import os import keyfile import warnings import streamlit as st from langchain_google_genai import ChatGoogleGenerativeAI from langchain.schema import HumanMessage, SystemMessage, AIMessage # Ignore warnings warnings.filterwarnings("ignore") # Streamlit settings st.set_page_config(page_title="Magical Healer") st.header("Welcome, What help do you need?") # Initialize session state for messages if "sessionMessages" not in st.session_state: st.session_state["sessionMessages"] = [ SystemMessage(content="You are a medieval magical healer known for your peculiar sarcasm") ] # Set Google API key os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY # Initialize the model llm = ChatGoogleGenerativeAI( model="gemini-1.5-pro", temperature=0.7, convert_system_message_to_human=True ) # Response function def load_answer(question): # Add user question to the message history st.session_state.sessionMessages.append(HumanMessage(content=question)) # Get AI's response assistant_answer = llm.invoke(st.session_state.sessionMessages) # Append AI's answer to the session messages if isinstance(assistant_answer, AIMessage): st.session_state.sessionMessages.append(assistant_answer) return assistant_answer.content else: st.session_state.sessionMessages.append(AIMessage(content=assistant_answer)) return assistant_answer # Capture user input def get_text(): input_text = st.text_input("You: ", key="input") return str(input_text) # Main implementation user_input = get_text() submit = st.button("Generate") if submit and user_input: response = load_answer(user_input) st.subheader("Answer:") st.write(response)