File size: 38,018 Bytes
b89a86d
 
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89a86d
1ca2b35
 
 
 
 
 
 
 
 
 
 
eab78b0
b89a86d
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab78b0
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32303e4
1ca2b35
 
830f89e
 
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89a86d
1ca2b35
 
 
 
 
b89a86d
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bed5094
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41421cb
 
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89a86d
eab78b0
 
1e4a0c6
c5eb0ba
 
 
 
 
41421cb
1e4a0c6
 
 
1ca2b35
 
 
 
 
e70fb3a
 
 
 
1ca2b35
1e4a0c6
51e2133
1e4a0c6
 
 
 
ee477e6
 
41421cb
ee477e6
eab78b0
ee477e6
 
1ca2b35
 
 
ee477e6
eab78b0
ee477e6
 
1ca2b35
ee477e6
 
41421cb
1ca2b35
eab78b0
1ca2b35
 
 
 
 
 
 
 
 
eab78b0
 
1ca2b35
 
eab78b0
1ca2b35
 
eab78b0
 
 
 
1ca2b35
 
eab78b0
 
 
 
 
 
 
1ca2b35
eab78b0
1ca2b35
 
 
 
 
 
 
 
 
 
eab78b0
1ca2b35
 
1ce2abc
eab78b0
 
1ca2b35
eab78b0
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
eab78b0
1ca2b35
 
eab78b0
 
1ca2b35
 
eab78b0
 
1ca2b35
 
 
 
9c61977
 
 
1ca2b35
9c61977
eab78b0
9c61977
 
 
1ca2b35
eab78b0
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce2abc
 
1ca2b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

######################## WRITE YOUR CODE HERE  #########################
# Import necessary libraries
import os  # Interacting with the operating system (reading/writing files)
import chromadb  # High-performance vector database for storing/querying dense vectors
from dotenv import load_dotenv  # Loading environment variables from a .env file
import json  # Parsing and handling JSON data

# LangChain imports
from langchain_core.documents import Document  # Document data structures
from langchain_core.runnables import RunnablePassthrough  # LangChain core library for running pipelines
from langchain_core.output_parsers import StrOutputParser  # String output parser
from langchain.prompts import ChatPromptTemplate  # Template for chat prompts
from langchain.chains.query_constructor.base import AttributeInfo  # Base classes for query construction
from langchain.retrievers.self_query.base import SelfQueryRetriever  # Base classes for self-querying retrievers
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker  # Document compressors
from langchain.retrievers import ContextualCompressionRetriever  # Contextual compression retrievers

# LangChain community & experimental imports
from langchain_community.vectorstores import Chroma  # Implementations of vector stores like Chroma
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader  # Document loaders for PDFs
from langchain_community.cross_encoders import HuggingFaceCrossEncoder  # Cross-encoders from HuggingFace
from langchain_experimental.text_splitter import SemanticChunker  # Experimental text splitting methods
from langchain.text_splitter import (
    CharacterTextSplitter,  # Splitting text by characters
    RecursiveCharacterTextSplitter  # Recursive splitting of text by characters
)
from langchain_core.tools import tool
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate

# LangChain OpenAI imports
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI  # OpenAI embeddings and models
from langchain.embeddings.openai import OpenAIEmbeddings  # OpenAI embeddings for text vectors

# LlamaParse & LlamaIndex imports
from llama_parse import LlamaParse  # Document parsing library
from llama_index.core import Settings, SimpleDirectoryReader  # Core functionalities of the LlamaIndex

# LangGraph import
from langgraph.graph import StateGraph, END, START  # State graph for managing states in LangChain

# Pydantic import
from pydantic import BaseModel  # Pydantic for data validation

# Typing imports
from typing import Dict, List, Tuple, Any, TypedDict  # Python typing for function annotations

# Other utilities
import numpy as np  # Numpy for numerical operations
from groq import Groq
from mem0 import MemoryClient
import streamlit as st
from datetime import datetime
#====================================SETUP=====================================#
# Fetch secrets from Hugging Face Spaces
api_key = os.environ['AZURE_OPENAI_API_KEY']
endpoint = os.environ['AZURE_OPENAI_ENDPOINT']
api_version = os.environ['AZURE_OPENAI_APIVERSION']
model_name = os.environ['CHATGPT_MODEL']
emb_key = os.environ['EMB_MODEL_KEY']
emb_endpoint = os.environ['EMB_DEPLOYMENT']
#llama_api_key = os.environ['GROQ_API_KEY']
llama_api_key = os.environ['LLAMA_API_KEY']

# Initialize the OpenAI embedding function for Chroma
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
    # api_base=_____, # Complete the code to define the API base endpoint
    # api_key=_____, # Complete the code to define the API key
    api_base= emb_endpoint, # Complete the code to define the API base endpoint
    api_key= emb_key, # Complete the code to define the API key
    api_type='azure', # This is a fixed value and does not need modification
    api_version='2023-05-15', # This is a fixed value and does not need modification
    model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
)
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided Azure endpoint and API key.

# Initialize the Azure OpenAI Embeddings
embedding_model = AzureOpenAIEmbeddings(
    # azure_endpoint=_____, # Complete the code to define the Azure endpoint
    # api_key=_____,       # Complete the code to define the API key
    azure_endpoint= emb_endpoint, # Complete the code to define the Azure endpoint
    api_key= emb_key,       # Complete the code to define the API key
    api_version='2023-05-15', # This is a fixed value and does not need modification
    model='text-embedding-ada-002' # This is a fixed value and does not need modification
)
# This initializes the Azure OpenAI embeddings model using the specified endpoint, API key, and model name.


# Initialize the Azure Chat OpenAI model
llm = AzureChatOpenAI(
    azure_endpoint=endpoint,
    api_key=api_key,
    api_version='2024-05-01-preview',
    azure_deployment='gpt-4o',
    temperature=0
)
# This initializes the Azure Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).

# set the LLM and embedding model in the LlamaIndex settings.
# Settings.llm = _____ # Complete the code to define the LLM model
# Settings.embedding = _____ # Complete the code to define the embedding model
Settings.llm = llm # Complete the code to define the LLM model
Settings.embedding = embedding_model # Complete the code to define the embedding model


#================================Creating Langgraph agent======================#

class AgentState(TypedDict):
    query: str  # The current user query
    expanded_query: str  # The expanded version of the user query
    context: List[Dict[str, Any]]  # Retrieved documents (content and metadata)
    response: str  # The generated response to the user query
    precision_score: float  # The precision score of the response
    groundedness_score: float  # The groundedness score of the response
    groundedness_loop_count: int  # Counter for groundedness refinement loops
    precision_loop_count: int  # Counter for precision refinement loops
    feedback: str
    query_feedback: str
    groundedness_check: bool
    loop_max_iter: int

def expand_query(state):
    """
    Expands the user query to improve retrieval of nutrition disorder-related information.

    Args:
        state (Dict): The current state of the workflow, containing the user query.

    Returns:
        Dict: The updated state with the expanded query.
    """
    print("---------Expanding Query---------")
    #system_message = '''________________________'''
    system_message = """
You are a domain expert assisting in answering questions related to nutrition disorder-related information.
Convert the user query into something that a nutritionist would understand. Use domain related words.
Perform query expansion on the question received. If there are multiple common ways of phrasing a user question \
or common synonyms for key words in the question, make sure to return multiple versions \
of the query with the different phrasings.

If the query has multiple parts, split them into separate simpler queries. This is the only case where you can generate more than 3 queries.

If there are acronyms or words you are not familiar with, do not try to rephrase them.

Return only 3 versions of the question as a list.
Generate only a list of questions. Do not mention anything before or after the list.
"""


    expand_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Expand this query: {query} using the feedback: {query_feedback}")

    ])

    chain = expand_prompt | llm | StrOutputParser()
    expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
    print("expanded_query", expanded_query)
    state["expanded_query"] = expanded_query
    return state

print("Current Working Directory:", os.getcwd())
# Initialize the Chroma vector store for retrieving documents
vector_store = Chroma(
    collection_name="nutritional-medical-reference",
    persist_directory="./research_db",
    embedding_function=embedding_model

)

# Create a retriever from the vector store
retriever = vector_store.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 3}
)

def retrieve_context(state):
    """
    Retrieves context from the vector store using the expanded or original query.

    Args:
        state (Dict): The current state of the workflow, containing the query and expanded query.

