File size: 18,592 Bytes
f2c2a4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L69
class RMSNorm(nn.Module):
def __init__(self, cfg):
super().__init__()
self.weight = nn.Parameter(torch.ones(cfg.lm_hidden_dim))
self.eps = cfg.lm_rms_eps
def forward(self, x):
irms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps) # inverse of RMS
x = x * irms * self.weight
return x
# Multiple derivates of Rotary Embeddings by now, this is a basic one with linear scaling to context length
# e.g. https://github.com/huggingface/smollm/blob/main/vision/m4/models/vllama3/modeling_vllama3.py#L190
class RotaryEmbedding(nn.Module):
def __init__(self, cfg):
super().__init__()
assert cfg.lm_hidden_dim % cfg.lm_n_heads == 0, "Hidden dimension must be divisible by number of heads"
self.dim = cfg.lm_hidden_dim // cfg.lm_n_heads # dim of each head
self.base = cfg.lm_re_base
self.max_seq_len = cfg.lm_max_position_embeddings
# Standard RoPE implementation - create frequencies for each dimension
# freq_i = 1 / (base^(2i/dim)) where i is the dimension index
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
self.register_buffer("inv_freq", inv_freq)
self.original_max_seq_len = cfg.lm_max_position_embeddings
self.attention_scaling = cfg.lm_attn_scaling
@torch.no_grad()
def forward(self, position_ids):
batch_size, seq_len = position_ids.shape
# Dynamic scaling for longer sequences
max_seq = position_ids.max() + 1
if max_seq > self.original_max_seq_len:
scale = max_seq / self.original_max_seq_len
inv_freq = self.inv_freq / scale
else:
inv_freq = self.inv_freq
# Compute theta = position * frequency
# Flatten position_ids for batch processing
flat_position_ids = position_ids.reshape(-1).float()
# Element-wise outer product: [seq_len] x [dim/2] => [seq_len, dim/2]
freqs = flat_position_ids.unsqueeze(-1) * inv_freq.unsqueeze(0)
# Reshape to include batch dimension
freqs = freqs.reshape(batch_size, seq_len, -1)
# Now create interleaved pattern
emb = torch.cat([freqs, freqs], dim=-1)
# Compute cos and sin
cos = torch.cos(emb) * self.attention_scaling
sin = torch.sin(emb) * self.attention_scaling
return cos, sin
# Rotates half the hidden dims of the input by swapping and negating dimensions.
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
# Apply rotary position embeddings to queries and keys.
def apply_rotary_pos_embd(q, k, cos, sin, unsqueeze_dim=1):
# We need to make sure cos and sin can be properly broadcast
# to the shape of q and k by adding the heads dimension
cos = cos.unsqueeze(unsqueeze_dim) # [batch_size, 1, seq_len, head_dim]
sin = sin.unsqueeze(unsqueeze_dim) # [batch_size, 1, seq_len, head_dim]
# Apply complex multiplication:
# (q * cos) + (rotate_half(q) * sin)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L214
# https://github.com/huggingface/smollm/blob/main/vision/m4/models/vllama3/modeling_vllama3.py#L382
class LanguageModelGroupedQueryAttention(nn.Module):
def __init__(self, cfg):
super().__init__()
self.n_heads = cfg.lm_n_heads
self.n_kv_heads = cfg.lm_n_kv_heads
self.embd_dim = cfg.lm_hidden_dim
self.dropout = cfg.lm_dropout
assert self.n_heads % self.n_kv_heads == 0, "n_heads must be divisible by n_kv_heads"
assert self.embd_dim % self.n_heads == 0, "embd_dim must be divisible by num_heads"
self.n_kv_groups = self.n_heads // self.n_kv_heads
self.head_dim = self.embd_dim // self.n_heads
self.q_proj = nn.Linear(self.embd_dim, self.embd_dim, bias=False)
self.k_proj = nn.Linear(self.embd_dim, self.head_dim * self.n_kv_heads, bias=False)
self.v_proj = nn.Linear(self.embd_dim, self.head_dim * self.n_kv_heads, bias=False)
self.out_proj = nn.Linear(self.embd_dim, self.embd_dim, bias=False)
self.attn_dropout = nn.Dropout(self.dropout)
self.resid_dropout = nn.Dropout(self.dropout)
# Use scaled dot product attention if available
self.sdpa = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if not self.sdpa:
print("Warning: scaled dot product attention not available, using standard attention in LM.")
