File size: 1,679 Bytes
fbf88c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from typing import Optional

import gradio as gr
from hfutils.repository import hf_hub_repo_url
from imgutils.generic import MultiLabelTIMMModel

KNOWN_MODELS = ['animetimm/swinv2_base_window8_256.e621v1-full']
SPECIAL_MODELS = {}


def render_model_demo(repo_id, label: Optional[str] = None):
    label = label or repo_id.split('/')[-1]
    with gr.Tab(label):
        model = MultiLabelTIMMModel(repo_id=repo_id)

        with gr.Row():
            with gr.Column():
                repo_url = hf_hub_repo_url(repo_id=repo_id, repo_type='model')
                gr.Markdown(f'This is the quick demo for tagger model [{repo_id}]({repo_url}).')

        with gr.Row():
            model.make_ui()


if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                gr.HTML(f'<h2 style="text-align: center;">Tagger Playground For E621V1 Full</h2>')
                gr.Markdown(f'This is the playground for taggers trained on [animetimm/e621-wdtagger-v1-w640-ws-full](https://huggingface.co/datasets/animetimm/e621-wdtagger-v1-w640-ws-full).'
                            f'Powered by `dghs-imgutils`\'s quick demo module.')

        with gr.Row():
            with gr.Tabs():
                _exist_models = set()
                for t, repo_id in SPECIAL_MODELS.items():
                    render_model_demo(repo_id, f'{repo_id.split("/")[-1]} ({t})')
                    _exist_models.add(repo_id)

                for repo_id in KNOWN_MODELS:
                    if repo_id not in _exist_models:
                        render_model_demo(repo_id)
                        _exist_models.add(repo_id)

    demo.launch()