    Returns:
        Dict: The updated state with the retrieved context.
    """
    print("---------retrieve_context---------")
    #query = state['_____']  # Complete the code to define the key for the expanded query
    query = state['expanded_query']  # Complete the code to define the key for the expanded query
    #print("Query used for retrieval:", query)  # Debugging: Print the query

    # Retrieve documents from the vector store
    docs = retriever.invoke(query)
    print("Retrieved documents:", docs)  # Debugging: Print the raw docs object

    # Extract both page_content and metadata from each document
    context= [
        {
            "content": doc.page_content,  # The actual content of the document
            "metadata": doc.metadata  # The metadata (e.g., source, page number, etc.)
        }
        for doc in docs
    ]
    #state['_____'] = context  # Complete the code to define the key for storing the context
    state['context'] = context  # Complete the code to define the key for storing the context
    print("Extracted context with metadata:", context)  # Debugging: Print the extracted context
    #print(f"Groundedness loop count: {state['groundedness_loop_count']}")
    return state



def craft_response(state: Dict) -> Dict:
    """
    Generates a response using the retrieved context, focusing on nutrition disorders.

    Args:
        state (Dict): The current state of the workflow, containing the query and retrieved context.

    Returns:
        Dict: The updated state with the generated response.
    """
    print("---------craft_response---------")
    #system_message = '''________________________'''
    system_message = """
    You are a knowledgeable nutritionist specialized in nutrition and health.
    Use the provided context to generate a helpful, accurate, and empathetic response to the user's query.
    Focus on identifying, explaining, or addressing nutrition disorders where relevant. Be clear and concise.
    """
    response_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
    ])

    chain = response_prompt | llm
    response = chain.invoke({
        "query": state['query'],
        "context": "\n".join([doc["content"] for doc in state['context']]),
        #"feedback": ________________ # add feedback to the prompt
        "feedback": state['feedback'] # add feedback to the prompt
    })
    state['response'] = response
    print("intermediate response: ", response)

    return state



def score_groundedness(state: Dict) -> Dict:
    """
    Checks whether the response is grounded in the retrieved context.

    Args:
        state (Dict): The current state of the workflow, containing the response and context.

    Returns:
        Dict: The updated state with the groundedness score.
    """
    print("---------check_groundedness---------")
    #system_message = '''________________________'''
    system_message = '''You are an objective evaluator tasked with scoring the groundedness of a response
based on the retrieved context provided.

Definition of "groundedness":
- A response is considered grounded if it strictly uses information present in the provided context.
- It should avoid hallucinating, fabricating, or introducing any claims that are not explicitly supported by the context.

Scoring Guidelines:
- Return a numeric score between 0 and 1.
    - 1.0: The response is entirely grounded in the context.
    - 0.5: The response is partially grounded (some parts supported, others not).
    - 0.0: The response is not grounded at all (hallucinated or irrelevant).

Important:
- Do NOT explain your score.
- Do NOT provide justification.
- ONLY return the score as a number (e.g., 1.0, 0.5, or 0.0).
'''

    groundedness_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
    ])

    chain = groundedness_prompt | llm | StrOutputParser()
    groundedness_score = float(chain.invoke({
        "context": "\n".join([doc["content"] for doc in state['context']]),
        #"response": __________ # Complete the code to define the response
        "response": state['response'] # Complete the code to define the response
    }))
    print("groundedness_score: ", groundedness_score)
    state['groundedness_loop_count'] += 1
    print("#########Groundedness Incremented###########")
    state['groundedness_score'] = groundedness_score

    return state



def check_precision(state: Dict) -> Dict:
    """
    Checks whether the response precisely addresses the user’s query.

    Args:
        state (Dict): The current state of the workflow, containing the query and response.

    Returns:
        Dict: The updated state with the precision score.
    """
    print("---------check_precision---------")
    system_message = '''________________________'''
    system_message = '''Given question, answer and context verify if the context was useful in arriving at the given answer.
    Give verdict as "1" if useful and "0" if not '''

    precision_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
    ])

    #chain = _____________ | llm | StrOutputParser() # Complete the code to define the chain of processing
    chain = precision_prompt | llm | StrOutputParser() # Complete the code to define the chain of processing
    precision_score = float(chain.invoke({
        "query": state['query'],
        #"response":______________ # Complete the code to access the response from the state
        "response":state['response'] # Complete the code to access the response from the state
    }))
    state['precision_score'] = precision_score
    print("precision_score:", precision_score)
    state['precision_loop_count'] +=1
    print("#########Precision Incremented###########")
    return state



def refine_response(state: Dict) -> Dict:
    """
    Suggests improvements for the generated response.

    Args:
        state (Dict): The current state of the workflow, containing the query and response.

    Returns:
        Dict: The updated state with response refinement suggestions.
    """
    print("---------refine_response---------")

    #system_message = '''________________________'''
    system_message = '''You are a response refinement expert tasked with reviewing and improving AI-generated answers.
Your role is to:
- Carefully analyze the given response in light of the original user query.
- Identify any factual inaccuracies, gaps, or lack of clarity.
- Suggest improvements that make the response more complete, precise, and aligned with the query intent.

Guidelines:
- Be constructive and focused.
- Suggest rewordings, additions, or clarifications where needed.
- Highlight if any information is missing or should be cited.
- Avoid introducing new facts unless they are universally accepted and directly relevant.

Output Format:
- ONLY return specific suggestions for improving the response.
- Do NOT rewrite the full response.
- Do NOT return general praise. Focus on actionable refinements.'''

    refine_response_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nResponse: {response}\n\n"
                 "What improvements can be made to enhance accuracy and completeness?")
    ])

    chain = refine_response_prompt | llm| StrOutputParser()

    # Store response suggestions in a structured format
    feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
    print("feedback: ", feedback)
    print(f"State: {state}")
    state['feedback'] = feedback
    return state



def refine_query(state: Dict) -> Dict:
    """
    Suggests improvements for the expanded query.

    Args:
        state (Dict): The current state of the workflow, containing the query and expanded query.

    Returns:
        Dict: The updated state with query refinement suggestions.
    """
    print("---------refine_query---------")
    #system_message = '''________________________'''
    system_message = '''
You are an expert in information retrieval and query optimization.

Your job is to analyze an expanded search query that was generated from a user's original question, and suggest specific improvements that will help a search or retrieval system return more relevant, high-quality results.

Guidelines:
- Ensure the expanded query is clear, concise, and aligned with the user's original intent.
- Eliminate any ambiguity or redundancy.
- Suggest adding important synonyms, rephrasings, or domain-specific terminology if helpful.
- Avoid suggesting overly broad or overly narrow queries.
- Do NOT rewrite the query. Just offer targeted suggestions for improvement.

Output Format:
- Provide bullet-point suggestions for improving the expanded query.
- Focus on changes that will improve retrieval quality without losing the user's intent.
    '''

    refine_query_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
                 "What improvements can be made for a better search?")
    ])

    chain = refine_query_prompt | llm | StrOutputParser()

    # Store refinement suggestions without modifying the original expanded query
    query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
    print("query_feedback: ", query_feedback)
    print(f"Groundedness loop count: {state['groundedness_loop_count']}")
    state['query_feedback'] = query_feedback
    return state



def should_continue_groundedness(state):
  """Decides if groundedness is sufficient or needs improvement."""
  print("---------should_continue_groundedness---------")
  print("groundedness loop count: ", state['groundedness_loop_count'])
  #if state['groundedness_score'] >= _____:  # Complete the code to define the threshold for groundedness
  if state['groundedness_score'] >= 0.5:  # Complete the code to define the threshold for groundedness
      print("Moving to precision")
      return "check_precision"
  else:
      if state["groundedness_loop_count"] > state['loop_max_iter']:
        return "max_iterations_reached"
      else:
        print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
        return "refine_response"


def should_continue_precision(state: Dict) -> str:
    """Decides if precision is sufficient or needs improvement."""
    print("---------should_continue_precision---------")
    #print("precision loop count: ", ___________)
    print("precision loop count: ",state['precision_loop_count'])
    #if ___________:  # Threshold for precision
    if state['precision_score']==1.0:  # Threshold for precision
        return "pass"  # Complete the workflow
    else:
        #if ___________:  # Maximum allowed loops
        if state['precision_loop_count'] >= 3: # Maximum allowed loops
            return "max_iterations_reached"
        else:
            print(f"---------Precision Score Threshold Not met. Refining Query-----------")  # Debugging
            #return ____________  # Refine the query
            return "refine_query"




def max_iterations_reached(state: Dict) -> Dict:
    """Handles the case when the maximum number of iterations is reached."""
    print("---------max_iterations_reached---------")
    """Handles the case when the maximum number of iterations is reached."""
    response = "I'm unable to refine the response further. Please provide more context or clarify your question."
    state['response'] = response
    return state



from langgraph.graph import END, StateGraph, START

def create_workflow() -> StateGraph:
    """Creates the updated workflow for the AI nutrition agent."""
    #workflow = StateGraph(__________)
    workflow = StateGraph(AgentState)

    # Add processing nodes
    #workflow.add_node("expand_query", ___________)         # Step 1: Expand user query.
    workflow.add_node("expand_query", expand_query)         # Step 1: Expand user query.
    #workflow.add_node("retrieve_context", ___________)     # Step 2: Retrieve relevant documents.
    workflow.add_node("retrieve_context", retrieve_context)     # Step 2: Retrieve relevant documents.
    #workflow.add_node("craft_response", ___________)       # Step 3: Generate a response based on retrieved data.
    workflow.add_node("craft_response", craft_response)       # Step 3: Generate a response based on retrieved data.
    #workflow.add_node("score_groundedness", ___________)   # Step 4: Evaluate response grounding.
    workflow.add_node("score_groundedness", score_groundedness)   # Step 4: Evaluate response grounding.
    #workflow.add_node("refine_response", ___________)      # Step 5: Improve response if it's weakly grounded.
    workflow.add_node("refine_response", refine_response)      # Step 5: Improve response if it's weakly grounded.
    #workflow.add_node("check_precision", ___________)      # Step 6: Evaluate response precision.
    workflow.add_node("check_precision", check_precision)      # Step 6: Evaluate response precision.
    #workflow.add_node("refine_query", ___________)         # Step 7: Improve query if response lacks precision.
    workflow.add_node("refine_query", refine_query)         # Step 7: Improve query if response lacks precision.
    #workflow.add_node("max_iterations_reached", ___________)  # Step 8: Handle max iterations.
    workflow.add_node("max_iterations_reached", max_iterations_reached)  # Step 8: Handle max iterations.

    # Main flow edges
    #workflow.add_edge(__________, ___________)
    # workflow.add_edge(__________, ___________)
    # workflow.add_edge(__________, ___________)
    # workflow.add_edge(__________, ___________)

    workflow.add_edge(START, "expand_query")
    workflow.add_edge("expand_query", "retrieve_context")
    workflow.add_edge("retrieve_context", "craft_response")
    workflow.add_edge("craft_response", "score_groundedness")

    # Conditional edges based on groundedness check
    workflow.add_conditional_edges(
        "score_groundedness",
        should_continue_groundedness,  # Use the conditional function
        {
            "check_precision": "check_precision",  # If well-grounded, proceed to precision check.
            "refine_response": "refine_response",  # If not, refine the response.
            "max_iterations_reached": "max_iterations_reached"  # If max loops reached, exit.
        }
    )

    #workflow.add_edge(__________, ___________)  # Refined responses are reprocessed.
    workflow.add_edge("refine_response", "craft_response")  # Refined responses are reprocessed.

    # Conditional edges based on precision check
    workflow.add_conditional_edges(
        "check_precision",
        should_continue_precision,  # Use the conditional function
        {
            "pass": END,              # If precise, complete the workflow.
            "refine_query": "refine_query",  # If imprecise, refine the query.
            "max_iterations_reached": "max_iterations_reached"  # If max loops reached, exit.
        }
    )

    # workflow.add_edge(__________, ___________)  # Refined queries go through expansion again.
    # workflow.add_edge(__________, ___________)
    workflow.add_edge("refine_query", "expand_query")  # Refined queries go through expansion again.
    workflow.add_edge("max_iterations_reached", END)

    return workflow

#=========================== Defining the agentic rag tool ====================#
WORKFLOW_APP = create_workflow().compile()
@tool
def agentic_rag(query: str):
    """
    Runs the RAG-based agent with conversation history for context-aware responses.

    Args:
        query (str): The current user query.

    Returns:
        Dict[str, Any]: The updated state with the generated response and conversation history.
    """
    # Initialize state with necessary parameters
    inputs = {
        "query": query,  # Current user query
        "expanded_query": "",  # Complete the code to define the expanded version of the query
        "context": [],  # Retrieved documents (initially empty)
        "response": "",  # Complete the code to define the AI-generated response
        "precision_score": 0.0,  # Complete the code to define the precision score of the response
        "groundedness_score": 0.0,  # Complete the code to define the groundedness score of the response
        "groundedness_loop_count": 0,  # Complete the code to define the counter for groundedness loops
        "precision_loop_count": 0,  # Complete the code to define the counter for precision loops
        "feedback": "",  # Complete the code to define the feedback
        "query_feedback": "",  # Complete the code to define the query feedback
        "loop_max_iter": 3  # Complete the code to define the maximum number of iterations for loops
    }

    output = WORKFLOW_APP.invoke(inputs)

    return output


#================================ Guardrails ===========================#
llama_guard_client = Groq(api_key=llama_api_key)
# Function to filter user input with Llama Guard
#def filter_input_with_llama_guard(user_input, model="meta-llama/llama-guard-4-12b"):
def filter_input_with_llama_guard(user_input, model="meta-llama/llama-guard-4-12b"):
    """
    Filters user input using Llama Guard to ensure it is safe.

    Parameters:
    - user_input: The input provided by the user.
    - model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").

    Returns:
    - The filtered and safe input.
    """
    try:
        # Create a request to Llama Guard to filter the user input
        response = llama_guard_client.chat.completions.create(
            messages=[{"role": "user", "content": user_input}],
            model=model,
        )
        # Return the filtered input
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error with Llama Guard: {e}")
        return None


#============================= Adding Memory to the agent using mem0 ===============================#

class NutritionBot:
    def __init__(self):
      # Initialize a memory client to store and retrieve customer interactions
      #self.memory = MemoryClient(os.environ["mem0"]) # Complete the code to define the memory client API key
      try:
        self.memory = MemoryClient(os.environ["mem0"])
      except Exception as e:
        st.error(f"Failed to initialize MemoryClient: {e}")

      #self.memory = MemoryClient(api_key=userdata.get("mem0"))  # Complete the code to define the memory client API key
      # Initialize the Azure OpenAI client using the provided credentials
      self.client = AzureChatOpenAI(
            # model_name="_____",  # Specify the model to use (e.g., GPT-4 optimized version)
            # api_key=config['_____'],  # API key for authentication
            # azure_endpoint=config['_____'],  # Endpoint URL for Azure OpenAI
            # api_version=config['_____'],  # API version being used
            # temperature=_____  # Controls randomness in responses; 0 ensures deterministic results
            model_name= model_name,  # Specify the model to use (e.g., GPT-4 optimized version)
            api_key= api_key,  # API key for authentication
            azure_endpoint= endpoint,  # Endpoint URL for Azure OpenAI
            api_version= api_version,  # API version being used
            temperature=0  # Controls randomness in responses; 0 ensures deterministic results
      )

      """
      Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor.
      """
      # Define tools available to the chatbot, such as web search
      tools = [agentic_rag]
      # Define the system prompt to set the behavior of the chatbot
      system_prompt = """You are a helpful nutrition assistant.
      Answer user questions about nutrition disorders accurately, clearly, and respectfully using available information."""

      # Build the prompt template for the agent
      prompt = ChatPromptTemplate.from_messages([
            ("system", system_prompt),  # System instructions
            ("human", "{input}"),  # Placeholder for human input
            ("placeholder", "{agent_scratchpad}")  # Placeholder for intermediate reasoning steps
      ])

      # Create an agent capable of interacting with tools and executing tasks
      agent = create_tool_calling_agent(self.client, tools, prompt)

      # Wrap the agent in an executor to manage tool interactions and execution flow
      self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)


    def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
        """
        Store customer interaction in memory for future reference.

        Args:
            user_id (str): Unique identifier for the customer.
            message (str): Customer's query or message.
            response (str): Chatbot's response.
            metadata (Dict, optional): Additional metadata for the interaction.
        """
        if metadata is None:
            metadata = {}

        # Add a timestamp to the metadata for tracking purposes
        metadata["timestamp"] = datetime.now().isoformat()

        # Format the conversation for storage
        conversation = [
            {"role": "user", "content": message},
            {"role": "assistant", "content": response}
        ]

        # Store the interaction in the memory client
        self.memory.add(
            conversation,
            user_id=user_id,
            output_format="v1.1",
            metadata=metadata
        )


    def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
        """
        Retrieve past interactions relevant to the current query.

        Args:
            user_id (str): Unique identifier for the customer.
            query (str): The customer's current query.

        Returns:
            List[Dict]: A list of relevant past interactions.
        """
        return self.memory.search(
            query=query,  # Search for interactions related to the query
            user_id=user_id,  # Restrict search to the specific user
            limit= 3  # Complete the code to define the limit for retrieved interactions
        )


    def handle_customer_query(self, user_id: str, query: str) -> str:
        """
        Process a customer's query and provide a response, taking into account past interactions.

