File size: 10,175 Bytes
f880d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
from pathlib import Path
from typing import Literal

import numpy as np
import pandas as pd
import plotly.colors as pcolors
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from plotly.subplots import make_subplots

from mlip_arena.models import REGISTRY

st.title("Stability")

DATA_DIR = Path(__file__).parents[2] / "benchmarks" / "stability"

st.markdown("### Methods")
container = st.container(border=True)

# Filter models that have valid parquet results
valid_models = [
    model
    for model, metadata in REGISTRY.items()
    if (
        DATA_DIR / REGISTRY[str(model)]["family"].lower() / f"{model}-heating.parquet"
    ).exists()
]

models = container.multiselect(
    "MLIPs",
    valid_models,
    [
        "MACE-MP(M)",
        "CHGNet",
        "SevenNet",
        "ORBv2",
        "eqV2(OMat)",
        "M3GNet",
        "MatterSim",
        "MACE-MPA",
    ],
)

st.markdown("### Settings")
vis = st.container(border=True)

# Build available color palettes from Plotly
color_palettes = {
    attr: getattr(pcolors.qualitative, attr)
    for attr in dir(pcolors.qualitative)
    if isinstance(getattr(pcolors.qualitative, attr), list)
}
color_palettes.pop("__all__", None)

palette_name = vis.selectbox(
    "Color sequence", options=list(color_palettes.keys()), index=22
)
color_sequence = color_palettes[palette_name]

if not models:
    st.stop()


@st.cache_data
def get_data(model_list, run_type: Literal["heating", "compression"]) -> pd.DataFrame:
    """Load parquet files for selected models."""
    dfs = []
    for m in model_list:
        fpath = (
            DATA_DIR / REGISTRY[str(m)]["family"].lower() / f"{m}-{run_type}.parquet"
        )
        if not fpath.exists():
            continue
        df_local = pd.read_parquet(fpath)
        df_local["method"] = str(m)
        dfs.append(df_local)
    return pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()


df_nvt = get_data(models, run_type="heating")
df_npt = get_data(models, run_type="compression")

# Map model → color
method_color_mapping = {
    method: color_sequence[i % len(color_sequence)]
    for i, method in enumerate(df_nvt["method"].unique())
}


@st.cache_data
def prepare_scatter_df(df_in: pd.DataFrame, max_points: int = 20000) -> pd.DataFrame:
    """Prepare scatter dataframe with marker sizes scaled by total steps."""
    dfp = df_in.dropna(subset=["natoms", "steps_per_second"]).copy()
    if dfp.empty:
        return dfp

    # Downsample if too many points
    if len(dfp) > max_points:
        dfp = dfp.sample(max_points, random_state=1)

    if "total_steps" in dfp.columns:
        ts_local = dfp["total_steps"].fillna(dfp["total_steps"].median()).astype(float)
        ts_range = ts_local.max() - ts_local.min()
        scaled = (ts_local - ts_local.min()) / (ts_range if ts_range != 0 else 1.0)
        dfp["_marker_size"] = (scaled * 40) + 5
    else:
        dfp["_marker_size"] = 8
    return dfp


@st.cache_data
def compute_power_law_fits(df_in: pd.DataFrame) -> dict:
    """Fit power-law scaling: steps/s ~ a * N^(-n)."""
    fits = {}
    for name, grp in df_in.groupby("method"):
        grp_clean = grp.dropna(subset=["natoms", "steps_per_second"])
        grp_clean = grp_clean[
            (grp_clean["natoms"] > 0) & (grp_clean["steps_per_second"] > 0)
        ]
        if len(grp_clean) < 3:
            continue
        try:
            logsx = np.log(grp_clean["natoms"].astype(float))
            logsy = np.log(grp_clean["steps_per_second"].astype(float))
            slope, intercept = np.polyfit(logsx, logsy, 1)
            fits[name] = (float(np.exp(intercept)), float(-slope))  # (a, n)
        except Exception:
            continue
    return fits


@st.cache_data
def build_speed_figure(
    df_in: pd.DataFrame, color_map: dict, show_scatter: bool
) -> go.Figure:
    """Build scatter plot of inference speed vs number of atoms with power-law fits."""
    fig = go.Figure()

    # Optionally add scatter points
    if show_scatter:
        dfp = prepare_scatter_df(df_in)
        scatter_fig = px.scatter(
            dfp,
            x="natoms",
            y="steps_per_second",
            color="method",
            size="_marker_size",
            hover_data=[c for c in ["material_id", "formula"] if c in dfp.columns],
            color_discrete_map=color_map,
            log_x=True,
            log_y=True,
            render_mode="webgl",
            labels={
                "steps_per_second": "Steps per second",
                "natoms": "Number of atoms",
            },
        )
        for trace in scatter_fig.data:
            fig.add_trace(trace)

    # Overlay fits
    fits = compute_power_law_fits(df_in)
    for method, (a, n) in fits.items():
        grp = df_in[df_in["method"] == method]
        if grp["natoms"].dropna().empty:
            continue
        xs = np.logspace(
            np.log10(grp["natoms"].min()), np.log10(grp["natoms"].max()), 200
        )
        ys = a * xs ** (-n)

        fig.add_trace(
            go.Scatter(
                x=xs,
                y=ys,
                mode="lines",
                line=dict(color=color_map.get(method, "black"), width=2),
                showlegend=not show_scatter,
                name=f"{method}",
                # zorder=0,
                # text=hover_text,
                # hoverinfo='text',  # use the custom text
            )
        )

    fig.update_layout(
        height=520,
        title="Inference speed (steps/s)",
        xaxis=dict(type="log", title="Number of atoms"),
        yaxis=dict(type="log", title="Steps per second"),
    )
    return fig


@st.cache_data
def build_nvt_figure(
    df_in: pd.DataFrame, color_map: dict, show_scatter: bool
) -> go.Figure:
    """Build subplot: NVT valid runs (cumulative) + speed scaling plot."""
    fig = make_subplots(
        rows=1,
        cols=2,
        column_widths=[0.4, 0.6],
        subplot_titles=("Valid runs", "Inference speed: steps/s vs N"),
    )

    # Right panel: speed scaling
    speed_fig = build_speed_figure(df_in, color_map, show_scatter)
    for trace in speed_fig.data:
        fig.add_trace(trace, row=1, col=2)

    # Left panel: cumulative valid runs
    for method, df_model in df_in.groupby("method"):
        df_model_grp = df_model.drop_duplicates(["formula"])
        hist, bin_edges = np.histogram(
            df_model_grp["normalized_final_step"], bins=np.linspace(0, 1, 50)
        )
        cumulative_population = np.cumsum(hist)
        bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
        fig.add_trace(
            go.Scatter(
                x=bin_centers[:-1],
                y=(cumulative_population[-1] - cumulative_population[:-1]) / 120 * 100,
                mode="lines",
                line=dict(color=color_map.get(method)),
                name=str(method),
                showlegend=False,
            ),
            row=1,
            col=1,
        )

    fig.update_xaxes(title_text="Normalized time", row=1, col=1, range=[0, 1])
    fig.update_yaxes(title_text="Valid runs (%)", row=1, col=1)
    fig.update_xaxes(type="log", row=1, col=2, title_text="Number of atoms")
    fig.update_yaxes(type="log", row=1, col=2, title_text="Steps per second")
    fig.update_layout(height=520, width=1000)
    return fig


@st.cache_data
def build_npt_figure(
    df_in: pd.DataFrame, color_map: dict, show_scatter: bool
) -> go.Figure:
    """Build subplot: NPT valid runs (cumulative) + speed scaling plot."""
    fig = make_subplots(
        rows=1,
        cols=2,
        column_widths=[0.4, 0.6],
        subplot_titles=("Valid runs", "Inference speed: steps/s vs N"),
    )

    # Right panel: speed scaling
    speed_fig = build_speed_figure(df_in, color_map, show_scatter)
    for trace in speed_fig.data:
        fig.add_trace(trace, row=1, col=2)

    # Left panel: cumulative valid runs
    for method, df_model in df_in.groupby("method"):
        df_model_grp = df_model.drop_duplicates(["formula"])
        hist, bin_edges = np.histogram(
            df_model_grp["normalized_final_step"], bins=np.linspace(0, 1, 50)
        )
        cumulative_population = np.cumsum(hist)
        bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
        fig.add_trace(
            go.Scatter(
                x=bin_centers[:-1],
                y=(cumulative_population[-1] - cumulative_population[:-1]) / 80 * 100,
                mode="lines",
                line=dict(color=color_map.get(method)),
                name=str(method),
                showlegend=False,
            ),
            row=1,
            col=1,
        )

    fig.update_xaxes(title_text="Normalized time", row=1, col=1, range=[0, 1])
    fig.update_yaxes(title_text="Valid runs (%)", row=1, col=1)
    fig.update_xaxes(type="log", row=1, col=2, title_text="Number of atoms")
    fig.update_yaxes(type="log", row=1, col=2, title_text="Steps per second")
    fig.update_layout(height=520, width=1000)
    return fig


if df_nvt.empty and df_npt.empty:
    st.info("No data available to display for selected models.")
else:
    st.markdown("""
    ## Heating
    Isochoric-isothermal (NVT) MD simulations on RM24 structures, with temperature ramp from 300K to 3000K over 10 ps.
    """)

    show_scatter_nvt = st.toggle(
        "Show scatter points", key="show_scatter_nvt", value=True
    )
    # Toggle for scatter points
    # show_scatter = vis.checkbox("Show scatter points", value=True)
    st.plotly_chart(
        build_nvt_figure(df_nvt, method_color_mapping, show_scatter_nvt),
        use_container_width=True,
    )

    st.markdown("""
    ## Compression
    Isothermal-isobaric (NPT) MD simulations on RM24 structures, with pressure ramp from 0 GPa to 500 GPa and temperature ramp from 300K to 3000K over 10 ps.
    """)

    show_scatter_npt = st.toggle(
        "Show scatter points", key="show_scatter_npt", value=True
    )
    # Toggle for scatter points
    # show_scatter = vis.checkbox("Show scatter points", value=True)
    st.plotly_chart(
        build_npt_figure(df_npt, method_color_mapping, show_scatter_npt),
        use_container_width=True,
    )