Spaces:
Running
on
Zero
Running
on
Zero
feat: restart and build from ground on
Browse files- .gradio/certificate.pem +31 -0
- app.py +62 -100
- requirements.txt +2 -3
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
app.py
CHANGED
@@ -1,113 +1,75 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
import spaces
|
3 |
-
import
|
4 |
-
import gradio as gr
|
5 |
-
import torch
|
6 |
-
import faiss
|
7 |
import numpy as np
|
8 |
-
|
|
|
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
|
11 |
-
|
12 |
-
VECTOR_DB_DIR = "vector_db"
|
13 |
-
EMBEDDING_MODEL = "BAAI/bge-large-en-v1.5"
|
14 |
-
GEN_QA_MODEL = "Qwen/Qwen2-7B-Instruct"
|
15 |
-
MODEL_CONTEXT_SIZE = 10000
|
16 |
-
CHUNK_SIZE = 512
|
17 |
-
PROMPT_RESERVE = 1024
|
18 |
|
19 |
-
index =
|
20 |
-
|
21 |
-
|
22 |
-
emb_model = None
|
23 |
-
gen_tokenizer = None
|
24 |
-
gen_model = None
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
GEN_QA_MODEL,
|
36 |
-
use_fast=False,
|
37 |
-
trust_remote_code=True
|
38 |
-
)
|
39 |
-
gen_tokenizer.pad_token = gen_tokenizer.eos_token
|
40 |
-
gen_model = AutoModelForCausalLM.from_pretrained(
|
41 |
-
GEN_QA_MODEL,
|
42 |
-
trust_remote_code=True,
|
43 |
-
device_map="cpu",
|
44 |
-
torch_dtype=torch.float16,
|
45 |
-
load_in_4bit=True,
|
46 |
-
low_cpu_mem_usage=True
|
47 |
-
)
|
48 |
-
gen_model.eval()
|
49 |
-
return "Models loaded."
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
idx_path = os.path.join(VECTOR_DB_DIR, "index.faiss")
|
56 |
-
if not os.path.exists(idx_path):
|
57 |
-
idx_path = os.path.join(VECTOR_DB_DIR, "faiss_index.idx")
|
58 |
-
cpu_index = faiss.read_index(idx_path)
|
59 |
-
progress(30, "Moving FAISS index to GPU...")
|
60 |
-
res = faiss.StandardGpuResources()
|
61 |
-
index = faiss.index_cpu_to_gpu(res, 0, cpu_index)
|
62 |
-
progress(60, "Loading chunks & metadata...")
|
63 |
-
with open(os.path.join(VECTOR_DB_DIR, "chunks.pkl"), "rb") as f:
|
64 |
-
all_chunks = pickle.load(f)
|
65 |
-
with open(os.path.join(VECTOR_DB_DIR, "metadata.pkl"), "rb") as f:
|
66 |
-
document_metadata = pickle.load(f)
|
67 |
-
progress(100, "FAISS DB ready.")
|
68 |
-
return f"FAISS DB: {len(all_chunks)} chunks."
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
global emb_model, gen_model
|
73 |
-
if not db_loaded:
|
74 |
-
return "Please initialize FAISS DB first."