def forward(self, x, cos, sin, attention_mask=None):
B, T, C = x.size()
q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) # (B, n_heads, T, head_dim)
k = self.k_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) # (B, n_kv_heads, T, head_dim)
v = self.v_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) # (B, n_kv_heads, T, head_dim)
# Use precomputed positional embeddings
q, k = apply_rotary_pos_embd(q, k, cos, sin)
k = k.repeat_interleave(self.n_kv_groups, dim=1)
v = v.repeat_interleave(self.n_kv_groups, dim=1)
# Process attention mask if provided
if attention_mask is not None:
# Create a 4D attention mask [batch_size, 1, 1, seq_length], In this format, 1 = attend, 0 = mask
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # [B, 1, 1, T]
padding_mask = (attention_mask == 0).transpose(-1, -2) # Use this for the manual path
# Convert to attention mask where 0 keeps values and -inf masks
attention_mask = (1.0 - attention_mask) * torch.finfo(q.dtype).min
if self.sdpa:
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True # LM attention is causal (masked)
)
else:
attn = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
causal_mask = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T)
attn = attn.masked_fill(causal_mask == 0, float('-inf'))
if attention_mask is not None:
attn = attn + attention_mask
attn = F.softmax(attn, dim=-1)
attn = self.attn_dropout(attn)
y = attn @ v
if attention_mask is not None:
y = y.masked_fill(padding_mask, 0.0) # Zero out the padded positions in the output
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.out_proj(y)
y = self.resid_dropout(y)
return y
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L160
class LanguageModelMLP(nn.Module):
def __init__(self, cfg):
super().__init__()
self.embd_dim = cfg.lm_hidden_dim
self.inter_dim = cfg.lm_inter_dim
self.activation_fn = F.silu
self.gate_proj = nn.Linear(self.embd_dim, self.inter_dim, bias=False)
self.up_proj = nn.Linear(self.embd_dim, self.inter_dim, bias=False)
self.down_proj = nn.Linear(self.inter_dim, self.embd_dim, bias=False)
def forward(self, x):
gate = self.activation_fn(self.gate_proj(x))
x = self.up_proj(x)
x = self.down_proj(gate * x)
return x
# https://github.com/meta-llama/llama3/blob/main/llama/model.py#L222
class LanguageModelBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.mlp = LanguageModelMLP(cfg)
self.attn = LanguageModelGroupedQueryAttention(cfg)
self.norm1 = RMSNorm(cfg) # Input Norm
self.norm2 = RMSNorm(cfg) # Post Attention Norm
def forward(self, x, cos, sin, attention_mask=None):
res = x
x = self.norm1(x)
x = self.attn(x, cos, sin, attention_mask)
x = res + x
res = x
x = self.norm2(x)
x = self.mlp(x)
x = res + x
return x
# https://github.com/meta-llama/llama3/blob/main/llama/model.py#L251
class LanguageModel(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.lm_use_tokens = cfg.lm_use_tokens
self.lm_tie_weights = cfg.lm_tie_weights
self.token_embedding = nn.Embedding(cfg.lm_vocab_size, cfg.lm_hidden_dim)
self.rotary_embd = RotaryEmbedding(cfg)
self.blocks = nn.ModuleList([
LanguageModelBlock(cfg) for _ in range(cfg.lm_n_blocks)
])
self.norm = RMSNorm(cfg) # Final Norm
self.head = nn.Linear(cfg.lm_hidden_dim, cfg.lm_vocab_size, bias=False)
if self.lm_tie_weights:
self.head.weight = self.token_embedding.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, RMSNorm):
module.weight.data.fill_(1.0)
def forward(self, x, attention_mask=None):
if self.lm_use_tokens:
x = self.token_embedding(x) # Only embed the inputs when using tokens
B , T, _ = x.size()
# Note: You could also cache these input embeddings if you want to avoid recomputing them
position_ids = torch.arange(T, device=x.device).unsqueeze(0).expand(B, -1) # Create position ids [0, 1, 2, ..., seq_len-1]
cos, sin = self.rotary_embd(position_ids) # Get rotary position embeddings
for block in self.blocks:
x = block(x, cos, sin, attention_mask)
x = self.norm(x)
if self.lm_use_tokens:
x = self.head(x) # Compute logits if we are using tokens, otherwise stay in the embedding space
return x
@torch.no_grad()
def generate(self, inputs, max_new_tokens=20):
# Add batch dimension if needed
if inputs.dim() == 1:
inputs = inputs.unsqueeze(0)
generated = inputs.clone()
for _ in range(max_new_tokens):
# Forward pass through the model
outputs = self.forward(generated)
last_output = outputs[:, -1, :]
if self.lm_use_tokens:
# Now the model outputs logits
next_token = torch.argmax(last_output, dim=-1, keepdim=True)
generated = torch.cat((generated, next_token), dim=-1)
else:
# Now the model outputs embeddings
next_token_embedding = last_output.unsqueeze(1) # Shape: [batch_size, 1, hidden_dim]
generated = torch.cat((generated, next_token_embedding), dim=1)
#Note: You could enable the generation to break earlier than max_new_tokens when it detects a eos token, but this does not work in batched generation (output tensors need to have the same size)
return generated
# Load the model from a pretrained HuggingFace model (we don't want to have to train the Language Backbone from scratch)
@classmethod
def from_pretrained(cls, cfg):
from transformers import AutoConfig
from huggingface_hub import hf_hub_download
import safetensors
import torch.nn.init as init
# Load the HuggingFace config
hf_config = AutoConfig.from_pretrained(cfg.lm_model_type)
# Store original HF vocab size before we modify it
original_vocab_size = hf_config.vocab_size
# print(f"Original vocabulary size from pretrained model: {original_vocab_size}")
# Configure model parameters from HF config
cfg.lm_hidden_dim = hf_config.hidden_size
cfg.lm_inter_dim = hf_config.intermediate_size
cfg.lm_rms_eps = hf_config.rms_norm_eps
cfg.lm_re_base = hf_config.rope_theta
cfg.lm_max_position_embeddings = hf_config.max_position_embeddings
# We're keeping our own vocab size in cfg, but checking it's larger than original
if hasattr(cfg, 'lm_vocab_size'):
if cfg.lm_vocab_size < original_vocab_size:
raise ValueError(f"Config vocab size ({cfg.lm_vocab_size}) is smaller than pretrained model vocab size ({original_vocab_size})")
# print(f"Using vocabulary size: {cfg.lm_vocab_size}")
else:
# If not specified, use the original
cfg.lm_vocab_size = original_vocab_size
# print(f"Using original vocabulary size: {cfg.lm_vocab_size}")
cfg.lm_n_heads = hf_config.num_attention_heads
cfg.lm_n_kv_heads = hf_config.num_key_value_heads
cfg.lm_dropout = hf_config.attention_dropout
cfg.lm_n_blocks = hf_config.num_hidden_layers
# Create our model with potentially larger vocabulary
model = cls(cfg)
safetensors_file = hf_hub_download(repo_id=cfg.lm_model_type, filename="model.safetensors")
sd = model.state_dict()
mapping = {
'model.embed_tokens.weight': 'token_embedding.weight',
'model.norm.weight': 'norm.weight'
}
for i in range(cfg.lm_n_blocks):
layer_prefix = f'model.layers.{i}.'
