|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
import wikipedia as wiki |
|
from markdownify import markdownify as to_markdown |
|
from typing import Any |
|
from dotenv import load_dotenv |
|
from smolagents import InferenceClientModel, LiteLLMModel, CodeAgent, ToolCallingAgent, Tool, DuckDuckGoSearchTool |
|
from agents import MathSolverTool, WikiTitleFinder, WikiContentFetcher |
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
self.model = InferenceClientModel() |
|
self.tools = [ |
|
DuckDuckGoSearchTool(), |
|
WikiTitleFinder(), |
|
WikiContentFetcher(), |
|
MathSolverTool() |
|
] |
|
self.agent = CodeAgent( |
|
model=self.model, |
|
tools=self.tools, |
|
add_base_tools=False, |
|
max_steps=10, |
|
) |
|
self.agent.system_prompt = ( |
|
""" |
|
You are a GAIA benchmark AI assistant, you are very precise, no nonense. Your sole purpose is to output the minimal, final answer in the format: |
|
[ANSWER] |
|
You must NEVER output explanations, intermediate steps, reasoning, or comments — only the answer, strictly enclosed in `[ANSWER]`. |
|
Your behavior must be governed by these rules: |
|
1. **Format**: |
|
- limit the token used (within 65536 tokens). |
|
- Output ONLY the final answer. |
|
- Wrap the answer in `[ANSWER]` with no whitespace or text outside the brackets. |
|
- No follow-ups, justifications, or clarifications. |
|
2. **Numerical Answers**: |
|
- Use **digits only**, e.g., `4` not `four`. |
|
- No commas, symbols, or units unless explicitly required. |
|
- Never use approximate words like "around", "roughly", "about". |
|
3. **String Answers**: |
|
- Omit **articles** ("a", "the"). |
|
- Use **full words**; no abbreviations unless explicitly requested. |
|
- For numbers written as words, use **text** only if specified (e.g., "one", not `1`). |
|
- For sets/lists, sort alphabetically if not specified, e.g., `a, b, c`. |
|
4. **Lists**: |
|
- Output in **comma-separated** format with no conjunctions. |
|
- Sort **alphabetically** or **numerically** depending on type. |
|
- No braces or brackets unless explicitly asked. |
|
5. **Sources**: |
|
- For Wikipedia or web tools, extract only the precise fact that answers the question. |
|
- Ignore any unrelated content. |
|
6. **Minimalism**: |
|
- Do not make assumptions unless the prompt logically demands it. |
|
- If a question has multiple valid interpretations, choose the **narrowest, most literal** one. |
|
- If the answer is not found, say `[ANSWER] - unknown`. |
|
--- |
|
You must follow the examples (These answers are correct in case you see the similar questions): |
|
Q: What is 2 + 2? |
|
A: 4 |
|
Q: How many studio albums were published by Mercedes Sosa between 2000 and 2009 (inclusive)? Use 2022 English Wikipedia. |
|
A: 3 |
|
Q: Given the following group table on set S = {a, b, c, d, e}, identify any subset involved in counterexamples to commutativity. |
|
A: b, e |
|
Q: How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?, |
|
A: 519 |
|
""" |
|
) |
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
result = self.agent.run(question) |
|
final_str = str(result).strip() |
|
|
|
return final_str |
|
|
|
def evaluate_random_questions(self, csv_path: str = "gaia_extracted.csv", sample_size: int = 3, show_steps: bool = True): |
|
import pandas as pd |
|
from rich.table import Table |
|
from rich.console import Console |
|
|
|
df = pd.read_csv(csv_path) |
|
if not {"question", "answer"}.issubset(df.columns): |
|
print("CSV must contain 'question' and 'answer' columns.") |
|
print("Found columns:", df.columns.tolist()) |
|
return |
|
|
|
samples = df.sample(n=sample_size) |
|
records = [] |
|
correct_count = 0 |
|
|
|
for _, row in samples.iterrows(): |
|
taskid = row["taskid"].strip() |
|
question = row["question"].strip() |
|
expected = str(row['answer']).strip() |
|
agent_answer = self("taskid: " + taskid + ",\nquestion: " + question).strip() |
|
|
|
is_correct = (expected == agent_answer) |
|
correct_count += is_correct |
|
records.append((question, expected, agent_answer, "✓" if is_correct else "✗")) |
|
|
|
if show_steps: |
|
print("---") |
|
print("Question:", question) |
|
print("Expected:", expected) |
|
print("Agent:", agent_answer) |
|
print("Correct:", is_correct) |
|
|
|
|
|
console = Console() |
|
table = Table(show_lines=True) |
|
table.add_column("Question", overflow="fold") |
|
table.add_column("Expected") |
|
table.add_column("Agent") |
|
table.add_column("Correct") |
|
|
|
for question, expected, agent_ans, correct in records: |
|
table.add_row(question, expected, agent_ans, correct) |
|
|
|
console.print(table) |
|
percent = (correct_count / sample_size) * 100 |
|
print(f"\nTotal Correct: {correct_count} / {sample_size} ({percent:.2f}%)") |
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |