File size: 1,727 Bytes
d94bdb4
 
 
369f31d
d94bdb4
369f31d
d94bdb4
1b3009e
 
 
 
 
369f31d
d94bdb4
1b3009e
d94bdb4
1b3009e
 
d94bdb4
369f31d
1b3009e
d94bdb4
 
1b3009e
369f31d
 
 
1b3009e
369f31d
 
 
d94bdb4
1b3009e
 
 
 
d94bdb4
1b3009e
 
 
 
 
 
 
 
 
 
d94bdb4
1b3009e
369f31d
 
1b3009e
369f31d
 
d94bdb4
1b3009e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import keyfile
import warnings
import streamlit as st
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.schema import HumanMessage, SystemMessage, AIMessage

# Ignore warnings
warnings.filterwarnings("ignore")

# Streamlit settings
st.set_page_config(page_title="Magical Healer")
st.header("Welcome, What help do you need?")

# Initialize session state for messages
if "sessionMessages" not in st.session_state:
    st.session_state["sessionMessages"] = [
        SystemMessage(content="You are a medieval magical healer known for your peculiar sarcasm")
    ]

# Set Google API key
os.environ["GOOGLE_API_KEY"] = keyfile.GOOGLEKEY

# Initialize the model
llm = ChatGoogleGenerativeAI(
    model="gemini-1.5-pro",
    temperature=0.7,
    convert_system_message_to_human=True
)

# Response function
def load_answer(question):
    # Add user question to the message history
    st.session_state.sessionMessages.append(HumanMessage(content=question))
    
    # Get AI's response
    assistant_answer = llm.invoke(st.session_state.sessionMessages)
    
    # Append AI's answer to the session messages
    if isinstance(assistant_answer, AIMessage):
        st.session_state.sessionMessages.append(assistant_answer)
        return assistant_answer.content
    else:
        st.session_state.sessionMessages.append(AIMessage(content=assistant_answer))
        return assistant_answer

# Capture user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return str(input_text)

# Main implementation
user_input = get_text()
submit = st.button("Generate")

if submit and user_input:
    response = load_answer(user_input)
    st.subheader("Answer:")
    st.write(response)