 +C328 C 0.90150 0.09850 0.30846 0.05253 Uani 1.00 +C329 C 0.26350 0.13175 0.34850 0.05511 Uani 1.00 +C330 C 0.38200 0.19100 0.42320 0.06433 Uani 1.00 +H331 H 0.42100 0.21050 0.44930 0.07700 Uiso 1.00 +C332 C 0.19700 0.09850 0.30846 0.05253 Uani 1.00 +C333 C 0.13175 0.26350 0.84850 0.05511 Uani 1.00 +C334 C 0.19100 0.38200 0.92320 0.06433 Uani 1.00 +H335 H 0.21050 0.42100 0.94930 0.07700 Uiso 1.00 +C336 C 0.09850 0.19700 0.80846 0.05253 Uani 1.00 +C337 C 0.13175 0.86825 0.84850 0.05511 Uani 1.00 +C338 C 0.19100 0.80900 0.92320 0.06433 Uani 1.00 +H339 H 0.21050 0.78950 0.94930 0.07700 Uiso 1.00 +C340 C 0.09850 0.90150 0.80846 0.05253 Uani 1.00 +C341 C 0.73650 0.86825 0.84850 0.05511 Uani 1.00 +C342 C 0.61800 0.80900 0.92320 0.06433 Uani 1.00 +H343 H 0.57900 0.78950 0.94930 0.07700 Uiso 1.00 +C344 C 0.80300 0.90150 0.80846 0.05253 Uani 1.00 +loop_ +_atom_site_aniso_label +_atom_site_aniso_U_11 +_atom_site_aniso_U_22 +_atom_site_aniso_U_33 +_atom_site_aniso_U_12 +_atom_site_aniso_U_13 +_atom_site_aniso_U_23 +O1 0.05010 0.04480 0.05890 0.02410 -0.01860 -0.02290 +O2 0.04840 0.04910 0.05580 0.02510 -0.01120 0.00140 +O3 0.08140 0.05710 0.06860 0.04570 -0.04190 -0.02070 +C4 0.06400 0.03660 0.07900 0.02730 0.00200 -0.01130 +C6 0.07800 0.05000 0.05200 0.03360 -0.01700 -0.01970 +C7 0.05660 0.03200 0.08600 0.03190 -0.01600 -0.00890 +O11 0.04480 0.04670 0.05890 0.02070 0.02290 0.00430 +O12 0.04910 0.04730 0.05580 0.02400 -0.00140 -0.01260 +O13 0.05710 0.04710 0.06860 0.01140 0.02070 -0.02120 +C14 0.03660 0.04600 0.07900 0.00930 0.01130 0.01330 +C16 0.05000 0.06080 0.05200 0.01640 0.01970 0.00270 +C17 0.03200 0.02480 0.08600 0.00010 0.00890 -0.00710 +O20 0.04670 0.05010 0.05890 0.02600 -0.00430 0.01860 +O21 0.04730 0.04840 0.05580 0.02330 0.01260 0.01120 +O22 0.04710 0.08140 0.06860 0.03570 0.02120 0.04190 +C23 0.04600 0.06400 0.07900 0.03670 -0.01330 -0.00200 +C25 0.06080 0.07800 0.05200 0.04440 -0.00270 0.01700 +C26 0.02480 0.05660 0.08600 0.02470 0.00710 0.01600 +O30 0.05010 0.04480 0.05890 0.02410 0.01860 0.02290 +O31 0.04840 0.04910 0.05580 0.02510 0.01120 -0.00140 +O32 0.08140 0.05710 0.06860 0.04570 0.04190 0.02070 +C33 0.06400 0.03660 0.07900 0.02730 -0.00200 0.01130 +C35 0.07800 0.05000 0.05200 0.03360 0.01700 0.01970 +C36 0.05660 0.03200 0.08600 0.03190 0.01600 0.00890 +O40 0.04480 0.04670 0.05890 0.02070 -0.02290 -0.00430 +O41 0.04910 0.04730 0.05580 0.02400 0.00140 0.01260 +O42 0.05710 0.04710 0.06860 0.01140 -0.02070 0.02120 +C43 0.03660 0.04600 0.07900 0.00930 -0.01130 -0.01330 +C45 0.05000 0.06080 0.05200 0.01640 -0.01970 -0.00270 +C46 0.03200 0.02480 0.08600 0.00010 -0.00890 0.00710 +O48 0.04670 0.05010 0.05890 0.02600 0.00430 -0.01860 +O49 0.04730 0.04840 0.05580 0.02330 -0.01260 -0.01120 +O50 0.04710 0.08140 0.06860 0.03570 -0.02120 -0.04190 +C51 0.04600 0.06400 0.07900 0.03670 0.01330 0.00200 +C53 0.06080 0.07800 0.05200 0.04440 0.00270 -0.01700 +C54 0.02480 0.05660 0.08600 0.02470 -0.00710 -0.01600 +O57 0.04480 0.05010 0.05890 0.02410 0.02290 0.01860 +O58 0.04910 0.04840 0.05580 0.02510 -0.00140 0.01120 +O59 0.05710 0.08140 0.06860 0.04570 0.02070 0.04190 +C60 0.03660 0.06400 0.07900 0.02730 0.01130 -0.00200 +C62 0.05000 0.07800 0.05200 0.03360 0.01970 0.01700 +C63 0.03200 0.05660 0.08600 0.03190 0.00890 0.01600 +O68 0.04670 0.04480 0.05890 0.02070 -0.00430 -0.02290 +O69 0.04730 0.04910 0.05580 0.02400 0.01260 0.00140 +O70 0.04710 0.05710 0.06860 0.01140 0.02120 -0.02070 +C71 0.04600 0.03660 0.07900 0.00930 -0.01330 -0.01130 +C73 0.06080 0.05000 0.05200 0.01640 -0.00270 -0.01970 +C74 0.02480 0.03200 0.08600 0.00010 0.00710 -0.00890 +O77 0.05010 0.04670 0.05890 0.02600 -0.01860 0.00430 +O78 0.04840 0.04730 0.05580 0.02330 -0.01120 -0.01260 +O79 0.08140 0.04710 0.06860 0.03570 -0.04190 -0.02120 +C80 0.06400 0.04600 0.07900 0.03670 0.00200 0.01330 +C82 0.07800 0.06080 0.05200 0.04440 -0.01700 0.00270 +C83 0.05660 0.02480 0.08600 0.02470 -0.01600 -0.00710 +O86 0.04480 0.05010 0.05890 0.02410 -0.02290 -0.01860 +O87 0.04910 0.04840 0.05580 0.02510 0.00140 -0.01120 +O88 0.05710 0.08140 0.06860 0.04570 -0.02070 -0.04190 +C89 0.03660 0.06400 0.07900 0.02730 -0.01130 0.00200 +C91 0.05000 0.07800 0.05200 0.03360 -0.01970 -0.01700 +C92 0.03200 0.05660 0.08600 0.03190 -0.00890 -0.01600 +O95 0.04670 0.04480 0.05890 0.02070 0.00430 0.02290 +O96 0.04730 0.04910 0.05580 0.02400 -0.01260 -0.00140 +O97 0.04710 0.05710 0.06860 0.01140 -0.02120 0.02070 +C98 0.04600 0.03660 0.07900 0.00930 0.01330 0.01130 +C100 0.06080 0.05000 0.05200 0.01640 0.00270 0.01970 +C101 0.02480 0.03200 0.08600 0.00010 -0.00710 0.00890 +O104 0.05010 0.04670 0.05890 0.02600 0.01860 -0.00430 +O105 0.04840 0.04730 0.05580 0.02330 0.01120 0.01260 +O106 0.08140 0.04710 0.06860 0.03570 0.04190 0.02120 +C107 0.06400 0.04600 0.07900 0.03670 -0.00200 -0.01330 +C109 0.07800 0.06080 0.05200 0.04440 0.01700 -0.00270 +C110 0.05660 0.02480 0.08600 0.02470 0.01600 0.00710 +O114 0.05010 0.04480 0.05890 0.02410 -0.01860 -0.02290 +O115 0.04840 0.04910 0.05580 0.02510 -0.01120 0.00140 +O116 0.08140 0.05710 0.06860 0.04570 -0.04190 -0.02070 +C117 0.06400 0.03660 0.07900 0.02730 0.00200 -0.01130 +C119 0.07800 0.05000 0.05200 0.03360 -0.01700 -0.01970 +C120 0.05660 0.03200 0.08600 0.03190 -0.01600 -0.00890 +O125 0.04480 0.04670 0.05890 0.02070 0.02290 0.00430 +O126 0.04910 0.04730 0.05580 0.02400 -0.00140 -0.01260 +O127 0.05710 0.04710 0.06860 0.01140 0.02070 -0.02120 +C128 0.03660 0.04600 0.07900 0.00930 0.01130 0.01330 +C130 0.05000 0.06080 0.05200 0.01640 0.01970 0.00270 +C131 0.03200 0.02480 0.08600 0.00010 0.00890 -0.00710 +O133 0.04670 0.05010 0.05890 0.02600 -0.00430 0.01860 +O134 0.04730 0.04840 0.05580 0.02330 0.01260 0.01120 +O135 0.04710 0.08140 0.06860 0.03570 0.02120 0.04190 +C136 0.04600 0.06400 0.07900 0.03670 -0.01330 -0.00200 +C138 0.06080 0.07800 0.05200 0.04440 -0.00270 0.01700 +C139 0.02480 0.05660 0.08600 0.02470 0.00710 0.01600 +O142 0.05010 0.04480 0.05890 0.02410 0.01860 0.02290 +O143 0.04840 0.04910 0.05580 0.02510 0.01120 -0.00140 +O144 0.08140 0.05710 0.06860 0.04570 0.04190 0.02070 +C145 0.06400 0.03660 0.07900 0.02730 -0.00200 0.01130 +C147 0.07800 0.05000 0.05200 0.03360 0.01700 0.01970 +C148 0.05660 0.03200 0.08600 0.03190 0.01600 0.00890 +O152 0.04480 0.04670 0.05890 0.02070 -0.02290 -0.00430 +O153 0.04910 0.04730 0.05580 0.02400 0.00140 0.01260 +O154 0.05710 0.04710 0.06860 0.01140 -0.02070 0.02120 +C155 0.03660 0.04600 0.07900 0.00930 -0.01130 -0.01330 +C157 0.05000 0.06080 0.05200 0.01640 -0.01970 -0.00270 +C158 0.03200 0.02480 0.08600 0.00010 -0.00890 0.00710 +O161 0.04670 0.05010 0.05890 0.02600 0.00430 -0.01860 +O162 0.04730 0.04840 0.05580 0.02330 -0.01260 -0.01120 +O163 0.04710 0.08140 0.06860 0.03570 -0.02120 -0.04190 +C164 0.04600 0.06400 0.07900 0.03670 0.01330 0.00200 +C166 0.06080 0.07800 0.05200 0.04440 0.00270 -0.01700 +C167 0.02480 0.05660 0.08600 0.02470 -0.00710 -0.01600 +O171 0.04480 0.05010 0.05890 0.02410 0.02290 0.01860 +O172 0.04910 0.04840 0.05580 0.02510 -0.00140 0.01120 +O173 0.05710 0.08140 0.06860 0.04570 0.02070 0.04190 +C174 0.03660 0.06400 0.07900 0.02730 0.01130 -0.00200 +C176 0.05000 0.07800 0.05200 0.03360 0.01970 0.01700 +C177 0.03200 0.05660 0.08600 0.03190 0.00890 0.01600 +O180 0.04670 0.04480 0.05890 0.02070 -0.00430 -0.02290 +O181 0.04730 0.04910 0.05580 0.02400 0.01260 0.00140 +O182 0.04710 0.05710 0.06860 0.01140 0.02120 -0.02070 +C183 0.04600 0.03660 0.07900 0.00930 -0.01330 -0.01130 +C185 0.06080 0.05000 0.05200 0.01640 -0.00270 -0.01970 +C186 0.02480 0.03200 0.08600 0.00010 0.00710 -0.00890 +O189 0.05010 0.04670 0.05890 0.02600 -0.01860 0.00430 +O190 0.04840 0.04730 0.05580 0.02330 -0.01120 -0.01260 +O191 0.08140 0.04710 0.06860 0.03570 -0.04190 -0.02120 +C192 0.06400 0.04600 0.07900 0.03670 0.00200 0.01330 +C194 0.07800 0.06080 0.05200 0.04440 -0.01700 0.00270 +C195 0.05660 0.02480 0.08600 0.02470 -0.01600 -0.00710 +O199 0.04480 0.05010 0.05890 0.02410 -0.02290 -0.01860 +O200 0.04910 0.04840 0.05580 0.02510 0.00140 -0.01120 +O201 0.05710 0.08140 0.06860 0.04570 -0.02070 -0.04190 +C202 0.03660 0.06400 0.07900 0.02730 -0.01130 0.00200 +C204 0.05000 0.07800 0.05200 0.03360 -0.01970 -0.01700 +C205 0.03200 0.05660 0.08600 0.03190 -0.00890 -0.01600 +O210 0.04670 0.04480 0.05890 0.02070 0.00430 0.02290 +O211 0.04730 0.04910 0.05580 0.02400 -0.01260 -0.00140 +O212 0.04710 0.05710 0.06860 0.01140 -0.02120 0.02070 +C213 0.04600 0.03660 0.07900 0.00930 0.01330 0.01130 +C215 0.06080 0.05000 0.05200 0.01640 0.00270 0.01970 +C216 0.02480 0.03200 0.08600 0.00010 -0.00710 0.00890 +O220 0.05010 0.04670 0.05890 0.02600 0.01860 -0.00430 +O221 0.04840 0.04730 0.05580 0.02330 0.01120 0.01260 +O222 0.08140 0.04710 0.06860 0.03570 0.04190 0.02120 +C223 0.06400 0.04600 0.07900 0.03670 -0.00200 -0.01330 +C225 0.07800 0.06080 0.05200 0.04440 0.01700 -0.00270 +C226 0.05660 0.02480 0.08600 0.02470 0.01600 0.00710 +Al229 0.03950 0.03950 0.05330 0.01850 0.00000 0.00000 +O230 0.04800 0.04800 0.05700 0.02980 0.00000 0.00000 +Al231 0.03950 0.04200 0.05330 0.02100 0.00000 0.00000 +O232 0.04800 0.03640 0.05700 0.01820 0.00000 0.00000 +Al233 0.04200 0.03950 0.05330 0.02100 0.00000 0.00000 +O234 0.03640 0.04800 0.05700 0.01820 0.00000 0.00000 +Al235 0.03950 0.03950 0.05330 0.01850 0.00000 0.00000 +O236 0.04800 0.04800 0.05700 0.02980 0.00000 0.00000 +Al237 0.03950 0.04200 0.05330 0.02100 0.00000 0.00000 +O238 0.04800 0.03640 0.05700 0.01820 0.00000 0.00000 +Al239 0.04200 0.03950 0.05330 0.02100 0.00000 0.00000 +O240 0.03640 0.04800 0.05700 0.01820 0.00000 0.00000 +Al241 0.03705 0.04030 0.05640 0.02015 -0.00015 -0.00030 +Al242 0.04030 0.03705 0.05640 0.02015 0.00030 0.00015 +Al243 0.03705 0.03705 0.05640 0.01690 -0.00015 0.00015 +Al244 0.03705 0.04030 0.05640 0.02015 0.00015 0.00030 +Al245 0.04030 0.03705 0.05640 0.02015 -0.00030 -0.00015 +Al246 0.03705 0.03705 0.05640 0.01690 0.00015 -0.00015 +Al247 0.04460 0.04580 0.05050 0.02290 0.00140 0.00280 +O248 0.05010 0.04100 0.03680 0.02050 -0.00250 -0.00500 +O249 0.08120 0.06800 0.05800 0.03400 -0.00450 -0.00900 +Al250 0.04580 0.04460 0.05050 0.02290 -0.00280 -0.00140 +O251 0.04100 0.05010 0.03680 0.02050 0.00500 0.00250 +O252 0.06800 0.08120 0.05800 0.03400 0.00900 0.00450 +Al253 0.04460 0.04460 0.05050 0.02170 0.00140 -0.00140 +O254 0.05010 0.05010 0.03680 0.02960 -0.00250 0.00250 +O255 0.08120 0.08120 0.05800 0.04720 -0.00450 0.00450 +Al256 0.04460 0.04580 0.05050 0.02290 -0.00140 -0.00280 +O257 0.05010 0.04100 0.03680 0.02050 0.00250 0.00500 +O258 0.08120 0.06800 0.05800 0.03400 0.00450 0.00900 +Al259 0.04580 0.04460 0.05050 0.02290 0.00280 0.00140 +O260 0.04100 0.05010 0.03680 0.02050 -0.00500 -0.00250 +O261 0.06800 0.08120 0.05800 0.03400 -0.00900 -0.00450 +Al262 0.04460 0.04460 0.05050 0.02170 -0.00140 0.00140 +O263 0.05010 0.05010 0.03680 0.02960 0.00250 -0.00250 +O264 0.08120 0.08120 0.05800 0.04720 0.00450 -0.00450 +Al265 0.04580 0.04460 0.05050 0.02290 -0.00280 -0.00140 +O266 0.04100 0.05010 0.03680 0.02050 0.00500 0.00250 +O267 0.06800 0.08120 0.05800 0.03400 0.00900 0.00450 +Al268 0.04460 0.04580 0.05050 0.02290 0.00140 0.00280 +O269 0.05010 0.04100 0.03680 0.02050 -0.00250 -0.00500 +O270 0.08120 0.06800 0.05800 0.03400 -0.00450 -0.00900 +Al271 0.04460 0.04460 0.05050 0.02170 0.00140 -0.00140 +O272 0.05010 0.05010 0.03680 0.02960 -0.00250 0.00250 +O273 0.08120 0.08120 0.05800 0.04720 -0.00450 0.00450 +Al274 0.04580 0.04460 0.05050 0.02290 0.00280 0.00140 +O275 0.04100 0.05010 0.03680 0.02050 -0.00500 -0.00250 +O276 0.06800 0.08120 0.05800 0.03400 -0.00900 -0.00450 +Al277 0.04460 0.04580 0.05050 0.02290 -0.00140 -0.00280 +O278 0.05010 0.04100 0.03680 0.02050 0.00250 0.00500 +O279 0.08120 0.06800 0.05800 0.03400 0.00450 0.00900 +Al280 0.04460 0.04460 0.05050 0.02170 -0.00140 0.00140 +O281 0.05010 0.05010 0.03680 0.02960 0.00250 -0.00250 +O282 0.08120 0.08120 0.05800 0.04720 0.00450 -0.00450 +O283 0.03113 0.03113 0.05500 0.01557 0.00000 0.00000 +O284 0.03113 0.03113 0.05500 0.01557 0.00000 0.00000 +O285 0.03930 0.03930 0.07700 0.01670 -0.00270 0.00270 +O286 0.03930 0.04520 0.07700 0.02260 -0.00270 -0.00540 +O287 0.04520 0.03930 0.07700 0.02260 0.00540 0.00270 +O288 0.03930 0.03930 0.07700 0.01670 0.00270 -0.00270 +O289 0.03930 0.04520 0.07700 0.02260 0.00270 0.00540 +O290 0.04520 0.03930 0.07700 0.02260 -0.00540 -0.00270 +O291 0.03930 0.03930 0.07700 0.01670 -0.00270 0.00270 +O292 0.04520 0.03930 0.07700 0.02260 0.00540 0.00270 +O293 0.03930 0.04520 0.07700 0.02260 -0.00270 -0.00540 +O294 0.03930 0.03930 0.07700 0.01670 0.00270 -0.00270 +O295 0.04520 0.03930 0.07700 0.02260 -0.00540 -0.00270 +O296 0.03930 0.04520 0.07700 0.02260 0.00270 0.00540 +C297 0.05900 0.03450 0.08000 0.02950 -0.00900 -0.00450 +C298 0.07100 0.05450 0.07300 0.03550 -0.02200 -0.01100 +C300 0.04300 0.07120 0.03400 0.02150 -0.00100 -0.00050 +C301 0.03450 0.03450 0.08000 0.00500 0.00450 -0.00450 +C302 0.05450 0.05450 0.07300 0.01900 0.01100 -0.01100 +C304 0.07120 0.07120 0.03400 0.04970 0.00050 -0.00050 +C305 0.03450 0.05900 0.08000 0.02950 0.00450 0.00900 +C306 0.05450 0.07100 0.07300 0.03550 0.01100 0.02200 +C308 0.07120 0.04300 0.03400 0.02150 0.00050 0.00100 +C309 0.05900 0.03450 0.08000 0.02950 0.00900 0.00450 +C310 0.07100 0.05450 0.07300 0.03550 0.02200 0.01100 +C312 0.04300 0.07120 0.03400 0.02150 0.00100 0.00050 +C313 0.03450 0.03450 0.08000 0.00500 -0.00450 0.00450 +C314 0.05450 0.05450 0.07300 0.01900 -0.01100 0.01100 +C316 0.07120 0.07120 0.03400 0.04970 -0.00050 0.00050 +C317 0.03450 0.05900 0.08000 0.02950 -0.00450 -0.00900 +C318 0.05450 0.07100 0.07300 0.03550 -0.01100 -0.02200 +C320 0.07120 0.04300 0.03400 0.02150 -0.00050 -0.00100 +C321 0.03450 0.05900 0.08000 0.02950 0.00450 0.00900 +C322 0.05450 0.07100 0.07300 0.03550 0.01100 0.02200 +C324 0.07120 0.04300 0.03400 0.02150 0.00050 0.00100 +C325 0.03450 0.03450 0.08000 0.00500 0.00450 -0.00450 +C326 0.05450 0.05450 0.07300 0.01900 0.01100 -0.01100 +C328 0.07120 0.07120 0.03400 0.04970 0.00050 -0.00050 +C329 0.05900 0.03450 0.08000 0.02950 -0.00900 -0.00450 +C330 0.07100 0.05450 0.07300 0.03550 -0.02200 -0.01100 +C332 0.04300 0.07120 0.03400 0.02150 -0.00100 -0.00050 +C333 0.03450 0.05900 0.08000 0.02950 -0.00450 -0.00900 +C334 0.05450 0.07100 0.07300 0.03550 -0.01100 -0.02200 +C336 0.07120 0.04300 0.03400 0.02150 -0.00050 -0.00100 +C337 0.03450 0.03450 0.08000 0.00500 -0.00450 0.00450 +C338 0.05450 0.05450 0.07300 0.01900 -0.01100 0.01100 +C340 0.07120 0.07120 0.03400 0.04970 -0.00050 0.00050 +C341 0.05900 0.03450 0.08000 0.02950 0.00900 0.00450 +C342 0.07100 0.05450 0.07300 0.03550 0.02200 0.01100 +C344 0.04300 0.07120 0.03400 0.02150 0.00100 0.00050 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +O1 Al229 1.870 1_565 S +O1 C300 1.260 . D +O2 C7 1.280 1_545 D +O2 Al268 1.939 . S +O3 Al241 1.869 1_565 S +O3 C7 1.252 . S +C4 C297 1.384 . D +C4 C6 1.421 . S +C4 H5 0.950 1_565 S +H5 C4 0.950 1_545 S +C6 C298 1.360 . D +C6 C7 1.456 . S +C7 O2 1.280 1_565 D +H8 O248 1.110 . S +H9 O232 1.110 . S +H10 O289 1.110 . S +O11 Al231 1.870 1_455 S +O11 C304 1.260 . D +O12 C17 1.280 1_655 D +O12 Al265 1.939 . S +O13 Al242 1.869 . S +O13 C17 1.252 . S +C14 C301 1.384 . D +C14 C16 1.421 . S +C14 H15 0.950 1_455 S +H15 C14 0.950 1_655 S +C16 C302 1.360 . D +C16 C17 1.456 . S +C17 O12 1.280 1_455 D +H18 O251 1.110 . S +H19 O290 1.110 . S +O20 Al233 1.870 . S +O20 C308 1.260 . D +O21 C26 1.280 . D +O21 Al271 1.939 . S +O22 Al243 1.869 . S +O22 C26 1.252 . S +C23 C305 1.384 . D +C23 C25 1.421 . S +C23 H24 0.950 . S +C25 C306 1.360 . D +C25 C26 1.456 . S +H27 O254 1.110 . S +H28 O230 1.110 . S +H29 O258 1.110 . S +O30 Al235 1.870 1_545 S +O30 C312 1.260 . D +O31 C36 1.280 1_565 D +O31 Al277 1.939 . S +O32 Al244 1.869 . S +O32 C36 1.252 . S +C33 C309 1.384 . D +C33 C35 1.421 . S +C33 H34 0.950 1_545 S +H34 C33 0.950 1_565 S +C35 C310 1.360 . D +C35 C36 1.456 . S +C36 O31 1.280 1_545 D +H37 O257 1.110 . S +H38 O238 1.110 . S +H39 O252 1.110 . S +O40 Al237 1.870 1_655 S +O40 C316 1.260 . D +O41 C46 1.280 1_455 D +O41 Al274 1.939 . S +O42 Al245 1.869 1_655 S +O42 C46 1.252 . S +C43 C313 1.384 . D +C43 C45 1.421 . S +C43 H44 0.950 1_655 S +H44 C43 0.950 1_455 S +C45 C314 1.360 . D +C45 C46 1.456 . S +C46 O41 1.280 1_655 D +H47 O260 1.110 . S +O48 Al239 1.870 . S +O48 C320 1.260 . D +O49 C54 1.280 . D +O49 Al280 1.939 . S +O50 Al246 1.869 . S +O50 C54 1.252 . S +C51 C317 1.384 . D +C51 C53 1.421 . S +C51 H52 0.950 . S +C53 C318 1.360 . D +C53 C54 1.456 . S +H55 O263 1.110 . S +H56 O285 1.110 . S +O57 Al235 1.870 1_655 S +O57 C324 1.260 . D +O58 C63 1.280 1_455 D +O58 Al250 1.939 . S +O59 Al242 1.869 1_655 S +O59 C63 1.252 . S +C60 C321 1.384 . D +C60 C62 1.421 . S +C60 H61 0.950 1_655 S +H61 C60 0.950 1_455 S +C62 C322 1.360 . D +C62 C63 1.456 . S +C63 O58 1.280 1_655 D +H64 O266 1.110 . S +H65 O240 1.110 . S +H66 O295 1.110 . S +H67 O279 1.110 . S +O68 Al239 1.870 1_545 S +O68 C328 1.260 . D +O69 C74 1.280 1_565 D +O69 Al247 1.939 . S +O70 Al241 1.869 . S +O70 C74 1.252 . S +C71 C325 1.384 . D +C71 C73 1.421 . S +C71 H72 0.950 1_545 S +H72 C71 0.950 1_565 S +C73 C326 1.360 . D +C73 C74 1.456 . S +C74 O69 1.280 1_545 D +H75 O269 1.110 . S +H76 O282 1.110 . S +O77 Al237 1.870 . S +O77 C332 1.260 . D +O78 C83 1.280 . D +O78 Al253 1.939 . S +O79 Al243 1.869 . S +O79 C83 1.252 . S +C80 C329 1.384 . D +C80 C82 1.421 . S +C80 H81 0.950 . S +C82 C330 1.360 . D +C82 C83 1.456 . S +H84 O272 1.110 . S +H85 O236 1.110 . S +O86 Al229 1.870 1_455 S +O86 C336 1.260 . D +O87 C92 1.280 1_655 D +O87 Al259 1.939 . S +O88 Al245 1.869 1_556 S +O88 C92 1.252 . S +C89 C333 1.384 . D +C89 C91 1.421 . S +C89 H90 0.950 1_455 S +H90 C89 0.950 1_655 S +C91 C334 1.360 . D +C91 C92 1.456 . S +C92 O87 1.280 1_455 D +H93 O275 1.110 . S +H94 O234 1.110 . S +O95 Al233 1.870 1_565 S +O95 C340 1.260 . D +O96 C101 1.280 1_545 D +O96 Al256 1.939 . S +O97 Al244 1.869 1_566 S +O97 C101 1.252 . S +C98 C337 1.384 . D +C98 C100 1.421 . S +C98 H99 0.950 1_565 S +H99 C98 0.950 1_545 S +C100 C338 1.360 . D +C100 C101 1.456 . S +C101 O96 1.280 1_565 D +H102 O278 1.110 . S +H103 O273 1.107 . S +O104 Al231 1.870 . S +O104 C344 1.260 . D +O105 C110 1.280 . D +O105 Al262 1.939 . S +O106 Al246 1.869 1_556 S +O106 C110 1.252 . S +C107 C341 1.384 . D +C107 C109 1.421 . S +C107 H108 0.950 . S +C109 C342 1.360 . D +C109 C110 1.456 . S +H111 O281 1.110 . S +H112 O291 1.110 . S +H113 O267 1.110 . S +O114 Al235 1.870 1_545 S +O114 C332 1.260 . S +O115 C120 1.280 1_565 D +O115 Al247 1.939 . S +O116 Al241 1.869 . S +O116 C120 1.252 . S +C117 C329 1.384 . S +C117 C119 1.421 . D +C117 H118 0.950 1_545 S +H118 C117 0.950 1_565 S +C119 C330 1.360 . S +C119 C120 1.456 . S +C120 O115 1.280 1_545 D +H121 O269 1.110 . S +H122 O238 1.110 . S +H123 O296 1.110 . S +H124 O276 1.110 . S +O125 Al237 1.870 1_655 S +O125 C328 1.260 . S +O126 C131 1.280 1_455 D +O126 Al250 1.939 . S +O127 Al242 1.869 1_655 S +O127 C131 1.252 . S +C128 C325 1.384 . S +C128 C130 1.421 . D +C128 H129 0.950 1_655 S +H129 C128 0.950 1_455 S +C130 C326 1.360 . S +C130 C131 1.456 . S +C131 O126 1.280 1_655 D +H132 O266 1.110 . S +O133 Al239 1.870 . S +O133 C324 1.260 . S +O134 C139 1.280 . D +O134 Al253 1.939 . S +O135 Al243 1.869 . S +O135 C139 1.252 . S +C136 C321 1.384 . S +C136 C138 1.421 . D +C136 H137 0.950 . S +C138 C322 1.360 . S +C138 C139 1.456 . S +H140 O272 1.110 . S +H141 O294 1.110 . S +O142 Al229 1.870 1_565 S +O142 C344 1.260 . S +O143 C148 1.280 1_545 D +O143 Al256 1.939 . S +O144 Al244 1.869 1_566 S +O144 C148 1.252 . S +C145 C341 1.384 . S +C145 C147 1.421 . D +C145 H146 0.950 1_565 S +H146 C145 0.950 1_545 S +C147 C342 1.360 . S +C147 C148 1.456 . S +C148 O143 1.280 1_565 D +H149 O278 1.110 . S +H150 O232 1.110 . S +H151 O293 1.110 . S +O152 Al231 1.870 1_455 S +O152 C340 1.260 . S +O153 C158 1.280 1_655 D +O153 Al259 1.939 . S +O154 Al245 1.869 1_556 S +O154 C158 1.252 . S +C155 C337 1.384 . S +C155 C157 1.421 . D +C155 H156 0.950 1_455 S +H156 C155 0.950 1_655 S +C157 C338 1.360 . S +C157 C158 1.456 . S +C158 O153 1.280 1_455 D +H159 O275 1.110 . S +H160 O292 1.110 . S +O161 Al233 1.870 . S +O161 C336 1.260 . S +O162 C167 1.280 . D +O162 Al262 1.939 . S +O163 Al246 1.869 1_556 S +O163 C167 1.252 . S +C164 C333 1.384 . S +C164 C166 1.421 . D +C164 H165 0.950 . S +C166 C334 1.360 . S +C166 C167 1.456 . S +H168 O281 1.110 . S +H169 O230 1.110 . S +H170 O270 1.110 . S +O171 Al229 1.870 1_455 S +O171 C308 1.260 . S +O172 C177 1.280 1_655 D +O172 Al265 1.939 . S +O173 Al242 1.869 . S +O173 C177 1.252 . S +C174 C305 1.384 . S +C174 C176 1.421 . D +C174 H175 0.950 1_455 S +H175 C174 0.950 1_655 S +C176 C306 1.360 . S +C176 C177 1.456 . S +C177 O172 1.280 1_455 D +H178 O251 1.110 . S +H179 O234 1.110 . S +O180 Al233 1.870 1_565 S +O180 C304 1.260 . S +O181 C186 1.280 1_545 D +O181 Al268 1.939 . S +O182 Al241 1.869 1_565 S +O182 C186 1.252 . S +C183 C301 1.384 . S +C183 C185 1.421 . D +C183 H184 0.950 1_565 S +H184 C183 0.950 1_545 S +C185 C302 1.360 . S +C185 C186 1.456 . S +C186 O181 1.280 1_565 D +H187 O248 1.110 . S +H188 O264 1.107 . S +O189 Al231 1.870 . S +O189 C300 1.260 . S +O190 C195 1.280 . D +O190 Al271 1.939 . S +O191 Al243 1.869 . S +O191 C195 1.252 . S +C192 C297 1.384 . S +C192 C194 1.421 . D +C192 H193 0.950 . S +C194 C298 1.360 . S +C194 C195 1.456 . S +H196 O254 1.110 . S +H197 O288 1.110 . S +H198 O261 1.110 . S +O199 Al235 1.870 1_655 S +O199 C320 1.260 . S +O200 C205 1.280 1_455 D +O200 Al274 1.939 . S +O201 Al245 1.869 1_655 S +O201 C205 1.252 . S +C202 C317 1.384 . S +C202 C204 1.421 . D +C202 H203 0.950 1_655 S +H203 C202 0.950 1_455 S +C204 C318 1.360 . S +C204 C205 1.456 . S +C205 O200 1.280 1_655 D +H206 O260 1.110 . S +H207 O240 1.110 . S +H208 O287 1.110 . S +H209 O249 1.110 . S +O210 Al239 1.870 1_545 S +O210 C316 1.260 . S +O211 C216 1.280 1_565 D +O211 Al277 1.939 . S +O212 Al244 1.869 . S +O212 C216 1.252 . S +C213 C313 1.384 . S +C213 C215 1.421 . D +C213 H214 0.950 1_545 S +H214 C213 0.950 1_565 S +C215 C314 1.360 . S +C215 C216 1.456 . S +C216 O211 1.280 1_545 D +H217 O257 1.110 . S +H218 O286 1.110 . S +H219 O255 1.110 . S +O220 Al237 1.870 . S +O220 C312 1.260 . S +O221 C226 1.280 . D +O221 Al280 1.939 . S +O222 Al246 1.869 . S +O222 C226 1.252 . S +C223 C309 1.384 . S +C223 C225 1.421 . D +C223 H224 0.950 . S +C225 C310 1.360 . S +C225 C226 1.456 . S +H227 O263 1.110 . S +H228 O236 1.110 . S +Al229 O283 1.831 1_655 S +Al229 O1 1.870 1_545 S +Al229 O86 1.870 1_655 S +Al229 O142 1.870 1_545 S +Al229 O171 1.870 1_655 S +Al229 O230 1.850 . S +Al231 O283 1.831 1_665 S +Al231 O11 1.870 1_655 S +Al231 O152 1.870 1_655 S +Al231 O232 1.850 . S +Al233 O283 1.831 . S +Al233 O95 1.870 1_545 S +Al233 O180 1.870 1_545 S +Al233 O234 1.850 . S +Al235 O284 1.831 1_565 S +Al235 O30 1.870 1_565 S +Al235 O57 1.870 1_455 S +Al235 O114 1.870 1_565 S +Al235 O199 1.870 1_455 S +Al235 O236 1.850 . S +Al237 O284 1.831 . S +Al237 O40 1.870 1_455 S +Al237 O125 1.870 1_455 S +Al237 O238 1.850 . S +Al239 O284 1.831 1_665 S +Al239 O68 1.870 1_565 S +Al239 O210 1.870 1_565 S +Al239 O240 1.850 . S +Al241 O248 1.842 1_545 S +Al241 O269 1.842 . S +Al241 O3 1.869 1_545 S +Al241 O182 1.869 1_545 S +Al242 O251 1.842 . S +Al242 O266 1.842 1_455 S +Al242 O59 1.869 1_455 S +Al242 O127 1.869 1_455 S +Al243 O254 1.842 . S +Al243 O272 1.842 . S +Al244 O257 1.842 1_554 S +Al244 O278 1.842 1_545 S +Al244 O97 1.869 1_544 S +Al244 O144 1.869 1_544 S +Al245 O260 1.842 1_454 S +Al245 O275 1.842 . S +Al245 O42 1.869 1_455 S +Al245 O88 1.869 1_554 S +Al245 O154 1.869 1_554 S +Al245 O201 1.869 1_455 S +Al246 O263 1.842 1_554 S +Al246 O281 1.842 . S +Al246 O106 1.869 1_554 S +Al246 O163 1.869 1_554 S +Al247 O285 1.954 . S +Al247 O287 1.954 . S +Al247 O248 1.871 . S +Al247 O249 1.850 . S +O248 Al241 1.842 1_565 S +Al250 O286 1.954 . S +Al250 O285 1.954 . S +Al250 O251 1.871 . S +Al250 O252 1.942 . S +Al253 O287 1.954 . S +Al253 O286 1.954 . S +Al253 O254 1.871 . S +Al253 O255 1.942 . S +Al256 O288 1.954 . S +Al256 O290 1.954 . S +Al256 O257 1.871 . S +Al256 O258 1.850 . S +O257 Al244 1.842 1_556 S +Al259 O289 1.954 . S +Al259 O288 1.954 . S +Al259 O260 1.871 . S +Al259 O261 1.850 . S +O260 Al245 1.842 1_656 S +Al262 O290 1.954 . S +Al262 O289 1.954 . S +Al262 O263 1.871 . S +Al262 O264 1.850 . S +O263 Al246 1.842 1_556 S +Al265 O291 1.954 . S +Al265 O293 1.954 . S +Al265 O266 1.871 . S +Al265 O267 1.850 . S +O266 Al242 1.842 1_655 S +Al268 O292 1.954 . S +Al268 O291 1.954 . S +Al268 O269 1.871 . S +Al268 O270 1.850 . S +Al271 O293 1.954 . S +Al271 O292 1.954 . S +Al271 O272 1.871 . S +Al271 O273 1.850 . S +Al274 O294 1.954 . S +Al274 O296 1.954 . S +Al274 O275 1.871 . S +Al274 O276 1.942 . S +Al277 O295 1.954 . S +Al277 O294 1.954 . S +Al277 O278 1.871 . S +Al277 O279 1.850 . S +O278 Al244 1.842 1_565 S +Al280 O296 1.954 . S +Al280 O295 1.954 . S +Al280 O281 1.871 . S +Al280 O282 1.942 . S +O283 Al229 1.831 1_455 S +O283 Al231 1.831 1_445 S +O284 Al235 1.831 1_545 S +O284 Al239 1.831 1_445 S +C297 C300 1.499 . S +C298 H299 0.949 . S +C301 C304 1.499 . S +C302 H303 0.949 . S +C305 C308 1.499 . S +C306 H307 0.949 . S +C309 C312 1.499 . S +C310 H311 0.949 . S +C313 C316 1.499 . S +C314 H315 0.949 . S +C317 C320 1.499 . S +C318 H319 0.949 . S +C321 C324 1.499 . S +C322 H323 0.949 . S +C325 C328 1.499 . S +C326 H327 0.949 . S +C329 C332 1.499 . S +C330 H331 0.949 . S +C333 C336 1.499 . S +C334 H335 0.949 . S +C337 C340 1.499 . S +C338 H339 0.949 . S +C341 C344 1.499 . S +C342 H343 0.949 . S diff --git a/benchmarks/mof/structures/flue_gas/MUF-16.cif b/benchmarks/mof/structures/flue_gas/MUF-16.cif new file mode 100644 index 0000000000000000000000000000000000000000..625c01482f199920536f7844e358b43cf9e54b1b --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/MUF-16.cif @@ -0,0 +1,382 @@ +data_MUF16(Mn)\guest\free\NPD\structure +_audit_creation_date 2025-01-20 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 15.4733 +_cell_length_b 4.5111 +_cell_length_c 25.4716 +_cell_angle_alpha 90.0000 +_cell_angle_beta 97.0740 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +C1 C 0.42660 0.00200 0.12870 0.03812 Uiso 1.00 +C2 C 0.43100 0.20500 0.17330 0.03812 Uiso 1.00 +C3 C 0.50360 0.36900 0.18630 0.03812 Uiso 1.00 +C4 C 0.58420 0.31500 0.16290 0.03812 Uiso 1.00 +C5 C 0.58150 0.13000 0.11990 0.03812 Uiso 1.00 +C6 C 0.49880 0.98400 0.10410 0.03812 Uiso 1.00 +C7 C 0.35040 0.22300 0.20050 0.03812 Uiso 1.00 +C8 C 0.49870 0.76200 0.05810 0.03812 Uiso 1.00 +N9 N 0.66090 0.45600 0.18040 0.03812 Uiso 1.00 +O10 O 0.35220 0.46000 0.23250 0.03812 Uiso 1.00 +O11 O 0.29200 0.05300 0.19010 0.03812 Uiso 1.00 +O12 O 0.42140 0.63500 0.04110 0.03812 Uiso 1.00 +O13 O 0.56460 0.72400 0.03710 0.03812 Uiso 1.00 +H14 H 0.63590 0.08100 0.10590 0.03812 Uiso 1.00 +H15 H 0.49580 0.51800 0.21510 0.03812 Uiso 1.00 +H16 H 0.37140 0.85200 0.11700 0.03812 Uiso 1.00 +H17 H 0.64650 0.69200 0.19730 0.03812 Uiso 1.00 +H18 H 0.70140 0.47100 0.15320 0.03812 Uiso 1.00 +H19 H 0.43390 0.51200 0.01120 0.03812 Uiso 1.00 +C20 C 0.92660 0.50200 0.62870 0.03812 Uiso 1.00 +C21 C 0.93100 0.70500 0.67330 0.03812 Uiso 1.00 +C22 C 1.00360 0.86900 0.68630 0.03812 Uiso 1.00 +C23 C 1.08420 0.81500 0.66290 0.03812 Uiso 1.00 +C24 C 1.08150 0.63000 0.61990 0.03812 Uiso 1.00 +C25 C 0.99880 0.48400 0.60410 0.03812 Uiso 1.00 +C26 C 0.85040 0.72300 0.70050 0.03812 Uiso 1.00 +C27 C 0.99870 0.26200 0.55810 0.03812 Uiso 1.00 +N28 N 1.16090 0.95600 0.68040 0.03812 Uiso 1.00 +O29 O 0.85220 0.96000 0.73250 0.03812 Uiso 1.00 +O30 O 0.79200 0.55300 0.69010 0.03812 Uiso 1.00 +O31 O 0.92140 0.13500 0.54110 0.03812 Uiso 1.00 +O32 O 1.06460 0.22400 0.53710 0.03812 Uiso 1.00 +H33 H 1.13590 0.58100 0.60590 0.03812 Uiso 1.00 +H34 H 0.99580 0.01800 0.71510 0.03812 Uiso 1.00 +H35 H 0.87140 0.35200 0.61700 0.03812 Uiso 1.00 +H36 H 1.14650 0.19200 0.69730 0.03812 Uiso 1.00 +H37 H 1.20140 0.97100 0.65320 0.03812 Uiso 1.00 +H38 H 0.93390 0.01200 0.51120 0.03812 Uiso 1.00 +C39 C 0.07340 0.00200 0.87130 0.03812 Uiso 1.00 +C40 C 0.06900 0.20500 0.82670 0.03812 Uiso 1.00 +C41 C -0.00360 0.36900 0.81370 0.03812 Uiso 1.00 +C42 C -0.08420 0.31500 0.83710 0.03812 Uiso 1.00 +C43 C -0.08150 0.13000 0.88010 0.03812 Uiso 1.00 +C44 C 0.00120 0.98400 0.89590 0.03812 Uiso 1.00 +C45 C 0.14960 0.22300 0.79950 0.03812 Uiso 1.00 +C46 C 0.00130 0.76200 0.94190 0.03812 Uiso 1.00 +N47 N -0.16090 0.45600 0.81960 0.03812 Uiso 1.00 +O48 O 0.14780 0.46000 0.76750 0.03812 Uiso 1.00 +O49 O 0.20800 0.05300 0.80990 0.03812 Uiso 1.00 +O50 O 0.07860 0.63500 0.95890 0.03812 Uiso 1.00 +O51 O -0.06460 0.72400 0.96290 0.03812 Uiso 1.00 +H52 H -0.13590 0.08100 0.89410 0.03812 Uiso 1.00 +H53 H 0.00420 0.51800 0.78490 0.03812 Uiso 1.00 +H54 H 0.12860 0.85200 0.88300 0.03812 Uiso 1.00 +H55 H -0.14650 0.69200 0.80270 0.03812 Uiso 1.00 +H56 H -0.20140 0.47100 0.84680 0.03812 Uiso 1.00 +H57 H 0.06610 0.51200 0.98880 0.03812 Uiso 1.00 +C58 C 0.57340 0.50200 0.37130 0.03812 Uiso 1.00 +C59 C 0.56900 0.70500 0.32670 0.03812 Uiso 1.00 +C60 C 0.49640 0.86900 0.31370 0.03812 Uiso 1.00 +C61 C 0.41580 0.81500 0.33710 0.03812 Uiso 1.00 +C62 C 0.41850 0.63000 0.38010 0.03812 Uiso 1.00 +C63 C 0.50120 0.48400 0.39590 0.03812 Uiso 1.00 +C64 C 0.64960 0.72300 0.29950 0.03812 Uiso 1.00 +C65 C 0.50130 0.26200 0.44190 0.03812 Uiso 1.00 +N66 N 0.33910 0.95600 0.31960 0.03812 Uiso 1.00 +O67 O 0.64780 0.96000 0.26750 0.03812 Uiso 1.00 +O68 O 0.70800 0.55300 0.30990 0.03812 Uiso 1.00 +O69 O 0.57860 0.13500 0.45890 0.03812 Uiso 1.00 +O70 O 0.43540 0.22400 0.46290 0.03812 Uiso 1.00 +H71 H 0.36410 0.58100 0.39410 0.03812 Uiso 1.00 +H72 H 0.50420 0.01800 0.28490 0.03812 Uiso 1.00 +H73 H 0.62860 0.35200 0.38300 0.03812 Uiso 1.00 +H74 H 0.35350 0.19200 0.30270 0.03812 Uiso 1.00 +H75 H 0.29860 0.97100 0.34680 0.03812 Uiso 1.00 +H76 H 0.56610 0.01200 0.48880 0.03812 Uiso 1.00 +C77 C 0.57340 0.99800 0.87130 0.03812 Uiso 1.00 +C78 C 0.56900 0.79500 0.82670 0.03812 Uiso 1.00 +C79 C 0.49640 0.63100 0.81370 0.03812 Uiso 1.00 +C80 C 0.41580 0.68500 0.83710 0.03812 Uiso 1.00 +C81 C 0.41850 0.87000 0.88010 0.03812 Uiso 1.00 +C82 C 0.50120 0.01600 0.89590 0.03812 Uiso 1.00 +C83 C 0.64960 0.77700 0.79950 0.03812 Uiso 1.00 +C84 C 0.50130 0.23800 0.94190 0.03812 Uiso 1.00 +N85 N 0.33910 0.54400 0.81960 0.03812 Uiso 1.00 +O86 O 0.64780 0.54000 0.76750 0.03812 Uiso 1.00 +O87 O 0.70800 0.94700 0.80990 0.03812 Uiso 1.00 +O88 O 0.57860 0.36500 0.95890 0.03812 Uiso 1.00 +O89 O 0.43540 0.27600 0.96290 0.03812 Uiso 1.00 +H90 H 0.36410 0.91900 0.89410 0.03812 Uiso 1.00 +H91 H 0.50420 0.48200 0.78490 0.03812 Uiso 1.00 +H92 H 0.62860 0.14800 0.88300 0.03812 Uiso 1.00 +H93 H 0.35350 0.30800 0.80270 0.03812 Uiso 1.00 +H94 H 0.29860 0.52900 0.84680 0.03812 Uiso 1.00 +H95 H 0.56610 0.48800 0.98880 0.03812 Uiso 1.00 +C96 C 0.07340 0.49800 0.37130 0.03812 Uiso 1.00 +C97 C 0.06900 0.29500 0.32670 0.03812 Uiso 1.00 +C98 C -0.00360 0.13100 0.31370 0.03812 Uiso 1.00 +C99 C -0.08420 0.18500 0.33710 0.03812 Uiso 1.00 +C100 C -0.08150 0.37000 0.38010 0.03812 Uiso 1.00 +C101 C 0.00120 0.51600 0.39590 0.03812 Uiso 1.00 +C102 C 0.14960 0.27700 0.29950 0.03812 Uiso 1.00 +C103 C 0.00130 0.73800 0.44190 0.03812 Uiso 1.00 +N104 N -0.16090 0.04400 0.31960 0.03812 Uiso 1.00 +O105 O 0.14780 0.04000 0.26750 0.03812 Uiso 1.00 +O106 O 0.20800 0.44700 0.30990 0.03812 Uiso 1.00 +O107 O 0.07860 0.86500 0.45890 0.03812 Uiso 1.00 +O108 O -0.06460 0.77600 0.46290 0.03812 Uiso 1.00 +H109 H -0.13590 0.41900 0.39410 0.03812 Uiso 1.00 +H110 H 0.00420 0.98200 0.28490 0.03812 Uiso 1.00 +H111 H 0.12860 0.64800 0.38300 0.03812 Uiso 1.00 +H112 H -0.14650 0.80800 0.30270 0.03812 Uiso 1.00 +H113 H -0.20140 0.02900 0.34680 0.03812 Uiso 1.00 +H114 H 0.06610 0.98800 0.48880 0.03812 Uiso 1.00 +C115 C 0.92660 0.99800 0.12870 0.03812 Uiso 1.00 +C116 C 0.93100 0.79500 0.17330 0.03812 Uiso 1.00 +C117 C 1.00360 0.63100 0.18630 0.03812 Uiso 1.00 +C118 C 1.08420 0.68500 0.16290 0.03812 Uiso 1.00 +C119 C 1.08150 0.87000 0.11990 0.03812 Uiso 1.00 +C120 C 0.99880 0.01600 0.10410 0.03812 Uiso 1.00 +C121 C 0.85040 0.77700 0.20050 0.03812 Uiso 1.00 +C122 C 0.99870 0.23800 0.05810 0.03812 Uiso 1.00 +N123 N 1.16090 0.54400 0.18040 0.03812 Uiso 1.00 +O124 O 0.85220 0.54000 0.23250 0.03812 Uiso 1.00 +O125 O 0.79200 0.94700 0.19010 0.03812 Uiso 1.00 +O126 O 0.92140 0.36500 0.04110 0.03812 Uiso 1.00 +O127 O 1.06460 0.27600 0.03710 0.03812 Uiso 1.00 +H128 H 1.13590 0.91900 0.10590 0.03812 Uiso 1.00 +H129 H 0.99580 0.48200 0.21510 0.03812 Uiso 1.00 +H130 H 0.87140 0.14800 0.11700 0.03812 Uiso 1.00 +H131 H 1.14650 0.30800 0.19730 0.03812 Uiso 1.00 +H132 H 1.20140 0.52900 0.15320 0.03812 Uiso 1.00 +H133 H 0.93390 0.48800 0.01120 0.03812 Uiso 1.00 +C134 C 0.42660 0.49800 0.62870 0.03812 Uiso 1.00 +C135 C 0.43100 0.29500 0.67330 0.03812 Uiso 1.00 +C136 C 0.50360 0.13100 0.68630 0.03812 Uiso 1.00 +C137 C 0.58420 0.18500 0.66290 0.03812 Uiso 1.00 +C138 C 0.58150 0.37000 0.61990 0.03812 Uiso 1.00 +C139 C 0.49880 0.51600 0.60410 0.03812 Uiso 1.00 +C140 C 0.35040 0.27700 0.70050 0.03812 Uiso 1.00 +C141 C 0.49870 0.73800 0.55810 0.03812 Uiso 1.00 +N142 N 0.66090 0.04400 0.68040 0.03812 Uiso 1.00 +O143 O 0.35220 0.04000 0.73250 0.03812 Uiso 1.00 +O144 O 0.29200 0.44700 0.69010 0.03812 Uiso 1.00 +O145 O 0.42140 0.86500 0.54110 0.03812 Uiso 1.00 +O146 O 0.56460 0.77600 0.53710 0.03812 Uiso 1.00 +H147 H 0.63590 0.41900 0.60590 0.03812 Uiso 1.00 +H148 H 0.49580 0.98200 0.71510 0.03812 Uiso 1.00 +H149 H 0.37140 0.64800 0.61700 0.03812 Uiso 1.00 +H150 H 0.64650 0.80800 0.69730 0.03812 Uiso 1.00 +H151 H 0.70140 0.02900 0.65320 0.03812 Uiso 1.00 +H152 H 0.43390 0.98800 0.51120 0.03812 Uiso 1.00 +Co153 Co 0.25000 0.75000 0.25000 0.00798 Uiso 1.00 +Co154 Co 0.25000 0.75000 0.75000 0.00798 Uiso 1.00 +Co155 Co 0.75000 0.25000 0.75000 0.00798 Uiso 1.00 +Co156 Co 0.75000 0.25000 0.25000 0.00798 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +C1 C2 1.454 . S +C1 C6 1.349 1_545 D +C1 H16 1.102 1_545 S +C2 C3 1.352 . D +C2 C7 1.502 . S +C3 C4 1.467 . S +C3 H15 1.013 . S +C4 C5 1.374 . D +C4 N9 1.372 . S +C5 C6 1.451 1_545 S +C5 H14 0.979 . S +C6 C1 1.349 1_565 D +C6 C5 1.451 1_565 S +C6 C8 1.541 . S +C7 O10 1.343 . D +C7 O11 1.190 . S +C8 O12 1.349 . S +C8 O13 1.220 . D +N9 H17 1.180 . S +N9 H18 0.992 . S +O10 Co153 2.141 . S +O11 Co153 2.205 1_545 S +O12 H19 0.981 . S +H16 C1 1.102 1_565 S +C20 C21 1.454 . S +C20 C25 1.349 . D +C20 H35 1.102 . S +C21 C22 1.352 . D +C21 C26 1.502 . S +C22 C23 1.467 . S +C22 H34 1.013 1_565 S +C23 C24 1.374 . D +C23 N28 1.372 . S +C24 C25 1.451 . S +C24 H33 0.979 . S +C25 C27 1.541 . S +C26 O29 1.343 . D +C26 O30 1.190 . S +C27 O31 1.349 . S +C27 O32 1.220 . D +N28 H36 1.180 1_565 S +N28 H37 0.992 . S +O29 Co155 2.141 1_565 S +O30 Co155 2.205 . S +O31 H38 0.981 . S +H34 C22 1.013 1_545 S +H36 N28 1.180 1_545 S +C39 C40 1.454 . S +C39 C44 1.349 1_545 D +C39 H54 1.102 1_545 S +C40 C41 1.352 . D +C40 C45 1.502 . S +C41 C42 1.467 . S +C41 H53 1.013 . S +C42 C43 1.374 . D +C42 N47 1.372 . S +C43 C44 1.451 1_545 S +C43 H52 0.979 . S +C44 C39 1.349 1_565 D +C44 C43 1.451 1_565 S +C44 C46 1.541 . S +C45 O48 1.343 . D +C45 O49 1.190 . S +C46 O50 1.349 . S +C46 O51 1.220 . D +N47 H55 1.180 . S +N47 H56 0.992 . S +O48 Co154 2.141 . S +O49 Co154 2.205 1_545 S +O50 H57 0.981 . S +H54 C39 1.102 1_565 S +C58 C59 1.454 . S +C58 C63 1.349 . D +C58 H73 1.102 . S +C59 C60 1.352 . D +C59 C64 1.502 . S +C60 C61 1.467 . S +C60 H72 1.013 1_565 S +C61 C62 1.374 . D +C61 N66 1.372 . S +C62 C63 1.451 . S +C62 H71 0.979 . S +C63 C65 1.541 . S +C64 O67 1.343 . D +C64 O68 1.190 . S +C65 O69 1.349 . S +C65 O70 1.220 . D +N66 H74 1.180 1_565 S +N66 H75 0.992 . S +O67 Co156 2.141 1_565 S +O68 Co156 2.205 . S +O69 H76 0.981 . S +H72 C60 1.013 1_545 S +H74 N66 1.180 1_545 S +C77 C78 1.454 . S +C77 C82 1.349 1_565 D +C77 H92 1.102 1_565 S +C78 C79 1.352 . D +C78 C83 1.502 . S +C79 C80 1.467 . S +C79 H91 1.013 . S +C80 C81 1.374 . D +C80 N85 1.372 . S +C81 C82 1.451 1_565 S +C81 H90 0.979 . S +C82 C77 1.349 1_545 D +C82 C81 1.451 1_545 S +C82 C84 1.541 . S +C83 O86 1.343 . D +C83 O87 1.190 . S +C84 O88 1.349 . S +C84 O89 1.220 . D +N85 H93 1.180 . S +N85 H94 0.992 . S +O86 Co155 2.141 . S +O87 Co155 2.205 1_565 S +O88 H95 0.981 . S +H92 C77 1.102 1_545 S +C96 C97 1.454 . S +C96 C101 1.349 . D +C96 H111 1.102 . S +C97 C98 1.352 . D +C97 C102 1.502 . S +C98 C99 1.467 . S +C98 H110 1.013 1_545 S +C99 C100 1.374 . D +C99 N104 1.372 . S +C100 C101 1.451 . S +C100 H109 0.979 . S +C101 C103 1.541 . S +C102 O105 1.343 . D +C102 O106 1.190 . S +C103 O107 1.349 . S +C103 O108 1.220 . D +N104 H112 1.180 1_545 S +N104 H113 0.992 . S +O105 Co153 2.141 1_545 S +O106 Co153 2.205 . S +O107 H114 0.981 . S +H110 C98 1.013 1_565 S +H112 N104 1.180 1_565 S +C115 C116 1.454 . S +C115 C120 1.349 1_565 D +C115 H130 1.102 1_565 S +C116 C117 1.352 . D +C116 C121 1.502 . S +C117 C118 1.467 . S +C117 H129 1.013 . S +C118 C119 1.374 . D +C118 N123 1.372 . S +C119 C120 1.451 1_565 S +C119 H128 0.979 . S +C120 C115 1.349 1_545 D +C120 C119 1.451 1_545 S +C120 C122 1.541 . S +C121 O124 1.343 . D +C121 O125 1.190 . S +C122 O126 1.349 . S +C122 O127 1.220 . D +N123 H131 1.180 . S +N123 H132 0.992 . S +O124 Co156 2.141 . S +O125 Co156 2.205 1_565 S +O126 H133 0.981 . S +H130 C115 1.102 1_545 S +C134 C135 1.454 . S +C134 C139 1.349 . D +C134 H149 1.102 . S +C135 C136 1.352 . D +C135 C140 1.502 . S +C136 C137 1.467 . S +C136 H148 1.013 1_545 S +C137 C138 1.374 . D +C137 N142 1.372 . S +C138 C139 1.451 . S +C138 H147 0.979 . S +C139 C141 1.541 . S +C140 O143 1.343 . D +C140 O144 1.190 . S +C141 O145 1.349 . S +C141 O146 1.220 . D +N142 H150 1.180 1_545 S +N142 H151 0.992 . S +O143 Co154 2.141 1_545 S +O144 Co154 2.205 . S +O145 H152 0.981 . S +H148 C136 1.013 1_565 S +H150 N142 1.180 1_565 S +Co153 O105 2.141 1_565 S +Co153 O11 2.205 1_565 S +Co154 O143 2.141 1_565 S +Co154 O49 2.205 1_565 S +Co155 O29 2.141 1_545 S +Co155 O87 2.205 1_545 S +Co156 O67 2.141 1_545 S +Co156 O125 2.205 1_545 S diff --git a/benchmarks/mof/structures/flue_gas/UTSA-16.cif b/benchmarks/mof/structures/flue_gas/UTSA-16.cif new file mode 100644 index 0000000000000000000000000000000000000000..ac9cc8252fc218562cbdf6a25e8e43ace228609b --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/UTSA-16.cif @@ -0,0 +1,176 @@ +data_RAZXIA_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 12.9064 +_cell_length_b 12.9064 +_cell_length_c 17.6614 +_cell_angle_alpha 111.4310 +_cell_angle_beta 111.4310 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +K1 K 0.62500 0.71041 0.75000 0.01267 Uiso 1.00 +K2 K 0.12500 0.03959 0.75000 0.01267 Uiso 1.00 +K3 K 0.28959 0.87500 0.25000 0.01267 Uiso 1.00 +K4 K 0.96041 0.37500 0.25000 0.01267 Uiso 1.00 +Co1 Co 0.85501 0.91019 0.91934 0.01267 Uiso 1.00 +Co2 Co 0.06433 0.00915 0.91934 0.01267 Uiso 1.00 +Co3 Co 0.08981 0.93567 0.08066 0.01267 Uiso 1.00 +Co4 Co 0.99085 0.14499 0.08066 0.01267 Uiso 1.00 +Co5 Co 0.18567 0.83981 0.58066 0.01267 Uiso 1.00 +Co6 Co 0.39499 0.74085 0.58066 0.01267 Uiso 1.00 +Co7 Co 0.25915 0.81433 0.41934 0.01267 Uiso 1.00 +Co8 Co 0.16019 0.60501 0.41934 0.01267 Uiso 1.00 +Co9 Co 0.44213 0.94213 0.88426 0.01267 Uiso 1.00 +Co10 Co 0.05787 0.55787 0.11574 0.01267 Uiso 1.00 +Co11 Co 0.80787 0.80787 0.61574 0.01267 Uiso 1.00 +Co12 Co 0.19213 0.19213 0.38426 0.01267 Uiso 1.00 +H1 H 0.71910 0.87090 0.08420 0.01267 Uiso 1.00 +H2 H 0.77850 0.80820 0.02100 0.01267 Uiso 1.00 +H3 H 0.93680 0.86410 0.16260 0.01267 Uiso 1.00 +H4 H 0.88020 0.94920 0.21860 0.01267 Uiso 1.00 +H5 H 0.36510 0.21330 0.08420 0.01267 Uiso 1.00 +H6 H 0.24250 0.21280 0.02100 0.01267 Uiso 1.00 +H7 H 0.22580 0.29850 0.16260 0.01267 Uiso 1.00 +H8 H 0.33840 0.26940 0.21860 0.01267 Uiso 1.00 +H9 H 0.12910 0.63490 0.91580 0.01267 Uiso 1.00 +H10 H 0.19180 0.75750 0.97900 0.01267 Uiso 1.00 +H11 H 0.13590 0.77420 0.83740 0.01267 Uiso 1.00 +H12 H 0.05080 0.66160 0.78140 0.01267 Uiso 1.00 +H13 H 0.78670 0.28090 0.91580 0.01267 Uiso 1.00 +H14 H 0.78720 0.22150 0.97900 0.01267 Uiso 1.00 +H15 H 0.70150 0.06320 0.83740 0.01267 Uiso 1.00 +H16 H 0.73060 0.11980 0.78140 0.01267 Uiso 1.00 +H17 H 0.88490 0.87910 0.41580 0.01267 Uiso 1.00 +H18 H 0.00750 0.94180 0.47900 0.01267 Uiso 1.00 +H19 H 0.02420 0.88590 0.33740 0.01267 Uiso 1.00 +H20 H 0.91160 0.80080 0.28140 0.01267 Uiso 1.00 +H21 H 0.53090 0.53670 0.41580 0.01267 Uiso 1.00 +H22 H 0.47150 0.53720 0.47900 0.01267 Uiso 1.00 +H23 H 0.31320 0.45150 0.33740 0.01267 Uiso 1.00 +H24 H 0.36980 0.48060 0.28140 0.01267 Uiso 1.00 +H25 H 0.46330 0.11510 0.58420 0.01267 Uiso 1.00 +H26 H 0.46280 0.99250 0.52100 0.01267 Uiso 1.00 +H27 H 0.54850 0.97580 0.66260 0.01267 Uiso 1.00 +H28 H 0.51940 0.08840 0.71860 0.01267 Uiso 1.00 +H29 H 0.12090 0.46910 0.58420 0.01267 Uiso 1.00 +H30 H 0.05820 0.52850 0.52100 0.01267 Uiso 1.00 +H31 H 0.11410 0.68680 0.66260 0.01267 Uiso 1.00 +H32 H 0.19920 0.63020 0.71860 0.01267 Uiso 1.00 +C1 C 0.66914 0.90376 0.97330 0.01267 Uiso 1.00 +C2 C 0.75451 0.87938 0.04648 0.01267 Uiso 1.00 +C3 C 0.85970 0.97169 0.10402 0.01267 Uiso 1.00 +C4 C 0.92563 0.94220 0.18420 0.01267 Uiso 1.00 +C5 C 0.03824 0.01433 0.24384 0.01267 Uiso 1.00 +C6 C 0.82318 0.08701 0.13594 0.01267 Uiso 1.00 +C7 C 0.30416 0.06954 0.97330 0.01267 Uiso 1.00 +C8 C 0.29197 0.16710 0.04648 0.01267 Uiso 1.00 +C9 C 0.24432 0.13233 0.10402 0.01267 Uiso 1.00 +C10 C 0.25857 0.24200 0.18420 0.01267 Uiso 1.00 +C11 C 0.20560 0.22951 0.24384 0.01267 Uiso 1.00 +C12 C 0.31276 0.04893 0.13594 0.01267 Uiso 1.00 +C13 C 0.09624 0.69584 0.02670 0.01267 Uiso 1.00 +C14 C 0.12062 0.70803 0.95352 0.01267 Uiso 1.00 +C15 C 0.02831 0.75568 0.89598 0.01267 Uiso 1.00 +C16 C 0.05780 0.74143 0.81580 0.01267 Uiso 1.00 +C17 C 0.98567 0.79440 0.75616 0.01267 Uiso 1.00 +C18 C 0.91299 0.68724 0.86406 0.01267 Uiso 1.00 +C19 C 0.93046 0.33086 0.02670 0.01267 Uiso 1.00 +C20 C 0.83290 0.24549 0.95352 0.01267 Uiso 1.00 +C21 C 0.86767 0.14030 0.89598 0.01267 Uiso 1.00 +C22 C 0.75800 0.07437 0.81580 0.01267 Uiso 1.00 +C23 C 0.77049 0.96176 0.75616 0.01267 Uiso 1.00 +C24 C 0.95107 0.17682 0.86406 0.01267 Uiso 1.00 +C25 C 0.94584 0.84624 0.52670 0.01267 Uiso 1.00 +C26 C 0.95803 0.87062 0.45352 0.01267 Uiso 1.00 +C27 C 0.00568 0.77831 0.39598 0.01267 Uiso 1.00 +C28 C 0.99143 0.80780 0.31580 0.01267 Uiso 1.00 +C29 C 0.04440 0.73567 0.25616 0.01267 Uiso 1.00 +C30 C 0.93724 0.66299 0.36406 0.01267 Uiso 1.00 +C31 C 0.58086 0.68046 0.52670 0.01267 Uiso 1.00 +C32 C 0.49549 0.58290 0.45352 0.01267 Uiso 1.00 +C33 C 0.39030 0.61767 0.39598 0.01267 Uiso 1.00 +C34 C 0.32437 0.50800 0.31580 0.01267 Uiso 1.00 +C35 C 0.21176 0.52049 0.25616 0.01267 Uiso 1.00 +C36 C 0.42682 0.70107 0.36406 0.01267 Uiso 1.00 +C37 C 0.31954 0.05416 0.47330 0.01267 Uiso 1.00 +C38 C 0.41710 0.04197 0.54648 0.01267 Uiso 1.00 +C39 C 0.38233 0.99432 0.60402 0.01267 Uiso 1.00 +C40 C 0.49200 0.00857 0.68420 0.01267 Uiso 1.00 +C41 C 0.47951 0.95560 0.74384 0.01267 Uiso 1.00 +C42 C 0.29893 0.06276 0.63594 0.01267 Uiso 1.00 +C43 C 0.15376 0.41914 0.47330 0.01267 Uiso 1.00 +C44 C 0.12938 0.50451 0.54648 0.01267 Uiso 1.00 +C45 C 0.22169 0.60970 0.60402 0.01267 Uiso 1.00 +C46 C 0.19220 0.67563 0.68420 0.01267 Uiso 1.00 +C47 C 0.26433 0.78824 0.74384 0.01267 Uiso 1.00 +C48 C 0.33701 0.57318 0.63594 0.01267 Uiso 1.00 +O1 O 0.69431 0.91855 0.91524 0.01267 Uiso 1.00 +O2 O 0.56860 0.90487 0.97080 0.01267 Uiso 1.00 +O3 O 0.11830 0.99939 0.21804 0.01267 Uiso 1.00 +O4 O 0.04836 0.08785 0.31778 0.01267 Uiso 1.00 +O5 O 0.86224 0.16703 0.12332 0.01267 Uiso 1.00 +O6 O 0.75153 0.09633 0.17022 0.01267 Uiso 1.00 +O7 O 0.92894 0.97387 0.05734 0.01267 Uiso 1.00 +O8 O 0.22093 0.99669 0.91524 0.01267 Uiso 1.00 +O9 O 0.40220 0.06593 0.97080 0.01267 Uiso 1.00 +O10 O 0.09974 0.21865 0.21804 0.01267 Uiso 1.00 +O11 O 0.26942 0.22993 0.31778 0.01267 Uiso 1.00 +O12 O 0.26108 0.95629 0.12332 0.01267 Uiso 1.00 +O13 O 0.41869 0.07389 0.17022 0.01267 Uiso 1.00 +O14 O 0.12840 0.08347 0.05734 0.01267 Uiso 1.00 +O15 O 0.08145 0.77907 0.08476 0.01267 Uiso 1.00 +O16 O 0.09513 0.59780 0.02920 0.01267 Uiso 1.00 +O17 O 0.00061 0.90026 0.78196 0.01267 Uiso 1.00 +O18 O 0.91215 0.73058 0.68222 0.01267 Uiso 1.00 +O19 O 0.83297 0.73892 0.87668 0.01267 Uiso 1.00 +O20 O 0.90367 0.58131 0.82978 0.01267 Uiso 1.00 +O21 O 0.02613 0.87160 0.94266 0.01267 Uiso 1.00 +O22 O 0.00331 0.30569 0.08476 0.01267 Uiso 1.00 +O23 O 0.93407 0.43140 0.02920 0.01267 Uiso 1.00 +O24 O 0.78135 0.88170 0.78196 0.01267 Uiso 1.00 +O25 O 0.77007 0.95164 0.68222 0.01267 Uiso 1.00 +O26 O 0.04371 0.13776 0.87668 0.01267 Uiso 1.00 +O27 O 0.92611 0.24847 0.82978 0.01267 Uiso 1.00 +O28 O 0.91653 0.07106 0.94266 0.01267 Uiso 1.00 +O29 O 0.02907 0.83145 0.58476 0.01267 Uiso 1.00 +O30 O 0.84780 0.84513 0.52920 0.01267 Uiso 1.00 +O31 O 0.15026 0.75061 0.28196 0.01267 Uiso 1.00 +O32 O 0.98058 0.66215 0.18222 0.01267 Uiso 1.00 +O33 O 0.98892 0.58297 0.37668 0.01267 Uiso 1.00 +O34 O 0.83131 0.65367 0.32978 0.01267 Uiso 1.00 +O35 O 0.12160 0.77613 0.44266 0.01267 Uiso 1.00 +O36 O 0.55569 0.75331 0.58476 0.01267 Uiso 1.00 +O37 O 0.68140 0.68407 0.52920 0.01267 Uiso 1.00 +O38 O 0.13170 0.53135 0.28196 0.01267 Uiso 1.00 +O39 O 0.20164 0.52007 0.18222 0.01267 Uiso 1.00 +O40 O 0.38776 0.79371 0.37668 0.01267 Uiso 1.00 +O41 O 0.49847 0.67611 0.32978 0.01267 Uiso 1.00 +O42 O 0.32106 0.66653 0.44266 0.01267 Uiso 1.00 +O43 O 0.24669 0.97093 0.41524 0.01267 Uiso 1.00 +O44 O 0.31593 0.15220 0.47080 0.01267 Uiso 1.00 +O45 O 0.46865 0.84974 0.71804 0.01267 Uiso 1.00 +O46 O 0.47993 0.01942 0.81778 0.01267 Uiso 1.00 +O47 O 0.20629 0.01108 0.62332 0.01267 Uiso 1.00 +O48 O 0.32389 0.16869 0.67022 0.01267 Uiso 1.00 +O49 O 0.33347 0.87840 0.55734 0.01267 Uiso 1.00 +O50 O 0.16855 0.44431 0.41524 0.01267 Uiso 1.00 +O51 O 0.15487 0.31860 0.47080 0.01267 Uiso 1.00 +O52 O 0.24939 0.86830 0.71804 0.01267 Uiso 1.00 +O53 O 0.33785 0.79836 0.81778 0.01267 Uiso 1.00 +O54 O 0.41703 0.61224 0.62332 0.01267 Uiso 1.00 +O55 O 0.34633 0.50153 0.67022 0.01267 Uiso 1.00 +O56 O 0.22387 0.67894 0.55734 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/flue_gas/ZnH-MFU-4l.cif b/benchmarks/mof/structures/flue_gas/ZnH-MFU-4l.cif new file mode 100644 index 0000000000000000000000000000000000000000..f3d07d6a5be274d04bc875d06f5e38d0d481dbd8 --- /dev/null +++ b/benchmarks/mof/structures/flue_gas/ZnH-MFU-4l.cif @@ -0,0 +1,1550 @@ +data_ZnH-MFU-4l +_audit_creation_date 2025-01-22 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 31.0196 +_cell_length_b 31.0196 +_cell_length_c 31.0196 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.31463 0.31463 0.18537 0.05500 Uiso 1.00 +O2 H 0.34403 0.34404 0.15596 0.05760 Uiso 1.00 +Zn3 Zn 0.68537 0.68537 0.18537 0.05500 Uiso 1.00 +O4 H 0.65597 0.65596 0.15596 0.05760 Uiso 1.00 +Zn5 Zn 0.18537 0.18537 0.18537 0.05500 Uiso 1.00 +O6 H 0.15597 0.15596 0.15596 0.05760 Uiso 1.00 +Zn7 Zn 0.68537 0.31463 0.81463 0.05500 Uiso 1.00 +O8 H 0.65597 0.34404 0.84404 0.05760 Uiso 1.00 +Zn9 Zn 0.18537 0.31463 0.31463 0.05500 Uiso 1.00 +O10 H 0.15597 0.34404 0.34404 0.05760 Uiso 1.00 +Zn11 Zn 0.31462 0.68538 0.81462 0.05500 Uiso 1.00 +O12 H 0.34404 0.65596 0.84404 0.05760 Uiso 1.00 +Zn13 Zn 0.31463 0.18537 0.31463 0.05500 Uiso 1.00 +O14 H 0.34403 0.15596 0.34404 0.05760 Uiso 1.00 +Zn15 Zn 0.18538 0.81462 0.81462 0.05500 Uiso 1.00 +O16 H 0.15597 0.84404 0.84404 0.05760 Uiso 1.00 +Zn17 Zn 0.18538 0.68538 0.68538 0.05500 Uiso 1.00 +O18 H 0.15597 0.65596 0.65596 0.05760 Uiso 1.00 +Zn19 Zn 0.81463 0.68537 0.31463 0.05500 Uiso 1.00 +O20 H 0.84403 0.65596 0.34404 0.05760 Uiso 1.00 +Zn21 Zn 0.81463 0.18537 0.81463 0.05500 Uiso 1.00 +O22 H 0.84403 0.15596 0.84404 0.05760 Uiso 1.00 +Zn23 Zn 0.81463 0.31463 0.68537 0.05500 Uiso 1.00 +O24 H 0.84403 0.34404 0.65596 0.05760 Uiso 1.00 +Zn25 Zn 0.81463 0.81463 0.18537 0.05500 Uiso 1.00 +O26 H 0.84403 0.84404 0.15596 0.05760 Uiso 1.00 +Zn27 Zn 0.68537 0.18537 0.68537 0.05500 Uiso 1.00 +O28 H 0.65597 0.15596 0.65596 0.05760 Uiso 1.00 +Zn29 Zn 0.31462 0.81462 0.68538 0.05500 Uiso 1.00 +O30 H 0.34403 0.84404 0.65596 0.05760 Uiso 1.00 +Zn31 Zn 0.68537 0.81463 0.31463 0.05500 Uiso 1.00 +O32 H 0.65597 0.84404 0.34404 0.05760 Uiso 1.00 +Zn33 Zn 0.31463 0.31463 0.81463 0.05500 Uiso 1.00 +O34 H 0.34403 0.34404 0.84404 0.05760 Uiso 1.00 +Zn35 Zn 0.68537 0.68537 0.81463 0.05500 Uiso 1.00 +O36 H 0.65597 0.65596 0.84404 0.05760 Uiso 1.00 +Zn37 Zn 0.68537 0.18537 0.31463 0.05500 Uiso 1.00 +O38 H 0.65597 0.15596 0.34404 0.05760 Uiso 1.00 +Zn39 Zn 0.18538 0.68538 0.31462 0.05500 Uiso 1.00 +O40 H 0.15597 0.65596 0.34404 0.05760 Uiso 1.00 +Zn41 Zn 0.31462 0.68538 0.18538 0.05500 Uiso 1.00 +O42 H 0.34403 0.65596 0.15596 0.05760 Uiso 1.00 +Zn43 Zn 0.68537 0.31463 0.18537 0.05500 Uiso 1.00 +O44 H 0.65597 0.34404 0.15596 0.05760 Uiso 1.00 +Zn45 Zn 0.18538 0.81462 0.18538 0.05500 Uiso 1.00 +O46 H 0.15597 0.84404 0.15596 0.05760 Uiso 1.00 +Zn47 Zn 0.31463 0.18537 0.68537 0.05500 Uiso 1.00 +O48 H 0.34403 0.15596 0.65596 0.05760 Uiso 1.00 +Zn49 Zn 0.18537 0.18537 0.81463 0.05500 Uiso 1.00 +O50 H 0.15597 0.15596 0.84404 0.05760 Uiso 1.00 +Zn51 Zn 0.68537 0.81463 0.68537 0.05500 Uiso 1.00 +O52 H 0.65597 0.84404 0.65596 0.05760 Uiso 1.00 +Zn53 Zn 0.18537 0.31463 0.68537 0.05500 Uiso 1.00 +O54 H 0.15597 0.34404 0.65596 0.05760 Uiso 1.00 +Zn55 Zn 0.31462 0.81462 0.31462 0.05500 Uiso 1.00 +O56 H 0.34404 0.84404 0.34404 0.05760 Uiso 1.00 +Zn57 Zn 0.81463 0.31463 0.31463 0.05500 Uiso 1.00 +O58 H 0.84403 0.34404 0.34404 0.05760 Uiso 1.00 +Zn59 Zn 0.81463 0.81463 0.81463 0.05500 Uiso 1.00 +O60 H 0.84403 0.84404 0.84404 0.05760 Uiso 1.00 +Zn61 Zn 0.81463 0.68537 0.68537 0.05500 Uiso 1.00 +O62 H 0.84403 0.65596 0.65596 0.05760 Uiso 1.00 +Zn63 Zn 0.81463 0.18537 0.18537 0.05500 Uiso 1.00 +O64 H 0.84403 0.15596 0.15596 0.05760 Uiso 1.00 +Zn65 Zn 0.25000 0.25000 0.25000 0.05500 Uiso 1.00 +Zn66 Zn 0.75000 0.75000 0.25000 0.05500 Uiso 1.00 +Zn67 Zn 0.75000 0.25000 0.75000 0.05500 Uiso 1.00 +Zn68 Zn 0.25000 0.75000 0.75000 0.05500 Uiso 1.00 +Zn69 Zn 0.25000 0.25000 0.75000 0.05500 Uiso 1.00 +Zn70 Zn 0.75000 0.75000 0.75000 0.05500 Uiso 1.00 +Zn71 Zn 0.75000 0.25000 0.25000 0.05500 Uiso 1.00 +Zn72 Zn 0.25000 0.75000 0.25000 0.05500 Uiso 1.00 +N73 N 0.34050 0.27501 0.22499 0.05600 Uiso 1.00 +C74 C 0.38230 0.26679 0.23321 0.06100 Uiso 1.00 +C75 C 0.42100 0.28292 0.21708 0.06100 Uiso 1.00 +C76 C 0.46090 0.26659 0.23341 0.06100 Uiso 1.00 +H77 H 0.42094 0.30413 0.19587 0.03800 Uiso 1.00 +N78 N 0.84050 0.27501 0.72499 0.05600 Uiso 1.00 +C79 C 0.88230 0.26679 0.73321 0.06100 Uiso 1.00 +C80 C 0.92100 0.28292 0.71708 0.06100 Uiso 1.00 +C81 C 0.96090 0.26659 0.73341 0.06100 Uiso 1.00 +H82 H 0.92094 0.30413 0.69587 0.03800 Uiso 1.00 +N83 N 0.65950 0.72499 0.22499 0.05600 Uiso 1.00 +C84 C 0.61770 0.73321 0.23321 0.06100 Uiso 1.00 +C85 C 0.57900 0.71708 0.21708 0.06100 Uiso 1.00 +C86 C 0.53910 0.73341 0.23341 0.06100 Uiso 1.00 +H87 H 0.57906 0.69587 0.19587 0.03800 Uiso 1.00 +N88 N 0.15950 0.72499 0.72499 0.05600 Uiso 1.00 +C89 C 0.11770 0.73321 0.73321 0.06100 Uiso 1.00 +C90 C 0.07900 0.71708 0.71708 0.06100 Uiso 1.00 +C91 C 0.03910 0.73341 0.73341 0.06100 Uiso 1.00 +H92 H 0.07906 0.69587 0.69587 0.03800 Uiso 1.00 +N93 N 0.15950 0.22499 0.22499 0.05600 Uiso 1.00 +C94 C 0.11770 0.23321 0.23321 0.06100 Uiso 1.00 +C95 C 0.07900 0.21708 0.21708 0.06100 Uiso 1.00 +C96 C 0.03910 0.23341 0.23341 0.06100 Uiso 1.00 +H97 H 0.07906 0.19587 0.19587 0.03800 Uiso 1.00 +N98 N 0.65950 0.27501 0.77501 0.05600 Uiso 1.00 +C99 C 0.61770 0.26679 0.76679 0.06100 Uiso 1.00 +C100 C 0.57900 0.28292 0.78292 0.06100 Uiso 1.00 +C101 C 0.53910 0.26659 0.76659 0.06100 Uiso 1.00 +H102 H 0.57906 0.30413 0.80413 0.03800 Uiso 1.00 +N103 N 0.15950 0.27501 0.27501 0.05600 Uiso 1.00 +C104 C 0.11770 0.26679 0.26679 0.06100 Uiso 1.00 +C105 C 0.07900 0.28292 0.28292 0.06100 Uiso 1.00 +C106 C 0.03910 0.26659 0.26659 0.06100 Uiso 1.00 +H107 H 0.07906 0.30413 0.30413 0.03800 Uiso 1.00 +N108 N 0.34050 0.72499 0.77501 0.05600 Uiso 1.00 +C109 C 0.38230 0.73321 0.76679 0.06100 Uiso 1.00 +C110 C 0.42100 0.71708 0.78292 0.06100 Uiso 1.00 +C111 C 0.46090 0.73341 0.76659 0.06100 Uiso 1.00 +H112 H 0.42094 0.69587 0.80413 0.03800 Uiso 1.00 +N113 N 0.34050 0.22499 0.27501 0.05600 Uiso 1.00 +C114 C 0.38230 0.23321 0.26679 0.06100 Uiso 1.00 +C115 C 0.42100 0.21708 0.28292 0.06100 Uiso 1.00 +C116 C 0.46090 0.23341 0.26659 0.06100 Uiso 1.00 +H117 H 0.42094 0.19587 0.30413 0.03800 Uiso 1.00 +N118 N 0.84050 0.72499 0.27501 0.05600 Uiso 1.00 +C119 C 0.88230 0.73321 0.26679 0.06100 Uiso 1.00 +C120 C 0.92100 0.71708 0.28292 0.06100 Uiso 1.00 +C121 C 0.96090 0.73341 0.26659 0.06100 Uiso 1.00 +H122 H 0.92094 0.69587 0.30413 0.03800 Uiso 1.00 +N123 N 0.22499 0.34050 0.27501 0.05600 Uiso 1.00 +C124 C 0.23321 0.38230 0.26679 0.06100 Uiso 1.00 +C125 C 0.21708 0.42100 0.28292 0.06100 Uiso 1.00 +C126 C 0.23341 0.46090 0.26659 0.06100 Uiso 1.00 +H127 H 0.19587 0.42094 0.30413 0.03800 Uiso 1.00 +N128 N 0.22499 0.84050 0.77501 0.05600 Uiso 1.00 +C129 C 0.23321 0.88230 0.76679 0.06100 Uiso 1.00 +C130 C 0.21708 0.92100 0.78292 0.06100 Uiso 1.00 +C131 C 0.23341 0.96090 0.76659 0.06100 Uiso 1.00 +H132 H 0.19587 0.92094 0.80413 0.03800 Uiso 1.00 +N133 N 0.22499 0.65950 0.72499 0.05600 Uiso 1.00 +C134 C 0.23321 0.61770 0.73321 0.06100 Uiso 1.00 +C135 C 0.21708 0.57900 0.71708 0.06100 Uiso 1.00 +C136 C 0.23341 0.53910 0.73341 0.06100 Uiso 1.00 +H137 H 0.19587 0.57906 0.69587 0.03800 Uiso 1.00 +N138 N 0.22499 0.15950 0.22499 0.05600 Uiso 1.00 +C139 C 0.23321 0.11770 0.23321 0.06100 Uiso 1.00 +C140 C 0.21708 0.07900 0.21708 0.06100 Uiso 1.00 +C141 C 0.23341 0.03910 0.23341 0.06100 Uiso 1.00 +H142 H 0.19587 0.07906 0.19587 0.03800 Uiso 1.00 +N143 N 0.77501 0.65950 0.27501 0.05600 Uiso 1.00 +C144 C 0.76679 0.61770 0.26679 0.06100 Uiso 1.00 +C145 C 0.78292 0.57900 0.28292 0.06100 Uiso 1.00 +C146 C 0.76659 0.53910 0.26659 0.06100 Uiso 1.00 +H147 H 0.80413 0.57906 0.30413 0.03800 Uiso 1.00 +N148 N 0.77501 0.15950 0.77501 0.05600 Uiso 1.00 +C149 C 0.76679 0.11770 0.76679 0.06100 Uiso 1.00 +C150 C 0.78292 0.07900 0.78292 0.06100 Uiso 1.00 +C151 C 0.76659 0.03910 0.76659 0.06100 Uiso 1.00 +H152 H 0.80413 0.07906 0.80413 0.03800 Uiso 1.00 +N153 N 0.27501 0.15950 0.27501 0.05600 Uiso 1.00 +C154 C 0.26679 0.11770 0.26679 0.06100 Uiso 1.00 +C155 C 0.28292 0.07900 0.28292 0.06100 Uiso 1.00 +C156 C 0.26659 0.03910 0.26659 0.06100 Uiso 1.00 +H157 H 0.30413 0.07906 0.30413 0.03800 Uiso 1.00 +N158 N 0.77501 0.34050 0.72499 0.05600 Uiso 1.00 +C159 C 0.76679 0.38230 0.73321 0.06100 Uiso 1.00 +C160 C 0.78292 0.42100 0.71708 0.06100 Uiso 1.00 +C161 C 0.76659 0.46090 0.73341 0.06100 Uiso 1.00 +H162 H 0.80413 0.42094 0.69587 0.03800 Uiso 1.00 +N163 N 0.77501 0.84050 0.22499 0.05600 Uiso 1.00 +C164 C 0.76679 0.88230 0.23321 0.06100 Uiso 1.00 +C165 C 0.78292 0.92100 0.21708 0.06100 Uiso 1.00 +C166 C 0.76659 0.96090 0.23341 0.06100 Uiso 1.00 +H167 H 0.80413 0.92094 0.19587 0.03800 Uiso 1.00 +N168 N 0.27501 0.34050 0.22499 0.05600 Uiso 1.00 +C169 C 0.26679 0.38230 0.23321 0.06100 Uiso 1.00 +C170 C 0.28292 0.42100 0.21708 0.06100 Uiso 1.00 +C171 C 0.26659 0.46090 0.23341 0.06100 Uiso 1.00 +H172 H 0.30413 0.42094 0.19587 0.03800 Uiso 1.00 +N173 N 0.27501 0.22499 0.34050 0.05600 Uiso 1.00 +C174 C 0.26679 0.23321 0.38230 0.06100 Uiso 1.00 +C175 C 0.28292 0.21708 0.42100 0.06100 Uiso 1.00 +C176 C 0.26659 0.23341 0.46090 0.06100 Uiso 1.00 +H177 H 0.30413 0.19587 0.42094 0.03800 Uiso 1.00 +N178 N 0.27501 0.72499 0.84050 0.05600 Uiso 1.00 +C179 C 0.26679 0.73321 0.88230 0.06100 Uiso 1.00 +C180 C 0.28292 0.71708 0.92100 0.06100 Uiso 1.00 +C181 C 0.26659 0.73341 0.96090 0.06100 Uiso 1.00 +H182 H 0.30413 0.69587 0.92094 0.03800 Uiso 1.00 +N183 N 0.72499 0.22499 0.65950 0.05600 Uiso 1.00 +C184 C 0.73321 0.23321 0.61770 0.06100 Uiso 1.00 +C185 C 0.71708 0.21708 0.57900 0.06100 Uiso 1.00 +C186 C 0.73341 0.23341 0.53910 0.06100 Uiso 1.00 +H187 H 0.69587 0.19587 0.57906 0.03800 Uiso 1.00 +N188 N 0.72499 0.72499 0.15950 0.05600 Uiso 1.00 +C189 C 0.73321 0.73321 0.11770 0.06100 Uiso 1.00 +C190 C 0.71708 0.71708 0.07900 0.06100 Uiso 1.00 +C191 C 0.73341 0.73341 0.03910 0.06100 Uiso 1.00 +H192 H 0.69587 0.69587 0.07906 0.03800 Uiso 1.00 +N193 N 0.22499 0.22499 0.15950 0.05600 Uiso 1.00 +C194 C 0.23321 0.23321 0.11770 0.06100 Uiso 1.00 +C195 C 0.21708 0.21708 0.07900 0.06100 Uiso 1.00 +C196 C 0.23341 0.23341 0.03910 0.06100 Uiso 1.00 +H197 H 0.19587 0.19587 0.07906 0.03800 Uiso 1.00 +N198 N 0.27501 0.77501 0.65950 0.05600 Uiso 1.00 +C199 C 0.26679 0.76679 0.61770 0.06100 Uiso 1.00 +C200 C 0.28292 0.78292 0.57900 0.06100 Uiso 1.00 +C201 C 0.26659 0.76659 0.53910 0.06100 Uiso 1.00 +H202 H 0.30413 0.80413 0.57906 0.03800 Uiso 1.00 +N203 N 0.27501 0.27501 0.15950 0.05600 Uiso 1.00 +C204 C 0.26679 0.26679 0.11770 0.06100 Uiso 1.00 +C205 C 0.28292 0.28292 0.07900 0.06100 Uiso 1.00 +C206 C 0.26659 0.26659 0.03910 0.06100 Uiso 1.00 +H207 H 0.30413 0.30413 0.07906 0.03800 Uiso 1.00 +N208 N 0.72499 0.77501 0.34050 0.05600 Uiso 1.00 +C209 C 0.73321 0.76679 0.38230 0.06100 Uiso 1.00 +C210 C 0.71708 0.78292 0.42100 0.06100 Uiso 1.00 +C211 C 0.73341 0.76659 0.46090 0.06100 Uiso 1.00 +H212 H 0.69587 0.80413 0.42094 0.03800 Uiso 1.00 +N213 N 0.72499 0.27501 0.84050 0.05600 Uiso 1.00 +C214 C 0.73321 0.26679 0.88230 0.06100 Uiso 1.00 +C215 C 0.71708 0.28292 0.92100 0.06100 Uiso 1.00 +C216 C 0.73341 0.26659 0.96090 0.06100 Uiso 1.00 +H217 H 0.69587 0.30413 0.92094 0.03800 Uiso 1.00 +N218 N 0.22499 0.27501 0.34050 0.05600 Uiso 1.00 +C219 C 0.23321 0.26679 0.38230 0.06100 Uiso 1.00 +C220 C 0.21708 0.28292 0.42100 0.06100 Uiso 1.00 +C221 C 0.23341 0.26659 0.46090 0.06100 Uiso 1.00 +H222 H 0.19587 0.30413 0.42094 0.03800 Uiso 1.00 +N223 N 0.27501 0.34050 0.77501 0.05600 Uiso 1.00 +C224 C 0.26679 0.38230 0.76679 0.06100 Uiso 1.00 +C225 C 0.28292 0.42100 0.78292 0.06100 Uiso 1.00 +C226 C 0.26659 0.46090 0.76659 0.06100 Uiso 1.00 +H227 H 0.30413 0.42094 0.80413 0.03800 Uiso 1.00 +N228 N 0.27501 0.84050 0.27501 0.05600 Uiso 1.00 +C229 C 0.26679 0.88230 0.26679 0.06100 Uiso 1.00 +C230 C 0.28292 0.92100 0.28292 0.06100 Uiso 1.00 +C231 C 0.26659 0.96090 0.26659 0.06100 Uiso 1.00 +H232 H 0.30413 0.92094 0.30413 0.03800 Uiso 1.00 +N233 N 0.72499 0.65950 0.77501 0.05600 Uiso 1.00 +C234 C 0.73321 0.61770 0.76679 0.06100 Uiso 1.00 +C235 C 0.71708 0.57900 0.78292 0.06100 Uiso 1.00 +C236 C 0.73341 0.53910 0.76659 0.06100 Uiso 1.00 +H237 H 0.69587 0.57906 0.80413 0.03800 Uiso 1.00 +N238 N 0.72499 0.15950 0.27501 0.05600 Uiso 1.00 +C239 C 0.73321 0.11770 0.26679 0.06100 Uiso 1.00 +C240 C 0.71708 0.07900 0.28292 0.06100 Uiso 1.00 +C241 C 0.73341 0.03910 0.26659 0.06100 Uiso 1.00 +H242 H 0.69587 0.07906 0.30413 0.03800 Uiso 1.00 +N243 N 0.22499 0.65950 0.27501 0.05600 Uiso 1.00 +C244 C 0.23321 0.61770 0.26679 0.06100 Uiso 1.00 +C245 C 0.21708 0.57900 0.28292 0.06100 Uiso 1.00 +C246 C 0.23341 0.53910 0.26659 0.06100 Uiso 1.00 +H247 H 0.19587 0.57906 0.30413 0.03800 Uiso 1.00 +N248 N 0.27501 0.65950 0.22499 0.05600 Uiso 1.00 +C249 C 0.26679 0.61770 0.23321 0.06100 Uiso 1.00 +C250 C 0.28292 0.57900 0.21708 0.06100 Uiso 1.00 +C251 C 0.26659 0.53910 0.23341 0.06100 Uiso 1.00 +H252 H 0.30413 0.57906 0.19587 0.03800 Uiso 1.00 +N253 N 0.27501 0.15950 0.72499 0.05600 Uiso 1.00 +C254 C 0.26679 0.11770 0.73321 0.06100 Uiso 1.00 +C255 C 0.28292 0.07900 0.71708 0.06100 Uiso 1.00 +C256 C 0.26659 0.03910 0.73341 0.06100 Uiso 1.00 +H257 H 0.30413 0.07906 0.69587 0.03800 Uiso 1.00 +N258 N 0.72499 0.34050 0.22499 0.05600 Uiso 1.00 +C259 C 0.73321 0.38230 0.23321 0.06100 Uiso 1.00 +C260 C 0.71708 0.42100 0.21708 0.06100 Uiso 1.00 +C261 C 0.73341 0.46090 0.23341 0.06100 Uiso 1.00 +H262 H 0.69587 0.42094 0.19587 0.03800 Uiso 1.00 +N263 N 0.72499 0.84050 0.72499 0.05600 Uiso 1.00 +C264 C 0.73321 0.88230 0.73321 0.06100 Uiso 1.00 +C265 C 0.71708 0.92100 0.71708 0.06100 Uiso 1.00 +C266 C 0.73341 0.96090 0.73341 0.06100 Uiso 1.00 +H267 H 0.69587 0.92094 0.69587 0.03800 Uiso 1.00 +N268 N 0.22499 0.84050 0.22499 0.05600 Uiso 1.00 +C269 C 0.23321 0.88230 0.23321 0.06100 Uiso 1.00 +C270 C 0.21708 0.92100 0.21708 0.06100 Uiso 1.00 +C271 C 0.23341 0.96090 0.23341 0.06100 Uiso 1.00 +H272 H 0.19587 0.92094 0.19587 0.03800 Uiso 1.00 +N273 N 0.34050 0.22499 0.72499 0.05600 Uiso 1.00 +C274 C 0.38230 0.23321 0.73321 0.06100 Uiso 1.00 +C275 C 0.42100 0.21708 0.71708 0.06100 Uiso 1.00 +C276 C 0.46090 0.23341 0.73341 0.06100 Uiso 1.00 +H277 H 0.42094 0.19587 0.69587 0.03800 Uiso 1.00 +N278 N 0.84050 0.22499 0.22499 0.05600 Uiso 1.00 +C279 C 0.88230 0.23321 0.23321 0.06100 Uiso 1.00 +C280 C 0.92100 0.21708 0.21708 0.06100 Uiso 1.00 +C281 C 0.96090 0.23341 0.23341 0.06100 Uiso 1.00 +H282 H 0.92094 0.19587 0.19587 0.03800 Uiso 1.00 +N283 N 0.65950 0.22499 0.27501 0.05600 Uiso 1.00 +C284 C 0.61770 0.23321 0.26679 0.06100 Uiso 1.00 +C285 C 0.57900 0.21708 0.28292 0.06100 Uiso 1.00 +C286 C 0.53910 0.23341 0.26659 0.06100 Uiso 1.00 +H287 H 0.57906 0.19587 0.30413 0.03800 Uiso 1.00 +N288 N 0.15950 0.22499 0.77501 0.05600 Uiso 1.00 +C289 C 0.11770 0.23321 0.76679 0.06100 Uiso 1.00 +C290 C 0.07900 0.21708 0.78292 0.06100 Uiso 1.00 +C291 C 0.03910 0.23341 0.76659 0.06100 Uiso 1.00 +H292 H 0.07906 0.19587 0.80413 0.03800 Uiso 1.00 +N293 N 0.65950 0.77501 0.72499 0.05600 Uiso 1.00 +C294 C 0.61770 0.76679 0.73321 0.06100 Uiso 1.00 +C295 C 0.57900 0.78292 0.71708 0.06100 Uiso 1.00 +C296 C 0.53910 0.76659 0.73341 0.06100 Uiso 1.00 +H297 H 0.57906 0.80413 0.69587 0.03800 Uiso 1.00 +N298 N 0.65950 0.27501 0.22499 0.05600 Uiso 1.00 +C299 C 0.61770 0.26679 0.23321 0.06100 Uiso 1.00 +C300 C 0.57900 0.28292 0.21708 0.06100 Uiso 1.00 +C301 C 0.53910 0.26659 0.23341 0.06100 Uiso 1.00 +H302 H 0.57906 0.30413 0.19587 0.03800 Uiso 1.00 +N303 N 0.15950 0.77501 0.22499 0.05600 Uiso 1.00 +C304 C 0.11770 0.76679 0.23321 0.06100 Uiso 1.00 +C305 C 0.07900 0.78292 0.21708 0.06100 Uiso 1.00 +C306 C 0.03910 0.76659 0.23341 0.06100 Uiso 1.00 +H307 H 0.07906 0.80413 0.19587 0.03800 Uiso 1.00 +N308 N 0.34050 0.77501 0.27501 0.05600 Uiso 1.00 +C309 C 0.38230 0.76679 0.26679 0.06100 Uiso 1.00 +C310 C 0.42100 0.78292 0.28292 0.06100 Uiso 1.00 +C311 C 0.46090 0.76659 0.26659 0.06100 Uiso 1.00 +H312 H 0.42094 0.80413 0.30413 0.03800 Uiso 1.00 +N313 N 0.84050 0.77501 0.77501 0.05600 Uiso 1.00 +C314 C 0.88230 0.76679 0.76679 0.06100 Uiso 1.00 +C315 C 0.92100 0.78292 0.78292 0.06100 Uiso 1.00 +C316 C 0.96090 0.76659 0.76659 0.06100 Uiso 1.00 +H317 H 0.92094 0.80413 0.80413 0.03800 Uiso 1.00 +N318 N 0.84050 0.27501 0.27501 0.05600 Uiso 1.00 +C319 C 0.88230 0.26679 0.26679 0.06100 Uiso 1.00 +C320 C 0.92100 0.28292 0.28292 0.06100 Uiso 1.00 +C321 C 0.96090 0.26659 0.26659 0.06100 Uiso 1.00 +H322 H 0.92094 0.30413 0.30413 0.03800 Uiso 1.00 +N323 N 0.22499 0.27501 0.65950 0.05600 Uiso 1.00 +C324 C 0.23321 0.26679 0.61770 0.06100 Uiso 1.00 +C325 C 0.21708 0.28292 0.57900 0.06100 Uiso 1.00 +C326 C 0.23341 0.26659 0.53910 0.06100 Uiso 1.00 +H327 H 0.19587 0.30413 0.57906 0.03800 Uiso 1.00 +N328 N 0.22499 0.77501 0.15950 0.05600 Uiso 1.00 +C329 C 0.23321 0.76679 0.11770 0.06100 Uiso 1.00 +C330 C 0.21708 0.78292 0.07900 0.06100 Uiso 1.00 +C331 C 0.23341 0.76659 0.03910 0.06100 Uiso 1.00 +H332 H 0.19587 0.80413 0.07906 0.03800 Uiso 1.00 +N333 N 0.22499 0.72499 0.34050 0.05600 Uiso 1.00 +C334 C 0.23321 0.73321 0.38230 0.06100 Uiso 1.00 +C335 C 0.21708 0.71708 0.42100 0.06100 Uiso 1.00 +C336 C 0.23341 0.73341 0.46090 0.06100 Uiso 1.00 +H337 H 0.19587 0.69587 0.42094 0.03800 Uiso 1.00 +N338 N 0.22499 0.22499 0.84050 0.05600 Uiso 1.00 +C339 C 0.23321 0.23321 0.88230 0.06100 Uiso 1.00 +C340 C 0.21708 0.21708 0.92100 0.06100 Uiso 1.00 +C341 C 0.23341 0.23341 0.96090 0.06100 Uiso 1.00 +H342 H 0.19587 0.19587 0.92094 0.03800 Uiso 1.00 +N343 N 0.77501 0.27501 0.34050 0.05600 Uiso 1.00 +C344 C 0.76679 0.26679 0.38230 0.06100 Uiso 1.00 +C345 C 0.78292 0.28292 0.42100 0.06100 Uiso 1.00 +C346 C 0.76659 0.26659 0.46090 0.06100 Uiso 1.00 +H347 H 0.80413 0.30413 0.42094 0.03800 Uiso 1.00 +N348 N 0.77501 0.77501 0.84050 0.05600 Uiso 1.00 +C349 C 0.76679 0.76679 0.88230 0.06100 Uiso 1.00 +C350 C 0.78292 0.78292 0.92100 0.06100 Uiso 1.00 +C351 C 0.76659 0.76659 0.96090 0.06100 Uiso 1.00 +H352 H 0.80413 0.80413 0.92094 0.03800 Uiso 1.00 +N353 N 0.27501 0.27501 0.84050 0.05600 Uiso 1.00 +C354 C 0.26679 0.26679 0.88230 0.06100 Uiso 1.00 +C355 C 0.28292 0.28292 0.92100 0.06100 Uiso 1.00 +C356 C 0.26659 0.26659 0.96090 0.06100 Uiso 1.00 +H357 H 0.30413 0.30413 0.92094 0.03800 Uiso 1.00 +N358 N 0.77501 0.72499 0.65950 0.05600 Uiso 1.00 +C359 C 0.76679 0.73321 0.61770 0.06100 Uiso 1.00 +C360 C 0.78292 0.71708 0.57900 0.06100 Uiso 1.00 +C361 C 0.76659 0.73341 0.53910 0.06100 Uiso 1.00 +H362 H 0.80413 0.69587 0.57906 0.03800 Uiso 1.00 +N363 N 0.77501 0.22499 0.15950 0.05600 Uiso 1.00 +C364 C 0.76679 0.23321 0.11770 0.06100 Uiso 1.00 +C365 C 0.78292 0.21708 0.07900 0.06100 Uiso 1.00 +C366 C 0.76659 0.23341 0.03910 0.06100 Uiso 1.00 +H367 H 0.80413 0.19587 0.07906 0.03800 Uiso 1.00 +N368 N 0.27501 0.22499 0.65950 0.05600 Uiso 1.00 +C369 C 0.26679 0.23321 0.61770 0.06100 Uiso 1.00 +C370 C 0.28292 0.21708 0.57900 0.06100 Uiso 1.00 +C371 C 0.26659 0.23341 0.53910 0.06100 Uiso 1.00 +H372 H 0.30413 0.19587 0.57906 0.03800 Uiso 1.00 +N373 N 0.65950 0.72499 0.77501 0.05600 Uiso 1.00 +C374 C 0.61770 0.73321 0.76679 0.06100 Uiso 1.00 +C375 C 0.57900 0.71708 0.78292 0.06100 Uiso 1.00 +C376 C 0.53910 0.73341 0.76659 0.06100 Uiso 1.00 +H377 H 0.57906 0.69587 0.80413 0.03800 Uiso 1.00 +N378 N 0.15950 0.72499 0.27501 0.05600 Uiso 1.00 +C379 C 0.11770 0.73321 0.26679 0.06100 Uiso 1.00 +C380 C 0.07900 0.71708 0.28292 0.06100 Uiso 1.00 +C381 C 0.03910 0.73341 0.26659 0.06100 Uiso 1.00 +H382 H 0.07906 0.69587 0.30413 0.03800 Uiso 1.00 +N383 N 0.34050 0.27501 0.77501 0.05600 Uiso 1.00 +C384 C 0.38230 0.26679 0.76679 0.06100 Uiso 1.00 +C385 C 0.42100 0.28292 0.78292 0.06100 Uiso 1.00 +C386 C 0.46090 0.26659 0.76659 0.06100 Uiso 1.00 +H387 H 0.42094 0.30413 0.80413 0.03800 Uiso 1.00 +N388 N 0.34050 0.72499 0.22499 0.05600 Uiso 1.00 +C389 C 0.38230 0.73321 0.23321 0.06100 Uiso 1.00 +C390 C 0.42100 0.71708 0.21708 0.06100 Uiso 1.00 +C391 C 0.46090 0.73341 0.23341 0.06100 Uiso 1.00 +H392 H 0.42094 0.69587 0.19587 0.03800 Uiso 1.00 +N393 N 0.84050 0.72499 0.72499 0.05600 Uiso 1.00 +C394 C 0.88230 0.73321 0.73321 0.06100 Uiso 1.00 +C395 C 0.92100 0.71708 0.71708 0.06100 Uiso 1.00 +C396 C 0.96090 0.73341 0.73341 0.06100 Uiso 1.00 +H397 H 0.92094 0.69587 0.69587 0.03800 Uiso 1.00 +N398 N 0.15950 0.27501 0.72499 0.05600 Uiso 1.00 +C399 C 0.11770 0.26679 0.73321 0.06100 Uiso 1.00 +C400 C 0.07900 0.28292 0.71708 0.06100 Uiso 1.00 +C401 C 0.03910 0.26659 0.73341 0.06100 Uiso 1.00 +H402 H 0.07906 0.30413 0.69587 0.03800 Uiso 1.00 +N403 N 0.77501 0.65950 0.72499 0.05600 Uiso 1.00 +C404 C 0.76679 0.61770 0.73321 0.06100 Uiso 1.00 +C405 C 0.78292 0.57900 0.71708 0.06100 Uiso 1.00 +C406 C 0.76659 0.53910 0.73341 0.06100 Uiso 1.00 +H407 H 0.80413 0.57906 0.69587 0.03800 Uiso 1.00 +N408 N 0.77501 0.15950 0.22499 0.05600 Uiso 1.00 +C409 C 0.76679 0.11770 0.23321 0.06100 Uiso 1.00 +C410 C 0.78292 0.07900 0.21708 0.06100 Uiso 1.00 +C411 C 0.76659 0.03910 0.23341 0.06100 Uiso 1.00 +H412 H 0.80413 0.07906 0.19587 0.03800 Uiso 1.00 +N413 N 0.77501 0.34050 0.27501 0.05600 Uiso 1.00 +C414 C 0.76679 0.38230 0.26679 0.06100 Uiso 1.00 +C415 C 0.78292 0.42100 0.28292 0.06100 Uiso 1.00 +C416 C 0.76659 0.46090 0.26659 0.06100 Uiso 1.00 +H417 H 0.80413 0.42094 0.30413 0.03800 Uiso 1.00 +N418 N 0.77501 0.84050 0.77501 0.05600 Uiso 1.00 +C419 C 0.76679 0.88230 0.76679 0.06100 Uiso 1.00 +C420 C 0.78292 0.92100 0.78292 0.06100 Uiso 1.00 +C421 C 0.76659 0.96090 0.76659 0.06100 Uiso 1.00 +H422 H 0.80413 0.92094 0.80413 0.03800 Uiso 1.00 +N423 N 0.22499 0.34050 0.72499 0.05600 Uiso 