File size: 11,426 Bytes
f2c2a4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/siglip/modeling_siglip.py#L245
class ViTPatchEmbeddings(nn.Module):
def __init__(self, cfg):
super().__init__()
self.img_size = cfg.vit_img_size
self.patch_size = cfg.vit_patch_size
self.num_patches = (self.img_size // self.patch_size) ** 2
self.cls_flag = cfg.vit_cls_flag
self.embd_dim = cfg.vit_hidden_dim
# Conv layer to extract the patches
self.conv = nn.Conv2d(
in_channels=3,
out_channels=self.embd_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
if self.cls_flag:
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embd_dim))
self.position_embedding = nn.Parameter(torch.rand(1, self.num_patches + 1, self.embd_dim))
else:
self.position_embedding = nn.Parameter(torch.rand(1, self.num_patches, self.embd_dim))
def forward(self, x):
x = self.conv(x) # extract patches
x = x.flatten(2) # flatten the patches into a single dimension
x = x.transpose(1, 2) # transpose to (batch_size, num_patches, hidden_dim)
# Add CLS token (according to original ViT Paper) and position embeddings
if self.cls_flag:
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
x = x + self.position_embedding
return x
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/siglip/modeling_siglip.py#L381
# https://github.com/karpathy/nanoGPT/blob/master/model.py#L29
class ViTMultiHeadAttention(nn.Module):
def __init__(self, cfg):
super().__init__()
self.n_heads = cfg.vit_n_heads
self.embd_dim = cfg.vit_hidden_dim
assert self.embd_dim % self.n_heads == 0, "embd_dim must be divisible by num_heads"
self.head_dim = self.embd_dim // self.n_heads
self.dropout = cfg.vit_dropout
# Combined projections for all heads
self.qkv_proj = nn.Linear(self.embd_dim, 3 * self.embd_dim, bias=True)
self.out_proj = nn.Linear(self.embd_dim, self.embd_dim, bias=True)
# Dropout layers
self.attn_dropout = nn.Dropout(self.dropout)
self.resid_dropout = nn.Dropout(self.dropout)
# Use scaled dot product attention if available
self.sdpa = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if not self.sdpa:
print("Warning: scaled dot product attention not available. Using standard attention in ViT.")
def forward(self, x):
B, T, C = x.size()
qkv = self.qkv_proj(x)
q, k, v = qkv.split(C, dim=2)
# Reshape [B, T, C] -> [B, T, n_heads, head_dim] and transpose -> [B, n_heads, T, head_dim]
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) # (B, n_heads, T, head_dim)
k = k.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) # (B, n_heads, T, head_dim)
v = v.view(B, T, self.n_heads, self.head_dim).transpose(1, 2) # (B, n_heads, T, head_dim)
if self.sdpa:
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
is_causal=False # ViT attention is bidirectional
)
else:
attn = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
attn = F.softmax(attn, dim=-1)
attn = self.attn_dropout(attn)
y = attn @ v # (B, n_heads, T, T) x (B, n_heads, T, head_dim) -> (B, n_heads, T, head_dim)
# Transpose back from [B, n_heads, T, head_dim] to [B, T, n_heads * head_dim] and combine all heads to [B, T, C]
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.out_proj(y)
y = self.resid_dropout(y)
return y
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/siglip/modeling_siglip.py#L453
class ViTMLP(nn.Module):
def __init__(self, cfg):
super().__init__()
self.activation_fn = nn.GELU(approximate='tanh')
self.fc1 = nn.Linear(cfg.vit_hidden_dim, cfg.vit_inter_dim)
self.fc2 = nn.Linear(cfg.vit_inter_dim, cfg.vit_hidden_dim)
self.dropout = nn.Dropout(cfg.vit_dropout)
def forward(self, x):
x = self.fc1(x)
x = self.activation_fn(x)
x = self.fc2(x)
x = self.dropout(x)
return x
# https://github.com/karpathy/nanoGPT/blob/master/model.py#L94
class ViTBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.ln1 = nn.LayerNorm(cfg.vit_hidden_dim, eps=cfg.vit_ln_eps)
self.attn = ViTMultiHeadAttention(cfg)
self.ln2 = nn.LayerNorm(cfg.vit_hidden_dim, eps=cfg.vit_ln_eps)
self.mlp = ViTMLP(cfg)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class ViT(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.patch_embedding = ViTPatchEmbeddings(cfg)
self.cls_flag = cfg.vit_cls_flag
self.dropout = nn.Dropout(cfg.vit_dropout)
self.blocks = nn.ModuleList([ViTBlock(cfg) for _ in range(cfg.vit_n_blocks)])
self.layer_norm = nn.LayerNorm(cfg.vit_hidden_dim, eps=cfg.vit_ln_eps)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv2d):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def forward(self, x):
x = self.patch_embedding(x)
x = self.dropout(x)
for block in self.blocks:
x = block(x)
if self.cls_flag:
x = self.layer_norm(x[:, 0])
else:
x = self.layer_norm(x)
#x = x.mean(dim=1)
return x
# Load the model from a pretrained HuggingFace model (we don't want to have to train the Vision Backbone from scratch)
@classmethod
def from_pretrained(cls, cfg):
from transformers import SiglipVisionConfig
from huggingface_hub import hf_hub_download
import safetensors
hf_config = SiglipVisionConfig.from_pretrained(cfg.vit_model_type)
cfg.vit_dropout=hf_config.attention_dropout
cfg.vit_hidden_dim=hf_config.hidden_size
cfg.vit_img_size=hf_config.image_size
cfg.vit_inter_dim=hf_config.intermediate_size
cfg.vit_ln_eps=hf_config.layer_norm_eps
cfg.vit_n_heads=hf_config.num_attention_heads
cfg.vit_n_blocks=hf_config.num_hidden_layers
cfg.vit_patch_size=hf_config.patch_size
model = cls(cfg)
safetensors_file = hf_hub_download(repo_id=cfg.vit_model_type, filename="model.safetensors")
sd = model.state_dict()
mapping = {
'vision_model.embeddings.patch_embedding.weight': 'patch_embedding.conv.weight',
'vision_model.embeddings.patch_embedding.bias': 'patch_embedding.conv.bias',
'vision_model.embeddings.position_embedding.weight': 'patch_embedding.position_embedding',
'vision_model.post_layernorm.weight': 'layer_norm.weight',
'vision_model.post_layernorm.bias': 'layer_norm.bias',
}
for i in range(cfg.vit_n_blocks):
# Layer norms
mapping[f'vision_model.encoder.layers.{i}.layer_norm1.weight'] = f'blocks.{i}.ln1.weight'
mapping[f'vision_model.encoder.layers.{i}.layer_norm1.bias'] = f'blocks.{i}.ln1.bias'
mapping[f'vision_model.encoder.layers.{i}.layer_norm2.weight'] = f'blocks.{i}.ln2.weight'
mapping[f'vision_model.encoder.layers.{i}.layer_norm2.bias'] = f'blocks.{i}.ln2.bias'
# MLP
mapping[f'vision_model.encoder.layers.{i}.mlp.fc1.weight'] = f'blocks.{i}.mlp.fc1.weight'
mapping[f'vision_model.encoder.layers.{i}.mlp.fc1.bias'] = f'blocks.{i}.mlp.fc1.bias'
mapping[f'vision_model.encoder.layers.{i}.mlp.fc2.weight'] = f'blocks.{i}.mlp.fc2.weight'
mapping[f'vision_model.encoder.layers.{i}.mlp.fc2.bias'] = f'blocks.{i}.mlp.fc2.bias'
# Output projection
mapping[f'vision_model.encoder.layers.{i}.self_attn.out_proj.weight'] = f'blocks.{i}.attn.out_proj.weight'
mapping[f'vision_model.encoder.layers.{i}.self_attn.out_proj.bias'] = f'blocks.{i}.attn.out_proj.bias'
with safetensors.safe_open(filename=safetensors_file, framework="pt", device="cpu") as f:
for hf_key, our_key in mapping.items():
if hf_key in f.keys() and our_key in sd:
tensor = f.get_tensor(hf_key)
if tensor.shape == sd[our_key].shape:
sd[our_key].copy_(tensor)
else:
if 'position_embedding' in hf_key:
sd[our_key].copy_(tensor.unsqueeze(0))
else:
print(f"Shape mismatch for {hf_key} -> {our_key}: {tensor.shape} vs {sd[our_key].shape}")
else:
if hf_key not in f.keys():
print(f"Warning: Key {hf_key} not found in safetensors file")
if our_key not in sd:
print(f"Warning: Key {our_key} not found in model state dict")
# Manually handle QKV concatenation since our implementation combines Q, K, V into one
for i in range(model.cfg.vit_n_blocks):
q_weight = f.get_tensor(f'vision_model.encoder.layers.{i}.self_attn.q_proj.weight')
k_weight = f.get_tensor(f'vision_model.encoder.layers.{i}.self_attn.k_proj.weight')
v_weight = f.get_tensor(f'vision_model.encoder.layers.{i}.self_attn.v_proj.weight')
qkv_weight = torch.cat((q_weight, k_weight, v_weight), dim=0)
sd[f'blocks.{i}.attn.qkv_proj.weight'].copy_(qkv_weight)
q_bias = f.get_tensor(f'vision_model.encoder.layers.{i}.self_attn.q_proj.bias')
k_bias = f.get_tensor(f'vision_model.encoder.layers.{i}.self_attn.k_proj.bias')
v_bias = f.get_tensor(f'vision_model.encoder.layers.{i}.self_attn.v_proj.bias')
qkv_bias = torch.cat((q_bias, k_bias, v_bias), dim=0)
sd[f'blocks.{i}.attn.qkv_proj.bias'].copy_(qkv_bias)
model.load_state_dict(sd)
print(f"Successfully loaded {cfg.vit_model_type} weights from safetensors. Model has {sum(p.numel() for p in model.parameters()):,} parameters.")
return model
|