import gradio as gr import os from transformers import pipeline from pathlib import Path from PIL import Image import numpy as np example_imgs = ["examples/img0.jpg", "examples/img1.jpg", "examples/img2.jpg", "examples/img3.jpg"] pipe = pipeline("image-classification", model="arnaucas/wildfire-classifier") def inference(image): image = Image.fromarray(np.uint8(image)).convert('RGB') output = pipe(image) result = {item['label']: item['score'] for item in output} return result gr.Interface( fn=inference, title="Wildfire Detection", description = "Predict whether an image contains wildfire or not", inputs="image", examples=example_imgs, outputs=gr.Label(), cache_examples=False, theme='earneleh/paris', article = "Author: Arnau Castellano", ).launch(debug=True, enable_queue=True)