1.00 +C424 C 0.23321 0.38230 0.73321 0.06100 Uiso 1.00 +C425 C 0.21708 0.42100 0.71708 0.06100 Uiso 1.00 +C426 C 0.23341 0.46090 0.73341 0.06100 Uiso 1.00 +H427 H 0.19587 0.42094 0.69587 0.03800 Uiso 1.00 +N428 N 0.22499 0.15950 0.77501 0.05600 Uiso 1.00 +C429 C 0.23321 0.11770 0.76679 0.06100 Uiso 1.00 +C430 C 0.21708 0.07900 0.78292 0.06100 Uiso 1.00 +C431 C 0.23341 0.03910 0.76659 0.06100 Uiso 1.00 +H432 H 0.19587 0.07906 0.80413 0.03800 Uiso 1.00 +N433 N 0.72499 0.77501 0.65950 0.05600 Uiso 1.00 +C434 C 0.73321 0.76679 0.61770 0.06100 Uiso 1.00 +C435 C 0.71708 0.78292 0.57900 0.06100 Uiso 1.00 +C436 C 0.73341 0.76659 0.53910 0.06100 Uiso 1.00 +H437 H 0.69587 0.80413 0.57906 0.03800 Uiso 1.00 +N438 N 0.72499 0.27501 0.15950 0.05600 Uiso 1.00 +C439 C 0.73321 0.26679 0.11770 0.06100 Uiso 1.00 +C440 C 0.71708 0.28292 0.07900 0.06100 Uiso 1.00 +C441 C 0.73341 0.26659 0.03910 0.06100 Uiso 1.00 +H442 H 0.69587 0.30413 0.07906 0.03800 Uiso 1.00 +N443 N 0.27501 0.77501 0.34050 0.05600 Uiso 1.00 +C444 C 0.26679 0.76679 0.38230 0.06100 Uiso 1.00 +C445 C 0.28292 0.78292 0.42100 0.06100 Uiso 1.00 +C446 C 0.26659 0.76659 0.46090 0.06100 Uiso 1.00 +H447 H 0.30413 0.80413 0.42094 0.03800 Uiso 1.00 +N448 N 0.72499 0.22499 0.34050 0.05600 Uiso 1.00 +C449 C 0.73321 0.23321 0.38230 0.06100 Uiso 1.00 +C450 C 0.71708 0.21708 0.42100 0.06100 Uiso 1.00 +C451 C 0.73341 0.23341 0.46090 0.06100 Uiso 1.00 +H452 H 0.69587 0.19587 0.42094 0.03800 Uiso 1.00 +N453 N 0.72499 0.72499 0.84050 0.05600 Uiso 1.00 +C454 C 0.73321 0.73321 0.88230 0.06100 Uiso 1.00 +C455 C 0.71708 0.71708 0.92100 0.06100 Uiso 1.00 +C456 C 0.73341 0.73341 0.96090 0.06100 Uiso 1.00 +H457 H 0.69587 0.69587 0.92094 0.03800 Uiso 1.00 +N458 N 0.27501 0.72499 0.15950 0.05600 Uiso 1.00 +C459 C 0.26679 0.73321 0.11770 0.06100 Uiso 1.00 +C460 C 0.28292 0.71708 0.07900 0.06100 Uiso 1.00 +C461 C 0.26659 0.73341 0.03910 0.06100 Uiso 1.00 +H462 H 0.30413 0.69587 0.07906 0.03800 Uiso 1.00 +N463 N 0.72499 0.65950 0.22499 0.05600 Uiso 1.00 +C464 C 0.73321 0.61770 0.23321 0.06100 Uiso 1.00 +C465 C 0.71708 0.57900 0.21708 0.06100 Uiso 1.00 +C466 C 0.73341 0.53910 0.23341 0.06100 Uiso 1.00 +H467 H 0.69587 0.57906 0.19587 0.03800 Uiso 1.00 +N468 N 0.72499 0.15950 0.72499 0.05600 Uiso 1.00 +C469 C 0.73321 0.11770 0.73321 0.06100 Uiso 1.00 +C470 C 0.71708 0.07900 0.71708 0.06100 Uiso 1.00 +C471 C 0.73341 0.03910 0.73341 0.06100 Uiso 1.00 +H472 H 0.69587 0.07906 0.69587 0.03800 Uiso 1.00 +N473 N 0.27501 0.84050 0.72499 0.05600 Uiso 1.00 +C474 C 0.26679 0.88230 0.73321 0.06100 Uiso 1.00 +C475 C 0.28292 0.92100 0.71708 0.06100 Uiso 1.00 +C476 C 0.26659 0.96090 0.73341 0.06100 Uiso 1.00 +H477 H 0.30413 0.92094 0.69587 0.03800 Uiso 1.00 +N478 N 0.72499 0.34050 0.77501 0.05600 Uiso 1.00 +C479 C 0.73321 0.38230 0.76679 0.06100 Uiso 1.00 +C480 C 0.71708 0.42100 0.78292 0.06100 Uiso 1.00 +C481 C 0.73341 0.46090 0.76659 0.06100 Uiso 1.00 +H482 H 0.69587 0.42094 0.80413 0.03800 Uiso 1.00 +N483 N 0.72499 0.84050 0.27501 0.05600 Uiso 1.00 +C484 C 0.73321 0.88230 0.26679 0.06100 Uiso 1.00 +C485 C 0.71708 0.92100 0.28292 0.06100 Uiso 1.00 +C486 C 0.73341 0.96090 0.26659 0.06100 Uiso 1.00 +H487 H 0.69587 0.92094 0.30413 0.03800 Uiso 1.00 +N488 N 0.27501 0.65950 0.77501 0.05600 Uiso 1.00 +C489 C 0.26679 0.61770 0.76679 0.06100 Uiso 1.00 +C490 C 0.28292 0.57900 0.78292 0.06100 Uiso 1.00 +C491 C 0.26659 0.53910 0.76659 0.06100 Uiso 1.00 +H492 H 0.30413 0.57906 0.80413 0.03800 Uiso 1.00 +N493 N 0.65950 0.77501 0.27501 0.05600 Uiso 1.00 +C494 C 0.61770 0.76679 0.26679 0.06100 Uiso 1.00 +C495 C 0.57900 0.78292 0.28292 0.06100 Uiso 1.00 +C496 C 0.53910 0.76659 0.26659 0.06100 Uiso 1.00 +H497 H 0.57906 0.80413 0.30413 0.03800 Uiso 1.00 +N498 N 0.15950 0.77501 0.77501 0.05600 Uiso 1.00 +C499 C 0.11770 0.76679 0.76679 0.06100 Uiso 1.00 +C500 C 0.07900 0.78292 0.78292 0.06100 Uiso 1.00 +C501 C 0.03910 0.76659 0.76659 0.06100 Uiso 1.00 +H502 H 0.07906 0.80413 0.80413 0.03800 Uiso 1.00 +N503 N 0.34050 0.77501 0.72499 0.05600 Uiso 1.00 +C504 C 0.38230 0.76679 0.73321 0.06100 Uiso 1.00 +C505 C 0.42100 0.78292 0.71708 0.06100 Uiso 1.00 +C506 C 0.46090 0.76659 0.73341 0.06100 Uiso 1.00 +H507 H 0.42094 0.80413 0.69587 0.03800 Uiso 1.00 +N508 N 0.84050 0.77501 0.22499 0.05600 Uiso 1.00 +C509 C 0.88230 0.76679 0.23321 0.06100 Uiso 1.00 +C510 C 0.92100 0.78292 0.21708 0.06100 Uiso 1.00 +C511 C 0.96090 0.76659 0.23341 0.06100 Uiso 1.00 +H512 H 0.92094 0.80413 0.19587 0.03800 Uiso 1.00 +N513 N 0.84050 0.22499 0.77501 0.05600 Uiso 1.00 +C514 C 0.88230 0.23321 0.76679 0.06100 Uiso 1.00 +C515 C 0.92100 0.21708 0.78292 0.06100 Uiso 1.00 +C516 C 0.96090 0.23341 0.76659 0.06100 Uiso 1.00 +H517 H 0.92094 0.19587 0.80413 0.03800 Uiso 1.00 +N518 N 0.65950 0.22499 0.72499 0.05600 Uiso 1.00 +C519 C 0.61770 0.23321 0.73321 0.06100 Uiso 1.00 +C520 C 0.57900 0.21708 0.71708 0.06100 Uiso 1.00 +C521 C 0.53910 0.23341 0.73341 0.06100 Uiso 1.00 +H522 H 0.57906 0.19587 0.69587 0.03800 Uiso 1.00 +N523 N 0.77501 0.72499 0.34050 0.05600 Uiso 1.00 +C524 C 0.76679 0.73321 0.38230 0.06100 Uiso 1.00 +C525 C 0.78292 0.71708 0.42100 0.06100 Uiso 1.00 +C526 C 0.76659 0.73341 0.46090 0.06100 Uiso 1.00 +H527 H 0.80413 0.69587 0.42094 0.03800 Uiso 1.00 +N528 N 0.77501 0.22499 0.84050 0.05600 Uiso 1.00 +C529 C 0.76679 0.23321 0.88230 0.06100 Uiso 1.00 +C530 C 0.78292 0.21708 0.92100 0.06100 Uiso 1.00 +C531 C 0.76659 0.23341 0.96090 0.06100 Uiso 1.00 +H532 H 0.80413 0.19587 0.92094 0.03800 Uiso 1.00 +N533 N 0.77501 0.27501 0.65950 0.05600 Uiso 1.00 +C534 C 0.76679 0.26679 0.61770 0.06100 Uiso 1.00 +C535 C 0.78292 0.28292 0.57900 0.06100 Uiso 1.00 +C536 C 0.76659 0.26659 0.53910 0.06100 Uiso 1.00 +H537 H 0.80413 0.30413 0.57906 0.03800 Uiso 1.00 +N538 N 0.77501 0.77501 0.15950 0.05600 Uiso 1.00 +C539 C 0.76679 0.76679 0.11770 0.06100 Uiso 1.00 +C540 C 0.78292 0.78292 0.07900 0.06100 Uiso 1.00 +C541 C 0.76659 0.76659 0.03910 0.06100 Uiso 1.00 +H542 H 0.80413 0.80413 0.07906 0.03800 Uiso 1.00 +N543 N 0.22499 0.72499 0.65950 0.05600 Uiso 1.00 +C544 C 0.23321 0.73321 0.61770 0.06100 Uiso 1.00 +C545 C 0.21708 0.71708 0.57900 0.06100 Uiso 1.00 +C546 C 0.23341 0.73341 0.53910 0.06100 Uiso 1.00 +H547 H 0.19587 0.69587 0.57906 0.03800 Uiso 1.00 +N548 N 0.22499 0.77501 0.84050 0.05600 Uiso 1.00 +C549 C 0.23321 0.76679 0.88230 0.06100 Uiso 1.00 +C550 C 0.21708 0.78292 0.92100 0.06100 Uiso 1.00 +C551 C 0.23341 0.76659 0.96090 0.06100 Uiso 1.00 +H552 H 0.19587 0.80413 0.92094 0.03800 Uiso 1.00 +N553 N 0.31570 0.25000 0.25000 0.05600 Uiso 1.00 +N554 N 0.81570 0.25000 0.75000 0.05600 Uiso 1.00 +N555 N 0.68430 0.75000 0.25000 0.05600 Uiso 1.00 +N556 N 0.18430 0.75000 0.75000 0.05600 Uiso 1.00 +N557 N 0.18430 0.25000 0.25000 0.05600 Uiso 1.00 +N558 N 0.68430 0.25000 0.75000 0.05600 Uiso 1.00 +N559 N 0.31570 0.75000 0.75000 0.05600 Uiso 1.00 +N560 N 0.81570 0.75000 0.25000 0.05600 Uiso 1.00 +N561 N 0.25000 0.31570 0.25000 0.05600 Uiso 1.00 +N562 N 0.25000 0.81570 0.75000 0.05600 Uiso 1.00 +N563 N 0.25000 0.68430 0.75000 0.05600 Uiso 1.00 +N564 N 0.25000 0.18430 0.25000 0.05600 Uiso 1.00 +N565 N 0.75000 0.68430 0.25000 0.05600 Uiso 1.00 +N566 N 0.75000 0.18430 0.75000 0.05600 Uiso 1.00 +N567 N 0.75000 0.31570 0.75000 0.05600 Uiso 1.00 +N568 N 0.75000 0.81570 0.25000 0.05600 Uiso 1.00 +N569 N 0.25000 0.25000 0.31570 0.05600 Uiso 1.00 +N570 N 0.25000 0.75000 0.81570 0.05600 Uiso 1.00 +N571 N 0.75000 0.25000 0.68430 0.05600 Uiso 1.00 +N572 N 0.75000 0.75000 0.18430 0.05600 Uiso 1.00 +N573 N 0.25000 0.25000 0.18430 0.05600 Uiso 1.00 +N574 N 0.25000 0.75000 0.68430 0.05600 Uiso 1.00 +N575 N 0.75000 0.75000 0.31570 0.05600 Uiso 1.00 +N576 N 0.75000 0.25000 0.81570 0.05600 Uiso 1.00 +N577 N 0.25000 0.31570 0.75000 0.05600 Uiso 1.00 +N578 N 0.25000 0.81570 0.25000 0.05600 Uiso 1.00 +N579 N 0.75000 0.68430 0.75000 0.05600 Uiso 1.00 +N580 N 0.75000 0.18430 0.25000 0.05600 Uiso 1.00 +N581 N 0.25000 0.68430 0.25000 0.05600 Uiso 1.00 +N582 N 0.25000 0.18430 0.75000 0.05600 Uiso 1.00 +N583 N 0.75000 0.31570 0.25000 0.05600 Uiso 1.00 +N584 N 0.75000 0.81570 0.75000 0.05600 Uiso 1.00 +N585 N 0.31570 0.25000 0.75000 0.05600 Uiso 1.00 +N586 N 0.81570 0.25000 0.25000 0.05600 Uiso 1.00 +N587 N 0.68430 0.25000 0.25000 0.05600 Uiso 1.00 +N588 N 0.18430 0.25000 0.75000 0.05600 Uiso 1.00 +N589 N 0.68430 0.75000 0.75000 0.05600 Uiso 1.00 +N590 N 0.18430 0.75000 0.25000 0.05600 Uiso 1.00 +N591 N 0.31570 0.75000 0.25000 0.05600 Uiso 1.00 +N592 N 0.81570 0.75000 0.75000 0.05600 Uiso 1.00 +N593 N 0.25000 0.25000 0.68430 0.05600 Uiso 1.00 +N594 N 0.25000 0.75000 0.18430 0.05600 Uiso 1.00 +N595 N 0.25000 0.75000 0.31570 0.05600 Uiso 1.00 +N596 N 0.25000 0.25000 0.81570 0.05600 Uiso 1.00 +N597 N 0.75000 0.25000 0.31570 0.05600 Uiso 1.00 +N598 N 0.75000 0.75000 0.81570 0.05600 Uiso 1.00 +N599 N 0.75000 0.75000 0.68430 0.05600 Uiso 1.00 +N600 N 0.75000 0.25000 0.18430 0.05600 Uiso 1.00 +O601 O 0.50000 0.28282 0.21718 0.06100 Uiso 1.00 +O602 O 0.00000 0.28282 0.71718 0.06100 Uiso 1.00 +O603 O 0.50000 0.71718 0.21718 0.06100 Uiso 1.00 +O604 O 0.00000 0.71718 0.71718 0.06100 Uiso 1.00 +O605 O 0.50000 0.28282 0.78282 0.06100 Uiso 1.00 +O606 O 0.00000 0.28282 0.28282 0.06100 Uiso 1.00 +O607 O 0.50000 0.71718 0.78282 0.06100 Uiso 1.00 +O608 O 0.00000 0.71718 0.28282 0.06100 Uiso 1.00 +O609 O 0.21718 0.50000 0.28282 0.06100 Uiso 1.00 +O610 O 0.21718 0.00000 0.78282 0.06100 Uiso 1.00 +O611 O 0.21718 0.50000 0.71718 0.06100 Uiso 1.00 +O612 O 0.21718 0.00000 0.21718 0.06100 Uiso 1.00 +O613 O 0.78282 0.50000 0.28282 0.06100 Uiso 1.00 +O614 O 0.78282 0.00000 0.78282 0.06100 Uiso 1.00 +O615 O 0.78282 0.50000 0.71718 0.06100 Uiso 1.00 +O616 O 0.78282 0.00000 0.21718 0.06100 Uiso 1.00 +O617 O 0.28282 0.21718 0.50000 0.06100 Uiso 1.00 +O618 O 0.28282 0.71718 0.00000 0.06100 Uiso 1.00 +O619 O 0.71718 0.21718 0.50000 0.06100 Uiso 1.00 +O620 O 0.71718 0.71718 0.00000 0.06100 Uiso 1.00 +O621 O 0.28282 0.78282 0.50000 0.06100 Uiso 1.00 +O622 O 0.28282 0.28282 0.00000 0.06100 Uiso 1.00 +O623 O 0.71718 0.78282 0.50000 0.06100 Uiso 1.00 +O624 O 0.71718 0.28282 0.00000 0.06100 Uiso 1.00 +O625 O 0.28282 0.50000 0.78282 0.06100 Uiso 1.00 +O626 O 0.28282 0.00000 0.28282 0.06100 Uiso 1.00 +O627 O 0.71718 0.50000 0.78282 0.06100 Uiso 1.00 +O628 O 0.71718 0.00000 0.28282 0.06100 Uiso 1.00 +O629 O 0.28282 0.50000 0.21718 0.06100 Uiso 1.00 +O630 O 0.28282 0.00000 0.71718 0.06100 Uiso 1.00 +O631 O 0.71718 0.50000 0.21718 0.06100 Uiso 1.00 +O632 O 0.71718 0.00000 0.71718 0.06100 Uiso 1.00 +O633 O 0.50000 0.21718 0.71718 0.06100 Uiso 1.00 +O634 O 0.00000 0.21718 0.21718 0.06100 Uiso 1.00 +O635 O 0.50000 0.21718 0.28282 0.06100 Uiso 1.00 +O636 O 0.00000 0.21718 0.78282 0.06100 Uiso 1.00 +O637 O 0.50000 0.78282 0.71718 0.06100 Uiso 1.00 +O638 O 0.00000 0.78282 0.21718 0.06100 Uiso 1.00 +O639 O 0.50000 0.78282 0.28282 0.06100 Uiso 1.00 +O640 O 0.00000 0.78282 0.78282 0.06100 Uiso 1.00 +O641 O 0.21718 0.28282 0.50000 0.06100 Uiso 1.00 +O642 O 0.21718 0.78282 0.00000 0.06100 Uiso 1.00 +O643 O 0.21718 0.71718 0.50000 0.06100 Uiso 1.00 +O644 O 0.21718 0.21718 0.00000 0.06100 Uiso 1.00 +O645 O 0.78282 0.28282 0.50000 0.06100 Uiso 1.00 +O646 O 0.78282 0.78282 0.00000 0.06100 Uiso 1.00 +O647 O 0.78282 0.71718 0.50000 0.06100 Uiso 1.00 +O648 O 0.78282 0.21718 0.00000 0.06100 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +Zn1 O2 1.580 . S +Zn1 N73 1.914 . S +Zn1 N168 1.914 . S +Zn1 N203 1.914 . S +Zn3 O4 1.580 . S +Zn3 N83 1.914 . S +Zn3 N463 1.914 . S +Zn3 N188 1.914 . S +Zn5 O6 1.580 . S +Zn5 N138 1.914 . S +Zn5 N193 1.914 . S +Zn5 N93 1.914 . S +Zn7 O8 1.580 . S +Zn7 N98 1.914 . S +Zn7 N478 1.914 . S +Zn7 N213 1.914 . S +Zn9 O10 1.580 . S +Zn9 N123 1.914 . S +Zn9 N218 1.914 . S +Zn9 N103 1.914 . S +Zn11 O12 1.580 . S +Zn11 N108 1.914 . S +Zn11 N488 1.914 . S +Zn11 N178 1.914 . S +Zn13 O14 1.580 . S +Zn13 N173 1.914 . S +Zn13 N113 1.914 . S +Zn13 N153 1.914 . S +Zn15 O16 1.580 . S +Zn15 N128 1.914 . S +Zn15 N548 1.914 . S +Zn15 N498 1.914 . S +Zn17 O18 1.580 . S +Zn17 N133 1.914 . S +Zn17 N543 1.914 . S +Zn17 N88 1.914 . S +Zn19 O20 1.580 . S +Zn19 N143 1.914 . S +Zn19 N523 1.914 . S +Zn19 N118 1.914 . S +Zn21 O22 1.580 . S +Zn21 N148 1.914 . S +Zn21 N528 1.914 . S +Zn21 N513 1.914 . S +Zn23 O24 1.580 . S +Zn23 N158 1.914 . S +Zn23 N533 1.914 . S +Zn23 N78 1.914 . S +Zn25 O26 1.580 . S +Zn25 N163 1.914 . S +Zn25 N538 1.914 . S +Zn25 N508 1.914 . S +Zn27 O28 1.580 . S +Zn27 N183 1.914 . S +Zn27 N518 1.914 . S +Zn27 N468 1.914 . S +Zn29 O30 1.580 . S +Zn29 N198 1.914 . S +Zn29 N503 1.914 . S +Zn29 N473 1.914 . S +Zn31 O32 1.580 . S +Zn31 N208 1.914 . S +Zn31 N493 1.914 . S +Zn31 N483 1.914 . S +Zn33 O34 1.580 . S +Zn33 N223 1.914 . S +Zn33 N383 1.914 . S +Zn33 N353 1.914 . S +Zn35 O36 1.580 . S +Zn35 N233 1.914 . S +Zn35 N373 1.914 . S +Zn35 N453 1.914 . S +Zn37 O38 1.580 . S +Zn37 N283 1.914 . S +Zn37 N448 1.914 . S +Zn37 N238 1.914 . S +Zn39 O40 1.580 . S +Zn39 N333 1.914 . S +Zn39 N243 1.914 . S +Zn39 N378 1.914 . S +Zn41 O42 1.580 . S +Zn41 N248 1.914 . S +Zn41 N388 1.914 . S +Zn41 N458 1.914 . S +Zn43 O44 1.580 . S +Zn43 N258 1.914 . S +Zn43 N298 1.914 . S +Zn43 N438 1.914 . S +Zn45 O46 1.580 . S +Zn45 N328 1.914 . S +Zn45 N268 1.914 . S +Zn45 N303 1.914 . S +Zn47 O48 1.580 . S +Zn47 N273 1.914 . S +Zn47 N368 1.914 . S +Zn47 N253 1.914 . S +Zn49 O50 1.580 . S +Zn49 N338 1.914 . S +Zn49 N428 1.914 . S +Zn49 N288 1.914 . S +Zn51 O52 1.580 . S +Zn51 N293 1.914 . S +Zn51 N433 1.914 . S +Zn51 N263 1.914 . S +Zn53 O54 1.580 . S +Zn53 N323 1.914 . S +Zn53 N423 1.914 . S +Zn53 N398 1.914 . S +Zn55 O56 1.580 . S +Zn55 N308 1.914 . S +Zn55 N443 1.914 . S +Zn55 N228 1.914 . S +Zn57 O58 1.580 . S +Zn57 N343 1.914 . S +Zn57 N413 1.914 . S +Zn57 N318 1.914 . S +Zn59 O60 1.580 . S +Zn59 N348 1.914 . S +Zn59 N418 1.914 . S +Zn59 N313 1.914 . S +Zn61 O62 1.580 . S +Zn61 N358 1.914 . S +Zn61 N403 1.914 . S +Zn61 N393 1.914 . S +Zn63 O64 1.580 . S +Zn63 N363 1.914 . S +Zn63 N408 1.914 . S +Zn63 N278 1.914 . S +Zn65 N553 2.038 . S +Zn65 N561 2.038 . S +Zn65 N569 2.038 . S +Zn65 N564 2.038 . S +Zn65 N573 2.038 . S +Zn65 N557 2.038 . S +Zn66 N555 2.038 . S +Zn66 N565 2.038 . S +Zn66 N575 2.038 . S +Zn66 N568 2.038 . S +Zn66 N572 2.038 . S +Zn66 N560 2.038 . S +Zn67 N558 2.038 . S +Zn67 N567 2.038 . S +Zn67 N571 2.038 . S +Zn67 N566 2.038 . S +Zn67 N576 2.038 . S +Zn67 N554 2.038 . S +Zn68 N559 2.038 . S +Zn68 N563 2.038 . S +Zn68 N574 2.038 . S +Zn68 N562 2.038 . S +Zn68 N570 2.038 . S +Zn68 N556 2.038 . S +Zn69 N577 2.038 . S +Zn69 N585 2.038 . S +Zn69 N593 2.038 . S +Zn69 N588 2.038 . S +Zn69 N596 2.038 . S +Zn69 N582 2.038 . S +Zn70 N579 2.038 . S +Zn70 N589 2.038 . S +Zn70 N599 2.038 . S +Zn70 N592 2.038 . S +Zn70 N598 2.038 . S +Zn70 N584 2.038 . S +Zn71 N583 2.038 . S +Zn71 N587 2.038 . S +Zn71 N597 2.038 . S +Zn71 N586 2.038 . S +Zn71 N600 2.038 . S +Zn71 N580 2.038 . S +Zn72 N581 2.038 . S +Zn72 N591 2.038 . S +Zn72 N595 2.038 . S +Zn72 N590 2.038 . S +Zn72 N594 2.038 . S +Zn72 N578 2.038 . S +N73 C74 1.346 . D +N73 N553 1.340 . S +C74 C75 1.393 . S +C74 C114 1.473 . S +C75 C76 1.430 . D +C75 H77 0.930 . S +C76 O601 1.406 . S +C76 C116 1.456 . S +N78 C79 1.346 . D +N78 N554 1.340 . S +C79 C80 1.393 . S +C79 C514 1.473 . S +C80 C81 1.430 . D +C80 H82 0.930 . S +C81 C516 1.456 . S +C81 O602 1.406 1_655 S +N83 C84 1.346 . D +N83 N555 1.340 . S +C84 C85 1.393 . S +C84 C494 1.473 . S +C85 C86 1.430 . D +C85 H87 0.930 . S +C86 O603 1.406 . S +C86 C496 1.456 . S +N88 C89 1.346 . D +N88 N556 1.340 . S +C89 C90 1.393 . S +C89 C499 1.473 . S +C90 C91 1.430 . D +C90 H92 0.930 . S +C91 O604 1.406 . S +C91 C501 1.456 . S +N93 C94 1.346 . D +N93 N557 1.340 . S +C94 C95 1.393 . S +C94 C104 1.473 . S +C95 C96 1.430 . D +C95 H97 0.930 . S +C96 O634 1.406 . S +C96 C106 1.456 . S +N98 C99 1.346 . D +N98 N558 1.340 . S +C99 C100 1.393 . S +C99 C519 1.473 . S +C100 C101 1.430 . D +C100 H102 0.930 . S +C101 O605 1.406 . S +C101 C521 1.456 . S +N103 C104 1.346 . D +N103 N557 1.340 . S +C104 C105 1.393 . S +C105 C106 1.430 . D +C105 H107 0.930 . S +C106 O606 1.406 . S +N108 C109 1.346 . D +N108 N559 1.340 . S +C109 C110 1.393 . S +C109 C504 1.473 . S +C110 C111 1.430 . D +C110 H112 0.930 . S +C111 O607 1.406 . S +C111 C506 1.456 . S +N113 C114 1.346 . D +N113 N553 1.340 . S +C114 C115 1.393 . S +C115 C116 1.430 . D +C115 H117 0.930 . S +C116 O635 1.406 . S +N118 C119 1.346 . D +N118 N560 1.340 . S +C119 C120 1.393 . S +C119 C509 1.473 . S +C120 C121 1.430 . D +C120 H122 0.930 . S +C121 C511 1.456 . S +C121 O608 1.406 1_655 S +N123 C124 1.346 . D +N123 N561 1.340 . S +C124 C125 1.393 . S +C124 C169 1.473 . S +C125 C126 1.430 . D +C125 H127 0.930 . S +C126 O609 1.406 . S +C126 C171 1.456 . S +N128 C129 1.346 . D +N128 N562 1.340 . S +C129 C130 1.393 . S +C129 C474 1.473 . S +C130 C131 1.430 . D +C130 H132 0.930 . S +C131 C476 1.456 . S +C131 O610 1.406 1_565 S +N133 C134 1.346 . D +N133 N563 1.340 . S +C134 C135 1.393 . S +C134 C489 1.473 . S +C135 C136 1.430 . D +C135 H137 0.930 . S +C136 O611 1.406 . S +C136 C491 1.456 . S +N138 C139 1.346 . D +N138 N564 1.340 . S +C139 C140 1.393 . S +C139 C154 1.473 . S +C140 C141 1.430 . D +C140 H142 0.930 . S +C141 O612 1.406 . S +C141 C156 1.456 . S +N143 C144 1.346 . D +N143 N565 1.340 . S +C144 C145 1.393 . S +C144 C464 1.473 . S +C145 C146 1.430 . D +C145 H147 0.930 . S +C146 O613 1.406 . S +C146 C466 1.456 . S +N148 C149 1.346 . D +N148 N566 1.340 . S +C149 C150 1.393 . S +C149 C469 1.473 . S +C150 C151 1.430 . D +C150 H152 0.930 . S +C151 O614 1.406 . S +C151 C471 1.456 . S +N153 C154 1.346 . D +N153 N564 1.340 . S +C154 C155 1.393 . S +C155 C156 1.430 . D +C155 H157 0.930 . S +C156 O626 1.406 . S +N158 C159 1.346 . D +N158 N567 1.340 . S +C159 C160 1.393 . S +C159 C479 1.473 . S +C160 C161 1.430 . D +C160 H162 0.930 . S +C161 O615 1.406 . S +C161 C481 1.456 . S +N163 C164 1.346 . D +N163 N568 1.340 . S +C164 C165 1.393 . S +C164 C484 1.473 . S +C165 C166 1.430 . D +C165 H167 0.930 . S +C166 C486 1.456 . S +C166 O616 1.406 1_565 S +N168 C169 1.346 . D +N168 N561 1.340 . S +C169 C170 1.393 . S +C170 C171 1.430 . D +C170 H172 0.930 . S +C171 O629 1.406 . S +N173 C174 1.346 . D +N173 N569 1.340 . S +C174 C175 1.393 . S +C174 C219 1.473 . S +C175 C176 1.430 . D +C175 H177 0.930 . S +C176 O617 1.406 . S +C176 C221 1.456 . S +N178 C179 1.346 . D +N178 N570 1.340 . S +C179 C180 1.393 . S +C179 C549 1.473 . S +C180 C181 1.430 . D +C180 H182 0.930 . S +C181 C551 1.456 . S +C181 O618 1.406 1_556 S +N183 C184 1.346 . D +N183 N571 1.340 . S +C184 C185 1.393 . S +C184 C534 1.473 . S +C185 C186 1.430 . D +C185 H187 0.930 . S +C186 O619 1.406 . S +C186 C536 1.456 . S +N188 C189 1.346 . D +N188 N572 1.340 . S +C189 C190 1.393 . S +C189 C539 1.473 . S +C190 C191 1.430 . D +C190 H192 0.930 . S +C191 O620 1.406 . S +C191 C541 1.456 . S +N193 C194 1.346 . D +N193 N573 1.340 . S +C194 C195 1.393 . S +C194 C204 1.473 . S +C195 C196 1.430 . D +C195 H197 0.930 . S +C196 O644 1.406 . S +C196 C206 1.456 . S +N198 C199 1.346 . D +N198 N574 1.340 . S +C199 C200 1.393 . S +C199 C544 1.473 . S +C200 C201 1.430 . D +C200 H202 0.930 . S +C201 O621 1.406 . S +C201 C546 1.456 . S +N203 C204 1.346 . D +N203 N573 1.340 . S +C204 C205 1.393 . S +C205 C206 1.430 . D +C205 H207 0.930 . S +C206 O622 1.406 . S +N208 C209 1.346 . D +N208 N575 1.340 . S +C209 C210 1.393 . S +C209 C524 1.473 . S +C210 C211 1.430 . D +C210 H212 0.930 . S +C211 O623 1.406 . S +C211 C526 1.456 . S +N213 C214 1.346 . D +N213 N576 1.340 . S +C214 C215 1.393 . S +C214 C529 1.473 . S +C215 C216 1.430 . D +C215 H217 0.930 . S +C216 C531 1.456 . S +C216 O624 1.406 1_556 S +N218 C219 1.346 . D +N218 N569 1.340 . S +C219 C220 1.393 . S +C220 C221 1.430 . D +C220 H222 0.930 . S +C221 O641 1.406 . S +N223 C224 1.346 . D +N223 N577 1.340 . S +C224 C225 1.393 . S +C224 C424 1.473 . S +C225 C226 1.430 . D +C225 H227 0.930 . S +C226 O625 1.406 . S +C226 C426 1.456 . S +N228 C229 1.346 . D +N228 N578 1.340 . S +C229 C230 1.393 . S +C229 C269 1.473 . S +C230 C231 1.430 . D +C230 H232 0.930 . S +C231 C271 1.456 . S +C231 O626 1.406 1_565 S +N233 C234 1.346 . D +N233 N579 1.340 . S +C234 C235 1.393 . S +C234 C404 1.473 . S +C235 C236 1.430 . D +C235 H237 0.930 . S +C236 O627 1.406 . S +C236 C406 1.456 . S +N238 C239 1.346 . D +N238 N580 1.340 . S +C239 C240 1.393 . S +C239 C409 1.473 . S +C240 C241 1.430 . D +C240 H242 0.930 . S +C241 O628 1.406 . S +C241 C411 1.456 . S +N243 C244 1.346 . D +N243 N581 1.340 . S +C244 C245 1.393 . S +C244 C249 1.473 . S +C245 C246 1.430 . D +C245 H247 0.930 . S +C246 O609 1.406 . S +C246 C251 1.456 . S +N248 C249 1.346 . D +N248 N581 1.340 . S +C249 C250 1.393 . S +C250 C251 1.430 . D +C250 H252 0.930 . S +C251 O629 1.406 . S +N253 C254 1.346 . D +N253 N582 1.340 . S +C254 C255 1.393 . S +C254 C429 1.473 . S +C255 C256 1.430 . D +C255 H257 0.930 . S +C256 O630 1.406 . S +C256 C431 1.456 . S +N258 C259 1.346 . D +N258 N583 1.340 . S +C259 C260 1.393 . S +C259 C414 1.473 . S +C260 C261 1.430 . D +C260 H262 0.930 . S +C261 O631 1.406 . S +C261 C416 1.456 . S +N263 C264 1.346 . D +N263 N584 1.340 . S +C264 C265 1.393 . S +C264 C419 1.473 . S +C265 C266 1.430 . D +C265 H267 0.930 . S +C266 C421 1.456 . S +C266 O632 1.406 1_565 S +N268 C269 1.346 . D +N268 N578 1.340 . S +C269 C270 1.393 . S +C270 C271 1.430 . D +C270 H272 0.930 . S +C271 O612 1.406 1_565 S +N273 C274 1.346 . D +N273 N585 1.340 . S +C274 C275 1.393 . S +C274 C384 1.473 . S +C275 C276 1.430 . D +C275 H277 0.930 . S +C276 O633 1.406 . S +C276 C386 1.456 . S +N278 C279 1.346 . D +N278 N586 1.340 . S +C279 C280 1.393 . S +C279 C319 1.473 . S +C280 C281 1.430 . D +C280 H282 0.930 . S +C281 C321 1.456 . S +C281 O634 1.406 1_655 S +N283 C284 1.346 . D +N283 N587 1.340 . S +C284 C285 1.393 . S +C284 C299 1.473 . S +C285 C286 1.430 . D +C285 H287 0.930 . S +C286 O635 1.406 . S +C286 C301 1.456 . S +N288 C289 1.346 . D +N288 N588 1.340 . S +C289 C290 1.393 . S +C289 C399 1.473 . S +C290 C291 1.430 . D +C290 H292 0.930 . S +C291 O636 1.406 . S +C291 C401 1.456 . S +N293 C294 1.346 . D +N293 N589 1.340 . S +C294 C295 1.393 . S +C294 C374 1.473 . S +C295 C296 1.430 . D +C295 H297 0.930 . S +C296 O637 1.406 . S +C296 C376 1.456 . S +N298 C299 1.346 . D +N298 N587 1.340 . S +C299 C300 1.393 . S +C300 C301 1.430 . D +C300 H302 0.930 . S +C301 O601 1.406 . S +N303 C304 1.346 . D +N303 N590 1.340 . S +C304 C305 1.393 . S +C304 C379 1.473 . S +C305 C306 1.430 . D +C305 H307 0.930 . S +C306 O638 1.406 . S +C306 C381 1.456 . S +N308 C309 1.346 . D +N308 N591 1.340 . S +C309 C310 1.393 . S +C309 C389 1.473 . S +C310 C311 1.430 . D +C310 H312 0.930 . S +C311 O639 1.406 . S +C311 C391 1.456 . S +N313 C314 1.346 . D +N313 N592 1.340 . S +C314 C315 1.393 . S +C314 C394 1.473 . S +C315 C316 1.430 . D +C315 H317 0.930 . S +C316 C396 1.456 . S +C316 O640 1.406 1_655 S +N318 C319 1.346 . D +N318 N586 1.340 . S +C319 C320 1.393 . S +C320 C321 1.430 . D +C320 H322 0.930 . S +C321 O606 1.406 1_655 S +N323 C324 1.346 . D +N323 N593 1.340 . S +C324 C325 1.393 . S +C324 C369 1.473 . S +C325 C326 1.430 . D +C325 H327 0.930 . S +C326 O641 1.406 . S +C326 C371 1.456 . S +N328 C329 1.346 . D +N328 N594 1.340 . S +C329 C330 1.393 . S +C329 C459 1.473 . S +C330 C331 1.430 . D +C330 H332 0.930 . S +C331 O642 1.406 . S +C331 C461 1.456 . S +N333 C334 1.346 . D +N333 N595 1.340 . S +C334 C335 1.393 . S +C334 C444 1.473 . S +C335 C336 1.430 . D +C335 H337 0.930 . S +C336 O643 1.406 . S +C336 C446 1.456 . S +N338 C339 1.346 . D +N338 N596 1.340 . S +C339 C340 1.393 . S +C339 C354 1.473 . S +C340 C341 1.430 . D +C340 H342 0.930 . S +C341 C356 1.456 . S +C341 O644 1.406 1_556 S +N343 C344 1.346 . D +N343 N597 1.340 . S +C344 C345 1.393 . S +C344 C449 1.473 . S +C345 C346 1.430 . D +C345 H347 0.930 . S +C346 O645 1.406 . S +C346 C451 1.456 . S +N348 C349 1.346 . D +N348 N598 1.340 . S +C349 C350 1.393 . S +C349 C454 1.473 . S +C350 C351 1.430 . D +C350 H352 0.930 . S +C351 C456 1.456 . S +C351 O646 1.406 1_556 S +N353 C354 1.346 . D +N353 N596 1.340 . S +C354 C355 1.393 . S +C355 C356 1.430 . D +C355 H357 0.930 . S +C356 O622 1.406 1_556 S +N358 C359 1.346 . D +N358 N599 1.340 . S +C359 C360 1.393 . S +C359 C434 1.473 . S +C360 C361 1.430 . D +C360 H362 0.930 . S +C361 O647 1.406 . S +C361 C436 1.456 . S +N363 C364 1.346 . D +N363 N600 1.340 . S +C364 C365 1.393 . S +C364 C439 1.473 . S +C365 C366 1.430 . D +C365 H367 0.930 . S +C366 O648 1.406 . S +C366 C441 1.456 . S +N368 C369 1.346 . D +N368 N593 1.340 . S +C369 C370 1.393 . S +C370 C371 1.430 . D +C370 H372 0.930 . S +C371 O617 1.406 . S +N373 C374 1.346 . D +N373 N589 1.340 . S +C374 C375 1.393 . S +C375 C376 1.430 . D +C375 H377 0.930 . S +C376 O607 1.406 . S +N378 C379 1.346 . D +N378 N590 1.340 . S +C379 C380 1.393 . S +C380 C381 1.430 . D +C380 H382 0.930 . S +C381 O608 1.406 . S +N383 C384 1.346 . D +N383 N585 1.340 . S +C384 C385 1.393 . S +C385 C386 1.430 . D +C385 H387 0.930 . S +C386 O605 1.406 . S +N388 C389 1.346 . D +N388 N591 1.340 . S +C389 C390 1.393 . S +C390 C391 1.430 . D +C390 H392 0.930 . S +C391 O603 1.406 . S +N393 C394 1.346 . D +N393 N592 1.340 . S +C394 C395 1.393 . S +C395 C396 1.430 . D +C395 H397 0.930 . S +C396 O604 1.406 1_655 S +N398 C399 1.346 . D +N398 N588 1.340 . S +C399 C400 1.393 . S +C400 C401 1.430 . D +C400 H402 0.930 . S +C401 O602 1.406 . S +N403 C404 1.346 . D +N403 N579 1.340 . S +C404 C405 1.393 . S +C405 C406 1.430 . D +C405 H407 0.930 . S +C406 O615 1.406 . S +N408 C409 1.346 . D +N408 N580 1.340 . S +C409 C410 1.393 . S +C410 C411 1.430 . D +C410 H412 0.930 . S +C411 O616 1.406 . S +N413 C414 1.346 . D +N413 N583 1.340 . S +C414 C415 1.393 . S +C415 C416 1.430 . D +C415 H417 0.930 . S +C416 O613 1.406 . S +N418 C419 1.346 . D +N418 N584 1.340 . S +C419 C420 1.393 . S +C420 C421 1.430 . D +C420 H422 0.930 . S +C421 O614 1.406 1_565 S +N423 C424 1.346 . D +N423 N577 1.340 . S +C424 C425 1.393 . S +C425 C426 1.430 . D +C425 H427 0.930 . S +C426 O611 1.406 . S +N428 C429 1.346 . D +N428 N582 1.340 . S +C429 C430 1.393 . S +C430 C431 1.430 . D +C430 H432 0.930 . S +C431 O610 1.406 . S +N433 C434 1.346 . D +N433 N599 1.340 . S +C434 C435 1.393 . S +C435 C436 1.430 . D +C435 H437 0.930 . S +C436 O623 1.406 . S +N438 C439 1.346 . D +N438 N600 1.340 . S +C439 C440 1.393 . S +C440 C441 1.430 . D +C440 H442 0.930 . S +C441 O624 1.406 . S +N443 C444 1.346 . D +N443 N595 1.340 . S +C444 C445 1.393 . S +C445 C446 1.430 . D +C445 H447 0.930 . S +C446 O621 1.406 . S +N448 C449 1.346 . D +N448 N597 1.340 . S +C449 C450 1.393 . S +C450 C451 1.430 . D +C450 H452 0.930 . S +C451 O619 1.406 . S +N453 C454 1.346 . D +N453 N598 1.340 . S +C454 C455 1.393 . S +C455 C456 1.430 . D +C455 H457 0.930 . S +C456 O620 1.406 1_556 S +N458 C459 1.346 . D +N458 N594 1.340 . S +C459 C460 1.393 . S +C460 C461 1.430 . D +C460 H462 0.930 . S +C461 O618 1.406 . S +N463 C464 1.346 . D +N463 N565 1.340 . S +C464 C465 1.393 . S +C465 C466 1.430 . D +C465 H467 0.930 . S +C466 O631 1.406 . S +N468 C469 1.346 . D +N468 N566 1.340 . S +C469 C470 1.393 . S +C470 C471 1.430 . D +C470 H472 0.930 . S +C471 O632 1.406 . S +N473 C474 1.346 . D +N473 N562 1.340 . S +C474 C475 1.393 . S +C475 C476 1.430 . D +C475 H477 0.930 . S +C476 O630 1.406 1_565 S +N478 C479 1.346 . D +N478 N567 1.340 . S +C479 C480 1.393 . S +C480 C481 1.430 . D +C480 H482 0.930 . S +C481 O627 1.406 . S +N483 C484 1.346 . D +N483 N568 1.340 . S +C484 C485 1.393 . S +C485 C486 1.430 . D +C485 H487 0.930 . S +C486 O628 1.406 1_565 S +N488 C489 1.346 . D +N488 N563 1.340 . S +C489 C490 1.393 . S +C490 C491 1.430 . D +C490 H492 0.930 . S +C491 O625 1.406 . S +N493 C494 1.346 . D +N493 N555 1.340 . S +C494 C495 1.393 . S +C495 C496 1.430 . D +C495 H497 0.930 . S +C496 O639 1.406 . S +N498 C499 1.346 . D +N498 N556 1.340 . S +C499 C500 1.393 . S +C500 C501 1.430 . D +C500 H502 0.930 . S +C501 O640 1.406 . S +N503 C504 1.346 . D +N503 N559 1.340 . S +C504 C505 1.393 . S +C505 C506 1.430 . D +C505 H507 0.930 . S +C506 O637 1.406 . S +N508 C509 1.346 . D +N508 N560 1.340 . S +C509 C510 1.393 . S +C510 C511 1.430 . D +C510 H512 0.930 . S +C511 O638 1.406 1_655 S +N513 C514 1.346 . D +N513 N554 1.340 . S +C514 C515 1.393 . S +C515 C516 1.430 . D +C515 H517 0.930 . S +C516 O636 1.406 1_655 S +N518 C519 1.346 . D +N518 N558 1.340 . S +C519 C520 1.393 . S +C520 C521 1.430 . D +C520 H522 0.930 . S +C521 O633 1.406 . S +N523 C524 1.346 . D +N523 N575 1.340 . S +C524 C525 1.393 . S +C525 C526 1.430 . D +C525 H527 0.930 . S +C526 O647 1.406 . S +N528 C529 1.346 . D +N528 N576 1.340 . S +C529 C530 1.393 . S +C530 C531 1.430 . D +C530 H532 0.930 . S +C531 O648 1.406 1_556 S +N533 C534 1.346 . D +N533 N571 1.340 . S +C534 C535 1.393 . S +C535 C536 1.430 . D +C535 H537 0.930 . S +C536 O645 1.406 . S +N538 C539 1.346 . D +N538 N572 1.340 . S +C539 C540 1.393 . S +C540 C541 1.430 . D +C540 H542 0.930 . S +C541 O646 1.406 . S +N543 C544 1.346 . D +N543 N574 1.340 . S +C544 C545 1.393 . S +C545 C546 1.430 . D +C545 H547 0.930 . S +C546 O643 1.406 . S +N548 C549 1.346 . D +N548 N570 1.340 . S +C549 C550 1.393 . S +C550 C551 1.430 . D +C550 H552 0.930 . S +C551 O642 1.406 1_556 S +O602 C81 1.406 1_455 S +O604 C396 1.406 1_455 S +O606 C321 1.406 1_455 S +O608 C121 1.406 1_455 S +O610 C131 1.406 1_545 S +O612 C271 1.406 1_545 S +O614 C421 1.406 1_545 S +O616 C166 1.406 1_545 S +O618 C181 1.406 1_554 S +O620 C456 1.406 1_554 S +O622 C356 1.406 1_554 S +O624 C216 1.406 1_554 S +O626 C231 1.406 1_545 S +O628 C486 1.406 1_545 S +O630 C476 1.406 1_545 S +O632 C266 1.406 1_545 S +O634 C281 1.406 1_455 S +O636 C516 1.406 1_455 S +O638 C511 1.406 1_455 S +O640 C316 1.406 1_455 S +O642 C551 1.406 1_554 S +O644 C341 1.406 1_554 S +O646 C351 1.406 1_554 S +O648 C531 1.406 1_554 S diff --git a/benchmarks/mof/structures/general/Fe-MOF-74.cif b/benchmarks/mof/structures/general/Fe-MOF-74.cif new file mode 100644 index 0000000000000000000000000000000000000000..07f3ba17d17e35152a3e696b107a609049963bf7 --- /dev/null +++ b/benchmarks/mof/structures/general/Fe-MOF-74.cif @@ -0,0 +1,186 @@ +data_image0 +_cell_length_a 26.179 +_cell_length_b 26.179 +_cell_length_c 6.652 +_cell_angle_alpha 90 +_cell_angle_beta 90 +_cell_angle_gamma 120 + +_symmetry_space_group_name_H-M "P 1" +_symmetry_int_tables_number 1 + +loop_ + _symmetry_equiv_pos_as_xyz + 'x, y, z' + +loop_ + _atom_site_label + _atom_site_occupancy + _atom_site_fract_x + _atom_site_fract_y + _atom_site_fract_z + _atom_site_thermal_displace_type + _atom_site_B_iso_or_equiv + _atom_site_type_symbol + Fe1 1.0000 0.38790 0.35068 0.15211 Biso 1.000 Fe + C1 1.0000 0.32290 0.20386 0.28779 Biso 1.000 C + C2 1.0000 0.34291 0.22040 0.09164 Biso 1.000 C + C3 1.0000 0.35335 0.18320 0.97052 Biso 1.000 C + H1 1.0000 0.36889 0.19605 0.81817 Biso 1.000 H + C4 1.0000 0.31168 0.24386 0.41805 Biso 1.000 C + O1 1.0000 0.32032 0.29230 0.35040 Biso 1.000 O + O2 1.0000 0.29364 0.22895 0.59490 Biso 1.000 O + O3 1.0000 0.35220 0.27243 0.01900 Biso 1.000 O + Fe2 1.0000 0.05457 0.68401 0.48544 Biso 1.000 Fe + C5 1.0000 0.98957 0.53719 0.62112 Biso 1.000 C + C6 1.0000 0.00958 0.55373 0.42497 Biso 1.000 C + C7 1.0000 0.02002 0.51653 0.30385 Biso 1.000 C + H2 1.0000 0.03556 0.52938 0.15150 Biso 1.000 H + C8 1.0000 0.97835 0.57719 0.75138 Biso 1.000 C + O4 1.0000 0.98699 0.62563 0.68373 Biso 1.000 O + O5 1.0000 0.96031 0.56228 0.92823 Biso 1.000 O + O6 1.0000 0.01887 0.60576 0.35233 Biso 1.000 O + Fe3 1.0000 0.72123 0.01735 0.81878 Biso 1.000 Fe + C9 1.0000 0.65623 0.87053 0.95446 Biso 1.000 C + C10 1.0000 0.67624 0.88707 0.75831 Biso 1.000 C + C11 1.0000 0.68668 0.84987 0.63719 Biso 1.000 C + H3 1.0000 0.70222 0.86272 0.48484 Biso 1.000 H + C12 1.0000 0.64501 0.91053 0.08472 Biso 1.000 C + O7 1.0000 0.65365 0.95897 0.01707 Biso 1.000 O + O8 1.0000 0.62697 0.89562 0.26157 Biso 1.000 O + O9 1.0000 0.68553 0.93910 0.68567 Biso 1.000 O + Fe4 1.0000 0.64932 0.03722 0.15211 Biso 1.000 Fe + C13 1.0000 0.79614 0.11904 0.28779 Biso 1.000 C + C14 1.0000 0.77960 0.12251 0.09164 Biso 1.000 C + C15 1.0000 0.81680 0.17015 0.97052 Biso 1.000 C + H4 1.0000 0.80395 0.17284 0.81817 Biso 1.000 H + C16 1.0000 0.75614 0.06782 0.41805 Biso 1.000 C + O10 1.0000 0.70770 0.02802 0.35040 Biso 1.000 O + O11 1.0000 0.77105 0.06469 0.59490 Biso 1.000 O + O12 1.0000 0.72757 0.07977 0.01900 Biso 1.000 O + Fe5 1.0000 0.31599 0.37055 0.48544 Biso 1.000 Fe + C17 1.0000 0.46281 0.45237 0.62112 Biso 1.000 C + C18 1.0000 0.44627 0.45584 0.42497 Biso 1.000 C + C19 1.0000 0.48347 0.50348 0.30385 Biso 1.000 C + H5 1.0000 0.47062 0.50617 0.15150 Biso 1.000 H + C20 1.0000 0.42281 0.40115 0.75138 Biso 1.000 C + O13 1.0000 0.37437 0.36135 0.68373 Biso 1.000 O + O14 1.0000 0.43772 0.39802 0.92823 Biso 1.000 O + O15 1.0000 0.39424 0.41310 0.35233 Biso 1.000 O + Fe6 1.0000 0.98265 0.70389 0.81878 Biso 1.000 Fe + C21 1.0000 0.12947 0.78571 0.95446 Biso 1.000 C + C22 1.0000 0.11293 0.78918 0.75831 Biso 1.000 C + C23 1.0000 0.15013 0.83682 0.63719 Biso 1.000 C + H6 1.0000 0.13728 0.83951 0.48484 Biso 1.000 H + C24 1.0000 0.08947 0.73449 0.08472 Biso 1.000 C + O16 1.0000 0.04103 0.69469 0.01707 Biso 1.000 O + O17 1.0000 0.10438 0.73136 0.26157 Biso 1.000 O + O18 1.0000 0.06090 0.74644 0.68567 Biso 1.000 O + Fe7 1.0000 0.96278 0.61210 0.15211 Biso 1.000 Fe + C25 1.0000 0.88096 0.67710 0.28779 Biso 1.000 C + C26 1.0000 0.87749 0.65709 0.09164 Biso 1.000 C + C27 1.0000 0.82985 0.64665 0.97052 Biso 1.000 C + H7 1.0000 0.82716 0.63111 0.81817 Biso 1.000 H + C28 1.0000 0.93218 0.68832 0.41805 Biso 1.000 C + O19 1.0000 0.97198 0.67968 0.35040 Biso 1.000 O + O20 1.0000 0.93531 0.70636 0.59490 Biso 1.000 O + O21 1.0000 0.92023 0.64780 0.01900 Biso 1.000 O + Fe8 1.0000 0.62945 0.94543 0.48544 Biso 1.000 Fe + C29 1.0000 0.54763 0.01043 0.62112 Biso 1.000 C + C30 1.0000 0.54416 0.99042 0.42497 Biso 1.000 C + C31 1.0000 0.49652 0.97998 0.30385 Biso 1.000 C + H8 1.0000 0.49383 0.96444 0.15150 Biso 1.000 H + C32 1.0000 0.59885 0.02165 0.75138 Biso 1.000 C + O22 1.0000 0.63865 0.01301 0.68373 Biso 1.000 O + O23 1.0000 0.60198 0.03969 0.92823 Biso 1.000 O + O24 1.0000 0.58690 0.98113 0.35233 Biso 1.000 O + Fe9 1.0000 0.29611 0.27877 0.81878 Biso 1.000 Fe + C33 1.0000 0.21429 0.34377 0.95446 Biso 1.000 C + C34 1.0000 0.21082 0.32376 0.75831 Biso 1.000 C + C35 1.0000 0.16318 0.31332 0.63719 Biso 1.000 C + H9 1.0000 0.16049 0.29778 0.48484 Biso 1.000 H + C36 1.0000 0.26551 0.35499 0.08472 Biso 1.000 C + O25 1.0000 0.30531 0.34635 0.01707 Biso 1.000 O + O26 1.0000 0.26864 0.37303 0.26157 Biso 1.000 O + O27 1.0000 0.25356 0.31447 0.68567 Biso 1.000 O + Fe10 1.0000 0.61210 0.64932 0.84789 Biso 1.000 Fe + C37 1.0000 0.67710 0.79614 0.71221 Biso 1.000 C + C38 1.0000 0.65709 0.77960 0.90836 Biso 1.000 C + C39 1.0000 0.64665 0.81680 0.02948 Biso 1.000 C + H10 1.0000 0.63111 0.80395 0.18183 Biso 1.000 H + C40 1.0000 0.68832 0.75614 0.58195 Biso 1.000 C + O28 1.0000 0.67968 0.70770 0.64960 Biso 1.000 O + O29 1.0000 0.70636 0.77105 0.40510 Biso 1.000 O + O30 1.0000 0.64780 0.72757 0.98100 Biso 1.000 O + Fe11 1.0000 0.27877 0.98265 0.18122 Biso 1.000 Fe + C41 1.0000 0.34377 0.12947 0.04554 Biso 1.000 C + C42 1.0000 0.32376 0.11293 0.24169 Biso 1.000 C + C43 1.0000 0.31332 0.15013 0.36281 Biso 1.000 C + H11 1.0000 0.29778 0.13728 0.51516 Biso 1.000 H + C44 1.0000 0.35499 0.08947 0.91528 Biso 1.000 C + O31 1.0000 0.34635 0.04103 0.98293 Biso 1.000 O + O32 1.0000 0.37303 0.10438 0.73843 Biso 1.000 O + O33 1.0000 0.31447 0.06090 0.31433 Biso 1.000 O + Fe12 1.0000 0.94543 0.31599 0.51456 Biso 1.000 Fe + C45 1.0000 0.01043 0.46281 0.37888 Biso 1.000 C + C46 1.0000 0.99042 0.44627 0.57503 Biso 1.000 C + C47 1.0000 0.97998 0.48347 0.69615 Biso 1.000 C + H12 1.0000 0.96444 0.47062 0.84850 Biso 1.000 H + C48 1.0000 0.02165 0.42281 0.24862 Biso 1.000 C + O34 1.0000 0.01301 0.37437 0.31627 Biso 1.000 O + O35 1.0000 0.03969 0.43772 0.07177 Biso 1.000 O + O36 1.0000 0.98113 0.39424 0.64767 Biso 1.000 O + Fe13 1.0000 0.35068 0.96278 0.84789 Biso 1.000 Fe + C49 1.0000 0.20386 0.88096 0.71221 Biso 1.000 C + C50 1.0000 0.22040 0.87749 0.90836 Biso 1.000 C + C51 1.0000 0.18320 0.82985 0.02948 Biso 1.000 C + H13 1.0000 0.19605 0.82716 0.18183 Biso 1.000 H + C52 1.0000 0.24386 0.93218 0.58195 Biso 1.000 C + O37 1.0000 0.29230 0.97198 0.64960 Biso 1.000 O + O38 1.0000 0.22895 0.93531 0.40510 Biso 1.000 O + O39 1.0000 0.27243 0.92023 0.98100 Biso 1.000 O + Fe14 1.0000 0.01735 0.29611 0.18122 Biso 1.000 Fe + C53 1.0000 0.87053 0.21429 0.04554 Biso 1.000 C + C54 1.0000 0.88707 0.21082 0.24169 Biso 1.000 C + C55 1.0000 0.84987 0.16318 0.36281 Biso 1.000 C + H14 1.0000 0.86272 0.16049 0.51516 Biso 1.000 H + C56 1.0000 0.91053 0.26551 0.91528 Biso 1.000 C + O40 1.0000 0.95897 0.30531 0.98293 Biso 1.000 O + O41 1.0000 0.89562 0.26864 0.73843 Biso 1.000 O + O42 1.0000 0.93910 0.25356 0.31433 Biso 1.000 O + Fe15 1.0000 0.68401 0.62945 0.51456 Biso 1.000 Fe + C57 1.0000 0.53719 0.54763 0.37888 Biso 1.000 C + C58 1.0000 0.55373 0.54416 0.57503 Biso 1.000 C + C59 1.0000 0.51653 0.49652 0.69615 Biso 1.000 C + H15 1.0000 0.52938 0.49383 0.84850 Biso 1.000 H + C60 1.0000 0.57719 0.59885 0.24862 Biso 1.000 C + O43 1.0000 0.62563 0.63865 0.31627 Biso 1.000 O + O44 1.0000 0.56228 0.60198 0.07177 Biso 1.000 O + O45 1.0000 0.60576 0.58690 0.64767 Biso 1.000 O + Fe16 1.0000 0.03722 0.38790 0.84789 Biso 1.000 Fe + C61 1.0000 0.11904 0.32290 0.71221 Biso 1.000 C + C62 1.0000 0.12251 0.34291 0.90836 Biso 1.000 C + C63 1.0000 0.17015 0.35335 0.02948 Biso 1.000 C + H16 1.0000 0.17284 0.36889 0.18183 Biso 1.000 H + C64 1.0000 0.06782 0.31168 0.58195 Biso 1.000 C + O46 1.0000 0.02802 0.32032 0.64960 Biso 1.000 O + O47 1.0000 0.06469 0.29364 0.40510 Biso 1.000 O + O48 1.0000 0.07977 0.35220 0.98100 Biso 1.000 O + Fe17 1.0000 0.70389 0.72123 0.18122 Biso 1.000 Fe + C65 1.0000 0.78571 0.65623 0.04554 Biso 1.000 C + C66 1.0000 0.78918 0.67624 0.24169 Biso 1.000 C + C67 1.0000 0.83682 0.68668 0.36281 Biso 1.000 C + H17 1.0000 0.83951 0.70222 0.51516 Biso 1.000 H + C68 1.0000 0.73449 0.64501 0.91528 Biso 1.000 C + O49 1.0000 0.69469 0.65365 0.98293 Biso 1.000 O + O50 1.0000 0.73136 0.62697 0.73843 Biso 1.000 O + O51 1.0000 0.74644 0.68553 0.31433 Biso 1.000 O + Fe18 1.0000 0.37055 0.05457 0.51456 Biso 1.000 Fe + C69 1.0000 0.45237 0.98957 0.37888 Biso 1.000 C + C70 1.0000 0.45584 0.00958 0.57503 Biso 1.000 C + C71 1.0000 0.50348 0.02002 0.69615 Biso 1.000 C + H18 1.0000 0.50617 0.03556 0.84850 Biso 1.000 H + C72 1.0000 0.40115 0.97835 0.24862 Biso 1.000 C + O52 1.0000 0.36135 0.98699 0.31627 Biso 1.000 O + O53 1.0000 0.39802 0.96031 0.07177 Biso 1.000 O + O54 1.0000 0.41310 0.01887 0.64767 Biso 1.000 O diff --git a/benchmarks/mof/structures/general/HKUST-1.cif b/benchmarks/mof/structures/general/HKUST-1.cif new file mode 100644 index 0000000000000000000000000000000000000000..d7d2adad361d09830475837f67f22b7ca9a53f4d --- /dev/null +++ b/benchmarks/mof/structures/general/HKUST-1.cif @@ -0,0 +1,180 @@ +data_FIQCEN_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 18.6273 +_cell_length_b 18.6273 +_cell_length_c 18.6273 +_cell_angle_alpha 60.0000 +_cell_angle_beta 60.0000 +_cell_angle_gamma 60.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Cu1 Cu 0.57057 -0.00000 0.42943 0.01267 Uiso 1.00 +Cu2 Cu 0.00000 0.57057 0.00000 0.01267 Uiso 1.00 +Cu3 Cu 0.42943 0.00000 0.57057 0.01267 Uiso 1.00 +Cu4 Cu 0.00000 0.42943 0.00000 0.01267 Uiso 1.00 +Cu5 Cu 0.57057 0.42943 -0.00000 0.01267 Uiso 1.00 +Cu6 Cu 0.00000 1.00000 0.42943 0.01267 Uiso 1.00 +Cu7 Cu 0.42943 0.57057 -0.00000 0.01267 Uiso 1.00 +Cu8 Cu 0.00000 0.00000 0.57057 0.01267 Uiso 1.00 +Cu9 Cu 0.57057 1.00000 -0.00000 0.01267 Uiso 1.00 +Cu10 Cu 0.00000 0.42943 0.57057 0.01267 Uiso 1.00 +Cu11 Cu 0.42943 1.00000 0.00000 0.01267 Uiso 1.00 +Cu12 Cu 0.00000 0.57057 0.42943 0.01267 Uiso 1.00 +H1 H 0.72800 0.72800 0.51160 0.01267 Uiso 1.00 +H2 H 0.72800 0.72800 0.03240 0.01267 Uiso 1.00 +H3 H 0.51160 0.03240 0.72800 0.01267 Uiso 1.00 +H4 H 0.03240 0.51160 0.72800 0.01267 Uiso 1.00 +H5 H 0.72800 0.51160 0.03240 0.01267 Uiso 1.00 +H6 H 0.72800 0.03240 0.51160 0.01267 Uiso 1.00 +H7 H 0.51160 0.72800 0.72800 0.01267 Uiso 1.00 +H8 H 0.03240 0.72800 0.72800 0.01267 Uiso 1.00 +H9 H 0.72800 0.03240 0.72800 0.01267 Uiso 1.00 +H10 H 0.72800 0.51160 0.72800 0.01267 Uiso 1.00 +H11 H 0.51160 0.72800 0.03240 0.01267 Uiso 1.00 +H12 H 0.03240 0.72800 0.51160 0.01267 Uiso 1.00 +H13 H 0.27200 0.27200 0.48840 0.01267 Uiso 1.00 +H14 H 0.27200 0.27200 0.96760 0.01267 Uiso 1.00 +H15 H 0.96760 0.48840 0.27200 0.01267 Uiso 1.00 +H16 H 0.48840 0.96760 0.27200 0.01267 Uiso 1.00 +H17 H 0.48840 0.27200 0.96760 0.01267 Uiso 1.00 +H18 H 0.96760 0.27200 0.48840 0.01267 Uiso 1.00 +H19 H 0.27200 0.48840 0.27200 0.01267 Uiso 1.00 +H20 H 0.27200 0.96760 0.27200 0.01267 Uiso 1.00 +H21 H 0.96760 0.27200 0.27200 0.01267 Uiso 1.00 +H22 H 0.48840 0.27200 0.27200 0.01267 Uiso 1.00 +H23 H 0.27200 0.48840 0.96760 0.01267 Uiso 1.00 +H24 H 0.27200 0.96760 0.48840 0.01267 Uiso 1.00 +C1 C 0.25700 0.96900 0.38700 0.01267 Uiso 1.00 +C2 C 0.96900 0.25700 0.38700 0.01267 Uiso 1.00 +C3 C 0.38700 0.38700 0.25700 0.01267 Uiso 1.00 +C4 C 0.38700 0.38700 0.96900 0.01267 Uiso 1.00 +C5 C 0.25700 0.38700 0.38700 0.01267 Uiso 1.00 +C6 C 0.96900 0.38700 0.38700 0.01267 Uiso 1.00 +C7 C 0.38700 0.25700 0.96900 0.01267 Uiso 1.00 +C8 C 0.38700 0.96900 0.25700 0.01267 Uiso 1.00 +C9 C 0.25700 0.38700 0.96900 0.01267 Uiso 1.00 +C10 C 0.96900 0.38700 0.25700 0.01267 Uiso 1.00 +C11 C 0.38700 0.96900 0.38700 0.01267 Uiso 1.00 +C12 C 0.38700 0.25700 0.38700 0.01267 Uiso 1.00 +C13 C 0.03100 0.74300 0.61300 0.01267 Uiso 1.00 +C14 C 0.74300 0.03100 0.61300 0.01267 Uiso 1.00 +C15 C 0.61300 0.61300 0.74300 0.01267 Uiso 1.00 +C16 C 0.61300 0.61300 0.03100 0.01267 Uiso 1.00 +C17 C 0.61300 0.74300 0.61300 0.01267 Uiso 1.00 +C18 C 0.61300 0.03100 0.61300 0.01267 Uiso 1.00 +C19 C 0.74300 0.61300 0.03100 0.01267 Uiso 1.00 +C20 C 0.03100 0.61300 0.74300 0.01267 Uiso 1.00 +C21 C 0.61300 0.74300 0.03100 0.01267 Uiso 1.00 +C22 C 0.61300 0.03100 0.74300 0.01267 Uiso 1.00 +C23 C 0.03100 0.61300 0.61300 0.01267 Uiso 1.00 +C24 C 0.74300 0.61300 0.61300 0.01267 Uiso 1.00 +C25 C 0.56870 0.56870 0.83770 0.01267 Uiso 1.00 +C26 C 0.56870 0.56870 0.02490 0.01267 Uiso 1.00 +C27 C 0.83770 0.02490 0.56870 0.01267 Uiso 1.00 +C28 C 0.02490 0.83770 0.56870 0.01267 Uiso 1.00 +C29 C 0.56870 0.83770 0.02490 0.01267 Uiso 1.00 +C30 C 0.56870 0.02490 0.83770 0.01267 Uiso 1.00 +C31 C 0.83770 0.56870 0.56870 0.01267 Uiso 1.00 +C32 C 0.02490 0.56870 0.56870 0.01267 Uiso 1.00 +C33 C 0.56870 0.02490 0.56870 0.01267 Uiso 1.00 +C34 C 0.56870 0.83770 0.56870 0.01267 Uiso 1.00 +C35 C 0.83770 0.56870 0.02490 0.01267 Uiso 1.00 +C36 C 0.02490 0.56870 0.83770 0.01267 Uiso 1.00 +C37 C 0.43130 0.43130 0.16230 0.01267 Uiso 1.00 +C38 C 0.43130 0.43130 0.97510 0.01267 Uiso 1.00 +C39 C 0.97510 0.16230 0.43130 0.01267 Uiso 1.00 +C40 C 0.16230 0.97510 0.43130 0.01267 Uiso 1.00 +C41 C 0.16230 0.43130 0.97510 0.01267 Uiso 1.00 +C42 C 0.97510 0.43130 0.16230 0.01267 Uiso 1.00 +C43 C 0.43130 0.16230 0.43130 0.01267 Uiso 1.00 +C44 C 0.43130 0.97510 0.43130 0.01267 Uiso 1.00 +C45 C 0.97510 0.43130 0.43130 0.01267 Uiso 1.00 +C46 C 0.16230 0.43130 0.43130 0.01267 Uiso 1.00 +C47 C 0.43130 0.16230 0.97510 0.01267 Uiso 1.00 +C48 C 0.43130 0.97510 0.16230 0.01267 Uiso 1.00 +C49 C 0.30060 0.96840 0.43040 0.01267 Uiso 1.00 +C50 C 0.96840 0.30060 0.30060 0.01267 Uiso 1.00 +C51 C 0.43040 0.30060 0.30060 0.01267 Uiso 1.00 +C52 C 0.30060 0.43040 0.96840 0.01267 Uiso 1.00 +C53 C 0.30060 0.43040 0.30060 0.01267 Uiso 1.00 +C54 C 0.96840 0.30060 0.43040 0.01267 Uiso 1.00 +C55 C 0.43040 0.30060 0.96840 0.01267 Uiso 1.00 +C56 C 0.30060 0.96840 0.30060 0.01267 Uiso 1.00 +C57 C 0.30060 0.30060 0.96840 0.01267 Uiso 1.00 +C58 C 0.96840 0.43040 0.30060 0.01267 Uiso 1.00 +C59 C 0.43040 0.96840 0.30060 0.01267 Uiso 1.00 +C60 C 0.30060 0.30060 0.43040 0.01267 Uiso 1.00 +C61 C 0.03160 0.69940 0.56960 0.01267 Uiso 1.00 +C62 C 0.69940 0.03160 0.69940 0.01267 Uiso 1.00 +C63 C 0.69940 0.56960 0.69940 0.01267 Uiso 1.00 +C64 C 0.56960 0.69940 0.03160 0.01267 Uiso 1.00 +C65 C 0.56960 0.69940 0.69940 0.01267 Uiso 1.00 +C66 C 0.69940 0.03160 0.56960 0.01267 Uiso 1.00 +C67 C 0.69940 0.56960 0.03160 0.01267 Uiso 1.00 +C68 C 0.03160 0.69940 0.69940 0.01267 Uiso 1.00 +C69 C 0.69940 0.69940 0.03160 0.01267 Uiso 1.00 +C70 C 0.56960 0.03160 0.69940 0.01267 Uiso 1.00 +C71 C 0.03160 0.56960 0.69940 0.01267 Uiso 1.00 +C72 C 0.69940 0.69940 0.56960 0.01267 Uiso 1.00 +O1 O 0.61201 0.49247 0.87425 0.01267 Uiso 1.00 +O2 O 0.49247 0.61201 0.02127 0.01267 Uiso 1.00 +O3 O 0.87425 0.02127 0.61201 0.01267 Uiso 1.00 +O4 O 0.02127 0.87425 0.49247 0.01267 Uiso 1.00 +O5 O 0.61201 0.87425 0.02127 0.01267 Uiso 1.00 +O6 O 0.49247 0.02127 0.87425 0.01267 Uiso 1.00 +O7 O 0.87425 0.61201 0.49247 0.01267 Uiso 1.00 +O8 O 0.02127 0.49247 0.61201 0.01267 Uiso 1.00 +O9 O 0.61201 0.02127 0.49247 0.01267 Uiso 1.00 +O10 O 0.49247 0.87425 0.61201 0.01267 Uiso 1.00 +O11 O 0.87425 0.49247 0.02127 0.01267 Uiso 1.00 +O12 O 0.02127 0.61201 0.87425 0.01267 Uiso 1.00 +O13 O 0.50753 0.38799 0.12575 0.01267 Uiso 1.00 +O14 O 0.38799 0.50753 0.97873 0.01267 Uiso 1.00 +O15 O 0.97873 0.12575 0.38799 0.01267 Uiso 1.00 +O16 O 0.12575 0.97873 0.50753 0.01267 Uiso 1.00 +O17 O 0.12575 0.38799 0.97873 0.01267 Uiso 1.00 +O18 O 0.97873 0.50753 0.12575 0.01267 Uiso 1.00 +O19 O 0.38799 0.12575 0.50753 0.01267 Uiso 1.00 +O20 O 0.50753 0.97873 0.38799 0.01267 Uiso 1.00 +O21 O 0.97873 0.38799 0.50753 0.01267 Uiso 1.00 +O22 O 0.12575 0.50753 0.38799 0.01267 Uiso 1.00 +O23 O 0.50753 0.12575 0.97873 0.01267 Uiso 1.00 +O24 O 0.38799 0.97873 0.12575 0.01267 Uiso 1.00 +O25 O 0.38799 0.50753 0.12575 0.01267 Uiso 1.00 +O26 O 0.50753 0.38799 0.97873 0.01267 Uiso 1.00 +O27 O 0.12575 0.97873 0.38799 0.01267 Uiso 1.00 +O28 O 0.97873 0.12575 0.50753 0.01267 Uiso 1.00 +O29 O 0.38799 0.12575 0.97873 0.01267 Uiso 1.00 +O30 O 0.50753 0.97873 0.12575 0.01267 Uiso 1.00 +O31 O 0.12575 0.38799 0.50753 0.01267 Uiso 1.00 +O32 O 0.97873 0.50753 0.38799 0.01267 Uiso 1.00 +O33 O 0.38799 0.97873 0.50753 0.01267 Uiso 1.00 +O34 O 0.50753 0.12575 0.38799 0.01267 Uiso 1.00 +O35 O 0.12575 0.50753 0.97873 0.01267 Uiso 1.00 +O36 O 0.97873 0.38799 0.12575 0.01267 Uiso 1.00 +O37 O 0.49247 0.61201 0.87425 0.01267 Uiso 1.00 +O38 O 0.61201 0.49247 0.02127 0.01267 Uiso 1.00 +O39 O 0.02127 0.87425 0.61201 0.01267 Uiso 1.00 +O40 O 0.87425 0.02127 0.49247 0.01267 Uiso 1.00 +O41 O 0.87425 0.61201 0.02127 0.01267 Uiso 1.00 +O42 O 0.02127 0.49247 0.87425 0.01267 Uiso 1.00 +O43 O 0.61201 0.87425 0.49247 0.01267 Uiso 1.00 +O44 O 0.49247 0.02127 0.61201 0.01267 Uiso 1.00 +O45 O 0.02127 0.61201 0.49247 0.01267 Uiso 1.00 +O46 O 0.87425 0.49247 0.61201 0.01267 Uiso 1.00 +O47 O 0.49247 0.87425 0.02127 0.01267 Uiso 1.00 +O48 O 0.61201 0.02127 0.87425 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/general/MIL53(Al).cif b/benchmarks/mof/structures/general/MIL53(Al).cif new file mode 100644 index 0000000000000000000000000000000000000000..6467a56520f2d1359288706c78546576abf42146 --- /dev/null +++ b/benchmarks/mof/structures/general/MIL53(Al).cif @@ -0,0 +1,218 @@ +data_SABVOH_manual +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 17.1290 +_cell_length_b 6.6284 +_cell_length_c 12.1816 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 90.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +O1 O 0.08295 0.92756 0.08189 0.00000 Uiso 1.00 +O2 O 0.43312 0.92799 0.39387 0.00000 Uiso 1.00 +C3 C 0.22872 0.93670 0.19502 0.00000 Uiso 1.00 +C4 C 0.29944 0.93681 0.25417 0.00000 Uiso 1.00 +H5 H 0.20344 0.07928 0.17100 0.00000 Uiso 1.00 +H6 H 0.32573 0.07955 0.27542 0.00000 Uiso 1.00 +O7 O 0.41958 0.08310 0.57835 0.00000 Uiso 1.00 +O8 O 0.07025 0.08486 0.89497 0.00000 Uiso 1.00 +C9 C 0.27318 0.07140 0.69256 0.00000 Uiso 1.00 +C10 C 0.20192 0.07178 0.75098 0.00000 Uiso 1.00 +H11 H 0.29906 0.92886 0.67006 0.00000 Uiso 1.00 +H12 H 0.17610 0.92868 0.77357 0.00000 Uiso 1.00 +O13 O 0.91868 0.42746 0.91654 0.00000 Uiso 1.00 +O14 O 0.56964 0.42801 0.60310 0.00000 Uiso 1.00 +C15 C 0.77142 0.43670 0.80673 0.00000 Uiso 1.00 +C16 C 0.70082 0.43685 0.74719 0.00000 Uiso 1.00 +H17 H 0.79674 0.57957 0.83025 0.00000 Uiso 1.00 +H18 H 0.67486 0.57972 0.72493 0.00000 Uiso 1.00 +O19 O 0.58352 0.58315 0.41688 0.00000 Uiso 1.00 +O20 O 0.93250 0.58439 0.09914 0.00000 Uiso 1.00 +C21 C 0.72987 0.57114 0.30225 0.00000 Uiso 1.00 +C22 C 0.80087 0.57158 0.24361 0.00000 Uiso 1.00 +H23 H 0.70477 0.42860 0.32652 0.00000 Uiso 1.00 +H24 H 0.82731 0.42877 0.22221 0.00000 Uiso 1.00 +O25 O 0.91829 0.08423 0.91904 0.00000 Uiso 1.00 +O26 O 0.57171 0.08591 0.59858 0.00000 Uiso 1.00 +C27 C 0.77155 0.07344 0.80614 0.00000 Uiso 1.00 +C28 C 0.70097 0.07362 0.74645 0.00000 Uiso 1.00 +H29 H 0.79709 0.93047 0.82929 0.00000 Uiso 1.00 +H30 H 0.67514 0.93071 0.72384 0.00000 Uiso 1.00 +O31 O 0.58293 0.92635 0.41246 0.00000 Uiso 1.00 +O32 O 0.93337 0.92749 0.10242 0.00000 Uiso 1.00 +C33 C 0.72994 0.93450 0.30253 0.00000 Uiso 1.00 +C34 C 0.80090 0.93487 0.24420 0.00000 Uiso 1.00 +H35 H 0.70489 0.07746 0.32704 0.00000 Uiso 1.00 +H36 H 0.82734 0.07745 0.22321 0.00000 Uiso 1.00 +O37 O 0.08348 0.58500 0.07900 0.00000 Uiso 1.00 +O38 O 0.43136 0.58522 0.39797 0.00000 Uiso 1.00 +C39 C 0.22857 0.57340 0.19548 0.00000 Uiso 1.00 +C40 C 0.29926 0.57338 0.25488 0.00000 Uiso 1.00 +H41 H 0.20314 0.43077 0.17175 0.00000 Uiso 1.00 +H42 H 0.32534 0.43037 0.27655 0.00000 Uiso 1.00 +O43 O 0.41998 0.42618 0.58233 0.00000 Uiso 1.00 +O44 O 0.06916 0.42744 0.89141 0.00000 Uiso 1.00 +C45 C 0.27313 0.43452 0.69225 0.00000 Uiso 1.00 +C46 C 0.20191 0.43507 0.75039 0.00000 Uiso 1.00 +H47 H 0.29897 0.57742 0.66955 0.00000 Uiso 1.00 +H48 H 0.17617 0.57802 0.77264 0.00000 Uiso 1.00 +Al49 Al 0.00184 0.00815 -0.00109 0.00000 Uiso 1.00 +Al50 Al 0.50246 0.00700 0.49631 0.00000 Uiso 1.00 +Al51 Al 0.00180 0.50804 -0.00372 0.00000 Uiso 1.00 +Al52 Al 0.50149 0.50826 0.49995 0.00000 Uiso 1.00 +O53 O 0.00033 0.75904 0.93824 0.00000 Uiso 1.00 +C54 C 0.40499 0.75581 0.36276 0.00000 Uiso 1.00 +C55 C 0.11410 0.75578 0.10647 0.00000 Uiso 1.00 +C56 C 0.33504 0.75518 0.28738 0.00000 Uiso 1.00 +C57 C 0.19073 0.75512 0.16757 0.00000 Uiso 1.00 +O58 O 0.50752 0.25915 0.43997 0.00000 Uiso 1.00 +C59 C 0.09648 0.25525 0.85941 0.00000 Uiso 1.00 +C60 C 0.38857 0.25366 0.60574 0.00000 Uiso 1.00 +C61 C 0.16579 0.25390 0.78301 0.00000 Uiso 1.00 +C62 C 0.31116 0.25317 0.66510 0.00000 Uiso 1.00 +O63 O 0.00901 0.25908 0.05589 0.00000 Uiso 1.00 +C64 C 0.59727 0.25599 0.63482 0.00000 Uiso 1.00 +C65 C 0.88710 0.25546 0.89295 0.00000 Uiso 1.00 +C66 C 0.66547 0.25545 0.71300 0.00000 Uiso 1.00 +C67 C 0.80956 0.25497 0.83393 0.00000 Uiso 1.00 +O68 O 0.50121 0.75932 0.55804 0.00000 Uiso 1.00 +C69 C 0.90602 0.75505 0.13439 0.00000 Uiso 1.00 +C70 C 0.61417 0.75373 0.38894 0.00000 Uiso 1.00 +C71 C 0.83658 0.75367 0.21089 0.00000 Uiso 1.00 +C72 C 0.69136 0.75312 0.32891 0.00000 Uiso 1.00 +H73 H 0.51416 0.26019 0.36979 0.00000 Uiso 1.00 +H74 H 0.50215 0.76047 0.62887 0.00000 Uiso 1.00 +H75 H 0.01841 0.26004 0.12543 0.00000 Uiso 1.00 +H76 H -0.00035 0.76007 0.86745 0.00000 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +O1 C55 1.293 . A +O1 Al49 1.799 1_565 A +O2 C54 1.295 . A +O2 Al50 1.801 1_565 A +C3 C4 1.409 . A +C3 C57 1.409 . A +C3 H5 1.080 1_565 A +C4 C56 1.409 . A +C4 H6 1.079 1_565 A +H5 C3 1.080 1_545 A +H6 C4 1.079 1_545 A +O7 Al50 1.808 . S +O7 C60 1.293 . A +O8 C59 1.290 . A +O8 Al49 1.799 1_556 A +C9 C10 1.413 . A +C9 C62 1.410 . A +C9 H11 1.079 1_545 A +C10 C61 1.412 . A +C10 H12 1.082 1_545 A +H11 C9 1.079 1_565 A +H12 C10 1.082 1_565 A +O13 C65 1.294 . A +O13 Al51 1.804 1_656 A +O14 C64 1.294 . A +O14 Al52 1.796 . S +C15 C16 1.410 . A +C15 C67 1.410 . A +C15 H17 1.080 . S +C16 C66 1.409 . A +C16 H18 1.081 . S +O19 Al52 1.801 . S +O19 C70 1.292 . A +O20 C69 1.292 . A +O20 Al51 1.799 1_655 A +C21 C22 1.410 . A +C21 C72 1.413 . A +C21 H23 1.079 . S +C22 C71 1.411 . A +C22 H24 1.081 . S +O25 C65 1.294 . A +O25 Al49 1.803 1_656 S +O26 C64 1.287 . A +O26 Al50 1.798 . S +C27 C28 1.411 . A +C27 C67 1.409 . A +C27 H29 1.081 1_545 A +C28 C66 1.410 . A +C28 H30 1.081 1_545 A +H29 C27 1.081 1_565 A +H30 C28 1.081 1_565 A +O31 C70 1.295 . A +O31 Al50 1.797 1_565 S +O32 C69 1.295 . A +O32 Al49 1.803 1_665 S +C33 C34 1.408 . A +C33 C72 1.409 . A +C33 H35 1.082 1_565 A +C34 C71 1.407 . A +C34 H36 1.079 1_565 A +H35 C33 1.082 1_545 A +H36 C34 1.079 1_545 A +O37 Al51 1.798 . S +O37 C55 1.292 . A +O38 C54 1.291 . A +O38 Al52 1.802 . S +C39 C40 1.411 . A +C39 C57 1.409 . A +C39 H41 1.080 . S +C40 C56 1.409 . A +C40 H42 1.081 . S +O43 Al52 1.803 . S +O43 C60 1.296 . A +O44 C59 1.294 . A +O44 Al51 1.802 1_556 S +C45 C46 1.411 . A +C45 C62 1.407 . A +C45 H47 1.081 . S +C46 C61 1.408 . A +C46 H48 1.080 . S +Al49 O63 1.806 . S +Al49 O1 1.799 1_545 A +Al49 O8 1.799 1_554 A +Al49 O25 1.803 1_454 S +Al49 O32 1.803 1_445 S +Al49 O53 1.809 1_544 A +Al50 O58 1.809 . S +Al50 O2 1.801 1_545 A +Al50 O31 1.797 1_545 S +Al50 O68 1.806 1_545 A +Al51 O63 1.807 . S +Al51 O13 1.804 1_454 A +Al51 O20 1.799 1_455 A +Al51 O44 1.802 1_554 S +Al51 O53 1.808 1_554 A +Al52 O68 1.808 . S +Al52 O58 1.809 . S +O53 H76 0.862 . S +O53 Al49 1.809 1_566 A +O53 Al51 1.808 1_556 A +C54 C56 1.510 . S +C55 C57 1.509 . S +O58 H73 0.862 . S +C59 C61 1.509 . S +C60 C62 1.510 . S +O63 H75 0.862 . S +C64 C66 1.507 . S +C65 C67 1.510 . S +O68 H74 0.863 . S +O68 Al50 1.806 1_565 A +C69 C71 1.511 . S +C70 C72 1.511 . S diff --git a/benchmarks/mof/structures/general/MOF-177.cif b/benchmarks/mof/structures/general/MOF-177.cif new file mode 100644 index 0000000000000000000000000000000000000000..f9273ba9801dbfc5696e88ef3e6aec851e5d2ed1 --- /dev/null +++ b/benchmarks/mof/structures/general/MOF-177.cif @@ -0,0 +1,1802 @@ +data_ERIRIG_tobacco +_audit_creation_date 2015-12-08 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 37.0720 +_cell_length_b 37.0720 +_cell_length_c 30.0333 +_cell_angle_alpha 90.0000 +_cell_angle_beta 90.0000 +_cell_angle_gamma 120.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +X1 C 1.02226 0.97844 0.24989 0.00000 Uiso 1.00 +C2 C 0.97843 0.95713 0.25052 0.00000 Uiso 1.00 +X3 C 0.95647 0.97901 0.25116 0.00000 Uiso 1.00 +C4 C 0.97900 1.02292 0.25149 0.00000 Uiso 1.00 +X5 C 1.02318 1.04551 0.25053 0.00000 Uiso 1.00 +C6 C 1.04422 1.02237 0.24957 0.00000 Uiso 1.00 +H7 H 0.96134 0.92337 0.25052 0.00000 Uiso 1.00 +H8 H 0.96160 1.03923 0.25105 0.00000 Uiso 1.00 +H9 H 1.07791 1.03826 0.25000 0.00000 Uiso 1.00 +X10 C 1.04399 1.02356 0.75063 0.00000 Uiso 1.00 +C11 C 1.02095 1.04470 0.74880 0.00000 Uiso 1.00 +X12 C 0.97667 1.02330 0.75111 0.00000 Uiso 1.00 +C13 C 0.95575 0.97916 0.75394 0.00000 Uiso 1.00 +X14 C 0.97763 0.95717 0.75395 0.00000 Uiso 1.00 +C15 C 1.02141 0.97955 0.75295 0.00000 Uiso 1.00 +H16 H 1.03796 1.07833 0.74961 0.00000 Uiso 1.00 +H17 H 0.92211 0.96109 0.75346 0.00000 Uiso 1.00 +H18 H 1.03767 0.96210 0.75250 0.00000 Uiso 1.00 +X19 C 0.31136 0.62241 0.24792 0.00000 Uiso 1.00 +C20 C 0.28984 0.64481 0.24803 0.00000 Uiso 1.00 +X21 C 0.31125 0.68872 0.24860 0.00000 Uiso 1.00 +C22 C 0.35516 0.71024 0.24902 0.00000 Uiso 1.00 +X23 C 0.37768 0.68884 0.24890 0.00000 Uiso 1.00 +C24 C 0.35528 0.64493 0.24833 0.00000 Uiso 1.00 +H25 H 0.25618 0.62793 0.24772 0.00000 Uiso 1.00 +H26 H 0.37195 0.74391 0.24945 0.00000 Uiso 1.00 +H27 H 0.37216 0.62814 0.24825 0.00000 Uiso 1.00 +X28 C 0.62149 0.31152 0.74884 0.00000 Uiso 1.00 +C29 C 0.64398 0.35551 0.74831 0.00000 Uiso 1.00 +X30 C 0.68796 0.37800 0.74770 0.00000 Uiso 1.00 +C31 C 0.70936 0.35548 0.74712 0.00000 Uiso 1.00 +X32 C 0.68781 0.31167 0.74809 0.00000 Uiso 1.00 +C33 C 0.64400 0.29011 0.74915 0.00000 Uiso 1.00 +H34 H 0.62715 0.37234 0.74842 0.00000 Uiso 1.00 +H35 H 0.74299 0.37198 0.74483 0.00000 Uiso 1.00 +H36 H 0.62749 0.25647 0.75140 0.00000 Uiso 1.00 +X37 C 0.36988 0.30344 1.10053 0.00000 Uiso 1.00 +C38 C 0.40891 0.31325 1.11908 0.00000 Uiso 1.00 +X39 C 0.43797 0.30523 1.09640 0.00000 Uiso 1.00 +C40 C 0.42747 0.28902 1.05245 0.00000 Uiso 1.00 +X41 C 0.38908 0.27938 1.03287 0.00000 Uiso 1.00 +C42 C 0.36091 0.28650 1.05710 0.00000 Uiso 1.00 +H43 H 0.41640 0.32685 1.15179 0.00000 Uiso 1.00 +H44 H 0.44769 0.28140 1.03378 0.00000 Uiso 1.00 +H45 H 0.33266 0.28066 1.04037 0.00000 Uiso 1.00 +X46 C 0.38493 0.10801 0.46656 0.00000 Uiso 1.00 +C47 C 0.42332 0.13771 0.44783 0.00000 Uiso 1.00 +X48 C 0.43450 0.13285 0.40424 0.00000 Uiso 1.00 +C49 C 0.40666 0.09724 0.37954 0.00000 Uiso 1.00 +X50 C 0.36783 0.06728 0.39740 0.00000 Uiso 1.00 +C51 C 0.35761 0.07313 0.44106 0.00000 Uiso 1.00 +H52 H 0.44443 0.16484 0.46717 0.00000 Uiso 1.00 +H53 H 0.41457 0.09378 0.34570 0.00000 Uiso 1.00 +H54 H 0.32852 0.04992 0.45586 0.00000 Uiso 1.00 +X55 C 0.71573 0.10770 1.03219 0.00000 Uiso 1.00 +C56 C 0.70690 0.13695 1.05243 0.00000 Uiso 1.00 +X57 C 0.69146 0.13179 1.09670 0.00000 Uiso 1.00 +C58 C 0.68388 0.09502 1.11959 0.00000 Uiso 1.00 +X59 C 0.69258 0.06554 1.10033 0.00000 Uiso 1.00 +C60 C 0.70825 0.07225 1.05660 0.00000 Uiso 1.00 +H61 H 0.71366 0.16446 1.03370 0.00000 Uiso 1.00 +H62 H 0.67077 0.08851 1.15265 0.00000 Uiso 1.00 +H63 H 0.71530 0.04993 1.04168 0.00000 Uiso 1.00 +X64 C 0.30349 0.37019 0.59969 0.00000 Uiso 1.00 +C65 C 0.31229 0.40864 0.61837 0.00000 Uiso 1.00 +X66 C 0.30445 0.43714 0.59479 0.00000 Uiso 1.00 +C67 C 0.28890 0.42683 0.55080 0.00000 Uiso 1.00 +X68 C 0.28020 0.38865 0.53123 0.00000 Uiso 1.00 +C69 C 0.28759 0.36081 0.55600 0.00000 Uiso 1.00 +H70 H 0.32467 0.41601 0.65182 0.00000 Uiso 1.00 +H71 H 0.28195 0.44766 0.53223 0.00000 Uiso 1.00 +H72 H 0.28160 0.33190 0.54064 0.00000 Uiso 1.00 +X73 C 0.11005 0.72143 0.53408 0.00000 Uiso 1.00 +C74 C 0.07469 0.71415 0.55850 0.00000 Uiso 1.00 +X75 C 0.06701 0.69753 0.60220 0.00000 Uiso 1.00 +C76 C 0.09645 0.68785 0.62059 0.00000 Uiso 1.00 +X77 C 0.13311 0.69593 0.59739 0.00000 Uiso 1.00 +C78 C 0.13905 0.71223 0.55374 0.00000 Uiso 1.00 +H79 H 0.05211 0.71971 0.54174 0.00000 Uiso 1.00 +H80 H 0.09184 0.67535 0.65387 0.00000 Uiso 1.00 +H81 H 0.16695 0.71923 0.53542 0.00000 Uiso 1.00 +X82 C 0.10776 0.38186 -0.03687 0.00000 Uiso 1.00 +C83 C 0.13806 0.41981 -0.05574 0.00000 Uiso 1.00 +X84 C 0.13421 0.43047 -0.09982 0.00000 Uiso 1.00 +C85 C 0.09926 0.40234 -0.12518 0.00000 Uiso 1.00 +X86 C 0.06778 0.36416 -0.10700 0.00000 Uiso 1.00 +C87 C 0.07294 0.35458 -0.06257 0.00000 Uiso 1.00 +H88 H 0.16480 0.44110 -0.03603 0.00000 Uiso 1.00 +H89 H 0.09626 0.41115 -0.15873 0.00000 Uiso 1.00 +H90 H 0.05043 0.32518 -0.04780 0.00000 Uiso 1.00 +X91 C 0.89317 0.27983 0.46558 0.00000 Uiso 1.00 +C92 C 0.92896 0.28824 0.44118 0.00000 Uiso 1.00 +X93 C 0.93612 0.30461 0.39724 0.00000 Uiso 1.00 +C94 C 0.90620 0.31359 0.37879 0.00000 Uiso 1.00 +X95 C 0.86977 0.30496 0.40235 0.00000 Uiso 1.00 +C96 C 0.86385 0.28837 0.44563 0.00000 Uiso 1.00 +H97 H 0.95150 0.28228 0.45725 0.00000 Uiso 1.00 +H98 H 0.90934 0.32461 0.34490 0.00000 Uiso 1.00 +H99 H 0.83638 0.28265 0.46405 0.00000 Uiso 1.00 +X100 C 0.69929 0.63249 0.39801 0.00000 Uiso 1.00 +C101 C 0.69035 0.59367 0.38006 0.00000 Uiso 1.00 +X102 C 0.69804 0.56574 0.40466 0.00000 Uiso 1.00 +C103 C 0.71414 0.57683 0.44825 0.00000 Uiso 1.00 +X104 C 0.72292 0.61522 0.46707 0.00000 Uiso 1.00 +C105 C 0.71541 0.64262 0.44166 0.00000 Uiso 1.00 +H106 H 0.67896 0.58584 0.34622 0.00000 Uiso 1.00 +H107 H 0.72009 0.55564 0.46751 0.00000 Uiso 1.00 +H108 H 0.72137 0.67172 0.45652 0.00000 Uiso 1.00 +X109 C 0.89129 0.61035 1.03285 0.00000 Uiso 1.00 +C110 C 0.86196 0.57203 1.05233 0.00000 Uiso 1.00 +X111 C 0.86669 0.56159 1.09671 0.00000 Uiso 1.00 +C112 C 0.90328 0.59070 1.12003 0.00000 Uiso 1.00 +X113 C 0.93285 0.62910 1.10123 0.00000 Uiso 1.00 +C114 C 0.92632 0.63837 1.05762 0.00000 Uiso 1.00 +H115 H 0.83440 0.55189 1.03323 0.00000 Uiso 1.00 +H116 H 0.90964 0.58383 1.15304 0.00000 Uiso 1.00 +H117 H 0.94915 0.66734 1.04228 0.00000 Uiso 1.00 +X118 C 0.61468 0.89063 0.53573 0.00000 Uiso 1.00 +C119 C 0.57690 0.86042 0.55525 0.00000 Uiso 1.00 +X120 C 0.56702 0.86435 0.59978 0.00000 Uiso 1.00 +C121 C 0.59578 0.89984 0.62428 0.00000 Uiso 1.00 +X122 C 0.63371 0.93103 0.60555 0.00000 Uiso 1.00 +C123 C 0.64246 0.92560 0.56098 0.00000 Uiso 1.00 +H124 H 0.55595 0.83315 0.53607 0.00000 Uiso 1.00 +H125 H 0.58734 0.90427 0.65744 0.00000 Uiso 1.00 +H126 H 0.67166 0.94796 0.54575 0.00000 Uiso 1.00 +X127 C 0.27671 0.89112 -0.03400 0.00000 Uiso 1.00 +C128 C 0.28396 0.92612 -0.05904 0.00000 Uiso 1.00 +X129 C 0.30040 0.93310 -0.10288 0.00000 Uiso 1.00 +C130 C 0.31001 0.90338 -0.12072 0.00000 Uiso 1.00 +X131 C 0.30222 0.86747 -0.09647 0.00000 Uiso 1.00 +C132 C 0.28587 0.86196 -0.05303 0.00000 Uiso 1.00 +H133 H 0.27855 0.94896 -0.04267 0.00000 Uiso 1.00 +H134 H 0.32110 0.90637 -0.15457 0.00000 Uiso 1.00 +H135 H 0.28002 0.83473 -0.03400 0.00000 Uiso 1.00 +X136 C 0.63301 0.69916 -0.10173 0.00000 Uiso 1.00 +C137 C 0.59364 0.68932 -0.11962 0.00000 Uiso 1.00 +X138 C 0.56544 0.69791 -0.09615 0.00000 Uiso 1.00 +C139 C 0.57703 0.71524 -0.05289 0.00000 Uiso 1.00 +X140 C 0.61523 0.72419 -0.03371 0.00000 Uiso 1.00 +C141 C 0.64270 0.71629 -0.05828 0.00000 Uiso 1.00 +H142 H 0.58647 0.67851 -0.15359 0.00000 Uiso 1.00 +H143 H 0.55596 0.72091 -0.03313 0.00000 Uiso 1.00 +H144 H 0.67091 0.72171 -0.04180 0.00000 Uiso 1.00 +Zn145 Zn 0.62252 0.33842 0.27310 0.00000 Uiso 1.00 +Zn146 Zn 0.66613 0.33349 0.18965 0.00000 Uiso 1.00 +Zn147 Zn 0.71485 0.37760 0.27282 0.00000 Uiso 1.00 +Zn148 Zn 0.66189 0.28533 0.27325 0.00000 Uiso 1.00 +O149 O 0.66632 0.33368 0.25184 0.00000 Uiso 1.00 +O150 O 0.58905 0.33619 0.22889 0.00000 Uiso 1.00 +O151 O 0.71044 0.38162 0.16669 0.00000 Uiso 1.00 +O152 O 0.70665 0.41227 0.30837 0.00000 Uiso 1.00 +O153 O 0.61792 0.32964 0.16708 0.00000 Uiso 1.00 +O154 O 0.63853 0.38644 0.30385 0.00000 Uiso 1.00 +O155 O 0.74564 0.41091 0.22850 0.00000 Uiso 1.00 +O156 O 0.70551 0.29385 0.30782 0.00000 Uiso 1.00 +O157 O 0.66965 0.28892 0.16713 0.00000 Uiso 1.00 +O158 O 0.74745 0.36199 0.30289 0.00000 Uiso 1.00 +O159 O 0.66342 0.25378 0.22909 0.00000 Uiso 1.00 +O160 O 0.61415 0.25344 0.30447 0.00000 Uiso 1.00 +O161 O 0.58784 0.29535 0.30845 0.00000 Uiso 1.00 +X162 C 0.58811 0.33101 0.18695 0.00000 Uiso 1.00 +X163 C 0.74148 0.41164 0.18655 0.00000 Uiso 1.00 +X164 C 0.67429 0.41457 0.31723 0.00000 Uiso 1.00 +X165 C 0.74028 0.32634 0.31607 0.00000 Uiso 1.00 +X166 C 0.66817 0.25772 0.18711 0.00000 Uiso 1.00 +X167 C 0.58579 0.26085 0.31757 0.00000 Uiso 1.00 +Zn168 Zn 0.28557 0.66125 0.77405 0.00000 Uiso 1.00 +Zn169 Zn 0.33900 0.62219 0.77301 0.00000 Uiso 1.00 +Zn170 Zn 0.33412 0.66664 0.69055 0.00000 Uiso 1.00 +Zn171 Zn 0.37793 0.71430 0.77450 0.00000 Uiso 1.00 +O172 O 0.33411 0.66611 0.75266 0.00000 Uiso 1.00 +O173 O 0.25351 0.61269 0.80417 0.00000 Uiso 1.00 +O174 O 0.33583 0.58869 0.72847 0.00000 Uiso 1.00 +O175 O 0.29016 0.67138 0.66815 0.00000 Uiso 1.00 +O176 O 0.29629 0.58737 0.80851 0.00000 Uiso 1.00 +O177 O 0.25446 0.66419 0.72998 0.00000 Uiso 1.00 +O178 O 0.32949 0.61836 0.66719 0.00000 Uiso 1.00 +O179 O 0.41243 0.74489 0.73063 0.00000 Uiso 1.00 +O180 O 0.38744 0.63786 0.80283 0.00000 Uiso 1.00 +O181 O 0.38290 0.71048 0.66840 0.00000 Uiso 1.00 +O182 O 0.41184 0.70553 0.81089 0.00000 Uiso 1.00 +O183 O 0.36197 0.74695 0.80416 0.00000 Uiso 1.00 +O184 O 0.29395 0.70425 0.80967 0.00000 Uiso 1.00 +X185 C 0.26138 0.58458 0.81717 0.00000 Uiso 1.00 +X186 C 0.33033 0.58810 0.68665 0.00000 Uiso 1.00 +X187 C 0.25899 0.67000 0.68813 0.00000 Uiso 1.00 +X188 C 0.41338 0.74070 0.68869 0.00000 Uiso 1.00 +X189 C 0.41486 0.67326 0.81779 0.00000 Uiso 1.00 +X190 C 0.32622 0.73927 0.81772 0.00000 Uiso 1.00 +Zn191 Zn 0.16075 0.29989 0.20029 0.00000 Uiso 1.00 +Zn192 Zn 0.22324 0.36678 0.26029 0.00000 Uiso 1.00 +Zn193 Zn 0.14427 0.36627 0.23486 0.00000 Uiso 1.00 +Zn194 Zn 0.14108 0.30098 0.29662 0.00000 Uiso 1.00 +O195 O 0.16735 0.33353 0.24801 0.00000 Uiso 1.00 +O196 O 0.20932 0.30512 0.18295 0.00000 Uiso 1.00 +O197 O 0.24057 0.42126 0.25240 0.00000 Uiso 1.00 +O198 O 0.12977 0.36251 0.17693 0.00000 Uiso 1.00 +O199 O 0.25658 0.35389 0.22667 0.00000 Uiso 1.00 +O200 O 0.14083 0.31292 0.15105 0.00000 Uiso 1.00 +O201 O 0.18130 0.42107 0.24160 0.00000 Uiso 1.00 +O202 O 0.09770 0.30623 0.31360 0.00000 Uiso 1.00 +O203 O 0.23480 0.36461 0.31829 0.00000 Uiso 1.00 +O204 O 0.09824 0.35381 0.26870 0.00000 Uiso 1.00 +O205 O 0.17458 0.31558 0.34560 0.00000 Uiso 1.00 +O206 O 0.11849 0.24561 0.28561 0.00000 Uiso 1.00 +O207 O 0.12846 0.24482 0.21283 0.00000 Uiso 1.00 +X208 C 0.24696 0.32738 0.19532 0.00000 Uiso 1.00 +X209 C 0.22064 0.44065 0.24692 0.00000 Uiso 1.00 +X210 C 0.13067 0.34069 0.14469 0.00000 Uiso 1.00 +X211 C 0.08185 0.32792 0.30067 0.00000 Uiso 1.00 +X212 C 0.21251 0.34370 0.35118 0.00000 Uiso 1.00 +X213 C 0.11376 0.22569 0.24947 0.00000 Uiso 1.00 +Zn214 Zn 0.29948 0.14021 0.79816 0.00000 Uiso 1.00 +Zn215 Zn 0.36569 0.22243 0.76200 0.00000 Uiso 1.00 +Zn216 Zn 0.36525 0.14354 0.73727 0.00000 Uiso 1.00 +Zn217 Zn 0.29904 0.16008 0.70181 0.00000 Uiso 1.00 +O218 O 0.33237 0.16656 0.74980 0.00000 Uiso 1.00 +O219 O 0.31456 0.17356 0.84735 0.00000 Uiso 1.00 +O220 O 0.42017 0.23983 0.75393 0.00000 Uiso 1.00 +O221 O 0.35201 0.09699 0.77051 0.00000 Uiso 1.00 +O222 O 0.36371 0.23379 0.82008 0.00000 Uiso 1.00 +O223 O 0.30395 0.09620 0.81481 0.00000 Uiso 1.00 +O224 O 0.42005 0.18043 0.74486 0.00000 Uiso 1.00 +O225 O 0.31280 0.14060 0.65268 0.00000 Uiso 1.00 +O226 O 0.35283 0.25584 0.72847 0.00000 Uiso 1.00 +O227 O 0.36227 0.12970 0.67934 0.00000 Uiso 1.00 +O228 O 0.30409 0.20867 0.68464 0.00000 Uiso 1.00 +O229 O 0.24382 0.12763 0.71389 0.00000 Uiso 1.00 +O230 O 0.24413 0.11830 0.78686 0.00000 Uiso 1.00 +X231 C 0.34293 0.21141 0.85298 0.00000 Uiso 1.00 +X232 C 0.43961 0.21987 0.74937 0.00000 Uiso 1.00 +X233 C 0.32556 0.08023 0.80194 0.00000 Uiso 1.00 +X234 C 0.34087 0.13075 0.64678 0.00000 Uiso 1.00 +X235 C 0.32629 0.24627 0.69716 0.00000 Uiso 1.00 +X236 C 0.22442 0.11336 0.75049 0.00000 Uiso 1.00 +Zn237 Zn 0.15952 0.85889 0.29813 0.00000 Uiso 1.00 +Zn238 Zn 0.22196 0.85547 0.23721 0.00000 Uiso 1.00 +Zn239 Zn 0.14363 0.77671 0.26242 0.00000 Uiso 1.00 +Zn240 Zn 0.13946 0.83906 0.20191 0.00000 Uiso 1.00 +O241 O 0.16616 0.83250 0.24991 0.00000 Uiso 1.00 +O242 O 0.20787 0.90322 0.31434 0.00000 Uiso 1.00 +O243 O 0.23990 0.81873 0.24496 0.00000 Uiso 1.00 +O244 O 0.13040 0.76552 0.32066 0.00000 Uiso 1.00 +O245 O 0.25514 0.90201 0.27033 0.00000 Uiso 1.00 +O246 O 0.14148 0.82587 0.34754 0.00000 Uiso 1.00 +O247 O 0.18068 0.75926 0.25419 0.00000 Uiso 1.00 +O248 O 0.09553 0.79055 0.18523 0.00000 Uiso 1.00 +O249 O 0.23290 0.86913 0.17916 0.00000 Uiso 1.00 +O250 O 0.09722 0.74339 0.22904 0.00000 Uiso 1.00 +O251 O 0.17243 0.85793 0.15260 0.00000 Uiso 1.00 +O252 O 0.11757 0.87230 0.21367 0.00000 Uiso 1.00 +O253 O 0.12585 0.88043 0.28681 0.00000 Uiso 1.00 +X254 C 0.24540 0.91907 0.30139 0.00000 Uiso 1.00 +X255 C 0.22008 0.77931 0.24948 0.00000 Uiso 1.00 +X256 C 0.13200 0.78805 0.35343 0.00000 Uiso 1.00 +X257 C 0.08011 0.75298 0.19787 0.00000 Uiso 1.00 +X258 C 0.21033 0.86781 0.14659 0.00000 Uiso 1.00 +X259 C 0.11192 0.88619 0.25027 0.00000 Uiso 1.00 +Zn260 Zn 0.69978 0.84097 0.29848 0.00000 Uiso 1.00 +Zn261 Zn 0.63386 0.77860 0.23753 0.00000 Uiso 1.00 +Zn262 Zn 0.63329 0.85682 0.26332 0.00000 Uiso 1.00 +Zn263 Zn 0.69982 0.86132 0.20237 0.00000 Uiso 1.00 +O264 O 0.66662 0.83442 0.25041 0.00000 Uiso 1.00 +O265 O 0.69556 0.79258 0.31482 0.00000 Uiso 1.00 +O266 O 0.57914 0.76056 0.24504 0.00000 Uiso 1.00 +O267 O 0.63604 0.87066 0.32151 0.00000 Uiso 1.00 +O268 O 0.64710 0.74537 0.27075 0.00000 Uiso 1.00 +O269 O 0.68538 0.85945 0.34786 0.00000 Uiso 1.00 +O270 O 0.57872 0.81951 0.25584 0.00000 Uiso 1.00 +O271 O 0.69461 0.90485 0.18553 0.00000 Uiso 1.00 +O272 O 0.63681 0.76777 0.17950 0.00000 Uiso 1.00 +O273 O 0.64567 0.90279 0.22950 0.00000 Uiso 1.00 +O274 O 0.68598 0.82835 0.15305 0.00000 Uiso 1.00 +O275 O 0.75505 0.88367 0.21410 0.00000 Uiso 1.00 +O276 O 0.75490 0.87438 0.28704 0.00000 Uiso 1.00 +X277 C 0.67382 0.75506 0.30188 0.00000 Uiso 1.00 +X278 C 0.55945 0.78020 0.25039 0.00000 Uiso 1.00 +X279 C 0.65733 0.86926 0.35404 0.00000 Uiso 1.00 +X280 C 0.67210 0.91990 0.19810 0.00000 Uiso 1.00 +X281 C 0.65809 0.79042 0.14698 0.00000 Uiso 1.00 +X282 C 0.77459 0.88885 0.25063 0.00000 Uiso 1.00 +Zn283 Zn 0.79617 0.16454 0.70658 0.00000 Uiso 1.00 +Zn284 Zn 0.81114 0.11416 0.77300 0.00000 Uiso 1.00 +Zn285 Zn 0.88450 0.18705 0.72623 0.00000 Uiso 1.00 +Zn286 Zn 0.83404 0.20283 0.79163 0.00000 Uiso 1.00 +O287 O 0.83183 0.16674 0.74937 0.00000 Uiso 1.00 +O288 O 0.75953 0.11247 0.68935 0.00000 Uiso 1.00 +O289 O 0.85083 0.09865 0.77168 0.00000 Uiso 1.00 +O290 O 0.88847 0.20596 0.66862 0.00000 Uiso 1.00 +O291 O 0.76826 0.07409 0.73989 0.00000 Uiso 1.00 +O292 O 0.82309 0.18993 0.65687 0.00000 Uiso 1.00 +O293 O 0.89980 0.14738 0.72849 0.00000 Uiso 1.00 +O294 O 0.88610 0.23939 0.80905 0.00000 Uiso 1.00 +O295 O 0.79155 0.11071 0.83039 0.00000 Uiso 1.00 +O296 O 0.92450 0.23016 0.75897 0.00000 Uiso 1.00 +O297 O 0.80804 0.17634 0.84130 0.00000 Uiso 1.00 +O298 O 0.80927 0.23199 0.77468 0.00000 Uiso 1.00 +O299 O 0.76720 0.18976 0.72268 0.00000 Uiso 1.00 +X300 C 0.75058 0.07706 0.70477 0.00000 Uiso 1.00 +X301 C 0.88515 0.11321 0.75020 0.00000 Uiso 1.00 +X302 C 0.86050 0.20589 0.64360 0.00000 Uiso 1.00 +X303 C 0.92152 0.24814 0.79380 0.00000 Uiso 1.00 +X304 C 0.79157 0.13898 0.85489 0.00000 Uiso 1.00 +X305 C 0.77844 0.22076 0.74856 0.00000 Uiso 1.00 +Zn306 Zn 0.86089 0.70074 0.70250 0.00000 Uiso 1.00 +Zn307 Zn 0.77824 0.63443 0.73773 0.00000 Uiso 1.00 +Zn308 Zn 0.85664 0.63362 0.76202 0.00000 Uiso 1.00 +Zn309 Zn 0.84074 0.69960 0.79897 0.00000 Uiso 1.00 +O310 O 0.83413 0.66708 0.75029 0.00000 Uiso 1.00 +O311 O 0.82772 0.68701 0.65329 0.00000 Uiso 1.00 +O312 O 0.76021 0.57964 0.74489 0.00000 Uiso 1.00 +O313 O 0.90310 0.64693 0.72852 0.00000 Uiso 1.00 +O314 O 0.76730 0.63762 0.67987 0.00000 Uiso 1.00 +O315 O 0.90471 0.69602 0.68521 0.00000 Uiso 1.00 +O316 O 0.81936 0.57913 0.75345 0.00000 Uiso 1.00 +O317 O 0.85929 0.68445 0.84776 0.00000 Uiso 1.00 +O318 O 0.74501 0.64752 0.77128 0.00000 Uiso 1.00 +O319 O 0.87010 0.63527 0.82007 0.00000 Uiso 1.00 +O320 O 0.79231 0.69503 0.81600 0.00000 Uiso 1.00 +O321 O 0.87401 0.75496 0.78812 0.00000 Uiso 1.00 +O322 O 0.88288 0.75588 0.71501 0.00000 Uiso 1.00 +X323 C 0.78979 0.65901 0.64733 0.00000 Uiso 1.00 +X324 C 0.77993 0.55989 0.74893 0.00000 Uiso 1.00 +X325 C 0.92015 0.67373 0.69742 0.00000 Uiso 1.00 +X326 C 0.86881 0.65608 0.85311 0.00000 Uiso 1.00 +X327 C 0.75474 0.67365 0.80303 0.00000 Uiso 1.00 +X328 C 0.88815 0.77505 0.75184 0.00000 Uiso 1.00 +C329 C 0.47936 0.31367 0.16489 0.00000 Uiso 1.00 +X330 C 0.47581 0.31224 0.11788 0.00000 Uiso 1.00 +C331 C 0.51101 0.31726 0.09368 0.00000 Uiso 1.00 +C332 C 0.54754 0.32363 0.11548 0.00000 Uiso 1.00 +X333 C 0.55043 0.32542 0.16219 0.00000 Uiso 1.00 +C334 C 0.51571 0.32036 0.18630 0.00000 Uiso 1.00 +H335 H 0.45354 0.30766 0.18627 0.00000 Uiso 1.00 +H336 H 0.51141 0.31765 0.05772 0.00000 Uiso 1.00 +H337 H 0.57362 0.32742 0.09567 0.00000 Uiso 1.00 +H338 H 0.51607 0.32059 0.22236 0.00000 Uiso 1.00 +C339 C 0.50061 0.15509 0.36022 0.00000 Uiso 1.00 +X340 C 0.47449 0.16572 0.38393 0.00000 Uiso 1.00 +C341 C 0.48638 0.20810 0.38722 0.00000 Uiso 1.00 +C342 C 0.52276 0.23890 0.36643 0.00000 Uiso 1.00 +X343 C 0.54877 0.22831 0.34241 0.00000 Uiso 1.00 +C344 C 0.53747 0.18599 0.34011 0.00000 Uiso 1.00 +H345 H 0.49251 0.12278 0.35727 0.00000 Uiso 1.00 +H346 H 0.46685 0.21738 0.40489 0.00000 Uiso 1.00 +H347 H 0.53035 0.27109 0.36885 0.00000 Uiso 1.00 +H348 H 0.55653 0.17661 0.32168 0.00000 Uiso 1.00 +C349 C 0.67988 0.19309 0.09396 0.00000 Uiso 1.00 +X350 C 0.68489 0.16290 0.11817 0.00000 Uiso 1.00 +C351 C 0.68392 0.16530 0.16518 0.00000 Uiso 1.00 +C352 C 0.67794 0.19542 0.18658 0.00000 Uiso 1.00 +X353 C 0.67308 0.22520 0.16242 0.00000 Uiso 1.00 +C354 C 0.67422 0.22368 0.11572 0.00000 Uiso 1.00 +H355 H 0.67895 0.19283 0.05802 0.00000 Uiso 1.00 +H356 H 0.68972 0.14532 0.18652 0.00000 Uiso 1.00 +H357 H 0.67807 0.19580 0.22264 0.00000 Uiso 1.00 +H358 H 0.67047 0.24599 0.09590 0.00000 Uiso 1.00 +C359 C 0.30428 0.47674 0.66333 0.00000 Uiso 1.00 +X360 C 0.31084 0.47642 0.61718 0.00000 Uiso 1.00 +C361 C 0.32319 0.51373 0.59337 0.00000 Uiso 1.00 +C362 C 0.32921 0.55008 0.61525 0.00000 Uiso 1.00 +X363 C 0.32363 0.55025 0.66160 0.00000 Uiso 1.00 +C364 C 0.31093 0.51293 0.68508 0.00000 Uiso 1.00 +H365 H 0.29333 0.44873 0.68299 0.00000 Uiso 1.00 +H366 H 0.32886 0.51512 0.55790 0.00000 Uiso 1.00 +H367 H 0.33890 0.57818 0.59606 0.00000 Uiso 1.00 +H368 H 0.30546 0.51141 0.72064 0.00000 Uiso 1.00 +C369 C 0.79448 0.28019 0.38402 0.00000 Uiso 1.00 +X370 C 0.83670 0.31131 0.38117 0.00000 Uiso 1.00 +C371 C 0.84680 0.34809 0.35782 0.00000 Uiso 1.00 +C372 C 0.81551 0.35357 0.33791 0.00000 Uiso 1.00 +X373 C 0.77333 0.32208 0.34011 0.00000 Uiso 1.00 +C374 C 0.76333 0.28535 0.36351 0.00000 Uiso 1.00 +H375 H 0.78559 0.25133 0.40139 0.00000 Uiso 1.00 +H376 H 0.87895 0.37276 0.35519 0.00000 Uiso 1.00 +H377 H 0.82445 0.38214 0.31991 0.00000 Uiso 1.00 +H378 H 0.73131 0.26036 0.36582 0.00000 Uiso 1.00 +C379 C 0.65405 0.49985 0.36034 0.00000 Uiso 1.00 +X380 C 0.69078 0.52575 0.38420 0.00000 Uiso 1.00 +C381 C 0.72115 0.51369 0.38740 0.00000 Uiso 1.00 +C382 C 0.71547 0.47736 0.36638 0.00000 Uiso 1.00 +X383 C 0.67889 0.45158 0.34220 0.00000 Uiso 1.00 +C384 C 0.64800 0.46306 0.33998 0.00000 Uiso 1.00 +H385 H 0.62993 0.50808 0.35744 0.00000 Uiso 1.00 +H386 H 0.74993 0.53304 0.40518 0.00000 Uiso 1.00 +H387 H 0.73997 0.46963 0.36877 0.00000 Uiso 1.00 +H388 H 0.61958 0.44416 0.32146 0.00000 Uiso 1.00 +C389 C 0.83288 0.52036 0.16491 0.00000 Uiso 1.00 +X390 C 0.83551 0.52384 0.11793 0.00000 Uiso 1.00 +C391 C 0.80556 0.48865 0.09353 0.00000 Uiso 1.00 +C392 C 0.77515 0.45214 0.11515 0.00000 Uiso 1.00 +X393 C 0.77359 0.44931 0.16186 0.00000 Uiso 1.00 +C394 C 0.80299 0.48406 0.18614 0.00000 Uiso 1.00 +H395 H 0.85254 0.54617 0.18637 0.00000 Uiso 1.00 +H396 H 0.80594 0.48824 0.05757 0.00000 Uiso 1.00 +H397 H 0.75308 0.42603 0.09523 0.00000 Uiso 1.00 +H398 H 0.80252 0.48375 0.22220 0.00000 Uiso 1.00 +C399 C 0.19113 0.67735 0.59561 0.00000 Uiso 1.00 +X400 C 0.16579 0.68904 0.61976 0.00000 Uiso 1.00 +C401 C 0.17242 0.69478 0.66604 0.00000 Uiso 1.00 +C402 C 0.20219 0.68818 0.68748 0.00000 Uiso 1.00 +X403 C 0.22732 0.67638 0.66358 0.00000 Uiso 1.00 +C404 C 0.22167 0.67142 0.61717 0.00000 Uiso 1.00 +H405 H 0.18708 0.67222 0.56005 0.00000 Uiso 1.00 +H406 H 0.15508 0.70517 0.68604 0.00000 Uiso 1.00 +H407 H 0.20597 0.69309 0.72313 0.00000 Uiso 1.00 +H408 H 0.24040 0.66237 0.59762 0.00000 Uiso 1.00 +C409 C 0.20937 0.48390 0.88480 0.00000 Uiso 1.00 +X410 C 0.16681 0.47098 0.88055 0.00000 Uiso 1.00 +C411 C 0.15576 0.49690 0.85704 0.00000 Uiso 1.00 +C412 C 0.18642 0.53451 0.83798 0.00000 Uiso 1.00 +X413 C 0.22895 0.54686 0.84120 0.00000 Uiso 1.00 +C414 C 0.23995 0.52106 0.86506 0.00000 Uiso 1.00 +H415 H 0.21897 0.46463 0.90248 0.00000 Uiso 1.00 +H416 H 0.12330 0.48807 0.85349 0.00000 Uiso 1.00 +H417 H 0.17673 0.55337 0.81963 0.00000 Uiso 1.00 +H418 H 0.27232 0.52943 0.86816 0.00000 Uiso 1.00 +C419 C 0.52619 0.82346 0.66730 0.00000 Uiso 1.00 +X420 C 0.52718 0.83155 0.62137 0.00000 Uiso 1.00 +C421 C 0.48982 0.80825 0.59706 0.00000 Uiso 1.00 +C422 C 0.45279 0.77839 0.61826 0.00000 Uiso 1.00 +X423 C 0.45196 0.77150 0.66443 0.00000 Uiso 1.00 +C424 C 0.48932 0.79441 0.68841 0.00000 Uiso 1.00 +H425 H 0.55416 0.83930 0.68728 0.00000 Uiso 1.00 +H426 H 0.48890 0.81355 0.56176 0.00000 Uiso 1.00 +H427 H 0.42468 0.76127 0.59869 0.00000 Uiso 1.00 +H428 H 0.49030 0.78949 0.72384 0.00000 Uiso 1.00 +C429 C 0.34615 0.84534 0.85912 0.00000 Uiso 1.00 +X430 C 0.30941 0.83469 0.88288 0.00000 Uiso 1.00 +C431 C 0.27907 0.79224 0.88633 0.00000 Uiso 1.00 +C432 C 0.28485 0.76143 0.86588 0.00000 Uiso 1.00 +X433 C 0.32150 0.77201 0.84196 0.00000 Uiso 1.00 +C434 C 0.35229 0.81441 0.83929 0.00000 Uiso 1.00 +H435 H 0.37026 0.87767 0.85601 0.00000 Uiso 1.00 +H436 H 0.25025 0.78289 0.90401 0.00000 Uiso 1.00 +H437 H 0.26038 0.72921 0.86858 0.00000 Uiso 1.00 +H438 H 0.38076 0.82380 0.82090 0.00000 Uiso 1.00 +C439 C 0.50590 0.65861 0.85201 0.00000 Uiso 1.00 +X440 C 0.52705 0.69041 0.88404 0.00000 Uiso 1.00 +C441 C 0.50901 0.71509 0.89510 0.00000 Uiso 1.00 +C442 C 0.47260 0.70922 0.87406 0.00000 Uiso 1.00 +X443 C 0.45194 0.67761 0.84229 0.00000 Uiso 1.00 +C444 C 0.46872 0.65197 0.83208 0.00000 Uiso 1.00 +H445 H 0.51719 0.63774 0.84302 0.00000 Uiso 1.00 +H446 H 0.52408 0.74076 0.91825 0.00000 Uiso 1.00 +H447 H 0.46071 0.72975 0.88247 0.00000 Uiso 1.00 +H448 H 0.45366 0.62738 0.80763 0.00000 Uiso 1.00 +C449 C 0.07516 0.96219 0.28286 0.00000 Uiso 1.00 +X450 C 0.04520 0.95478 0.24999 0.00000 Uiso 1.00 +C451 C 0.03723 0.92450 0.21731 0.00000 Uiso 1.00 +C452 C 0.05916 0.90263 0.21710 0.00000 Uiso 1.00 +X453 C 0.08880 0.90965 0.25030 0.00000 Uiso 1.00 +C454 C 0.09628 0.93953 0.28337 0.00000 Uiso 1.00 +H455 H 0.08182 0.98519 0.30855 0.00000 Uiso 1.00 +H456 H 0.01440 0.91820 0.19152 0.00000 Uiso 1.00 +H457 H 0.05253 0.87979 0.19124 0.00000 Uiso 1.00 +H458 H 0.11899 0.94585 0.30930 0.00000 Uiso 1.00 +C459 C 0.08472 0.11292 0.22881 0.00000 Uiso 1.00 +X460 C 0.04573 0.09014 0.25047 0.00000 Uiso 1.00 +C461 C 0.02994 0.11336 0.27198 0.00000 Uiso 1.00 +C462 C 0.05243 0.15713 0.27250 0.00000 Uiso 1.00 +X463 C 0.09058 0.17929 0.25000 0.00000 Uiso 1.00 +C464 C 0.10626 0.15670 0.22782 0.00000 Uiso 1.00 +H465 H 0.09801 0.09712 0.21068 0.00000 Uiso 1.00 +H466 H 0.00092 0.09791 0.29027 0.00000 Uiso 1.00 +H467 H 0.03964 0.17377 0.28998 0.00000 Uiso 1.00 +H468 H 0.13558 0.17299 0.21009 0.00000 Uiso 1.00 +C469 C 0.88765 0.96410 0.21844 0.00000 Uiso 1.00 +X470 C 0.90988 0.95597 0.25108 0.00000 Uiso 1.00 +C471 C 0.88725 0.92563 0.28358 0.00000 Uiso 1.00 +C472 C 0.84347 0.90434 0.28380 0.00000 Uiso 1.00 +X473 C 0.82116 0.91203 0.25080 0.00000 Uiso 1.00 +C474 C 0.84386 0.94203 0.21794 0.00000 Uiso 1.00 +H475 H 0.90424 0.98718 0.19289 0.00000 Uiso 1.00 +H476 H 0.90352 0.91879 0.30920 0.00000 Uiso 1.00 +H477 H 0.82701 0.88135 0.30947 0.00000 Uiso 1.00 +H478 H 0.82772 0.94883 0.19214 0.00000 Uiso 1.00 +C479 C 0.11176 0.08441 0.72806 0.00000 Uiso 1.00 +X480 C 0.08868 0.04592 0.75058 0.00000 Uiso 1.00 +C481 C 0.11167 0.03045 0.77324 0.00000 Uiso 1.00 +C482 C 0.15546 0.05276 0.77401 0.00000 Uiso 1.00 +X483 C 0.17794 0.09040 0.75069 0.00000 Uiso 1.00 +C484 C 0.15559 0.10575 0.72736 0.00000 Uiso 1.00 +H485 H 0.09616 0.09743 0.70911 0.00000 Uiso 1.00 +H486 H 0.09602 0.00186 0.79224 0.00000 Uiso 1.00 +H487 H 0.17185 0.04020 0.79238 0.00000 Uiso 1.00 +H488 H 0.17210 0.13467 0.70896 0.00000 Uiso 1.00 +C489 C 0.91346 0.02813 0.76935 0.00000 Uiso 1.00 +X490 C 0.95395 0.04548 0.75079 0.00000 Uiso 1.00 +C491 C 0.97095 0.08582 0.73198 0.00000 Uiso 1.00 +C492 C 0.94871 0.10739 0.73166 0.00000 Uiso 1.00 +X493 C 0.90868 0.08993 0.75043 0.00000 Uiso 1.00 +C494 C 0.89148 0.04999 0.76934 0.00000 Uiso 1.00 +H495 H 0.89884 -0.00181 0.78577 0.00000 Uiso 1.00 +H496 H 1.00094 0.10063 0.71563 0.00000 Uiso 1.00 +H497 H 0.96304 0.13797 0.71647 0.00000 Uiso 1.00 +H498 H 0.86084 0.03546 0.78437 0.00000 Uiso 1.00 +C499 C 0.96248 0.88858 0.72028 0.00000 Uiso 1.00 +X500 C 0.95466 0.91049 0.75359 0.00000 Uiso 1.00 +C501 C 0.92475 0.88748 0.78634 0.00000 Uiso 1.00 +C502 C 0.90367 0.84365 0.78616 0.00000 Uiso 1.00 +X503 C 0.91111 0.82168 0.75250 0.00000 Uiso 1.00 +C504 C 0.94062 0.84479 0.71940 0.00000 Uiso 1.00 +H505 H 0.98518 0.90543 0.69448 0.00000 Uiso 1.00 +H506 H 0.91812 0.90346 0.81245 0.00000 Uiso 1.00 +H507 H 0.88104 0.82691 0.81204 0.00000 Uiso 1.00 +H508 H 0.94723 0.82897 0.69308 0.00000 Uiso 1.00 +C509 C 0.35181 0.33986 0.15918 0.00000 Uiso 1.00 +X510 C 0.34005 0.30980 0.12474 0.00000 Uiso 1.00 +C511 C 0.29700 0.28570 0.11521 0.00000 Uiso 1.00 +C512 C 0.26753 0.29160 0.13817 0.00000 Uiso 1.00 +X513 C 0.27944 0.32175 0.17186 0.00000 Uiso 1.00 +C514 C 0.32202 0.34575 0.18219 0.00000 Uiso 1.00 +H515 H 0.38415 0.36041 0.16755 0.00000 Uiso 1.00 +H516 H 0.28515 0.26069 0.09114 0.00000 Uiso 1.00 +H517 H 0.23502 0.27198 0.12950 0.00000 Uiso 1.00 +H518 H 0.33243 0.36944 0.20780 0.00000 Uiso 1.00 +C519 C -0.01110 0.33959 0.33681 0.00000 Uiso 1.00 +X520 C -0.02821 0.31059 0.37232 0.00000 Uiso 1.00 +C521 C -0.00858 0.28719 0.38222 0.00000 Uiso 1.00 +C522 C 0.02653 0.29303 0.35887 0.00000 Uiso 1.00 +X523 C 0.04384 0.32236 0.32431 0.00000 Uiso 1.00 +C524 C 0.02442 0.34547 0.31338 0.00000 Uiso 1.00 +H525 H -0.02382 0.35925 0.32790 0.00000 Uiso 1.00 +H526 H -0.02098 0.26272 0.40691 0.00000 Uiso 1.00 +H527 H 0.03999 0.27400 0.36797 0.00000 Uiso 1.00 +H528 H 0.03688 0.36840 0.28698 0.00000 Uiso 1.00 +C529 C 0.29426 1.01561 0.37470 0.00000 Uiso 1.00 +X530 C 0.33721 1.03032 0.37065 0.00000 Uiso 1.00 +C531 C 0.35004 1.00888 0.34173 0.00000 Uiso 1.00 +C532 C 0.32060 0.97316 0.31850 0.00000 Uiso 1.00 +X533 C 0.27763 0.95794 0.32379 0.00000 Uiso 1.00 +C534 C 0.26505 0.98000 0.35189 0.00000 Uiso 1.00 +H535 H 0.28301 1.03173 0.39554 0.00000 Uiso 1.00 +H536 H 0.38280 1.01908 0.33788 0.00000 Uiso 1.00 +H537 H 0.33144 0.95700 0.29713 0.00000 Uiso 1.00 +H538 H 0.23233 0.96973 0.35642 0.00000 Uiso 1.00 +C539 C 0.71614 1.01488 0.12237 0.00000 Uiso 1.00 +X540 C 0.68700 1.02846 0.12643 0.00000 Uiso 1.00 +C541 C 0.65307 1.00643 0.15566 0.00000 Uiso 1.00 +C542 C 0.64829 0.97162 0.17960 0.00000 Uiso 1.00 +X543 C 0.67717 0.95778 0.17470 0.00000 Uiso 1.00 +C544 C 0.71122 0.98011 0.14588 0.00000 Uiso 1.00 +H545 H 0.74324 1.03143 0.10124 0.00000 Uiso 1.00 +H546 H 0.62972 1.01559 0.15946 0.00000 Uiso 1.00 +H547 H 0.62162 0.95514 0.20132 0.00000 Uiso 1.00 +H548 H 0.73440 0.97078 0.14147 0.00000 Uiso 1.00 +C549 C 0.34329 0.35142 0.65557 0.00000 Uiso 1.00 +X550 C 0.30952 0.33906 0.62598 0.00000 Uiso 1.00 +C551 C 0.28113 0.29618 0.62148 0.00000 Uiso 1.00 +C552 C 0.28667 0.26664 0.64481 0.00000 Uiso 1.00 +X553 C 0.32062 0.27880 0.67389 0.00000 Uiso 1.00 +C554 C 0.34871 0.32167 0.67930 0.00000 Uiso 1.00 +H555 H 0.36605 0.38407 0.65975 0.00000 Uiso 1.00 +H556 H 0.25416 0.28526 0.60008 0.00000 Uiso 1.00 +H557 H 0.26405 0.23401 0.64004 0.00000 Uiso 1.00 +H558 H 0.37524 0.33220 0.70130 0.00000 Uiso 1.00 +C559 C 0.28313 -0.01151 0.88198 0.00000 Uiso 1.00 +X560 C 0.30647 -0.03122 0.87213 0.00000 Uiso 1.00 +C561 C 0.33579 -0.01391 0.83692 0.00000 Uiso 1.00 +C562 C 0.34219 0.02203 0.81395 0.00000 Uiso 1.00 +X563 C 0.31928 0.04166 0.82499 0.00000 Uiso 1.00 +C564 C 0.28947 0.02400 0.85907 0.00000 Uiso 1.00 +H565 H 0.25846 -0.02407 0.90645 0.00000 Uiso 1.00 +H566 H 0.35534 -0.02674 0.82800 0.00000 Uiso 1.00 +H567 H 0.36543 0.03470 0.78785 0.00000 Uiso 1.00 +H568 H 0.27054 0.03756 0.86818 0.00000 Uiso 1.00 +C569 C -0.00800 0.64789 0.15631 0.00000 Uiso 1.00 +X570 C -0.02985 0.66023 0.12732 0.00000 Uiso 1.00 +C571 C -0.01565 0.70307 0.12320 0.00000 Uiso 1.00 +C572 C 0.01957 0.73262 0.14636 0.00000 Uiso 1.00 +X573 C 0.04175 0.72047 0.17487 0.00000 Uiso 1.00 +C574 C 0.02726 0.67763 0.17989 0.00000 Uiso 1.00 +H575 H -0.01761 0.61527 0.16012 0.00000 Uiso 1.00 +H576 H -0.03200 0.71394 0.10220 0.00000 Uiso 1.00 +H577 H 0.02938 0.76524 0.14189 0.00000 Uiso 1.00 +H578 H 0.04360 0.66712 0.20141 0.00000 Uiso 1.00 +C579 C 1.01334 0.66210 0.66189 0.00000 Uiso 1.00 +X580 C 1.03100 0.69141 0.62669 0.00000 Uiso 1.00 +C581 C 1.01150 0.71493 0.61664 0.00000 Uiso 1.00 +C582 C 0.97615 0.70905 0.63967 0.00000 Uiso 1.00 +X583 C 0.95841 0.67949 0.67399 0.00000 Uiso 1.00 +C584 C 0.97761 0.65617 0.68493 0.00000 Uiso 1.00 +H585 H 1.02572 0.64217 0.67086 0.00000 Uiso 1.00 +H586 H 1.02417 0.73947 0.59202 0.00000 Uiso 1.00 +H587 H 0.96281 0.72816 0.63051 0.00000 Uiso 1.00 +H588 H 0.96482 0.63300 0.71109 0.00000 Uiso 1.00 +C589 C 0.99323 0.31024 0.88902 0.00000 Uiso 1.00 +X590 C 1.03175 0.33617 0.86775 0.00000 Uiso 1.00 +C591 C 1.03299 0.33302 0.82081 0.00000 Uiso 1.00 +C592 C 0.99762 0.30426 0.79665 0.00000 Uiso 1.00 +X593 C 0.95953 0.27897 0.81834 0.00000 Uiso 1.00 +C594 C 0.95779 0.28270 0.86470 0.00000 Uiso 1.00 +H595 H 0.98958 0.31216 0.92453 0.00000 Uiso 1.00 +H596 H 1.06172 0.35126 0.80261 0.00000 Uiso 1.00 +H597 H 0.99998 0.30203 0.76093 0.00000 Uiso 1.00 +H598 H 0.92890 0.26372 0.88248 0.00000 Uiso 1.00 +C599 C 0.65874 0.65037 0.34236 0.00000 Uiso 1.00 +X600 C 0.69298 0.66316 0.37133 0.00000 Uiso 1.00 +C601 C 0.72125 0.70610 0.37541 0.00000 Uiso 1.00 +C602 C 0.71494 0.73534 0.35256 0.00000 Uiso 1.00 +X603 C 0.68035 0.72279 0.32437 0.00000 Uiso 1.00 +C604 C 0.65254 0.67984 0.31908 0.00000 Uiso 1.00 +H605 H 0.63616 0.61763 0.33848 0.00000 Uiso 1.00 +H606 H 0.74859 0.71731 0.39629 0.00000 Uiso 1.00 +H607 H 0.73742 0.76805 0.35709 0.00000 Uiso 1.00 +H608 H 0.62559 0.66904 0.29766 0.00000 Uiso 1.00 +C609 C 0.66562 -0.03432 0.67757 0.00000 Uiso 1.00 +X610 C 0.66219 -0.03301 0.63065 0.00000 Uiso 1.00 +C611 C 0.68826 0.00548 0.60939 0.00000 Uiso 1.00 +C612 C 0.71600 0.04084 0.63374 0.00000 Uiso 1.00 +X613 C 0.71981 0.03905 0.68011 0.00000 Uiso 1.00 +C614 C 0.69452 0.00095 0.70174 0.00000 Uiso 1.00 +H615 H 0.64740 -0.06306 0.69577 0.00000 Uiso 1.00 +H616 H 0.68628 0.00917 0.57390 0.00000 Uiso 1.00 +H617 H 0.73502 0.06973 0.61598 0.00000 Uiso 1.00 +H618 H 0.69682 -0.00150 0.73744 0.00000 Uiso 1.00 +C619 C 0.70565 0.71638 0.88299 0.00000 Uiso 1.00 +X620 C 0.66254 0.69279 0.87349 0.00000 Uiso 1.00 +C621 C 0.65041 0.66303 0.83871 0.00000 Uiso 1.00 +C622 C 0.67990 0.65662 0.81567 0.00000 Uiso 1.00 +X623 C 0.72251 0.67988 0.82627 0.00000 Uiso 1.00 +C624 C 0.73477 0.70998 0.86005 0.00000 Uiso 1.00 +H625 H 0.71785 0.74133 0.90715 0.00000 Uiso 1.00 +H626 H 0.61798 0.64317 0.83015 0.00000 Uiso 1.00 +H627 H 0.66924 0.63311 0.78986 0.00000 Uiso 1.00 +H628 H 0.76732 0.72915 0.86883 0.00000 Uiso 1.00 +C629 C 0.10789 0.33142 0.01976 0.00000 Uiso 1.00 +X630 C 0.11231 0.37056 0.00982 0.00000 Uiso 1.00 +C631 C 0.12103 0.39886 0.04488 0.00000 Uiso 1.00 +C632 C 0.12537 0.38840 0.08870 0.00000 Uiso 1.00 +X633 C 0.12193 0.34964 0.09862 0.00000 Uiso 1.00 +C634 C 0.11312 0.32127 0.06351 0.00000 Uiso 1.00 +H635 H 0.10133 0.30901 -0.00657 0.00000 Uiso 1.00 +H636 H 0.12430 0.42909 0.03839 0.00000 Uiso 1.00 +H637 H 0.13256 0.41124 0.11472 0.00000 Uiso 1.00 +H638 H 0.11050 0.29129 0.06982 0.00000 Uiso 1.00 +C639 C 0.28125 0.40491 0.44942 0.00000 Uiso 1.00 +X640 C 0.26279 0.37709 0.48509 0.00000 Uiso 1.00 +C641 C 0.22817 0.33756 0.47616 0.00000 Uiso 1.00 +C642 C 0.21204 0.32639 0.43280 0.00000 Uiso 1.00 +X643 C 0.23072 0.35410 0.39701 0.00000 Uiso 1.00 +C644 C 0.26571 0.39343 0.40593 0.00000 Uiso 1.00 +H645 H 0.30810 0.43541 0.45511 0.00000 Uiso 1.00 +H646 H 0.21315 0.31547 0.50296 0.00000 Uiso 1.00 +H647 H 0.18494 0.29604 0.42729 0.00000 Uiso 1.00 +H648 H 0.28063 0.41581 0.37935 0.00000 Uiso 1.00 +C649 C 0.40489 0.28027 0.95091 0.00000 Uiso 1.00 +X650 C 0.37757 0.26149 0.98689 0.00000 Uiso 1.00 +C651 C 0.33822 0.22644 0.97832 0.00000 Uiso 1.00 +C652 C 0.32667 0.21036 0.93501 0.00000 Uiso 1.00 +X653 C 0.35380 0.22944 0.89888 0.00000 Uiso 1.00 +C654 C 0.39304 0.26472 0.90747 0.00000 Uiso 1.00 +H655 H 0.43521 0.30747 0.95631 0.00000 Uiso 1.00 +H656 H 0.31648 0.21120 1.00536 0.00000 Uiso 1.00 +H657 H 0.29643 0.18301 0.92978 0.00000 Uiso 1.00 +H658 H 0.41501 0.27995 0.88062 0.00000 Uiso 1.00 +C659 C 0.40103 0.12222 0.54834 0.00000 Uiso 1.00 +X660 C 0.37315 0.11311 0.51280 0.00000 Uiso 1.00 +C661 C 0.33372 0.10837 0.52188 0.00000 Uiso 1.00 +C662 C 0.32281 0.11349 0.56531 0.00000 Uiso 1.00 +X663 C 0.35071 0.12251 0.60093 0.00000 Uiso 1.00 +C664 C 0.38983 0.12645 0.59183 0.00000 Uiso 1.00 +H665 H 0.43144 0.12571 0.54251 0.00000 Uiso 1.00 +H666 H 0.31160 0.10147 0.49515 0.00000 Uiso 1.00 +H667 H 0.29259 0.11050 0.57100 0.00000 Uiso 1.00 +H668 H 0.41232 0.13382 0.61828 0.00000 Uiso 1.00 +C669 C 0.76422 0.15553 0.97252 0.00000 Uiso 1.00 +X670 C 0.73481 0.11507 0.98641 0.00000 Uiso 1.00 +C671 C 0.72496 0.08186 0.95662 0.00000 Uiso 1.00 +C672 C 0.74380 0.08905 0.91432 0.00000 Uiso 1.00 +X673 C 0.77266 0.12969 0.90046 0.00000 Uiso 1.00 +C674 C 0.78257 0.16271 0.93030 0.00000 Uiso 1.00 +H675 H 0.77371 0.18187 0.99454 0.00000 Uiso 1.00 +H676 H 0.70218 0.05025 0.96569 0.00000 Uiso 1.00 +H677 H 0.73515 0.06293 0.89217 0.00000 Uiso 1.00 +H678 H 0.80493 0.19446 0.92111 0.00000 Uiso 1.00 +C679 C 0.27881 0.87655 0.04774 0.00000 Uiso 1.00 +X680 C 0.25979 0.88552 0.01232 0.00000 Uiso 1.00 +C681 C 0.22494 0.88992 0.02163 0.00000 Uiso 1.00 +C682 C 0.20906 0.88472 0.06513 0.00000 Uiso 1.00 +X683 C 0.22822 0.87592 0.10064 0.00000 Uiso 1.00 +C684 C 0.26350 0.87222 0.09134 0.00000 Uiso 1.00 +H685 H 0.30587 0.87333 0.04176 0.00000 Uiso 1.00 +H686 H 0.20953 0.89672 -0.00499 0.00000 Uiso 1.00 +H687 H 0.18175 0.88753 0.07096 0.00000 Uiso 1.00 +H688 H 0.27883 0.86502 0.11770 0.00000 Uiso 1.00 +C689 C 0.12523 0.72006 0.45223 0.00000 Uiso 1.00 +X690 C 0.11617 0.73883 0.48785 0.00000 Uiso 1.00 +C691 C 0.11141 0.77351 0.47872 0.00000 Uiso 1.00 +C692 C 0.11608 0.78931 0.43523 0.00000 Uiso 1.00 +X693 C 0.12471 0.77027 0.39947 0.00000 Uiso 1.00 +C694 C 0.12903 0.73530 0.40861 0.00000 Uiso 1.00 +H695 H 0.12872 0.69314 0.45805 0.00000 Uiso 1.00 +H696 H 0.10453 0.78875 0.50545 0.00000 Uiso 1.00 +H697 H 0.11286 0.81641 0.42959 0.00000 Uiso 1.00 +H698 H 0.13619 0.72011 0.38207 0.00000 Uiso 1.00 +C699 C 0.84514 0.23128 0.52485 0.00000 Uiso 1.00 +X700 C 0.88569 0.26078 0.51131 0.00000 Uiso 1.00 +C701 C 0.91862 0.27119 0.54164 0.00000 Uiso 1.00 +C702 C 0.91102 0.25287 0.58424 0.00000 Uiso 1.00 +X703 C 0.87026 0.22405 0.59778 0.00000 Uiso 1.00 +C704 C 0.83755 0.21346 0.56733 0.00000 Uiso 1.00 +H705 H 0.81903 0.22148 0.50240 0.00000 Uiso 1.00 +H706 H 0.95026 0.29412 0.53287 0.00000 Uiso 1.00 +H707 H 0.93689 0.26197 0.60689 0.00000 Uiso 1.00 +H708 H 0.80574 0.19108 0.57628 0.00000 Uiso 1.00 +C709 C 0.72107 0.59901 0.54883 0.00000 Uiso 1.00 +X710 C 0.73986 0.62692 0.51331 0.00000 Uiso 1.00 +C711 C 0.77459 0.66631 0.52244 0.00000 Uiso 1.00 +C712 C 0.79063 0.67716 0.56587 0.00000 Uiso 1.00 +X713 C 0.77173 0.64924 0.60146 0.00000 Uiso 1.00 +C714 C 0.73651 0.61015 0.59233 0.00000 Uiso 1.00 +H715 H 0.69411 0.56862 0.54297 0.00000 Uiso 1.00 +H716 H 0.78983 0.68846 0.49573 0.00000 Uiso 1.00 +H717 H 0.81789 0.70735 0.57159 0.00000 Uiso 1.00 +H718 H 0.72137 0.58764 0.61875 0.00000 Uiso 1.00 +C719 C 0.89001 0.66146 0.97812 0.00000 Uiso 1.00 +X720 C 0.88539 0.62201 0.98678 0.00000 Uiso 1.00 +C721 C 0.87636 0.59444 0.95093 0.00000 Uiso 1.00 +C722 C 0.87236 0.60613 0.90751 0.00000 Uiso 1.00 +X723 C 0.87647 0.64540 0.89886 0.00000 Uiso 1.00 +C724 C 0.88517 0.67284 0.93484 0.00000 Uiso 1.00 +H725 H 0.89683 0.68336 1.00507 0.00000 Uiso 1.00 +H726 H 0.87294 0.56401 0.95642 0.00000 Uiso 1.00 +H727 H 0.86516 0.58396 0.88076 0.00000 Uiso 1.00 +H728 H 0.88824 0.70314 0.92955 0.00000 Uiso 1.00 +C729 C 0.66569 0.77608 0.02194 0.00000 Uiso 1.00 +X730 C 0.62650 0.74114 0.01261 0.00000 Uiso 1.00 +C731 C 0.59857 0.72195 0.04804 0.00000 Uiso 1.00 +C732 C 0.60951 0.73720 0.09165 0.00000 Uiso 1.00 +X733 C 0.64841 0.77259 0.10099 0.00000 Uiso 1.00 +C734 C 0.67632 0.79190 0.06547 0.00000 Uiso 1.00 +H735 H 0.68787 0.79158 -0.00468 0.00000 Uiso 1.00 +H736 H 0.56836 0.69479 0.04204 0.00000 Uiso 1.00 +H737 H 0.58701 0.72174 0.11801 0.00000 Uiso 1.00 +H738 H 0.70639 0.81930 0.07133 0.00000 Uiso 1.00 +C739 C 0.66520 0.89052 0.47923 0.00000 Uiso 1.00 +X740 C 0.62585 0.88567 0.48906 0.00000 Uiso 1.00 +C741 C 0.59764 0.87675 0.45386 0.00000 Uiso 1.00 +C742 C 0.60851 0.87293 0.40999 0.00000 Uiso 1.00 +X743 C 0.64761 0.87709 0.40019 0.00000 Uiso 1.00 +C744 C 0.67577 0.88584 0.43549 0.00000 Uiso 1.00 +H745 H 0.68758 0.89722 0.50563 0.00000 Uiso 1.00 +H746 H 0.56724 0.87312 0.46025 0.00000 Uiso 1.00 +H747 H 0.58580 0.86572 0.38382 0.00000 Uiso 1.00 +H748 H 0.70598 0.88896 0.42932 0.00000 Uiso 1.00 +C749 C 0.30386 0.55289 0.26958 0.00000 Uiso 1.00 +X750 C 0.28802 0.57561 0.24750 0.00000 Uiso 1.00 +C751 C 0.24959 0.55306 0.22513 0.00000 Uiso 1.00 +C752 C 0.22758 0.50939 0.22529 0.00000 Uiso 1.00 +X753 C 0.24377 0.48697 0.24697 0.00000 Uiso 1.00 +C754 C 0.28228 0.50925 0.26889 0.00000 Uiso 1.00 +H755 H 0.33272 0.56873 0.28810 0.00000 Uiso 1.00 +H756 H 0.23659 0.56906 0.20686 0.00000 Uiso 1.00 +H757 H 0.19815 0.49312 0.20776 0.00000 Uiso 1.00 +H758 H 0.29539 0.49287 0.28630 0.00000 Uiso 1.00 +C759 C 0.30383 0.75089 0.22727 0.00000 Uiso 1.00 +X760 C 0.28778 0.71206 0.24882 0.00000 Uiso 1.00 +C761 C 0.24905 0.69580 0.27062 0.00000 Uiso 1.00 +C762 C 0.22695 0.71737 0.27041 0.00000 Uiso 1.00 +X763 C 0.24334 0.75625 0.24928 0.00000 Uiso 1.00 +C764 C 0.28214 0.77286 0.22792 0.00000 Uiso 1.00 +H765 H 0.33296 0.76422 0.20921 0.00000 Uiso 1.00 +H766 H 0.23588 0.66660 0.28852 0.00000 Uiso 1.00 +H767 H 0.19731 0.70393 0.28754 0.00000 Uiso 1.00 +H768 H 0.29541 0.80257 0.21096 0.00000 Uiso 1.00 +C769 C 0.44737 0.69668 0.22727 0.00000 Uiso 1.00 +X770 C 0.42448 0.71231 0.24938 0.00000 Uiso 1.00 +C771 C 0.44686 0.75066 0.27194 0.00000 Uiso 1.00 +C772 C 0.49053 0.77280 0.27190 0.00000 Uiso 1.00 +X773 C 0.51313 0.75684 0.25017 0.00000 Uiso 1.00 +C774 C 0.49103 0.71840 0.22808 0.00000 Uiso 1.00 +H775 H 0.43167 0.66787 0.20863 0.00000 Uiso 1.00 +H776 H 0.43074 0.76348 0.29028 0.00000 Uiso 1.00 +H777 H 0.50665 0.80216 0.28957 0.00000 Uiso 1.00 +H778 H 0.50756 0.70547 0.21065 0.00000 Uiso 1.00 +C779 C 0.55211 0.24879 0.72805 0.00000 Uiso 1.00 +X780 C 0.57466 0.28790 0.74916 0.00000 Uiso 1.00 +C781 C 0.55190 0.30411 0.77044 0.00000 Uiso 1.00 +C782 C 0.50822 0.28224 0.77012 0.00000 Uiso 1.00 +X783 C 0.48596 0.24312 0.74938 0.00000 Uiso 1.00 +C784 C 0.50844 0.22655 0.72860 0.00000 Uiso 1.00 +H785 H 0.56812 0.23545 0.71042 0.00000 Uiso 1.00 +H786 H 0.56770 0.33350 0.78799 0.00000 Uiso 1.00 +H787 H 0.49182 0.29569 0.78682 0.00000 Uiso 1.00 +H788 H 0.49221 0.19665 0.71196 0.00000 Uiso 1.00 +C789 C 0.74723 0.30213 0.77407 0.00000 Uiso 1.00 +X790 C 0.71109 0.28839 0.74812 0.00000 Uiso 1.00 +C791 C 0.69737 0.25220 0.72225 0.00000 Uiso 1.00 +C792 C 0.71924 0.23040 0.72225 0.00000 Uiso 1.00 +X793 C 0.75530 0.24406 0.74834 0.00000 Uiso 1.00 +C794 C 0.76897 0.28021 0.77428 0.00000 Uiso 1.00 +H795 H 0.75841 0.32959 0.79477 0.00000 Uiso 1.00 +H796 H 0.66994 0.24100 0.70149 0.00000 Uiso 1.00 +H797 H 0.70780 0.20275 0.70181 0.00000 Uiso 1.00 +H798 H 0.79655 0.29164 0.79483 0.00000 Uiso 1.00 +C799 C 0.75070 0.44716 0.76893 0.00000 Uiso 1.00 +X800 C 0.71160 0.42484 0.74778 0.00000 Uiso 1.00 +C801 C 0.69542 0.44783 0.72695 0.00000 Uiso 1.00 +C802 C 0.71734 0.49152 0.72770 0.00000 Uiso 1.00 +X803 C 0.75649 0.51354 0.74844 0.00000 Uiso 1.00 +C804 C 0.77299 0.49082 0.76882 0.00000 Uiso 1.00 +H805 H 0.76401 0.43098 0.78629 0.00000 Uiso 1.00 +H806 H 0.66600 0.43220 0.70942 0.00000 Uiso 1.00 +H807 H 0.70394 0.50812 0.71134 0.00000 Uiso 1.00 +H808 H 0.80289 0.50685 0.78547 0.00000 Uiso 1.00 +loop_ +_geom_bond_atom_site_label_1 +_geom_bond_atom_site_label_2 +_geom_bond_distance +_geom_bond_site_symmetry_2 +_ccdc_geom_bond_type +X1 C2 1.407 . A +X1 C6 1.410 . A +X1 X450 1.496 1_655 S +C2 X3 1.407 . A +C2 H7 1.084 . S +X3 C4 1.410 . A +X3 X470 1.496 . S +C4 X5 1.419 . A +C4 H8 1.082 . S +X5 C6 1.419 . A +X5 X460 1.433 1_665 A +C6 H9 1.083 . S +X10 C11 1.420 . A +X10 C15 1.415 . A +X10 X480 1.435 1_665 A +C11 X12 1.424 . A +C11 H16 1.080 . S +X12 C13 1.420 . A +X12 X490 1.442 1_565 A +C13 X14 1.408 . A +C13 H17 1.081 . S +X14 C15 1.406 . A +X14 X500 1.499 . S +C15 H18 1.083 . S +X19 C20 1.410 . A +X19 C24 1.410 . A +X19 X750 1.503 . S +C20 X21 1.410 . A +C20 H25 1.081 . S +X21 C22 1.410 . A +X21 X760 1.503 . S +C22 X23 1.410 . A +C22 H26 1.081 . S +X23 C24 1.410 . A +X23 X770 1.503 . S +C24 H27 1.081 . S +X28 C29 1.413 . A +X28 C33 1.410 . A +X28 X780 1.504 . S +C29 X30 1.412 . A +C29 H34 1.081 . S +X30 C31 1.410 . A +X30 X800 1.504 . S +C31 X32 1.407 . A +C31 H35 1.082 . S +X32 C33 1.407 . A +X32 X790 1.495 . S +C33 H36 1.082 . S +X37 C38 1.418 . A +X37 C42 1.413 . A +X37 X510 1.438 1_556 A +C38 X39 1.426 . A +C38 H43 1.075 . S +X39 C40 1.422 . A +X39 X330 1.445 1_556 A +C40 X41 1.411 . A +C40 H44 1.080 . S +X41 C42 1.402 . A +X41 X650 1.499 . S +C42 H45 1.081 . S +X46 C47 1.409 . A +X46 C51 1.405 . A +X46 X660 1.496 . S +C47 X48 1.412 . A +C47 H52 1.083 . S +X48 C49 1.413 . A +X48 X340 1.499 . S +C49 X50 1.412 . A +C49 H53 1.083 . S +X50 C51 1.411 . A +X50 X530 1.502 1_545 S +C51 H54 1.083 . S +X55 C56 1.417 . A +X55 C60 1.406 . A +X55 X670 1.507 . S +C56 X57 1.422 . A +C56 H61 1.079 . S +X57 C58 1.423 . A +X57 X350 1.444 1_556 A +C58 X59 1.409 . A +C58 H62 1.078 . S +X59 C60 1.407 . A +X59 X540 1.504 1_546 S +C60 H63 1.082 . S +X64 C65 1.410 . A +X64 C69 1.409 . A +X64 X550 1.504 . S +C65 X66 1.417 . A +C65 H70 1.081 . S +X66 C67 1.416 . A +X66 X360 1.511 . S +C67 X68 1.413 . A +C67 H71 1.082 . S +X68 C69 1.406 . A +X68 X640 1.498 . S +C69 H72 1.083 . S +X73 C74 1.405 . A +X73 C78 1.410 . A +X73 X690 1.499 . S +C74 X75 1.417 . A +C74 H79 1.081 . S +X75 C76 1.420 . A +X75 X580 1.439 1_455 A +C76 X77 1.420 . A +C76 H80 1.079 . S +X77 C78 1.414 . A +X77 X400 1.515 . S +C78 H81 1.082 . S +X82 C83 1.408 . A +X82 C87 1.407 . A +X82 X630 1.497 . S +C83 X84 1.409 . A +C83 H88 1.084 . S +X84 C85 1.412 . A +X84 X410 1.500 1_554 S +C85 X86 1.418 . A +C85 H89 1.082 . S +X86 C87 1.418 . A +X86 X590 1.432 1_454 A +C87 H90 1.082 . S +X91 C92 1.408 . A +X91 C96 1.409 . A +X91 X700 1.505 . S +C92 X93 1.421 . A +C92 H97 1.079 . S +X93 C94 1.420 . A +X93 X520 1.437 1_655 A +C94 X95 1.412 . A +C94 H98 1.081 . S +X95 C96 1.407 . A +X95 X370 1.500 . S +C96 H99 1.083 . S +X100 C101 1.412 . A +X100 C105 1.411 . A +X100 X600 1.502 . S +C101 X102 1.413 . A +C101 H106 1.083 . S +X102 C103 1.412 . A +X102 X380 1.499 . S +C103 X104 1.410 . A +C103 H107 1.083 . S +X104 C105 1.405 . A +X104 X710 1.496 . S +C105 H108 1.083 . S +X109 C110 1.413 . A +X109 C114 1.403 . A +X109 X720 1.498 . S +C110 X111 1.423 . A +C110 H115 1.080 . S +X111 C112 1.425 . A +X111 X390 1.443 1_556 A +C112 X113 1.409 . A +C112 H116 1.078 . S +X113 C114 1.405 . A +X113 X570 1.504 1_656 S +C114 H117 1.083 . S +X118 C119 1.411 . A +X118 C123 1.407 . A +X118 X740 1.499 . S +C119 X120 1.413 . A +C119 H124 1.083 . S +X120 C121 1.416 . A +X120 X420 1.511 . S +C121 X122 1.416 . A +C121 H125 1.081 . S +X122 C123 1.415 . A +X122 X610 1.433 1_565 A +C123 H126 1.082 . S +X127 C128 1.405 . A +X127 C132 1.406 . A +X127 X680 1.497 . S +C128 X129 1.419 . A +C128 H133 1.081 . S +X129 C130 1.421 . A +X129 X560 1.437 1_564 A +C130 X131 1.415 . A +C130 H134 1.081 . S +X131 C132 1.410 . A +X131 X430 1.502 1_554 S +C132 H135 1.083 . S +X136 C137 1.421 . A +X136 C141 1.417 . A +X136 X620 1.438 1_554 A +C137 X138 1.423 . A +C137 H142 1.080 . S +X138 C139 1.418 . A +X138 X440 1.436 1_554 A +C139 X140 1.406 . A +C139 H143 1.082 . S +X140 C141 1.402 . A +X140 X730 1.497 . S +C141 H144 1.081 . S +Zn145 O149 1.833 . S +Zn145 O150 1.791 . S +Zn145 O154 1.822 . S +Zn145 O161 1.810 . S +Zn146 O149 1.868 . S +Zn146 O151 1.851 . S +Zn146 O153 1.849 . S +Zn146 O157 1.849 . S +Zn147 O149 1.832 . S +Zn147 O152 1.810 . S +Zn147 O155 1.786 . S +Zn147 O158 1.819 . S +Zn148 O149 1.833 . S +Zn148 O156 1.812 . S +Zn148 O159 1.788 . S +Zn148 O160 1.821 . S +O150 X162 1.272 . A +O151 X163 1.280 . A +O152 X164 1.273 . A +O153 X162 1.280 . A +O154 X164 1.274 . A +O155 X163 1.271 . A +O156 X165 1.273 . A +O157 X166 1.280 . A +O158 X165 1.274 . A +O159 X166 1.271 . A +O160 X167 1.274 . A +O161 X167 1.273 . A +X162 X333 1.502 . S +X163 X393 1.502 . S +X164 X383 1.497 . S +X165 X373 1.497 . S +X166 X353 1.502 . S +X167 X343 1.497 . S +Zn168 O172 1.833 . S +Zn168 O173 1.826 . S +Zn168 O177 1.794 . S +Zn168 O184 1.813 . S +Zn169 O172 1.831 . S +Zn169 O174 1.789 . S +Zn169 O176 1.807 . S +Zn169 O180 1.822 . S +Zn170 O172 1.866 . S +Zn170 O175 1.851 . S +Zn170 O178 1.849 . S +Zn170 O181 1.848 . S +Zn171 O172 1.833 . S +Zn171 O179 1.791 . S +Zn171 O182 1.813 . S +Zn171 O183 1.824 . S +O173 X185 1.276 . A +O174 X186 1.271 . A +O175 X187 1.280 . A +O176 X185 1.273 . A +O177 X187 1.272 . A +O178 X186 1.279 . A +O179 X188 1.272 . A +O180 X189 1.274 . A +O181 X188 1.280 . A +O182 X189 1.273 . A +O183 X190 1.275 . A +O184 X190 1.274 . A +X185 X413 1.497 . S +X186 X363 1.499 . S +X187 X403 1.502 . S +X188 X423 1.499 . S +X189 X443 1.495 . S +X190 X433 1.499 . S +Zn191 O195 1.834 . S +Zn191 O196 1.790 . S +Zn191 O200 1.823 . S +Zn191 O207 1.817 . S +Zn192 O195 1.843 . S +Zn192 O197 1.803 . S +Zn192 O199 1.834 . S +Zn192 O203 1.805 . S +Zn193 O195 1.844 . S +Zn193 O198 1.806 . S +Zn193 O201 1.807 . S +Zn193 O204 1.835 . S +Zn194 O195 1.833 . S +Zn194 O202 1.788 . S +Zn194 O205 1.824 . S +Zn194 O206 1.818 . S +O196 X208 1.270 . A +O197 X209 1.273 . A +O198 X210 1.273 . A +O199 X208 1.277 . A +O200 X210 1.275 . A +O201 X209 1.273 . A +O202 X211 1.271 . A +O203 X212 1.272 . A +O204 X211 1.276 . A +O205 X212 1.275 . A +O206 X213 1.275 . A +O207 X213 1.274 . A +X208 X513 1.497 . S +X209 X753 1.487 . S +X210 X633 1.496 . S +X211 X523 1.497 . S +X212 X643 1.496 . S +X213 X463 1.490 . S +Zn214 O218 1.833 . S +Zn214 O219 1.825 . S +Zn214 O223 1.792 . S +Zn214 O230 1.822 . S +Zn215 O218 1.842 . S +Zn215 O220 1.803 . S +Zn215 O222 1.805 . S +Zn215 O226 1.835 . S +Zn216 O218 1.843 . S +Zn216 O221 1.836 . S +Zn216 O224 1.809 . S +Zn216 O227 1.802 . S +Zn217 O218 1.834 . S +Zn217 O225 1.824 . S +Zn217 O228 1.791 . S +Zn217 O229 1.818 . S +O219 X231 1.276 . A +O220 X232 1.273 . A +O221 X233 1.276 . A +O222 X231 1.272 . A +O223 X233 1.271 . A +O224 X232 1.274 . A +O225 X234 1.276 . A +O226 X235 1.277 . A +O227 X234 1.272 . A +O228 X235 1.271 . A +O229 X236 1.275 . A +O230 X236 1.276 . A +X231 X653 1.496 . S +X232 X783 1.488 . S +X233 X563 1.498 . S +X234 X663 1.495 . S +X235 X553 1.497 . S +X236 X483 1.492 . S +Zn237 O241 1.832 . S +Zn237 O242 1.790 . S +Zn237 O246 1.825 . S +Zn237 O253 1.819 . S +Zn238 O241 1.841 . S +Zn238 O243 1.805 . S +Zn238 O245 1.832 . S +Zn238 O249 1.804 . S +Zn239 O241 1.841 . S +Zn239 O244 1.808 . S +Zn239 O247 1.804 . S +Zn239 O250 1.834 . S +Zn240 O241 1.832 . S +Zn240 O248 1.791 . S +Zn240 O251 1.823 . S +Zn240 O252 1.817 . S +O242 X254 1.271 . A +O243 X255 1.273 . A +O244 X256 1.273 . A +O245 X254 1.276 . A +O246 X256 1.276 . A +O247 X255 1.273 . A +O248 X257 1.271 . A +O249 X258 1.272 . A +O250 X257 1.277 . A +O251 X258 1.275 . A +O252 X259 1.275 . A +O253 X259 1.275 . A +X254 X533 1.495 . S +X255 X763 1.487 . S +X256 X693 1.497 . S +X257 X573 1.496 . S +X258 X683 1.495 . S +X259 X453 1.495 . S +Zn260 O264 1.832 . S +Zn260 O265 1.790 . S +Zn260 O269 1.822 . S +Zn260 O276 1.816 . S +Zn261 O264 1.842 . S +Zn261 O266 1.805 . S +Zn261 O268 1.833 . S +Zn261 O272 1.804 . S +Zn262 O264 1.842 . S +Zn262 O267 1.810 . S +Zn262 O270 1.805 . S +Zn262 O273 1.834 . S +Zn263 O264 1.834 . S +Zn263 O271 1.791 . S +Zn263 O274 1.823 . S +Zn263 O275 1.818 . S +O265 X277 1.271 . A +O266 X278 1.273 . A +O267 X279 1.273 . A +O268 X277 1.276 . A +O269 X279 1.275 . A +O270 X278 1.273 . A +O271 X280 1.271 . A +O272 X281 1.272 . A +O273 X280 1.277 . A +O274 X281 1.275 . A +O275 X282 1.275 . A +O276 X282 1.275 . A +X277 X603 1.495 . S +X278 X773 1.487 . S +X279 X743 1.497 . S +X280 X543 1.496 . S +X281 X733 1.495 . S +X282 X473 1.495 . S +Zn283 O287 1.816 . S +Zn283 O288 1.793 . S +Zn283 O292 1.781 . S +Zn283 O299 1.807 . S +Zn284 O287 1.843 . S +Zn284 O289 1.828 . S +Zn284 O291 1.833 . S +Zn284 O295 1.850 . S +Zn285 O287 1.842 . S +Zn285 O290 1.845 . S +Zn285 O293 1.823 . S +Zn285 O296 1.830 . S +Zn286 O287 1.816 . S +Zn286 O294 1.794 . S +Zn286 O297 1.781 . S +Zn286 O298 1.807 . S +O288 X300 1.270 . A +O289 X301 1.280 . A +O290 X302 1.279 . A +O291 X300 1.275 . A +O292 X302 1.270 . A +O293 X301 1.279 . A +O294 X303 1.270 . A +O295 X304 1.280 . A +O296 X303 1.275 . A +O297 X304 1.270 . A +O298 X305 1.273 . A +O299 X305 1.273 . A +X300 X613 1.492 . S +X301 X493 1.503 . S +X302 X703 1.495 . S +X303 X593 1.491 . S +X304 X673 1.497 . S +X305 X793 1.491 . S +Zn306 O310 1.834 . S +Zn306 O311 1.825 . S +Zn306 O315 1.796 . S +Zn306 O322 1.821 . S +Zn307 O310 1.842 . S +Zn307 O312 1.806 . S +Zn307 O314 1.801 . S +Zn307 O318 1.835 . S +Zn308 O310 1.842 . S +Zn308 O313 1.837 . S +Zn308 O316 1.807 . S +Zn308 O319 1.806 . S +Zn309 O310 1.832 . S +Zn309 O317 1.823 . S +Zn309 O320 1.791 . S +Zn309 O321 1.819 . S +O311 X323 1.276 . A +O312 X324 1.273 . A +O313 X325 1.277 . A +O314 X323 1.272 . A +O315 X325 1.272 . A +O316 X324 1.273 . A +O317 X326 1.275 . A +O318 X327 1.276 . A +O319 X326 1.273 . A +O320 X327 1.271 . A +O321 X328 1.275 . A +O322 X328 1.276 . A +X323 X713 1.495 . S +X324 X803 1.488 . S +X325 X583 1.500 . S +X326 X723 1.496 . S +X327 X623 1.498 . S +X328 X503 1.497 . S +C329 X330 1.417 . A +C329 C334 1.399 . A +C329 H335 1.079 . S +X330 C331 1.422 . A +X330 X39 1.445 1_554 A +C331 C332 1.414 . A +C331 H336 1.080 . S +C332 X333 1.406 . A +C332 H337 1.083 . S +X333 C334 1.405 . A +C334 H338 1.083 . S +C339 X340 1.408 . A +C339 C344 1.407 . A +C339 H345 1.083 . S +X340 C341 1.407 . A +C341 C342 1.404 . A +C341 H346 1.083 . S +C342 X343 1.408 . A +C342 H347 1.083 . S +X343 C344 1.409 . A +C344 H348 1.083 . S +C349 X350 1.423 . A +C349 C354 1.413 . A +C349 H355 1.080 . S +X350 C351 1.416 . A +X350 X57 1.444 1_554 A +C351 C352 1.399 . A +C351 H356 1.079 . S +C352 X353 1.406 . A +C352 H357 1.083 . S +X353 C354 1.405 . A +C354 H358 1.083 . S +C359 X360 1.408 . A +C359 C364 1.399 . A +C359 H365 1.082 . S +X360 C361 1.415 . A +C361 C362 1.413 . A +C361 H366 1.082 . S +C362 X363 1.408 . A +C362 H367 1.083 . S +X363 C364 1.408 . A +C364 H368 1.083 . S +C369 X370 1.408 . A +C369 C374 1.404 . A +C369 H375 1.083 . S +X370 C371 1.408 . A +C371 C372 1.407 . A +C371 H376 1.083 . S +C372 X373 1.409 . A +C372 H377 1.083 . S +X373 C374 1.408 . A +C374 H378 1.083 . S +C379 X380 1.408 . A +C379 C384 1.407 . A +C379 H385 1.083 . S +X380 C381 1.407 . A +C381 C382 1.404 . A +C381 H386 1.083 . S +C382 X383 1.408 . A +C382 H387 1.083 . S +X383 C384 1.408 . A +C384 H388 1.083 . S +C389 X390 1.416 . A +C389 C394 1.398 . A +C389 H395 1.079 . S +X390 C391 1.422 . A +X390 X111 1.443 1_554 A +C391 C392 1.414 . A +C391 H396 1.080 . S +C392 X393 1.406 . A +C392 H397 1.083 . S +X393 C394 1.406 . A +C394 H398 1.083 . S +C399 X400 1.415 . A +C399 C404 1.414 . A +C399 H405 1.082 . S +X400 C401 1.409 . A +C401 C402 1.401 . A +C401 H406 1.082 . S +C402 X403 1.408 . A +C402 H407 1.083 . S +X403 C404 1.408 . A +C404 H408 1.083 . S +C409 X410 1.407 . A +C409 C414 1.405 . A +C409 H415 1.083 . S +X410 C411 1.408 . A +X410 X84 1.500 1_556 S +C411 C412 1.407 . A +C411 H416 1.083 . S +C412 X413 1.408 . A +C412 H417 1.083 . S +X413 C414 1.409 . A +C414 H418 1.083 . S +C419 X420 1.408 . A +C419 C424 1.399 . A +C419 H425 1.082 . S +X420 C421 1.415 . A +C421 C422 1.413 . A +C421 H426 1.082 . S +C422 X423 1.408 . A +C422 H427 1.083 . S +X423 C424 1.408 . A +C424 H428 1.083 . S +C429 X430 1.408 . A +C429 C434 1.408 . A +C429 H435 1.083 . S +X430 C431 1.408 . A +X430 X131 1.502 1_556 S +C431 C432 1.405 . A +C431 H436 1.083 . S +C432 X433 1.408 . A +C432 H437 1.083 . S +X433 C434 1.409 . A +C434 H438 1.083 . S +C439 X440 1.416 . A +C439 C444 1.407 . A +C439 H445 1.082 . S +X440 C441 1.417 . A +X440 X138 1.436 1_556 A +C441 C442 1.405 . A +C441 H446 1.082 . S +C442 X443 1.404 . A +C442 H447 1.083 . S +X443 C444 1.405 . A +C444 H448 1.083 . S +C449 X450 1.407 . A +C449 C454 1.406 . A +C449 H455 1.083 . S +X450 C451 1.407 . A +X450 X1 1.496 1_455 S +C451 C452 1.406 . A +C451 H456 1.083 . S +C452 X453 1.408 . A +C452 H457 1.083 . S +X453 C454 1.408 . A +C454 H458 1.083 . S +C459 X460 1.416 . A +C459 C464 1.406 . A +C459 H465 1.082 . S +X460 C461 1.416 . A +X460 X5 1.433 1_445 A +C461 C462 1.406 . A +C461 H466 1.082 . S +C462 X463 1.403 . A +C462 H467 1.083 . S +X463 C464 1.404 . A +C464 H468 1.083 . S +C469 X470 1.407 . A +C469 C474 1.406 . A +C469 H475 1.083 . S +X470 C471 1.406 . A +C471 C472 1.406 . A +C471 H476 1.083 . S +C472 X473 1.408 . A +C472 H477 1.083 . S +X473 C474 1.408 . A +C474 H478 1.083 . S +C479 X480 1.416 . A +C479 C484 1.407 . A +C479 H485 1.082 . S +X480 C481 1.417 . A +X480 X10 1.435 1_445 A +C481 C482 1.406 . A +C481 H486 1.082 . S +C482 X483 1.403 . A +C482 H487 1.083 . S +X483 C484 1.405 . A +C484 H488 1.083 . S +C489 X490 1.418 . A +C489 C494 1.407 . A +C489 H495 1.081 . S +X490 C491 1.418 . A +X490 X12 1.442 1_545 A +C491 C492 1.407 . A +C491 H496 1.081 . S +C492 X493 1.407 . A +C492 H497 1.083 . S +X493 C494 1.406 . A +C494 H498 1.083 . S +C499 X500 1.407 . A +C499 C504 1.406 . A +C499 H505 1.083 . S +X500 C501 1.407 . A +C501 C502 1.407 . A +C501 H506 1.083 . S +C502 X503 1.409 . A +C502 H507 1.083 . S +X503 C504 1.408 . A +C504 H508 1.083 . S +C509 X510 1.420 . A +C509 C514 1.409 . A +C509 H515 1.080 . S +X510 C511 1.415 . A +X510 X37 1.438 1_554 A +C511 C512 1.398 . A +C511 H516 1.081 . S +C512 X513 1.405 . A +C512 H517 1.083 . S +X513 C514 1.405 . A +C514 H518 1.083 . S +C519 X520 1.419 . A +C519 C524 1.411 . A +C519 H525 1.081 . S +X520 C521 1.415 . A +X520 X93 1.437 1_455 A +C521 C522 1.397 . A +C521 H526 1.080 . S +C522 X523 1.405 . A +C522 H527 1.083 . S +X523 C524 1.406 . A +C524 H528 1.083 . S +C529 X530 1.407 . A +C529 C534 1.398 . A +C529 H535 1.083 . S +X530 C531 1.411 . A +X530 X50 1.502 1_565 S +C531 C532 1.409 . A +C531 H536 1.082 . S +C532 X533 1.408 . A +C532 H537 1.083 . S +X533 C534 1.407 . A +C534 H538 1.083 . S +C539 X540 1.407 . A +C539 C544 1.399 . A +C539 H545 1.083 . S +X540 C541 1.412 . A +X540 X59 1.504 1_564 S +C541 C542 1.409 . A +C541 H546 1.082 . S +C542 X543 1.407 . A +C542 H547 1.083 . S +X543 C544 1.408 . A +C544 H548 1.083 . S +C549 X550 1.412 . A +C549 C554 1.409 . A +C549 H555 1.082 . S +X550 C551 1.407 . A +C551 C552 1.399 . A +C551 H556 1.083 . S +C552 X553 1.408 . A +C552 H557 1.083 . S +X553 C554 1.408 . A +C554 H558 1.083 . S +C559 X560 1.415 . A +C559 C564 1.397 . A +C559 H565 1.081 . S +X560 C561 1.419 . A +X560 X129 1.437 1_546 A +C561 C562 1.411 . A +C561 H566 1.081 . S +C562 X563 1.407 . A +C562 H567 1.083 . S +X563 C564 1.405 . A +C564 H568 1.083 . S +C569 X570 1.412 . A +C569 C574 1.409 . A +C569 H575 1.082 . S +X570 C571 1.407 . A +X570 X113 1.504 1_454 S +C571 C572 1.399 . A +C571 H576 1.083 . S +C572 X573 1.408 . A +C572 H577 1.083 . S +X573 C574 1.407 . A +C574 H578 1.083 . S +C579 X580 1.420 . A +C579 C584 1.411 . A +C579 H585 1.081 . S +X580 C581 1.416 . A +X580 X75 1.439 1_655 A +C581 C582 1.399 . A +C581 H586 1.081 . S +C582 X583 1.405 . A +C582 H587 1.083 . S +X583 C584 1.406 . A +C584 H588 1.083 . S +C589 X590 1.414 . A +C589 C594 1.400 . A +C589 H595 1.082 . S +X590 C591 1.417 . A +X590 X86 1.432 1_656 A +C591 C592 1.409 . A +C591 H596 1.082 . S +C592 X593 1.405 . A +C592 H597 1.083 . S +X593 C594 1.404 . A +C594 H598 1.083 . S +C599 X600 1.411 . A +C599 C604 1.409 . A +C599 H605 1.082 . S +X600 C601 1.407 . A +C601 C602 1.398 . A +C601 H606 1.083 . S +C602 X603 1.408 . A +C602 H607 1.083 . S +X603 C604 1.408 . A +C604 H608 1.083 . S +C609 X610 1.418 . A +C609 C614 1.408 . A +C609 H615 1.082 . S +X610 C611 1.414 . A +X610 X122 1.433 1_545 A +C611 C612 1.401 . A +C611 H616 1.082 . S +C612 X613 1.405 . A +C612 H617 1.083 . S +X613 C614 1.404 . A +C614 H618 1.083 . S +C619 X620 1.415 . A +C619 C624 1.398 . A +C619 H625 1.081 . S +X620 C621 1.419 . A +X620 X136 1.438 1_556 A +C621 C622 1.411 . A +C621 H626 1.081 . S +C622 X623 1.406 . A +C622 H627 1.083 . S +X623 C624 1.405 . A +C624 H628 1.083 . S +C629 X630 1.409 . A +C629 C634 1.407 . A +C629 H635 1.083 . S +X630 C631 1.405 . A +C631 C632 1.404 . A +C631 H636 1.083 . S +C632 X633 1.410 . A +C632 H637 1.083 . S +X633 C634 1.408 . A +C634 H638 1.083 . S +C639 X640 1.405 . A +C639 C644 1.405 . A +C639 H645 1.083 . S +X640 C641 1.409 . A +C641 C642 1.406 . A +C641 H646 1.083 . S +C642 X643 1.407 . A +C642 H647 1.083 . S +X643 C644 1.410 . A +C644 H648 1.083 . S +C649 X650 1.405 . A +C649 C654 1.405 . A +C649 H655 1.083 . S +X650 C651 1.410 . A +C651 C652 1.406 . A +C651 H656 1.083 . S +C652 X653 1.407 . A +C652 H657 1.083 . S +X653 C654 1.411 . A +C654 H658 1.083 . S +C659 X660 1.405 . A +C659 C664 1.403 . A +C659 H665 1.083 . S +X660 C661 1.409 . A +C661 C662 1.406 . A +C661 H666 1.083 . S +C662 X663 1.407 . A +C662 H667 1.083 . S +X663 C664 1.410 . A +C664 H668 1.083 . S +C669 X670 1.406 . A +C669 C674 1.400 . A +C669 H675 1.082 . S +X670 C671 1.414 . A +C671 C672 1.410 . A +C671 H676 1.082 . S +C672 X673 1.406 . A +C672 H677 1.083 . S +X673 C674 1.410 . A +C674 H678 1.083 . S +C679 X680 1.405 . A +C679 C684 1.404 . A +C679 H685 1.083 . S +X680 C681 1.409 . A +C681 C682 1.406 . A +C681 H686 1.083 . S +C682 X683 1.407 . A +C682 H687 1.083 . S +X683 C684 1.410 . A +C684 H688 1.083 . S +C689 X690 1.405 . A +C689 C694 1.406 . A +C689 H695 1.083 . S +X690 C691 1.409 . A +C691 C692 1.406 . A +C691 H696 1.083 . S +C692 X693 1.407 . A +C692 H697 1.083 . S +X693 C694 1.411 . A +C694 H698 1.083 . S +C699 X700 1.406 . A +C699 C704 1.399 . A +C699 H705 1.082 . S +X700 C701 1.414 . A +C701 C702 1.409 . A +C701 H706 1.082 . S +C702 X703 1.406 . A +C702 H707 1.083 . S +X703 C704 1.409 . A +C704 H708 1.083 . S +C709 X710 1.405 . A +C709 C714 1.403 . A +C709 H715 1.083 . S +X710 C711 1.409 . A +C711 C712 1.406 . A +C711 H716 1.083 . S +C712 X713 1.407 . A +C712 H717 1.083 . S +X713 C714 1.410 . A +C714 H718 1.083 . S +C719 X720 1.409 . A +C719 C724 1.405 . A +C719 H725 1.083 . S +X720 C721 1.405 . A +C721 C722 1.405 . A +C721 H726 1.083 . S +C722 X723 1.410 . A +C722 H727 1.083 . S +X723 C724 1.407 . A +C724 H728 1.083 . S +C729 X730 1.409 . A +C729 C734 1.406 . A +C729 H735 1.083 . S +X730 C731 1.405 . A +C731 C732 1.404 . A +C731 H736 1.083 . S +C732 X733 1.410 . A +C732 H737 1.083 . S +X733 C734 1.407 . A +C734 H738 1.083 . S +C739 X740 1.409 . A +C739 C744 1.406 . A +C739 H745 1.083 . S +X740 C741 1.405 . A +C741 C742 1.405 . A +C741 H746 1.083 . S +C742 X743 1.410 . A +C742 H747 1.083 . S +X743 C744 1.407 . A +C744 H748 1.083 . S +C749 X750 1.410 . A +C749 C754 1.402 . A +C749 H755 1.082 . S +X750 C751 1.410 . A +C751 C752 1.402 . A +C751 H756 1.082 . S +C752 X753 1.405 . A +C752 H757 1.083 . S +X753 C754 1.405 . A +C754 H758 1.083 . S +C759 X760 1.410 . A +C759 C764 1.402 . A +C759 H765 1.082 . S +X760 C761 1.410 . A +C761 C762 1.402 . A +C761 H766 1.082 . S +C762 X763 1.405 . A +C762 H767 1.083 . S +X763 C764 1.405 . A +C764 H768 1.083 . S +C769 X770 1.410 . A +C769 C774 1.402 . A +C769 H775 1.082 . S +X770 C771 1.410 . A +C771 C772 1.402 . A +C771 H776 1.082 . S +C772 X773 1.405 . A +C772 H777 1.083 . S +X773 C774 1.405 . A +C774 H778 1.083 . S +C779 X780 1.411 . A +C779 C784 1.402 . A +C779 H785 1.082 . S +X780 C781 1.410 . A +C781 C782 1.402 . A +C781 H786 1.082 . S +C782 X783 1.406 . A +C782 H787 1.083 . S +X783 C784 1.405 . A +C784 H788 1.083 . S +C789 X790 1.407 . A +C789 C794 1.402 . A +C789 H795 1.083 . S +X790 C791 1.407 . A +C791 C792 1.402 . A +C791 H796 1.083 . S +C792 X793 1.407 . A +C792 H797 1.083 . S +X793 C794 1.407 . A +C794 H798 1.083 . S +C799 X800 1.411 . A +C799 C804 1.402 . A +C799 H805 1.082 . S +X800 C801 1.410 . A +C801 C802 1.403 . A +C801 H806 1.082 . S +C802 X803 1.406 . A +C802 H807 1.083 . S +X803 C804 1.405 . A +C804 H808 1.083 . S diff --git a/benchmarks/mof/structures/general/MOF-5.cif b/benchmarks/mof/structures/general/MOF-5.cif new file mode 100644 index 0000000000000000000000000000000000000000..f49b1517443dde7d85b82c5e5835d479cc451062 --- /dev/null +++ b/benchmarks/mof/structures/general/MOF-5.cif @@ -0,0 +1,130 @@ +data_EDUSIF_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 18.2660 +_cell_length_b 18.2660 +_cell_length_c 18.2660 +_cell_angle_alpha 60.0000 +_cell_angle_beta 60.0000 +_cell_angle_gamma 60.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.29338 0.29338 0.29338 0.01267 Uiso 1.00 +Zn2 Zn 0.29338 0.29338 0.11986 0.01267 Uiso 1.00 +Zn3 Zn 0.29338 0.11986 0.29338 0.01267 Uiso 1.00 +Zn4 Zn 0.11986 0.29338 0.29338 0.01267 Uiso 1.00 +Zn5 Zn 0.70662 0.70662 0.70662 0.01267 Uiso 1.00 +Zn6 Zn 0.70662 0.70662 0.88014 0.01267 Uiso 1.00 +Zn7 Zn 0.88014 0.70662 0.70662 0.01267 Uiso 1.00 +Zn8 Zn 0.70662 0.88014 0.70662 0.01267 Uiso 1.00 +H1 H 0.15460 0.45520 0.45520 0.01267 Uiso 1.00 +H2 H 0.45520 0.15460 0.93500 0.01267 Uiso 1.00 +H3 H 0.45520 0.93500 0.15460 0.01267 Uiso 1.00 +H4 H 0.93500 0.45520 0.45520 0.01267 Uiso 1.00 +H5 H 0.15460 0.45520 0.93500 0.01267 Uiso 1.00 +H6 H 0.45520 0.93500 0.45520 0.01267 Uiso 1.00 +H7 H 0.45520 0.15460 0.45520 0.01267 Uiso 1.00 +H8 H 0.93500 0.45520 0.15460 0.01267 Uiso 1.00 +H9 H 0.15460 0.93500 0.45520 0.01267 Uiso 1.00 +H10 H 0.45520 0.45520 0.15460 0.01267 Uiso 1.00 +H11 H 0.45520 0.45520 0.93500 0.01267 Uiso 1.00 +H12 H 0.93500 0.15460 0.45520 0.01267 Uiso 1.00 +H13 H 0.54480 0.84540 0.54480 0.01267 Uiso 1.00 +H14 H 0.84540 0.54480 0.06500 0.01267 Uiso 1.00 +H15 H 0.06500 0.54480 0.84540 0.01267 Uiso 1.00 +H16 H 0.54480 0.06500 0.54480 0.01267 Uiso 1.00 +H17 H 0.54480 0.84540 0.06500 0.01267 Uiso 1.00 +H18 H 0.06500 0.54480 0.54480 0.01267 Uiso 1.00 +H19 H 0.84540 0.54480 0.54480 0.01267 Uiso 1.00 +H20 H 0.54480 0.06500 0.84540 0.01267 Uiso 1.00 +H21 H 0.06500 0.84540 0.54480 0.01267 Uiso 1.00 +H22 H 0.54480 0.54480 0.84540 0.01267 Uiso 1.00 +H23 H 0.54480 0.54480 0.06500 0.01267 Uiso 1.00 +H24 H 0.84540 0.06500 0.54480 0.01267 Uiso 1.00 +C1 C 0.09270 0.47310 0.47310 0.01267 Uiso 1.00 +C2 C 0.47310 0.09270 0.96110 0.01267 Uiso 1.00 +C3 C 0.47310 0.96110 0.09270 0.01267 Uiso 1.00 +C4 C 0.96110 0.47310 0.47310 0.01267 Uiso 1.00 +C5 C 0.09270 0.47310 0.96110 0.01267 Uiso 1.00 +C6 C 0.47310 0.96110 0.47310 0.01267 Uiso 1.00 +C7 C 0.47310 0.09270 0.47310 0.01267 Uiso 1.00 +C8 C 0.96110 0.47310 0.09270 0.01267 Uiso 1.00 +C9 C 0.09270 0.96110 0.47310 0.01267 Uiso 1.00 +C10 C 0.47310 0.47310 0.09270 0.01267 Uiso 1.00 +C11 C 0.47310 0.47310 0.96110 0.01267 Uiso 1.00 +C12 C 0.96110 0.09270 0.47310 0.01267 Uiso 1.00 +C13 C 0.52690 0.90730 0.52690 0.01267 Uiso 1.00 +C14 C 0.90730 0.52690 0.03890 0.01267 Uiso 1.00 +C15 C 0.03890 0.52690 0.90730 0.01267 Uiso 1.00 +C16 C 0.52690 0.03890 0.52690 0.01267 Uiso 1.00 +C17 C 0.52690 0.90730 0.03890 0.01267 Uiso 1.00 +C18 C 0.03890 0.52690 0.52690 0.01267 Uiso 1.00 +C19 C 0.90730 0.52690 0.52690 0.01267 Uiso 1.00 +C20 C 0.52690 0.03890 0.90730 0.01267 Uiso 1.00 +C21 C 0.03890 0.90730 0.52690 0.01267 Uiso 1.00 +C22 C 0.52690 0.52690 0.90730 0.01267 Uiso 1.00 +C23 C 0.52690 0.52690 0.03890 0.01267 Uiso 1.00 +C24 C 0.90730 0.03890 0.52690 0.01267 Uiso 1.00 +C25 C 0.11130 0.38870 0.38870 0.01267 Uiso 1.00 +C26 C 0.05380 0.44620 0.44620 0.01267 Uiso 1.00 +C27 C 0.38870 0.11130 0.11130 0.01267 Uiso 1.00 +C28 C 0.44620 0.05380 0.05380 0.01267 Uiso 1.00 +C29 C 0.11130 0.38870 0.11130 0.01267 Uiso 1.00 +C30 C 0.05380 0.44620 0.05380 0.01267 Uiso 1.00 +C31 C 0.38870 0.11130 0.38870 0.01267 Uiso 1.00 +C32 C 0.44620 0.05380 0.44620 0.01267 Uiso 1.00 +C33 C 0.11130 0.11130 0.38870 0.01267 Uiso 1.00 +C34 C 0.05380 0.05380 0.44620 0.01267 Uiso 1.00 +C35 C 0.38870 0.38870 0.11130 0.01267 Uiso 1.00 +C36 C 0.44620 0.44620 0.05380 0.01267 Uiso 1.00 +C37 C 0.61130 0.88870 0.61130 0.01267 Uiso 1.00 +C38 C 0.55380 0.94620 0.55380 0.01267 Uiso 1.00 +C39 C 0.88870 0.61130 0.88870 0.01267 Uiso 1.00 +C40 C 0.94620 0.55380 0.94620 0.01267 Uiso 1.00 +C41 C 0.61130 0.88870 0.88870 0.01267 Uiso 1.00 +C42 C 0.55380 0.94620 0.94620 0.01267 Uiso 1.00 +C43 C 0.88870 0.61130 0.61130 0.01267 Uiso 1.00 +C44 C 0.94620 0.55380 0.55380 0.01267 Uiso 1.00 +C45 C 0.88870 0.88870 0.61130 0.01267 Uiso 1.00 +C46 C 0.94620 0.94620 0.55380 0.01267 Uiso 1.00 +C47 C 0.61130 0.61130 0.88870 0.01267 Uiso 1.00 +C48 C 0.55380 0.55380 0.94620 0.01267 Uiso 1.00 +O1 O 0.25000 0.25000 0.25000 0.01267 Uiso 1.00 +O2 O 0.75000 0.75000 0.75000 0.01267 Uiso 1.00 +O3 O 0.19777 0.36600 0.36600 0.01267 Uiso 1.00 +O4 O 0.36600 0.19777 0.07023 0.01267 Uiso 1.00 +O5 O 0.36600 0.07023 0.19777 0.01267 Uiso 1.00 +O6 O 0.07023 0.36600 0.36600 0.01267 Uiso 1.00 +O7 O 0.19777 0.36600 0.07023 0.01267 Uiso 1.00 +O8 O 0.36600 0.07023 0.36600 0.01267 Uiso 1.00 +O9 O 0.36600 0.19777 0.36600 0.01267 Uiso 1.00 +O10 O 0.07023 0.36600 0.19777 0.01267 Uiso 1.00 +O11 O 0.19777 0.07023 0.36600 0.01267 Uiso 1.00 +O12 O 0.36600 0.36600 0.19777 0.01267 Uiso 1.00 +O13 O 0.36600 0.36600 0.07023 0.01267 Uiso 1.00 +O14 O 0.07023 0.19777 0.36600 0.01267 Uiso 1.00 +O15 O 0.63400 0.80223 0.63400 0.01267 Uiso 1.00 +O16 O 0.80223 0.63400 0.92977 0.01267 Uiso 1.00 +O17 O 0.92977 0.63400 0.80223 0.01267 Uiso 1.00 +O18 O 0.63400 0.92977 0.63400 0.01267 Uiso 1.00 +O19 O 0.63400 0.80223 0.92977 0.01267 Uiso 1.00 +O20 O 0.92977 0.63400 0.63400 0.01267 Uiso 1.00 +O21 O 0.80223 0.63400 0.63400 0.01267 Uiso 1.00 +O22 O 0.63400 0.92977 0.80223 0.01267 Uiso 1.00 +O23 O 0.92977 0.80223 0.63400 0.01267 Uiso 1.00 +O24 O 0.63400 0.63400 0.80223 0.01267 Uiso 1.00 +O25 O 0.63400 0.63400 0.92977 0.01267 Uiso 1.00 +O26 O 0.80223 0.92977 0.63400 0.01267 Uiso 1.00 diff --git a/benchmarks/mof/structures/general/UiO-66.cif b/benchmarks/mof/structures/general/UiO-66.cif new file mode 100644 index 0000000000000000000000000000000000000000..60010d7dc80d744953041eb301c315922eab83e4 --- /dev/null +++ b/benchmarks/mof/structures/general/UiO-66.cif @@ -0,0 +1,138 @@ +data_RUBTAK02_clean_h\(2) +_audit_creation_date 2015-05-11 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 14.6675 +_cell_length_b 14.6675 +_cell_length_c 14.6675 +_cell_angle_alpha 60.0000 +_cell_angle_beta 60.0000 +_cell_angle_gamma 60.0000 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +C1 C 0.91980 0.08020 0.44840 0.01267 Uiso 1.00 +O2 O 0.92340 0.07660 0.26860 0.01267 Uiso 1.00 +H3 H 0.85249 0.14751 0.40954 0.01267 Uiso 1.00 +C4 C 0.08020 0.91980 0.55160 0.01267 Uiso 1.00 +O5 O 0.07660 0.92340 0.73140 0.01267 Uiso 1.00 +H6 H 0.14751 0.85249 0.59046 0.01267 Uiso 1.00 +C7 C 0.44840 0.55160 0.91980 0.01267 Uiso 1.00 +O8 O 0.26860 0.73140 0.92340 0.01267 Uiso 1.00 +H9 H 0.40954 0.59046 0.85249 0.01267 Uiso 1.00 +C10 C 0.55160 0.44840 0.08020 0.01267 Uiso 1.00 +O11 O 0.73140 0.26860 0.07660 0.01267 Uiso 1.00 +H12 H 0.59046 0.40954 0.14751 0.01267 Uiso 1.00 +C13 C 0.44840 0.91980 0.08020 0.01267 Uiso 1.00 +O14 O 0.26860 0.92340 0.07660 0.01267 Uiso 1.00 +H15 H 0.40954 0.85249 0.14751 0.01267 Uiso 1.00 +C16 C 0.55160 0.08020 0.91980 0.01267 Uiso 1.00 +O17 O 0.73140 0.07660 0.92340 0.01267 Uiso 1.00 +H18 H 0.59046 0.14751 0.85249 0.01267 Uiso 1.00 +C19 C 0.91980 0.44840 0.55160 0.01267 Uiso 1.00 +O20 O 0.92340 0.26860 0.73140 0.01267 Uiso 1.00 +H21 H 0.85249 0.40954 0.59046 0.01267 Uiso 1.00 +C22 C 0.08020 0.55160 0.44840 0.01267 Uiso 1.00 +O23 O 0.07660 0.73140 0.26860 0.01267 Uiso 1.00 +H24 H 0.14751 0.59046 0.40954 0.01267 Uiso 1.00 +C25 C 0.08020 0.44840 0.91980 0.01267 Uiso 1.00 +O26 O 0.07660 0.26860 0.92340 0.01267 Uiso 1.00 +H27 H 0.14751 0.40954 0.85249 0.01267 Uiso 1.00 +C28 C 0.91980 0.55160 0.08020 0.01267 Uiso 1.00 +O29 O 0.92340 0.73140 0.07660 0.01267 Uiso 1.00 +H30 H 0.85249 0.59046 0.14751 0.01267 Uiso 1.00 +C31 C 0.55160 0.91980 0.44840 0.01267 Uiso 1.00 +O32 O 0.73140 0.92340 0.26860 0.01267 Uiso 1.00 +H33 H 0.59046 0.85249 0.40954 0.01267 Uiso 1.00 +C34 C 0.44840 0.08020 0.55160 0.01267 Uiso 1.00 +O35 O 0.26860 0.07660 0.73140 0.01267 Uiso 1.00 +H36 H 0.40954 0.14751 0.59046 0.01267 Uiso 1.00 +C37 C 0.08020 0.91980 0.44840 0.01267 Uiso 1.00 +O38 O 0.07660 0.92340 0.26860 0.01267 Uiso 1.00 +H39 H 0.14751 0.85249 0.40954 0.01267 Uiso 1.00 +C40 C 0.91980 0.08020 0.55160 0.01267 Uiso 1.00 +O41 O 0.92340 0.07660 0.73140 0.01267 Uiso 1.00 +H42 H 0.85249 0.14751 0.59046 0.01267 Uiso 1.00 +C43 C 0.55160 0.44840 0.91980 0.01267 Uiso 1.00 +O44 O 0.73140 0.26860 0.92340 0.01267 Uiso 1.00 +H45 H 0.59046 0.40954 0.85249 0.01267 Uiso 1.00 +C46 C 0.44840 0.55160 0.08020 0.01267 Uiso 1.00 +O47 O 0.26860 0.73140 0.07660 0.01267 Uiso 1.00 +H48 H 0.40954 0.59046 0.14751 0.01267 Uiso 1.00 +C49 C 0.91980 0.44840 0.08020 0.01267 Uiso 1.00 +O50 O 0.92340 0.26860 0.07660 0.01267 Uiso 1.00 +H51 H 0.85249 0.40954 0.14751 0.01267 Uiso 1.00 +C52 C 0.08020 0.55160 0.91980 0.01267 Uiso 1.00 +O53 O 0.07660 0.73140 0.92340 0.01267 Uiso 1.00 +H54 H 0.14751 0.59046 0.85249 0.01267 Uiso 1.00 +C55 C 0.44840 0.91980 0.55160 0.01267 Uiso 1.00 +O56 O 0.26860 0.92340 0.73140 0.01267 Uiso 1.00 +H57 H 0.40954 0.85249 0.59046 0.01267 Uiso 1.00 +C58 C 0.55160 0.08020 0.44840 0.01267 Uiso 1.00 +O59 O 0.73140 0.07660 0.26860 0.01267 Uiso 1.00 +H60 H 0.59046 0.14751 0.40954 0.01267 Uiso 1.00 +C61 C 0.44840 0.08020 0.91980 0.01267 Uiso 1.00 +O62 O 0.26860 0.07660 0.92340 0.01267 Uiso 1.00 +H63 H 0.40954 0.14751 0.85249 0.01267 Uiso 1.00 +C64 C 0.55160 0.91980 0.08020 0.01267 Uiso 1.00 +O65 O 0.73140 0.92340 0.07660 0.01267 Uiso 1.00 +H66 H 0.59046 0.85249 0.14751 0.01267 Uiso 1.00 +C67 C 0.91980 0.55160 0.44840 0.01267 Uiso 1.00 +O68 O 0.92340 0.73140 0.26860 0.01267 Uiso 1.00 +H69 H 0.85249 0.59046 0.40954 0.01267 Uiso 1.00 +C70 C 0.08020 0.44840 0.55160 0.01267 Uiso 1.00 +O71 O 0.07660 0.26860 0.73140 0.01267 Uiso 1.00 +H72 H 0.14751 0.40954 0.59046 0.01267 Uiso 1.00 +Zr73 Zr 0.87960 0.12040 0.12040 0.01267 Uiso 1.00 +Zr74 Zr 0.12040 0.87960 0.87960 0.01267 Uiso 1.00 +Zr75 Zr 0.12040 0.87960 0.12040 0.01267 Uiso 1.00 +Zr76 Zr 0.87960 0.12040 0.87960 0.01267 Uiso 1.00 +Zr77 Zr 0.12040 0.12040 0.87960 0.01267 Uiso 1.00 +Zr78 Zr 0.87960 0.87960 0.12040 0.01267 Uiso 1.00 +C79 C -0.00000 0.00000 0.29460 0.01267 Uiso 1.00 +C80 C -0.00000 0.00000 0.40380 0.01267 Uiso 1.00 +C81 C 0.00000 -0.00000 0.70540 0.01267 Uiso 1.00 +C82 C 0.00000 -0.00000 0.59620 0.01267 Uiso 1.00 +C83 C 0.29460 0.70540 -0.00000 0.01267 Uiso 1.00 +C84 C 0.40380 0.59620 -0.00000 0.01267 Uiso 1.00 +C85 C 0.70540 0.29460 0.00000 0.01267 Uiso 1.00 +C86 C 0.59620 0.40380 0.00000 0.01267 Uiso 1.00 +C87 C 0.29460 -0.00000 0.00000 0.01267 Uiso 1.00 +C88 C 0.40380 -0.00000 -0.00000 0.01267 Uiso 1.00 +C89 C 0.70540 0.00000 -0.00000 0.01267 Uiso 1.00 +C90 C 0.59620 0.00000 -0.00000 0.01267 Uiso 1.00 +C91 C -0.00000 0.29460 0.70540 0.01267 Uiso 1.00 +C92 C -0.00000 0.40380 0.59620 0.01267 Uiso 1.00 +C93 C -0.00000 0.70540 0.29460 0.01267 Uiso 1.00 +C94 C -0.00000 0.59620 0.40380 0.01267 Uiso 1.00 +C95 C -0.00000 0.29460 -0.00000 0.01267 Uiso 1.00 +C96 C -0.00000 0.40380 -0.00000 0.01267 Uiso 1.00 +C97 C -0.00000 0.70540 -0.00000 0.01267 Uiso 1.00 +C98 C -0.00000 0.59620 -0.00000 0.01267 Uiso 1.00 +C99 C 0.70540 -0.00000 0.29460 0.01267 Uiso 1.00 +C100 C 0.59620 -0.00000 0.40380 0.01267 Uiso 1.00 +C101 C 0.29460 -0.00000 0.70540 0.01267 Uiso 1.00 +C102 C 0.40380 -0.00000 0.59620 0.01267 Uiso 1.00 +O103 O 0.94390 0.16830 0.94390 0.01267 Uiso 1.00 +O104 O 0.05610 0.83170 0.05610 0.01267 Uiso 1.00 +O105 O 0.16830 0.94390 0.94390 0.01267 Uiso 1.00 +O106 O 0.83170 0.05610 0.05610 0.01267 Uiso 1.00 +O107 O 0.94390 0.94390 0.94390 0.01267 Uiso 1.00 +O108 O 0.05610 0.05610 0.05610 0.01267 Uiso 1.00 +O109 O 0.94390 0.94390 0.16830 0.01267 Uiso 1.00 +O110 O 0.05610 0.05610 0.83170 0.01267 Uiso 1.00 +H111 H 0.09200 0.09200 0.09200 0.00000 Uiso 1.00 +H112 H 0.09200 0.09200 0.72400 0.00000 Uiso 1.00 +H113 H 0.09200 0.72400 0.09200 0.00000 Uiso 1.00 +H114 H 0.72400 0.09200 0.09200 0.00000 Uiso 1.00 diff --git a/benchmarks/mof/structures/general/ZIF-8.cif b/benchmarks/mof/structures/general/ZIF-8.cif new file mode 100644 index 0000000000000000000000000000000000000000..40827d68c164e2d0a42d3bab95593837ad0d53fc --- /dev/null +++ b/benchmarks/mof/structures/general/ZIF-8.cif @@ -0,0 +1,162 @@ +data_OFERUN_clean +_audit_creation_date 2014-07-02 +_audit_creation_method 'Materials Studio' +_symmetry_space_group_name_H-M 'P1' +_symmetry_Int_Tables_number 1 +_symmetry_cell_setting triclinic +loop_ +_symmetry_equiv_pos_as_xyz + x,y,z +_cell_length_a 14.7138 +_cell_length_b 14.7138 +_cell_length_c 14.7138 +_cell_angle_alpha 109.4710 +_cell_angle_beta 109.4710 +_cell_angle_gamma 109.4710 +loop_ +_atom_site_label +_atom_site_type_symbol +_atom_site_fract_x +_atom_site_fract_y +_atom_site_fract_z +_atom_site_U_iso_or_equiv +_atom_site_adp_type +_atom_site_occupancy +Zn1 Zn 0.25000 0.75000 0.50000 0.01267 Uiso 1.00 +Zn2 Zn 0.75000 0.25000 0.50000 0.01267 Uiso 1.00 +Zn3 Zn 0.50000 0.75000 0.25000 0.01267 Uiso 1.00 +Zn4 Zn 0.50000 0.25000 0.75000 0.01267 Uiso 1.00 +Zn5 Zn 0.75000 0.50000 0.25000 0.01267 Uiso 1.00 +Zn6 Zn 0.25000 0.50000 0.75000 0.01267 Uiso 1.00 +H1 H 0.42240 0.65640 0.53660 0.01267 Uiso 1.00 +H2 H 0.31040 0.79410 0.24430 0.01267 Uiso 1.00 +H3 H 0.11980 0.88580 0.46340 0.01267 Uiso 1.00 +H4 H 0.54980 0.06610 0.75570 0.01267 Uiso 1.00 +H5 H 0.88020 0.34360 0.76600 0.01267 Uiso 1.00 +H6 H 0.45020 0.20590 0.51630 0.01267 Uiso 1.00 +H7 H 0.57760 0.11420 0.23400 0.01267 Uiso 1.00 +H8 H 0.68960 0.93390 0.48370 0.01267 Uiso 1.00 +H9 H 0.76600 0.88020 0.34360 0.01267 Uiso 1.00 +H10 H 0.51630 0.45020 0.20590 0.01267 Uiso 1.00 +H11 H 0.23400 0.57760 0.11420 0.01267 Uiso 1.00 +H12 H 0.48370 0.68960 0.93390 0.01267 Uiso 1.00 +H13 H 0.53660 0.42240 0.65640 0.01267 Uiso 1.00 +H14 H 0.24430 0.31040 0.79410 0.01267 Uiso 1.00 +H15 H 0.46340 0.11980 0.88580 0.01267 Uiso 1.00 +H16 H 0.75570 0.54980 0.06610 0.01267 Uiso 1.00 +H17 H 0.88580 0.46340 0.11980 0.01267 Uiso 1.00 +H18 H 0.06610 0.75570 0.54980 0.01267 Uiso 1.00 +H19 H 0.65640 0.53660 0.42240 0.01267 Uiso 1.00 +H20 H 0.79410 0.24430 0.31040 0.01267 Uiso 1.00 +H21 H 0.11420 0.23400 0.57760 0.01267 Uiso 1.00 +H22 H 0.93390 0.48370 0.68960 0.01267 Uiso 1.00 +H23 H 0.34360 0.76600 0.88020 0.01267 Uiso 1.00 +H24 H 0.20590 0.51630 0.45020 0.01267 Uiso 1.00 +H25 H 0.88580 0.11980 0.46340 0.01267 Uiso 1.00 +H26 H 0.06610 0.54980 0.75570 0.01267 Uiso 1.00 +H27 H 0.65640 0.42240 0.53660 0.01267 Uiso 1.00 +H28 H 0.79410 0.31040 0.24430 0.01267 Uiso 1.00 +H29 H 0.11420 0.57760 0.23400 0.01267 Uiso 1.00 +H30 H 0.93390 0.68960 0.48370 0.01267 Uiso 1.00 +H31 H 0.34360 0.88020 0.76600 0.01267 Uiso 1.00 +H32 H 0.20590 0.45020 0.51630 0.01267 Uiso 1.00 +H33 H 0.42240 0.53660 0.65640 0.01267 Uiso 1.00 +H34 H 0.31040 0.24430 0.79410 0.01267 Uiso 1.00 +H35 H 0.11980 0.46340 0.88580 0.01267 Uiso 1.00 +H36 H 0.54980 0.75570 0.06610 0.01267 Uiso 1.00 +H37 H 0.88020 0.76600 0.34360 0.01267 Uiso 1.00 +H38 H 0.45020 0.51630 0.20590 0.01267 Uiso 1.00 +H39 H 0.57760 0.23400 0.11420 0.01267 Uiso 1.00 +H40 H 0.68960 0.48370 0.93390 0.01267 Uiso 1.00 +H41 H 0.76600 0.34360 0.88020 0.01267 Uiso 1.00 +H42 H 0.51630 0.20590 0.45020 0.01267 Uiso 1.00 +H43 H 0.23400 0.11420 0.57760 0.01267 Uiso 1.00 +H44 H 0.48370 0.93390 0.68960 0.01267 Uiso 1.00 +H45 H 0.53660 0.65640 0.42240 0.01267 Uiso 1.00 +H46 H 0.24430 0.79410 0.31040 0.01267 Uiso 1.00 +H47 H 0.46340 0.88580 0.11980 0.01267 Uiso 1.00 +H48 H 0.75570 0.06610 0.54980 0.01267 Uiso 1.00 +H49 H 0.37010 0.88180 0.37010 0.01267 Uiso 1.00 +H50 H 0.51170 0.00000 0.62990 0.01267 Uiso 1.00 +H51 H 0.48830 0.11820 0.48830 0.01267 Uiso 1.00 +H52 H 0.62990 0.00000 0.51170 0.01267 Uiso 1.00 +H53 H 0.48830 0.48830 0.11820 0.01267 Uiso 1.00 +H54 H 0.51170 0.62990 -0.00000 0.01267 Uiso 1.00 +H55 H 0.37010 0.37010 0.88180 0.01267 Uiso 1.00 +H56 H 0.62990 0.51170 -0.00000 0.01267 Uiso 1.00 +H57 H 0.00000 0.62990 0.51170 0.01267 Uiso 1.00 +H58 H 0.88180 0.37010 0.37010 0.01267 Uiso 1.00 +H59 H 0.00000 0.51170 0.62990 0.01267 Uiso 1.00 +H60 H 0.11820 0.48830 0.48830 0.01267 Uiso 1.00 +C1 C 0.41456 0.68356 0.47280 0.01267 Uiso 1.00 +C2 C 0.21076 0.94176 0.52720 0.01267 Uiso 1.00 +C3 C 0.78924 0.31644 0.73100 0.01267 Uiso 1.00 +C4 C 0.58544 0.05824 0.26900 0.01267 Uiso 1.00 +C5 C 0.73100 0.78924 0.31644 0.01267 Uiso 1.00 +C6 C 0.26900 0.58544 0.05824 0.01267 Uiso 1.00 +C7 C 0.47280 0.41456 0.68356 0.01267 Uiso 1.00 +C8 C 0.52720 0.21076 0.94176 0.01267 Uiso 1.00 +C9 C 0.94176 0.52720 0.21076 0.01267 Uiso 1.00 +C10 C 0.68356 0.47280 0.41456 0.01267 Uiso 1.00 +C11 C 0.05824 0.26900 0.58544 0.01267 Uiso 1.00 +C12 C 0.31644 0.73100 0.78924 0.01267 Uiso 1.00 +C13 C 0.94176 0.21076 0.52720 0.01267 Uiso 1.00 +C14 C 0.68356 0.41456 0.47280 0.01267 Uiso 1.00 +C15 C 0.05824 0.58544 0.26900 0.01267 Uiso 1.00 +C16 C 0.31644 0.78924 0.73100 0.01267 Uiso 1.00 +C17 C 0.41456 0.47280 0.68356 0.01267 Uiso 1.00 +C18 C 0.21076 0.52720 0.94176 0.01267 Uiso 1.00 +C19 C 0.78924 0.73100 0.31644 0.01267 Uiso 1.00 +C20 C 0.58544 0.26900 0.05824 0.01267 Uiso 1.00 +C21 C 0.73100 0.31644 0.78924 0.01267 Uiso 1.00 +C22 C 0.26900 0.05824 0.58544 0.01267 Uiso 1.00 +C23 C 0.47280 0.68356 0.41456 0.01267 Uiso 1.00 +C24 C 0.52720 0.94176 0.21076 0.01267 Uiso 1.00 +C25 C 0.37300 0.75680 0.37300 0.01267 Uiso 1.00 +C26 C 0.31950 0.80580 0.31950 0.01267 Uiso 1.00 +C27 C 0.38380 1.00000 0.62700 0.01267 Uiso 1.00 +C28 C 0.48630 1.00000 0.68050 0.01267 Uiso 1.00 +C29 C 0.61620 0.24320 0.61620 0.01267 Uiso 1.00 +C30 C 0.51370 0.19420 0.51370 0.01267 Uiso 1.00 +C31 C 0.62700 -0.00000 0.38380 0.01267 Uiso 1.00 +C32 C 0.68050 0.00000 0.48630 0.01267 Uiso 1.00 +C33 C 0.61620 0.61620 0.24320 0.01267 Uiso 1.00 +C34 C 0.51370 0.51370 0.19420 0.01267 Uiso 1.00 +C35 C 0.38380 0.62700 -0.00000 0.01267 Uiso 1.00 +C36 C 0.48630 0.68050 -0.00000 0.01267 Uiso 1.00 +C37 C 0.37300 0.37300 0.75680 0.01267 Uiso 1.00 +C38 C 0.31950 0.31950 0.80580 0.01267 Uiso 1.00 +C39 C 0.62700 0.38380 -0.00000 0.01267 Uiso 1.00 +C40 C 0.68050 0.48630 -0.00000 0.01267 Uiso 1.00 +C41 C 0.00000 0.62700 0.38380 0.01267 Uiso 1.00 +C42 C 0.00000 0.68050 0.48630 0.01267 Uiso 1.00 +C43 C 0.75680 0.37300 0.37300 0.01267 Uiso 1.00 +C44 C 0.80580 0.31950 0.31950 0.01267 Uiso 1.00 +C45 C 0.00000 0.38380 0.62700 0.01267 Uiso 1.00 +C46 C 0.00000 0.48630 0.68050 0.01267 Uiso 1.00 +C47 C 0.24320 0.61620 0.61620 0.01267 Uiso 1.00 +C48 C 0.19420 0.51370 0.51370 0.01267 Uiso 1.00 +N1 N 0.35145 0.72798 0.44533 0.01267 Uiso 1.00 +N2 N 0.28265 0.90612 0.55467 0.01267 Uiso 1.00 +N3 N 0.71735 0.27202 0.62347 0.01267 Uiso 1.00 +N4 N 0.64855 0.09388 0.37653 0.01267 Uiso 1.00 +N5 N 0.62347 0.71735 0.27202 0.01267 Uiso 1.00 +N6 N 0.37653 0.64855 0.09388 0.01267 Uiso 1.00 +N7 N 0.44533 0.35145 0.72798 0.01267 Uiso 1.00 +N8 N 0.55467 0.28265 0.90612 0.01267 Uiso 1.00 +N9 N 0.90612 0.55467 0.28265 0.01267 Uiso 1.00 +N10 N 0.72798 0.44533 0.35145 0.01267 Uiso 1.00 +N11 N 0.09388 0.37653 0.64855 0.01267 Uiso 1.00 +N12 N 0.27202 0.62347 0.71735 0.01267 Uiso 1.00 +N13 N 0.90612 0.28265 0.55467 0.01267 Uiso 1.00 +N14 N 0.72798 0.35145 0.44533 0.01267 Uiso 1.00 +N15 N 0.09388 0.64855 0.37653 0.01267 Uiso 1.00 +N16 N 0.27202 0.71735 0.62347 0.01267 Uiso 1.00 +N17 N 0.35145 0.44533 0.72798 0.01267 Uiso 1.00 +N18 N 0.28265 0.55467 0.90612 0.01267 Uiso 1.00 +N19 N 0.71735 0.62347 0.27202 0.01267 Uiso 1.00 +N20 N 0.64855 0.37653 0.09388 0.01267 Uiso 1.00 +N21 N 0.62347 0.27202 0.71735 0.01267 Uiso 1.00 +N22 N 0.37653 0.09388 0.64855 0.01267 Uiso 1.00 +N23 N 0.44533 0.72798 0.35145 0.01267 Uiso 1.00 +N24 N 0.55467 0.90612 0.28265 0.01267 Uiso 1.00 diff --git a/benchmarks/stability/plot.ipynb b/benchmarks/stability/plot.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..10616336067f4a7d81891134047059f8d34d7652 --- /dev/null +++ b/benchmarks/stability/plot.ipynb @@ -0,0 +1,796 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import glob\n", + "from pathlib import Path\n", + "\n", + "from tqdm.auto import tqdm\n", + "\n", + "from mlip_arena.models import REGISTRY\n", + "from mlip_arena.tasks.stability.input import get_atoms_from_db\n", + "\n", + "RUN_DIR = Path(\".