|
75 |
-
emb_model.to("cuda")
|
76 |
-
gen_model.to("cuda")
|
77 |
-
torch.cuda.empty_cache()
|
78 |
-
gc.collect()
|
79 |
-
q_emb = emb_model.encode([question], convert_to_numpy=True)
|
80 |
-
dists, ids = index.search(q_emb.astype(np.float32), calculate_top_k())
|
81 |
-
ctx, sources = [], set()
|
82 |
-
for i in ids[0]:
|
83 |
-
m = document_metadata[i]
|
84 |
-
info = f"{m['source']} (p{m['page']})"
|
85 |
-
ctx.append(f"{info}: {all_chunks[i]}")
|
86 |
-
sources.add(info)
|
87 |
-
docs = splitter.split_text("\n\n".join(ctx))
|
88 |
-
full_context = "\n\n".join(docs)
|
89 |
-
messages = [
|
90 |
-
{"role":"system","content":"You are a GDPR/EDPB expert."},
|
91 |
-
{"role":"user","content":f"Context:\n{full_context}\n\nQ: {question}"}
|
92 |
-
]
|
93 |
-
prompt = gen_tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
94 |
-
inputs = gen_tokenizer(prompt, return_tensors="pt", padding=True).to("cuda")
|
95 |
-
out = gen_model.generate(**inputs, max_new_tokens=PROMPT_RESERVE, do_sample=True)
|
96 |
-
text = gen_tokenizer.decode(out[0], skip_special_tokens=True).split("Assistant:")[-1].strip()
|
97 |
-
return f"Answer:\n{text}\n\nSources:\n- " + "\n- ".join(sources)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
|
112 |
if __name__ == "__main__":
|
113 |
-
demo.launch()
|
|
|
|
|
1 |
import spaces
|
2 |
+
import pickle
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
import gradio as gr
|
9 |
+
from threading import Thread
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
index = faiss.read_index("vector_db/index.faiss")
|
12 |
+
with open("vector_db/chunks.pkl", "rb") as f:
|
13 |
+
chunks = pickle.load(f)
|
|
|
|
|
|
|
14 |
|
15 |
+
ST = SentenceTransformer("BAAI/bge-large-en-v1.5")
|
16 |
|
17 |
+
model_id = "Qwen/Qwen2.5-7B-Instruct"
|
18 |
+
bnb = BitsAndBytesConfig(
|
19 |
+
load_in_4bit=True,
|
20 |
+
bnb_4bit_use_double_quant=True,
|
21 |
+
bnb_4bit_quant_type="nf4",
|
22 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id,
|
27 |
+
quantization_config=bnb,
|
28 |
+
device_map={"": 0},
|
29 |
+
torch_dtype=torch.bfloat16
|
30 |
+
)
|
31 |
|
32 |
+
SYS = "You are a specialized assistant for answering questions related to legal texts from the GDPR (General Data Protection Regulation) and several Documents of the EDPB (European Data Protection Board). " \
|
33 |
+
"Your task is to provide precise and detailed answers based on the provided excerpts from the documents. " \
|
34 |
+
"Ensure that you clearly and understandably explain the relevant legal concepts. If you do not know the answer or if the information is insufficient, respond with: 'I do not know.' " \
|
35 |
+
"Avoid giving inaccurate or speculative answers."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def retrieve(q, k=3):
|
38 |
+
emb = ST.encode(q)
|
39 |
+
D, I = index.search(np.array([emb], dtype="float32"), k)
|
40 |
+
return [chunks[i] for i in I[0]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
def make_prompt(q, docs):
|
43 |
+
return SYS + "\n\nContext:\n" + "\n".join(docs) + f"\n\nQuestion: {q}\nAnswer:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
@spaces.GPU
|
46 |
+
def qa_fn(question: str) -> str:
|
47 |
+
docs = retrieve(question, 10)
|
48 |
+
prompt = make_prompt(question, docs)[:8000]
|
49 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
50 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
51 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
52 |
+
Thread(target=model.generate, kwargs={
|
53 |
+
**inputs,
|
54 |
+
"streamer": streamer,
|
55 |
+
"max_new_tokens": 512,
|
56 |
+
"do_sample": True,
|
57 |
+
"temperature": 0.7,
|
58 |
+
"top_p": 0.9,
|
59 |
+
"eos_token_id": tokenizer.eos_token_id
|
60 |
+
}).start()
|
61 |
+
out = ""
|
62 |
+
for tok in streamer:
|
63 |
+
out += tok
|
64 |
+
return out
|
65 |
|
66 |
+
demo = gr.Interface(
|
67 |
+
fn=qa_fn,
|
68 |
+
inputs=gr.Textbox(lines=2, label="Your question"),
|
69 |
+
outputs=gr.Textbox(lines=10, label="Answer"),
|
70 |
+
title="GDPR QA (RAG)",
|
71 |
+
description="Ask questions on GDPR; answers are grounded in EDPB document chunks."
|
72 |
+
)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
spaces
|
2 |
torch
|
3 |
transformers
|
4 |
sentence-transformers
|
5 |
-
langchain
|
6 |
faiss-gpu
|
7 |
gradio
|
8 |
numpy<2
|
9 |
-
accelerate
|
10 |
bitsandbytes
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
transformers
|
3 |
sentence-transformers
|
|
|
4 |
faiss-gpu
|
5 |
gradio
|
6 |
numpy<2
|
|
|
7 |
bitsandbytes
|
8 |
+
accelerate
|
9 |
+
spaces
|