block_prefix = f'blocks.{i}.'
mapping.update({
f"{layer_prefix}self_attn.q_proj.weight": f"{block_prefix}attn.q_proj.weight",
f"{layer_prefix}self_attn.k_proj.weight": f"{block_prefix}attn.k_proj.weight",
f"{layer_prefix}self_attn.v_proj.weight": f"{block_prefix}attn.v_proj.weight",
f"{layer_prefix}self_attn.o_proj.weight": f"{block_prefix}attn.out_proj.weight",
f"{layer_prefix}mlp.gate_proj.weight": f"{block_prefix}mlp.gate_proj.weight",
f"{layer_prefix}mlp.up_proj.weight": f"{block_prefix}mlp.up_proj.weight",
f"{layer_prefix}mlp.down_proj.weight": f"{block_prefix}mlp.down_proj.weight",
f"{layer_prefix}input_layernorm.weight": f"{block_prefix}norm1.weight",
f"{layer_prefix}post_attention_layernorm.weight": f"{block_prefix}norm2.weight"
})
# Special handling for token embeddings with extended vocabulary
has_extended_embeddings = False
with safetensors.safe_open(filename=safetensors_file, framework="pt", device="cpu") as f:
for hf_key, our_key in mapping.items():
if hf_key in f.keys() and our_key in sd:
tensor = f.get_tensor(hf_key)
# Special handling for token embeddings if vocab sizes differ
if hf_key == 'model.embed_tokens.weight' and tensor.shape[0] != sd[our_key].shape[0]:
has_extended_embeddings = True
print(f"Extending token embeddings from {tensor.shape} to {sd[our_key].shape}")
# Copy existing embeddings to the beginning of our larger embedding matrix
sd[our_key][:tensor.shape[0]].copy_(tensor)
# Initialize the new embeddings using the same approach as the original model
std = 0.02 # Common value, but you might want to adjust based on model
init.normal_(sd[our_key][tensor.shape[0]:], mean=0.0, std=std)
print(f"Initialized {sd[our_key].shape[0] - tensor.shape[0]} new token embeddings")
sd['head.weight'].copy_(sd[our_key]) # Update the head weights as well
elif tensor.shape == sd[our_key].shape:
sd[our_key].copy_(tensor)
else:
print(f"Shape mismatch for {hf_key} -> {our_key}: {tensor.shape} vs {sd[our_key].shape}")
else:
if hf_key not in f.keys():
print(f"Warning: Key {hf_key} not found in safetensors file")
if our_key not in sd:
print(f"Warning: Key {our_key} not found in model state dict")
# Load the state dict
model.load_state_dict(sd)
# Handle output projection / language modeling head
if has_extended_embeddings and hasattr(model, 'head') and 'head.weight' in sd:
# If we have a separate output projection layer and extended the vocab
# we should handle it similarly to the input embeddings
with safetensors.safe_open(filename=safetensors_file, framework="pt", device="cpu") as f:
if 'lm_head.weight' in f.keys():
lm_head = f.get_tensor('lm_head.weight')
if lm_head.shape[0] != sd['head.weight'].shape[0]:
print(f"Extending LM head from {lm_head.shape} to {sd['head.weight'].shape}")
# Copy existing weights
sd['head.weight'][:lm_head.shape[0]].copy_(lm_head)
# Initialize new weights
std = 0.02
init.normal_(sd['head.weight'][lm_head.shape[0]:], mean=0.0, std=std)
# Load updated weights
model.load_state_dict(sd)
# Handle weight tying (if needed)
if cfg.lm_tie_weights and hasattr(model, 'head') and hasattr(model, 'token_embedding'):
model.head.weight = model.token_embedding.weight
# print("Tied token embedding and LM head weights")
print(f"Successfully loaded {cfg.lm_model_type} weights from safetensors. Model has {sum(p.numel() for p in model.parameters()):,} parameters.")
return model
|