\").resolve()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "compositions = []\n", + "sizes = []\n", + "for atoms in tqdm(get_atoms_from_db(\"random-mixture.db\")):\n", + " if len(atoms) == 0:\n", + " continue\n", + " compositions.append(atoms.get_chemical_formula())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pymatviz as pmv\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline\n", + "\n", + "fig = pmv.ptable_heatmap(\n", + " pmv.count_elements(compositions[:1000]),\n", + " colormap=\"GnBu\",\n", + " log=True,\n", + " return_type=\"figure\",\n", + ")\n", + "\n", + "plt.savefig(\"../figures/stability-element-counts.pdf\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from ase import Atoms\n", + "\n", + "\n", + "def get_runtime_stats(traj: list[Atoms], atoms0: Atoms):\n", + " restarts = []\n", + " steps, times = [], []\n", + " Ts, Ps, Es, KEs = [], [], [], []\n", + " timesteps = []\n", + " com_drifts = []\n", + "\n", + " for atoms in tqdm(traj):\n", + " assert isinstance(atoms, Atoms)\n", + " try:\n", + " energy = atoms.get_potential_energy()\n", + " assert np.isfinite(energy), f\"invalid energy: {energy}\"\n", + " # assert np.all(~np.isnan(atoms.get_forces())), f\"invalid forces: {atoms.get_forces()}\"\n", + " # assert np.all(~np.isnan(atoms.get_stress())), f\"invalid stress: {atoms.get_stress()}\"\n", + " except Exception:\n", + " continue\n", + "\n", + " restarts.append(atoms.info[\"restart\"])\n", + " times.append(atoms.info[\"datetime\"])\n", + " steps.append(atoms.info[\"step\"])\n", + " Es.append(energy)\n", + " KEs.append(atoms.get_kinetic_energy())\n", + " Ts.append(atoms.get_temperature())\n", + " try:\n", + " Ps.append(atoms.get_stress()[:3].mean())\n", + " except:\n", + " pass\n", + " com_drifts.append(\n", + " (atoms.get_center_of_mass() - atoms0.get_center_of_mass()).tolist()\n", + " )\n", + "\n", + " restarts = np.array(restarts)\n", + " times = np.array(times)\n", + " steps = np.array(steps)\n", + "\n", + " # Identify unique blocks\n", + " unique_restarts = np.unique(restarts)\n", + "\n", + " total_time_seconds = 0\n", + " total_steps = 0\n", + "\n", + " # Iterate over unique blocks to calculate averages\n", + " for block in unique_restarts:\n", + " # Get the indices corresponding to the current block\n", + " # indices = np.where(restarts == block)[0]\n", + " indices = restarts == block\n", + " # Extract the corresponding data values\n", + " block_time = times[indices][-1] - times[indices][0]\n", + " total_time_seconds += block_time.total_seconds()\n", + " total_steps += steps[indices][-1] - steps[indices][0]\n", + "\n", + " target_steps = traj[0].info[\"target_steps\"]\n", + " natoms = len(traj[0])\n", + "\n", + " return {\n", + " \"natoms\": natoms,\n", + " \"total_time_seconds\": total_time_seconds,\n", + " \"total_steps\": total_steps,\n", + " \"steps_per_second\": total_steps / total_time_seconds\n", + " if total_time_seconds != 0\n", + " else 0,\n", + " \"seconds_per_step\": total_time_seconds / total_steps\n", + " if total_steps != 0\n", + " else float(\"inf\"),\n", + " \"seconds_per_step_per_atom\": total_time_seconds / total_steps / natoms\n", + " if total_steps != 0\n", + " else float(\"inf\"),\n", + " \"energies\": Es,\n", + " \"kinetic_energies\": KEs,\n", + " \"temperatures\": Ts,\n", + " \"pressures\": Ps,\n", + " \"target_steps\": target_steps,\n", + " \"final_step\": steps[-1] if len(steps) != 0 else 0,\n", + " \"timestep\": steps,\n", + " \"com_drifts\": com_drifts,\n", + " }\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import plotly.colors as pcolors\n", + "\n", + "mlip_methods = [\n", + " model\n", + " for model, metadata in REGISTRY.items()\n", + " if \"stability\" in metadata.get(\"gpu-tasks\", [])\n", + "]\n", + "\n", + "all_attributes = dir(pcolors.qualitative)\n", + "color_palettes = {\n", + " attr: getattr(pcolors.qualitative, attr)\n", + " for attr in all_attributes\n", + " if isinstance(getattr(pcolors.qualitative, attr), list)\n", + "}\n", + "color_palettes.pop(\"__all__\", None)\n", + "\n", + "palette_names = list(color_palettes.keys())\n", + "palette_colors = list(color_palettes.values())\n", + "palette_name = \"T10\" # \"Plotly\"\n", + "color_sequence = color_palettes[palette_name] # type: ignore\n", + "\n", + "method_color_mapping = {\n", + " method: color_sequence[i % len(color_sequence)]\n", + " for i, method in enumerate(mlip_methods)\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NPT" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# from huggingface_hub import HfApi\n", + "import seaborn as sns\n", + "from ase import units\n", + "from ase.io import read\n", + "from matplotlib import pyplot as plt\n", + "\n", + "df = pd.DataFrame()\n", + "\n", + "for model in mlip_methods:\n", + " # if \"stability\" not in REGISTRY[model]['gpu-tasks']:\n", + " # continue\n", + "\n", + " files = glob.glob(str(RUN_DIR / REGISTRY[model][\"family\"] / f\"{model}_*npt.traj\"))\n", + "\n", + " for i, file in enumerate(files):\n", + " try:\n", + " traj = read(file, index=\":\")\n", + " except Exception as e:\n", + " print(f\"Error reading {file}: {e}\")\n", + " continue\n", + "\n", + " try:\n", + " stats = get_runtime_stats(traj, atoms0=traj[0])\n", + " except Exception as e:\n", + " print(f\"Error processing {file}: {e}\")\n", + " continue\n", + "\n", + " df = pd.concat(\n", + " [\n", + " df,\n", + " pd.DataFrame(\n", + " {\n", + " \"model\": model,\n", + " \"formula\": traj[0].get_chemical_formula(),\n", + " \"normalized_timestep\": stats[\"timestep\"]\n", + " / stats[\"target_steps\"],\n", + " \"normalized_final_step\": stats[\"final_step\"]\n", + " / stats[\"target_steps\"],\n", + " \"pressure\": np.array(stats[\"pressures\"]) / units.GPa,\n", + " }\n", + " | stats\n", + " ),\n", + " ],\n", + " ignore_index=True,\n", + " )\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "# import scipy.optimize as opt\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from scipy.optimize import curve_fit\n", + "\n", + "\n", + "# Define the power-law fitting function\n", + "def power_law(x, a, n):\n", + " return a * np.power(x, n)\n", + "\n", + "\n", + "df.rename(\n", + " columns={\n", + " \"final_step\": \"Total steps\",\n", + " \"model\": \"Model\",\n", + " },\n", + " inplace=True,\n", + ")\n", + "\n", + "with plt.style.context(\"default\"):\n", + "\n", + " SMALL_SIZE = 8\n", + "\n", + " fig, axes = plt.subplot_mosaic(\n", + " \"\"\"\n", + " ao\n", + " \"\"\",\n", + " constrained_layout=True,\n", + " figsize=(6, 3),\n", + " width_ratios=[1, 3],\n", + " )\n", + "\n", + " iax = \"o\"\n", + " ax = axes.pop(iax)\n", + "\n", + " sns.scatterplot(\n", + " data=df,\n", + " x=\"natoms\",\n", + " y=\"steps_per_second\",\n", + " size=\"Total steps\",\n", + " hue=\"Model\",\n", + " ax=ax,\n", + " palette=method_color_mapping,\n", + " sizes=(1, 50),\n", + " # alpha=0.5\n", + " )\n", + "\n", + " # Fit and plot power-law regression for each model\n", + " for model, data in df.groupby(\"Model\"):\n", + " data.dropna(subset=[\"steps_per_second\"], inplace=True)\n", + "\n", + " popt, pcov = curve_fit(power_law, data[\"natoms\"], data[\"steps_per_second\"])\n", + "\n", + " # Generate smooth curve\n", + " # x_fit = np.logspace(np.log10(xdata.min()), np.log10(xdata.max()), 100)\n", + " # y_fit = power_law(x_fit, a_fit, n_fit)\n", + "\n", + " x = np.linspace(data[\"natoms\"].min(), data[\"natoms\"].max(), 100)\n", + "\n", + " # Plot regression line\n", + " ax.plot(\n", + " x,\n", + " power_law(x, *popt),\n", + " c=method_color_mapping[model],\n", + " # label=f\"{model} (y={a_fit:.2e}x^{n_fit:.2f})\",\n", + " linestyle=\"-\",\n", + " )\n", + "\n", + " # sns.lineplot(\n", + " # data=df,\n", + " # x='natoms',\n", + " # y='steps_per_second',\n", + " # # size='Total steps',\n", + " # hue='Model',\n", + " # ax=ax,\n", + " # palette=method_color_mapping,\n", + " # alpha=0.5,\n", + " # # err_style=\"bars\"\n", + " # )\n", + "\n", + " ax.set(\n", + " xlabel=\"Number of atoms\",\n", + " xscale=\"log\",\n", + " ylabel=\"Steps per second\",\n", + " yscale=\"log\",\n", + " )\n", + " ax.spines[\"right\"].set_visible(False)\n", + " ax.spines[\"top\"].set_visible(False)\n", + " ax.grid(alpha=0.25)\n", + " ax.legend(\n", + " loc=\"upper left\", bbox_to_anchor=(1.0, 1.0), fontsize=\"x-small\", frameon=False\n", + " )\n", + "\n", + " fisrt = 80\n", + "\n", + " for k, df_model in df.groupby(\"Model\"):\n", + " ax = axes[\"a\"]\n", + "\n", + " df_model.drop_duplicates([\"formula\"], inplace=True)\n", + " df_model = df_model[df_model[\"formula\"].isin(compositions[:fisrt])].copy()\n", + " print(k, len(df_model))\n", + "\n", + " # Compute histogram\n", + " bins = np.linspace(0, 1, 50) # 50 bins from 0 to 1\n", + " hist, bin_edges = np.histogram(\n", + " df_model[\"normalized_final_step\"], bins=bins, density=False\n", + " )\n", + "\n", + " # Compute cumulative population\n", + " cumulative_population = np.cumsum(hist)\n", + "\n", + " # Midpoints for binning\n", + " bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2\n", + "\n", + " sns.lineplot(\n", + " x=bin_centers[:-1],\n", + " y=(cumulative_population[-1] - cumulative_population[:-1]) / first * 100,\n", + " ax=axes[\"a\"],\n", + " # label=k,\n", + " color=method_color_mapping[k],\n", + " # palette=method_color_mapping\n", + " )\n", + "\n", + " ax_main = axes[\"a\"]\n", + " ax_main.spines[\"right\"].set_visible(False)\n", + " ax_temp = ax_main.twiny()\n", + " ax_pressure = ax_main.twiny()\n", + "\n", + " # === Plot styling and range ===\n", + " ax_main.set_xlim(0, 1)\n", + " ax_main.set_ylim(0, 100)\n", + " # ax_main.set_yticks(range(0, 81, 20))\n", + " ax_main.set_ylabel(\"valid runs (%)\")\n", + "\n", + "\n", + " # === Set top x-axis: Time (ps) ===\n", + " ax_main.set_xticks([0, 1])\n", + " ax_main.set_xticklabels([0, 10])\n", + " ax_main.set_xlabel(\"Time (ps)\")\n", + " ax_main.xaxis.set_label_position(\"top\")\n", + " ax_main.xaxis.tick_top()\n", + " ax_main.spines[\"top\"].set_position((\"outward\", 5)) # Keep just below plot\n", + " # ax_main.tick_params(axis=\"x\", top=True, labeltop=True, bottom=False, labelbottom=False)\n", + "\n", + " # === Bottom axis: Temperature ===\n", + " ax_temp.set_xlim(ax_main.get_xlim())\n", + " ax_temp.set_xticks([0, 1])\n", + " ax_temp.set_xticklabels([\"300 K\", \"3000 K\"])\n", + " # ax_temp.set_xlabel(\"Temperature (K)\")\n", + " ax_temp.xaxis.set_ticks_position(\"bottom\")\n", + " ax_temp.xaxis.set_label_position(\"bottom\")\n", + " ax_temp.spines[\"right\"].set_visible(False)\n", + " ax_temp.spines[\"top\"].set_visible(False)\n", + " ax_temp.spines[\"bottom\"].set_position((\"outward\", 5)) # Keep just below plot\n", + "\n", + " # === Lower bottom axis: Pressure ===\n", + " ax_pressure.set_xlim(ax_main.get_xlim())\n", + " ax_pressure.set_xticks([0, 1])\n", + " ax_pressure.set_xticklabels([\"0 GPa\", \"500 GPa\"])\n", + " # ax_pressure.set_xlabel(\"Pressure (GPa)\")\n", + " ax_pressure.xaxis.set_ticks_position(\"bottom\")\n", + " ax_pressure.xaxis.set_label_position(\"bottom\")\n", + " ax_pressure.spines[\"right\"].set_visible(False)\n", + " ax_pressure.spines[\"top\"].set_visible(False)\n", + " ax_pressure.spines[\"bottom\"].set_position((\"outward\", 25)) # Push further down\n", + "\n", + " # # === Clean up main axis ===\n", + " ax_main.legend_ = None\n", + "\n", + " plt.savefig(\"stability-and-speed-npt-loglog.pdf\", bbox_inches=\"tight\")\n", + " plt.savefig(\n", + " \"stability-and-speed-npt-loglog.png\", bbox_inches=\"tight\", dpi=330\n", + " )\n", + "\n", + " # plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# NVT" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "# from huggingface_hub import HfApi\n", + "import seaborn as sns\n", + "from ase import units\n", + "from ase.io import read\n", + "from matplotlib import pyplot as plt\n", + "\n", + "df = pd.DataFrame()\n", + "\n", + "for model in mlip_methods:\n", + " # if \"stability\" not in REGISTRY[model]['gpu-tasks']:\n", + " # continue\n", + "\n", + " files = glob.glob(str(RUN_DIR / REGISTRY[model][\"family\"] / f\"{model}_*nvt.traj\"))\n", + "\n", + " for i, file in enumerate(files):\n", + " try:\n", + " traj = read(file, index=\":\")\n", + " except Exception as e:\n", + " print(f\"Error reading {file}: {e}\")\n", + " continue\n", + "\n", + " try:\n", + " stats = get_runtime_stats(traj, atoms0=traj[0])\n", + " except Exception as e:\n", + " print(f\"Error processing {file}: {e}\")\n", + " continue\n", + "\n", + " df = pd.concat(\n", + " [\n", + " df,\n", + " pd.DataFrame(\n", + " {\n", + " \"model\": model,\n", + " \"formula\": traj[0].get_chemical_formula(),\n", + " \"normalized_timestep\": stats[\"timestep\"]\n", + " / stats[\"target_steps\"],\n", + " \"normalized_final_step\": stats[\"final_step\"]\n", + " / stats[\"target_steps\"],\n", + " \"pressure\": np.array(stats[\"pressures\"]) / units.GPa,\n", + " }\n", + " | stats\n", + " ),\n", + " ],\n", + " ignore_index=True,\n", + " )\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# import scipy.optimize as opt\n", + "import seaborn as sns\n", + "from scipy.optimize import curve_fit\n", + "\n", + "\n", + "# Define the power-law fitting function\n", + "def power_law(x, a, n):\n", + " return a * np.power(x, n)\n", + "\n", + "\n", + "df.rename(\n", + " columns={\n", + " \"final_step\": \"Total steps\",\n", + " \"model\": \"Model\",\n", + " },\n", + " inplace=True,\n", + ")\n", + "\n", + "with plt.style.context(\"default\"):\n", + " fig, axes = plt.subplot_mosaic(\n", + " \"\"\"\n", + " ao\n", + " \"\"\",\n", + " constrained_layout=True,\n", + " figsize=(6, 3),\n", + " width_ratios=[1, 3],\n", + " )\n", + "\n", + " iax = \"o\"\n", + " ax = axes.pop(iax)\n", + "\n", + " sns.scatterplot(\n", + " data=df,\n", + " x=\"natoms\",\n", + " y=\"steps_per_second\",\n", + " size=\"Total steps\",\n", + " hue=\"Model\",\n", + " ax=ax,\n", + " palette=method_color_mapping,\n", + " sizes=(1, 50),\n", + " # alpha=0.5\n", + " )\n", + "\n", + " # Fit and plot power-law regression for each model\n", + " for model, data in df.groupby(\"Model\"):\n", + " data.dropna(subset=[\"steps_per_second\"], inplace=True)\n", + "\n", + " popt, pcov = curve_fit(power_law, data[\"natoms\"], data[\"steps_per_second\"])\n", + "\n", + " # Generate smooth curve\n", + " # x_fit = np.logspace(np.log10(xdata.min()), np.log10(xdata.max()), 100)\n", + " # y_fit = power_law(x_fit, a_fit, n_fit)\n", + "\n", + " x = np.linspace(data[\"natoms\"].min(), data[\"natoms\"].max(), 100)\n", + "\n", + " # Plot regression line\n", + " ax.plot(\n", + " x,\n", + " power_law(x, *popt),\n", + " c=method_color_mapping[model],\n", + " # label=f\"{model} (y={a_fit:.2e}x^{n_fit:.2f})\",\n", + " linestyle=\"-\",\n", + " )\n", + "\n", + " # sns.lineplot(\n", + " # data=df,\n", + " # x='natoms',\n", + " # y='steps_per_second',\n", + " # # size='Total steps',\n", + " # hue='Model',\n", + " # ax=ax,\n", + " # palette=method_color_mapping,\n", + " # alpha=0.5,\n", + " # # err_style=\"bars\"\n", + " # )\n", + "\n", + " ax.set(\n", + " xlabel=\"Number of atoms\",\n", + " xscale=\"log\",\n", + " ylabel=\"Steps per second\",\n", + " yscale=\"log\",\n", + " )\n", + " ax.spines[\"right\"].set_visible(False)\n", + " ax.spines[\"top\"].set_visible(False)\n", + " ax.grid(alpha=0.25)\n", + " ax.legend(\n", + " loc=\"upper left\", bbox_to_anchor=(1.0, 1.0), fontsize=\"x-small\", frameon=False\n", + " )\n", + "\n", + " fisrt = 120\n", + "\n", + " for k, df_model in df.groupby(\"Model\"):\n", + " ax = axes[\"a\"]\n", + "\n", + " df_model.drop_duplicates([\"formula\"], inplace=True)\n", + " df_model = df_model[df_model[\"formula\"].isin(compositions[:fisrt])].copy()\n", + "\n", + " # Compute histogram\n", + " bins = np.linspace(0, 1, 50) # 50 bins from 0 to 1\n", + " hist, bin_edges = np.histogram(\n", + " df_model[\"normalized_final_step\"], bins=bins, density=False\n", + " )\n", + "\n", + " # Compute cumulative population\n", + " cumulative_population = np.cumsum(hist)\n", + "\n", + " # Midpoints for binning\n", + " bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2\n", + "\n", + " sns.lineplot(\n", + " x=bin_centers[:-1],\n", + " y=(cumulative_population[-1] - cumulative_population[:-1]) / fisrt * 100,\n", + " ax=axes[\"a\"],\n", + " # label=k,\n", + " color=method_color_mapping[k],\n", + " # palette=method_color_mapping\n", + " )\n", + "\n", + " ax_main = axes[\"a\"]\n", + " ax_main.spines[\"right\"].set_visible(False)\n", + " ax_temp = ax_main.twiny()\n", + " # ax_pressure = ax_main.twiny()\n", + "\n", + " # === Plot styling and range ===\n", + " ax_main.set_xlim(0, 1)\n", + " # ax_main.set_ylim(0, 100)\n", + " # ax_main.set_yticks(range(0, 81, 20))\n", + " ax_main.set_ylabel(\"valid runs (%)\")\n", + "\n", + "\n", + " # === Set top x-axis: Time (ps) ===\n", + " ax_main.set_xticks([0, 1])\n", + " ax_main.set_xticklabels([0, 10])\n", + " ax_main.set_xlabel(\"Time (ps)\")\n", + " ax_main.xaxis.set_label_position(\"top\")\n", + " ax_main.xaxis.tick_top()\n", + " ax_main.spines[\"top\"].set_position((\"outward\", 5)) # Keep just below plot\n", + " # ax_main.tick_params(axis=\"x\", top=True, labeltop=True, bottom=False, labelbottom=False)\n", + "\n", + " # === Bottom axis: Temperature ===\n", + " ax_temp.set_xlim(ax_main.get_xlim())\n", + " ax_temp.set_xticks([0, 1])\n", + " ax_temp.set_xticklabels([\"300 K\", \"3000 K\"])\n", + " # ax_temp.set_xlabel(\"Temperature (K)\")\n", + " ax_temp.xaxis.set_ticks_position(\"bottom\")\n", + " ax_temp.xaxis.set_label_position(\"bottom\")\n", + " ax_temp.spines[\"right\"].set_visible(False)\n", + " ax_temp.spines[\"top\"].set_visible(False)\n", + " ax_temp.spines[\"bottom\"].set_position((\"outward\", 5)) # Keep just below plot\n", + "\n", + " # # === Clean up main axis ===\n", + " ax_main.legend_ = None\n", + "\n", + " plt.savefig(\"stability-and-speed-nvt-loglog.pdf\", bbox_inches=\"tight\")\n", + " plt.savefig(\n", + " \"stability-and-speed-nvt-loglog.png\", bbox_inches=\"tight\", dpi=330\n", + " )\n", + "\n", + " # plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.13" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "06905b5dd49e47fb9ca98d2e3a9babb8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_b3a1e313f7334fa78392cec0476b2a30", + "style": "IPY_MODEL_9e078e2ba27e449e86ecc1fe59f681ec" + } + }, + "0ef76231108146649bcbdceba016aac5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "51ec40d026074e34a1168f5240228ca8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "7f2b420195284e4b972e6762dfb960eb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "width": "20px" + } + }, + "9e078e2ba27e449e86ecc1fe59f681ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b3a1e313f7334fa78392cec0476b2a30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "ce30697246e6491baaa7b1fa21a20f8a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "cf29764478a34059a68c87b6c46e2972": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "bar_style": "success", + "layout": "IPY_MODEL_7f2b420195284e4b972e6762dfb960eb", + "max": 1, + "style": "IPY_MODEL_0ef76231108146649bcbdceba016aac5", + "value": 1 + } + }, + "e02fd4d9b9d04c87887a3903274c794a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_ce30697246e6491baaa7b1fa21a20f8a", + "style": "IPY_MODEL_f40f4df44b3f4b658fa4f7204624f9cf", + "value": "โ€‡1764/?โ€‡[00:01<00:00,โ€‡1759.99it/s]" + } + }, + "f088c4da133d406694657239bcefbbe0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_06905b5dd49e47fb9ca98d2e3a9babb8", + "IPY_MODEL_cf29764478a34059a68c87b6c46e2972", + "IPY_MODEL_e02fd4d9b9d04c87887a3903274c794a" + ], + "layout": "IPY_MODEL_51ec40d026074e34a1168f5240228ca8" + } + }, + "f40f4df44b3f4b658fa4f7204624f9cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/benchmarks/stability/pressure.ipynb b/benchmarks/stability/pressure.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..3d4714cfda9054c0c90f77a154938d9339e50d9b --- /dev/null +++ b/benchmarks/stability/pressure.ipynb @@ -0,0 +1,194 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "from ase import units\n", + "from dask.distributed import Client\n", + "from dask_jobqueue import SLURMCluster\n", + "from dotenv import load_dotenv\n", + "from prefect import flow, task\n", + "from prefect_dask import DaskTaskRunner\n", + "\n", + "from mlip_arena.models import REGISTRY, MLIPEnum\n", + "from mlip_arena.tasks.md import run as MD\n", + "from mlip_arena.tasks.stability.input import get_atoms_from_db\n", + "\n", + "load_dotenv()\n", + "\n", + "HF_TOKEN = os.environ.get(\"HF_TOKEN\", None)\n", + "MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "nodes_per_alloc = 1\n", + "gpus_per_alloc = 4\n", + "ntasks = 1\n", + "\n", + "cluster_kwargs = dict(\n", + " cores=1,\n", + " memory=\"64 GB\",\n", + " processes=1,\n", + " shebang=\"#!/bin/bash\",\n", + " account=\"matgen\",\n", + " walltime=\"03:00:00\",\n", + " # job_cpu=128,\n", + " job_mem=\"0\",\n", + " job_script_prologue=[\n", + " \"source ~/.bashrc\",\n", + " \"module load python\",\n", + " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n", + " ],\n", + " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n", + " job_extra_directives=[\n", + " \"-J stability-npt\",\n", + " \"-q preempt\",\n", + " \"--time-min=00:30:00\",\n", + " \"--comment=12:00:00\",\n", + " f\"-N {nodes_per_alloc}\",\n", + " \"-C gpu\",\n", + " f\"-G {gpus_per_alloc}\",\n", + " ],\n", + ")\n", + "\n", + "cluster = SLURMCluster(**cluster_kwargs)\n", + "print(cluster.job_script())\n", + "cluster.adapt(minimum_jobs=5, maximum_jobs=10)\n", + "client = Client(cluster)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mlip_arena.tasks.utils import get_calculator\n", + "\n", + "selected_models = [\n", + " \"MACE-MP(M)\",\n", + " \"CHGNet\",\n", + " \"M3GNet\",\n", + " \"MatterSim\",\n", + " \"eqV2(OMat)\",\n", + " \"MACE-MPA\",\n", + " \"ORBv2\",\n", + " \"SevenNet\",\n", + " \"ALIGNN\",\n", + "]\n", + "\n", + "\n", + "@task\n", + "def run_one(\n", + " atoms,\n", + " model,\n", + "):\n", + " result = MD.with_options(\n", + " timeout_seconds=600,\n", + " retries=2,\n", + " refresh_cache=True\n", + " )(\n", + " atoms=atoms,\n", + " calculator=get_calculator(\n", + " model.name,\n", + " calculator_kwargs=None,\n", + " ),\n", + " ensemble=\"npt\",\n", + " dynamics=\"nose-hoover\",\n", + " time_step=None,\n", + " dynamics_kwargs=dict(\n", + " ttime=25 * units.fs, pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa\n", + " ),\n", + " total_time=1e4, # 5e4, # fs\n", + " temperature=[300, 3000],\n", + " pressure=[0, 5e2 * units.GPa], # 500 GPa / 10 ps = 50 GPa / 1 ps\n", + " traj_file=f\"{REGISTRY[model.name]['family']}/{model.name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_npt.traj\",\n", + " traj_interval=10,\n", + " )\n", + "\n", + " return result\n", + "\n", + "\n", + "@flow\n", + "def compress():\n", + " futures = []\n", + " # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN\n", + " for atoms in get_atoms_from_db(\"random-mixture.db\", force_download=False):\n", + " for model in MLIPEnum:\n", + " if model.name not in selected_models:\n", + " continue\n", + "\n", + " if \"stability\" not in REGISTRY[model.name][\"gpu-tasks\"]:\n", + " continue\n", + "\n", + " try:\n", + " future = run_one.with_options(\n", + " timeout_seconds=600, retries=2, refresh_cache=False\n", + " ).submit(atoms.copy(), model)\n", + " futures.append(future)\n", + " except:\n", + " continue\n", + "\n", + " return [future.result(raise_on_failure=False) for future in futures]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "compress.with_options(\n", + " task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True\n", + ")()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "NERSC Python", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/benchmarks/stability/stability-and-speed-npt-loglog.pdf b/benchmarks/stability/stability-and-speed-npt-loglog.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a9a50a1de1e7f6c639ca3ce348546e920f2d5ae0 --- /dev/null +++ b/benchmarks/stability/stability-and-speed-npt-loglog.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ddeedb81aa8828af91347e54a63ea0c41b5947a429e3fe9cd79892889d77a94 +size 516662 diff --git a/benchmarks/stability/stability-and-speed-nvt-loglog.pdf b/benchmarks/stability/stability-and-speed-nvt-loglog.pdf new file mode 100644 index 0000000000000000000000000000000000000000..031c02165f72d47f9b86bc2246b3d6d454dab60d --- /dev/null +++ b/benchmarks/stability/stability-and-speed-nvt-loglog.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c27340ca8523bd4766561e00361cffaf6810baedd492b6f7a199832d42a70c65 +size 1247826 diff --git a/benchmarks/stability/temperature.ipynb b/benchmarks/stability/temperature.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..456a661d9bc375ca42c1a14f510401d1be7520db --- /dev/null +++ b/benchmarks/stability/temperature.ipynb @@ -0,0 +1,202 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "from ase import units\n", + "from dask.distributed import Client\n", + "from dask_jobqueue import SLURMCluster\n", + "from dotenv import load_dotenv\n", + "from prefect import flow, task\n", + "from prefect_dask import DaskTaskRunner\n", + "\n", + "from mlip_arena.models import REGISTRY, MLIPEnum\n", + "from mlip_arena.tasks.md import run as MD\n", + "from mlip_arena.tasks.stability.input import get_atoms_from_db\n", + "\n", + "load_dotenv()\n", + "\n", + "HF_TOKEN = os.environ.get(\"HF_TOKEN\", None)\n", + "MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "nodes_per_alloc = 1\n", + "gpus_per_alloc = 4\n", + "ntasks = 1\n", + "\n", + "cluster_kwargs = dict(\n", + " cores=1,\n", + " memory=\"64 GB\",\n", + " processes=1,\n", + " shebang=\"#!/bin/bash\",\n", + " account=\"matgen\",\n", + " walltime=\"04:00:00\",\n", + " # job_cpu=128,\n", + " job_mem=\"0\",\n", + " job_script_prologue=[\n", + " \"source ~/.bashrc\",\n", + " \"module load python\",\n", + " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n", + " ],\n", + " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n", + " job_extra_directives=[\n", + " \"-J stability-nvt\",\n", + " \"-q preempt\",\n", + " \"--time-min=00:30:00\",\n", + " \"--comment=12:00:00\",\n", + " f\"-N {nodes_per_alloc}\",\n", + " \"-C gpu\",\n", + " f\"-G {gpus_per_alloc}\",\n", + " ],\n", + ")\n", + "\n", + "cluster = SLURMCluster(**cluster_kwargs)\n", + "print(cluster.job_script())\n", + "cluster.adapt(minimum_jobs=10, maximum_jobs=50)\n", + "client = Client(cluster)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from prefect.cache_policies import INPUTS, TASK_SOURCE\n", + "from prefect.futures import wait\n", + "\n", + "from mlip_arena.tasks.utils import get_calculator\n", + "\n", + "selected_models = [\n", + " \"MACE-MP(M)\",\n", + " \"CHGNet\",\n", + " \"M3GNet\",\n", + " \"MatterSim\",\n", + " \"eqV2(OMat)\",\n", + " \"MACE-MPA\",\n", + " \"ORBv2\",\n", + " \"SevenNet\",\n", + " \"ALIGNN\",\n", + "]\n", + "\n", + "\n", + "@task(cache_policy=TASK_SOURCE + INPUTS)\n", + "def run_one(\n", + " atoms,\n", + " model,\n", + "):\n", + " try:\n", + " result = MD.with_options(\n", + " # timeout_seconds=600,\n", + " # retries=1,\n", + " refresh_cache=True\n", + " )(\n", + " atoms=atoms,\n", + " calculator=get_calculator(\n", + " model.name,\n", + " calculator_kwargs=None,\n", + " ),\n", + " ensemble=\"nvt\",\n", + " dynamics=\"nose-hoover\",\n", + " time_step=None,\n", + " dynamics_kwargs=dict(\n", + " ttime=25 * units.fs,\n", + " # pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa\n", + " ),\n", + " total_time=1e4, # 5e4, # fs\n", + " temperature=[300, 3000],\n", + " pressure=None,\n", + " traj_file=f\"{REGISTRY[model.name]['family']}/{model.name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_nvt.traj\",\n", + " traj_interval=10,\n", + " )\n", + " except Exception as e:\n", + " print(e)\n", + " return e\n", + "\n", + " return result\n", + "\n", + "\n", + "@flow\n", + "def heat():\n", + " futures = []\n", + " # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN\n", + " for atoms in get_atoms_from_db(\"random-mixture.db\", force_download=False):\n", + " for model in MLIPEnum:\n", + " if model.name not in selected_models:\n", + " continue\n", + "\n", + " future = run_one.with_options(\n", + " timeout_seconds=600, retries=2, refresh_cache=False\n", + " ).submit(atoms.copy(), model)\n", + " futures.append(future)\n", + "\n", + " wait(futures)\n", + "\n", + " return [\n", + " f.result(timeout=None, raise_on_failure=False)\n", + " for f in futures\n", + " if f.state.is_completed()\n", + " ]\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "heat.with_options(\n", + " task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True\n", + ")()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/benchmarks/vacancy_migration/Table-A1-fcc.csv b/benchmarks/vacancy_migration/Table-A1-fcc.csv new file mode 100644 index 0000000000000000000000000000000000000000..a08d6b18ebaaa66c64a012158df33f3498e91133 --- /dev/null +++ b/benchmarks/vacancy_migration/Table-A1-fcc.csv @@ -0,0 +1,58 @@ +symbol,cohesive_energy,K,K',volume_per_atom,e_vacform,e_vacmig +Ac,3.70,21.63,2.03,45.37,1.26,0.45 +Ag,2.49,84.11,5.15,17.87,0.68,0.70 +Al,3.43,76.90,4.23,16.47,0.61,0.58 +Ar,0.02,1.60,3.45,45.00,0.01,0.06 +Au,2.99,136.19,7.45,18.07,0.40,0.53 +Ba,1.87,8.01,2.81,64.13,1.09,0.36 +Be,3.64,116.96,3.90,7.88,-0.06,0.75 +Ca,1.91,16.82,1.70,42.17,1.13,0.47 +Cd,0.74,41.66,5.71,22.60,0.30,0.23 +Ce,4.58,37.65,4.10,26.10,1.30,0.54 +Co,4.92,251.54,5.17,10.30,1.84,1.45 +Co_mag,5.11,209.89,5.07,10.90,1.79,1.01 +Cs,0.70,2.40,2.36,116.46,0.34,0.13 +Cu,3.48,136.99,5.86,11.97,1.07,0.72 +Dy,4.23,,,31.37,1.72, +Er,1.55,16.02,2.66,40.96,1.02,0.47 +Fe,4.69,283.59,4.89,10.22,2.32,1.38 +Ga,2.61,29.64,6.02,18.91,-0.04,0.18 +Ge,3.40,,,19.51,0.10, +He,0.01,1.60,3.36,16.54,0.00,0.02 +Hf,6.41,107.35,3.59,22.26,2.09,0.81 +Ho,4.20,40.86,4.04,30.88,1.74,0.73 +In,2.31,33.65,4.53,27.33,0.28,0.23 +Ir,7.23,345.27,5.44,14.53,1.55,2.54 +K,0.86,3.20,6.19,73.60,0.34,0.16 +Kr,0.02,0.80,7.90,57.44,0.00,0.07 +La,4.22,24.83,3.36,37.10,1.44,0.21 +Li,1.61,13.62,3.75,20.22,0.60,0.13 +Mg,1.49,36.05,4.04,23.03,0.82,0.41 +Mn,3.76,276.38,5.42,10.73,2.38,0.65 +Mn_mag,3.76,275.57,5.58,10.72,2.36,0.69 +Na,1.11,9.61,3.08,35.08,0.38,0.14 +Ni,4.77,197.87,5.29,10.85,1.39,0.94 +Ni_mag,4.83,193.06,5.45,10.90,1.43,1.08 +Os,8.17,398.14,4.99,14.29,2.75,2.73 +Pa,6.86,96.13,4.16,25.21,1.54,0.77 +Pb,2.94,39.25,4.07,31.69,0.45,0.54 +Pd,3.71,165.83,6.62,15.37,1.16,0.95 +Pr,3.58,,,23.79,0.76, +Pt,5.45,246.74,6.10,15.67,0.61,1.24 +Rb,0.76,2.40,7.13,90.81,0.30,0.14 +Re,7.73,366.10,4.73,14.94,2.94,1.81 +Rh,5.63,250.74,5.86,14.13,1.57,1.79 +Ru,6.56,314.03,4.81,13.88,2.51,1.85 +Sc,4.09,54.47,4.07,24.43,2.07,0.60 +Sn,3.11,46.46,6.10,27.82,0.26,0.38 +Sr,1.61,11.22,3.72,54.74,0.95,0.45 +Ta,8.09,198.67,3.86,18.63,2.23, +Tb,4.26,38.45,4.55,31.88,1.75,0.71 +Tc,6.84,298.81,4.91,14.50,2.62,1.17 +Th,6.34,55.28,3.50,32.07,1.92,1.25 +Ti,5.43,102.54,2.89,17.25,1.95,0.45 +Tl,1.99,27.24,5.55,30.50,0.37,0.10 +W,7.98,,,16.25,1.67, +Xe,0.03,0.80,2.22,80.21,0.01,0.09 +Y,4.14,38.45,4.10,32.35,1.72,0.67 +Zr,6.21,90.52,4.42,23.26,2.02,0.50 \ No newline at end of file diff --git a/benchmarks/vacancy_migration/Table-A2-hcp.csv b/benchmarks/vacancy_migration/Table-A2-hcp.csv new file mode 100644 index 0000000000000000000000000000000000000000..408dd62e938b50f68ac7d735f7684d3d73d1cddd --- /dev/null +++ b/benchmarks/vacancy_migration/Table-A2-hcp.csv @@ -0,0 +1,58 @@ +symbol,cohesive_energy,K,K',volume_per_atom,e_vacform,e_vacmig_v,e_vacmig +Ag,2.49,82.51,5.15,17.93,0.76,0.50,0.60 +Al,3.40,74.50,4.70,16.63,0.62,0.41,0.46 +Ar,0.02,0.88,7.43,46.11,0.01,0.06, +Au,2.98,130.58,7.58,18.10,0.40,0.49,0.57 +Ba,1.87,8.01,3.38,63.55,1.11,0.34,0.37 +Be,3.72,122.57,3.57,7.92,1.04,0.74,0.87 +Bi,2.38,,,31.44,0.00,, +Ca,1.91,17.62,3.44,42.39,1.06,0.38,0.42 +Cd,0.74,43.26,6.04,22.60,0.25,0.23,0.16 +Ce,4.49,,,26.43,1.23,, +Co,4.90,248.34,3.29,10.33,1.67,1.02,1.19 +Co_mag,5.12,214.69,4.91,10.85,1.93,0.81,0.78 +Cr,3.63,,,11.77,1.77,, +Cs,0.70,1.60,7.60,116.42,0.31,0.12,0.13 +Cu,3.47,134.58,5.61,12.00,1.04,0.57,0.69 +Fe,4.77,288.39,5.60,10.16,2.43,1.52,1.51 +Ga,2.60,44.06,4.37,18.92,0.21,0.12,0.16 +Ge,3.40,,,19.25,0.26,, +He,0.01,1.60,3.46,16.54,0.00,0.02,0.01 +Hf,6.48,112.95,3.59,22.26,2.26,0.89,1.00 +In,2.31,32.84,4.68,27.40,0.31,0.20,0.21 +Ir,7.16,339.66,3.32,14.60,1.25,1.57,1.95 +K,0.86,3.20,5.95,73.72,0.35,0.12,0.14 +Kr,0.02,0.80,6.73,58.10,0.00,0.07,0.07 +La,4.20,,,37.42,1.45,, +Li,1.61,13.62,3.82,20.24,0.63,0.10,0.12 +Mg,1.50,36.05,4.31,22.85,0.78,0.40,0.42 +Mn,3.82,190.66,11.04,10.63,2.51,0.43,0.11 +Mo,5.91,,,15.95,1.96,, +Nb,6.71,,,18.61,2.08,, +Ne,0.01,6.41,1.65,19.15,-0.01,0.04,0.04 +Ni,4.74,134.58,12.07,10.87,1.35,0.69,0.79 +Ni_mag,4.81,192.26,5.34,10.94,1.37,0.77,0.89 +Os,8.31,406.15,5.04,14.23,3.03,3.03,3.22 +Pa,3.09,90.52,3.96,15.12,0.28,0.38, +Pb,2.92,37.65,4.49,31.51,0.41,0.44,0.41 +Pd,3.67,163.42,6.50,15.45,1.10,0.68,0.73 +Pt,5.39,241.13,6.22,15.77,0.70,0.70, +Rb,0.76,2.40,6.45,91.19,0.32,0.13,0.12 +Re,7.79,370.10,4.67,14.89,3.42,1.79,1.17 +Rh,5.59,250.74,5.76,14.18,1.53,1.25,1.47 +Ru,6.68,311.62,5.16,13.81,2.68,2.17,2.18 +Sc,4.14,52.87,4.82,24.48,1.87,0.74,0.69 +Si,4.04,85.72,4.88,14.35,0.08,0.04,0.26 +Sn,3.11,47.26,5.92,27.55,0.40,0.31,0.33 +Sr,1.61,11.22,3.77,55.16,0.98,0.36,0.40 +Ta,8.05,,,18.55,2.35,, +Tc,6.91,302.01,4.90,14.44,2.85,1.21,0.63 +Te,2.23,48.87,5.03,31.47,0.25,, +Ti,5.49,109.75,5.07,17.29,2.06,0.49,0.59 +Tl,2.01,25.63,5.47,30.97,0.40,0.23,0.16 +V,5.15,,,13.75,1.84,, +W,7.96,,,16.32,2.44,, +Xe,0.03,0.80,2.32,79.60,0.01,0.07,0.08 +Y,4.16,40.05,3.72,32.82,1.87,0.69,0.67 +Zn,1.10,73.70,6.02,15.23,0.47,0.34,0.20 +Zr,6.25,93.73,4.34,23.44,2.03,0.57,0.70 \ No newline at end of file diff --git a/benchmarks/vacancy_migration/analysis.py b/benchmarks/vacancy_migration/analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..b3c250d139d71c9c48d03116e1457de1d7b6256b --- /dev/null +++ b/benchmarks/vacancy_migration/analysis.py @@ -0,0 +1,284 @@ +import glob +import pickle +from pathlib import Path + +import numpy as np +import pandas as pd +from matplotlib import pyplot as plt +from pymatgen.core import Element + +from mlip_arena.models import REGISTRY + +DATA_DIR = Path(__file__).parent + +mlip_models = ["MACE-MP(M)", "MatterSim", "ORBv2", "M3GNet", "CHGNet", "SevenNet"] + +fcc_pbe = pd.read_csv(DATA_DIR / "Table-A1-fcc.csv") +hcp_pbe = pd.read_csv(DATA_DIR / "Table-A2-hcp.csv") + +# fcc + +# Initialize an empty DataFrame +results_df = pd.DataFrame(columns=["symbol", "model", "fit_path", "fit_energies"]) + +for model in mlip_models: + out_dir = Path(REGISTRY[model]["family"]) + + for index, row in fcc_pbe.iterrows(): + symbol = row["symbol"] + + if Element(symbol.split("_")[0]).is_noble_gas: + continue + + files = glob.glob(str(out_dir / f"{model}-fcc-{symbol.split('_')[0]}108.pkl")) + if len(files) == 0: + print("skip", model, symbol) + # Add missing data to the DataFrame + # if symbol not in results_df['symbol'].values: + # Create a new row if the symbol is not yet in the DataFrame + new_row = { + "symbol": symbol, + "model": model, + "pbe_e_vacmig": row["e_vacmig"], + "fit_path": [], + "fit_energies": [], + } + results_df = pd.concat( + [results_df, pd.DataFrame([new_row])], ignore_index=True + ) + continue + file = files[0] + with open(file, "rb") as f: + result = pickle.load(f) + + # Add data to the DataFrame + # if symbol not in results_df['symbol'].values: + # Create a new row if the symbol is not yet in the DataFrame + forcefit = result["neb"]["forcefit"] + new_row = { + "symbol": symbol, + "model": model, + "pbe_e_vacmig": row["e_vacmig"], + "fit_path": forcefit.fit_path, + "fit_energies": forcefit.fit_energies, + } + results_df = pd.concat([results_df, pd.DataFrame([new_row])], ignore_index=True) + + +nrows = 2 +ncols = len(mlip_models) // nrows + +fig, axes = plt.subplots( + nrows=nrows, + ncols=ncols, + figsize=(6, 4), + sharex=True, + sharey=True, + constrained_layout=True, + dpi=300, +) + +for i, (ax, model) in enumerate(zip(axes.ravel(), mlip_models, strict=False)): + filtered_df = results_df[results_df["model"] == model] + + asymmetries = [] + middle_deviations = [] + + for index, row in filtered_df.iterrows(): + if len(row["fit_path"]) == 0 or pd.isna(row["pbe_e_vacmig"]): + continue + + x = row["fit_path"] / max(row["fit_path"]) + y = row["fit_energies"] / row["pbe_e_vacmig"] + + # middle_idx = np.argmin(np.abs(x - 0.5)) + + left_side = y[x <= 0.5] + right_side = y[x >= 0.5][::-1] + min_len = min(len(left_side), len(right_side)) + left_side = left_side[:min_len] + right_side = right_side[:min_len] + + asymmetry = np.abs(left_side - right_side).mean() + # middle = (left_side[-1] + right_side[-1]) / 2 + middle = max(y) + + if np.abs(np.array(y)).max() > 10: + continue + + asymmetries.append(asymmetry) + middle_deviations.append(middle - 1) + + ax.plot( + x, + y, + alpha=0.5, + color=method_color_mapping[model], + label=model, + ) + + asymmetries = np.array(asymmetries) + middle_deviations = np.array(middle_deviations) + + ax.text( + 0.05, + 0.95, + "\n".join( + [ + f"Miss: {len(filtered_df) - len(asymmetries) - filtered_df['pbe_e_vacmig'].isna().sum()}", + f"Asym: {asymmetries.mean():.3f}", + f"MAPE@max: {np.abs(middle_deviations).mean() * 100:.1f}", + ] + ), + transform=ax.transAxes, + ha="left", + va="top", + fontsize="small", + # fontsize=6, + ) + + ax.set( + title=model, + xlabel="Normalized path" if i >= len(models) - ncols else None, + ylabel="Normalized energy" if i % ncols == 0 else None, + ylim=(-0.1, 2), + ) + +with open(DATA_DIR / "fcc.pkl", "wb") as f: + pickle.dump(fig, f) + +# hcp + +# Initialize an empty DataFrame +results_df = pd.DataFrame(columns=["symbol", "model", "fit_path", "fit_energies"]) + +for model in mlip_models: + out_dir = Path(REGISTRY[model]["family"]) + + for index, row in hcp_pbe.iterrows(): + symbol = row["symbol"] + + if Element(symbol.split("_")[0]).is_noble_gas: + continue + + files = glob.glob(str(out_dir / f"{model}-hcp-{symbol.split('_')[0]}36.pkl")) + if len(files) == 0: + print("skip", model, symbol) + # Add missing data to the DataFrame + # if symbol not in results_df['symbol'].values: + # Create a new row if the symbol is not yet in the DataFrame + new_row = { + "symbol": symbol, + "model": model, + "pbe_e_vacmig": row["e_vacmig"], + "fit_path": [], + "fit_energies": [], + } + results_df = pd.concat( + [results_df, pd.DataFrame([new_row])], ignore_index=True + ) + # else: + # # Update the existing row with the model's prediction + # results_df.loc[results_df['symbol'] == symbol, model] = pd.NA + continue + file = files[0] + with open(file, "rb") as f: + result = pickle.load(f) + + # Add data to the DataFrame + # if symbol not in results_df['symbol'].values: + # Create a new row if the symbol is not yet in the DataFrame + forcefit = result["neb"]["forcefit"] + new_row = { + "symbol": symbol, + "model": model, + "pbe_e_vacmig": row["e_vacmig"], + "fit_path": forcefit.fit_path, + "fit_energies": forcefit.fit_energies, + } + results_df = pd.concat([results_df, pd.DataFrame([new_row])], ignore_index=True) + + + +nrows = 2 +ncols = len(mlip_models) // nrows + +threshold = 0.10 + +fig, axes = plt.subplots( + nrows=nrows, + ncols=ncols, + figsize=(6, 4), + sharex=True, + sharey=True, + constrained_layout=True, + dpi=300, +) + +for i, (ax, model) in enumerate(zip(axes.ravel(), mlip_models, strict=False)): + filtered_df = results_df[results_df["model"] == model] + + asymmetries = [] + middle_deviations = [] + + for index, row in filtered_df.iterrows(): + if len(row["fit_path"]) == 0 or pd.isna(row["pbe_e_vacmig"]): + continue + + x = row["fit_path"] / max(row["fit_path"]) + y = row["fit_energies"] / row["pbe_e_vacmig"] + + # middle_idx = np.argmin(np.abs(x - 0.5)) + + left_side = y[x <= 0.5] + right_side = y[x >= 0.5][::-1] + min_len = min(len(left_side), len(right_side)) + left_side = left_side[:min_len] + right_side = right_side[:min_len] + + asymmetry = np.abs(left_side - right_side).mean() + # middle = (left_side[-1] + right_side[-1]) / 2 + middle = max(y) + + if np.abs(np.array(y)).max() > 10: + continue + + asymmetries.append(asymmetry) + middle_deviations.append(middle - 1) + + ax.plot( + x, + y, + alpha=0.5, + color=method_color_mapping[model], + label=model, + ) + + asymmetries = np.array(asymmetries) + middle_deviations = np.array(middle_deviations) + + ax.text( + 0.05, + 0.95, + "\n".join( + [ + f"Miss: {len(filtered_df) - len(asymmetries) - filtered_df['pbe_e_vacmig'].isna().sum()}", + f"Asym: {asymmetries.mean():.3f}", + f"MAPE@max: {np.abs(middle_deviations).mean() * 100:.1f}", + ] + ), + transform=ax.transAxes, + ha="left", + va="top", + fontsize="small", + ) + + ax.set( + title=model, + xlabel="Normalized path" if i >= len(mlip_models) - ncols else None, + ylabel="Normalized energy" if i % ncols == 0 else None, + ylim=(-0.1, 2), + ) + +with open(DATA_DIR / "hcp.pkl", "wb") as f: + pickle.dump(fig, f) diff --git a/benchmarks/vacancy_migration/run.py b/benchmarks/vacancy_migration/run.py new file mode 100644 index 0000000000000000000000000000000000000000..4678d4d4392b25c24094f078e40449402952c3ee --- /dev/null +++ b/benchmarks/vacancy_migration/run.py @@ -0,0 +1,167 @@ +import pickle +from functools import partial +from pathlib import Path + +from ase import Atoms +from prefect import Task, flow, task +from prefect.client.schemas.objects import TaskRun +from prefect.results import ResultRecord +from prefect.states import State + +from mlip_arena.models import REGISTRY, MLIPEnum +from mlip_arena.tasks.eos import run as EOS +from mlip_arena.tasks.neb import run_from_endpoints as NEB +from mlip_arena.tasks.vacancy_migration.input import get_fcc_pristine, get_hcp_pristine + +MP_API_KEY = None + +test_models = ["MACE-MP(M)", "MatterSim", "ORBv2", "CHGNet", "M3GNet", "SevenNet"] + + +def save_to_pickle( + tsk: Task, run: TaskRun, state: State, crystal: str +): + result = run.state.result(raise_on_failure=False) + + pristine = result["pristine"] + calculator_name = result["calculator_name"] + calculator_name = calculator_name.name if isinstance(calculator_name, MLIPEnum) else calculator_name + + family_path = Path(REGISTRY[calculator_name]["family"]) + family_path.mkdir(parents=True, exist_ok=True) + + with open(family_path / f"{calculator_name}-{crystal}-{pristine.get_chemical_formula()}.pkl", "wb") as f: + pickle.dump(result, f) + + # with open(family_path / f"{crystal}-{pristine.get_chemical_formula()}.json", 'w') as f: + # json.dump(result, f) + +@task +def calculate_vacancy_migration( + pristine: Atoms, + istart: int, + iend: int, + calculator_name: MLIPEnum | str, + optimizer: str, + criterion: dict = {} +): + + eos = EOS.with_options(refresh_cache=True, persist_result=True)( + atoms=pristine, + calculator_name=calculator_name, + optimizer=optimizer, + criterion=criterion, + concurrent=False, + ) + + if isinstance(eos, ResultRecord): + eos = eos.result + + if isinstance(eos, dict): + pristine = eos["atoms"] + else: + return eos + + atoms = pristine.copy() + del atoms[istart] + start = atoms.copy() + + atoms = pristine.copy() + del atoms[iend] + end = atoms.copy() + + + neb = NEB.with_options(refresh_cache=True, persist_result=True)( + start, end, n_images=7, + calculator_name=calculator_name, + optimizer=optimizer, + criterion=criterion, + relax_end_points=True + ) + + e_defect = 0.5 * (neb["images"][0].get_potential_energy() + neb["images"][-1].get_potential_energy()) + e_pristine = pristine.get_potential_energy() + + e_vacform = e_defect - (len(neb["images"][0]) / len(pristine)) * e_pristine + + e_vacmig = neb["barrier"][0] + asymmetry = abs(neb["barrier"][1] / e_vacmig) + + # TODO: temporary solution to pickling problem of mattersim + pristine.calc = None + for image in neb["images"]: + image.calc = None + eos["atoms"].calc = None + + return { + "pristine": pristine, + "calculator_name": calculator_name, + "e_vacform": e_vacform, + "e_vacmig": e_vacmig, + "asymmetry": asymmetry, + "neb": neb, + "eos": eos + } + +@flow(persist_result=True, result_serializer="pickle") +def run_fcc(): + + futures = [] + for atoms in get_fcc_pristine(MP_API_KEY): + for model in MLIPEnum: + if model.name not in test_models: + continue + try: + result = calculate_vacancy_migration.with_options( + refresh_cache=True, persist_result=True, + on_completion=[partial(save_to_pickle, crystal="fcc")] + )( + pristine=atoms, + istart=0, + iend=1, + calculator_name=model, + optimizer="BFGS", + criterion=dict(fmax=0.05, steps=500), + ) + except Exception: + continue + futures.append(result) + + return futures + # wait(futures) + # return [f.result(raise_on_failure=False) for f in futures if f.state.is_completed()] + +@flow(persist_result=True, result_serializer="pickle") +def run_hcp(): + futures = [] + for i, atoms in enumerate(get_hcp_pristine(MP_API_KEY)): + if i <= 30: + continue + for model in MLIPEnum: + if model.name not in test_models: + continue + try: + result = calculate_vacancy_migration.with_options( + refresh_cache=True, persist_result=True, + on_completion=[partial(save_to_pickle, crystal="hcp")] + )( + pristine=atoms, + istart=0, + iend=1, + calculator_name=model, + optimizer="BFGS", + criterion=dict(fmax=0.05, steps=500), + ) + # calculator_name = model.name if isinstance(model, MLIPEnum) else model + + # family_path = Path(REGISTRY[calculator_name]['family']) + # family_path.mkdir(parents=True, exist_ok=True) + # with open(family_path / f"{'hcp'}-{atoms.get_chemical_formula()}.pkl", 'wb') as f: + # pickle.dump(result, f) + except Exception: + continue + futures.append(result) + + return futures + # wait(futures) + # return [f.result(raise_on_failure=False) for f in futures if f.state.is_completed()] diff --git a/benchmarks/wbm_ev/ALIGNN.parquet b/benchmarks/wbm_ev/ALIGNN.parquet new file mode 100644 index 0000000000000000000000000000000000000000..34cbb20eed3a2d47dd00221e4490019419962768 --- /dev/null +++ b/benchmarks/wbm_ev/ALIGNN.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9b84592b56c667f49e510f382c07f2dd4105df71468c2198c3958b2d0066202b +size 425244 diff --git a/benchmarks/wbm_ev/ALIGNN_processed.parquet b/benchmarks/wbm_ev/ALIGNN_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..869ce9da430e8bae54d8f87774b5ec9a65cef4e2 --- /dev/null +++ b/benchmarks/wbm_ev/ALIGNN_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:875ed54dbc8766f4cfcdfd5e6d628fca9d1a8866b1b29cd1a32be8bb966303ef +size 368670 diff --git a/benchmarks/wbm_ev/CHGNet.parquet b/benchmarks/wbm_ev/CHGNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..9437015c0dc08d2b508481c8ec170a6759dc9f1c --- /dev/null +++ b/benchmarks/wbm_ev/CHGNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:06342370be572819441a9c706f3e70555c6ac0bf75d0fdaa35f2f574c9f600cd +size 424462 diff --git a/benchmarks/wbm_ev/CHGNet_processed.parquet b/benchmarks/wbm_ev/CHGNet_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..80b7548f9916569072be59ce659435b39bb1592e --- /dev/null +++ b/benchmarks/wbm_ev/CHGNet_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62fc23bf5bc94ba30c32581a8c57131a9125993a3f0e380cb3800220b197b666 +size 357806 diff --git a/benchmarks/wbm_ev/M3GNet.parquet b/benchmarks/wbm_ev/M3GNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..27f064dc4d9be72439dc73e462c7a7d56f59d6f1 --- /dev/null +++ b/benchmarks/wbm_ev/M3GNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:841aaa082db265939b3a3ada6f0d6901e65cb942277b074ca55cbdd7730dde75 +size 411741 diff --git a/benchmarks/wbm_ev/M3GNet_processed.parquet b/benchmarks/wbm_ev/M3GNet_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..39037579f59af990128b9f909b60a99ad45fef8f --- /dev/null +++ b/benchmarks/wbm_ev/M3GNet_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fd34bfe4650c2be26e7cfd75d747885ca265cbbc7fb769222d1f7e304fbd6de3 +size 357909 diff --git a/benchmarks/wbm_ev/MACE-MP(M).parquet b/benchmarks/wbm_ev/MACE-MP(M).parquet new file mode 100644 index 0000000000000000000000000000000000000000..64273d7e076572a111355f3b18b5a0b28486bcb4 --- /dev/null +++ b/benchmarks/wbm_ev/MACE-MP(M).parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1551823daef888914de951f2610ee6ffdfd2b0d6f33e1e293614534cdd217196 +size 409083 diff --git a/benchmarks/wbm_ev/MACE-MP(M)_processed.parquet b/benchmarks/wbm_ev/MACE-MP(M)_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..a54fbc66b9001d9db38ddbd072ee9d8525962365 --- /dev/null +++ b/benchmarks/wbm_ev/MACE-MP(M)_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2f54e1c2b7ec686c2a353f8092633b13e66fac8410642027ef3481aedf350b0b +size 359889 diff --git a/benchmarks/wbm_ev/MACE-MPA.parquet b/benchmarks/wbm_ev/MACE-MPA.parquet new file mode 100644 index 0000000000000000000000000000000000000000..59e4bf3153fc1f86534d7f999f6921b6ae4b571a --- /dev/null +++ b/benchmarks/wbm_ev/MACE-MPA.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:eedf48b2478811a1dca46eb50d607004dca99f54c81909f331c550317f14cd19 +size 407912 diff --git a/benchmarks/wbm_ev/MACE-MPA_processed.parquet b/benchmarks/wbm_ev/MACE-MPA_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..55cd68a68cba1748ff917d6572514682e8973b5c --- /dev/null +++ b/benchmarks/wbm_ev/MACE-MPA_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:249e8f0283dda9c87ec787ea0945a92e8ba0d4bf7b00bf823a4850283f06cfde +size 356765 diff --git a/benchmarks/wbm_ev/MatterSim.parquet b/benchmarks/wbm_ev/MatterSim.parquet new file mode 100644 index 0000000000000000000000000000000000000000..c8852d9e741a98f59f3bef04a4f6e020d90ebd08 --- /dev/null +++ b/benchmarks/wbm_ev/MatterSim.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b3d587fd71a817968a513b727a174c353c97552bc7674e5d3a4108e2b6233556 +size 408998 diff --git a/benchmarks/wbm_ev/MatterSim_processed.parquet b/benchmarks/wbm_ev/MatterSim_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..063ceaf3480760d1d8a6b0b14869ed4ecaf7122c --- /dev/null +++ b/benchmarks/wbm_ev/MatterSim_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1cea2cf80561a7d5f6696fccd45754df9d417bd0310f06827b9c02fc7414f278 +size 356416 diff --git a/benchmarks/wbm_ev/ORBv2.parquet b/benchmarks/wbm_ev/ORBv2.parquet new file mode 100644 index 0000000000000000000000000000000000000000..a7c753891453cb6a880ebce6d267c0d2d5c14984 --- /dev/null +++ b/benchmarks/wbm_ev/ORBv2.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ee9f2322096fbeb103a85b0735ed0d547f93e34f1c113af3619baf35c7acbc3 +size 415496 diff --git a/benchmarks/wbm_ev/ORBv2_processed.parquet b/benchmarks/wbm_ev/ORBv2_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..42735cc0523daf4b1f354ae6014f81dc70cf6115 --- /dev/null +++ b/benchmarks/wbm_ev/ORBv2_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e92484ae9dc84cf35ce7c4780c9a28d27fb29779fd31c3d494ac95acf54c3e8 +size 358072 diff --git a/benchmarks/wbm_ev/SevenNet.parquet b/benchmarks/wbm_ev/SevenNet.parquet new file mode 100644 index 0000000000000000000000000000000000000000..b053a0e5f2cc8d69480b94d6a47762f252029f2e --- /dev/null +++ b/benchmarks/wbm_ev/SevenNet.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6850c333c0b754b942efcfac11739ae199a9f3c816da4e0e6b26bc9a037a0524 +size 410197 diff --git a/benchmarks/wbm_ev/SevenNet_processed.parquet b/benchmarks/wbm_ev/SevenNet_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..b1b812b5f2315d85fe3e606555a15a320468e966 --- /dev/null +++ b/benchmarks/wbm_ev/SevenNet_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4d19ee80d1f6c13765ad134d1356a029c175b7c885035fb68380b2dd559645ad +size 358468 diff --git a/benchmarks/wbm_ev/analyze.py b/benchmarks/wbm_ev/analyze.py new file mode 100644 index 0000000000000000000000000000000000000000..ebc5bef0ea0b85eb3a74dbfefe90e7058ef6231d --- /dev/null +++ b/benchmarks/wbm_ev/analyze.py @@ -0,0 +1,210 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +from ase.db import connect +from scipy import stats + +from mlip_arena.models import REGISTRY, MLIPEnum + +DATA_DIR = Path(__file__).parent.absolute() + + +def load_wbm_structures(): + """ + Load the WBM structures from a ASE DB file. + """ + with connect(DATA_DIR.parent / "wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + +def gather_results(): + for model in MLIPEnum: + if "wbm_ev" not in REGISTRY[model.name].get("gpu-tasks", []): + continue + + if (DATA_DIR / f"{model.name}.parquet").exists(): + continue + + all_data = [] + + for atoms in load_wbm_structures(): + fpath = Path(model.name) / f"{atoms.info['key_value_pairs']['wbm_id']}.json" + if not fpath.exists(): + continue + + all_data.append(pd.read_json(fpath)) + + df = pd.concat(all_data, ignore_index=True) + df.to_parquet(DATA_DIR / f"{model.name}.parquet") + + +def summarize(): + summary_table = pd.DataFrame( + columns=[ + "model", + "energy-diff-flip-times", + "tortuosity", + "spearman-compression-energy", + "spearman-compression-derivative", + "spearman-tension-energy", + "missing", + ] + ) + + + for model in MLIPEnum: + fpath = DATA_DIR / f"{model.name}.parquet" + if not fpath.exists(): + continue + df_raw_results = pd.read_parquet(fpath) + + df_analyzed = pd.DataFrame( + columns=[ + "model", + "structure", + "formula", + "volume-ratio", + "energy-delta-per-atom", + "energy-diff-flip-times", + "tortuosity", + "spearman-compression-energy", + "spearman-compression-derivative", + "spearman-tension-energy", + "missing", + ] + ) + + for wbm_struct in load_wbm_structures(): + structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"] + + try: + results = df_raw_results.loc[df_raw_results["id"] == structure_id] + results = results["eos"].values[0] + es = np.array(results["energies"]) + vols = np.array(results["volumes"]) + vol0 = wbm_struct.get_volume() + + indices = np.argsort(vols) + vols = vols[indices] + es = es[indices] + + imine = len(es) // 2 + # min_center_val = np.min(es[imid - 1 : imid + 2]) + # imine = np.where(es == min_center_val)[0][0] + emin = es[imine] + + interpolated_volumes = [ + (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1) + ] + ediff = np.diff(es) + ediff_sign = np.sign(ediff) + mask = ediff_sign != 0 + ediff = ediff[mask] + ediff_sign = ediff_sign[mask] + ediff_flip = np.diff(ediff_sign) != 0 + + etv = np.sum(np.abs(np.diff(es))) + + data = { + "model": model.name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": False, + "volume-ratio": vols / vol0, + "energy-delta-per-atom": (es - emin) / len(wbm_struct), + "energy-diff-flip-times": np.sum(ediff_flip).astype(int), + "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)), + "spearman-compression-energy": stats.spearmanr( + vols[:imine], es[:imine] + ).statistic, + "spearman-compression-derivative": stats.spearmanr( + interpolated_volumes[:imine], ediff[:imine] + ).statistic, + "spearman-tension-energy": stats.spearmanr( + vols[imine:], es[imine:] + ).statistic, + } + + except Exception: + data = { + "model": model.name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": True, + "volume-ratio": None, + "energy-delta-per-atom": None, + "energy-diff-flip-times": None, + "tortuosity": None, + "spearman-compression-energy": None, + "spearman-compression-derivative": None, + "spearman-tension-energy": None, + } + + df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True) + + df_analyzed.to_parquet(DATA_DIR / f"{model.name}_processed.parquet") + # json_fpath = DATA_DIR / f"EV_scan_analyzed_{model.name}.json" + + # df_analyzed.to_json(json_fpath, orient="records") + + valid_results = df_analyzed[df_analyzed["missing"] == False] + + analysis_summary = { + "model": model.name, + "energy-diff-flip-times": valid_results["energy-diff-flip-times"].mean(), + "tortuosity": valid_results["tortuosity"].mean(), + "spearman-compression-energy": valid_results[ + "spearman-compression-energy" + ].mean(), + "spearman-compression-derivative": valid_results[ + "spearman-compression-derivative" + ].mean(), + "spearman-tension-energy": valid_results["spearman-tension-energy"].mean(), + "missing": len(df_analyzed[df_analyzed["missing"] == True]), + } + summary_table = pd.concat( + [summary_table, pd.DataFrame([analysis_summary])], ignore_index=True + ) + + + flip_rank = ( + (summary_table["energy-diff-flip-times"] - 1) + .abs() + .rank(ascending=True, method="min") + ) + tortuosity_rank = summary_table["tortuosity"].rank(ascending=True, method="min") + spearman_compression_energy_rank = summary_table["spearman-compression-energy"].rank( + method="min" + ) + spearman_compression_derivative_rank = summary_table[ + "spearman-compression-derivative" + ].rank(ascending=False, method="min") + spearman_tension_energy_rank = summary_table["spearman-tension-energy"].rank( + ascending=False, method="min" + ) + missing_rank = summary_table["missing"].rank(ascending=True, method="min") + + rank_aggr = ( + flip_rank + + tortuosity_rank + + spearman_compression_energy_rank + + spearman_compression_derivative_rank + + spearman_tension_energy_rank + + missing_rank + ) + rank = rank_aggr.rank(method="min") + + summary_table.insert(1, "rank", rank.astype(int)) + summary_table.insert(2, "rank-aggregation", rank_aggr.astype(int)) + summary_table = summary_table.sort_values(by="rank", ascending=True) + summary_table = summary_table.reset_index(drop=True) + + summary_table.to_csv(DATA_DIR / "summary.csv", index=False) + summary_table.to_latex(DATA_DIR / "summary.tex", index=False) + + return summary_table + +if __name__ == "__main__": + gather_results() + summarize() diff --git a/benchmarks/wbm_ev/eSEN.parquet b/benchmarks/wbm_ev/eSEN.parquet new file mode 100644 index 0000000000000000000000000000000000000000..f81adce9b39dbdc5da9b4d46a439a8576fbf3254 --- /dev/null +++ b/benchmarks/wbm_ev/eSEN.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:841febd80ec1024fa186ab05e5f9d7c96a0605d90c4840415ecf41ac89132aee +size 410695 diff --git a/benchmarks/wbm_ev/eSEN_processed.parquet b/benchmarks/wbm_ev/eSEN_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..3f8c01831c998910ecb82c532ff9e5b45b635656 --- /dev/null +++ b/benchmarks/wbm_ev/eSEN_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1602624f625a7c258f76604718fec7998fa6f88400c33ca2d5116681a5e8dd9d +size 356216 diff --git a/benchmarks/wbm_ev/eqV2(OMat).parquet b/benchmarks/wbm_ev/eqV2(OMat).parquet new file mode 100644 index 0000000000000000000000000000000000000000..9c77ac538e8078edd73e6deca2498da8e41e236c --- /dev/null +++ b/benchmarks/wbm_ev/eqV2(OMat).parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7521597cd3189c0a3cea18ae98d9310bfc6becd50fca5e6f2c97af5e69b2596d +size 414251 diff --git a/benchmarks/wbm_ev/eqV2(OMat)_processed.parquet b/benchmarks/wbm_ev/eqV2(OMat)_processed.parquet new file mode 100644 index 0000000000000000000000000000000000000000..8d9e3bda9c3d016535c3abd382a6605ccd7bf362 --- /dev/null +++ b/benchmarks/wbm_ev/eqV2(OMat)_processed.parquet @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cd43459abbcb6bf33b3dfecf131a6116d799f06aeb2b9e0a6c66e5d5db2ebdd6 +size 356817 diff --git a/benchmarks/wbm_ev/run.py b/benchmarks/wbm_ev/run.py new file mode 100644 index 0000000000000000000000000000000000000000..36baa25e3d84888227d71a87a895e7a29b8d69e9 --- /dev/null +++ b/benchmarks/wbm_ev/run.py @@ -0,0 +1,163 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +from ase.db import connect +from dask.distributed import Client +from dask_jobqueue import SLURMCluster +from prefect import flow, task +from prefect.runtime import task_run +from prefect_dask import DaskTaskRunner +from prefect.cache_policies import INPUTS, TASK_SOURCE + +from mlip_arena.models import REGISTRY, MLIPEnum +from mlip_arena.tasks.utils import get_calculator + + +@task +def load_wbm_structures(): + """ + Load the WBM structures from an ASE database file. + + Reads structures from 'wbm_structures.db' and yields them as ASE Atoms objects + with additional metadata preserved from the database. + + Yields: + ase.Atoms: Individual atomic structures from the WBM database with preserved + metadata in the .info dictionary. + """ + with connect("../wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + +@task( + name="E-V Scan", + task_run_name=lambda: f"{task_run.task_name}: {task_run.parameters['atoms'].get_chemical_formula()} - {task_run.parameters['model'].name}", + cache_policy=TASK_SOURCE + INPUTS, +) +def ev_scan(atoms, model): + """ + Perform an energy-volume scan for a given model and atomic structure. + + This function applies uniaxial strain to the structure in all three dimensions, + maintaining the fractional coordinates of atoms, and computes the energy at each + deformation point using the specified model. + + Args: + atoms: ASE atoms object containing the structure to analyze. + model: MLIPEnum model to use for the energy calculations. + + Returns: + dict: Results dictionary containing: + - method (str): The name of the model used + - id (str): The WBM ID of the structure + - eos (dict): Energy of state data with: + - volumes (list): Volume of the unit cell at each strain point + - energies (list): Computed potential energy at each strain point + + Note: + The strain range is fixed at ยฑ20% with 21 evenly spaced points. + Results are also saved as a JSON file in a directory named after the model. + """ + calculator = get_calculator( + model + ) # avoid sending entire model over prefect and select freer GPU + + wbm_id = atoms.info["key_value_pairs"]["wbm_id"] + + c0 = atoms.get_cell() + max_abs_strain = 0.2 + npoints = 21 + volumes = [] + energies = [] + for uniaxial_strain in np.linspace(-max_abs_strain, max_abs_strain, npoints): + cloned = atoms.copy() + scale_factor = uniaxial_strain + 1 + cloned.set_cell(c0 * scale_factor, scale_atoms=True) + cloned.calc = calculator + volumes.append(cloned.get_volume()) + energies.append(cloned.get_potential_energy()) + + data = { + "method": model.name, + "id": wbm_id, + "eos": { + "volumes": volumes, "energies": energies + } + } + + fpath = Path(f"{model.name}") / f"{wbm_id}.json" + fpath.parent.mkdir(exist_ok=True) + + df = pd.DataFrame([data]) + df.to_json(fpath) + + return df + + +@flow +def submit_tasks(): + """ + Create and submit energy-volume scan tasks for subsampled WBM structures and applicable models. + + This flow function: + 1. Loads all structures from the WBM database + 2. Iterates through available models in MLIPEnum + 3. Filters models based on their capability to handle the 'wbm_ev' GPU task + 4. Submits parallel ev_scan tasks for all valid (structure, model) combinations + 5. Collects and returns results from all tasks + + Returns: + list: Results from all executed tasks (successful or failed) + """ + futures = [] + for atoms in load_wbm_structures(): + for model in MLIPEnum: + if "wbm_ev" not in REGISTRY[model.name].get("gpu-tasks", []): + continue + try: + result = ev_scan.submit(atoms, model) + except Exception as e: + print(f"Failed to submit task for {model.name}: {e}") + continue + futures.append(result) + return [f.result(raise_on_failure=False) for f in futures] + +if __name__ == "__main__": + nodes_per_alloc = 1 + gpus_per_alloc = 1 + ntasks = 1 + + cluster_kwargs = dict( + cores=1, + memory="64 GB", + processes=1, + shebang="#!/bin/bash", + account="m3828", + walltime="00:30:00", + # job_mem="0", + job_script_prologue=[ + "source ~/.bashrc", + "module load python", + "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena", + ], + job_directives_skip=["-n", "--cpus-per-task", "-J"], + job_extra_directives=[ + "-J wbm_ev", + "-q debug", + f"-N {nodes_per_alloc}", + "-C gpu", + f"-G {gpus_per_alloc}", + "--exclusive", + ], + ) + + cluster = SLURMCluster(**cluster_kwargs) + print(cluster.job_script()) + cluster.adapt(minimum_jobs=2, maximum_jobs=2) + client = Client(cluster) + + submit_tasks.with_options( + task_runner=DaskTaskRunner(address=client.scheduler.address), + log_prints=True, + )() diff --git a/benchmarks/wbm_ev/summary.csv b/benchmarks/wbm_ev/summary.csv new file mode 100644 index 0000000000000000000000000000000000000000..b71404c6d29423eef5b1932e81e6095929343b5c --- /dev/null +++ b/benchmarks/wbm_ev/summary.csv @@ -0,0 +1,11 @@ +model,rank,rank-aggregation,energy-diff-flip-times,tortuosity,spearman-compression-energy,spearman-compression-derivative,spearman-tension-energy,missing +eSEN,1,7,1.0,1.000402711291021,-0.9983393939393939,0.9999999999999999,0.9990454545454545,0 +MACE-MPA,2,14,1.0,1.000675741122765,-0.9983393939393939,0.9993090909090908,0.9987181818181818,0 +CHGNet,3,17,1.0,1.0006287770651048,-0.9982787878787878,0.9439636363636364,0.999090909090909,0 +MatterSim,4,24,1.009,1.000567338639546,-0.9980969696969696,0.9997090909090908,0.9937541835359507,0 +eqV2(OMat),5,27,1.035,1.0008346292192054,-0.9982060606060604,0.9972242424242423,0.9986454545454545,0 +M3GNet,6,29,1.002,1.0020010929112253,-0.9975878787878787,0.997442424242424,0.9964676571137886,0 +ORBv2,7,34,1.058,1.004064906459821,-0.9977696969696969,0.970751515151515,0.9976,0 +SevenNet,8,38,1.034,1.0100246177550205,-0.9951636363636364,0.9465575757575757,0.9947048195608054,0 +MACE-MP(M),9,40,1.121,1.0807128149289842,-0.9438060606060605,0.9011878787878788,0.9987454545454546,0 +ALIGNN,10,51,3.909,1.3756517739089669,-0.8892069391323368,0.7602706775644651,0.862085379002138,0 diff --git a/benchmarks/wbm_ev/summary.tex b/benchmarks/wbm_ev/summary.tex new file mode 100644 index 0000000000000000000000000000000000000000..319047d96259572b129c9b0b9d2094231164dc65 --- /dev/null +++ b/benchmarks/wbm_ev/summary.tex @@ -0,0 +1,16 @@ +\begin{tabular}{lrrrrrrrl} +\toprule +model & rank & rank-aggregation & energy-diff-flip-times & tortuosity & spearman-compression-energy & spearman-compression-derivative & spearman-tension-energy & missing \\ +\midrule +eSEN & 1 & 7 & 1.000000 & 1.000403 & -0.998339 & 1.000000 & 0.999045 & 0 \\ +MACE-MPA & 2 & 14 & 1.000000 & 1.000676 & -0.998339 & 0.999309 & 0.998718 & 0 \\ +CHGNet & 3 & 17 & 1.000000 & 1.000629 & -0.998279 & 0.943964 & 0.999091 & 0 \\ +MatterSim & 4 & 24 & 1.009000 & 1.000567 & -0.998097 & 0.999709 & 0.993754 & 0 \\ +eqV2(OMat) & 5 & 27 & 1.035000 & 1.000835 & -0.998206 & 0.997224 & 0.998645 & 0 \\ +M3GNet & 6 & 29 & 1.002000 & 1.002001 & -0.997588 & 0.997442 & 0.996468 & 0 \\ +ORBv2 & 7 & 34 & 1.058000 & 1.004065 & -0.997770 & 0.970752 & 0.997600 & 0 \\ +SevenNet & 8 & 38 & 1.034000 & 1.010025 & -0.995164 & 0.946558 & 0.994705 & 0 \\ +MACE-MP(M) & 9 & 40 & 1.121000 & 1.080713 & -0.943806 & 0.901188 & 0.998745 & 0 \\ +ALIGNN & 10 & 51 & 3.909000 & 1.375652 & -0.889207 & 0.760271 & 0.862085 & 0 \\ +\bottomrule +\end{tabular} diff --git a/benchmarks/wbm_structures.db b/benchmarks/wbm_structures.db new file mode 100644 index 0000000000000000000000000000000000000000..e1f15c8aa5b8d8fd27b2a9b9ce833deed609f476 --- /dev/null +++ b/benchmarks/wbm_structures.db @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cc387c7787c21e7ff2ab80d5428c60b9e817c9b37f53e03c0f5e5e72dc44fe88 +size 782336 diff --git a/mlip_arena/__init__.py b/mlip_arena/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4f4ccde16b3b106b00f8e7824bc351b81314c603 --- /dev/null +++ b/mlip_arena/__init__.py @@ -0,0 +1,3 @@ +from pathlib import Path + +PKG_DIR = Path(__file__).parent diff --git a/mlip_arena/data/__init__.py b/mlip_arena/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/mlip_arena/data/collate.py b/mlip_arena/data/collate.py new file mode 100644 index 0000000000000000000000000000000000000000..484cbacd79ce599170f4b5bfff96dc53f8c1dd92 --- /dev/null +++ b/mlip_arena/data/collate.py @@ -0,0 +1,201 @@ +import numpy as np +import torch + +# TODO: consider using vesin +from matscipy.neighbours import neighbour_list +from torch_geometric.data import Data + +from ase import Atoms +from ase.calculators.singlepoint import SinglePointCalculator + + +def get_neighbor( + atoms: Atoms, cutoff: float, self_interaction: bool = False +): + pbc = atoms.pbc + cell = atoms.cell.array + + i, j, S = neighbour_list( + quantities="ijS", + pbc=pbc, + cell=cell, + positions=atoms.positions, + cutoff=cutoff + ) + + if not self_interaction: + # Eliminate self-edges that don't cross periodic boundaries + true_self_edge = i == j + true_self_edge &= np.all(S == 0, axis=1) + keep_edge = ~true_self_edge + + i = i[keep_edge] + j = j[keep_edge] + S = S[keep_edge] + + edge_index = np.stack((i, j)).astype(np.int64) + edge_shift = np.dot(S, cell) + + return edge_index, edge_shift + + + +def collate_fn(batch: list[Atoms], cutoff: float) -> Data: + """Collate a list of Atoms objects into a single batched Atoms object.""" + + # Offset the edge indices for each graph to ensure they remain disconnected + offset = 0 + + node_batch = [] + + numbers_batch = [] + positions_batch = [] + # ec_batch = [] + + forces_batch = [] + charges_batch = [] + magmoms_batch = [] + dipoles_batch = [] + + edge_index_batch = [] + edge_shift_batch = [] + + cell_batch = [] + natoms_batch = [] + + energy_batch = [] + stress_batch = [] + + for i, atoms in enumerate(batch): + + edge_index, edge_shift = get_neighbor(atoms, cutoff=cutoff, self_interaction=False) + + edge_index[0] += offset + edge_index[1] += offset + edge_index_batch.append(torch.tensor(edge_index)) + edge_shift_batch.append(torch.tensor(edge_shift)) + + natoms = len(atoms) + offset += natoms + node_batch.append(torch.ones(natoms, dtype=torch.long) * i) + natoms_batch.append(natoms) + + cell_batch.append(torch.tensor(atoms.cell.array)) + numbers_batch.append(torch.tensor(atoms.numbers)) + positions_batch.append(torch.tensor(atoms.positions)) + + # ec_batch.append([Atom(int(a)).elecronic_encoding for a in atoms.numbers]) + + charges_batch.append( + atoms.get_initial_charges() + if atoms.get_initial_charges().any() + else torch.full((natoms,), torch.nan) + ) + magmoms_batch.append( + atoms.get_initial_magnetic_moments() + if atoms.get_initial_magnetic_moments().any() + else torch.full((natoms,), torch.nan) + ) + + # Create the new 'arrays' data for the batch + + cell_batch = torch.stack(cell_batch, dim=0) + node_batch = torch.cat(node_batch, dim=0) + positions_batch = torch.cat(positions_batch, dim=0) + numbers_batch = torch.cat(numbers_batch, dim=0) + natoms_batch = torch.tensor(natoms_batch, dtype=torch.long) + + charges_batch = torch.cat(charges_batch, dim=0) if charges_batch else None + magmoms_batch = torch.cat(magmoms_batch, dim=0) if magmoms_batch else None + + # ec_batch = list(map(lambda a: Atom(int(a)).elecronic_encoding, numbers_batch)) + # ec_batch = torch.stack(ec_batch, dim=0) + + edge_index_batch = torch.cat(edge_index_batch, dim=1) + edge_shift_batch = torch.cat(edge_shift_batch, dim=0) + + arrays_batch_concatenated = { + "cell": cell_batch, + "positions": positions_batch, + "edge_index": edge_index_batch, + "edge_shift": edge_shift_batch, + "numbers": numbers_batch, + "num_nodes": offset, + "batch": node_batch, + "charges": charges_batch, + "magmoms": magmoms_batch, + # "ec": ec_batch, + "natoms": natoms_batch, + "cutoff": torch.tensor(cutoff), + } + + # TODO: custom fields + + # Create a new Data object with the concatenated arrays data + batch_data = Data.from_dict(arrays_batch_concatenated) + + return batch_data + + +def decollate_fn(batch_data: Data) -> list[Atoms]: + """Decollate a batched Data object into a list of individual Atoms objects.""" + + # FIXME: this function is not working properly when the batch_data is on GPU. + # TODO: create a new Cell class using torch tensor to handle device placement. + # As a temporary fix, detach the batch_data from the GPU and move it to CPU. + batch_data = batch_data.detach().cpu() + + # Initialize empty lists to store individual data entries + individual_entries = [] + + # Split the 'batch' attribute to identify data entries + unique_batches = batch_data.batch.unique(sorted=True) + + for i in unique_batches: + # Identify the indices corresponding to the current data entry + entry_indices = (batch_data.batch == i).nonzero(as_tuple=True)[0] + + # Extract the attributes for the current data entry + cell = batch_data.cell[i] + numbers = batch_data.numbers[entry_indices] + positions = batch_data.positions[entry_indices] + # edge_index = batch_data.edge_index[:, entry_indices] + # edge_shift = batch_data.edge_shift[entry_indices] + # batch_data.ec[entry_indices] if batch_data.ec is not None else None + + # Optional fields + energy = batch_data.energy[i] if "energy" in batch_data else None + forces = batch_data.forces[entry_indices] if "forces" in batch_data else None + stress = batch_data.stress[i] if "stress" in batch_data else None + + # charges = batch_data.charges[entry_indices] if "charges" in batch_data else None + # magmoms = batch_data.magmoms[entry_indices] if "magmoms" in batch_data else None + # dipoles = batch_data.dipoles[entry_indices] if "dipoles" in batch_data else None + + # TODO: cumstom fields + + # Create an 'Atoms' object for the current data entry + atoms = Atoms( + cell=cell, + positions=positions, + numbers=numbers, + # forces=None if torch.any(torch.isnan(forces)) else forces, + # charges=None if torch.any(torch.isnan(charges)) else charges, + # magmoms=None if torch.any(torch.isnan(magmoms)) else magmoms, + # dipoles=None if torch.any(torch.isnan(dipoles)) else dipoles, + # energy=None if torch.isnan(energy) else energy, + # stress=None if torch.any(torch.isnan(stress)) else stress, + ) + + atoms.calc = SinglePointCalculator( + energy=energy, + forces=forces, + stress=stress, + # charges=charges, + # magmoms=magmoms, + ) # type: ignore + + # Append the individual data entry to the list + individual_entries.append(atoms) + + return individual_entries diff --git a/mlip_arena/data/local.py b/mlip_arena/data/local.py new file mode 100644 index 0000000000000000000000000000000000000000..9d890e43541bbac154477aa7d61fe7e2784dcdb0 --- /dev/null +++ b/mlip_arena/data/local.py @@ -0,0 +1,25 @@ +import os +import time + +from pandas import HDFStore + +# https://stackoverflow.com/questions/22522551/pandas-hdf5-as-a-database/29014295#29014295 + + +class SafeHDFStore(HDFStore): + def __init__(self, *args, **kwargs): + probe_interval = kwargs.pop("probe_interval", 1) + self._lock = "%s.lock" % args[0] + while True: + try: + self._flock = os.open(self._lock, os.O_CREAT | os.O_EXCL | os.O_WRONLY) + break + except FileExistsError: + time.sleep(probe_interval) + + HDFStore.__init__(self, *args, **kwargs) + + def __exit__(self, *args, **kwargs): + HDFStore.__exit__(self, *args, **kwargs) + os.close(self._flock) + os.remove(self._lock) diff --git a/mlip_arena/jobs/__init__.py b/mlip_arena/jobs/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..09d56bd40f161ce2e9bf651a77eebf5581766210 --- /dev/null +++ b/mlip_arena/jobs/__init__.py @@ -0,0 +1,38 @@ + +import enum + +from mlip_arena.models import MLIP +from mlip_arena.tasks import Task + + +class Machine(enum.Enum): + """Enum class for machine""" + HFCPU = "Hugging Face CPU Basic" + PERLCPU = "NERSC Perlmutter CPU" + PERLA100 = "NERSC Perlmutter A100 40GB" + PERLA100L = "NERSC Perlmutter A100 80GB" + +class Job: + def __init__(self, model: MLIP, task: Task, machine: Machine, **kwargs): + self.calculator = model + self.task = task + self.machine = machine + self.kwargs = kwargs + + def __str__(self): + return f"Job: {self.task.name} on {self.machine.value}" + + def run(self): + if self.machine == Machine.HFCPU: + print(f"Running {self.name} on {self.machine.value}") + "run the task on Hugging Face CPU Basic" + raise NotImplementedError + elif self.machine == Machine.PERLCPU: + print(f"Running {self.name} on {self.machine.value}") + "send the task to NERSC Perlmutter CPU node and listen for the results" + raise NotImplementedError + elif self.machine == Machine.PERLA100: + print(f"Running {self.name} on {self.machine.value}") + "send the task to NERSC Perlmutter GPU node and listen for the results" + raise NotImplementedError + \ No newline at end of file diff --git a/mlip_arena/jobs/run.py b/mlip_arena/jobs/run.py new file mode 100644 index 0000000000000000000000000000000000000000..6cf3c4600ba55b1f46e7e7e7d9fd5f46cd2bd07b --- /dev/null +++ b/mlip_arena/jobs/run.py @@ -0,0 +1,13 @@ +import importlib + +from mlip_arena.models import REGISTRY as MODEL_REGISTRY +from mlip_arena.tasks import REGISTRY as TASK_REGISTRY + +print(MODEL_REGISTRY) +print(TASK_REGISTRY) + +for task, metadata in TASK_REGISTRY.items(): + + print(f"mlip_arena.tasks.{task}") + module = importlib.import_module(f"mlip_arena.tasks.{task}") + module.whoami() \ No newline at end of file diff --git a/mlip_arena/models/README.md b/mlip_arena/models/README.md new file mode 100644 index 0000000000000000000000000000000000000000..a338026c81874fd524da2908e064b616ff88c722 --- /dev/null +++ b/mlip_arena/models/README.md @@ -0,0 +1,9 @@ + + +## Note on model registration + +1. Use `ast` to parse model classes from the uploaded script. +2. Add the classes and their supported tasks to the model registry file `registry.yaml`. +3. Run tests on HF Space to ensure the model is working as expected. +4. [Push files to the Hub](https://huggingface.co/docs/huggingface_hub/guides/upload) and sync with github repository. +5. Use [HF webhook](https://huggingface.co/docs/hub/en/webhooks) to check the status of benchmark tasks (pass, fail, null), run unfinisehd tasks and visualize the results on leaderboard. [[guide]](https://huggingface.co/docs/hub/en/webhooks-guide-metadata-review) \ No newline at end of file diff --git a/mlip_arena/models/__init__.py b/mlip_arena/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..775899e98efcb12efe99a0163f358d2acdb0c7dd --- /dev/null +++ b/mlip_arena/models/__init__.py @@ -0,0 +1,171 @@ +from __future__ import annotations + +import importlib +from enum import Enum +from pathlib import Path +from typing import Dict, Optional, Type, TypeVar, Union + +T = TypeVar("T", bound="MLIP") + +import torch +import yaml +from ase import Atoms +from ase.calculators.calculator import Calculator, all_changes +from huggingface_hub import PyTorchModelHubMixin +from torch import nn +from typing_extensions import Self + +try: + from mlip_arena.data.collate import collate_fn +except ImportError: + # Fallback to a dummy function if the import fails + def collate_fn(batch: list[Atoms], cutoff: float) -> None: + raise ImportError( + "collate_fn import failed. Please install the required dependencies." + ) + +try: + from prefect.logging import get_run_logger + + logger = get_run_logger() +except (ImportError, RuntimeError): + from loguru import logger + +with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + +MLIPMap = {} + +for model, metadata in REGISTRY.items(): + try: + module = importlib.import_module( + f"{__package__}.{metadata['module']}.{metadata['family']}" + ) + MLIPMap[model] = getattr(module, metadata["class"]) + except (ModuleNotFoundError, AttributeError, ValueError, ImportError, Exception) as e: + logger.warning(e) + continue + +MLIPEnum = Enum("MLIPEnum", MLIPMap) + + +class MLIP( + nn.Module, + PyTorchModelHubMixin, + tags=["atomistic-simulation", "MLIP"], +): + def __init__(self, model: nn.Module) -> None: + super().__init__() + # https://github.com/pytorch/pytorch/blob/3cbc8c54fd37eb590e2a9206aecf3ab568b3e63c/torch/_dynamo/config.py#L534 + # torch._dynamo.config.compiled_autograd = True + # self.model = torch.compile(model) + self.model = model + + def _save_pretrained(self, save_directory: Path) -> None: + return super()._save_pretrained(save_directory) + + @classmethod + def from_pretrained( + cls, + pretrained_model_name_or_path: str | Path, + *, + force_download: bool = False, + resume_download: bool | None = None, + proxies: dict | None = None, + token: str | bool | None = None, + cache_dir: str | Path | None = None, + local_files_only: bool = False, + revision: str | None = None, + **model_kwargs, + ) -> Self: + return super().from_pretrained( + pretrained_model_name_or_path, + force_download=force_download, + resume_download=resume_download, + proxies=proxies, + token=token, + cache_dir=cache_dir, + local_files_only=local_files_only, + revision=revision, + **model_kwargs, + ) + + def forward(self, x): + return self.model(x) + + +class MLIPCalculator(MLIP, Calculator): + name: str + implemented_properties: list[str] = ["energy", "forces", "stress"] + + def __init__( + self, + model: nn.Module, + device: torch.device | None = None, + cutoff: float = 6.0, + # ASE Calculator + restart=None, + atoms=None, + directory=".", + calculator_kwargs: dict = {}, + ): + MLIP.__init__(self, model=model) # Initialize MLIP part + Calculator.__init__( + self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs + ) # Initialize ASE Calculator part + # Additional initialization if needed + # self.name: str = self.__class__.__name__ + from mlip_arena.models.utils import get_freer_device + + self.device = device or get_freer_device() + self.cutoff = cutoff + self.model.to(self.device) + # self.device = device or torch.device( + # "cuda" if torch.cuda.is_available() else "cpu" + # ) + # self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device) + # self.implemented_properties = ["energy", "forces", "stress"] + + # def __getstate__(self): + # state = self.__dict__.copy() + # state["_modules"]["model"] = state["_modules"]["model"]._orig_mod + # return state + + # def __setstate__(self, state): + # self.__dict__.update(state) + # self.model = torch.compile(state["_modules"]["model"]) + + def calculate( + self, + atoms: Atoms, + properties: list[str], + system_changes: list = all_changes, + ): + """Calculate energies and forces for the given Atoms object""" + super().calculate(atoms, properties, system_changes) + + # TODO: move collate_fn to here in MLIPCalculator + data = collate_fn([atoms], cutoff=self.cutoff).to(self.device) + output = self.forward(data) + + # TODO: decollate_fn + + self.results = {} + if "energy" in properties: + self.results["energy"] = output["energy"].squeeze().item() + if "forces" in properties: + self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy() + if "stress" in properties: + self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy() + + # def forward(self, x: Atoms) -> dict[str, torch.Tensor]: + # """Implement data conversion, graph creation, and model forward pass + + # Example implementation: + # 1. Use `ase.neighborlist.NeighborList` to get neighbor list + # 2. Create `torch_geometric.data.Data` object and copy the data + # 3. Pass the `Data` object to the model and return the output + + # """ + + # raise NotImplementedError diff --git a/mlip_arena/models/classicals/__init__.py b/mlip_arena/models/classicals/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/mlip_arena/models/classicals/zbl.py b/mlip_arena/models/classicals/zbl.py new file mode 100644 index 0000000000000000000000000000000000000000..5821539f1565fa0506957fe7b9fb2351954d9d0a --- /dev/null +++ b/mlip_arena/models/classicals/zbl.py @@ -0,0 +1,214 @@ +import torch +import torch.linalg as LA +import torch.nn as nn +import torch_scatter +from torch_geometric.data import Data + +from ase.data import covalent_radii +from ase.units import _e, _eps0, m, pi +from e3nn.util.jit import compile_mode # TODO: e3nn allows autograd in compiled model + + +@compile_mode("script") +class ZBL(nn.Module): + """Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion""" + + def __init__( + self, + trianable: bool = False, + **kwargs, + ) -> None: + nn.Module.__init__(self, **kwargs) + + torch.set_default_dtype(torch.double) + + self.a = torch.nn.parameter.Parameter( + torch.tensor( + [0.18175, 0.50986, 0.28022, 0.02817], dtype=torch.get_default_dtype() + ), + requires_grad=trianable, + ) + self.b = torch.nn.parameter.Parameter( + torch.tensor( + [-3.19980, -0.94229, -0.40290, -0.20162], + dtype=torch.get_default_dtype(), + ), + requires_grad=trianable, + ) + + self.a0 = torch.nn.parameter.Parameter( + torch.tensor(0.46850, dtype=torch.get_default_dtype()), + requires_grad=trianable, + ) + + self.p = torch.nn.parameter.Parameter( + torch.tensor(0.23, dtype=torch.get_default_dtype()), requires_grad=trianable + ) + + self.register_buffer( + "covalent_radii", + torch.tensor( + covalent_radii, + dtype=torch.get_default_dtype(), + ), + ) + + def phi(self, x): + return torch.einsum("i,ij->j", self.a, torch.exp(torch.outer(self.b, x))) + + def d_phi(self, x): + return torch.einsum( + "i,ij->j", self.a * self.b, torch.exp(torch.outer(self.b, x)) + ) + + def dd_phi(self, x): + return torch.einsum( + "i,ij->j", self.a * self.b**2, torch.exp(torch.outer(self.b, x)) + ) + + def eij( + self, zi: torch.Tensor, zj: torch.Tensor, rij: torch.Tensor + ) -> torch.Tensor: # [eV] + return _e * m / (4 * pi * _eps0) * torch.div(torch.mul(zi, zj), rij) + + def d_eij( + self, zi: torch.Tensor, zj: torch.Tensor, rij: torch.Tensor + ) -> torch.Tensor: # [eV / A] + return -_e * m / (4 * pi * _eps0) * torch.div(torch.mul(zi, zj), rij**2) + + def dd_eij( + self, zi: torch.Tensor, zj: torch.Tensor, rij: torch.Tensor + ) -> torch.Tensor: # [eV / A^2] + return _e * m / (2 * pi * _eps0) * torch.div(torch.mul(zi, zj), rij**3) + + def switch_fn( + self, + zi: torch.Tensor, + zj: torch.Tensor, + rij: torch.Tensor, + aij: torch.Tensor, + router: torch.Tensor, + rinner: torch.Tensor, + ) -> torch.Tensor: # [eV] + # aij = self.a0 / (torch.pow(zi, self.p) + torch.pow(zj, self.p)) + + xrouter = router / aij + + energy = self.eij(zi, zj, router) * self.phi(xrouter) + + grad1 = self.d_eij(zi, zj, router) * self.phi(xrouter) + self.eij( + zi, zj, router + ) * self.d_phi(xrouter) + + grad2 = ( + self.dd_eij(zi, zj, router) * self.phi(xrouter) + + self.d_eij(zi, zj, router) * self.d_phi(xrouter) + + self.d_eij(zi, zj, router) * self.d_phi(xrouter) + + self.eij(zi, zj, router) * self.dd_phi(xrouter) + ) + + A = (-3 * grad1 + (router - rinner) * grad2) / (router - rinner) ** 2 + B = (2 * grad1 - (router - rinner) * grad2) / (router - rinner) ** 3 + C = ( + -energy + + 1.0 / 2.0 * (router - rinner) * grad1 + - 1.0 / 12.0 * (router - rinner) ** 2 * grad2 + ) + + switching = torch.where( + rij < rinner, + C, + A / 3.0 * (rij - rinner) ** 3 + B / 4.0 * (rij - rinner) ** 4 + C, + ) + + return switching + + def envelope(self, r: torch.Tensor, rc: torch.Tensor, p: int = 6): + x = r / rc + y = ( + 1.0 + - ((p + 1.0) * (p + 2.0) / 2.0) * torch.pow(x, p) + + p * (p + 2.0) * torch.pow(x, p + 1) + - (p * (p + 1.0) / 2) * torch.pow(x, p + 2) + ) * (x < 1) + return y + + def _get_derivatives(self, energy: torch.Tensor, data: Data): + egradi, egradij = torch.autograd.grad( + outputs=[energy], # TODO: generalized derivatives + inputs=[data.positions, data.vij], # TODO: generalized derivatives + grad_outputs=[torch.ones_like(energy)], + retain_graph=True, + create_graph=True, + allow_unused=True, + ) + + volume = torch.det(data.cell) # (batch,) + rfaxy = torch.einsum("ax,ay->axy", data.vij, -egradij) + + edge_batch = data.batch[data.edge_index[0]] + + stress = ( + -0.5 + * torch_scatter.scatter_sum(rfaxy, edge_batch, dim=0) + / volume.view(-1, 1) + ) + + return -egradi, stress + + def forward( + self, + data: Data, + ) -> dict[str, torch.Tensor]: + # TODO: generalized derivatives + data.positions.requires_grad_(True) + + numbers = data.numbers # (sum(N), ) + positions = data.positions # (sum(N), 3) + edge_index = data.edge_index # (2, sum(E)) + edge_shift = data.edge_shift # (sum(E), 3) + batch = data.batch # (sum(N), ) + + edge_src, edge_dst = edge_index[0], edge_index[1] + + if "rij" not in data or "vij" not in data: + data.vij = positions[edge_dst] - positions[edge_src] + edge_shift + data.rij = LA.norm(data.vij, dim=-1) + + rbond = ( + self.covalent_radii[numbers[edge_src]] + + self.covalent_radii[numbers[edge_dst]] + ) + + rij = data.rij + zi = numbers[edge_src] # (sum(E), ) + zj = numbers[edge_dst] # (sum(E), ) + + aij = self.a0 / (torch.pow(zi, self.p) + torch.pow(zj, self.p)) # (sum(E), ) + + energy_pairs = ( + self.eij(zi, zj, rij) + * self.phi(rij / aij.to(rij)) + * self.envelope(rij, torch.min(data.cutoff, rbond)) + ) + + energy_nodes = 0.5 * torch_scatter.scatter_add( + src=energy_pairs, + index=edge_dst, + dim=0, + ) # (sum(N), ) + + energies = torch_scatter.scatter_add( + src=energy_nodes, + index=batch, + dim=0, + ) # (B, ) + + # TODO: generalized derivatives + forces, stress = self._get_derivatives(energies, data) + + return { + "energy": energies, + "forces": forces, + "stress": stress, + } diff --git a/mlip_arena/models/externals/__init__.py b/mlip_arena/models/externals/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/mlip_arena/models/externals/alignn.py b/mlip_arena/models/externals/alignn.py new file mode 100644 index 0000000000000000000000000000000000000000..5741587d043a00de668b69d4980dff5a1b0d41f1 --- /dev/null +++ b/mlip_arena/models/externals/alignn.py @@ -0,0 +1,15 @@ +from __future__ import annotations + +from alignn.ff.ff import AlignnAtomwiseCalculator, default_path + +from mlip_arena.models.utils import get_freer_device + + +class ALIGNN(AlignnAtomwiseCalculator): + def __init__(self, device=None, **kwargs) -> None: + # TODO: cannot control version + # _ = get_figshare_model_ff(dir_path=dir_path) + model_path = default_path() + + device = device or get_freer_device() + super().__init__(path=model_path, device=device, **kwargs) diff --git a/mlip_arena/models/externals/ani.py b/mlip_arena/models/externals/ani.py new file mode 100644 index 0000000000000000000000000000000000000000..31da73c17214daa395c9ff67f186353c031adbc3 --- /dev/null +++ b/mlip_arena/models/externals/ani.py @@ -0,0 +1,39 @@ +from __future__ import annotations + +import yaml +from pathlib import Path + +from ase.calculators.calculator import all_changes +from torchani.ase import Calculator as ANICalculator +from torchani.models import BuiltinEnsemble + +from mlip_arena.models.utils import get_freer_device + + + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + + +class ANI2x(ANICalculator): + def __init__( + self, + checkpoint=REGISTRY["ANI2x"]["checkpoint"], + device: str | None = None, + periodic_table_index=False, + **kwargs, + ): + self.device = device or str(get_freer_device()) + + ensemble = BuiltinEnsemble._from_neurochem_resources( + checkpoint, periodic_table_index + ) + # TODO: ANICalculator does not offer API to change device + # ensemble.species.device = self.device + super().__init__(ensemble.species, ensemble, **kwargs) + + + def calculate( + self, atoms=None, properties=['energy', 'forces', 'stress'], system_changes=all_changes + ): + super().calculate(atoms, properties, system_changes) diff --git a/mlip_arena/models/externals/chgnet.py b/mlip_arena/models/externals/chgnet.py new file mode 100644 index 0000000000000000000000000000000000000000..dac62185718c32de0a32b5184f882d19c8419b99 --- /dev/null +++ b/mlip_arena/models/externals/chgnet.py @@ -0,0 +1,39 @@ +from __future__ import annotations + +from typing import Literal + +from ase import Atoms +from chgnet.model.dynamics import CHGNetCalculator +from chgnet.model.model import CHGNet as CHGNetModel + +from mlip_arena.models.utils import get_freer_device + + +class CHGNet(CHGNetCalculator): + def __init__( + self, + checkpoint: CHGNetModel | None = None, # TODO: specifiy version + device: str | None = None, + stress_weight: float | None = 1 / 160.21766208, + on_isolated_atoms: Literal["ignore", "warn", "error"] = "warn", + **kwargs, + ) -> None: + use_device = str(device or get_freer_device()) + super().__init__( + model=checkpoint, + use_device=use_device, + stress_weight=stress_weight, + on_isolated_atoms=on_isolated_atoms, + **kwargs, + ) + + def calculate( + self, + atoms: Atoms | None = None, + properties: list | None = None, + system_changes: list | None = None, + ) -> None: + super().calculate(atoms, properties, system_changes) + + # for ase.io.write compatibility + self.results.pop("crystal_fea", None) diff --git a/mlip_arena/models/externals/deepmd.py b/mlip_arena/models/externals/deepmd.py new file mode 100644 index 0000000000000000000000000000000000000000..5c5a4e4d96807ec7f09a48db8033ec5fd69bc6c8 --- /dev/null +++ b/mlip_arena/models/externals/deepmd.py @@ -0,0 +1,47 @@ +from __future__ import annotations + +from pathlib import Path + +import yaml +import requests +from deepmd.calculator import DP as DPCalculator + +from mlip_arena.models.utils import get_freer_device + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + +class DeepMD(DPCalculator): + def __init__( + self, + checkpoint=REGISTRY["DeepMD"]["checkpoint"], + device=None, + **kwargs, + ): + device = device or get_freer_device() + + cache_dir = Path.home() / ".cache" / "deepmd" + cache_dir.mkdir(parents=True, exist_ok=True) + model_path = cache_dir / checkpoint + + url = "https://bohrium-api.dp.tech/ds-dl/mlip-arena-tfpk-v1.zip" + + if not model_path.exists(): + import zipfile + + print(f"Downloading DeepMD model from {url} to {model_path}...") + try: + response = requests.get(url, stream=True, timeout=120) + response.raise_for_status() + with open(cache_dir/"temp.zip", "wb") as f: + for chunk in response.iter_content(chunk_size=8192): + f.write(chunk) + print("Download completed.") + with zipfile.ZipFile(cache_dir/"temp.zip", "r") as zip_ref: + zip_ref.extractall(cache_dir) + print("Unzip completed.") + except requests.exceptions.RequestException as e: + raise RuntimeError("Failed to download DeepMD model.") from e + + + super().__init__(model_path, device=device, **kwargs) \ No newline at end of file diff --git a/mlip_arena/models/externals/equiformer.py b/mlip_arena/models/externals/equiformer.py new file mode 100644 index 0000000000000000000000000000000000000000..c023b9f278bd66741e6683014944248e5861a190 --- /dev/null +++ b/mlip_arena/models/externals/equiformer.py @@ -0,0 +1,56 @@ +from __future__ import annotations + +from pathlib import Path + +import yaml +from ase import Atoms +from fairchem.core import OCPCalculator + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + + +class EquiformerV2(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"], + # TODO: cannot assign device + local_cache="/tmp/ocp/", + cpu=False, + seed=0, + **kwargs, + ) -> None: + kwargs.pop("device", None) + super().__init__( + model_name=checkpoint, + local_cache=local_cache, + cpu=cpu, + seed=seed, + **kwargs, + ) + + def calculate(self, atoms: Atoms, properties, system_changes) -> None: + super().calculate(atoms, properties, system_changes) + + self.results.update( + force=atoms.get_forces(), + ) + + +class EquiformerV2OC20(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"], + # TODO: cannot assign device + local_cache="/tmp/ocp/", + cpu=False, + seed=0, + **kwargs, + ) -> None: + super().__init__( + model_name=checkpoint, + local_cache=local_cache, + cpu=cpu, + seed=seed, + **kwargs, + ) \ No newline at end of file diff --git a/mlip_arena/models/externals/escn.py b/mlip_arena/models/externals/escn.py new file mode 100644 index 0000000000000000000000000000000000000000..7aa8390f90c126078b48b12dc9437a02d75285b7 --- /dev/null +++ b/mlip_arena/models/externals/escn.py @@ -0,0 +1,36 @@ +from __future__ import annotations + +from pathlib import Path + +import yaml +from ase import Atoms +from fairchem.core import OCPCalculator + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + +class eSCN(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["eSCN(OC20)"]["checkpoint"], # "eSCN-L6-M3-Lay20-S2EF-OC20-All+MD" + # TODO: cannot assign device + local_cache="/tmp/ocp/", + cpu=False, + seed=0, + **kwargs, + ) -> None: + kwargs.pop("device", None) + super().__init__( + model_name=checkpoint, + local_cache=local_cache, + cpu=cpu, + seed=seed, + **kwargs, + ) + + def calculate(self, atoms: Atoms, properties, system_changes) -> None: + super().calculate(atoms, properties, system_changes) + + self.results.update( + force=atoms.get_forces(), + ) diff --git a/mlip_arena/models/externals/fairchem.py b/mlip_arena/models/externals/fairchem.py new file mode 100644 index 0000000000000000000000000000000000000000..403a8b4e5f2f7063c0a4b15fc7ae5b365bc2398b --- /dev/null +++ b/mlip_arena/models/externals/fairchem.py @@ -0,0 +1,155 @@ +from __future__ import annotations + +from pathlib import Path + +import yaml +from ase import Atoms +from fairchem.core import OCPCalculator +from huggingface_hub import hf_hub_download + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + + +class eSEN(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["eSEN"]["checkpoint"], + cache_dir=None, + cpu=False, # TODO: cannot assign device + seed=0, + **kwargs, + ) -> None: + + # https://huggingface.co/facebook/OMAT24/resolve/main/esen_30m_oam.pt + + checkpoint_path = hf_hub_download( + "fairchem/OMAT24", + filename=checkpoint, + revision="13ab5b8d71af67bd1c83fbbf53250c82cd87f506", + cache_dir=cache_dir + ) + kwargs.pop("device", None) + super().__init__( + checkpoint_path=checkpoint_path, + cpu=cpu, + seed=seed, + **kwargs, + ) + +class eqV2(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["eqV2(OMat)"]["checkpoint"], + cache_dir=None, + cpu=False, # TODO: cannot assign device + seed=0, + **kwargs, + ) -> None: + """ + Initialize an eqV2 calculator. + + Parameters + ---------- + checkpoint : str, default="eqV2_86M_omat_mp_salex.pt" + The name of the eqV2 checkpoint to use. + local_cache : str, default="/tmp/ocp/" + The directory to store the downloaded checkpoint. + cpu : bool, default=False + Whether to run the model on CPU or GPU. + seed : int, default=0 + The random seed for the model. + + Other Parameters + ---------------- + **kwargs + Any additional keyword arguments are passed to the superclass. + """ + + # https://huggingface.co/fairchem/OMAT24/resolve/main/eqV2_86M_omat_mp_salex.pt + + checkpoint_path = hf_hub_download( + "fairchem/OMAT24", + filename=checkpoint, + revision="bf92f9671cb9d5b5c77ecb4aa8b317ff10b882ce", + cache_dir=cache_dir + ) + kwargs.pop("device", None) + super().__init__( + checkpoint_path=checkpoint_path, + cpu=cpu, + seed=seed, + **kwargs, + ) + +class EquiformerV2(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"], + # TODO: cannot assign device + local_cache="~/.cache/ocp/", + cpu=False, + seed=0, + **kwargs, + ) -> None: + kwargs.pop("device", None) + super().__init__( + model_name=checkpoint, + local_cache=local_cache, + cpu=cpu, + seed=seed, + **kwargs, + ) + + def calculate(self, atoms: Atoms, properties, system_changes) -> None: + super().calculate(atoms, properties, system_changes) + + self.results.update( + force=atoms.get_forces(), + ) + + +class EquiformerV2OC20(OCPCalculator): + def __init__( + self, + checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"], + # TODO: cannot assign device + local_cache="~/.cache/ocp/", + cpu=False, + seed=0, + **kwargs, + ) -> None: + kwargs.pop("device", None) + super().__init__( + model_name=checkpoint, + local_cache=local_cache, + cpu=cpu, + seed=seed, + **kwargs, + ) + +class eSCN(OCPCalculator): + def __init__( + self, + checkpoint="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD", # TODO: import from registry + # TODO: cannot assign device + local_cache="~/.cache/ocp/", + cpu=False, + seed=0, + **kwargs, + ) -> None: + kwargs.pop("device", None) + super().__init__( + model_name=checkpoint, + local_cache=local_cache, + cpu=cpu, + seed=seed, + **kwargs, + ) + + def calculate(self, atoms: Atoms, properties, system_changes) -> None: + super().calculate(atoms, properties, system_changes) + + self.results.update( + force=atoms.get_forces(), + ) diff --git a/mlip_arena/models/externals/mace-mp.py b/mlip_arena/models/externals/mace-mp.py new file mode 100644 index 0000000000000000000000000000000000000000..1015c7c4aadd329904cd49d28cffa8fabf1de777 --- /dev/null +++ b/mlip_arena/models/externals/mace-mp.py @@ -0,0 +1,69 @@ +from __future__ import annotations + +import os +from pathlib import Path + +from mace.calculators import MACECalculator + +from mlip_arena.models.utils import get_freer_device + + +class MACE_MP_Medium(MACECalculator): + def __init__( + self, + checkpoint="https://github.com/ACEsuit/mace-mp/releases/download/mace_mp_0/2023-12-03-mace-128-L1_epoch-199.model", + device: str | None = None, + default_dtype="float32", + **kwargs, + ): + cache_dir = Path.home() / ".cache" / "mace" + checkpoint_url_name = "".join( + c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_" + ) + cached_model_path = f"{cache_dir}/{checkpoint_url_name}" + if not os.path.isfile(cached_model_path): + import urllib + + os.makedirs(cache_dir, exist_ok=True) + _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path) + if "Content-Type: text/html" in http_msg: + raise RuntimeError( + f"Model download failed, please check the URL {checkpoint}" + ) + model = cached_model_path + + device = device or str(get_freer_device()) + + super().__init__( + model_paths=model, device=device, default_dtype=default_dtype, **kwargs + ) + +class MACE_MPA(MACECalculator): + def __init__( + self, + checkpoint="https://github.com/ACEsuit/mace-mp/releases/download/mace_mpa_0/mace-mpa-0-medium.model", + device: str | None = None, + default_dtype="float32", + **kwargs, + ): + cache_dir = Path.home() / ".cache" / "mace" + checkpoint_url_name = "".join( + c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_" + ) + cached_model_path = f"{cache_dir}/{checkpoint_url_name}" + if not os.path.isfile(cached_model_path): + import urllib + + os.makedirs(cache_dir, exist_ok=True) + _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path) + if "Content-Type: text/html" in http_msg: + raise RuntimeError( + f"Model download failed, please check the URL {checkpoint}" + ) + model = cached_model_path + + device = device or str(get_freer_device()) + + super().__init__( + model_paths=model, device=device, default_dtype=default_dtype, **kwargs + ) \ No newline at end of file diff --git a/mlip_arena/models/externals/mace-off.py b/mlip_arena/models/externals/mace-off.py new file mode 100644 index 0000000000000000000000000000000000000000..712ddeb235834d1f25fcba8dac0f7a3a044d61aa --- /dev/null +++ b/mlip_arena/models/externals/mace-off.py @@ -0,0 +1,39 @@ +from __future__ import annotations + +import os +from pathlib import Path + +from mace.calculators import MACECalculator + +from mlip_arena.models.utils import get_freer_device + + +class MACE_OFF_Medium(MACECalculator): + def __init__( + self, + checkpoint="https://github.com/ACEsuit/mace-off/raw/main/mace_off23/MACE-OFF23_medium.model?raw=true", + device: str | None = None, + default_dtype="float32", + **kwargs, + ): + cache_dir = Path.home() / ".cache" / "mace" + checkpoint_url_name = "".join( + c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_" + ) + cached_model_path = f"{cache_dir}/{checkpoint_url_name}" + if not os.path.isfile(cached_model_path): + import urllib + + os.makedirs(cache_dir, exist_ok=True) + _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path) + if "Content-Type: text/html" in http_msg: + raise RuntimeError( + f"Model download failed, please check the URL {checkpoint}" + ) + model = cached_model_path + + device = device or str(get_freer_device()) + + super().__init__( + model_paths=model, device=device, default_dtype=default_dtype, **kwargs + ) \ No newline at end of file diff --git a/mlip_arena/models/externals/matgl.py b/mlip_arena/models/externals/matgl.py new file mode 100644 index 0000000000000000000000000000000000000000..6c7d70ac3cb64e82197c1cbe9a1ff4c5f53ba556 --- /dev/null +++ b/mlip_arena/models/externals/matgl.py @@ -0,0 +1,21 @@ +from __future__ import annotations + +import matgl +import torch +from matgl.ext.ase import PESCalculator +from typing import Literal + + +class M3GNet(PESCalculator): + def __init__( + self, + checkpoint="M3GNet-MP-2021.2.8-PES", + # TODO: cannot assign device + state_attr: torch.Tensor | None = None, + stress_unit: Literal["eV/A3", "GPa"] = "GPa", + stress_weight: float = 1.0, + use_voigt: bool = False, + **kwargs, + ) -> None: + potential = matgl.load_model(checkpoint) + super().__init__(potential, state_attr, stress_unit, stress_weight, use_voigt, **kwargs) diff --git a/mlip_arena/models/externals/mattersim.py b/mlip_arena/models/externals/mattersim.py new file mode 100644 index 0000000000000000000000000000000000000000..28b78a23164720dc149b3b5a10fec854b9f47bc5 --- /dev/null +++ b/mlip_arena/models/externals/mattersim.py @@ -0,0 +1,53 @@ +from __future__ import annotations + +from pathlib import Path + +import yaml +from mattersim.forcefield import MatterSimCalculator + +from mlip_arena.models.utils import get_freer_device + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + + +class MatterSim(MatterSimCalculator): + def __init__( + self, + checkpoint=REGISTRY["MatterSim"]["checkpoint"], + device=None, + **kwargs, + ): + super().__init__( + load_path=checkpoint, device=str(device or get_freer_device()), **kwargs + ) + + def get_potential_energy(self, atoms=None, force_consistent=False): + return float( + super().get_potential_energy( + atoms=atoms, + force_consistent=force_consistent, + ) + ) # mattersim return numpy float instead of python float + + def __getstate__(self): + state = self.__dict__.copy() + + # BUG: remove unpicklizable potential + state.pop("potential", None) + + return state + + # def calculate( + # self, + # atoms: Atoms | None = None, + # properties: list | None = None, + # system_changes: list | None = None, + # ): + # super().calculate(atoms, properties, system_changes) + + # # convert unpicklizable atoms back to picklizable atoms to avoid prefect pickling error + # if isinstance(self.atoms, MSONAtoms): + # atoms = self.atoms.copy() + # strucutre = AseAtomsAdaptor().get_structure(atoms) + # self.atoms = AseAtomsAdaptor().get_atoms(strucutre, msonable=False) diff --git a/mlip_arena/models/externals/orb.py b/mlip_arena/models/externals/orb.py new file mode 100644 index 0000000000000000000000000000000000000000..f02a00512aee9fa6b80479ef78e3f08ac99ab649 --- /dev/null +++ b/mlip_arena/models/externals/orb.py @@ -0,0 +1,74 @@ +from __future__ import annotations + +from pathlib import Path + +import yaml +import requests +from orb_models.forcefield import pretrained +from orb_models.forcefield.calculator import ORBCalculator + +from mlip_arena.models.utils import get_freer_device + +with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + +class ORB(ORBCalculator): + def __init__( + self, + checkpoint=REGISTRY["ORB"]["checkpoint"], + device=None, + **kwargs, + ): + device = device or get_freer_device() + + cache_dir = Path.home() / ".cache" / "orb" + cache_dir.mkdir(parents=True, exist_ok=True) + ckpt_path = cache_dir / checkpoint + + url = f"https://storage.googleapis.com/orbitalmaterials-public-models/forcefields/{checkpoint}" + + if not ckpt_path.exists(): + print(f"Downloading ORB model from {url} to {ckpt_path}...") + try: + response = requests.get(url, stream=True, timeout=120) + response.raise_for_status() + with open(ckpt_path, "wb") as f: + for chunk in response.iter_content(chunk_size=8192): + f.write(chunk) + print("Download completed.") + except requests.exceptions.RequestException as e: + raise RuntimeError("Failed to download ORB model.") from e + + orbff = pretrained.orb_v1(weights_path=ckpt_path, device=device) + super().__init__(orbff, device=device, **kwargs) + +class ORBv2(ORBCalculator): + def __init__( + self, + checkpoint=REGISTRY["ORBv2"]["checkpoint"], + device=None, + **kwargs, + ): + device = device or get_freer_device() + + cache_dir = Path.home() / ".cache" / "orb" + cache_dir.mkdir(parents=True, exist_ok=True) + ckpt_path = cache_dir / checkpoint + + # url = f"https://storage.googleapis.com/orbitalmaterials-public-models/forcefields/{checkpoint}" + url = f"https://orbitalmaterials-public-models.s3.us-west-1.amazonaws.com/forcefields/{checkpoint}" + + if not ckpt_path.exists(): + print(f"Downloading ORB model from {url} to {ckpt_path}...") + try: + response = requests.get(url, stream=True, timeout=120) + response.raise_for_status() + with open(ckpt_path, "wb") as f: + for chunk in response.iter_content(chunk_size=8192): + f.write(chunk) + print("Download completed.") + except requests.exceptions.RequestException as e: + raise RuntimeError("Failed to download ORB model.") from e + + orbff = pretrained.orb_v2(weights_path=ckpt_path, device=device) + super().__init__(orbff, device=device, **kwargs) diff --git a/mlip_arena/models/externals/sevennet.py b/mlip_arena/models/externals/sevennet.py new file mode 100644 index 0000000000000000000000000000000000000000..af8d13c86aaedf49e8e5c61e961d88b37db90ddf --- /dev/null +++ b/mlip_arena/models/externals/sevennet.py @@ -0,0 +1,16 @@ +from __future__ import annotations + +from sevenn.sevennet_calculator import SevenNetCalculator + +from mlip_arena.models.utils import get_freer_device + + +class SevenNet(SevenNetCalculator): + def __init__( + self, + checkpoint="7net-0", # TODO: import from registry + device=None, + **kwargs, + ): + device = device or get_freer_device() + super().__init__(checkpoint, device=device, **kwargs) diff --git a/mlip_arena/models/mace.py b/mlip_arena/models/mace.py new file mode 100644 index 0000000000000000000000000000000000000000..382e80a73a33e97e3afefb1d9030bfdcb68facb7 --- /dev/null +++ b/mlip_arena/models/mace.py @@ -0,0 +1,58 @@ +import torch +from ase import Atoms +from ase.calculators.calculator import all_changes +from huggingface_hub import hf_hub_download +from torch_geometric.data import Data + +from mlip_arena.models import MLIPCalculator + + +class MACE_MP_Medium(MLIPCalculator): + def __init__( + self, + device: torch.device | None = None, + restart=None, + atoms=None, + directory=".", + **kwargs, + ): + self.device = device or torch.device( + "cuda" if torch.cuda.is_available() else "cpu" + ) + + fpath = hf_hub_download( + repo_id="cyrusyc/mace-universal", + subfolder="pretrained", + filename="2023-12-12-mace-128-L1_epoch-199.model", + revision="main", + ) + + model = torch.load(fpath, map_location=self.device) + + super().__init__( + model=model, restart=restart, atoms=atoms, directory=directory, **kwargs + ) + + self.name: str = self.__class__.__name__ + self.implemented_properties = ["energy", "forces", "stress"] + + def calculate( + self, atoms: Atoms, properties: list[str], system_changes: list = all_changes + ): + """Calculate energies and forces for the given Atoms object""" + super().calculate(atoms, properties, system_changes) + + output = self.forward(atoms) + + self.results = {} + if "energy" in properties: + self.results["energy"] = output["energy"].item() + if "forces" in properties: + self.results["forces"] = output["forces"].cpu().detach().numpy() + if "stress" in properties: + self.results["stress"] = output["stress"].cpu().detach().numpy() + + def forward(self, x: Data | Atoms) -> dict[str, torch.Tensor]: + """Implement data conversion, graph creation, and model forward pass""" + # TODO + raise NotImplementedError diff --git a/mlip_arena/models/registry.yaml b/mlip_arena/models/registry.yaml new file mode 100644 index 0000000000000000000000000000000000000000..50d70407e273bd6a096604db5a36ed7f5189988b --- /dev/null +++ b/mlip_arena/models/registry.yaml @@ -0,0 +1,407 @@ +MACE-MP(M): + module: externals + class: MACE_MP_Medium + family: mace-mp + package: mace-torch==0.3.9 + checkpoint: 2023-12-03-mace-128-L1_epoch-199.model + username: cyrusyc + last-update: 2024-03-25T14:30:00 + datetime: 2024-03-25T14:30:00 # TODO: Fake datetime + datasets: + - MPTrj # TODO: fake HF dataset repo + cpu-tasks: + - eos_alloy + gpu-tasks: + - homonuclear-diatomics + - stability + - combustion + - eos_bulk + - wbm_ev + github: https://github.com/ACEsuit/mace + doi: https://arxiv.org/abs/2401.00096 + date: 2023-12-29 + prediction: EFS + nvt: true + npt: true + license: MIT + +CHGNet: + module: externals + class: CHGNet + family: chgnet + package: chgnet==0.3.8 + checkpoint: v0.3.0 + username: cyrusyc + last-update: 2024-07-08T00:00:00 + datetime: 2024-07-08T00:00:00 + datasets: + - MPTrj + gpu-tasks: + - homonuclear-diatomics + - stability + - combustion + - eos_bulk + - wbm_ev + github: https://github.com/CederGroupHub/chgnet + doi: https://doi.org/10.1038/s42256-023-00716-3 + date: 2023-02-28 + prediction: EFSM + nvt: true + npt: true + license: BSD-3-Clause + +M3GNet: + module: externals + class: M3GNet + family: matgl + package: matgl==1.1.2 + checkpoint: M3GNet-MP-2021.2.8-PES + username: cyrusyc + last-update: 2024-07-08T00:00:00 + datetime: 2024-07-08T00:00:00 + datasets: + - MPF + gpu-tasks: + - homonuclear-diatomics + - combustion + - stability + - eos_bulk + - wbm_ev + github: https://github.com/materialsvirtuallab/matgl + doi: https://doi.org/10.1038/s43588-022-00349-3 + date: 2022-02-05 + prediction: EFS + nvt: true + npt: true + license: BSD-3-Clause + +MatterSim: + module: externals + class: MatterSim + family: mattersim + package: mattersim==1.0.0rc9 + checkpoint: MatterSim-v1.0.0-5M.pth + username: + last-update: 2024-10-29T00:00:00 + datetime: 2024-10-29T00:00:00 # TODO: Fake datetime + datasets: + - MPTrj + - Alexandria + cpu-tasks: + - eos_alloy + gpu-tasks: + - homonuclear-diatomics + - stability + - combustion + - eos_bulk + - wbm_ev + github: https://github.com/microsoft/mattersim + doi: https://arxiv.org/abs/2405.04967 + date: 2024-12-05 + prediction: EFS + nvt: true + npt: true + license: MIT + +ORBv2: + module: externals + class: ORBv2 + family: orb + package: orb-models==0.4.0 + checkpoint: orb-v2-20241011.ckpt + username: + last-update: 2024-10-29T00:00:00 + datetime: 2024-10-29T00:00:00 # TODO: Fake datetime + datasets: + - MPTrj + - Alexandria + cpu-tasks: + - eos_alloy + gpu-tasks: + - homonuclear-diatomics + - combustion + - stability + - eos_bulk + - wbm_ev + github: https://github.com/orbital-materials/orb-models + doi: https://arxiv.org/abs/2410.22570 + date: 2024-10-15 + prediction: EFS + nvt: true + npt: true + license: Apache-2.0 + +SevenNet: + module: externals + class: SevenNet + family: sevennet + package: sevenn==0.9.4 + checkpoint: 7net-0 + username: cyrusyc + last-update: 2024-03-25T14:30:00 + datetime: 2024-03-25T14:30:00 # TODO: Fake datetime + datasets: + - MPTrj # TODO: fake HF dataset repo + gpu-tasks: + - homonuclear-diatomics + - stability + - combustion + - eos_bulk + - wbm_ev + github: https://github.com/MDIL-SNU/SevenNet + doi: https://doi.org/10.1021/acs.jctc.4c00190 + date: 2024-07-11 + prediction: EFS + nvt: true + npt: true + license: GPL-3.0-only + +eqV2(OMat): + module: externals + class: eqV2 + family: fairchem + package: fairchem-core==1.2.0 + checkpoint: eqV2_86M_omat_mp_salex.pt + username: fairchem # HF handle + last-update: 2024-10-18T00:00:00 + datetime: 2024-10-18T00:00:00 + datasets: + - OMat + - MPTrj + - Alexandria + cpu-tasks: + - eos_alloy + gpu-tasks: + - homonuclear-diatomics + - wbm_ev + prediction: EFS + nvt: true + npt: false # https://github.com/FAIR-Chem/fairchem/issues/888, https://github.com/atomind-ai/mlip-arena/issues/17 + date: 2024-10-18 + github: https://github.com/FAIR-Chem/fairchem + doi: https://arxiv.org/abs/2410.12771 + license: Modified Apache-2.0 (Meta) + +MACE-MPA: + module: externals + class: MACE_MPA + family: mace-mp + package: mace-torch==0.3.9 + checkpoint: mace-mpa-0-medium.model + username: + last-update: 2025-11-19T00:00:00 + datetime: 2024-12-09T00:00:00 # TODO: Fake datetime + datasets: + - MPTrj # TODO: fake HF dataset repo + - Alexandria + gpu-tasks: + - homonuclear-diatomics + - stability + - eos_bulk + - wbm_ev + github: https://github.com/ACEsuit/mace + doi: https://arxiv.org/abs/2401.00096 + date: 2024-12-09 + prediction: EFS + nvt: true + npt: true + license: MIT + +eSEN: + module: externals + class: eSEN + family: fairchem + package: fairchem-core==1.10.0 + checkpoint: esen_30m_oam.pt + username: fairchem # HF handle + last-update: 2025-04-21 + datetime: 2025-04-21 + datasets: + - OMat + - MPTrj + - Alexandria + gpu-tasks: + - homonuclear-diatomics + - wbm_ev + - eos_bulk + prediction: EFS + nvt: true + npt: true + date: 2025-04-14 + github: https://github.com/FAIR-Chem/fairchem + doi: https://arxiv.org/abs/2502.12147 + license: Modified Apache-2.0 (Meta) + +EquiformerV2(OC22): + module: externals + class: EquiformerV2 + family: equiformer + package: fairchem-core==1.2.0 + checkpoint: EquiformerV2-lE4-lF100-S2EFS-OC22 + username: cyrusyc + last-update: 2024-07-08T00:00:00 + datetime: 2024-07-08T00:00:00 + datasets: + - OC22 + gpu-tasks: + - homonuclear-diatomics + - combustion + github: https://github.com/FAIR-Chem/fairchem + doi: https://arxiv.org/abs/2306.12059 + date: 2023-06-21 + prediction: EF + nvt: true + npt: false + license: + +EquiformerV2(OC20): + module: externals + class: EquiformerV2OC20 + family: equiformer + package: fairchem-core==1.2.0 + checkpoint: EquiformerV2-31M-S2EF-OC20-All+MD + username: cyrusyc + last-update: 2024-07-08T00:00:00 + datetime: 2024-07-08T00:00:00 + datasets: + - OC20 + gpu-tasks: + - homonuclear-diatomics + - combustion + github: https://github.com/FAIR-Chem/fairchem + doi: https://arxiv.org/abs/2306.12059 + date: 2023-06-21 + prediction: EF + nvt: true + npt: false + +eSCN(OC20): + module: externals + class: eSCN + family: escn + package: fairchem-core==1.2.0 + checkpoint: eSCN-L6-M3-Lay20-S2EF-OC20-All+MD + username: cyrusyc + last-update: 2024-07-08T00:00:00 + datetime: 2024-07-08T00:00:00 + datasets: + - OC20 + gpu-tasks: + - homonuclear-diatomics + - combustion + github: https://github.com/FAIR-Chem/fairchem + doi: https://arxiv.org/abs/2302.03655 + date: 2023-02-07 + prediction: EF + nvt: true + npt: false + license: + +MACE-OFF(M): + module: externals + class: MACE_OFF_Medium + family: mace-off + package: mace-torch==0.3.9 + checkpoint: MACE-OFF23_medium.model + username: cyrusyc + last-update: 2024-03-25T14:30:00 + datetime: 2024-03-25T14:30:00 # TODO: Fake datetime + datasets: + - SPICE # TODO: fake HF dataset repo + gpu-tasks: + - homonuclear-diatomics + github: https://github.com/ACEsuit/mace + doi: https://arxiv.org/abs/2312.15211 + date: 2023-12-23 + prediction: EFS + nvt: true + npt: true + license: ASL + +ANI2x: + module: externals + class: ANI2x + family: ani + package: torchani==2.2.4 + checkpoint: ani-2x_8x.info + username: cyrusyc + last-update: 2024-12-11T16:00:00 + datetime: 2024-12-11T16:00:00 # TODO: Fake datetime + datasets: + cpu-tasks: + gpu-tasks: + - homonuclear-diatomics + github: https://github.com/aiqm/torchani + doi: https://www.nature.com/articles/s41598-024-62242-5 + date: 2024-05-23 + prediction: EFS + nvt: true + npt: true + license: MIT + +ALIGNN: + module: externals + class: ALIGNN + family: alignn + package: alignn==2024.5.27 + checkpoint: 2024.5.27 + username: cyrusyc + last-update: 2024-07-08T00:00:00 + datetime: 2024-07-08T00:00:00 + datasets: + - MP22 + gpu-tasks: + - homonuclear-diatomics + - stability + - wbm_ev + # - combustion + prediction: EFS + nvt: true + npt: true + github: https://github.com/usnistgov/alignn + doi: https://doi.org/10.1038/s41524-021-00650-1 + date: 2021-11-15 + license: + +DeepMD: + module: externals + class: DeepMD + family: deepmd + package: deepmd-kit==v3.0.0b4 + checkpoint: dp0808c_v024mixu.pth + username: + last-update: 2024-10-09T00:00:00 + datetime: 2024-03-25T14:30:00 # TODO: Fake datetime + datasets: + - MPTrj # TODO: fake HF dataset repo + github: https://github.com/deepmodeling/deepmd-kit/ + doi: https://arxiv.org/abs/2312.15492 + date: 2024-10-09 + prediction: EFS + nvt: true + npt: true + license: + +ORB: + module: externals + class: ORB + family: orb + package: orb-models==0.3.1 + checkpoint: orbff-v1-20240827.ckpt + username: cyrusyc + last-update: 2024-03-25T14:30:00 + datetime: 2024-03-25T14:30:00 # TODO: Fake datetime + datasets: + - MPTrj # TODO: fake HF dataset repo + - Alexandria + gpu-tasks: + - homonuclear-diatomics + - combustion + - stability + github: https://github.com/orbital-materials/orb-models + doi: + date: 2024-09-03 + prediction: EFS + nvt: true + npt: true + license: Apache-2.0 \ No newline at end of file diff --git a/mlip_arena/models/utils.py b/mlip_arena/models/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..40d7aa9085e3d90b698ceb78801e9dea9c83a384 --- /dev/null +++ b/mlip_arena/models/utils.py @@ -0,0 +1,44 @@ +"""Utility functions for MLIP models.""" + +import torch + +try: + from prefect.logging import get_run_logger + + logger = get_run_logger() +except (ImportError, RuntimeError): + from loguru import logger + + +def get_freer_device() -> torch.device: + """Get the GPU with the most free memory, or use MPS if available. + + Returns: + torch.device: The selected GPU device or MPS. + + Raises: + ValueError: If no GPU or MPS is available. + """ + device_count = torch.cuda.device_count() + if device_count > 0: + # If CUDA GPUs are available, select the one with the most free memory + mem_free = [ + torch.cuda.get_device_properties(i).total_memory + - torch.cuda.memory_allocated(i) + for i in range(device_count) + ] + free_gpu_index = mem_free.index(max(mem_free)) + device = torch.device(f"cuda:{free_gpu_index}") + logger.info( + f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs" + ) + elif torch.backends.mps.is_available(): + # If no CUDA GPUs are available but MPS is, use MPS + logger.info("No GPU available. Using MPS.") + device = torch.device("mps") + else: + # Fallback to CPU if neither CUDA GPUs nor MPS are available + logger.info("No GPU or MPS available. Using CPU.") + device = torch.device("cpu") + + return device diff --git a/mlip_arena/tasks/README.md b/mlip_arena/tasks/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b2be171a46e3596709631a323bef18f53c61069d --- /dev/null +++ b/mlip_arena/tasks/README.md @@ -0,0 +1,26 @@ + + +## Task + +In the language of Prefect workflow manager, we define a task as *one operation on one input structure* that generates result for **one sample**. For example, [Structure optimization (OPT)](optimize.py) initiates one structure optimization on one structure and return the relaxed structure. + +It is possible to chain multiple subtasks into a single, complex task. For example, [Equation of states (EOS)](eos.py) first performs one full relaxed [OPT](optimize.py) task and parallelizes/serializes multiple constrained [OPT](optimize.py) tasks in one call, and returns the equation of state and bulk modulus of the structure. + +There are some general tasks that can be reused: +- [Structure optimization (OPT)](optimize.py) +- [Molecular dynamics (MD)](md.py) +- [Equation of states (EOS)](eos.py) + +## Flow + +Flow is meant to be used to parallize multiple tasks and be orchestrated for production at scale on high-throughput cluster. + + + \ No newline at end of file diff --git a/mlip_arena/tasks/__init__.py b/mlip_arena/tasks/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a7c0819d3f6a00477b24be3f9855c99715052e5c --- /dev/null +++ b/mlip_arena/tasks/__init__.py @@ -0,0 +1,73 @@ +from pathlib import Path + +import yaml +from huggingface_hub import HfApi, HfFileSystem, hf_hub_download + +# from mlip_arena.models import MLIP +# from mlip_arena.models import REGISTRY as MODEL_REGISTRY + +try: + from prefect.logging import get_run_logger + + logger = get_run_logger() +except (ImportError, RuntimeError): + from loguru import logger + +try: + from .elasticity import run as ELASTICITY + from .eos import run as EOS + from .md import run as MD + from .neb import run as NEB + from .neb import run_from_endpoints as NEB_FROM_ENDPOINTS + from .optimize import run as OPT + from .phonon import run as PHONON + + __all__ = ["OPT", "EOS", "MD", "NEB", "NEB_FROM_ENDPOINTS", "ELASTICITY", "PHONON"] +except (ImportError, TypeError, NameError) as e: + logger.warning(e) + + +with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f: + REGISTRY = yaml.safe_load(f) + + +# class Task: +# def __init__(self): +# self.name: str = self.__class__.__name__ # display name on the leaderboard + +# def run_local(self, model: MLIP): +# """Run the task using the given model and return the results.""" +# raise NotImplementedError + +# def run_hf(self, model: MLIP): +# """Run the task using the given model and return the results.""" +# raise NotImplementedError + +# # Calcualte evaluation metrics and postprocessed data +# api = HfApi() +# api.upload_file( +# path_or_fileobj="results.json", +# path_in_repo=f"{self.__class__.__name__}/{model.__class__.__name__}/results.json", # Upload to a specific folder +# repo_id="atomind/mlip-arena", +# repo_type="dataset", +# ) + +# def run_nersc(self, model: MLIP): +# """Run the task using the given model and return the results.""" +# raise NotImplementedError + +# def get_results(self): +# """Get the results from the task.""" +# # fs = HfFileSystem() +# # files = fs.glob(f"datasets/atomind/mlip-arena/{self.__class__.__name__}/*/*.json") + +# for model, metadata in MODEL_REGISTRY.items(): +# results = hf_hub_download( +# repo_id="atomind/mlip-arena", +# filename="results.json", +# subfolder=f"{self.__class__.__name__}/{model}", +# repo_type="dataset", +# revision=None, +# ) + +# return results diff --git a/mlip_arena/tasks/combustion/H256O128.extxyz b/mlip_arena/tasks/combustion/H256O128.extxyz new file mode 100644 index 0000000000000000000000000000000000000000..59fcd94cbba957e18f9626b2755866d01dfaac1b --- /dev/null +++ b/mlip_arena/tasks/combustion/H256O128.extxyz @@ -0,0 +1,386 @@ +384 +Lattice="30.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 30.0" Properties=species:S:1:pos:R:3 Built=T with=T Packmol=T pbc="T T T" +H 16.87897000 14.36340900 5.78639500 +H 17.43576500 14.42974000 6.26492700 +H 3.55483600 6.05817200 17.69903100 +H 3.93076700 5.56617900 17.29899100 +H 9.49657700 24.94365100 23.70565700 +H 8.79155100 24.79399100 23.55088300 +H 23.86076500 25.42809100 5.93695500 +H 24.14102300 25.10486100 6.53728200 +H 3.01569800 26.19656300 15.08020000 +H 2.75520000 25.98067600 14.42525900 +H 9.67788700 17.96928400 5.86481000 +H 10.22656200 18.46063200 5.83403500 +H 12.57870500 16.09171300 25.13668100 +H 12.52257400 16.32590900 24.43996300 +H 12.70913000 6.58341200 15.79997200 +H 13.14484100 6.28817300 16.31611500 +H 21.57221500 26.22007700 8.20775100 +H 21.49858000 25.76305400 7.63406000 +H 5.23150000 2.79202900 17.94668200 +H 5.34160000 2.30038000 17.40856200 +H 3.20140800 24.30032700 16.20596600 +H 3.01866600 23.59120400 16.29060400 +H 24.14000600 28.98000500 16.44843000 +H 24.06795800 28.97179200 15.71483900 +H 5.06521500 20.71716800 5.13534300 +H 4.35233500 20.56737200 5.02230400 +H 20.35575900 22.80574000 20.92112100 +H 20.33775300 22.82449400 20.18441300 +H 9.44001100 14.49775500 28.22965700 +H 8.79780000 14.40101700 27.88091500 +H 9.85111200 22.18687800 5.65961300 +H 10.23873200 22.52486700 5.13147700 +H 2.43073100 14.23882800 9.88843100 +H 2.41513200 14.74593300 10.42323500 +H 24.12085900 18.37439500 13.96560000 +H 24.11116500 17.72761900 14.31915600 +H 8.20116600 27.96832200 10.13677000 +H 7.93113800 28.48718300 10.58541500 +H 9.12140400 26.33764100 3.10957700 +H 9.77423300 26.15812100 3.40112700 +H 4.61212100 6.00445300 4.16492600 +H 4.64955500 6.71113500 4.37135300 +H 11.25926100 17.21528300 14.18800300 +H 11.45743100 17.84358800 14.51872400 +H 8.30883000 10.16305200 12.29874000 +H 7.72273600 10.57641900 12.12834100 +H 27.50695500 17.01494000 3.57254600 +H 26.93803700 16.58868000 3.76760800 +H 5.77076100 2.49322200 14.46871700 +H 5.62762700 2.75411500 15.14315000 +H 6.51732300 25.84318300 26.82939800 +H 6.55807500 25.12027600 26.69098100 +H 12.12323800 24.13458100 24.41591800 +H 12.45973600 24.45908800 23.84593700 +H 5.17331100 23.16438400 16.63650900 +H 4.88027500 22.87390600 17.24738200 +H 8.10959100 21.29987000 4.46261500 +H 7.63531700 20.73605600 4.43829600 +H 22.74497200 17.55560800 1.89494000 +H 22.79182400 17.39285800 2.61238800 +H 10.18128000 19.85571100 21.25732700 +H 10.60903100 20.45053300 21.17590400 +H 7.36765600 22.32656800 11.62091000 +H 7.36366200 22.32242700 12.35805300 +H 22.11051700 17.35754100 10.70421900 +H 21.63342400 16.93939000 10.32879200 +H 17.11800800 14.46985000 18.41272300 +H 17.76175400 14.14922200 18.57459600 +H 23.88598700 25.00383500 10.24699000 +H 24.23686000 25.54091700 9.88388500 +H 23.07268800 28.13033100 13.42606000 +H 22.86236700 28.70230100 13.84082400 +H 19.71929900 26.69691800 16.96391200 +H 19.77256100 26.69242100 16.22868700 +H 10.20897000 5.12509300 26.31992400 +H 10.27351800 5.67934800 25.83820900 +H 7.74945200 21.75294300 26.96569600 +H 7.85650000 21.94562800 26.26225700 +H 28.99846900 5.82412900 4.51948000 +H 28.84661100 5.17571900 4.20338400 +H 14.00669600 21.28067600 10.51077400 +H 14.02815700 20.57927500 10.28496600 +H 24.56688200 8.44802400 10.18169000 +H 24.87884700 8.74970200 10.77757700 +H 19.82097000 6.71060100 21.14119900 +H 20.20300600 6.57543700 20.52541300 +H 12.50680000 16.29448300 21.20002800 +H 12.58574100 16.94571300 21.53630400 +H 2.88750900 6.48194900 12.41992700 +H 2.63814400 5.97929100 11.94184100 +H 18.31924100 27.95926100 11.93343800 +H 18.08127600 28.28411700 12.55089700 +H 8.80421900 21.80835300 22.53574400 +H 8.19015200 22.18697500 22.38414900 +H 16.51146900 26.58804000 12.13737900 +H 16.51397100 26.60180800 11.40034500 +H 3.01154500 1.61542600 13.17298500 +H 2.31442300 1.37599500 13.16260300 +H 14.38141000 16.74073800 22.79765000 +H 14.54283900 16.49896600 23.47507200 +H 27.32062300 13.13890000 3.91277400 +H 27.68551200 13.68559000 4.24654100 +H 14.17603100 27.61355700 6.47229000 +H 14.22488300 28.10975000 5.92931700 +H 9.46812300 7.70071300 3.45368100 +H 9.61903800 8.06415600 4.07701700 +H 2.18384900 3.88122900 12.55886400 +H 2.16274500 3.79907900 11.82659400 +H 8.39628800 28.36448200 27.01582200 +H 7.83759500 27.92933600 26.81106900 +H 12.15799700 14.43608700 11.46881200 +H 11.91985600 14.40143500 10.77203200 +H 13.07421100 20.72377800 27.23797600 +H 12.38307500 20.94338900 27.37032300 +H 5.74890500 20.92045300 10.67404300 +H 6.07702100 21.30697500 10.13892200 +H 1.20101800 3.91867000 5.21703800 +H 1.33343400 3.87199400 5.94071000 +H 15.87910900 3.60421600 17.51325200 +H 16.55088000 3.81033800 17.29042700 +H 12.77118400 24.89708700 14.04640100 +H 12.93989800 25.26872400 13.43253200 +H 9.17302000 6.59818400 6.60346000 +H 9.20243000 6.69949200 7.33303900 +H 3.82873400 21.34798500 18.48337600 +H 4.44631900 21.08569500 18.78867100 +H 6.64065400 26.32535100 2.13715800 +H 7.07217200 25.92015200 1.69781700 +H 23.61875500 28.68096800 2.12527200 +H 24.20152800 28.50119700 1.71118000 +H 28.97955000 28.31110000 20.77510000 +H 28.51757300 27.79654500 21.03049100 +H 5.03608000 8.09600900 15.70374700 +H 5.01029200 8.77247600 15.41195800 +H 6.38181200 23.23894300 14.67726800 +H 6.72455700 23.67837800 15.15980100 +H 4.17225800 15.87846200 26.32328700 +H 3.60033300 16.10995900 25.91989500 +H 9.98548800 27.03736900 11.34257400 +H 9.89827200 26.31071900 11.43082100 +H 11.08624000 3.40906900 27.43653900 +H 11.03887400 3.46845400 28.16978100 +H 18.17462600 26.60855300 18.64341900 +H 17.84284900 27.25533700 18.76592900 +H 24.56041800 23.73132300 15.45710400 +H 24.15216800 23.55566200 16.04522700 +H 12.42149000 8.51852900 26.92738800 +H 12.85187200 8.54739800 26.32959800 +H 12.58494400 23.66894000 26.51841800 +H 11.87423100 23.85271600 26.58569800 +H 25.66776400 11.38987800 3.60979300 +H 25.04312400 11.04530700 3.79556200 +H 26.02410100 25.69683300 2.37428800 +H 26.49306900 25.51267100 1.83617300 +H 1.17207300 13.56847700 17.81787500 +H 1.09749900 13.56957200 17.08449200 +H 16.34427300 15.52582100 25.01154500 +H 16.21113800 15.84954200 25.66030800 +H 8.34844300 4.44909300 22.93722500 +H 7.86249000 4.49217500 23.48986100 +H 24.87485300 5.31864800 1.40835600 +H 25.19256300 5.84446800 1.00094100 +H 3.42570400 18.20815000 27.19415500 +H 2.77521600 18.34972600 26.87755500 +H 26.13269700 10.18845100 14.93319100 +H 25.85987900 9.71045000 14.44278400 +H 16.37800300 2.82461800 14.94014800 +H 16.88769100 2.31071600 14.80037500 +H 2.68461500 21.47767100 25.65109500 +H 2.86206000 21.90699200 25.07872200 +H 12.04855900 6.95917200 11.68418900 +H 12.39801200 7.51168600 11.34356500 +H 17.65835900 17.90689000 21.24729900 +H 17.57119400 17.94728700 20.51642000 +H 19.13123000 3.51526100 22.77599000 +H 18.50245100 3.89609300 22.72106000 +H 17.59014300 22.68251700 7.89677900 +H 17.94157500 23.30906000 7.73138900 +H 17.80517200 27.73224100 26.14671300 +H 17.17556300 27.67636700 25.76739200 +H 1.23383900 16.30952500 11.48348600 +H 1.21410800 16.78863900 10.92359800 +H 5.14106900 3.12858300 22.32613900 +H 4.84773300 3.33214200 22.97106700 +H 1.54627400 27.32284900 21.64647900 +H 1.89536100 27.35916600 22.29473300 +H 23.61494100 4.81278600 28.82197500 +H 23.15278300 4.71015800 28.25691600 +H 16.55009200 9.41232000 9.23163100 +H 16.39011400 8.95635500 9.78833300 +H 9.24672000 17.04310600 22.97075500 +H 9.69788100 16.57902500 23.32359500 +H 5.92999000 6.70344600 12.54324900 +H 6.12013700 6.02943400 12.77339200 +H 20.55806500 20.91865300 27.16038800 +H 20.17869900 21.08398200 27.77043800 +H 6.86904800 16.04280700 13.61109400 +H 7.39742300 16.55244000 13.54396000 +H 2.56041500 20.50409800 7.85659000 +H 1.94972600 20.22580200 8.16158900 +H 10.30946400 26.76199200 22.35478000 +H 9.74930900 26.93466800 22.80179500 +H 9.37796100 7.80951200 12.91974400 +H 8.83394300 8.02560600 12.47167900 +H 8.87347500 15.06285800 6.33146400 +H 8.47422200 14.92537200 6.93570600 +H 7.76353600 8.45873000 15.11360900 +H 7.75143800 8.55689900 14.38310900 +H 3.37293300 18.43420600 23.45136000 +H 3.96942500 18.08124700 23.70242100 +H 26.76422700 16.17472200 17.31888500 +H 26.40881800 16.38505300 17.92950700 +H 23.72340800 16.16827600 17.16088600 +H 23.54079100 15.74444300 16.58605400 +H 9.04422200 24.03668900 13.69386900 +H 8.77587200 23.93037800 14.37217600 +H 26.63067400 17.02388700 6.06368500 +H 26.82086300 16.77080800 6.72941200 +H 11.89740000 7.80260100 21.08513000 +H 12.35463200 8.38081400 21.08994900 +H 18.88034700 13.04076800 4.44410900 +H 18.99432900 13.09305500 5.17053000 +H 12.33984600 11.69259200 22.86388500 +H 12.74815800 11.21413800 23.24830300 +H 5.80287000 16.81823400 16.93960100 +H 5.49624100 17.28191100 17.42374600 +H 28.49793800 7.81327600 23.13893400 +H 28.47600900 7.97048500 22.41906000 +H 12.83557500 11.24373500 25.45085300 +H 12.41881800 11.24066000 26.05889700 +H 8.27635600 24.04023300 1.68334600 +H 7.96194000 23.42057200 1.43722300 +H 19.77199600 11.69701700 8.46538200 +H 19.78074500 11.70307100 9.20247100 +H 11.31673000 12.37398400 14.55721300 +H 10.84297500 12.47166100 14.00094900 +H 10.79125000 20.69161200 3.40245000 +H 11.27250900 20.38956300 3.87209900 +H 12.69025500 11.48337700 5.00482800 +H 11.98627900 11.67412000 4.89783200 +H 26.72371500 1.50329200 2.91105000 +H 26.51636700 2.14519300 3.20834400 +H 9.52738300 16.34429400 15.41539000 +H 8.94769200 16.45923000 15.85602700 +H 22.92343200 13.91655100 28.55448400 +H 22.91144200 13.99598900 27.82170900 +H 19.42780900 1.69485400 3.41368800 +H 18.91557000 1.36746900 3.83063400 +H 7.19465000 19.03417100 20.30585200 +H 6.81579600 18.83473100 20.90594100 +H 5.76403400 2.66353000 26.49024900 +H 6.17055300 2.09977300 26.24461900 +H 22.76304500 7.37905700 21.38041300 +H 22.27422500 7.45776800 21.92655800 +H 20.87103900 4.95557800 21.95393100 +H 20.54276300 4.55466100 21.42960800 +O 2.79836800 3.68628500 15.85501600 +O 2.81086000 3.61004300 17.09857400 +O 16.47940800 2.53818900 22.88295600 +O 16.11951200 2.71624200 24.06243800 +O 16.11955600 27.75767800 21.06500300 +O 16.53710300 26.62354600 21.36799700 +O 2.28922000 5.17821400 26.49769500 +O 2.38796000 5.21061100 25.25608000 +O 23.35821600 23.78530000 2.30561500 +O 22.62749600 23.99025500 3.29376900 +O 8.01645400 1.87918100 22.34390100 +O 7.71565300 1.00097600 23.17497300 +O 24.09262600 23.80245300 18.50597300 +O 25.13119000 23.75358600 19.19256200 +O 23.43919000 8.32924800 7.70010800 +O 22.65907800 8.89107400 8.49268800 +O 23.97254400 22.00311700 5.43698700 +O 23.89487400 22.49778100 6.57789900 +O 27.56254300 8.43488800 7.35581200 +O 27.43055900 8.25837300 6.12950500 +O 20.87006100 27.63986300 11.38162200 +O 20.86380900 27.63798600 12.62756100 +O 1.73533900 16.60794700 2.29549200 +O 1.55322100 16.46304200 1.07146500 +O 2.03508400 26.37263200 7.32515600 +O 1.51280300 27.39855300 7.80172200 +O 9.85776800 20.59545000 27.48500700 +O 9.78700000 20.58172200 26.24113800 +O 6.50961300 12.26791300 10.82158600 +O 6.77142400 11.85977400 9.67385600 +O 27.41406500 13.33114600 25.89152900 +O 27.64803100 14.38606200 25.27119400 +O 10.65841500 26.52178800 25.03188900 +O 11.32208500 27.05107500 25.94392100 +O 19.37531500 27.41779100 27.77152100 +O 19.50655800 28.65269600 27.87247500 +O 15.16713800 28.62232100 25.08493400 +O 15.07154300 28.26860400 26.27579700 +O 17.00751400 16.63266600 17.58492000 +O 17.59502600 16.71087600 16.48896400 +O 11.43827100 14.97615400 3.72092700 +O 10.81544400 15.61953100 4.58727500 +O 15.49533900 18.92456600 3.73508000 +O 15.41648300 19.38131500 2.57854700 +O 24.31615500 8.87176200 3.90336400 +O 24.24717100 8.63758100 2.68155900 +O 7.28827800 12.82799800 18.71906300 +O 6.55542500 13.39545800 19.55172300 +O 11.08744900 6.55884500 22.72049900 +O 12.06607400 6.27858300 23.43893700 +O 6.38492100 21.01048900 22.84221300 +O 6.12927500 19.99335000 23.51488000 +O 24.06443800 6.57624000 5.98481500 +O 24.52114300 5.76588200 6.81375800 +O 10.04719800 9.05734900 6.05599500 +O 10.94084300 9.28468500 6.89392400 +O 14.96821700 27.18796600 18.05445400 +O 15.07988500 27.85573600 17.00850000 +O 3.86508500 1.34322900 24.91310100 +O 3.95599400 1.18703300 26.14588000 +O 20.55715100 20.45753800 21.54897500 +O 19.73819000 20.46822400 22.48790900 +O 15.54716700 11.17956000 10.54123500 +O 15.52405700 11.70380700 11.67129500 +O 27.57196100 18.81697000 18.10230200 +O 28.42915400 18.07345000 18.61689400 +O 13.08594500 21.54734200 24.54405200 +O 14.11395800 21.16325000 25.13402600 +O 26.73666800 18.41630100 23.76197500 +O 26.39312500 17.34817200 24.30371700 +O 3.75150300 18.39675300 7.29152900 +O 3.53600500 18.86067200 6.15541900 +O 17.47592700 22.97389700 14.10462800 +O 17.52163900 23.02279100 15.34878500 +O 18.26366400 1.00092300 19.49677400 +O 18.47839600 1.21883800 20.70458600 +O 13.79429800 11.31045500 17.14879000 +O 14.75715400 11.10528500 16.38510100 +O 23.04461100 15.79867400 21.94317000 +O 24.21186100 16.06476100 22.28832400 +O 18.39899300 20.45438100 6.25233500 +O 18.17334100 19.38368000 5.65644400 +O 12.45708500 28.00076400 22.87959600 +O 12.89052700 26.91111300 23.30054100 +O 26.92707100 5.06905500 5.23373400 +O 25.77848800 5.33532200 4.83091500 +O 21.42684100 24.25676000 11.83089700 +O 21.61828400 25.40374200 11.38347100 +O 5.87933600 27.53672900 16.61577900 +O 4.73532800 27.38741900 17.08626700 +O 24.28470500 3.34526900 2.03178600 +O 24.76461000 2.73333800 1.05832000 +O 28.95365000 2.62596100 13.80868600 +O 28.43270400 3.61259000 13.25408200 +O 4.22171400 14.80081000 20.83480200 +O 4.21389800 14.77292800 19.58918200 +O 22.63711100 1.37775300 19.58937200 +O 23.87485500 1.47510200 19.48488400 +O 24.56301300 18.58751900 21.22319300 +O 23.67458500 19.30549400 20.72558500 +O 8.94762000 14.49730700 12.31189400 +O 9.38425200 15.14940800 13.27963600 +O 16.95516300 6.13080300 19.32331700 +O 16.15902300 5.87750900 18.39897300 +O 8.63504700 19.77961300 8.44117000 +O 9.68469700 20.38220800 8.73700800 +O 11.31282500 2.46998800 2.58334500 +O 11.07470700 1.38104200 2.02665600 +O 27.39479700 24.64841500 9.77024200 +O 26.71049700 25.67139800 9.57621600 +O 2.05963700 8.45476400 16.28023600 +O 2.01230900 8.30200000 17.51588500 +O 9.59314000 26.93822800 8.47063300 +O 10.09094600 25.91018600 7.97291300 +O 25.13932300 4.62957000 8.63843500 +O 25.91372600 5.60386200 8.57958800 +O 21.90534500 3.90912800 17.80877300 +O 21.81900900 3.92307100 19.05165600 +O 19.73746700 6.78254100 2.45368300 +O 19.39816400 6.01988000 3.37868500 +O 6.15237600 26.10484900 18.61638000 +O 4.93823500 25.98411400 18.86874900 +O 7.89451900 2.41931000 18.51611600 +O 7.61766700 2.45592400 17.30185900 +O 24.96184600 3.83646000 17.86831300 +O 24.40660700 3.89389800 16.75439300 +O 19.23185100 4.23752100 5.63971900 +O 20.27904100 4.39660700 4.98360000 diff --git a/mlip_arena/tasks/combustion/alignn/hydrogen.json b/mlip_arena/tasks/combustion/alignn/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..e0550f75183d83cd9cccae4cca343920b6c508a1 --- /dev/null +++ b/mlip_arena/tasks/combustion/alignn/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:575dcb76e8cceccadaef2ff40ffbd68351db45e2d9d19e7a13d992bf8a1a1cbc +size 519 diff --git a/mlip_arena/tasks/combustion/chgnet/hydrogen.json b/mlip_arena/tasks/combustion/chgnet/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..6ee50507b95e671dcd58a0c794e29334d20559f4 --- /dev/null +++ b/mlip_arena/tasks/combustion/chgnet/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3ab2f6bd802d8f9491e03dcc15e1fe179f593921d1038101d588cd0bee22d54a +size 58345 diff --git a/mlip_arena/tasks/combustion/equiformer/hydrogen.json b/mlip_arena/tasks/combustion/equiformer/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..96c31c2955ffd7975f46f5c05e3a831169b3c687 --- /dev/null +++ b/mlip_arena/tasks/combustion/equiformer/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7b99da993c15df5700e06781eb85e46541557f33df40f6b8984d89add4b24cce +size 67780 diff --git a/mlip_arena/tasks/combustion/escn/hydrogen.json b/mlip_arena/tasks/combustion/escn/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..d2c961328eab249fb940cd7aa789e7bc1537dbd8 --- /dev/null +++ b/mlip_arena/tasks/combustion/escn/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ab10167bece4688dbb6ca867bc443219333f8dfef678eee891d535d5e5ceaa30 +size 138692 diff --git a/mlip_arena/tasks/combustion/mace-mp/hydrogen.json b/mlip_arena/tasks/combustion/mace-mp/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..4b8979ed8023fc3cfd5d64930685f680b0b5f748 --- /dev/null +++ b/mlip_arena/tasks/combustion/mace-mp/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2fee4011f63fe132bb65c9dfdad1c0e13f9db937675bc49f077c4fba1ffeb874 +size 229391 diff --git a/mlip_arena/tasks/combustion/matgl/hydrogen.json b/mlip_arena/tasks/combustion/matgl/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..57f7038aa0c8c29dbc86334353c92de31a75f94e --- /dev/null +++ b/mlip_arena/tasks/combustion/matgl/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:430d50172964ae7e03b4d0879e1d09daefea8d413e5169b9c7dd3271907e3196 +size 50493 diff --git a/mlip_arena/tasks/combustion/mattersim/hydrogen.json b/mlip_arena/tasks/combustion/mattersim/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..ce3dcade0260979f4addf85f8be6fe1f582ede2d --- /dev/null +++ b/mlip_arena/tasks/combustion/mattersim/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:00c0c38af5321151ff4a3fc64935df168689030ba31cad0be2589379360b333b +size 226556 diff --git a/mlip_arena/tasks/combustion/orb/hydrogen.json b/mlip_arena/tasks/combustion/orb/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..7d78008a04b83c63e97146ba2ebbef7e2d9ef07a --- /dev/null +++ b/mlip_arena/tasks/combustion/orb/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f46a474a9d9419fbb3ee297b918cb1992d540f311c6942980c5986149d142d91 +size 465101 diff --git a/mlip_arena/tasks/combustion/sevennet/hydrogen.json b/mlip_arena/tasks/combustion/sevennet/hydrogen.json new file mode 100644 index 0000000000000000000000000000000000000000..567e45a1c0777ab4d1fb5627922967a354678ba0 --- /dev/null +++ b/mlip_arena/tasks/combustion/sevennet/hydrogen.