        Args:
            user_id (str): Unique identifier for the customer.
            query (str): Customer's query.

        Returns:
            str: Chatbot's response.
        """

        # Retrieve relevant past interactions for context
        relevant_history = self.get_relevant_history(user_id, query)

        # Build a context string from the relevant history
        context = "Previous relevant interactions:\n"
        for memory in relevant_history:
            context += f"Customer: {memory['memory']}\n"  # Customer's past messages
            context += f"Support: {memory['memory']}\n"  # Chatbot's past responses
            context += "---\n"

        # Print context for debugging purposes
        print("Context: ", context)

        # Prepare a prompt combining past context and the current query
        # prompt = f"""
        # Context:
        # {context}

        # Current customer query: {query}

        # Provide a helpful response that takes into account any relevant past interactions.
        # """
        prompt = f"{context}\n\nUser: {query}"
        # Generate a response using the agent
        response = self.agent_executor.invoke({"input": prompt})

        # Store the current interaction for future reference
        self.store_customer_interaction(
            user_id=user_id,
            message=query,
            response=response["output"],
            metadata={"type": "support_query"}
        )

        # Return the chatbot's response
        return response['output']


#=====================User Interface using streamlit ===========================#
def nutrition_disorder_streamlit():
    """
    A Streamlit-based UI for the Nutrition Disorder Specialist Agent.
    """
    st.title("Nutrition Disorder Specialist")
    st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.")
    st.write("Type 'exit' to end the conversation.")

    # Initialize session state for chat history and user_id if they don't exist
    if 'chat_history' not in st.session_state:
        st.session_state.chat_history = []
    if 'user_id' not in st.session_state:
        st.session_state.user_id = None

    # Login form: Only if user is not logged in
    if st.session_state.user_id is None:
        with st.form("login_form", clear_on_submit=True):
            user_id = st.text_input("Please enter your name to begin:")
            submit_button = st.form_submit_button("Login")
            if submit_button and user_id:
                st.session_state.user_id = user_id
                st.session_state.chat_history.append({
                    "role": "assistant",
                    "content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?"
                })
                st.session_state.login_submitted = True  # Set flag to trigger rerun
        if st.session_state.get("login_submitted", False):
            st.session_state.pop("login_submitted")
            st.rerun()
    else:
        # Display chat history
        for message in st.session_state.chat_history:
            with st.chat_message(message["role"]):
                st.write(message["content"])

        # Chat input with custom placeholder text
        #user_query = st.chat_input(__________)  # Blank #1: Fill in the chat input prompt (e.g., "Type your question here (or 'exit' to end)...")
        user_query = st.chat_input("Type your question here (or 'exit' to end)...")
        if user_query:
            if user_query.lower() == "exit":
                st.session_state.chat_history.append({"role": "user", "content": "exit"})
                with st.chat_message("user"):
                    st.write("exit")
                goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders."
                st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
                with st.chat_message("assistant"):
                    st.write(goodbye_msg)
                st.session_state.user_id = None
                st.rerun()
                return

            st.session_state.chat_history.append({"role": "user", "content": user_query})
            with st.chat_message("user"):
                st.write(user_query)

            # Filter input using Llama Guard
            #filtered_result = __________(user_query)  # Blank #2: Fill in with the function name for filtering input (e.g., filter_input_with_llama_guard)
            filtered_result = filter_input_with_llama_guard(user_query)
            filtered_result = filtered_result.replace("\n", " ")  # Normalize the result

            # Check if input is safe based on allowed statuses
            #if filtered_result in [__________, __________, __________]:  # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")
            if filtered_result in ["safe", "unsafe S6", "unsafe S7"]:  # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")

                try:
                    if 'chatbot' not in st.session_state:
                        #st.session_state.chatbot = __________()  # Blank #6: Fill in with the chatbot class initialization (e.g., NutritionBot)
                        st.session_state.chatbot = NutritionBot()
                    #response = st.session_state.chatbot.__________(st.session_state.user_id, user_query)
                    response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query)
                    # Blank #7: Fill in with the method to handle queries (e.g., handle_customer_query)
                    st.write(response)
                    st.session_state.chat_history.append({"role": "assistant", "content": response})
                except Exception as e:
                    error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
                    st.write(error_msg)
                    st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
            else:
                inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
                st.write(inappropriate_msg)
                st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})

if __name__ == "__main__":
    nutrition_disorder_streamlit()