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc465c2bb3212f9fb71f4d8d76b4b9db86bef4553f3434a52ca792cca6e4d3d7 +size 225986 diff --git a/mlip_arena/tasks/combustion/water.ipynb b/mlip_arena/tasks/combustion/water.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..18ea30955cac7a96cb7caab2c9415a74641109ae --- /dev/null +++ b/mlip_arena/tasks/combustion/water.ipynb @@ -0,0 +1,299 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "from dask.distributed import Client\n", + "from dask_jobqueue import SLURMCluster\n", + "from mlip_arena.models import REGISTRY, MLIPEnum\n", + "from mlip_arena.tasks.md import run as MD\n", + "from mlip_arena.tasks.utils import get_calculator\n", + "from prefect import flow\n", + "from prefect_dask import DaskTaskRunner\n", + "\n", + "from ase import Atoms, units\n", + "from ase.build import molecule\n", + "from ase.io import read, write\n", + "from pymatgen.core import Molecule\n", + "from pymatgen.io.packmol import PackmolBoxGen" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "jp-MarkdownHeadingCollapsed": true, + "tags": [] + }, + "source": [ + "## Intial configuration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h2 = molecule(\"H2\")\n", + "o2 = molecule(\"O2\")\n", + "h2o = molecule(\"H2O\")\n", + "\n", + "write(\"h2.xyz\", h2)\n", + "write(\"o2.xyz\", o2)\n", + "write(\"h2o.xyz\", h2o)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "h2 = Molecule.from_file(\"h2.xyz\")\n", + "o2 = Molecule.from_file(\"o2.xyz\")\n", + "h2o = Molecule.from_file(\"h2o.xyz\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "molecules = []\n", + "\n", + "for m, number in zip([h2, o2], [128, 64]):\n", + " molecules.append(\n", + " {\n", + " \"name\": m.composition.to_pretty_string(),\n", + " \"number\": number,\n", + " \"coords\": m,\n", + " }\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "tolerance = 2.0\n", + "input_gen = PackmolBoxGen(\n", + " tolerance=tolerance,\n", + " seed=1,\n", + ")\n", + "margin = 0.5 * tolerance\n", + "\n", + "a = 30\n", + "\n", + "packmol_set = input_gen.get_input_set(\n", + " molecules=molecules,\n", + " box=[margin, margin, margin, a - margin, a - margin, a - margin],\n", + ")\n", + "packmol_set.write_input(\".\")\n", + "packmol_set.run(\".\")\n", + "\n", + "atoms = read(\"packmol_out.xyz\")\n", + "atoms.cell = [a, a, a]\n", + "atoms.pbc = True\n", + "\n", + "print(atoms)\n", + "\n", + "write(f\"{atoms.get_chemical_formula()}.extxyz\", atoms)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run workflow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "atoms = read(\"H256O128.extxyz\")\n", + "print(atoms)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "nodes_per_alloc = 1\n", + "gpus_per_alloc = 4\n", + "ntasks = 1\n", + "\n", + "cluster_kwargs = dict(\n", + " cores=1,\n", + " memory=\"64 GB\",\n", + " shebang=\"#!/bin/bash\",\n", + " account=\"m4282\",\n", + " walltime=\"00:30:00\",\n", + " job_mem=\"0\",\n", + " job_script_prologue=[\n", + " \"source ~/.bashrc\",\n", + " \"module load python\",\n", + " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n", + " ],\n", + " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n", + " job_extra_directives=[\n", + " \"-J combustion-water\",\n", + " \"-q debug\",\n", + " f\"-N {nodes_per_alloc}\",\n", + " \"-C gpu\",\n", + " f\"-G {gpus_per_alloc}\",\n", + " \"--exclusive\",\n", + " ],\n", + " death_timeout=86400,\n", + ")\n", + "\n", + "cluster = SLURMCluster(**cluster_kwargs)\n", + "\n", + "\n", + "print(cluster.job_script())\n", + "cluster.adapt(minimum_jobs=1, maximum_jobs=1)\n", + "client = Client(cluster)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@flow(task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True)\n", + "def combustion(atoms: Atoms):\n", + " futures = []\n", + "\n", + " for model in MLIPEnum:\n", + " if model.name != \"MatterSim\":\n", + " continue\n", + "\n", + " future = MD.submit(\n", + " atoms=atoms,\n", + " calculator=get_calculator(\n", + " calculator_name=model,\n", + " calculator_kwargs=None,\n", + " ),\n", + " ensemble=\"nvt\",\n", + " dynamics=\"nose-hoover\",\n", + " time_step=None,\n", + " dynamics_kwargs=dict(ttime=25 * units.fs, pfactor=None),\n", + " total_time=1000_000,\n", + " temperature=[300, 3000, 3000, 300],\n", + " pressure=None,\n", + " velocity_seed=0,\n", + " traj_file=Path(REGISTRY[model.name][\"family\"])\n", + " / f\"{model.name}_{atoms.get_chemical_formula()}.traj\",\n", + " traj_interval=1000,\n", + " restart=True,\n", + " )\n", + "\n", + " futures.append(future)\n", + "\n", + " return [future.result() for future in futures]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "results = combustion(atoms)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def combustion(atoms: Atoms):\n", + " futures = []\n", + "\n", + " for model in MLIPEnum:\n", + " if model.name != \"MatterSim\":\n", + " continue\n", + "\n", + " future = MD(\n", + " atoms=atoms,\n", + " calculator=get_calculator(\n", + " calculator_name=model,\n", + " calculator_kwargs=None,\n", + " ),\n", + " ensemble=\"nvt\",\n", + " dynamics=\"nose-hoover\",\n", + " time_step=None,\n", + " dynamics_kwargs=dict(ttime=25 * units.fs, pfactor=None),\n", + " total_time=1000_000,\n", + " temperature=[300, 3000, 3000, 300],\n", + " pressure=None,\n", + " velocity_seed=0,\n", + " traj_file=Path(REGISTRY[model.name][\"family\"])\n", + " / f\"{model.name}_{atoms.get_chemical_formula()}.traj\",\n", + " traj_interval=1000,\n", + " restart=True,\n", + " )\n", + "\n", + " futures.append(future)\n", + "\n", + " return [future.result() for future in futures]\n", + "\n", + "\n", + "results = combustion(atoms)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mlip-arena", + "language": "python", + "name": "mlip-arena" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/mlip_arena/tasks/diatomics/__init__.py b/mlip_arena/tasks/diatomics/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/mlip_arena/tasks/diatomics/alignn/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/alignn/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..dbb99fb1da19c5ceeb2b4de01587b239950cfcb4 --- /dev/null +++ b/mlip_arena/tasks/diatomics/alignn/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:325979c740279016c3652f570b742d0ed28065156e553ae6c878a775951c344b +size 2383784 diff --git a/mlip_arena/tasks/diatomics/analysis.py b/mlip_arena/tasks/diatomics/analysis.py new file mode 100644 index 0000000000000000000000000000000000000000..b2f84ff9302cec37b8e92c6feede0038f93c66c9 --- /dev/null +++ b/mlip_arena/tasks/diatomics/analysis.py @@ -0,0 +1,198 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +from ase.data import chemical_symbols +from ase.io import read +from scipy import stats +from scipy.interpolate import UnivariateSpline +from tqdm.auto import tqdm + +from mlip_arena.models import REGISTRY, MLIPEnum + +for model in MLIPEnum: + + df = pd.DataFrame( + columns=[ + "name", + "method", + "R", + "E", + "F", + "S^2", + "force-flip-times", + "force-total-variation", + "force-jump", + "energy-diff-flip-times", + "energy-grad-norm-max", + "energy-jump", + "energy-total-variation", + "tortuosity", + "conservation-deviation", + "spearman-descending-force", + "spearman-ascending-force", + "spearman-repulsion-energy", + "spearman-attraction-energy", + "pbe-energy-mae", + "pbe-force-mae", + ] + ) + + for symbol in tqdm(chemical_symbols[1:]): + da = symbol + symbol + + out_dir = Path(model.name) + + traj_fpath = out_dir / f"{str(da)}.extxyz" + + if traj_fpath.exists(): + traj = read(traj_fpath, index=":") + else: + continue + + Rs, Es, Fs, S2s = [], [], [], [] + for atoms in traj: + vec = atoms.positions[1] - atoms.positions[0] + r = np.linalg.norm(vec) + e = atoms.get_potential_energy() + f = np.inner(vec / r, atoms.get_forces()[1]) + # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2)) + + Rs.append(r) + Es.append(e) + Fs.append(f) + # S2s.append(s2) + + rs = np.array(Rs) + es = np.array(Es) + fs = np.array(Fs) + + # sort interatomic distances and align to zero at far field + indices = np.argsort(rs)[::-1] + rs = rs[indices] + es = es[indices] + eshift = es[0] + es -= eshift + fs = fs[indices] + + iminf = np.argmin(fs) + imine = np.argmin(es) + + de_dr = np.gradient(es, rs) + d2e_dr2 = np.gradient(de_dr, rs) + + # avoid numerical sensitity close to zero + rounded_fs = np.copy(fs) + rounded_fs[np.abs(rounded_fs) < 1e-2] = 0 # 10meV/A + fs_sign = np.sign(rounded_fs) + mask = fs_sign != 0 + rounded_fs = rounded_fs[mask] + fs_sign = fs_sign[mask] + f_flip = np.diff(fs_sign) != 0 + + fdiff = np.diff(fs) + fdiff_sign = np.sign(fdiff) + mask = fdiff_sign != 0 + fdiff = fdiff[mask] + fdiff_sign = fdiff_sign[mask] + fdiff_flip = np.diff(fdiff_sign) != 0 + fjump = ( + np.abs(fdiff[:-1][fdiff_flip]).sum() + np.abs(fdiff[1:][fdiff_flip]).sum() + ) + + ediff = np.diff(es) + ediff[np.abs(ediff) < 1e-3] = 0 # 1meV + ediff_sign = np.sign(ediff) + mask = ediff_sign != 0 + ediff = ediff[mask] + ediff_sign = ediff_sign[mask] + ediff_flip = np.diff(ediff_sign) != 0 + ejump = ( + np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum() + ) + + try: + pbe_traj = read(f"./vasp/{da}/PBE.extxyz", index=":") + + pbe_rs, pbe_es, pbe_fs = [], [], [] + + for atoms in pbe_traj: + vec = atoms.positions[1] - atoms.positions[0] + r = np.linalg.norm(vec) + pbe_rs.append(r) + pbe_es.append(atoms.get_potential_energy()) + pbe_fs.append(np.inner(vec / r, atoms.get_forces()[1])) + + pbe_rs = np.array(pbe_rs) + pbe_es = np.array(pbe_es) + pbe_fs = np.array(pbe_fs) + + indices = np.argsort(pbe_rs) + pbe_rs = pbe_rs[indices] + pbe_es = pbe_es[indices] + pbe_fs = pbe_fs[indices] + + pbe_es -= pbe_es[-1] + + xs = np.linspace(pbe_rs.min(), pbe_rs.max(), int(1e3)) + + cs = UnivariateSpline(pbe_rs, pbe_es, s=0) + pbe_energy_mae = np.mean(np.abs(es - cs(rs))) + + cs = UnivariateSpline(pbe_rs, pbe_fs, s=0) + pbe_force_mae = np.mean(np.abs(fs - cs(rs))) + except Exception as e: + print(e) + pbe_energy_mae = None + pbe_force_mae = None + + conservation_deviation = np.mean(np.abs(fs + de_dr)) + + etv = np.sum(np.abs(np.diff(es))) + + data = { + "name": da, + "method": model.name, + "R": rs, + "E": es + eshift, + "F": fs, + "S^2": S2s, + "force-flip-times": np.sum(f_flip), + "force-total-variation": np.sum(np.abs(np.diff(fs))), + "force-jump": fjump, + "energy-diff-flip-times": np.sum(ediff_flip), + "energy-grad-norm-max": np.max(np.abs(de_dr)), + "energy-jump": ejump, + # "energy-grad-norm-mean": np.mean(de_dr_abs), + "energy-total-variation": etv, + "tortuosity": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())), + "conservation-deviation": conservation_deviation, + "spearman-descending-force": stats.spearmanr( + rs[iminf:], fs[iminf:] + ).statistic, + "spearman-ascending-force": stats.spearmanr( + rs[:iminf], fs[:iminf] + ).statistic, + "spearman-repulsion-energy": stats.spearmanr( + rs[imine:], es[imine:] + ).statistic, + "spearman-attraction-energy": stats.spearmanr( + rs[:imine], es[:imine] + ).statistic, + "pbe-energy-mae": pbe_energy_mae, + "pbe-force-mae": pbe_force_mae, + } + + df = pd.concat([df, pd.DataFrame([data])], ignore_index=True) + + json_fpath = Path(REGISTRY[model.name]["family"]) / "homonuclear-diatomics.json" + + if json_fpath.exists(): + df0 = pd.read_json(json_fpath) + df = pd.concat([df0, df], ignore_index=True) + df.drop_duplicates(inplace=True, subset=["name", "method"], keep="last") + + df.to_json(json_fpath, orient="records") + + json_fpath = Path(model.name) / "homonuclear-diatomics.json" + df.to_json(json_fpath, orient="records") diff --git a/mlip_arena/tasks/diatomics/ani/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/ani/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..cf9b77bd754b058572d651f92e42b9f73a2379c3 --- /dev/null +++ b/mlip_arena/tasks/diatomics/ani/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f622fde1f33128568baa2beb374e33e112557581a2a5dc675ce8b6273a840a17 +size 121195 diff --git a/mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..642f0114f02c71cfeff92448138c11e659be01f5 --- /dev/null +++ b/mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f3595e1ae02dbc7c30a8ff39227b2a2e46ea940be17e482200f8b3d518cda01 +size 2003404 diff --git a/mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..08515e2c31e5897b922c1b50b2ac07c554f79c50 --- /dev/null +++ b/mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d278cac9a2d7ce073735dcf6e2df6637510efcb8d89289706b54e8b540c942ec +size 3764511 diff --git a/mlip_arena/tasks/diatomics/escn/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/escn/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..b2730f46fb45d186de89b5d9e101f4732f76bb3a --- /dev/null +++ b/mlip_arena/tasks/diatomics/escn/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2bfb8f0a5424259c9e9686e3e8778adb36e9b08937296e2a127d6007a1adf3bf +size 1960063 diff --git a/mlip_arena/tasks/diatomics/fairchem/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/fairchem/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..f8ad414702846dd5ac901d92ba99f09d8065dd39 --- /dev/null +++ b/mlip_arena/tasks/diatomics/fairchem/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5f955a5e08dbb9be3d0a04f06bd4cf93ac63a6a401132a7e74e971365133472a +size 4286019 diff --git a/mlip_arena/tasks/diatomics/homonuclear-diatomics.tex b/mlip_arena/tasks/diatomics/homonuclear-diatomics.tex new file mode 100644 index 0000000000000000000000000000000000000000..1ab4f94f01f882a9a591574e286473b07c7ac614 --- /dev/null +++ b/mlip_arena/tasks/diatomics/homonuclear-diatomics.tex @@ -0,0 +1,23 @@ +\begin{tabular}{lrrrrrrrrrrr} +\toprule + & Rank & Rank aggr. & Conservation deviation [eV/โ„ซ] & Spearman's coeff. (E: repulsion) & Spearman's coeff. (F: descending) & Energy jump [eV] & Force flips & Tortuosity \\ +Model & & & & & & & & \\ +\midrule +MACE-MPA & 1 & 13 & 0.077 & -0.997 & -0.975 & 0.010 & 1.371 & 1.006 \\ +MACE-MP(M) & 2 & 15 & 0.070 & -0.997 & -0.980 & 0.038 & 1.449 & 1.161 \\ +MatterSim & 3 & 20 & 0.013 & -0.980 & -0.972 & 0.008 & 2.766 & 1.021 \\ +M3GNet & 4 & 24 & 0.026 & -0.991 & -0.947 & 0.029 & 3.528 & 1.016 \\ +ORBv2 & 5 & 30 & 9.751 & -0.883 & -0.988 & 0.991 & 0.991 & 1.287 \\ +eSCN(OC20) & 6 & 32 & 2.045 & -0.939 & -0.984 & 0.806 & 0.640 & 5.335 \\ +CHGNet & 7 & 35 & 1.066 & -0.992 & -0.925 & 0.291 & 2.255 & 2.279 \\ +ORB & 8 & 39 & 10.220 & -0.881 & -0.954 & 1.019 & 1.026 & 1.798 \\ +SevenNet & 9 & 41 & 34.005 & -0.986 & -0.928 & 0.392 & 2.112 & 1.292 \\ +eqV2(OMat) & 10 & 51 & 15.477 & -0.880 & -0.976 & 4.118 & 3.126 & 2.515 \\ +eSEN & 11 & 55 & 1.170 & -0.692 & -0.919 & 5.562 & 4.000 & 1.838 \\ +ALIGNN & 12 & 59 & 5.164 & -0.913 & -0.310 & 9.876 & 30.669 & 1.818 \\ +EquiformerV2(OC20) & 13 & 71 & 21.385 & -0.680 & -0.891 & 38.282 & 22.775 & 8.669 \\ +EquiformerV2(OC22) & 14 & 75 & 27.687 & -0.415 & -0.855 & 64.837 & 21.674 & 15.880 \\ +MACE-OFF(M) & 15 & 85 & NaN & NaN & NaN & NaN & NaN & NaN \\ +ANI2x & 16 & 91 & NaN & NaN & NaN & NaN & NaN & NaN \\ +\bottomrule +\end{tabular} diff --git a/mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..b2dbc565ffc676875303f2360f403e54c7c774ba --- /dev/null +++ b/mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c257248d2f62bfd09eb334c49405287bf5bc3bf14cfc6ad0a5890425f559f91c +size 1854330 diff --git a/mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..0201fe283dc93059954f57951d880dde582549dd --- /dev/null +++ b/mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9ad34875760232ee25a34b7d6e8a54d75e3b8ddd38efaf5de3aa7a3d6e19474d +size 3837066 diff --git a/mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..af4c0429c938b63bda2bd39a644c303beef804f7 --- /dev/null +++ b/mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:010d9215f9c1765fd2d807c0ef57a95b14832b6bda841e25948c6ee342232579 +size 173998 diff --git a/mlip_arena/tasks/diatomics/matgl/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/matgl/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..ec1a9f68de96b98b29893f3fec035483afe88a1d --- /dev/null +++ b/mlip_arena/tasks/diatomics/matgl/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:32a7001f8635327e166f7747942ab8fdf4bfb20e68fc632b24005d2017daf5f4 +size 1858414 diff --git a/mlip_arena/tasks/diatomics/mattersim/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/mattersim/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..9bebe3e201c05870616f3bdc5d34de20c713f3d5 --- /dev/null +++ b/mlip_arena/tasks/diatomics/mattersim/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0181c4173a7ec6cd0ddb469817bc6ff1befec5b9a4a122b5876622ad5006fd49 +size 1929036 diff --git a/mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..347b6b0777f99535f22a114ce7907306eebab557 --- /dev/null +++ b/mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6799123dc798c713ccd100cec528a71b3e3ec4633de8f92c37c0c2d61b5c7801 +size 5197473 diff --git a/mlip_arena/tasks/diatomics/run.ipynb b/mlip_arena/tasks/diatomics/run.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6029edac048ca96131a2d0eb419b8e857458e5f5 --- /dev/null +++ b/mlip_arena/tasks/diatomics/run.ipynb @@ -0,0 +1,381 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "3200850a-b8fb-4f50-9815-16ae8da0f942", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import os\n", + "from pathlib import Path\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "from scipy import stats\n", + "from scipy.interpolate import UnivariateSpline\n", + "from tqdm.auto import tqdm\n", + "\n", + "from ase import Atom, Atoms\n", + "from ase.data import chemical_symbols, covalent_radii, vdw_alvarez\n", + "from ase.io import read, write\n", + "from mlip_arena.models import REGISTRY, MLIPEnum\n", + "from pymatgen.core import Element" + ] + }, + { + "cell_type": "markdown", + "id": "02ff9cf9-49a2-4cec-80d3-56c6661a513b", + "metadata": { + "tags": [] + }, + "source": [ + "# Compute MLIP homonuclear diatomics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "90887faa-1601-4c4c-9c44-d16731471d7f", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "for model in MLIPEnum:\n", + " model_name = model.name\n", + "\n", + " if model_name != \"MACE-MPA\":\n", + " continue\n", + "\n", + " print(f\"========== {model_name} ==========\")\n", + "\n", + " calc = MLIPEnum[model_name].value()\n", + "\n", + " for symbol in tqdm(chemical_symbols[1:]):\n", + " s = set([symbol])\n", + "\n", + " if \"X\" in s:\n", + " continue\n", + "\n", + " try:\n", + " atom = Atom(symbol)\n", + " rmin = 0.9 * covalent_radii[atom.number]\n", + " rvdw = (\n", + " vdw_alvarez.vdw_radii[atom.number]\n", + " if atom.number < len(vdw_alvarez.vdw_radii)\n", + " else np.nan\n", + " )\n", + " rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6\n", + " rstep = 0.01\n", + " npts = int((rmax - rmin) / rstep)\n", + "\n", + " rs = np.linspace(rmin, rmax, npts)\n", + " es = np.zeros_like(rs)\n", + "\n", + " da = symbol + symbol\n", + "\n", + " out_dir = Path(REGISTRY[model_name][\"family\"]) / str(da)\n", + " os.makedirs(out_dir, exist_ok=True)\n", + "\n", + " skip = 0\n", + "\n", + " element = Element(symbol)\n", + "\n", + " try:\n", + " m = element.valence[1]\n", + " if element.valence == (0, 2):\n", + " m = 0\n", + " except Exception:\n", + " m = 0\n", + "\n", + " a = 2 * rmax\n", + " r = rs[0]\n", + "\n", + " positions = [\n", + " [a / 2 - r / 2, a / 2, a / 2],\n", + " [a / 2 + r / 2, a / 2, a / 2],\n", + " ]\n", + "\n", + " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n", + "\n", + " if traj_fpath.exists():\n", + " traj = read(traj_fpath, index=\":\")\n", + " skip = len(traj)\n", + " atoms = traj[-1]\n", + " else:\n", + " # Create the unit cell with two atoms\n", + " atoms = Atoms(\n", + " da,\n", + " positions=positions,\n", + " # magmoms=magmoms,\n", + " cell=[a, a + 0.001, a + 0.002],\n", + " pbc=True,\n", + " )\n", + "\n", + " print(atoms)\n", + "\n", + " atoms.calc = calc\n", + "\n", + " for i, r in enumerate(tqdm(rs)):\n", + " if i < skip:\n", + " continue\n", + "\n", + " positions = [\n", + " [a / 2 - r / 2, a / 2, a / 2],\n", + " [a / 2 + r / 2, a / 2, a / 2],\n", + " ]\n", + "\n", + " # atoms.set_initial_magnetic_moments(magmoms)\n", + "\n", + " atoms.set_positions(positions)\n", + "\n", + " es[i] = atoms.get_potential_energy()\n", + "\n", + " write(traj_fpath, atoms, append=\"a\")\n", + " except Exception as e:\n", + " print(e)\n" + ] + }, + { + "cell_type": "markdown", + "id": "f1bbfae1-790d-4586-9d7d-79c1ba658dcb", + "metadata": {}, + "source": [ + "# Analysis and output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a0ac2c09-370b-4fdd-bf74-ea5c4ade0215", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "for model in MLIPEnum:\n", + " model_name = model.name\n", + "\n", + " # if model_name != \"MatterSim\":\n", + " # continue\n", + "\n", + " print(f\"========== {model_name} ==========\")\n", + "\n", + " df = pd.DataFrame(\n", + " columns=[\n", + " \"name\",\n", + " \"method\",\n", + " \"R\",\n", + " \"E\",\n", + " \"F\",\n", + " \"S^2\",\n", + " \"force-flip-times\",\n", + " \"force-total-variation\",\n", + " \"force-jump\",\n", + " \"energy-diff-flip-times\",\n", + " \"energy-grad-norm-max\",\n", + " \"energy-jump\",\n", + " \"energy-total-variation\",\n", + " \"tortuosity\",\n", + " \"conservation-deviation\",\n", + " \"spearman-descending-force\",\n", + " \"spearman-ascending-force\",\n", + " \"spearman-repulsion-energy\",\n", + " \"spearman-attraction-energy\",\n", + " \"pbe-energy-mae\",\n", + " \"pbe-force-mae\",\n", + " ]\n", + " )\n", + "\n", + " for symbol in tqdm(chemical_symbols[1:]):\n", + " da = symbol + symbol\n", + "\n", + " out_dir = Path(REGISTRY[model_name][\"family\"]) / da\n", + "\n", + " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n", + "\n", + " if traj_fpath.exists():\n", + " traj = read(traj_fpath, index=\":\")\n", + " else:\n", + " continue\n", + "\n", + " Rs, Es, Fs, S2s = [], [], [], []\n", + " for atoms in traj:\n", + " vec = atoms.positions[1] - atoms.positions[0]\n", + " r = np.linalg.norm(vec)\n", + " e = atoms.get_potential_energy()\n", + " f = np.inner(vec / r, atoms.get_forces()[1])\n", + " # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))\n", + "\n", + " Rs.append(r)\n", + " Es.append(e)\n", + " Fs.append(f)\n", + " # S2s.append(s2)\n", + "\n", + " rs = np.array(Rs)\n", + " es = np.array(Es)\n", + " fs = np.array(Fs)\n", + "\n", + " # sort interatomic distances and align to zero at far field\n", + " indices = np.argsort(rs)[::-1]\n", + " rs = rs[indices]\n", + " es = es[indices]\n", + " eshift = es[0]\n", + " es -= eshift\n", + " fs = fs[indices]\n", + "\n", + " iminf = np.argmin(fs)\n", + " imine = np.argmin(es)\n", + "\n", + " de_dr = np.gradient(es, rs)\n", + " d2e_dr2 = np.gradient(de_dr, rs)\n", + "\n", + " # avoid numerical sensitity close to zero\n", + " rounded_fs = np.copy(fs)\n", + " rounded_fs[np.abs(rounded_fs) < 1e-2] = 0 # 10meV/A\n", + " fs_sign = np.sign(rounded_fs)\n", + " mask = fs_sign != 0\n", + " rounded_fs = rounded_fs[mask]\n", + " fs_sign = fs_sign[mask]\n", + " f_flip = np.diff(fs_sign) != 0\n", + "\n", + " fdiff = np.diff(fs)\n", + " fdiff_sign = np.sign(fdiff)\n", + " mask = fdiff_sign != 0\n", + " fdiff = fdiff[mask]\n", + " fdiff_sign = fdiff_sign[mask]\n", + " fdiff_flip = np.diff(fdiff_sign) != 0\n", + " fjump = (\n", + " np.abs(fdiff[:-1][fdiff_flip]).sum() + np.abs(fdiff[1:][fdiff_flip]).sum()\n", + " )\n", + "\n", + " ediff = np.diff(es)\n", + " ediff[np.abs(ediff) < 1e-3] = 0 # 1meV\n", + " ediff_sign = np.sign(ediff)\n", + " mask = ediff_sign != 0\n", + " ediff = ediff[mask]\n", + " ediff_sign = ediff_sign[mask]\n", + " ediff_flip = np.diff(ediff_sign) != 0\n", + " ejump = (\n", + " np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum()\n", + " )\n", + "\n", + " try:\n", + " pbe_traj = read(f\"./vasp/{da}/PBE.extxyz\", index=\":\")\n", + "\n", + " pbe_rs, pbe_es, pbe_fs = [], [], []\n", + "\n", + " for atoms in pbe_traj:\n", + " vec = atoms.positions[1] - atoms.positions[0]\n", + " r = np.linalg.norm(vec)\n", + " pbe_rs.append(r)\n", + " pbe_es.append(atoms.get_potential_energy())\n", + " pbe_fs.append(np.inner(vec / r, atoms.get_forces()[1]))\n", + "\n", + " pbe_rs = np.array(pbe_rs)\n", + " pbe_es = np.array(pbe_es)\n", + " pbe_fs = np.array(pbe_fs)\n", + "\n", + " indices = np.argsort(pbe_rs)\n", + " pbe_rs = pbe_rs[indices]\n", + " pbe_es = pbe_es[indices]\n", + " pbe_fs = pbe_fs[indices]\n", + "\n", + " pbe_es -= pbe_es[-1]\n", + "\n", + " xs = np.linspace(pbe_rs.min(), pbe_rs.max(), int(1e3))\n", + "\n", + " cs = UnivariateSpline(pbe_rs, pbe_es, s=0)\n", + " pbe_energy_mae = np.mean(np.abs(es - cs(rs)))\n", + "\n", + " cs = UnivariateSpline(pbe_rs, pbe_fs, s=0)\n", + " pbe_force_mae = np.mean(np.abs(fs - cs(rs)))\n", + " except Exception as e:\n", + " print(e)\n", + " pbe_energy_mae = None\n", + " pbe_force_mae = None\n", + "\n", + " conservation_deviation = np.mean(np.abs(fs + de_dr))\n", + "\n", + " etv = np.sum(np.abs(np.diff(es)))\n", + "\n", + " data = {\n", + " \"name\": da,\n", + " \"method\": model_name,\n", + " \"R\": rs,\n", + " \"E\": es + eshift,\n", + " \"F\": fs,\n", + " \"S^2\": S2s,\n", + " \"force-flip-times\": np.sum(f_flip),\n", + " \"force-total-variation\": np.sum(np.abs(np.diff(fs))),\n", + " \"force-jump\": fjump,\n", + " \"energy-diff-flip-times\": np.sum(ediff_flip),\n", + " \"energy-grad-norm-max\": np.max(np.abs(de_dr)),\n", + " \"energy-jump\": ejump,\n", + " # \"energy-grad-norm-mean\": np.mean(de_dr_abs),\n", + " \"energy-total-variation\": etv,\n", + " \"tortuosity\": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),\n", + " \"conservation-deviation\": conservation_deviation,\n", + " \"spearman-descending-force\": stats.spearmanr(\n", + " rs[iminf:], fs[iminf:]\n", + " ).statistic,\n", + " \"spearman-ascending-force\": stats.spearmanr(\n", + " rs[:iminf], fs[:iminf]\n", + " ).statistic,\n", + " \"spearman-repulsion-energy\": stats.spearmanr(\n", + " rs[imine:], es[imine:]\n", + " ).statistic,\n", + " \"spearman-attraction-energy\": stats.spearmanr(\n", + " rs[:imine], es[:imine]\n", + " ).statistic,\n", + " \"pbe-energy-mae\": pbe_energy_mae,\n", + " \"pbe-force-mae\": pbe_force_mae,\n", + " }\n", + "\n", + " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n", + "\n", + " json_fpath = Path(REGISTRY[model_name][\"family\"]) / \"homonuclear-diatomics.json\"\n", + "\n", + " if json_fpath.exists():\n", + " df0 = pd.read_json(json_fpath)\n", + " df = pd.concat([df0, df], ignore_index=True)\n", + " df.drop_duplicates(inplace=True, subset=[\"name\", \"method\"], keep=\"last\")\n", + "\n", + " df.to_json(json_fpath, orient=\"records\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.8" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": {}, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/mlip_arena/tasks/diatomics/run.py b/mlip_arena/tasks/diatomics/run.py new file mode 100644 index 0000000000000000000000000000000000000000..2564173045360431b16e9eaca53d32eda9df5d45 --- /dev/null +++ b/mlip_arena/tasks/diatomics/run.py @@ -0,0 +1,131 @@ +import itertools +from pathlib import Path + +import numpy as np +from ase import Atom, Atoms +from ase.calculators.calculator import BaseCalculator +from ase.data import chemical_symbols, covalent_radii, vdw_alvarez +from ase.io import read, write +from prefect import flow, task +from tqdm.auto import tqdm + +from mlip_arena.models import REGISTRY, MLIPEnum +from mlip_arena.tasks.utils import get_calculator + + +@task +def homonuclear_diatomics(symbol: str, calculator: BaseCalculator, out_dir: Path): + """ + Calculate potential energy curves for homonuclear diatomic molecules. + + This function computes the potential energy of a diatomic molecule (two atoms of + the same element) across a range of interatomic distances. The distance range is + automatically determined from the covalent and van der Waals radii of the element. + + Args: + symbol: Chemical symbol of the atom (e.g., 'H', 'O', 'Fe') + calculator: ASE calculator object used to compute the potential energies. Could be VASP, MLIP, etc. + + Returns: + None: Results are saved as trajectory files in a directory structure: + /{model_family}/{element_pair}/{model_name}.extxyz + + Note: + - Minimum distance is set to 0.9ร— the covalent radius + - Maximum distance is set to 3.1ร— the van der Waals radius (or 6 ร… if unknown) + - Distance step size is fixed at 0.01 ร… + - If an existing trajectory file is found, the calculation will resume from where it left off + - The atoms are placed in a periodic box large enough to avoid self-interaction + """ + + atom = Atom(symbol) + rmin = 0.9 * covalent_radii[atom.number] + rvdw = ( + vdw_alvarez.vdw_radii[atom.number] + if atom.number < len(vdw_alvarez.vdw_radii) + else np.nan + ) + rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6 + rstep = 0.01 + npts = int((rmax - rmin) / rstep) + + rs = np.linspace(rmin, rmax, npts) + es = np.zeros_like(rs) + + da = symbol + symbol + + out_dir.mkdir(parents=True, exist_ok=True) + + skip = 0 + + a = 5 * rmax + r = rs[0] + + positions = [ + [a / 2 - r / 2, a / 2, a / 2], + [a / 2 + r / 2, a / 2, a / 2], + ] + + traj_fpath = out_dir / f"{da!s}.extxyz" + + if traj_fpath.exists(): + traj = read(traj_fpath, index=":") + skip = len(traj) + atoms = traj[-1] + else: + # Create the unit cell with two atoms + atoms = Atoms( + da, + positions=positions, + # magmoms=magmoms, + cell=[a, a + 0.001, a + 0.002], + pbc=False, + ) + + atoms.calc = calculator + + for i, r in enumerate(tqdm(rs)): + if i < skip: + continue + + positions = [ + [a / 2 - r / 2, a / 2, a / 2], + [a / 2 + r / 2, a / 2, a / 2], + ] + + # atoms.set_initial_magnetic_moments(magmoms) + atoms.set_positions(positions) + es[i] = atoms.get_potential_energy() + write(traj_fpath, atoms, append="a") + + +@flow +def submit_homonuclear_diatomics(): + futures = [] + for symbol, model in itertools.product( + chemical_symbols[1:], + MLIPEnum, + ): + if "homonuclear-diatomics" not in REGISTRY[model.name].get("gpu-tasks", []): + continue + + out_dir = Path(__file__).parent / model.name + + calculator = get_calculator(model) + + # if not (out_dir / "homonuclear-diatomics.json").exists(): + future = homonuclear_diatomics.submit( + symbol, + calculator, + out_dir=out_dir, + ) + futures.append(future) + + return [f.result(raise_on_failure=False) for f in futures] + + +if __name__ == "__main__": + submit_homonuclear_diatomics.with_options( + # task_runner=DaskTaskRunner(address=client.scheduler.address), + log_prints=True, + )() diff --git a/mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..0c9b1e0aeb7444568f34e8327d8f71bcb73d094c --- /dev/null +++ b/mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1cb205f2c271f1799a03ff33ff23e9a1acd9a2d8162d232ba7d3aa59f0a1b30e +size 1859865 diff --git a/mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json new file mode 100644 index 0000000000000000000000000000000000000000..f711533d9a4dd8029396d88156b055dd6dd31ac1 --- /dev/null +++ b/mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:26fc88d6d1777e6861bd2d5e5045a932a5ad8fe0a75e8e8848dca481c48cc617 +size 16606 diff --git a/mlip_arena/tasks/elasticity.py b/mlip_arena/tasks/elasticity.py new file mode 100644 index 0000000000000000000000000000000000000000..3a34e7de6ab250db70e69df40c42e81e3cee4be1 --- /dev/null +++ b/mlip_arena/tasks/elasticity.py @@ -0,0 +1,216 @@ +""" +Defines the tasks for computing the elastic tensor. + +This module has been modified from MatCalc +https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/elasticity.py + +https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE + +BSD 3-Clause License + +Copyright (c) 2023, Materials Virtual Lab + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +""" + +from __future__ import annotations + +from typing import TYPE_CHECKING, Any + +import numpy as np +from ase import Atoms +from ase.calculators.calculator import BaseCalculator +from ase.optimize.optimize import Optimizer +from numpy.typing import ArrayLike +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run +from prefect.states import State + +from mlip_arena.tasks.optimize import run as OPT +from pymatgen.analysis.elasticity import DeformedStructureSet, ElasticTensor, Strain +from pymatgen.analysis.elasticity.elastic import get_strain_state_dict +from pymatgen.io.ase import AseAtomsAdaptor + +if TYPE_CHECKING: + from ase.filters import Filter + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + atoms = parameters["atoms"] + calculator_name = parameters["calculator"] + + return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" + + +@task( + name="Elasticity", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, + # cache_key_fn=task_input_hash, +) +def run( + atoms: Atoms, + calculator: BaseCalculator, + optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore + optimizer_kwargs: dict | None = None, + filter: Filter | str | None = "FrechetCell", # type: ignore + filter_kwargs: dict | None = None, + criterion: dict | None = None, + normal_strains: list[float] | np.ndarray | None = np.linspace(-0.01, 0.01, 4), + shear_strains: list[float] | np.ndarray | None = np.linspace(-0.06, 0.06, 4), + persist_opt: bool = True, + cache_opt: bool = False, +) -> dict[str, Any] | State: + """ + Compute the elastic tensor for the given structure and calculator. + + Args: + atoms (Atoms): The input structure. + calculator (BaseCalculator): The calculator. + optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch". + optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None. + filter (Filter | str, optional): The filter. Defaults to "FrechetCell". + filter_kwargs (dict, optional): The filter kwargs. Defaults to None. + criterion (dict, optional): The criterion. Defaults to None. + normal_strains (list[float] | np.ndarray, optional): The normal strains. Defaults to np.linspace(-0.01, 0.01, 4). + shear_strains (list[float] | np.ndarray, optional): The shear strains. Defaults to np.linspace(-0.06, 0.06, 4). + concurrent (bool, optional): Whether to run concurrently. Defaults to True. + persist_opt (bool, optional): Whether to persist the optimizer results. Defaults to True. + cache_opt (bool, optional): Whether to cache the optimizer results. Defaults to True. + + Returns: + dict[str, Any] | State: The elastic tensor. + """ + + atoms = atoms.copy() + + OPT_ = OPT.with_options( + refresh_cache=not cache_opt, + persist_result=persist_opt, + ) + + first_relax = OPT_( + atoms=atoms, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=filter, + filter_kwargs=filter_kwargs, + criterion=criterion, + return_state=True, + ) + + if first_relax.is_failed(): + return first_relax + + result = first_relax.result(raise_on_failure=False) + + assert isinstance(result, dict) + relaxed = result["atoms"] + + if isinstance(normal_strains, np.ndarray): + normal_strains = normal_strains.tolist() + if isinstance(shear_strains, np.ndarray): + shear_strains = shear_strains.tolist() + + assert isinstance(relaxed, Atoms) + assert isinstance(normal_strains, list) + assert isinstance(shear_strains, list) + + structure = AseAtomsAdaptor.get_structure(relaxed) # type: ignore + + deformed_structure_set = DeformedStructureSet( + structure, + normal_strains, + shear_strains, + ) + + stresses = [] + for deformed_structure in deformed_structure_set: + atoms = deformed_structure.to_ase_atoms() + atoms.calc = relaxed.calc + stresses.append(atoms.get_stress(voigt=False)) + + strains = [ + Strain.from_deformation(deformation) + for deformation in deformed_structure_set.deformations + ] + + fit = fit_elastic_tensor( + strains, stresses, eq_stress=relaxed.get_stress(voigt=False) + ) + + return { + "elastic_tensor": fit["elastic_tensor"], + "residuals_sum": fit["residuals_sum"], + } + + +@task +def fit_elastic_tensor( + strains: ArrayLike, + stresses: ArrayLike, + eq_stress: ArrayLike | None = None, + tolerance: float = 1e-7, +): + """ + Compute the elastic tensor from the given strains and stresses. + + Args: + strains (ArrayLike): The strains. + stresses (ArrayLike): The stresses. + tolerance (float, optional): The tolerance. Defaults to 1e-7. + + Returns: + ElasticTensor: The elastic tensor. + """ + + strain_states = [tuple(ss) for ss in np.eye(6)] + ss_dict = get_strain_state_dict( + strains, + stresses, + eq_stress=eq_stress, + add_eq=True if eq_stress is not None else False, + ) + c_ij = np.zeros((6, 6)) + residuals_sum = 0.0 + for ii in range(6): + strain = ss_dict[strain_states[ii]]["strains"] + stress = ss_dict[strain_states[ii]]["stresses"] + for jj in range(6): + fit = np.polyfit(strain[:, ii], stress[:, jj], 1, full=True) + c_ij[ii, jj] = fit[0][0] + residuals_sum += fit[1][0] if len(fit[1]) > 0 else 0.0 + elastic_tensor = ElasticTensor.from_voigt(c_ij) + + return { + "elastic_tensor": elastic_tensor.zeroed(tolerance), + "residuals_sum": residuals_sum, + } diff --git a/mlip_arena/tasks/eos.py b/mlip_arena/tasks/eos.py new file mode 100644 index 0000000000000000000000000000000000000000..64d53fda005783ebf2effa64329b85ef366ebcb9 --- /dev/null +++ b/mlip_arena/tasks/eos.py @@ -0,0 +1,179 @@ +""" +Define equation of state task. + +https://github.com/materialsvirtuallab/matcalc/blob/main/matcalc/eos.py +""" + +from __future__ import annotations + +from typing import TYPE_CHECKING, Any + +import numpy as np +from ase import Atoms +from ase.calculators.calculator import BaseCalculator +from ase.optimize.optimize import Optimizer +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.futures import wait +from prefect.results import ResultRecord +from prefect.runtime import task_run +from prefect.states import State + +from mlip_arena.tasks.optimize import run as OPT +from pymatgen.analysis.eos import BirchMurnaghan + +if TYPE_CHECKING: + from ase.filters import Filter + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + atoms = parameters["atoms"] + calculator_name = parameters["calculator"] + + return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" + + +@task( + name="EOS", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS +) +def run( + atoms: Atoms, + calculator: BaseCalculator, + optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore + optimizer_kwargs: dict | None = None, + filter: Filter | str | None = "FrechetCell", # type: ignore + filter_kwargs: dict | None = None, + criterion: dict | None = None, + max_abs_strain: float = 0.1, + npoints: int = 11, + concurrent: bool = True, + cache_opt: bool = False, +) -> dict[str, Any] | State: + """ + Compute the equation of state (EOS) for the given atoms and calculator. + + Args: + atoms: The input atoms. + calculator_name: The name of the calculator to use. + calculator_kwargs: Additional kwargs to pass to the calculator. + device: The device to use. + optimizer: The optimizer to use. + optimizer_kwargs: Additional kwargs to pass to the optimizer. + filter: The filter to use. + filter_kwargs: Additional kwargs to pass to the filter. + criterion: The criterion to use. + max_abs_strain: The maximum absolute strain to use. + npoints: The number of points to sample. + concurrent: Whether to relax multiple structures concurrently. + persist_opt: Whether to persist the optimization results. + cache_opt: Whether to cache the intermediate optimization results. + + Returns: + A dictionary containing the EOS data, bulk modulus, equilibrium volume, and equilibrium energy if successful. Otherwise, a prefect state object. + """ + + atoms = atoms.copy() + + OPT_ = OPT.with_options( + refresh_cache=not cache_opt, + persist_result=cache_opt, + ) + + state = OPT_( + atoms=atoms, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=filter, + filter_kwargs=filter_kwargs, + criterion=criterion, + return_state=True, + ) + + if state.is_failed(): + return state + + first_relax = state.result(raise_on_failure=False) + + if isinstance(first_relax, ResultRecord): + relaxed = first_relax.result["atoms"] + else: + relaxed = first_relax["atoms"] + + # p0 = relaxed.get_positions() + c0 = relaxed.get_cell() + + factors = np.linspace(1 - max_abs_strain, 1 + max_abs_strain, npoints) ** (1 / 3) + + if concurrent: + futures = [] + for f in factors: + atoms = relaxed.copy() + atoms.set_cell(c0 * f, scale_atoms=True) + + future = OPT_.submit( + atoms=atoms, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=None, + filter_kwargs=None, + criterion=criterion, + ) + futures.append(future) + + wait(futures) + + results = [ + f.result(raise_on_failure=False) + for f in futures + if future.state.is_completed() + ] + else: + states = [] + for f in factors: + atoms = relaxed.copy() + atoms.set_cell(c0 * f, scale_atoms=True) + + state = OPT_( + atoms=atoms, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=None, + filter_kwargs=None, + criterion=criterion, + return_state=True, + ) + states.append(state) + + results = [s.result(raise_on_failure=False) for s in states if s.is_completed()] + + results = [r.result if isinstance(r, ResultRecord) else r for r in results] + + volumes = [r["atoms"].get_volume() for r in results] + energies = [r["atoms"].get_potential_energy() for r in results] + + volumes, energies = map( + list, + zip( + *sorted(zip(volumes, energies, strict=True), key=lambda i: i[0]), + strict=True, + ), + ) + + bm = BirchMurnaghan(volumes=volumes, energies=energies) + bm.fit() + + return { + "atoms": relaxed, + "eos": {"volumes": volumes, "energies": energies}, + "K": bm.b0_GPa, + "b0": bm.b0, + "b1": bm.b1, + "e0": bm.e0, + "v0": bm.v0, + } diff --git a/mlip_arena/tasks/eos_alloy/__init__.py b/mlip_arena/tasks/eos_alloy/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..65ce79a9418728dc6ca9d92372643ca5d1d35486 --- /dev/null +++ b/mlip_arena/tasks/eos_alloy/__init__.py @@ -0,0 +1,12 @@ +from pathlib import Path + +from loguru import logger + +license_path = Path(__file__).parent / "LICENSE" + +logger.info(f""" +This module {__name__} is kindly shared by @jan-janssen . If you use this module, you agree to cite the reference + +- Alvi, S. M. A. A., Janssen, J., Khatamsaz, D., Perez, D., Allaire, D., & Arroyave, R. (2024). Hierarchical Gaussian Process-Based Bayesian Optimization for Materials Discovery in High Entropy Alloy Spaces. *arXiv preprint arXiv:2410.04314*. +- Gehringer, D., Friรกk, M., & Holec, D. (2023). Models of configurationally-complex alloys made simple. *Computer Physics Communications, 286*, 108664. +""") \ No newline at end of file diff --git a/mlip_arena/tasks/eos_alloy/flow.py b/mlip_arena/tasks/eos_alloy/flow.py new file mode 100644 index 0000000000000000000000000000000000000000..2b26373ea979a037499152d0b04cb361795ff19e --- /dev/null +++ b/mlip_arena/tasks/eos_alloy/flow.py @@ -0,0 +1,145 @@ +from functools import partial +from pathlib import Path + +import pandas as pd +from huggingface_hub import hf_hub_download +from prefect import Task, flow, task +from prefect.client.schemas.objects import TaskRun +from prefect.futures import wait +from prefect.states import State + +from ase.db import connect +from mlip_arena.data.local import SafeHDFStore +from mlip_arena.models import REGISTRY, MLIPEnum +from mlip_arena.tasks.eos import run as EOS + + +@task +def get_atoms_from_db(db_path: Path | str): + db_path = Path(db_path) + if not db_path.exists(): + db_path = hf_hub_download( + repo_id="atomind/mlip-arena", + repo_type="dataset", + subfolder=f"{Path(__file__).parent.name}", + filename=str(db_path), + ) + with connect(db_path) as db: + for row in db.select(): + yield row.toatoms() + + +def save_to_hdf( + tsk: Task, run: TaskRun, state: State, fpath: Path | str, table_name: str +): + """ + Define a hook on completion of EOS task to save results to HDF5 file. + """ + + if run.state.is_failed(): + return + + result = run.state.result(raise_on_failure=False) + + if not isinstance(result, dict): + return + + try: + atoms = result["atoms"] + calculator_name = ( + run.task_inputs["calculator_name"] or result["calculator_name"] + ) + + energies = [float(e) for e in result["eos"]["energies"]] + + formula = atoms.get_chemical_formula() + + df = pd.DataFrame( + { + "method": calculator_name, + "formula": formula, + "total_run_time": run.total_run_time, + "v0": result["v0"], + "e0": result["e0"], + "b0": result["b0"], + "b1": result["b1"], + "volume": result["eos"]["volumes"], + "energy": energies, + } + ) + + fpath = Path(fpath) + fpath = fpath.with_stem(fpath.stem + f"_{calculator_name}") + + family_path = Path(__file__).parent / REGISTRY[calculator_name]["family"] + family_path.mkdir(parents=True, exist_ok=True) + + df.to_json(family_path / f"{calculator_name}_{formula}.json", indent=2) + + with SafeHDFStore(fpath, mode="a") as store: + store.append( + table_name, + df, + format="table", + data_columns=True, + min_itemsize={"formula": 50, "method": 20}, + ) + except Exception as e: + print(e) + + +@flow( + name="EOS Alloy" +) +def run( + db_path: Path | str, + out_path: Path | str, + table_name: str, + optimizer="FIRE", + optimizer_kwargs=None, + filter="FrechetCell", + filter_kwargs=None, + criterion=dict(fmax=0.1, steps=1000), + max_abs_strain=0.20, + concurrent=False, + cache=True, +): + EOS_ = EOS.with_options( + on_completion=[partial(save_to_hdf, fpath=out_path, table_name=table_name)], + refresh_cache=not cache, + ) + + futures = [] + for atoms in get_atoms_from_db(db_path): + for mlip in MLIPEnum: + if not REGISTRY[mlip.name]["npt"]: + continue + if Path(__file__).parent.name not in ( + REGISTRY[mlip.name].get("cpu-tasks", []) + + REGISTRY[mlip.name].get("gpu-tasks", []) + ): + continue + future = EOS_.submit( + atoms=atoms, + calculator_name=mlip.name, + calculator_kwargs=dict(), + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=filter, + filter_kwargs=filter_kwargs, + criterion=criterion, + max_abs_strain=max_abs_strain, + concurrent=concurrent, + persist_opt=cache, + cache_opt=cache, + # return_state=True + ) + futures.append(future) + + wait(futures) + + return [ + f.result(timeout=None, raise_on_failure=False) + for f in futures + if f.state.is_completed() + ] diff --git a/mlip_arena/tasks/eos_alloy/input.py b/mlip_arena/tasks/eos_alloy/input.py new file mode 100644 index 0000000000000000000000000000000000000000..2c120fd5086986c1f47fe69709e2e2445faf29ba --- /dev/null +++ b/mlip_arena/tasks/eos_alloy/input.py @@ -0,0 +1,179 @@ +""" +Generates a database of special quasi-random structures (SQS) from a template structure. + +This script utilizes the `structuretoolkit `_ +to call `sqsgenerator `_ to generate +SQS structures. The generated structures are saved to an ASE database file and optionally uploaded +to the Hugging Face Hub. + +References +~~~~~~~~~~ +- Alvi, S. M. A. A., Janssen, J., Khatamsaz, D., Perez, D., Allaire, D., & Arroyave, R. (2024). + Hierarchical Gaussian Process-Based Bayesian Optimization for Materials Discovery in High + Entropy Alloy Spaces. *arXiv preprint arXiv:2410.04314*. +- Gehringer, D., Friรกk, M., & Holec, D. (2023). Models of configurationally-complex alloys made + simple. *Computer Physics Communications, 286*, 108664. + +Authors +~~~~~~~ +- Jan Janssen (`@jan-janssen `_) +- Yuan Chiang (`@chiang-yuan `_) +""" + +import os +from pathlib import Path +from typing import Generator, Iterable + +import numpy as np +from huggingface_hub import HfApi, hf_hub_download +from prefect import task +from tqdm.auto import tqdm + +from ase import Atoms +from ase.db import connect + + +def save_to_db( + atoms_list: list[Atoms] | Iterable[Atoms] | Atoms, + db_path: Path | str, + upload: bool = True, + hf_token: str | None = os.getenv("HF_TOKEN", None), + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", + subfolder: str = Path(__file__).parent.name, +): + """Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub.""" + + if upload and hf_token is None: + raise ValueError("HF_TOKEN is required to upload the database.") + + db_path = Path(db_path) + + if isinstance(atoms_list, Atoms): + atoms_list = [atoms_list] + + with connect(db_path) as db: + for atoms in atoms_list: + if not isinstance(atoms, Atoms): + raise ValueError("atoms_list must contain ASE Atoms objects.") + db.write(atoms) + + if upload: + api = HfApi(token=hf_token) + api.upload_file( + path_or_fileobj=db_path, + path_in_repo=f"{subfolder}/{db_path.name}", + repo_id=repo_id, + repo_type=repo_type, + ) + print(f"{db_path.name} uploaded to {repo_id}/{subfolder}") + + return db_path + +@task +def get_atoms_from_db( + db_path: Path | str, + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", + subfolder: str = Path(__file__).parent.name, +) -> Generator[Atoms, None, None]: + """Retrieve ASE Atoms objects from an ASE database.""" + db_path = Path(db_path) + if not db_path.exists(): + db_path = hf_hub_download( + repo_id=repo_id, + repo_type=repo_type, + subfolder=subfolder, + filename=str(db_path), + ) + with connect(db_path) as db: + for row in db.select(): + yield row.toatoms() + + +def body_order(n=32, b=5): + """ + Generate all possible combinations of atomic counts for `b` species + that sum to `n`. + """ + if b == 2: + return [[i, n - i] for i in range(n + 1)] + return [[i] + j for i in range(n + 1) for j in body_order(n=n - i, b=b - 1)] + + +def generate_sqs(structure_template, elements, counts): + """ + Generate a special quasi-random structure (SQS) based on mole fractions. + """ + import structuretoolkit as stk + + mole_fractions = { + el: c / len(structure_template) for el, c in zip(elements, counts) + } + return stk.build.sqs_structures( + structure=structure_template, + mole_fractions=mole_fractions, + )[0] + + +def get_endmember(structure, conc_lst, elements): + """ + Assign a single element to all atoms in the structure to create an endmember. + """ + structure.symbols[:] = np.array(elements)[conc_lst != 0][0] + return structure + + +def generate_alloy_db( + structure_template: Atoms, + elements: list[str], + db_path: Path | str, + upload: bool = True, + hf_token: str | None = os.getenv("HF_TOKEN", None), + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", +) -> Path: + + if upload and hf_token is None: + raise ValueError("HF_TOKEN is required to upload the database.") + + num_atoms = len(structure_template) + num_species = len(elements) + + # Generate all possible atomic configurations + configurations = np.array(body_order(n=num_atoms, b=num_species)) + + # Prepare the database + db_path = ( + Path(db_path) or Path(__file__).resolve().parent / f"sqs_{'-'.join(elements)}.db" + ) + db_path.unlink(missing_ok=True) + + atoms_list = [] + for i, composition in tqdm( + enumerate(configurations), total=len(configurations) + ): + # Skip trivial cases where only one element is present + if sum(composition == 0) != len(elements) - 1: + atoms = generate_sqs( + structure_template=structure_template, + elements=np.array(elements)[composition != 0], + counts=composition[composition != 0], + ) + else: + atoms = get_endmember( + structure=structure_template.copy(), + conc_lst=composition, + elements=elements, + ) + atoms_list.append(atoms) + + + return save_to_db( + atoms_list=atoms_list, + db_path=db_path, + upload=upload, + hf_token=hf_token, + repo_id=repo_id, + repo_type=repo_type, + ) diff --git a/mlip_arena/tasks/md.py b/mlip_arena/tasks/md.py new file mode 100644 index 0000000000000000000000000000000000000000..b23a8958d1da1c6708c8b1e7f94a0dba890045dc --- /dev/null +++ b/mlip_arena/tasks/md.py @@ -0,0 +1,390 @@ +""" +Define molecular dynamics task. + +This script has been adapted from Atomate2 MLFF MD workflow written by Aaron Kaplan and Yuan Chiang +https://github.com/materialsproject/atomate2/blob/main/src/atomate2/forcefields/md.py + +atomate2 Copyright (c) 2015, The Regents of the University of +California, through Lawrence Berkeley National Laboratory (subject +to receipt of any required approvals from the U.S. Dept. of Energy). +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: + +(1) Redistributions of source code must retain the above copyright +notice, this list of conditions and the following disclaimer. + +(2) Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following +disclaimer in the documentation and/or other materials provided with +the distribution. + +(3) Neither the name of the University of California, Lawrence +Berkeley National Laboratory, U.S. Dept. of Energy nor the names of +its contributors may be used to endorse or promote products derived +from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +You are under no obligation whatsoever to provide any bug fixes, +patches, or upgrades to the features, functionality or performance +of the source code ("Enhancements") to anyone; however, if you +choose to make your Enhancements available either publicly, or +directly to Lawrence Berkeley National Laboratory or its +contributors, without imposing a separate written license agreement +for such Enhancements, then you hereby grant the following license: +a non-exclusive, royalty-free perpetual license to install, use, +modify, prepare derivative works, incorporate into other computer +software, distribute, and sublicense such enhancements or derivative +works thereof, in binary and source code form. +""" + +from __future__ import annotations + +from collections.abc import Sequence +from datetime import datetime +from pathlib import Path +from typing import Literal + +import numpy as np +from ase import Atoms, units +from ase.calculators.calculator import BaseCalculator +from ase.io import read +from ase.io.trajectory import Trajectory +from ase.md.andersen import Andersen +from ase.md.langevin import Langevin +from ase.md.md import MolecularDynamics +from ase.md.npt import NPT +from ase.md.nptberendsen import NPTBerendsen +from ase.md.nvtberendsen import NVTBerendsen +from ase.md.velocitydistribution import ( + MaxwellBoltzmannDistribution, + Stationary, + ZeroRotation, +) +from ase.md.verlet import VelocityVerlet +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run +from scipy.interpolate import interp1d +from scipy.linalg import schur +from tqdm.auto import tqdm + +_valid_dynamics: dict[str, tuple[str, ...]] = { + "nve": ("velocityverlet",), + "nvt": ("nose-hoover", "langevin", "andersen", "berendsen"), + "npt": ("nose-hoover", "berendsen"), +} + +_preset_dynamics: dict = { + "nve_velocityverlet": VelocityVerlet, + "nvt_andersen": Andersen, + "nvt_berendsen": NVTBerendsen, + "nvt_langevin": Langevin, + "nvt_nose-hoover": NPT, + "npt_berendsen": NPTBerendsen, + "npt_nose-hoover": NPT, +} + + +def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray: + """Interpolate temperature / pressure on a schedule.""" + n_vals = len(values) + return np.interp( + np.linspace(0, n_vals - 1, n_pts + 1), + np.linspace(0, n_vals - 1, n_vals), + values, + ) + + +def _get_ensemble_schedule( + ensemble: Literal["nve", "nvt", "npt"] = "nvt", + n_steps: int = 1000, + temperature: float | Sequence | np.ndarray | None = 300.0, + pressure: float | Sequence | np.ndarray | None = None, +) -> tuple[np.ndarray, np.ndarray]: + if ensemble == "nve": + # Disable thermostat and barostat + temperature = np.nan + pressure = np.nan + t_schedule = np.full(n_steps + 1, temperature) + p_schedule = np.full(n_steps + 1, pressure) + return t_schedule, p_schedule + + if isinstance(temperature, Sequence) or ( + isinstance(temperature, np.ndarray) and temperature.ndim == 1 + ): + t_schedule = _interpolate_quantity(temperature, n_steps) + # NOTE: In ASE Langevin dynamics, the temperature are normally + # scalars, but in principle one quantity per atom could be specified by giving + # an array. This is not implemented yet here. + else: + t_schedule = np.full(n_steps + 1, temperature) + + if ensemble == "nvt": + pressure = np.nan + p_schedule = np.full(n_steps + 1, pressure) + return t_schedule, p_schedule + + if isinstance(pressure, Sequence) or ( + isinstance(pressure, np.ndarray) and pressure.ndim == 1 + ): + p_schedule = _interpolate_quantity(pressure, n_steps) + elif isinstance(pressure, np.ndarray) and pressure.ndim == 3: + p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear") + assert isinstance(p_schedule, np.ndarray) + else: + p_schedule = np.full(n_steps + 1, pressure) + + return t_schedule, p_schedule + + +def _get_ensemble_defaults( + ensemble: Literal["nve", "nvt", "npt"], + dynamics: str | MolecularDynamics, + t_schedule: np.ndarray, + p_schedule: np.ndarray, + dynamics_kwargs: dict | None = None, +) -> dict: + """Update ASE MD kwargs""" + dynamics_kwargs = dynamics_kwargs or {} + + if ensemble == "nve": + dynamics_kwargs.pop("temperature", None) + dynamics_kwargs.pop("temperature_K", None) + dynamics_kwargs.pop("externalstress", None) + elif ensemble == "nvt": + dynamics_kwargs["temperature_K"] = t_schedule[0] + dynamics_kwargs.pop("externalstress", None) + elif ensemble == "npt": + dynamics_kwargs["temperature_K"] = t_schedule[0] + dynamics_kwargs["externalstress"] = p_schedule[0] # * 1e3 * units.bar + + if isinstance(dynamics, str) and dynamics.lower() == "langevin": + dynamics_kwargs["friction"] = dynamics_kwargs.get( + "friction", + 10.0 * 1e-3 / units.fs, # Same default as in VASP: 10 ps^-1 + ) + + return dynamics_kwargs + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + atoms = parameters["atoms"] + calculator = parameters["calculator"] + + return f"{task_name}: {atoms.get_chemical_formula()} - {calculator}" + + +@task( + name="MD", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS +) +def run( + atoms: Atoms, + calculator: BaseCalculator, + ensemble: Literal["nve", "nvt", "npt"] = "nvt", + dynamics: str | MolecularDynamics = "langevin", + time_step: float | None = None, # fs + total_time: float = 1000, # fs + temperature: float | Sequence | np.ndarray | None = 300.0, # K + pressure: float | Sequence | np.ndarray | None = None, # eV/A^3 + dynamics_kwargs: dict | None = None, + velocity_seed: int | None = None, + zero_linear_momentum: bool = True, + zero_angular_momentum: bool = True, + traj_file: str | Path | None = None, + traj_interval: int = 1, + restart: bool = True, +): + """ + Run a molecular dynamics (MD) simulation using ASE. + + Parameters: + atoms (Atoms): The atomic structure to simulate. + calculator (BaseCalculator): The calculator to use for energy and force calculations. + ensemble (Literal["nve", "nvt", "npt"], optional): The MD ensemble to use. Defaults to "nvt". + dynamics (str | MolecularDynamics, optional): The dynamics method to use. Defaults to "langevin". + time_step (float | None, optional): The time step for the simulation in femtoseconds. + Defaults to 0.5 fs if hydrogen isotopes are present, otherwise 2.0 fs. + total_time (float, optional): The total simulation time in femtoseconds. Defaults to 1000 fs. + temperature (float | Sequence | np.ndarray | None, optional): The temperature schedule in Kelvin. + Can be a scalar or a sequence. Defaults to 300 K. + pressure (float | Sequence | np.ndarray | None, optional): The pressure schedule in eV/ร…ยณ. + Can be a scalar or a sequence. Defaults to None. + dynamics_kwargs (dict | None, optional): Additional keyword arguments for the dynamics method. Defaults to None. + velocity_seed (int | None, optional): Seed for random number generation for initial velocities. Defaults to None. + zero_linear_momentum (bool, optional): Whether to remove linear momentum from the system. Defaults to True. + zero_angular_momentum (bool, optional): Whether to remove angular momentum from the system. Defaults to True. + traj_file (str | Path | None, optional): Path to the trajectory file for saving simulation results. Defaults to None. + traj_interval (int, optional): Interval for saving trajectory frames. Defaults to 1. + restart (bool, optional): Whether to restart the simulation from an existing trajectory file. Defaults to True. + + Returns: + dict: A dictionary containing the following keys: + - "atoms" (Atoms): The final atomic structure after the simulation. + - "runtime" (timedelta): The runtime of the simulation. + - "n_steps" (int): The number of steps performed in the simulation. + + Raises: + ValueError: If an invalid dynamics method is specified or if the dynamics method is incompatible with the ensemble. + + Notes: + - The function supports restarting from an existing trajectory file if `restart` is True. + - For NPT dynamics, the atomic cell is transformed to an upper triangular form to meet ASE's requirements. + - Temperature and pressure schedules can be specified as sequences or arrays for time-dependent control. + """ + + atoms = atoms.copy() + + atoms.calc = calculator + + if time_step is None: + # If a structure contains an isotope of hydrogen, set default `time_step` + # to 0.5 fs, and 2 fs otherwise. + has_h_isotope = "H" in atoms.get_chemical_symbols() + time_step = 0.5 if has_h_isotope else 2.0 + + n_steps = int(total_time / time_step) + target_steps = n_steps + + t_schedule, p_schedule = _get_ensemble_schedule( + ensemble=ensemble, + n_steps=n_steps, + temperature=temperature, + pressure=pressure, + ) + + dynamics_kwargs = _get_ensemble_defaults( + ensemble=ensemble, + dynamics=dynamics, + t_schedule=t_schedule, + p_schedule=p_schedule, + dynamics_kwargs=dynamics_kwargs, + ) + + if isinstance(dynamics, str): + # Use known dynamics if `self.dynamics` is a str + dynamics = dynamics.lower() + if dynamics not in _valid_dynamics[ensemble]: + raise ValueError( + f"{dynamics} thermostat not available for {ensemble}." + f"Available {ensemble} thermostats are:" + " ".join(_valid_dynamics[ensemble]) + ) + if ensemble == "nve": + dynamics = "velocityverlet" + md_class = _preset_dynamics[f"{ensemble}_{dynamics}"] + elif dynamics is MolecularDynamics: + md_class = dynamics + else: + raise ValueError(f"Invalid dynamics: {dynamics}") + + if md_class is NPT: + # Note that until md_func is instantiated, isinstance(md_func,NPT) is False + # ASE NPT implementation requires upper triangular cell + u, _ = schur(atoms.get_cell(complete=True), output="complex") + atoms.set_cell(u.real, scale_atoms=True) + + last_step = 0 + + if traj_file is not None: + traj_file = Path(traj_file) + traj_file.parent.mkdir(parents=True, exist_ok=True) + + if restart and traj_file.exists(): + try: + last_atoms = read(traj_file, index="-1") + assert isinstance(last_atoms, Atoms) + last_step = last_atoms.info.get("step") + n_steps -= last_step + traj = Trajectory(traj_file, "a", atoms) + atoms.set_positions(last_atoms.get_positions()) + atoms.set_momenta(last_atoms.get_momenta()) + except Exception: + traj = Trajectory(traj_file, "w", atoms) + + if not np.isnan(t_schedule).any(): + MaxwellBoltzmannDistribution( + atoms=atoms, + temperature_K=t_schedule[last_step], + rng=np.random.default_rng(seed=velocity_seed), + ) + + if zero_linear_momentum: + Stationary(atoms) + if zero_angular_momentum: + ZeroRotation(atoms) + else: + traj = Trajectory(traj_file, "w", atoms) + + if not np.isnan(t_schedule).any(): + MaxwellBoltzmannDistribution( + atoms=atoms, + temperature_K=t_schedule[last_step], + rng=np.random.default_rng(seed=velocity_seed), + ) + + if zero_linear_momentum: + Stationary(atoms) + if zero_angular_momentum: + ZeroRotation(atoms) + + fraction_traceless = dynamics_kwargs.pop("fraction_traceless", 1.0) + + md_runner = md_class( + atoms=atoms, + timestep=time_step * units.fs, + **dynamics_kwargs, + ) + if md_class is NPT: + md_runner.set_fraction_traceless(fraction_traceless) + + if traj_file is not None: + md_runner.attach(traj.write, interval=traj_interval) + + with tqdm(total=n_steps) as pbar: + + def _callback(dyn: MolecularDynamics = md_runner) -> None: + step = last_step + dyn.nsteps + dyn.atoms.info["restart"] = last_step + dyn.atoms.info["datetime"] = datetime.now() + dyn.atoms.info["step"] = step + dyn.atoms.info["target_steps"] = target_steps + if ensemble == "nve": + return + dyn.set_temperature(temperature_K=t_schedule[step]) + if ensemble == "nvt": + return + dyn.set_stress(p_schedule[step]) + pbar.update() + + md_runner.attach(_callback, interval=1) + + start_time = datetime.now() + md_runner.run(steps=n_steps) + end_time = datetime.now() + + if traj_file is not None: + traj.close() + + return { + "atoms": atoms, + "runtime": end_time - start_time, + "n_steps": n_steps, + } diff --git a/mlip_arena/tasks/mof/LICENSE b/mlip_arena/tasks/mof/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..9bec9ea1dce149f68680f79422395ef547b5ce4e --- /dev/null +++ b/mlip_arena/tasks/mof/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2024 Hyunsoo Park + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. \ No newline at end of file diff --git a/mlip_arena/tasks/mof/__init__.py b/mlip_arena/tasks/mof/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4e5966491b03815c17a1dcba6f30a3ebb937dcdd --- /dev/null +++ b/mlip_arena/tasks/mof/__init__.py @@ -0,0 +1,17 @@ +from pathlib import Path +from loguru import logger + +license_path = Path(__file__).parent / "LICENSE" + +logger.info(f""" +The module '{__name__}' is adapted from the repository: https://github.com/hspark1212/DAC-SIM. +By using this module, you agree to the terms and conditions specified in the following license: + +https://github.com/hspark1212/DAC-SIM/blob/main/LICENSE + +Additionally, please ensure proper attribution by citing the reference: + +Lim, Y., Park, H., Walsh, A., & Kim, J. (2024). Accelerating COโ‚‚ Direct Air Capture Screening for Metal-Organic Frameworks with a Transferable Machine Learning Force Field. + +A local copy of the LICENSE file can be found at: {license_path}. +""") diff --git a/mlip_arena/tasks/mof/flow.py b/mlip_arena/tasks/mof/flow.py new file mode 100644 index 0000000000000000000000000000000000000000..c2f39e8b22b3628cd9a2c844aecc5cc6fe2fbf7d --- /dev/null +++ b/mlip_arena/tasks/mof/flow.py @@ -0,0 +1,360 @@ +""" +Widom insertion workflow to calculate Henry coefficient and heat of adsorption for a given MOF structure and gas molecule. + + +This script is heavily adapted from the `DAC-SIM `_ package. Please cite the original work if you use this script. + +References +~~~~~~~~~~~ +- Lim, Y., Park, H., Walsh, A., & Kim, J. (2024). Accelerating COโ‚‚ Direct Air Capture Screening for Metal-Organic Frameworks with a Transferable Machine Learning Force Field. +""" + +from collections import defaultdict +from pathlib import Path +from typing import IO, Any + +import numpy as np +from prefect import flow, task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.futures import wait +from prefect.logging import get_run_logger +from prefect.runtime import task_run +from prefect.states import State +from tqdm.auto import tqdm + +from ase import Atoms, units +from ase.atoms import Atoms +from ase.build import molecule +from ase.filters import Filter +from ase.io.trajectory import Trajectory, TrajectoryWriter +from ase.optimize.optimize import Optimizer +from ase.calculators.calculator import BaseCalculator +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.optimize import run as OPT +from mlip_arena.tasks.utils import get_calculator, logger + +from .grid import get_accessible_positions +from .input import get_atoms_from_db + + +def add_molecule(gas: Atoms, rotate: bool = True, translate: tuple = None) -> Atoms: + """ + Add a molecule to the simulation cell + + Parameters + ---------- + gas : Atoms + The gas molecule to add + rotate : bool, optional + If True, rotate the molecule randomly, by default True + translate : tuple, optional + The translation of the molecule, by default None + + Returns + ------- + Atoms + The gas molecule added to the simulation cell + + Raises + ------ + ValueError + If the translate is not a 3-tuple, raise an error + + Examples + -------- + >>> from ml_mc.utils import molecule, add_gas + >>> gas = molecule('H2O') + >>> gas = add_gas(gas, rotate=True, translate=(0, 0, 0)) + """ + gas = gas.copy() + if rotate: + angle = np.random.rand() * 360 + axis = np.random.rand(3) + gas.rotate(v=axis, a=angle) + if translate is not None: + if len(translate) != 3: + raise ValueError("translate must be a 3-tuple") + gas.translate(translate) + return gas + + +def get_atomic_density(atoms: Atoms) -> float: + """ + Calculate atomic density of the atoms. + + Parameters + ---------- + atoms : Atoms + The Atoms object to operate on. + + Returns + ------- + float + Atomic density of the atoms in kg/mยณ. + """ + volume = atoms.get_volume() * 1e-30 # Convert ร…ยณ to mยณ + total_mass = sum(atoms.get_masses()) * units._amu # Convert amu to kg + return total_mass / volume + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + structure = parameters["structure"] + gas = parameters["gas"] + calculator = parameters["calculator"] + + return f"{task_name}: {structure.get_chemical_formula()} + {gas.get_chemical_formula()} - {calculator}" + + +@task( + name="Widom Insertion", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, +) +def widom_insertion( + # init + structure: Atoms, + gas: Atoms, + calculator: BaseCalculator, + optimizer: Optimizer | str = "FIRE", + optimizer_kwargs: dict | None = None, + filter: Filter | str | None = "FrechetCell", + filter_kwargs: dict | None = None, + criterion: dict | None = dict(fmax=0.05, steps=50), + temperature: float = 300, + init_structure_optimize_loops: int = 10, + init_gas_optimize: bool = True, + traj_file: str | Path | None = None, + # run + num_insertions: int = 5000, + grid_spacing: float = 0.15, + cutoff_distance: float = 1.50, + min_interplanar_distance: float = 6.0, + fold: int = 3, + random_seed: int | None = None, +) -> dict[str, Any] | State: + """ + Run the Widom insertion algorithm to calculate the Henry coefficient and heat of adsorption. + + Parameters + ---------- + num_insertions : int, default=5000 + Number of random insertions of the gas molecule during simulation. + grid_spacing : float, default=0.15 + Spacing of the grid for possible gas insertion points, in angstroms. + cutoff_distance : float, default=1.50 + When the distance between framework atoms and the gas molecule is less than this value, the insertion is rejected. In angstroms. + min_interplanar_distance : float, default=6.0 + When the interplanar distance of the framework is less than this value, a supercell is constructed. In angstroms. + fold : int, default=3 + Number of repetitions of Widom insertion to improve statistics. + random_seed : int, optional + Seed for the random number generator for reproducibility. + + Returns + ------- + Dict[str, Any] + Dictionary containing the calculated Henry coefficient (mol/kg Pa), averaged interaction energy (eV), and heat of adsorption (kJ/mol) over the number of folds. + """ + + structure = structure.copy() + gas = gas.copy() + + # Optimize structure and gas molecule + while init_structure_optimize_loops > 0: + logger.info("Optimizing cell") + state = OPT( + atoms=structure, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=filter, + filter_kwargs=filter_kwargs, + criterion=criterion, + return_state=True, + ) + + if state.is_failed(): + return state + + result = state.result(raise_on_failure=False) + structure = result["atoms"] + if result["converged"]: + break + + logger.info("Optimizing atoms with fixed cell") + state = OPT( + atoms=structure, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=None, + filter_kwargs=None, + criterion=criterion, + return_state=True, + ) + + if state.is_failed(): + return state + + result = state.result(raise_on_failure=False) + structure = result["atoms"] + if result["converged"]: + break + + init_structure_optimize_loops -= 1 + + if init_gas_optimize: + logger.info("Optimizing gas molecule") + state = OPT( + atoms=gas, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + filter=None, + criterion=criterion, + return_state=True, + ) + + if state.is_failed(): + return state + + gas = state.result(raise_on_failure=False)["atoms"] + + # Calculate accessible positions + ret = get_accessible_positions( + structure=structure, + grid_spacing=grid_spacing, + cutoff_distance=cutoff_distance, + min_interplanar_distance=min_interplanar_distance, + ) + pos_grid = ret["pos_grid"] + idx_accessible_pos = ret["idx_accessible_pos"] + structure = ret["structure"] # supercell structure if necessary + + logger.info( + f"Number of accessible positions: {len(idx_accessible_pos)} out of total {len(pos_grid)}" + ) + + calc = calculator + # Calculate energies for structure and gas + energy_structure = calc.get_potential_energy(structure) + energy_gas = calc.get_potential_energy(gas) + + # Set random seed if provided + if random_seed is not None: + np.random.seed(random_seed) + logger.info(f"Setting random seed: {random_seed}") + + if traj_file is not None: + traj_file = Path(traj_file) + traj_file.parent.mkdir(parents=True, exist_ok=True) + # TODO: checkpoint and restart + traj = Trajectory(traj_file, "a") + else: + traj = None + + # Run Widom insertion algorithm + + results = defaultdict(list) + for ifold in range(fold): + + nsteps = 0 + + np.random.shuffle(idx_accessible_pos) + interaction_energies = np.zeros(num_insertions) + + pbar = tqdm(total=num_insertions, desc=f"Fold {ifold + 1}/{fold}") + for rand_idx in idx_accessible_pos: + # assert rand_idx in idx_accessible_pos + + if nsteps >= num_insertions: + break + + # Add gas molecule to the accessible position + pos = pos_grid[rand_idx] + added_gas = add_molecule(gas, rotate=True, translate=pos) + structure_with_gas = structure + added_gas + structure_with_gas.wrap() # wrap atoms to unit cell + + # Calculate interaction energy + structure_with_gas.calc = calc + total_energy = structure_with_gas.get_potential_energy() # [eV] + interaction_energy = total_energy - energy_structure - energy_gas # [eV] + + boltzmann_factor = np.exp( + -interaction_energy / (temperature * units._k / units._e) + ) + + # Handle exponential overflow that can cause numerical instability + + max_exp_arg = 700 # np.exp(700) is close to the max float64 + if boltzmann_factor > np.exp(max_exp_arg): + logger.warning( + f"Exponential overflow detected. Rejecting this step and retrying." + ) + continue + + interaction_energies[nsteps] = interaction_energy + nsteps += 1 + pbar.update(1) + + # Write trajectory + if isinstance(traj, TrajectoryWriter): + traj.write(structure_with_gas) + + pbar.close() + + assert nsteps == num_insertions, "Cannot reach the number of insertions due to too many invalid steps." + + # Calculate ensemble averages properties + # units._e [J/eV], units._k [J/K], units._k / units._e # [eV/K] + boltzmann_factors = np.exp( + -interaction_energies / (temperature * units._k / units._e) + ) + + # KH = / (R * T) + atomic_density = get_atomic_density(structure) # [kg / m^3] + kh = ( + boltzmann_factors.sum() + / num_insertions + / (units._k * units._Nav) # R = [J / mol K] = [Pa m^3 / mol K] + / temperature # T = [K] -> [mol/ m^3 Pa] + / atomic_density # = [kg / m^3] -> [mol / kg Pa] + ) # [mol/kg Pa] + + # U = < E * exp(-E/RT) > / # [eV] + u = (interaction_energies * boltzmann_factors).sum() / boltzmann_factors.sum() + + # Qst = U - RT # [kJ/mol] + qst = (u * units._e - units._k * temperature) * units._Nav * 1e-3 + + results["henry_coefficient"].append(kh) + results["averaged_interaction_energy"].append(u) + results["heat_of_adsorption"].append(qst) + + return results + + +@flow +def run( + db_path: Path | str = "mofs.db", +): + states = [] + for model in MLIPEnum: + for atoms in tqdm(get_atoms_from_db(db_path)): + state = widom_insertion.submit( + atoms, + molecule("CO2"), + calculator=get_calculator( + model, + dispersion=True, + ), + return_state=True, + ) + states.append(state) + + wait(states) + return [s.result(raise_on_failture=False) for s in states if s.is_completed()] diff --git a/mlip_arena/tasks/mof/grid.py b/mlip_arena/tasks/mof/grid.py new file mode 100644 index 0000000000000000000000000000000000000000..152f622004faf2572623f109c9eb1b3756f9308b --- /dev/null +++ b/mlip_arena/tasks/mof/grid.py @@ -0,0 +1,60 @@ +""" +Grid search for accessible positions + + +This script is heavily adapted from the `DAC-SIM `_ package. Please cite the original work if you use this script. + +References +~~~~~~~~~~~ +- Lim, Y., Park, H., Walsh, A., & Kim, J. (2024). Accelerating COโ‚‚ Direct Air Capture Screening for Metal-Organic Frameworks with a Transferable Machine Learning Force Field. +""" + +import MDAnalysis as mda +import numpy as np + +from ase import Atoms + + +def get_accessible_positions( + structure: Atoms, + grid_spacing: float = 0.5, + cutoff_distance: float = 10.0, + min_interplanar_distance: float = 2.0, +) -> dict: + # get the supercell structure + cell_volume = structure.get_volume() + cell_vectors = np.array(structure.cell) + dist_a = cell_volume / np.linalg.norm(np.cross(cell_vectors[1], cell_vectors[2])) + dist_b = cell_volume / np.linalg.norm(np.cross(cell_vectors[2], cell_vectors[0])) + dist_c = cell_volume / np.linalg.norm(np.cross(cell_vectors[0], cell_vectors[1])) + plane_distances = np.array([dist_a, dist_b, dist_c]) + supercell = np.ceil(min_interplanar_distance / plane_distances).astype(int) + if np.any(supercell > 1): + print( + f"Making supercell: {supercell} to prevent interplanar distance < {min_interplanar_distance}" + ) + structure = structure.repeat(supercell) + # get position for grid + grid_size = np.ceil(np.array(structure.cell.cellpar()[:3]) / grid_spacing).astype( + int + ) + indices = np.indices(grid_size).reshape(3, -1).T # (G, 3) + pos_grid = indices.dot(cell_vectors / grid_size) # (G, 3) + # get positions for atoms + pos_atoms = structure.get_positions() # (N, 3) + # distance matrix + dist_matrix = mda.lib.distances.distance_array( + pos_grid, pos_atoms, box=structure.cell.cellpar() + ) # (G, N) # TODO: check if we could use other packages instead of mda + + # calculate the accessible positions + min_dist = np.min(dist_matrix, axis=1) # (G,) + idx_accessible_pos = np.where(min_dist > cutoff_distance)[0] + + # result + return { + "pos_grid": pos_grid, + "idx_accessible_pos": idx_accessible_pos, + "accessible_pos": pos_grid[idx_accessible_pos], + "structure": structure, + } diff --git a/mlip_arena/tasks/mof/input.py b/mlip_arena/tasks/mof/input.py new file mode 100644 index 0000000000000000000000000000000000000000..89ef833f2dc31d7976c6829bf03db2a91aa80145 --- /dev/null +++ b/mlip_arena/tasks/mof/input.py @@ -0,0 +1,69 @@ +import os +from pathlib import Path +from typing import Generator, Iterable +from loguru import logger +from huggingface_hub import HfApi, hf_hub_download +from prefect import task + +from ase import Atoms +from ase.db import connect + + +def save_to_db( + atoms_list: list[Atoms] | Iterable[Atoms] | Atoms, + db_path: Path | str, + upload: bool = True, + hf_token: str | None = os.getenv("HF_TOKEN", None), + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", + subfolder: str = Path(__file__).parent.name, +): + """Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub.""" + + if upload and hf_token is None: + raise ValueError("HF_TOKEN is required to upload the database.") + + db_path = Path(db_path) + + if isinstance(atoms_list, Atoms): + atoms_list = [atoms_list] + + with connect(db_path) as db: + for atoms in atoms_list: + if not isinstance(atoms, Atoms): + raise ValueError("atoms_list must contain ASE Atoms objects.") + db.write(atoms) + + if upload: + api = HfApi(token=hf_token) + api.upload_file( + path_or_fileobj=db_path, + path_in_repo=f"{subfolder}/{db_path.name}", + repo_id=repo_id, + repo_type=repo_type, + ) + logger.info(f"{db_path.name} uploaded to {repo_id}/{subfolder}") + + return db_path + +@task +def get_atoms_from_db( + db_path: Path | str, + hf_token: str | None = os.getenv("HF_TOKEN", None), + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", + subfolder: str = Path(__file__).parent.name, +) -> Generator[Atoms, None, None]: + """Retrieve ASE Atoms objects from an ASE database.""" + db_path = Path(db_path) + if not db_path.exists(): + db_path = hf_hub_download( + repo_id=repo_id, + repo_type=repo_type, + subfolder=subfolder, + filename=str(db_path), + token=hf_token, + ) + with connect(db_path) as db: + for row in db.select(): + yield row.toatoms() diff --git a/mlip_arena/tasks/neb.py b/mlip_arena/tasks/neb.py new file mode 100644 index 0000000000000000000000000000000000000000..523e17f0d72cb0e40e6e4248e5b1821ca5b3db75 --- /dev/null +++ b/mlip_arena/tasks/neb.py @@ -0,0 +1,248 @@ +""" +Defines nudged elastic band (NEB) task + +This module has been modified from MatCalc +https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/neb.py + +https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE + +BSD 3-Clause License + +Copyright (c) 2023, Materials Virtual Lab + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +""" + +from __future__ import annotations + +from pathlib import Path +from typing import Any, Literal + +from ase import Atoms +from ase.calculators.calculator import BaseCalculator +from ase.filters import * # type: ignore +from ase.mep.neb import NEB, NEBTools +from ase.optimize import * # type: ignore +from ase.optimize.optimize import Optimizer +from ase.utils.forcecurve import fit_images +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run +from prefect.states import State + +from mlip_arena.tasks.optimize import run as OPT +from mlip_arena.tasks.utils import logger, pformat +from pymatgen.io.ase import AseAtomsAdaptor + +_valid_optimizers: dict[str, Optimizer] = { + "MDMin": MDMin, + "FIRE": FIRE, + "FIRE2": FIRE2, + "LBFGS": LBFGS, + "LBFGSLineSearch": LBFGSLineSearch, + "BFGS": BFGS, + # "BFGSLineSearch": BFGSLineSearch, # NEB does not support BFGSLineSearch + "QuasiNewton": QuasiNewton, + "GPMin": GPMin, + "CellAwareBFGS": CellAwareBFGS, + "ODE12r": ODE12r, +} # type: ignore + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + if "images" in parameters: + atoms = parameters["images"][0] + elif "start" in parameters: + atoms = parameters["start"] + else: + raise ValueError("No images or start atoms found in parameters") + + calculator_name = parameters["calculator"] + + return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" + + +@task( + name="NEB from images", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, +) +def run( + images: list[Atoms], + calculator: BaseCalculator, + optimizer: Optimizer | str = "MDMin", # type: ignore + optimizer_kwargs: dict | None = None, + criterion: dict | None = None, + interpolation: Literal["linear", "idpp"] = "idpp", + climb: bool = True, + traj_file: str | Path | None = None, +) -> dict[str, Any] | State: + """Run the nudged elastic band (NEB) calculation. + + Args: + images (list[Atoms]): The images. + calculator_name (str | MLIPEnum): The calculator name. + calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None. + dispersion (str, optional): The dispersion. Defaults to None. + dispersion_kwargs (dict, optional): The dispersion kwargs. Defaults to None. + device (str, optional): The device. Defaults to None. + optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch". + optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None. + criterion (dict, optional): The criterion. Defaults to None. + interpolation (Literal['linear', 'idpp'], optional): The interpolation method. Defaults to "idpp". + climb (bool, optional): Whether to use the climbing image. Defaults to True. + traj_file (str | Path, optional): The trajectory file. Defaults to None. + + Returns: + dict[str, Any] | State: The energy barrier. + """ + + images = [image.copy() for image in images] + + for image in images: + assert isinstance(image, Atoms) + image.calc = calculator + + neb = NEB(images, climb=climb, allow_shared_calculator=True) + + neb.interpolate(method=interpolation) + + if isinstance(optimizer, str): + if optimizer not in _valid_optimizers: + raise ValueError(f"Invalid optimizer: {optimizer}") + optimizer = _valid_optimizers[optimizer] + + optimizer_kwargs = optimizer_kwargs or {} + criterion = criterion or {} + + optimizer_instance = optimizer(neb, trajectory=traj_file, **optimizer_kwargs) # type: ignore + logger.info(f"Using optimizer: {optimizer_instance}") + logger.info(pformat(optimizer_kwargs)) + logger.info(f"Criterion: {pformat(criterion)}") + optimizer_instance.run(**criterion) + + neb_tool = NEBTools(neb.images) + + return { + "barrier": neb_tool.get_barrier(), + "images": neb.images, + "forcefit": fit_images(neb.images), + } + + +@task( + name="NEB from endpoints", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, +) +def run_from_endpoints( + start: Atoms, + end: Atoms, + n_images: int, + calculator: BaseCalculator, + optimizer: Optimizer | str = "BFGS", # type: ignore + optimizer_kwargs: dict | None = None, + criterion: dict | None = None, + relax_end_points: bool = True, + interpolation: Literal["linear", "idpp"] = "idpp", + climb: bool = True, + traj_file: str | Path | None = None, + cache_subtasks: bool = False, +) -> dict[str, Any] | State: + """Run the nudged elastic band (NEB) calculation from end points. + + Args: + start (Atoms): The start image. + end (Atoms): The end image. + n_images (int): The number of images. + calculator_name (str | MLIPEnum): The calculator name. + calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None. + dispersion (str, optional): The dispersion. Defaults to None. + dispersion_kwargs (dict, optional): The dispersion kwargs. Defaults to None. + device (str, optional): The device. Defaults to None. + optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch". + optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None. + criterion (dict, optional): The criterion. Defaults to None. + interpolation (Literal['linear', 'idpp'], optional): The interpolation method. Defaults to "idpp". + climb (bool, optional): Whether to use the climbing image. Defaults to True. + traj_file (str | Path, optional): The trajectory file. Defaults to None. + + Returns: + dict[str, Any] | State: The energy barrier. + """ + + if relax_end_points: + relax = OPT.with_options( + refresh_cache=not cache_subtasks, + )( + atoms=start.copy(), + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + criterion=criterion, + ) + start = relax["atoms"] + + relax = OPT.with_options( + refresh_cache=not cache_subtasks, + )( + atoms=end.copy(), + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + criterion=criterion, + ) + end = relax["atoms"] + + path = ( + AseAtomsAdaptor() + .get_structure(start) + .interpolate( + AseAtomsAdaptor().get_structure(end), + nimages=n_images - 1, + interpolate_lattices=False, + pbc=False, + autosort_tol=0.5, + ) + ) + + images = [s.to_ase_atoms(msonable=False) for s in path] + + return run.with_options( + refresh_cache=not cache_subtasks, + )( + images, + calculator=calculator, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + criterion=criterion, + interpolation=interpolation, + climb=climb, + traj_file=traj_file, + ) diff --git a/mlip_arena/tasks/optimize.py b/mlip_arena/tasks/optimize.py new file mode 100644 index 0000000000000000000000000000000000000000..c0d5f478b0b055e3ae8598460000e24ad52ce127 --- /dev/null +++ b/mlip_arena/tasks/optimize.py @@ -0,0 +1,109 @@ +""" +Define structure optimization tasks. +""" + +from __future__ import annotations + +from ase import Atoms +from ase.calculators.calculator import BaseCalculator +from ase.constraints import FixSymmetry +from ase.filters import * # type: ignore +from ase.filters import Filter +from ase.optimize import * # type: ignore +from ase.optimize.optimize import Optimizer +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run + +from mlip_arena.tasks.utils import logger, pformat + +_valid_filters: dict[str, Filter] = { + "Filter": Filter, + "UnitCell": UnitCellFilter, + "ExpCell": ExpCellFilter, + "Strain": StrainFilter, + "FrechetCell": FrechetCellFilter, +} # type: ignore + +_valid_optimizers: dict[str, Optimizer] = { + "MDMin": MDMin, + "FIRE": FIRE, + "FIRE2": FIRE2, + "LBFGS": LBFGS, + "LBFGSLineSearch": LBFGSLineSearch, + "BFGS": BFGS, + "BFGSLineSearch": BFGSLineSearch, + "QuasiNewton": QuasiNewton, + "GPMin": GPMin, + "CellAwareBFGS": CellAwareBFGS, + "ODE12r": ODE12r, +} # type: ignore + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + atoms = parameters["atoms"] + calculator_name = parameters["calculator"] + + return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" + + +@task( + name="OPT", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS +) +def run( + atoms: Atoms, + calculator: BaseCalculator, + optimizer: Optimizer | str = BFGSLineSearch, + optimizer_kwargs: dict | None = None, + filter: Filter | str | None = None, + filter_kwargs: dict | None = None, + criterion: dict | None = None, + symmetry: bool = False, +): + atoms = atoms.copy() + atoms.calc = calculator + + if isinstance(filter, str): + if filter not in _valid_filters: + raise ValueError(f"Invalid filter: {filter}") + filter = _valid_filters[filter] + + if isinstance(optimizer, str): + if optimizer not in _valid_optimizers: + raise ValueError(f"Invalid optimizer: {optimizer}") + optimizer = _valid_optimizers[optimizer] + + filter_kwargs = filter_kwargs or {} + optimizer_kwargs = optimizer_kwargs or {} + criterion = criterion or dict(steps=1000) + + if symmetry: + atoms.set_constraint(FixSymmetry(atoms)) + + if isinstance(filter, type) and issubclass(filter, Filter): + filter_instance = filter(atoms, **filter_kwargs) + logger.info(f"Using filter: {filter_instance}") + logger.info(pformat(filter_kwargs)) + + optimizer_instance = optimizer(filter_instance, **optimizer_kwargs) + logger.info(f"Using optimizer: {optimizer_instance}") + logger.info(pformat(optimizer_kwargs)) + logger.info(f"Criterion: {pformat(criterion)}") + + optimizer_instance.run(**criterion) + elif filter is None: + optimizer_instance = optimizer(atoms, **optimizer_kwargs) + logger.info(f"Using optimizer: {optimizer_instance}") + logger.info(pformat(optimizer_kwargs)) + logger.info(f"Criterion: {pformat(criterion)}") + optimizer_instance.run(**criterion) + + + return { + "atoms": atoms, + "steps": optimizer_instance.nsteps, + "converged": optimizer_instance.converged(), + } diff --git a/mlip_arena/tasks/phonon.py b/mlip_arena/tasks/phonon.py new file mode 100644 index 0000000000000000000000000000000000000000..22b2638db5ae9c2dd5f740b3477a9e8e1fa8508e --- /dev/null +++ b/mlip_arena/tasks/phonon.py @@ -0,0 +1,166 @@ +""" +This module has been adapted from Quacc (https://github.com/Quantum-Accelerators/quacc). By using this software, you agree to the Quacc license agreement: https://github.com/Quantum-Accelerators/quacc/blob/main/LICENSE.md + + +BSD 3-Clause License + +Copyright (c) 2025, Andrew S. Rosen. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +- Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +- Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +- Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +""" + +from pathlib import Path + +import numpy as np +from ase import Atoms +from ase.calculators.calculator import BaseCalculator +from prefect import task +from prefect.cache_policies import INPUTS, TASK_SOURCE +from prefect.runtime import task_run + +from mlip_arena.tasks.utils import logger + +try: + from phonopy import Phonopy + from phonopy.structure.atoms import PhonopyAtoms +except ImportError as e: + logger.warning(e) + logger.warning( + "Phonopy is not installed. Please install it following the instructions at https://phonopy.github.io/phonopy/install.html to use this module." + ) + + +@task(cache_policy=TASK_SOURCE + INPUTS) +def get_phonopy( + atoms: Atoms, + supercell_matrix: list[int] | None = None, + min_lengths: float | tuple[float, float, float] | None = None, + symprec: float = 1e-5, + distance: float = 0.01, + phonopy_kwargs: dict = {}, +) -> Phonopy: + if supercell_matrix is None and min_lengths is not None: + supercell_matrix = np.diag( + np.round(np.ceil(min_lengths / atoms.cell.lengths())) + ) + + phonon = Phonopy( + PhonopyAtoms( + symbols=atoms.get_chemical_symbols(), + cell=atoms.get_cell(), + scaled_positions=atoms.get_scaled_positions(wrap=True), + masses=atoms.get_masses(), + ), + symprec=symprec, + supercell_matrix=supercell_matrix, + **phonopy_kwargs, + ) + phonon.generate_displacements(distance=distance) + + return phonon + + +def _get_forces( + phononpy_atoms: PhonopyAtoms, + calculator: BaseCalculator, +) -> np.ndarray: + atoms = Atoms( + symbols=phononpy_atoms.symbols, + cell=phononpy_atoms.cell, + scaled_positions=phononpy_atoms.scaled_positions, + pbc=True, + ) + + atoms.calc = calculator + + return atoms.get_forces() + + +def _generate_task_run_name(): + task_name = task_run.task_name + parameters = task_run.parameters + + atoms = parameters["atoms"] + calculator_name = parameters["calculator"] + + return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}" + + +@task( + name="PHONON", + task_run_name=_generate_task_run_name, + cache_policy=TASK_SOURCE + INPUTS, +) +def run( + atoms: Atoms, + calculator: BaseCalculator, + supercell_matrix: list[int] | None = None, + min_lengths: float | tuple[float, float, float] | None = None, + symprec: float = 1e-5, + distance: float = 0.01, + phonopy_kwargs: dict = {}, + symmetry: bool = False, + t_min: float = 0.0, + t_max: float = 1000.0, + t_step: float = 10.0, + outdir: str | None = None, +): + phonon = get_phonopy( + atoms=atoms.copy(), + supercell_matrix=supercell_matrix, + min_lengths=min_lengths, + symprec=symprec, + distance=distance, + phonopy_kwargs=phonopy_kwargs, + ) + + supercells_with_displacements = phonon.supercells_with_displacements + + phonon.forces = [ + _get_forces(supercell, calculator) + for supercell in supercells_with_displacements + if supercell is not None + ] + phonon.produce_force_constants() + + if symmetry: + phonon.symmetrize_force_constants() + phonon.symmetrize_force_constants_by_space_group() + + phonon.run_mesh(with_eigenvectors=True) + phonon.run_total_dos() + phonon.run_thermal_properties(t_step=t_step, t_max=t_max, t_min=t_min) # type: ignore + phonon.auto_band_structure( + write_yaml=True if outdir is not None else False, + filename=Path(outdir, "band.yaml") if outdir is not None else "band.yaml", + ) + if outdir: + phonon.save(Path(outdir, "phonopy.yaml"), settings={"force_constants": True}) + + return { + "phonon": phonon, + } diff --git a/mlip_arena/tasks/registry.yaml b/mlip_arena/tasks/registry.yaml new file mode 100644 index 0000000000000000000000000000000000000000..64f711e9d4cb915e9477248c82e987f7d02e6ca9 --- /dev/null +++ b/mlip_arena/tasks/registry.yaml @@ -0,0 +1,38 @@ +Homonuclear diatomics: + category: Fundamentals + task-page: homonuclear-diatomics + task-layout: wide + rank-page: homonuclear-diatomics + last-update: 2024-09-19 +Energy-volume scans: + category: Fundamentals + task-page: wbm_ev + task-layout: wide + rank-page: wbm_ev + last-update: 2025-04-29 +Equation of state: + category: Fundamentals + task-page: eos_bulk + task-layout: wide + rank-page: eos_bulk + last-update: 2025-04-29 +Combustion: + category: Molecular Dynamics + task-page: combustion + task-layout: centered + rank-page: combustion +High pressure stability: + category: Molecular Dynamics + task-page: stability + task-layout: centered + rank-page: +Lattice thermal conductivity: + category: Properties and Physical Behaviors + task-page: thermal-conductivity + task-layout: centered + rank-page: thermal-conductivity +# 2D materials: +# category: Properties and Physical Behaviors +# task-page: c2db +# task-layout: centered +# rank-page: diff --git a/mlip_arena/tasks/stability/__init__.py b/mlip_arena/tasks/stability/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/mlip_arena/tasks/stability/chgnet/chloride-salts.json b/mlip_arena/tasks/stability/chgnet/chloride-salts.json new file mode 100644 index 0000000000000000000000000000000000000000..4af31c3ed97e9463b52c541fec25cd5a9958f8bc --- /dev/null +++ b/mlip_arena/tasks/stability/chgnet/chloride-salts.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c29313314759696c662a7019bf9d18816e7370e3e8630fd2df2923e967b98868 +size 62991 diff --git a/mlip_arena/tasks/stability/input.py b/mlip_arena/tasks/stability/input.py new file mode 100644 index 0000000000000000000000000000000000000000..11c47aced0c28b2b265924cbb6db460b8ee9fc22 --- /dev/null +++ b/mlip_arena/tasks/stability/input.py @@ -0,0 +1,74 @@ +import os +from pathlib import Path +from typing import Generator, Iterable + +from huggingface_hub import HfApi, hf_hub_download +from prefect import task + +from ase import Atoms +from ase.db import connect +from mlip_arena.tasks.utils import logger + + +def save_to_db( + atoms_list: list[Atoms] | Iterable[Atoms] | Atoms, + db_path: Path | str, + upload: bool = True, + hf_token: str | None = os.getenv("HF_TOKEN", None), + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", + subfolder: str = Path(__file__).parent.name, +): + """Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub.""" + + if upload and hf_token is None: + raise ValueError("HF_TOKEN is required to upload the database.") + + db_path = Path(db_path) + + if isinstance(atoms_list, Atoms): + atoms_list = [atoms_list] + + with connect(db_path) as db: + for atoms in atoms_list: + if not isinstance(atoms, Atoms): + raise ValueError("atoms_list must contain ASE Atoms objects.") + db.write(atoms) + + if upload: + api = HfApi(token=hf_token) + api.upload_file( + path_or_fileobj=db_path, + path_in_repo=f"{subfolder}/{db_path.name}", + repo_id=repo_id, + repo_type=repo_type, + ) + logger.info(f"{db_path.name} uploaded to {repo_id}/{subfolder}") + + return db_path + + +@task +def get_atoms_from_db( + db_path: Path | str, + hf_token: str | None = os.getenv("HF_TOKEN", None), + repo_id: str = "atomind/mlip-arena", + repo_type: str = "dataset", + subfolder: str = Path(__file__).parent.name, + force_download: bool = False, +) -> Generator[Atoms, None, None]: + """Retrieve ASE Atoms objects from an ASE database.""" + db_path = Path(db_path) + if not db_path.exists(): + db_path = hf_hub_download( + repo_id=repo_id, + repo_type=repo_type, + subfolder=subfolder, + # local_dir=db_path.parent, + filename=db_path.name, + token=hf_token, + force_download=force_download, + ) + with connect(db_path) as db: + for row in db.select(): + yield row.toatoms() diff --git a/mlip_arena/tasks/stability/mace-mp/chloride-salts.json b/mlip_arena/tasks/stability/mace-mp/chloride-salts.json new file mode 100644 index 0000000000000000000000000000000000000000..d798ea26d7c44e2852cc28a9007e50ba82f1d087 --- /dev/null +++ b/mlip_arena/tasks/stability/mace-mp/chloride-salts.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1788007f0728bd177466349a67812073a7d5e54b4fd45184aa53e5237ee5536f +size 166882641 diff --git a/mlip_arena/tasks/stability/orb/chloride-salts.json b/mlip_arena/tasks/stability/orb/chloride-salts.json new file mode 100644 index 0000000000000000000000000000000000000000..4fcdd5f86d0d4320a3fc835d9b83fdbf6ec48387 --- /dev/null +++ b/mlip_arena/tasks/stability/orb/chloride-salts.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e0a63ab2e52e104194dea43ffa456377bd355ef82b7b4a111456b81aeb054019 +size 12239582 diff --git a/mlip_arena/tasks/stability/sevennet/chloride-salts.json b/mlip_arena/tasks/stability/sevennet/chloride-salts.json new file mode 100644 index 0000000000000000000000000000000000000000..ba8848c0237f98d6b982c1ea9571de9a195c4ed1 --- /dev/null +++ b/mlip_arena/tasks/stability/sevennet/chloride-salts.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77e18217178cb40cfd8ba75cf4e32ec5586d8766fe7dc5268e665d5f51d6d4f4 +size 274466898 diff --git a/mlip_arena/tasks/thermal-conductivity/wte.csv b/mlip_arena/tasks/thermal-conductivity/wte.csv new file mode 100644 index 0000000000000000000000000000000000000000..ba74ba57b89772505916a0ab29f66ec55b985bc6 --- /dev/null +++ b/mlip_arena/tasks/thermal-conductivity/wte.csv @@ -0,0 +1,8 @@ +method,srme +M3GNet,1.142 +CHGNet,1.717 +MACE-MP(M),0.647 +SevenNet,0.767 +ORBv2,1.732 +ORBv2(MPTrj),1.725 +eqV2(OMat-S),1.772 diff --git a/mlip_arena/tasks/utils.py b/mlip_arena/tasks/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..7368b9ab63ba82a3a9f6b45aa25479871cce45b3 --- /dev/null +++ b/mlip_arena/tasks/utils.py @@ -0,0 +1,122 @@ +"""Utility functions for MLIP models.""" + +from __future__ import annotations + +from pprint import pformat + +import torch +from ase import units +from ase.calculators.calculator import BaseCalculator +from ase.calculators.mixing import SumCalculator + +from mlip_arena.models import MLIPEnum + +try: + from prefect.logging import get_run_logger + + logger = get_run_logger() +except (ImportError, RuntimeError): + from loguru import logger + + +def get_freer_device() -> torch.device: + """Get the GPU with the most free memory, or use MPS if available. + s + Returns: + torch.device: The selected GPU device or MPS. + + Raises: + ValueError: If no GPU or MPS is available. + """ + device_count = torch.cuda.device_count() + if device_count > 0: + # If CUDA GPUs are available, select the one with the most free memory + mem_free = [ + torch.cuda.get_device_properties(i).total_memory + - torch.cuda.memory_allocated(i) + for i in range(device_count) + ] + free_gpu_index = mem_free.index(max(mem_free)) + device = torch.device(f"cuda:{free_gpu_index}") + logger.info( + f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs" + ) + elif torch.backends.mps.is_available(): + # If no CUDA GPUs are available but MPS is, use MPS + logger.info("No GPU available. Using MPS.") + device = torch.device("mps") + else: + # Fallback to CPU if neither CUDA GPUs nor MPS are available + logger.info("No GPU or MPS available. Using CPU.") + device = torch.device("cpu") + + return device + + +def get_calculator( + calculator_name: str | MLIPEnum | BaseCalculator, + calculator_kwargs: dict | None = None, + dispersion: bool = False, + dispersion_kwargs: dict | None = None, + device: str | None = None, +) -> BaseCalculator: + """Get a calculator with optional dispersion correction.""" + + device = device or str(get_freer_device()) + + calculator_kwargs = calculator_kwargs or {} + calculator_kwargs.update({"device": device}) + + logger.info(f"Using device: {device}") + + if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum: + calc = calculator_name.value(**calculator_kwargs) + calc.__str__ = lambda: calculator_name.name + elif isinstance(calculator_name, str) and hasattr(MLIPEnum, calculator_name): + calc = MLIPEnum[calculator_name].value(**calculator_kwargs) + calc.__str__ = lambda: calculator_name + elif isinstance(calculator_name, type) and issubclass( + calculator_name, BaseCalculator + ): + logger.warning(f"Using custom calculator class: {calculator_name}") + calc = calculator_name(**calculator_kwargs) + calc.__str__ = lambda: f"{calc.__class__.__name__}" + elif isinstance(calculator_name, BaseCalculator): + logger.warning( + f"Using custom calculator object (kwargs are ignored): {calculator_name}" + ) + calc = calculator_name + calc.__str__ = lambda: f"{calc.__class__.__name__}" + else: + raise ValueError(f"Invalid calculator: {calculator_name}") + + logger.info(f"Using calculator: {calc}") + if calculator_kwargs: + logger.info(pformat(calculator_kwargs)) + + dispersion_kwargs = dispersion_kwargs or dict( + damping="bj", xc="pbe", cutoff=40.0 * units.Bohr + ) + + dispersion_kwargs.update({"device": device}) + + if dispersion: + try: + from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator + except ImportError as e: + raise ImportError( + "torch_dftd is required for dispersion but is not installed." + ) from e + + disp_calc = TorchDFTD3Calculator( + **dispersion_kwargs, + ) + calc = SumCalculator([calc, disp_calc]) + # TODO: rename the SumCalculator + + logger.info(f"Using dispersion: {disp_calc}") + if dispersion_kwargs: + logger.info(pformat(dispersion_kwargs)) + + assert isinstance(calc, BaseCalculator) + return calc diff --git a/mlip_arena/tasks/vacancy_migration/__init__.py b/mlip_arena/tasks/vacancy_migration/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/mlip_arena/tasks/vacancy_migration/input.py b/mlip_arena/tasks/vacancy_migration/input.py new file mode 100644 index 0000000000000000000000000000000000000000..211bf8960c58d1d1af8ec48d9fbf7c7e92f01ed6 --- /dev/null +++ b/mlip_arena/tasks/vacancy_migration/input.py @@ -0,0 +1,192 @@ +from mp_api.client import MPRester + +from ase import Atom +from ase.data import covalent_radii +from ase.spacegroup import crystal + +fcc_elements = [ + "Ac", + "Ag", + "Al", + "Ar", + "Au", + "Ba", + "Be", + "Ca", + "Cd", + "Ce", + "Co", + "Cs", + "Cu", + "Dy", + "Er", + "Fe", + "Ga", + "Ge", + "He", + "Hf", + "Ho", + "In", + "Ir", + "K", + "Kr", + "La", + "Li", + "Mg", + "Mn", + "Na", + "Ni", + "Os", + "Pa", + "Pb", + "Pd", + "Pr", + "Pt", + "Rb", + "Re", + "Rh", + "Ru", + "Sc", + "Sn", + "Sr", + "Ta", + "Tb", + "Tc", + "Th", + "Ti", + "Tl", + "W", + "Xe", + "Y", + "Zr" +] + +def get_fcc_pristine(mp_api_key = None): + for element in fcc_elements: + with MPRester(mp_api_key) as mpr: + docs = mpr.materials.summary.search( + formula=element, spacegroup_number=225, fields=["structure", "energy_above_hull"] + ) + + docs = sorted(docs, key=lambda x: x.energy_above_hull) + + if len(docs) != 0: + pristine = docs[0].structure.to_conventional().to_ase_atoms(msonable=False) * (3, 3, 3) + + if len(pristine) != 108: + v = pristine.get_volume() / len(pristine) + r = v**(1/3) + a = 2*(2**0.5)*r + + pristine = crystal( + symbols=[element]*4, + basis=[(0, 0, 0), (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)], + spacegroup=225, + cellpar=[a, a, a, 90, 90, 90], + ) * (3, 3, 3) + else: + r = covalent_radii[Atom(element).number] or 4 + a = 2*(2**0.5)*r + pristine = crystal( + symbols=[element]*4, + basis=[(0, 0, 0), (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)], + spacegroup=225, + cellpar=[a, a, a, 90, 90, 90], + ) * (3, 3, 3) + yield pristine + +hcp_elements = [ + "Ag", + "Al", + "Ar", + "Au", + "Ba", + "Be", + "Ca", + "Cd", + "Ce", + "Co", + "Cr", + "Cs", + "Cu", + "Fe", + "Ga", + "Ge", + "He", + "Hf", + "Ho", + "In", + "Ir", + "K", + "Kr", + "La", + "Li", + "Mg", + "Mn", + "Mo", + "Nb", + "Ne", + "Ni", + "Os", + "P", + "Pb", + "Pd", + "Pt", + "Rb", + "Re", + "Rh", + "Ru", + "Sc", + "Si", + "Sn", + "Sr", + "Ta", + "Tc", + "Te", + "Th", + "Ti", + "Tl", + "V", + "W", + "Xe", + "Y", + "Zn", + "Zr" +] + +def get_hcp_pristine(mp_api_key = None): + for element in hcp_elements: + with MPRester(mp_api_key) as mpr: + docs = mpr.materials.summary.search( + formula=element, spacegroup_number=194, fields=["structure", "energy_above_hull"] + ) + + docs = sorted(docs, key=lambda x: x.energy_above_hull) + + if len(docs) != 0: + pristine = docs[0].structure.to_conventional().to_ase_atoms(msonable=False) * (3, 3, 1) + + if len(pristine) != 36: + v = pristine.get_volume() / len(pristine) + r = v**(1/3) + a = 2*r + c = 4 * ((2/3) ** 0.5) * r + + pristine = crystal( + [element], + [(1.0 / 3.0, 2.0 / 3.0, 3.0 / 4.0)], + spacegroup=194, + cellpar=[a, a, c, 90, 90, 120], + ) * (3, 3, 2) + else: + r = covalent_radii[Atom(element).number] or 4 + a = 2*r + c = 4 * ((2/3) ** 0.5) * r + + pristine = crystal( + [element], + [(1.0 / 3.0, 2.0 / 3.0, 3.0 / 4.0)], + spacegroup=194, + cellpar=[a, a, c, 90, 90, 120], + ) * (3, 3, 2) + yield pristine \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..f1aa30552a3b467329053e75a6c9b72e99d02322 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,178 @@ +[build-system] +requires=["flit_core >=3.2,<4"] +build-backend="flit_core.buildapi" + +[project] +name="mlip-arena" +version="0.1.2" +authors=[ + {name="Yuan Chiang", email="cyrusyc@lbl.gov"}, +] +description="Fair and transparent benchmark of machine learning interatomic potentials (MLIPs), beyond error-based regression metrics" +readme=".github/README.md" +requires-python=">=3.9" +keywords=[ + "pytorch", + "machine-learning-interatomic-potentials", + "huggingface", + "deep-learning", + "graph-neural-networks", +] +classifiers=[ + "Development Status :: 1 - Planning", + "Programming Language :: Python", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Programming Language :: Python :: 3.12", + "Programming Language :: Python :: 3 :: Only", +] +dependencies=[ + "loguru", + "ase", + "pymatgen", + "torch", + "huggingface_hub", + "datasets", + "safetensors", + "prefect>3.2.0", + "prefect-dask", + "dask", + "dask_jobqueue", + "tables", + "MDAnalysis", # mof +] + +[project.optional-dependencies] +app = [ + "streamlit==1.43.2", + "plotly", +] +test = [ + "torch==2.4.0", + "torch_dftd==0.4.0", + "e3nn==0.5.0", + "dgl", + "chgnet==0.3.8", + "sevenn==0.9.3.post1", + "alignn==2024.5.27", + "mattersim==1.1.2", + "torchani==2.2.4", + "pytest", + "pytest-xdist", + "prefect==3.2.13", + "pymatgen>=2025.1.9", + "MDAnalysis", # mof, + "streamlit==1.43.2" +] +mace = [ + "mace-torch==0.3.12", +] +matgl = [ + "matgl==1.2.6", +] +fairchem = [ + "hydra-core", + "fairchem-core==1.10.0", +] +orb = [ + "orb-models==0.4.0", + "pynanoflann@git+https://github.com/dwastberg/pynanoflann#egg=af434039ae14bedcbb838a7808924d6689274168", +] +deepmd = [ + "torch==2.2.0", + "deepmd-kit@git+https://github.com/deepmodeling/deepmd-kit.git@v3.0.0b4" +] + +[project.urls] +Homepage = "https://github.com/atomind-ai/mlip-arena" +Issues = "https://github.com/atomind-ai/mlip-arena/issues" + +[tool.ruff] +# Exclude a variety of commonly ignored directories. +extend-include = ["*.ipynb"] +exclude = [ + ".bzr", + ".direnv", + ".eggs", + ".git", + ".git-rewrite", + ".hg", + ".ipynb_checkpoints", + ".mypy_cache", + ".nox", + ".pants.d", + ".pyenv", + ".pytest_cache", + ".pytype", + ".ruff_cache", + ".svn", + ".tox", + ".venv", + ".vscode", + "__pypackages__", + "_build", + "buck-out", + "build", + "dist", + "node_modules", + "site-packages", + "venv", +] + +# Same as Black. +line-length = 88 +indent-width = 4 + +[tool.ruff.lint] +select = [ + "B", # flake8-bugbear + "C4", # flake8-comprehensions + "E", # pycodestyle error + "EXE", # flake8-executable + "F", # pyflakes + "FA", # flake8-future-annotations + "FBT003", # boolean-positional-value-in-call + "FLY", # flynt + "I", # isort + "ICN", # flake8-import-conventions + "PD", # pandas-vet + "PERF", # perflint + "PIE", # flake8-pie + "PL", # pylint + "PT", # flake8-pytest-style + "PYI", # flakes8-pyi + "Q", # flake8-quotes + "RET", # flake8-return + "RSE", # flake8-raise + "RUF", # Ruff-specific rules + "SIM", # flake8-simplify + "SLOT", # flake8-slots + "TCH", # flake8-type-checking + "TID", # tidy imports + "TID", # flake8-tidy-imports + "UP", # pyupgrade + "W", # pycodestyle warning + "YTT", # flake8-2020 +] +ignore = [ + "C408", # Unnecessary dict call + "PLR", # Design related pylint codes + "E501", # Line too long + "B028", # No explicit stacklevel + "EM101", # Exception must not use a string literal + "EM102", # Exception must not use an f-string literal + "G004", # f-string in Logging statement + "RUF015", # Prefer next(iter()) + "RET505", # Unnecessary `elif` after `return` + "PT004", # Fixture does not return anthing + "B017", # pytest.raises + "PT011", # pytest.raises + "PT012", # pytest.raises" + "E741", # ambigous variable naming, i.e. one letter + "FBT003", # boolean positional variable in function call + "PERF203", # `try`-`except` within a loop incurs performance overhead (no overhead in Py 3.11+) + "F405", # 'module' may be undefined, or defined from star imports + "PD901", +] +fixable = ["ALL"] +pydocstyle.convention = "google" diff --git a/pytest.ini b/pytest.ini new file mode 100644 index 0000000000000000000000000000000000000000..27eec68ed708999a4b2ac00f8334a17f04c974cc --- /dev/null +++ b/pytest.ini @@ -0,0 +1,3 @@ +[pytest] +testpaths = tests +python_files = test_*.py diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..b05420402e25f3a8588aa01a0981f0e5eb7ac496 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,14 @@ +streamlit>=1.43.0 +plotly +numpy +scipy +ase==3.23.0 +torch==2.2.0 +pymatgen>=2025.1.9 +bokeh +bokeh_sampledata +statsmodels==0.14.2 +prefect==3.2.13 +loguru==0.7.3 +# py3Dmol==2.0.0.post2 +# stmol==0.0.9 diff --git a/scripts/install-dgl.sh b/scripts/install-dgl.sh new file mode 100644 index 0000000000000000000000000000000000000000..96a7449d2fb61a4c15a1f6f6d14828ff2a0c255a --- /dev/null +++ b/scripts/install-dgl.sh @@ -0,0 +1,6 @@ +# DGL (M3GNet, ALIGNN) + +TORCH=2.2 +CUDA=cu121 + +pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/${CUDA}/repo.html \ No newline at end of file diff --git a/scripts/install-linux.sh b/scripts/install-linux.sh new file mode 100644 index 0000000000000000000000000000000000000000..c4fbd27e47c6d87cfd18bf5fd73e43fefcfa0981 --- /dev/null +++ b/scripts/install-linux.sh @@ -0,0 +1,10 @@ +TORCH=2.4 +CUDA=cu124 +uv pip install torch==${TORCH}.0 +uv pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.0+${CUDA}.html +uv pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/${CUDA}/repo.html +uv pip install -e .[fairchem] +uv pip install -e .[orb] +uv pip install -e .[matgl] +uv pip install -e .[test] +uv pip install -e .[mace] \ No newline at end of file diff --git a/scripts/install-macosx.sh b/scripts/install-macosx.sh new file mode 100644 index 0000000000000000000000000000000000000000..1c1b6c90741d13f46a2365c3394e819974277476 --- /dev/null +++ b/scripts/install-macosx.sh @@ -0,0 +1,21 @@ + + +# (Optional) Install uv +# curl -LsSf https://astral.sh/uv/install.sh | sh +# source $HOME/.local/bin/env + +TORCH=2.2.0 + +uv pip install torch==${TORCH} +uv pip install torch-scatter --no-build-isolation +uv pip install torch-sparse --no-build-isolation + +uv pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/cpu/repo.html + +uv pip install mlip-arena[fairchem] +uv pip install mlip-arena[orb] +uv pip install mlip-arena[matgl] +uv pip install mlip-arena[test] +uv pip install mlip-arena[mace] + + diff --git a/scripts/install-pyg.sh b/scripts/install-pyg.sh new file mode 100755 index 0000000000000000000000000000000000000000..49b0ba1d6feee6e3d7a44a480ccb51a30ad6d594 --- /dev/null +++ b/scripts/install-pyg.sh @@ -0,0 +1,6 @@ +# PyTorch Geometric (OCP) +TORCH=2.2.0 +CUDA=cu121 + +pip install --verbose --no-cache torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html +pip install --verbose --no-cache torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html diff --git a/scripts/install.sh b/scripts/install.sh new file mode 100644 index 0000000000000000000000000000000000000000..1ced2ff8dd2184e2b44d58afcd39f16df88e696a --- /dev/null +++ b/scripts/install.sh @@ -0,0 +1,10 @@ +TORCH=2.4 +CUDA=cu124 +uv pip install torch==${TORCH}.0 +uv pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.0+${CUDA}.html +uv pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/${CUDA}/repo.html +uv pip install mlip-arena[fairchem] +uv pip install mlip-arena[orb] +uv pip install mlip-arena[matgl] +uv pip install mlip-arena[test] +uv pip install mlip-arena[mace] \ No newline at end of file diff --git a/serve/README.md b/serve/README.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/serve/app.py b/serve/app.py new file mode 100644 index 0000000000000000000000000000000000000000..d5d15c6cd209b25a543d607401da522c454ed2c6 --- /dev/null +++ b/serve/app.py @@ -0,0 +1,70 @@ +from collections import defaultdict + +import streamlit as st + +from mlip_arena.tasks import REGISTRY as TASKS + + +leaderboard = st.Page( + "leaderboard.py", title="Leaderboard", icon=":material/trophy:", default=True +) + +nav = defaultdict(list) +nav[""].append(leaderboard) + +wide_pages, centered_pages = [], [] + +for task in TASKS: + if TASKS[task]['task-page'] is None: + continue + page = st.Page( + f"tasks/{TASKS[task]['task-page']}.py", title=task, icon=":material/target:" + ) + nav[TASKS[task]["category"]].append(page) + if TASKS[task]["task-layout"] == "wide": + wide_pages.append(page) + else: + centered_pages.append(page) + +pg = st.navigation(nav, expanded=True) + +if pg in centered_pages: + st.set_page_config( + layout="centered", + page_title="MLIP Arena", + page_icon=":shark:", + initial_sidebar_state="expanded", + menu_items={ + "About": "https://github.com/atomind-ai/mlip-arena", + "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new", + }, + ) +else: + st.set_page_config( + layout="wide", + page_title="MLIP Arena", + page_icon=":shark:", + initial_sidebar_state="expanded", + menu_items={ + "About": "https://github.com/atomind-ai/mlip-arena", + "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new", + }, + ) + +st.sidebar.page_link( + "https://github.com/atomind-ai/mlip-arena", label="GitHub Repository", icon=":material/code:" +) + +st.sidebar.markdown( +""" +Complementary Benchmarks +""" +) +st.sidebar.page_link( + "https://matbench-discovery.materialsproject.org/", label="Matbench Discovery", icon=":material/link:" +) +st.sidebar.page_link( + "https://openkim.org/", label="OpenKIM", icon=":material/link:" +) + +pg.run() diff --git a/serve/assets/workflow.png b/serve/assets/workflow.png new file mode 100644 index 0000000000000000000000000000000000000000..16f7a81c5281ebee8d810223dcb7cec920de8a9f --- /dev/null +++ b/serve/assets/workflow.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:292d62a95c5d14b39dbe38200ca9f2ee80b67debae011beb9398d6c4fcc101af +size 320588 diff --git a/serve/leaderboard.py b/serve/leaderboard.py new file mode 100644 index 0000000000000000000000000000000000000000..57b38948c2399e18ba0ef0197e50a179dca35472 --- /dev/null +++ b/serve/leaderboard.py @@ -0,0 +1,146 @@ +import importlib +from pathlib import Path + +import pandas as pd +import streamlit as st + +from mlip_arena import PKG_DIR +from mlip_arena.models import REGISTRY as MODELS +from mlip_arena.tasks import REGISTRY as TASKS + +# Read the data +DATA_DIR = PKG_DIR / "tasks" /"diatomics" + +dfs = [] +for model in MODELS: + fpath = DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json" + if fpath.exists(): + dfs.append(pd.read_json(fpath)) +df = pd.concat(dfs, ignore_index=True) + +# Create a table +table = pd.DataFrame( + columns=[ + "Model", + "Element Coverage", + "Prediction", + "NVT", + "NPT", + "Training Set", + "Code", + "Paper", + "Checkpoint", + "First Release", + "License", + ] +) + +for model in MODELS: + rows = df[df["method"] == model] + metadata = MODELS.get(model, {}) + new_row = { + "Model": model, + "Element Coverage": len(rows["name"].unique()), + "Prediction": metadata.get("prediction", None), + "NVT": "โœ…" if metadata.get("nvt", False) else "โŒ", + "NPT": "โœ…" if metadata.get("npt", False) else "โŒ", + "Training Set": metadata.get("datasets", []), + "Code": metadata.get("github", None) if metadata else None, + "Paper": metadata.get("doi", None) if metadata else None, + "Checkpoint": metadata.get("checkpoint", None), + "First Release": metadata.get("date", None), + "License": metadata.get("license", None), + } + table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) + +table.set_index("Model", inplace=True) + +s = table.style.background_gradient( + cmap="PuRd", subset=["Element Coverage"], vmin=0, vmax=120 +) + +# st.warning( +# "MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.", +# icon="โš ๏ธ", +# ) +st.info( + "Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.", + icon="๐Ÿค—", +) + +st.markdown( + """ +

โš”๏ธ MLIP Arena Leaderboard โš”๏ธ

+ +
+ Static Badge + Hugging Face + GitHub Actions Workflow Status + PyPI - Version + DOI + + +
+ + +> MLIP Arena is a unified platform for evaluating foundation machine learning interatomic potentials (MLIPs) beyond conventional energy and force error metrics. It focuses on revealing the underlying physics and chemistry learned by these models. The platform's benchmarks are specifically designed to evaluate the readiness and reliability of open-source, open-weight models in accurately reproducing both qualitative and quantitative behaviors of atomic systems. + +### :red[Introduction] + +Foundation machine learning interatomic potentials (MLIPs), trained on extensive databases containing millions of density functional theory (DFT) calculations,have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references. + +We introduce MLIP Arena, a unified benchmark platform for evaluating foundation MLIP performance beyond conventional error metrics. It focuses on revealing the physical soundness learned by MLIPs and assessing their utilitarian performance agnostic to underlying model architecture and training dataset. + +***By moving beyond static DFT references and revealing the important failure modes*** of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency. + +""", + unsafe_allow_html=True, +) + + +st.subheader(":red[Supported Models]") +st.dataframe( + s, + use_container_width=True, + column_config={ + "Code": st.column_config.LinkColumn( + # validate="^https://[a-z]+\.streamlit\.app$", + width="medium", + display_text="Link", + ), + "Paper": st.column_config.LinkColumn( + # validate="^https://[a-z]+\.streamlit\.app$", + width="medium", + display_text="Link", + ), + }, +) + +# st.markdown("

๐Ÿ† Task Ranks ๐Ÿ†

", unsafe_allow_html=True) + +st.subheader(":red[Task Ranks]") + +for task in TASKS: + if TASKS[task]["rank-page"] is None: + continue + + st.subheader(task, divider=True) + + task_module = importlib.import_module(f"ranks.{TASKS[task]['rank-page']}") + + if TASKS[task]['task-page'] is not None: + st.page_link( + f"tasks/{TASKS[task]['task-page']}.py", + label="Go to the associated task page", + icon=":material/link:", + ) + + # Call the function from the imported module + if hasattr(task_module, "render"): + task_module.render() + # if st.button(f"Go to task page"): + # st.switch_page(f"tasks/{TASKS[task]['task-page']}.py") + else: + st.write( + "Rank metrics are not available yet but the task has been implemented. Please see the task page for more information." + ) diff --git a/serve/ranks/combustion.py b/serve/ranks/combustion.py new file mode 100644 index 0000000000000000000000000000000000000000..dc42e659f85284c30b7edc689fd3c1239fa653b1 --- /dev/null +++ b/serve/ranks/combustion.py @@ -0,0 +1,150 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import streamlit as st + +from mlip_arena.models import REGISTRY as MODELS + +valid_models = [ + model + for model, metadata in MODELS.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] + +DATA_DIR = Path("mlip_arena/tasks/combustion") + +@st.cache_data +def get_data(models): + families = [MODELS[str(model)]["family"] for model in models] + dfs = [ + pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families + ] + df = pd.concat(dfs, ignore_index=True) + df.drop_duplicates(inplace=True, subset=["formula", "method"]) + return df + +df = get_data(valid_models) + +@st.cache_data +def get_com_drifts(df): + df_exploded = df.explode(["timestep", "energies", "com_drifts"]).reset_index(drop=True) + + # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components + df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame( + df_exploded["com_drifts"].tolist(), index=df_exploded.index + ) + + # Drop the original 'com_drifts' column + df_flat = df_exploded.drop(columns=["com_drifts"]) + + df_flat["total_com_drift"] = np.sqrt( + df_flat["com_drift_x"] ** 2 + df_flat["com_drift_y"] ** 2 + df_flat["com_drift_z"] ** 2 + ) + + df_flat = df_flat.drop(columns=["com_drift_x", "com_drift_y", "com_drift_z"]) + + return df_flat + +df_exploded = get_com_drifts(df) + +exp_ref = -68.3078 # kcal/mol + +for method, row in df_exploded.groupby("method"): +# # row = df[df["method"] == method].iloc[0] + energies = np.array(row["energies"]) + df_exploded.loc[df_exploded["method"] == method,"reaction_enthlapy_diff"] = ((energies[-1] - energies[0]) / 128 * 23.) - exp_ref + df_exploded.loc[df_exploded["method"] == method, "final_com_drift"] = np.array(row["total_com_drift"])[-1] + + +df_exploded.drop(columns=["temperatures", "pressures", "total_steps", "energies", "kinetic_energies", "timestep", "nproducts", "total_com_drift", "target_steps", "reaction", "formula", "natoms", "seconds_per_step", "seconds_per_step_per_atom", "final_step", "total_time_seconds"], axis=1, inplace=True) + +df_exploded.drop_duplicates(inplace=True, subset=["method"]) + +print(df_exploded.columns) + +df_exploded.set_index("method", inplace=True) + +df_exploded.rename(columns={ + "method": "Model" +}, inplace=True) + + +table = pd.DataFrame() + +for index, row in df_exploded.iterrows(): + + new_row = { + "Model": index, + "Reaction enthalpy error [kcal/mol]": row["reaction_enthlapy_diff"], + "Final COM drift [โ„ซ]": row["final_com_drift"], + "Steps per second": row["steps_per_second"], + "Yield [%]": row["yield"] * 100, + } + + table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) + +table.set_index("Model", inplace=True) + +table.sort_values("Reaction enthalpy error [kcal/mol]", ascending=True, inplace=True) +table["Rank"] = np.argsort(np.abs(table["Reaction enthalpy error [kcal/mol]"].to_numpy())) + +table.sort_values("Final COM drift [โ„ซ]", ascending=True, inplace=True) +table["Rank"] += np.argsort(table["Final COM drift [โ„ซ]"].to_numpy()) + +table.sort_values("Steps per second", ascending=False, inplace=True) +table["Rank"] += np.argsort(-table["Steps per second"].to_numpy()) + +table.sort_values("Yield [%]", ascending=False, inplace=True) +table["Rank"] += np.argsort(-table["Yield [%]"].to_numpy()) + +table["Rank"] += 1 + +table.sort_values(["Rank"], ascending=True, inplace=True) + +table["Rank aggr."] = table["Rank"] +table["Rank"] = table["Rank aggr."].rank(method='min').astype(int) + + +table = table.reindex( + columns=[ + "Rank", + "Rank aggr.", + "Reaction enthalpy error [kcal/mol]", + "Final COM drift [โ„ซ]", + "Steps per second", + "Yield [%]", + ] +) + +s = ( + table.style.background_gradient( + cmap="Oranges", + subset=["Reaction enthalpy error [kcal/mol]"], + ) + .background_gradient( + cmap="Oranges", + subset=["Final COM drift [โ„ซ]"], + gmap=np.log10(table["Final COM drift [โ„ซ]"].to_numpy() + 1e-10), + ) + .background_gradient( + cmap="Oranges_r", + subset=["Steps per second", "Yield [%]"] + ) + .background_gradient( + cmap="Blues", + subset=["Rank", "Rank aggr."], + ) + .format( + "{:.3e}", + subset=["Final COM drift [โ„ซ]"], + ) +) + + +def render(): + + st.dataframe( + s, + use_container_width=True, + ) diff --git a/serve/ranks/eos_bulk.py b/serve/ranks/eos_bulk.py new file mode 100644 index 0000000000000000000000000000000000000000..c2ed1d9f1574afd4a9c8d8e07ee2d6bd51e21680 --- /dev/null +++ b/serve/ranks/eos_bulk.py @@ -0,0 +1,63 @@ +from pathlib import Path + +import pandas as pd +import streamlit as st + +DATA_DIR = Path("benchmarks/eos_bulk") + + +table = pd.read_csv(DATA_DIR / "summary.csv") + + + +table = table.rename( + columns={ + "model": "Model", + "rank": "Rank", + "rank-aggregation": "Rank aggr.", + "energy-diff-flip-times": "Derivative flips", + "tortuosity": "Tortuosity", + "spearman-compression-energy": "Spearman's coeff. (compression)", + "spearman-tension-energy": "Spearman's coeff. (tension)", + "spearman-compression-derivative": "Spearman's coeff. (compression derivative)", + "missing": "Missing", + }, +) + +table.set_index("Model", inplace=True) + +s = ( + table.style.background_gradient( + cmap="Blues", + subset=["Rank", "Rank aggr."], + ).background_gradient( + cmap="Reds", + subset=[ + "Spearman's coeff. (compression)", + ], + ).background_gradient( + cmap="Reds_r", + subset=[ + "Spearman's coeff. (tension)", + "Spearman's coeff. (compression derivative)", + ], + ).background_gradient( + cmap="RdPu", + subset=["Tortuosity", "Derivative flips"], + ).format( + "{:.5f}", + subset=[ + "Spearman's coeff. (compression)", + "Spearman's coeff. (tension)", + "Spearman's coeff. (compression derivative)", + "Tortuosity", + "Derivative flips", + ], + ) +) + +def render(): + st.dataframe( + s, + use_container_width=True, + ) diff --git a/serve/ranks/homonuclear-diatomics.py b/serve/ranks/homonuclear-diatomics.py new file mode 100644 index 0000000000000000000000000000000000000000..f5d635e2b37b45eef6d5da9a93ded1c01e23129c --- /dev/null +++ b/serve/ranks/homonuclear-diatomics.py @@ -0,0 +1,206 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import streamlit as st + +from mlip_arena.models import REGISTRY as MODELS + +valid_models = [ + model + for model, metadata in MODELS.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] + +DATA_DIR = Path("mlip_arena/tasks/diatomics") + +dfs = [ + pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json") + for model in valid_models +] +df = pd.concat(dfs, ignore_index=True) + +# df = df[df["method"].isin([ +# "SevenNet", +# "ORBv2", +# "ORB", +# "MatterSim", +# "MACE-MPA", +# "MACE-MP(M)", +# "M3GNet", +# "eSEN", +# "eSCN(OC20)", +# "eqV2(OMat)", +# "EquiformerV2(OC22)", +# "EquiformerV2(OC20)", +# "CHGNet", +# "ALIGNN" +# ] +# )] + +table = pd.DataFrame() + +for model in valid_models: + rows = df[df["method"] == model] + metadata = MODELS.get(model, {}) + + new_row = { + "Model": model, + "Conservation deviation [eV/โ„ซ]": rows["conservation-deviation"].mean(), + "Spearman's coeff. (E: repulsion)": rows["spearman-repulsion-energy"].mean(), + "Spearman's coeff. (F: descending)": rows["spearman-descending-force"].mean(), + "Tortuosity": rows["tortuosity"].mean(), + "Energy jump [eV]": rows["energy-jump"].mean(), + "Force flips": rows["force-flip-times"].mean(), + "Spearman's coeff. (E: attraction)": rows["spearman-attraction-energy"].mean(), + "Spearman's coeff. (F: ascending)": rows["spearman-ascending-force"].mean(), + "PBE energy MAE [eV]": rows["pbe-energy-mae"].mean(), + "PBE force MAE [eV/โ„ซ]": rows["pbe-force-mae"].mean(), + } + + table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True) + +table.set_index("Model", inplace=True) + +table.sort_values("Conservation deviation [eV/โ„ซ]", ascending=True, inplace=True) +table["Rank"] = np.argsort(table["Conservation deviation [eV/โ„ซ]"].to_numpy()) + +table.sort_values("Spearman's coeff. (E: repulsion)", ascending=True, inplace=True) +table["Rank"] += np.argsort(table["Spearman's coeff. (E: repulsion)"].to_numpy()) + +table.sort_values("Spearman's coeff. (F: descending)", ascending=True, inplace=True) +table["Rank"] += np.argsort(table["Spearman's coeff. (F: descending)"].to_numpy()) + +# NOTE: it's not fair to models trained on different level of theory +# table.sort_values("PBE energy MAE [eV]", ascending=True, inplace=True) +# table["Rank"] += np.argsort(table["PBE energy MAE [eV]"].to_numpy()) + +# table.sort_values("PBE force MAE [eV/โ„ซ]", ascending=True, inplace=True) +# table["Rank"] += np.argsort(table["PBE force MAE [eV/โ„ซ]"].to_numpy()) + +table.sort_values("Tortuosity", ascending=True, inplace=True) +table["Rank"] += np.argsort(table["Tortuosity"].to_numpy()) + +table.sort_values("Energy jump [eV]", ascending=True, inplace=True) +table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy()) + +table.sort_values("Force flips", ascending=True, inplace=True) +table["Rank"] += np.argsort(np.abs(table["Force flips"].to_numpy() - 1)) + +table["Rank"] += 1 + +table.sort_values( + ["Rank", "Conservation deviation [eV/โ„ซ]"], ascending=True, inplace=True +) + +table["Rank aggr."] = table["Rank"] +table["Rank"] = table["Rank aggr."].rank(method="min").astype(int) + +table = table.reindex( + columns=[ + "Rank", + "Rank aggr.", + "Conservation deviation [eV/โ„ซ]", + "Spearman's coeff. (E: repulsion)", + "Spearman's coeff. (F: descending)", + "Energy jump [eV]", + "Force flips", + "Tortuosity", + "PBE energy MAE [eV]", + "PBE force MAE [eV/โ„ซ]", + "Spearman's coeff. (E: attraction)", + "Spearman's coeff. (F: ascending)", + ] +) + +# cloned = table.copy() +# cloned.drop(columns=[ +# "PBE energy MAE [eV]", +# "PBE force MAE [eV/โ„ซ]", +# "Spearman's coeff. (E: attraction)", +# "Spearman's coeff. (F: ascending)",], +# inplace=True +# ) +# cloned.to_latex( +# DATA_DIR / "homonuclear-diatomics.tex", +# float_format="%.3f", +# index=True, +# column_format="l" + "r" * (len(table.columns) - 1), +# ) + +s = ( + table.style.background_gradient( + cmap="viridis_r", + subset=["Conservation deviation [eV/โ„ซ]"], + gmap=np.log(table["Conservation deviation [eV/โ„ซ]"].to_numpy()), + ) + .background_gradient( + cmap="Reds", + subset=[ + "Spearman's coeff. (E: repulsion)", + "Spearman's coeff. (F: descending)", + ], + # vmin=-1, vmax=-0.5 + ) + # .background_gradient( + # cmap="Greys", + # subset=[ + # "PBE energy MAE [eV]", + # "PBE force MAE [eV/โ„ซ]", + # ], + # ) + .background_gradient( + cmap="RdPu", + subset=["Tortuosity", "Energy jump [eV]", "Force flips"], + ) + .background_gradient( + cmap="Blues", + subset=["Rank", "Rank aggr."], + ) + .format( + "{:.3f}", + subset=[ + "Conservation deviation [eV/โ„ซ]", + "Spearman's coeff. (E: repulsion)", + "Spearman's coeff. (F: descending)", + "Tortuosity", + "Energy jump [eV]", + "Force flips", + "Spearman's coeff. (E: attraction)", + "Spearman's coeff. (F: ascending)", + "PBE energy MAE [eV]", + "PBE force MAE [eV/โ„ซ]", + ], + ) +) + + +def render(): + st.dataframe( + s, + use_container_width=True, + ) + with st.expander("Explanation", icon=":material/info:"): + st.caption( + r""" + - **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves. + + $$ + \text{Conservation deviation} = \left\langle\left| \mathbf{F}(\mathbf{r})\cdot\frac{\mathbf{r}}{\|\mathbf{r}\|} + \nabla_rE\right|\right\rangle_{r = \|\mathbf{r}\|} + $$ + + - **Spearman's coeff. (E: repulsion)**: Spearman's correlation coefficient of energy prediction within equilibrium distance $r \in (r_{min}, r_o = \argmin_{r} E(r))$. + - **Spearman's coeff. (F: descending)**: Spearman's correlation coefficient of force prediction before maximum attraction $r \in (r_{min}, r_a = \argmin_{r} F(r))$. + - **Tortuosity**: The ratio between total variation in energy and sum of absolute energy differences between $r_{min}$, $r_o$, and $r_{max}$. + - **Energy jump**: The sum of energy discontinuity between sampled points. + + $$ + \text{Energy jump} = \sum_{r_i \in [r_\text{min}, r_\text{max}]} \left| \text{sign}{\left[ E(r_{i+1}) - E(r_i)\right]} - \text{sign}{\left[E(r_i) - E(r_{i-1})\right]}\right| \times \\ \left( \left|E(r_{i+1}) - E(r_i)\right| + \left|E(r_i) - E(r_{i-1})\right|\right) + $$ + - **Force flips**: The number of force direction changes. + """ + ) + st.info( + "PBE energies and forces are provided __only__ for reference. Due to the known convergence issue of plane-wave DFT with diatomic molecules and different dataset the models might be trained on, comparing models with PBE is not rigorous and thus these metrics are excluded from rank aggregation.", + icon=":material/warning:", + ) diff --git a/serve/ranks/thermal-conductivity.py b/serve/ranks/thermal-conductivity.py new file mode 100644 index 0000000000000000000000000000000000000000..38815e09f22673ededbbbe6c5298642328b80edd --- /dev/null +++ b/serve/ranks/thermal-conductivity.py @@ -0,0 +1,60 @@ + +import pandas as pd +import streamlit as st + +from mlip_arena import PKG_DIR + +DATA_DIR = PKG_DIR / "tasks" / "thermal-conductivity" + +table = pd.read_csv(DATA_DIR / "wte.csv") + +table.rename( + columns={ + "method": "Model", + "srme": "SRME[๐œ…]", + }, + inplace=True, +) + +table.set_index("Model", inplace=True) + +table.sort_values(["SRME[๐œ…]"], ascending=True, inplace=True) + +table["Rank"] = table["SRME[๐œ…]"].rank(method='min').astype(int) + +table = table.reindex( + columns=[ + "Rank", + "SRME[๐œ…]", + ] +) + +s = ( + table.style.background_gradient( + cmap="Reds", subset=["SRME[๐œ…]"] + ) + .background_gradient( + cmap="Blues", + subset=["Rank"], + ) + .format("{:.3f}", subset=["SRME[๐œ…]"]) +) + + +def render(): + + st.dataframe( + s, + use_container_width=True + ) + + with st.expander("Explanation", icon=":material/info:"): + st.caption( + """ + - **SRME**: symmetric relative mean error of single-phonon conductivity: + + $$ + \\text{SRME}[\\left\lbrace\\mathcal{K}({\\mathbf{q},s)}\\right\\rbrace] = \\frac{2}{N_qV}\\frac{\\sum_{\\mathbf{q}s}|\\mathcal{K}_{\\text{MLIP}}(\\mathbf{q},s) - \\mathcal{K}_{\\text{DFT}}(\\mathbf{q},s)|}{\\kappa_{\\text{MLIP}} + \\kappa_{\\text{DFT}}} + $$ + """ + ) diff --git a/serve/ranks/wbm_ev.py b/serve/ranks/wbm_ev.py new file mode 100644 index 0000000000000000000000000000000000000000..0e3a29606dd801cfe64ae096df5d285957ef0372 --- /dev/null +++ b/serve/ranks/wbm_ev.py @@ -0,0 +1,63 @@ +from pathlib import Path + +import pandas as pd +import streamlit as st + +DATA_DIR = Path("benchmarks/wbm_ev") + + +table = pd.read_csv(DATA_DIR / "summary.csv") + + + +table = table.rename( + columns={ + "model": "Model", + "rank": "Rank", + "rank-aggregation": "Rank aggr.", + "energy-diff-flip-times": "Derivative flips", + "tortuosity": "Tortuosity", + "spearman-compression-energy": "Spearman's coeff. (compression)", + "spearman-tension-energy": "Spearman's coeff. (tension)", + "spearman-compression-derivative": "Spearman's coeff. (compression derivative)", + "missing": "Missing", + }, +) + +table.set_index("Model", inplace=True) + +s = ( + table.style.background_gradient( + cmap="Blues", + subset=["Rank", "Rank aggr."], + ).background_gradient( + cmap="Reds", + subset=[ + "Spearman's coeff. (compression)", + ], + ).background_gradient( + cmap="Reds_r", + subset=[ + "Spearman's coeff. (tension)", + "Spearman's coeff. (compression derivative)", + ], + ).background_gradient( + cmap="RdPu", + subset=["Tortuosity", "Derivative flips"], + ).format( + "{:.5f}", + subset=[ + "Spearman's coeff. (compression)", + "Spearman's coeff. (tension)", + "Spearman's coeff. (compression derivative)", + "Tortuosity", + "Derivative flips", + ], + ) +) + +def render(): + st.dataframe( + s, + use_container_width=True, + ) diff --git a/serve/tasks/combustion.py b/serve/tasks/combustion.py new file mode 100644 index 0000000000000000000000000000000000000000..6fcbbb58097b62b16e8fd9b201de7b04285a6e17 --- /dev/null +++ b/serve/tasks/combustion.py @@ -0,0 +1,540 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import plotly.colors as pcolors +import plotly.express as px +import plotly.graph_objects as go +import streamlit as st +from mlip_arena.models import REGISTRY as MODELS + +DATA_DIR = Path("mlip_arena/tasks/combustion") + + +st.markdown(""" +# Combustion +""") + +st.markdown("### Methods") +container = st.container(border=True) +valid_models = [ + model + for model, metadata in MODELS.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] + +models = container.multiselect( + "MLIPs", + valid_models, + [ + "MACE-MP(M)", + "CHGNet", + "M3GNet", + "SevenNet", + "ORB", + "ORBv2", + "EquiformerV2(OC20)", + "eSCN(OC20)", + "MatterSim", + ], +) + +st.markdown("### Settings") +vis = st.container(border=True) +# Get all attributes from pcolors.qualitative +all_attributes = dir(pcolors.qualitative) +color_palettes = { + attr: getattr(pcolors.qualitative, attr) + for attr in all_attributes + if isinstance(getattr(pcolors.qualitative, attr), list) +} +color_palettes.pop("__all__", None) + +palette_names = list(color_palettes.keys()) +palette_colors = list(color_palettes.values()) +palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) + +color_sequence = color_palettes[palette_name] + +if not models: + st.stop() + + +@st.cache_data +def get_data(models): + # List comprehension for concise looping and filtering + dfs = [ + pd.read_json(DATA_DIR / MODELS[str(model)]["family"].lower() / "hydrogen.json")[ + lambda df: df["method"] == model + ] + for model in models + ] + # Concatenate all filtered DataFrames + return pd.concat(dfs, ignore_index=True) + + +df = get_data(models) + +method_color_mapping = { + method: color_sequence[i % len(color_sequence)] + for i, method in enumerate(df["method"].unique()) +} + +### + +# Number of products +fig = go.Figure() + +for method in df["method"].unique(): + row = df[df["method"] == method].iloc[0] + fig.add_trace( + go.Scatter( + x=row["timestep"], + y=row["nproducts"], + mode="lines", + name=method, + line=dict(color=method_color_mapping[method]), + showlegend=True, + ), + ) + +fig.add_vrect( + x0=512345.94, + x1=666667, + fillcolor="lightblue", + opacity=0.2, + layer="below", + line_width=0, + annotation_text="Flame Temp. [1]", + annotation_position="top", +) + +fig.update_layout( + title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)", + xaxis_title="Timestep", + yaxis_title="Number of water molecules", +) + +st.plotly_chart(fig) + +# tempearture + +fig = go.Figure() + +for method in df["method"].unique(): + row = df[df["method"] == method].iloc[0] + fig.add_trace( + go.Scatter( + x=row["timestep"], + y=row["temperatures"], + mode="markers", + name=method, + line=dict( + color=method_color_mapping[method], + # width=1 + ), + marker=dict(color=method_color_mapping[method], size=3), + showlegend=True, + ), + ) + +target_steps = df["target_steps"].iloc[0] +fig.add_trace( + go.Line( + x=[0, target_steps / 3, target_steps / 3 * 2, target_steps], + y=[300, 3000, 3000, 300], + mode="lines", + name="Target", + line=dict(dash="dash", color="white"), + showlegend=True, + ), +) + +fig.add_vrect( + x0=512345.94, + x1=666667, + fillcolor="lightblue", + opacity=0.2, + layer="below", + line_width=0, + annotation_text="Flame Temp.", + annotation_position="top", +) + +fig.update_layout( + # title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)", + xaxis_title="Timestep", + yaxis_title="Temperature (K)", + # yaxis2=dict( + # title="Product Percentage (%)", + # overlaying="y", + # side="right", + # range=[0, 100], + # tickmode="sync", + # ), + # template="plotly_dark", +) + +st.plotly_chart(fig) + +# Energy + +exp_ref = -68.3078 # kcal/mol +factor = 23.0609 +nh2os = 128 + +fig = go.Figure() + +for method in df["method"].unique(): + row = df[df["method"] == method].iloc[0] + fig.add_trace( + go.Scatter( + x=row["timestep"], + y=(np.array(row["energies"]) - row["energies"][0]) / nh2os * factor, + mode="lines", + name=method, + line=dict( + color=method_color_mapping[method], + # width=1 + ), + marker=dict(color=method_color_mapping[method], size=3), + showlegend=True, + ), + ) + +target_steps = df["target_steps"].iloc[0] + +fig.add_shape( + go.layout.Shape( + type="line", + x0=0, + x1=target_steps, + y0=exp_ref, + y1=exp_ref, # y-values for the horizontal line + line=dict(color="Red", width=2, dash="dash"), + layer="below", + ) +) + +fig.add_annotation( + go.layout.Annotation( + x=0.5, + xref="paper", + xanchor="center", + y=exp_ref, + yanchor="bottom", + text=f"Experiment: {exp_ref} kcal/mol [2]", + showarrow=False, + font=dict( + color="Red", + ), + ) +) + +fig.add_vrect( + x0=512345.94, + x1=666667, + fillcolor="lightblue", + opacity=0.2, + layer="below", + line_width=0, + annotation_text="Flame Temp.", + annotation_position="top", +) + + +fig.update_layout( + xaxis_title="Timestep
[2] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.", + yaxis_title="๐šซE (kcal/mol)", +) + +st.plotly_chart(fig) + +# Reaction energy + +fig = go.Figure() + + +df["reaction_energy"] = ( + df["energies"].apply(lambda x: x[-1] - x[0]) / nh2os * factor +) # kcal/mol + +df["reaction_energy_abs_err"] = np.abs(df["reaction_energy"] - exp_ref) + +df.sort_values("reaction_energy_abs_err", inplace=True) + +fig.add_traces( + [ + go.Bar( + x=df["method"], + y=df["reaction_energy"], + marker=dict( + color=[method_color_mapping[method] for method in df["method"]] + ), + text=[f"{y:.2f}" for y in df["reaction_energy"]], + ), + ] +) + +fig.add_shape( + go.layout.Shape( + type="line", + x0=-0.5, + x1=len(df["method"]) - 0.5, # range covering the bars + y0=exp_ref, + y1=exp_ref, # y-values for the horizontal line + line=dict(color="Red", width=2, dash="dash"), + layer="below", + ) +) + +fig.add_annotation( + go.layout.Annotation( + x=0.5, + xref="paper", + xanchor="center", + y=exp_ref, + yanchor="bottom", + text=f"Experiment: {exp_ref} kcal/mol [2]", + showarrow=False, + font=dict( + color="Red", + ), + ) +) + +fig.update_layout( + xaxis_title="Method
[1] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.", + yaxis_title="Reaction energy ๐šซH (kcal/mol)", +) + +st.plotly_chart(fig) + +# Final reaction rate + +fig = go.Figure() + +df = df.sort_values("yield", ascending=True) + +fig.add_trace( + go.Bar( + x=df["yield"] * 100, + y=df["method"], + opacity=0.75, + orientation="h", + marker=dict(color=[method_color_mapping[method] for method in df["method"]]), + text=[f"{y:.2f} %" for y in df["yield"] * 100], + ) +) + +fig.update_layout( + title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)", + xaxis_title="Yield (%)", + yaxis_title="Method", +) + +st.plotly_chart(fig) + +# MD runtime speed + +fig = go.Figure() + +df = df.sort_values("steps_per_second", ascending=True) + +fig.add_trace( + go.Bar( + x=df["steps_per_second"], + y=df["method"], + opacity=0.75, + orientation="h", + marker=dict(color=[method_color_mapping[method] for method in df["method"]]), + text=df["steps_per_second"].round(1), + ) +) + +fig.update_layout( + title="MD runtime speed (on single A100 GPU)", + xaxis_title="Steps per second", + yaxis_title="Method", +) + +st.plotly_chart(fig) + +# COM drift + +st.markdown("""### Center of mass drift + +The center of mass (COM) drift is a measure of the stability of the simulation. A well-behaved simulation should have a COM drift close to zero. The COM drift is calculated as the displacement of the COM of the system from the initial position. +""") + + +@st.cache_data +def get_com_drifts(df): + df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True) + + # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components + df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame( + df_exploded["com_drifts"].tolist(), index=df_exploded.index + ) + + # Drop the original 'com_drifts' column + df_flat = df_exploded.drop(columns=["com_drifts"]) + + df_flat["total_com_drift"] = np.sqrt( + df_flat["com_drift_x"] ** 2 + + df_flat["com_drift_y"] ** 2 + + df_flat["com_drift_z"] ** 2 + ) + + return df_flat + + +df_exploded = get_com_drifts(df) + +fig = go.Figure() + +for method in df_exploded["method"].unique(): + row = df_exploded[df_exploded["method"] == method] + fig.add_trace( + go.Scatter( + x=row["timestep"], + y=row["total_com_drift"], + mode="lines", + name=method, + line=dict( + color=method_color_mapping[method], + # width=1 + ), + marker=dict(color=method_color_mapping[method], size=3), + showlegend=True, + ), + ) + +fig.update_yaxes(type="log") +fig.update_layout( + xaxis_title="Timestep", + yaxis_title="Total COM drift (โ„ซ)", +) + +st.plotly_chart(fig) + +if "play" not in st.session_state: + st.session_state.play = False + + +def toggle_playing(): + st.session_state.play = not st.session_state.play + + +# st.button( +# "Play" if not st.session_state.play else "Pause", +# type="primary" if not st.session_state.play else "secondary", +# on_click=toggle_playing, +# ) + +increment = df["target_steps"].max() // 200 + +if "time_range" not in st.session_state: + st.session_state.time_range = (0, increment) + + +# @st.experimental_fragment(run_every=1e-3 if st.session_state.play else None) +@st.experimental_fragment() +def draw_com_drifts_plot(): + if st.session_state.play: + start, end = st.session_state.time_range + + end += increment + + if end > df["target_steps"].max(): + start = 0 + end = 0 + + st.session_state.time_range = (start, end) + + start_timestep, end_timestep = st.slider( + "Timestep", + min_value=0, + max_value=df["target_steps"].max(), + value=st.session_state.time_range, + key="time_range", + # on_change=check_range, + ) + + mask = (df_exploded["timestep"] >= start_timestep) & ( + df_exploded["timestep"] <= end_timestep + ) + df_filtered = df_exploded[mask] + df_filtered.sort_values(["method", "timestep"], inplace=True) + + fig = px.line_3d( + data_frame=df_filtered, + x="com_drift_x", + y="com_drift_y", + z="com_drift_z", + labels={ + "com_drift_x": "๐šซx (โ„ซ)", + "com_drift_y": "๐šซy (โ„ซ)", + "com_drift_z": "๐šซz (โ„ซ)", + }, + category_orders={"method": df_exploded["method"].unique()}, + color_discrete_sequence=[ + method_color_mapping[method] for method in df_exploded["method"].unique() + ], + color="method", + width=800, + height=800, + ) + + fig.update_layout( + scene=dict( + aspectmode="cube", + ), + legend=dict( + orientation="v", + x=0.95, + xanchor="right", + y=1, + yanchor="top", + bgcolor="rgba(0, 0, 0, 0)", + ), + ) + fig.add_traces( + [ + go.Scatter3d( + x=[0], + y=[0], + z=[0], + mode="markers", + marker=dict(size=3, color="white"), + name="origin", + ), + # add last point of each method and annotate the total drift + go.Scatter3d( + # df_filtered.groupby("method")["com_drift_x"].last(), + x=df_filtered.groupby("method")["com_drift_x"].last(), + y=df_filtered.groupby("method")["com_drift_y"].last(), + z=df_filtered.groupby("method")["com_drift_z"].last(), + mode="markers+text", + marker=dict(size=3, color="white", opacity=0.5), + text=df_filtered.groupby("method")["total_com_drift"].last().round(3), + # size=5, + name="total drifts", + textposition="top center", + ), + ] + ) + + st.plotly_chart(fig) + + +draw_com_drifts_plot() + + +st.markdown(""" +### References + +[1] Hasche, A., Navid, A., Krause, H., & Eckart, S. (2023). Experimental and numerical assessment of the effects of hydrogen admixtures on premixed methane-oxygen flames. Fuel, 352, 128964. + +[2] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press. +""") diff --git a/serve/tasks/eos_bulk.py b/serve/tasks/eos_bulk.py new file mode 100644 index 0000000000000000000000000000000000000000..1a9b8eb0b1a21c1aad3a4699bfccfc1940c958bd --- /dev/null +++ b/serve/tasks/eos_bulk.py @@ -0,0 +1,248 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import plotly.colors as pcolors +import plotly.graph_objects as go +import streamlit as st +from ase.db import connect +from scipy import stats + +from mlip_arena.models import REGISTRY as MODELS + +DATA_DIR = Path("benchmarks/eos_bulk") + +st.markdown(""" +# Equation of state (EOS) +""") + +# Control panels at the top +st.markdown("### Methods") +methods_container = st.container(border=True) + +valid_models = [ + model + for model, metadata in MODELS.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] + +# Model selection +selected_models = methods_container.multiselect( + "Select Models", + options=valid_models, + default=valid_models +) + +# Visualization settings +st.markdown("### Visualization settings") +vis = st.container(border=True) + +# Column settings +ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2) + +# Color palette selection +all_attributes = dir(pcolors.qualitative) +color_palettes = { + attr: getattr(pcolors.qualitative, attr) + for attr in all_attributes + if isinstance(getattr(pcolors.qualitative, attr), list) +} +color_palettes.pop("__all__", None) + +palette_names = list(color_palettes.keys()) +palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) +color_sequence = color_palettes[palette_name] + +# Stop execution if no models selected +if not selected_models: + st.warning("Please select at least one model to visualize.") + st.stop() + + +def load_wbm_structures(): + """ + Load the WBM structures from a ASE DB file. + """ + with connect(DATA_DIR.parent / "wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + + +@st.cache_data +def generate_dataframe(model_name): + fpath = DATA_DIR / f"{model_name}.parquet" + if not fpath.exists(): + return pd.DataFrame() # Return empty dataframe instead of using continue + + df_raw_results = pd.read_parquet(fpath) + + df_analyzed = pd.DataFrame( + columns=[ + "model", + "structure", + "formula", + "volume-ratio", + "energy-delta-per-atom", + "energy-delta-per-volume-b0", + "energy-diff-flip-times", + "tortuosity", + "spearman-compression-energy", + "spearman-compression-derivative", + "spearman-tension-energy", + "missing", + ] + ) + + for wbm_struct in load_wbm_structures(): + structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"] + + try: + results = df_raw_results.loc[df_raw_results["id"] == structure_id] + b0 = results["b0"].values[0] + # vol0 = results["v0"].values[0] + results = results["eos"].values[0] + es = np.array(results["energies"]) + vols = np.array(results["volumes"]) + + + indices = np.argsort(vols) + vols = vols[indices] + es = es[indices] + + imine = len(es) // 2 + # min_center_val = np.min(es[imid - 1 : imid + 2]) + # imine = np.where(es == min_center_val)[0][0] + emin = es[imine] + vol0 = vols[imine] + + interpolated_volumes = [ + (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1) + ] + ediff = np.diff(es) + ediff_sign = np.sign(ediff) + mask = ediff_sign != 0 + ediff = ediff[mask] + ediff_sign = ediff_sign[mask] + ediff_flip = np.diff(ediff_sign) != 0 + + etv = np.sum(np.abs(np.diff(es))) + + data = { + "model": model_name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": False, + "volume-ratio": vols / vol0, + "energy-delta-per-atom": (es - emin) / len(wbm_struct), + "energy-diff-flip-times": np.sum(ediff_flip).astype(int), + "energy-delta-per-volume-b0": (es - emin) / (vol0 * b0), + "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)), + "spearman-compression-energy": stats.spearmanr( + vols[:imine], es[:imine] + ).statistic, + "spearman-compression-derivative": stats.spearmanr( + interpolated_volumes[:imine], ediff[:imine] + ).statistic, + "spearman-tension-energy": stats.spearmanr( + vols[imine:], es[imine:] + ).statistic, + } + + except Exception: + data = { + "model": model_name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": True, + "volume-ratio": None, + "energy-delta-per-atom": None, + "energy-delta-per-volume-b0": None, + "energy-diff-flip-times": None, + "tortuosity": None, + "spearman-compression-energy": None, + "spearman-compression-derivative": None, + "spearman-tension-energy": None, + } + + df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True) + + return df_analyzed + + +@st.cache_data +def get_plots(selected_models): + """Generate one plot per model with all structures (legend disabled for each structure).""" + figs = [] + + for model_name in selected_models: + + fpath = DATA_DIR / f"{model_name}_processed.parquet" + if not fpath.exists(): + df = generate_dataframe(model_name) + else: + df = pd.read_parquet(fpath) + + if len(df) == 0: + continue + + fig = go.Figure() + valid_structures = [] + for i, (_, row) in enumerate(df.iterrows()): + structure_id = row["structure"] + formula = row.get("formula", "") + if isinstance(row["volume-ratio"], list | np.ndarray) and isinstance( + row["energy-delta-per-volume-b0"], list | np.ndarray + ): + vol_strain = row["volume-ratio"] + energy_delta = row["energy-delta-per-volume-b0"] + color = color_sequence[i % len(color_sequence)] + fig.add_trace( + go.Scatter( + x=vol_strain, + y=energy_delta, + mode="lines", + name=f"{structure_id}", + showlegend=False, + line=dict(color=color), + hoverlabel=dict(bgcolor=color, font=dict(color="black")), + hovertemplate=( + structure_id + "
" + "Formula: " + str(formula) + "
" + "Volume ratio V/Vโ‚€: %{x:.3f}
" + "ฮ”E/(BVโ‚€): %{y:.3f} eV/atom
" + "" + ), + + ) + ) + valid_structures.append(structure_id) + + # if valid_structures: + fig.update_layout( + title=f"{model_name} ({len(valid_structures)} / {len(df)} structures)", + xaxis_title="Volume ratio V/Vโ‚€", + yaxis_title="Relative energy ฮ”E/(BVโ‚€)", + height=500, + showlegend=False, # Disable legend for the whole plot + yaxis=dict(range=[-0.02, 0.1]), # Set y-axis limits + ) + fig.add_vline(x=1, line_dash="dash", line_color="gray", opacity=0.7) + figs.append((model_name, fig, valid_structures)) + + return figs + + +# Generate all plots +all_plots = get_plots(selected_models) + +# Display plots in the specified column layout +if all_plots: + for i, (model_name, fig, structures) in enumerate(all_plots): + if i % ncols == 0: + cols = st.columns(ncols) + cols[i % ncols].plotly_chart(fig, use_container_width=True) + + # Display number of structures in this plot + # cols[i % ncols].caption(f"{len(structures)} / 1000 structures") +else: + st.warning("No data available for the selected models.") diff --git a/serve/tasks/homonuclear-diatomics.py b/serve/tasks/homonuclear-diatomics.py new file mode 100644 index 0000000000000000000000000000000000000000..e0058192dd51294797664005089633ae7fc862bb --- /dev/null +++ b/serve/tasks/homonuclear-diatomics.py @@ -0,0 +1,285 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import plotly.colors as pcolors +import plotly.graph_objects as go +import streamlit as st +from ase.data import chemical_symbols +from plotly.subplots import make_subplots + +from mlip_arena.models import REGISTRY + +st.markdown( + """ +# Homonuclear Diatomics + +Homonuclear diatomics are molecules composed of two atoms of the same element. +The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry. +""" +) + +st.markdown("### Methods") +container = st.container(border=True) +valid_models = [ + model + for model, metadata in REGISTRY.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] +mlip_methods = container.multiselect( + "MLIPs", + valid_models, + ["MACE-MP(M)", "MatterSim", "SevenNet", "ORBv2", "eqV2(OMat)", "ANI2x", "eSEN"], +) +dft_methods = container.multiselect("DFT Methods", ["PBE"], ["PBE"]) + +container.info( + "PBE energies and forces are provided __only__ for reference. Due to the known convergence issue of plane-wave DFT with diatomic molecules and different dataset the models might be trained on, comparing models with PBE is not rigorous and thus these metrics are excluded from rank aggregation.", + icon=":material/warning:", +) + +st.markdown("### Settings") +vis = st.container(border=True) +energy_plot = vis.checkbox("Show energy curves", value=True) +force_plot = vis.checkbox("Show force curves", value=False) +ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2) + +# Get all attributes from pcolors.qualitative +all_attributes = dir(pcolors.qualitative) +color_palettes = { + attr: getattr(pcolors.qualitative, attr) + for attr in all_attributes + if isinstance(getattr(pcolors.qualitative, attr), list) +} +color_palettes.pop("__all__", None) + +palette_names = list(color_palettes.keys()) +palette_colors = list(color_palettes.values()) + +palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) + +color_sequence = color_palettes[palette_name] # type: ignore +if not mlip_methods and not dft_methods: + st.stop() + + +@st.cache_data +def get_data(mlip_methods, dft_methods): + DATA_DIR = Path("mlip_arena/tasks/diatomics") + + dfs = [ + pd.read_json( + DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json" + ) + for method in mlip_methods + ] + dfs.extend( + [ + pd.read_json(DATA_DIR / "vasp" / "homonuclear-diatomics.json") + # for method in dft_methods + ] + ) + df = pd.concat(dfs, ignore_index=True) + df.drop_duplicates(inplace=True, subset=["name", "method"]) + return df + + +df = get_data(mlip_methods, dft_methods) + +method_color_mapping = { + method: color_sequence[i % len(color_sequence)] + for i, method in enumerate(df["method"].unique()) +} + + +@st.cache_data +def get_plots(df, energy_plot: bool, force_plot: bool, method_color_mapping: dict): + figs = [] + + for i, symbol in enumerate(chemical_symbols[1:]): + rows = df[df["name"] == symbol + symbol] + + if rows.empty: + continue + + fig = make_subplots(specs=[[{"secondary_y": True}]]) + + elo, flo = float("inf"), float("inf") + + for j, method in enumerate(rows["method"].unique()): + if method not in mlip_methods and method not in dft_methods: + continue + row = rows[rows["method"] == method].iloc[0] + + rs = np.array(row["R"]) + es = np.array(row["E"]) + fs = np.array(row["F"]) + + rs = np.array(rs) + ind = np.argsort(rs) + es = np.array(es) + fs = np.array(fs) + + rs = rs[ind] + es = es[ind] + fs = fs[ind] + + # if method not in ["PBE"]: + es = es - es[-1] + + # if method in ["PBE"]: + # xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2)) + # else: + xs = rs + + if energy_plot: + # if "GPAW" in method: + # cs = CubicSpline(rs, es) + # ys = cs(xs) + # else: + ys = es + + elo = min(elo, max(ys.min() * 1.2, -15), -1) + + if method in ["PBE"]: + fig.add_trace( + go.Scatter( + x=xs, + y=ys, + mode="markers", + line=dict( + color=method_color_mapping[method], + width=3, + ), + name=method, + ), + secondary_y=False, + ) + # xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2)) + # cs = CubicSpline(rs, es) + # ys = cs(xs) + # fig.add_trace( + # go.Scatter( + # x=xs, + # y=ys, + # mode="lines", + # line=dict( + # color=method_color_mapping[method], + # width=3, + # ), + # name=method, + # showlegend=False, + # ), + # secondary_y=False, + # ) + else: + fig.add_trace( + go.Scatter( + x=xs, + y=ys, + mode="lines", + line=dict( + color=method_color_mapping[method], + width=3, + ), + name=method, + ), + secondary_y=False, + ) + + # if force_plot and method not in ["PBE"]: + if force_plot: + ys = fs + + flo = min(flo, max(ys.min() * 1.2, -50)) + + if method in ["PBE"]: + fig.add_trace( + go.Scatter( + x=xs, + y=ys, + mode="lines+markers", + line=dict( + color=method_color_mapping[method], + width=2, + dash="dashdot", + ), + name=method, + showlegend=not energy_plot, + ), + secondary_y=True, + ) + else: + fig.add_trace( + go.Scatter( + x=xs, + y=ys, + mode="lines", + line=dict( + color=method_color_mapping[method], + width=2, + dash="dashdot", + ), + name=method, + showlegend=not energy_plot, + ), + secondary_y=True, + ) + + name = f"{symbol}-{symbol}" + + fig.update_layout( + showlegend=True, + legend=dict( + orientation="h", + x=1.0, + xanchor="right", + y=1, + yanchor="top", + bgcolor="rgba(0, 0, 0, 0)", + # traceorder='reversed', + entrywidth=0.4, + entrywidthmode="fraction", + ), + title_text=f"{name}", + title_x=0.5, + ) + + # Set x-axis title + fig.update_xaxes(title_text="Distance [ร…]") + + # Set y-axes titles + if energy_plot: + fig.update_layout( + yaxis=dict( + title=dict(text="Energy [eV]"), + side="left", + range=[elo, 2.0 * (abs(elo))], + ) + ) + + if force_plot: + fig.update_layout( + yaxis2=dict( + title=dict(text="Force [eV/ร…]"), + side="right", + range=[flo, 1.0 * abs(flo)], + overlaying="y", + tickmode="sync", + ), + ) + + # cols[i % ncols].plotly_chart(fig, use_container_width=True) + + figs.append(fig) + + return figs + # fig.write_image(format='svg', file=img_dir / f"{name}.svg") + + +figs = get_plots(df, energy_plot, force_plot, method_color_mapping) + +for i, fig in enumerate(figs): + if i % ncols == 0: + cols = st.columns(ncols) + cols[i % ncols].plotly_chart(fig, use_container_width=True) diff --git a/serve/tasks/stability.py b/serve/tasks/stability.py new file mode 100644 index 0000000000000000000000000000000000000000..575dccca0961e42ea6cacbcc9adb05b6e4b62b98 --- /dev/null +++ b/serve/tasks/stability.py @@ -0,0 +1,228 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import plotly.colors as pcolors +import plotly.express as px +import plotly.graph_objects as go +import streamlit as st +from scipy.optimize import curve_fit + +from mlip_arena.models import REGISTRY + +DATA_DIR = Path("mlip_arena/tasks/stability") + + +st.markdown(""" +# High Pressure Stability + +Stable and accurate molecular dynamics (MD) simulations are important for understanding the properties of matters. +However, many MLIPs have unphysical potential energy surface (PES) at the short-range interatomic distances or under many-body effect. These are often manifested as softened repulsion and hole in the PES and can lead to incorrect and sampling of the phase space. + +Here, we analyze the stability of the MD simulations under high pressure conditions by gradually increasing the pressure from 0 to 1000 GPa at 300K until the system crashes or completes 100 ps trajectory. This benchmark also explores faster the far-from-equilibrium dynamics of the system and the durability of the MLIPs under extreme conditions. +""") + +st.markdown("### Methods") +container = st.container(border=True) +valid_models = [ + model + for model, metadata in REGISTRY.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] + +models = container.multiselect( + "MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "ORB", "SevenNet"] +) + +st.markdown("### Settings") +vis = st.container(border=True) +# Get all attributes from pcolors.qualitative +all_attributes = dir(pcolors.qualitative) +color_palettes = { + attr: getattr(pcolors.qualitative, attr) + for attr in all_attributes + if isinstance(getattr(pcolors.qualitative, attr), list) +} +color_palettes.pop("__all__", None) + +palette_names = list(color_palettes.keys()) +palette_colors = list(color_palettes.values()) + +palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) + +color_sequence = color_palettes[palette_name] + +if not models: + st.stop() + + +@st.cache_data +def get_data(models): + families = [REGISTRY[str(model)]["family"] for model in models] + + dfs = [ + pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json") + for family in families + ] + df = pd.concat(dfs, ignore_index=True) + df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"]) + + return df + + +df = get_data(models) + +method_color_mapping = { + method: color_sequence[i % len(color_sequence)] + for i, method in enumerate(df["method"].unique()) +} + +### + +# Determine the bin edges for the entire dataset to keep them consistent across groups + +max_steps = df["total_steps"].max() +max_target_steps = df["target_steps"].max() + +bins = np.append(np.arange(0, max_steps + 1, max_steps // 10), max_target_steps) +bin_labels = [f"{bins[i]}-{bins[i+1]}" for i in range(len(bins) - 1)] + +num_bins = len(bin_labels) +colormap = px.colors.sequential.YlOrRd_r +indices = np.linspace(0, len(colormap) - 1, num_bins, dtype=int) +bin_colors = [colormap[i] for i in indices] + +# Initialize a dictionary to hold the counts for each method and bin range +counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()} + + +# Populate the dictionary with counts +for method, group in df.groupby("method"): + counts, _ = np.histogram(group["total_steps"], bins=bins) + counts_per_method[method] = counts + +# Sort the dictionary by the percentage of the last bin +counts_per_method = { + k: v + for k, v in sorted( + counts_per_method.items(), key=lambda item: item[1][-1] / sum(item[1]) + ) +} + + +count_or_percetange = st.toggle("show counts", False) + + +@st.experimental_fragment() +def plot_md_steps(counts_per_method, count_or_percetange): + """Plot the distribution of the total number of MD steps before crash or completion.""" + # Create a figure + fig = go.Figure() + + # Add a bar for each bin range across all methods + for i, bin_label in enumerate(bin_labels): + for method, counts in counts_per_method.items(): + fig.add_trace( + go.Bar( + # name=method, # This will be the legend entry + x=[counts[i] / counts.sum() * 100] + if not count_or_percetange + else [counts[i]], + y=[method], # Method as the y-axis category + # name=bin_label, + orientation="h", # Horizontal bars + marker=dict( + color=bin_colors[i], + line=dict(color="rgb(248, 248, 249)", width=1), + ), + text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%", + width=0.5, + ) + ) + + # Update the layout to stack the bars + fig.update_layout( + barmode="stack", # Stack the bars + title="Total MD steps (before crash or completion)", + xaxis_title="Percentage (%)" if not count_or_percetange else "Count", + yaxis_title="Method", + showlegend=False, + ) + + st.plotly_chart(fig) + + +plot_md_steps(counts_per_method, count_or_percetange) + +st.caption( +""" +The histogram shows the distribution of the total number of MD steps before the system crashes or completes the trajectory. :red[The color of the bins indicates the number of steps in the bin]. :blue[The height of the bars indicates the number or percentage of each bin among all the runs]. +""" +) + +### + +st.markdown( +""" +## Inference speed + +The inference speed of the MLIPs is crucial for the high-throughput virutal screening. Under high pressure conditions, the atoms often move faster and closer to each other, which increases the size of neighbor list and local graph construction and hence slows down the inference speed. +""" +) + + +def func(x, a, n): + return a * x ** (-n) + + +@st.experimental_fragment() +def plot_speed(df, method_color_mapping): + """Plot the inference speed as a function of the number of atoms.""" + fig = px.scatter( + df, + x="natoms", + y="steps_per_second", + color="method", + size="total_steps", + hover_data=["material_id", "formula"], + color_discrete_map=method_color_mapping, + # trendline="ols", + # trendline_options=dict(log_x=True), + log_x=True, + # log_y=True, + # range_y=[1, 1e2], + range_x=[df["natoms"].min() * 0.9, df["natoms"].max() * 1.1], + # range_x=[1e3, 1e2], + title="Inference speed (on single A100 GPU)", + labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"}, + ) + + x = np.linspace(df["natoms"].min(), df["natoms"].max(), 100) + + for method, data in df.groupby("method"): + data.dropna(subset=["steps_per_second"], inplace=True) + popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"]) + + fig.add_trace( + go.Scatter( + x=x, + y=func(x, *popt), + mode="lines", + # name='Fit', + line=dict(color=method_color_mapping[method], width=3), + showlegend=False, + name=f"{popt[0]:.2f}N^{-popt[1]:.2f}", + hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}", + ) + ) + + st.plotly_chart(fig) + + +plot_speed(df, method_color_mapping) + +st.caption( +""" +The plot shows the inference speed (steps per second) as a function of the number of atoms in the system. :red[The size of the points is proportional to the total number of steps in the MD trajectory before crash or completion (~49990)]. :blue[The lines show the fit of the data to the power law function $a N^{-n}$], where $N$ is the number of atoms and $a$ and $n$ are the fit parameters. +""" +) diff --git a/serve/tasks/thermal-conductivity.py b/serve/tasks/thermal-conductivity.py new file mode 100644 index 0000000000000000000000000000000000000000..3148be19ef3515e65efa4e3f6a8c1268406c9a33 --- /dev/null +++ b/serve/tasks/thermal-conductivity.py @@ -0,0 +1,48 @@ + +import pandas as pd +import streamlit as st + +from mlip_arena import PKG_DIR + + +st.markdown( +""" +# Thermal Conductivity + +Compared to Pรณta, Ahlawat, Csรกnyi, and Simoncelli, [arXiv:2408.00755v4](https://arxiv.org/abs/2408.00755), the relaxation protocol has been updated and unified for all the models. The relaxation is a combination of sequential vc-relax (changes cell and atom positions) and relax (changes atom positions only). Each relaxation stage has a maximum number of 300 steps, and consist of a single FrechetCellFilter relaxation with force threshold =1e-4 eV/Ang. To preserve crystal symmetry, unit-cell angles are not allowed to change. This unified protocol gives the same SRME reported in [arXiv:2408.00755v4](https://arxiv.org/abs/2408.00755) for all the models but M3GNet. In M3GNet this updated relaxation protocol gives SRME = 1.412, slightly smaller than the value 1.469 that was obtained with the non-unified relaxation protocol in [arXiv:2408.00755v4](https://arxiv.org/abs/2408.00755). + +**SRME** is the Symmetric Relative Mean Error, defined as the mean of the absolute values of the relative errors of the predictions. Here, it is used to quantify the error on microscopic single-phonon conductivity: + +$$ +\\text{SRME}[\\left\lbrace\\mathcal{K}({\\mathbf{q},s)}\\right\\rbrace] = \\frac{2}{N_qV}\\frac{\\sum_{\\mathbf{q}s}|\\mathcal{K}_{\\text{MLIP}}(\\mathbf{q},s) - \\mathcal{K}_{\\text{DFT}}(\\mathbf{q},s)|}{\\kappa_{\\text{MLIP}} + \\kappa_{\\text{DFT}}} +$$ +""" +) + +DATA_DIR = PKG_DIR / "tasks" / "thermal-conductivity" + +table = pd.read_csv(DATA_DIR / "wte.csv") + +table.rename( + columns={ + "method": "Model", + "srme": "SRME[๐œ…]", + }, + inplace=True, +) + +table.set_index("Model", inplace=True) + +table.sort_values(["SRME[๐œ…]"], ascending=True, inplace=True) + +s = ( + table.style.background_gradient( + cmap="Reds", subset=["SRME[๐œ…]"] + ) + .format("{:.3f}", subset=["SRME[๐œ…]"]) +) + +st.dataframe( + s, + use_container_width=True, +) \ No newline at end of file diff --git a/serve/tasks/wbm_ev.py b/serve/tasks/wbm_ev.py new file mode 100644 index 0000000000000000000000000000000000000000..c68b35b5a2f5281683571996053a94b924a7722b --- /dev/null +++ b/serve/tasks/wbm_ev.py @@ -0,0 +1,243 @@ +from pathlib import Path + +import numpy as np +import pandas as pd +import plotly.colors as pcolors +import plotly.graph_objects as go +import streamlit as st +from ase.db import connect +from scipy import stats + +from mlip_arena.models import REGISTRY as MODELS + +DATA_DIR = Path("benchmarks/wbm_ev") + +st.markdown(""" +# Energy-volume scans +""") + +# Control panels at the top +st.markdown("### Methods") +methods_container = st.container(border=True) + +# Get valid models that support wbm_ev +valid_models = [ + model + for model, metadata in MODELS.items() + if Path(__file__).stem in metadata.get("gpu-tasks", []) +] + +# Model selection +selected_models = methods_container.multiselect( + "Select Models", + options=valid_models, + default=valid_models +) + +# Visualization settings +st.markdown("### Visualization Settings") +vis = st.container(border=True) + +# Column settings +ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2) + +# Color palette selection +all_attributes = dir(pcolors.qualitative) +color_palettes = { + attr: getattr(pcolors.qualitative, attr) + for attr in all_attributes + if isinstance(getattr(pcolors.qualitative, attr), list) +} +color_palettes.pop("__all__", None) + +palette_names = list(color_palettes.keys()) +palette_name = vis.selectbox("Color sequence", options=palette_names, index=22) +color_sequence = color_palettes[palette_name] + +# Stop execution if no models selected +if not selected_models: + st.warning("Please select at least one model to visualize.") + st.stop() + + +def load_wbm_structures(): + """ + Load the WBM structures from a ASE DB file. + """ + with connect(DATA_DIR.parent / "wbm_structures.db") as db: + for row in db.select(): + yield row.toatoms(add_additional_information=True) + + +@st.cache_data +def generate_dataframe(model_name): + fpath = DATA_DIR / f"{model_name}.parquet" + if not fpath.exists(): + return pd.DataFrame() # Return empty dataframe instead of using continue + + df_raw_results = pd.read_parquet(fpath) + + df_analyzed = pd.DataFrame( + columns=[ + "model", + "structure", + "formula", + "volume-ratio", + "energy-delta-per-atom", + "energy-diff-flip-times", + "tortuosity", + "spearman-compression-energy", + "spearman-compression-derivative", + "spearman-tension-energy", + "missing", + ] + ) + + for wbm_struct in load_wbm_structures(): + structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"] + + try: + results = df_raw_results.loc[df_raw_results["id"] == structure_id] + results = results["eos"].values[0] + es = np.array(results["energies"]) + vols = np.array(results["volumes"]) + vol0 = wbm_struct.get_volume() + + indices = np.argsort(vols) + vols = vols[indices] + es = es[indices] + + imine = len(es) // 2 + # min_center_val = np.min(es[imid - 1 : imid + 2]) + # imine = np.where(es == min_center_val)[0][0] + emin = es[imine] + + interpolated_volumes = [ + (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1) + ] + ediff = np.diff(es) + ediff_sign = np.sign(ediff) + mask = ediff_sign != 0 + ediff = ediff[mask] + ediff_sign = ediff_sign[mask] + ediff_flip = np.diff(ediff_sign) != 0 + + etv = np.sum(np.abs(np.diff(es))) + + data = { + "model": model_name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": False, + "volume-ratio": vols / vol0, + "energy-delta-per-atom": (es - emin) / len(wbm_struct), + "energy-diff-flip-times": np.sum(ediff_flip).astype(int), + "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)), + "spearman-compression-energy": stats.spearmanr( + vols[:imine], es[:imine] + ).statistic, + "spearman-compression-derivative": stats.spearmanr( + interpolated_volumes[:imine], ediff[:imine] + ).statistic, + "spearman-tension-energy": stats.spearmanr( + vols[imine:], es[imine:] + ).statistic, + } + + except Exception: + data = { + "model": model_name, + "structure": structure_id, + "formula": wbm_struct.get_chemical_formula(), + "missing": True, + "volume-ratio": None, + "energy-delta-per-atom": None, + "energy-diff-flip-times": None, + "tortuosity": None, + "spearman-compression-energy": None, + "spearman-compression-derivative": None, + "spearman-tension-energy": None, + } + + df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True) + + return df_analyzed + + +@st.cache_data +def get_plots(selected_models): + """Generate one plot per model with all structures (legend disabled for each structure).""" + figs = [] + + for model_name in selected_models: + + fpath = DATA_DIR / f"{model_name}_processed.parquet" + if not fpath.exists(): + df = generate_dataframe(model_name) + else: + df = pd.read_parquet(fpath) + + if len(df) == 0: + continue + + fig = go.Figure() + valid_structures = [] + for i, (_, row) in enumerate(df.iterrows()): + structure_id = row["structure"] + formula = row.get("formula", "") + if isinstance(row["volume-ratio"], list | np.ndarray) and isinstance( + row["energy-delta-per-atom"], list | np.ndarray + ): + vol_strain = row["volume-ratio"] + energy_delta = row["energy-delta-per-atom"] + color = color_sequence[i % len(color_sequence)] + fig.add_trace( + go.Scatter( + x=vol_strain, + y=energy_delta, + mode="lines", + name=f"{structure_id}", + showlegend=False, + line=dict(color=color), + hoverlabel=dict(bgcolor=color, font=dict(color="black")), + hovertemplate=( + structure_id + "
" + "Formula: " + str(formula) + "
" + "Volume ratio V/Vโ‚€: %{x:.3f}
" + "ฮ”Energy: %{y:.3f} eV/atom
" + "" + ), + + ) + ) + valid_structures.append(structure_id) + + # if valid_structures: + fig.update_layout( + title=f"{model_name} ({len(valid_structures)} / {len(df)} structures)", + xaxis_title="Volume ratio V/Vโ‚€", + yaxis_title="Relative energy E - Eโ‚€ (eV/atom)", + height=500, + showlegend=False, # Disable legend for the whole plot + yaxis=dict(range=[-1, 15]), # Set y-axis limits + ) + fig.add_vline(x=1, line_dash="dash", line_color="gray", opacity=0.7) + figs.append((model_name, fig, valid_structures)) + + return figs + + +# Generate all plots +all_plots = get_plots(selected_models) + +# Display plots in the specified column layout +if all_plots: + for i, (model_name, fig, structures) in enumerate(all_plots): + if i % ncols == 0: + cols = st.columns(ncols) + cols[i % ncols].plotly_chart(fig, use_container_width=True) + + # Display number of structures in this plot + # cols[i % ncols].caption(f"{len(structures)} / 1000 structures") +else: + st.warning("No data available for the selected models.") diff --git a/serve/tools/ptable.py b/serve/tools/ptable.py new file mode 100644 index 0000000000000000000000000000000000000000..e73dcf9ce02444271be0029597b1838d486fc6e5 --- /dev/null +++ b/serve/tools/ptable.py @@ -0,0 +1,158 @@ + + +# NOTE: https://stackoverflow.com/questions/77062368/streamlit-bokeh-event-callback-to-get-clicked-values +# Taptool: https://docs.bokeh.org/en/2.4.2/docs/reference/models/tools.html#taptool + +import streamlit as st +from bokeh.plotting import figure +from bokeh.plotting import figure, show +from bokeh.sampledata.periodic_table import elements +from bokeh.transform import dodge, factor_cmap + +import streamlit as st +from bokeh.plotting import figure +from bokeh.models import ColumnDataSource, CustomJS, TapTool +from bokeh.sampledata.periodic_table import elements +from bokeh.transform import dodge, factor_cmap + + +periods = ["I", "II", "III", "IV", "V", "VI", "VII"] +groups = [str(x) for x in range(1, 19)] + +df = elements.copy() +df["atomic mass"] = df["atomic mass"].astype(str) +df["group"] = df["group"].astype(str) +df["period"] = [periods[x-1] for x in df.period] +df = df[df.group != "-"] +df = df[df.symbol != "Lr"] +df = df[df.symbol != "Lu"] + +cmap = { + "alkali metal" : "#a6cee3", + "alkaline earth metal" : "#1f78b4", + "metal" : "#d93b43", + "halogen" : "#999d9a", + "metalloid" : "#e08d49", + "noble gas" : "#eaeaea", + "nonmetal" : "#f1d4Af", + "transition metal" : "#599d7A", +} + +TOOLTIPS = [ + ("Name", "@name"), + ("Atomic number", "@{atomic number}"), + ("Atomic mass", "@{atomic mass}"), + ("Type", "@metal"), + ("CPK color", "$color[hex, swatch]:CPK"), + ("Electronic configuration", "@{electronic configuration}"), +] + +p = figure(title="Periodic Table (omitting LA and AC Series)", width=1000, height=450, + x_range=groups, y_range=list(reversed(periods)), + tools="hover,tap", toolbar_location=None, tooltips=TOOLTIPS) + +# Convert DataFrame to ColumnDataSource +df["selected"] = False +source = ColumnDataSource(df) + +r = p.rect("group", "period", 0.95, 0.95, source=source, fill_alpha=0.6, + legend_field="metal", + color=factor_cmap('metal', palette=list(cmap.values()), factors=list(cmap.keys())), + selection_color="firebrick", selection_alpha=0.9) + + +# r = p.rect("group", "period", 0.95, 0.95, source=df, fill_alpha=0.6, legend_field="metal", +# color=factor_cmap('metal', palette=list(cmap.values()), factors=list(cmap.keys()))) + +text_props = dict(source=df, text_align="left", text_baseline="middle") + +x = dodge("group", -0.4, range=p.x_range) + +p.text(x=x, y="period", text="symbol", text_font_style="bold", **text_props) + +p.text(x=x, y=dodge("period", 0.3, range=p.y_range), text="atomic number", + text_font_size="11px", **text_props) + +p.text(x=x, y=dodge("period", -0.35, range=p.y_range), text="name", + text_font_size="7px", **text_props) + +p.text(x=x, y=dodge("period", -0.2, range=p.y_range), text="atomic mass", + text_font_size="7px", **text_props) + +p.text(x=["3", "3"], y=["VI", "VII"], text=["LA", "AC"], text_align="center", text_baseline="middle") + +p.outline_line_color = None +p.grid.grid_line_color = None +p.axis.axis_line_color = None +p.axis.major_tick_line_color = None +p.axis.major_label_standoff = 0 +p.legend.orientation = "horizontal" +p.legend.location ="top_center" +p.hover.renderers = [r] # only hover element boxes + +print(source.dataspecs()) + +# Create a CustomJS callback +callback = CustomJS(args=dict(source=source), code=""" + var data = source.data; + var selected_elements = []; + for (var i = 0; i < data.symbol.length; i++) { + if (data.selected[i]) { // Corrected if statement with braces + selected_elements.push(data.symbol[i]); + } + } + console.log('Selected elements:', selected_elements); + document.dispatchEvent(new CustomEvent("selection_event", {detail: JSON.stringify(selected_elements)})); + """) + # yield j + # st.rerun() + + + +# Add TapTool with the callback +tap_tool = TapTool() +p.add_tools(tap_tool) +p.js_on_event('tap', callback) + +st.bokeh_chart(p, use_container_width=True) + +# show(p) + +selected_info = st.empty() + +# Use session state to store selected elements +if 'selected_elements' not in st.session_state: + st.session_state.selected_elements = [] + +st.markdown(""" + +""", unsafe_allow_html=True) + +# Display selected elements +if st.session_state.selected_elements: + st.write("Selected Elements:") + for element in st.session_state.selected_elements: + st.write(f"{element['symbol']} ({element['name']}):") + st.write(f" Atomic Number: {element['atomic_number']}") + st.write(f" Atomic Mass: {element['atomic_mass']}") + st.write(f" Type: {element['metal']}") + st.write("---") + +else: + st.write("No elements selected. Click on elements in the periodic table to select them.") + # st.rerun() + +# Add a button to clear selection +if st.button("Clear Selection"): + st.session_state.selected_elements = [] + st.rerun() diff --git a/tests/test_app.py b/tests/test_app.py new file mode 100644 index 0000000000000000000000000000000000000000..d8e62c58285f8555a53186be6f8d2a3c7be863cd --- /dev/null +++ b/tests/test_app.py @@ -0,0 +1,27 @@ +import streamlit as st +from streamlit.testing.v1 import AppTest +import pytest +from pathlib import Path + +path = Path(__file__).parents[1] / "serve" + +@pytest.fixture +def home(): + at = AppTest.from_file(str(path / "app.py"), default_timeout=60) + at.run() + assert not at.exception + return at + +def test_leaderboard(home): + # Test the leaderboard page by simulating navigation. + at = home.switch_page(str(path / "leaderboard.py")) + assert not at.exception + +def test_task_pages(home): + # Test each task page using the TASKS registry. + from mlip_arena.tasks import REGISTRY as TASKS + + for task, details in TASKS.items(): + page_path = str(path / f"tasks/{details['task-page']}.py") + at = home.switch_page(page_path) + assert not at.exception diff --git a/tests/test_elasticity.py b/tests/test_elasticity.py new file mode 100644 index 0000000000000000000000000000000000000000..e96d1d0c2e97994d8f2c84645251d3c21fdc33c0 --- /dev/null +++ b/tests/test_elasticity.py @@ -0,0 +1,40 @@ +import sys + +import numpy as np +import pytest +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.elasticity import run as ELASTICITY +from mlip_arena.tasks.utils import get_calculator +from prefect.testing.utilities import prefect_test_harness + +from ase.build import bulk + + +@pytest.mark.skipif( + sys.version_info[:2] != (3, 11), + reason="avoid prefect race condition on concurrent tasks", +) +@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]]) +def test_elasticity(model: MLIPEnum): + """ + Test elasticity prefect workflow with a simple cubic lattice. + """ + + with prefect_test_harness(): + result = ELASTICITY( + atoms=bulk("Cu", "fcc", a=3.6), + calculator=get_calculator( + calculator_name=model.name, + ), + optimizer="BFGSLineSearch", + optimizer_kwargs=None, + filter="FrechetCell", + filter_kwargs=None, + criterion=None, + persist_opt=False, + cache_opt=False, + ) + assert isinstance(result, dict) + assert isinstance(result["elastic_tensor"], np.ndarray) + assert result["elastic_tensor"].shape == (3, 3, 3, 3) + assert isinstance(result["elastic_tensor"][0, 0, 0, 0], float) diff --git a/tests/test_eos.py b/tests/test_eos.py new file mode 100644 index 0000000000000000000000000000000000000000..ec7c84090abd972ddcaeaa8222921c156ffcda18 --- /dev/null +++ b/tests/test_eos.py @@ -0,0 +1,67 @@ +import sys + +import pytest +from ase.build import bulk +from prefect import flow +from prefect.testing.utilities import prefect_test_harness + +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.eos import run as EOS +from mlip_arena.tasks.utils import get_calculator + + + +@flow(persist_result=True) +def single_eos_flow(calculator_name, concurrent=True, cache=False): + atoms = bulk("Cu", "fcc", a=3.6) + + return EOS.with_options( + refresh_cache=not cache, + )( + atoms=atoms, + calculator=get_calculator( + calculator_name=calculator_name, + ), + optimizer="BFGSLineSearch", + optimizer_kwargs=None, + filter="FrechetCell", + filter_kwargs=None, + criterion=dict( + fmax=0.1, + ), + max_abs_strain=0.1, + npoints=6, + concurrent=concurrent, + ) + + +@pytest.mark.skipif( + sys.version_info[:2] != (3, 11), + reason="avoid prefect race condition on concurrent tasks", +) +@pytest.mark.parametrize("concurrent", [False]) +@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]]) +def test_eos(model: MLIPEnum, concurrent: bool): + """ + Test EOS prefect workflow with a simple cubic lattice. + """ + + with prefect_test_harness(): + result = single_eos_flow( + calculator_name=model.name, + concurrent=concurrent, + cache=False, + ) + assert isinstance(b0_scratch := result["b0"], float) + + # @pytest.mark.dependency(depends=["test_eos"]) + # @pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]]) + # def test_eos_cache(model: MLIPEnum): + + result = single_eos_flow( + calculator_name=model.name, + concurrent=concurrent, + cache=True, + ) + assert isinstance(b0_cache := result["b0"], float) + assert b0_scratch == pytest.approx(b0_cache, rel=1e-5) diff --git a/tests/test_external_calculators.py b/tests/test_external_calculators.py new file mode 100644 index 0000000000000000000000000000000000000000..e9194036ab6f99c68aea8b26dfeea4292ad9687a --- /dev/null +++ b/tests/test_external_calculators.py @@ -0,0 +1,55 @@ +import pytest +from ase import Atoms +from ase.calculators.calculator import PropertyNotImplementedError +import numpy as np + +from mlip_arena.models import MLIPEnum + +from requests import HTTPError +from huggingface_hub.errors import LocalTokenNotFoundError + +@pytest.mark.parametrize("model", MLIPEnum) +def test_calculate(model: MLIPEnum): + + if model.name == "ALIGNN": + pytest.xfail("ALIGNN has poor file download mechanism") + + if model.name == "ORB": + pytest.xfail("Orbital Materials deprecated the model a month after its premature release in favor of ORBv2") + + if model.name == "M3GNet": + pytest.xfail("Cache sometimes fails") + + try: + calc = MLIPEnum[model.name].value() + except (LocalTokenNotFoundError, HTTPError, FileNotFoundError) as e: + pytest.skip(str(e)) + + atoms = Atoms( + "OO", + positions=[[0, 0, 0], [1.5, 0, 0]], + cell=[10, 10 + 0.001, 10 + 0.002], + pbc=True, + ) + + atoms.calc = calc + + energy = atoms.get_potential_energy() + + assert isinstance(energy, (float, np.float64, np.float32)) + + forces = atoms.get_forces() + assert isinstance(forces, (np.ndarray, list)) + assert len(forces) == len(atoms) + + try: + stress = atoms.get_stress() + except PropertyNotImplementedError: + stress = None + + if stress is None: + pytest.xfail("Stress calculation is not supported by the model") + else: + assert isinstance(stress, (np.ndarray, list)) + + diff --git a/tests/test_internal_calculators.py b/tests/test_internal_calculators.py new file mode 100644 index 0000000000000000000000000000000000000000..d09489782f8157101779ed3e1f06b8803db84ce4 --- /dev/null +++ b/tests/test_internal_calculators.py @@ -0,0 +1,36 @@ +import numpy as np +from mlip_arena.models import MLIPCalculator +from mlip_arena.models.classicals.zbl import ZBL + +from ase.build import bulk + + +def test_zbl(): + calc = MLIPCalculator(model=ZBL(), cutoff=6.0) + + energies = [] + forces = [] + stresses = [] + + lattice_constants = [1, 3, 5, 7] + + for a in lattice_constants: + atoms = bulk("Cu", "fcc", a=a) * (2, 2, 2) + atoms.calc = calc + + energies.append(atoms.get_potential_energy()) + forces.append(atoms.get_forces()) + stresses.append(atoms.get_stress(voigt=False)) + + # test energy monotonicity + assert all(np.diff(energies) <= 0), "Energy is not monotonically decreasing with increasing lattice constant" + + # test force vectors are all zeros due to symmetry + for f in forces: + assert np.allclose(f, 0), "Forces should be zero due to symmetry" + + # test trace of stress is monotonically increasing (less negative) and zero beyond cutoff + traces = [np.trace(s) for s in stresses] + + assert all(np.diff(traces) >= 0), "Trace of stress is not monotonically increasing with increasing lattice constant" + assert np.allclose(stresses[-1], 0), "Stress should be zero beyond cutoff" diff --git a/tests/test_md.py b/tests/test_md.py new file mode 100644 index 0000000000000000000000000000000000000000..a540f37eeeabbb56a2f52c54eedd6d0392a20a8b --- /dev/null +++ b/tests/test_md.py @@ -0,0 +1,29 @@ + +import sys + +import pytest +from ase.build import bulk + +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.md import run as MD +from mlip_arena.tasks.utils import get_calculator + +atoms = bulk("Cu", "fcc", a=3.6) + +@pytest.mark.skipif(sys.version_info[:2] != (3,11), reason="avoid prefect race condition on concurrent tasks") +@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]]) +def test_nve(model: MLIPEnum): + + result = MD.fn( + atoms, + calculator=get_calculator( + calculator_name=model.name, + ), + ensemble="nve", + dynamics="velocityverlet", + total_time=10, + time_step=2, + dynamics_kwargs={}, + ) + + assert isinstance(result["atoms"].get_potential_energy(), float) diff --git a/tests/test_mof.py b/tests/test_mof.py new file mode 100644 index 0000000000000000000000000000000000000000..a5204f2611fbd61bcbc582888e672a9e15f8e508 --- /dev/null +++ b/tests/test_mof.py @@ -0,0 +1,43 @@ +import sys + +import pytest +from ase.build import molecule +from prefect.testing.utilities import prefect_test_harness + +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks.mof.flow import widom_insertion +from mlip_arena.tasks.mof.input import get_atoms_from_db +from mlip_arena.tasks.utils import get_calculator + + +@pytest.fixture(autouse=True, scope="session") +def prefect_test_fixture(): + with prefect_test_harness(): + yield + + +@pytest.mark.skipif( + sys.version_info[:2] != (3, 11), + reason="avoid prefect race condition on concurrent tasks", +) +@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]]) +def test_widom_insertion(model: MLIPEnum): + # with prefect_test_harness(): + for atoms in get_atoms_from_db("mofs.db"): + result = widom_insertion.with_options( + refresh_cache=True, + )( + structure=atoms, + gas=molecule("CO2"), + calculator=get_calculator( + model, + dispersion=True, + ), + num_insertions=10, + fold=2, + ) + assert isinstance(result, dict) + assert isinstance(result["henry_coefficient"][0], float) + assert isinstance(result["averaged_interaction_energy"][0], float) + assert isinstance(result["heat_of_adsorption"][0], float) + break # only test one MOF diff --git a/tests/test_neb.py b/tests/test_neb.py new file mode 100644 index 0000000000000000000000000000000000000000..4f97fbda28a245066d5e73c8e3d63c8bf807a399 --- /dev/null +++ b/tests/test_neb.py @@ -0,0 +1,47 @@ +import sys + +import pytest +from mlip_arena.models import MLIPEnum +from mlip_arena.tasks import NEB_FROM_ENDPOINTS +from mlip_arena.tasks.utils import get_calculator +from prefect.testing.utilities import prefect_test_harness + +from ase.spacegroup import crystal + +pristine = crystal( + "Al", [(0, 0, 0)], spacegroup=225, cellpar=[4.05, 4.05, 4.05, 90, 90, 90] +) * (3, 3, 3) + +atoms = pristine.copy() +del atoms[0] +start = atoms.copy() + +atoms = pristine.copy() +del atoms[1] +end = atoms.copy() + + +@pytest.mark.skipif( + sys.version_info[:2] != (3, 11), + reason="avoid prefect race condition on concurrent tasks", +) +@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]]) +def test_neb(model: MLIPEnum): + """ + Test NEB prefect workflow with a simple cubic lattice. + """ + + with prefect_test_harness(): + result = NEB_FROM_ENDPOINTS( + start=start.copy(), + end=end.copy(), + n_images=5, + calculator=get_calculator( + calculator_name=model.name, + ), + optimizer="BFGS", + ) + + assert isinstance(result, dict) + assert isinstance(result["barrier"][0], float) + assert isinstance(result["barrier"][1], float)