Spaces:
Sleeping
Sleeping
| #img_gen_modal.py | |
| import modal | |
| import random | |
| import io | |
| from config.config import prompts, models # Indirect import | |
| import os | |
| import gradio as gr | |
| #MOVED FROM IMAGE IMPORT LIST | |
| import torch | |
| import sentencepiece | |
| import torch | |
| from huggingface_hub import login | |
| from transformers import AutoTokenizer | |
| import random | |
| from datetime import datetime | |
| #import xformers | |
| ########## LIVE PREVIEW TEST 1/3 ########## | |
| #from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images | |
| ########################################### | |
| CACHE_DIR = "/model_cache" | |
| # Define the Modal image | |
| image = ( | |
| modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") | |
| .pip_install_from_requirements("requirements.txt") | |
| #modal.Image.debian_slim(python_version="3.9") # Base image | |
| # .apt_install( | |
| # "git", | |
| # ) | |
| # .pip_install( | |
| # "diffusers", | |
| # "transformers", | |
| # "xformers", | |
| # "torch", | |
| # "accelerate", | |
| # "gradio>=4.44.1", | |
| # "safetensors", | |
| # "pillow", | |
| # "sentencepiece", | |
| # "hf_transfer", | |
| # "huggingface_hub[hf_transfer]", | |
| # "aria2", # aria2 for ultra-fast parallel downloads | |
| # f"git+https://github.com/huggingface/transformers.git" | |
| # ) | |
| .env( | |
| { | |
| "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR | |
| } | |
| ) | |
| ) | |
| # Create a Modal app | |
| app = modal.App("img-gen-modal", image=image) | |
| with image.imports(): | |
| import os | |
| flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume | |
| ############ LIVE PREVIEW 2/3 ################## | |
| # dtype = torch.bfloat16 | |
| # device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
| # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) | |
| # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) | |
| # torch.cuda.empty_cache() | |
| # MAX_SEED = np.iinfo(np.int32).max | |
| # MAX_IMAGE_SIZE = 2048 | |
| #pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| ################################################# | |
| # GPU FUNCTION | |
| def generate_image_gpu(prompt_alias, team_color, model_alias, custom_prompt): | |
| image = generate_image(prompt_alias, team_color, model_alias, custom_prompt) | |
| return image, "Image generated successfully! Call the banners!" | |
| # CPU FUNCTION | |
| def generate_image_cpu(prompt_alias, team_color, model_alias, custom_prompt): | |
| image = generate_image(prompt_alias, team_color, model_alias, custom_prompt) | |
| return image, "Image generated successfully! Call the banners!" | |
| # MAIN GENERATE IMAGE FUNCTION | |
| def generate_image( | |
| prompt_alias, | |
| team_color, | |
| model_alias, | |
| custom_prompt, | |
| height=360, | |
| width=640, | |
| num_inference_steps=20, | |
| guidance_scale=2.0, | |
| seed=-1, | |
| progress=gr.Progress(track_tqdm=True) # Add progress parameter | |
| ): | |
| with modal.enable_output(): | |
| print("Hello from ctb_modal!") | |
| print("Running debug check...") | |
| # Debug function to check installed packages | |
| def check_dependencies(): | |
| packages = [ | |
| "diffusers", # For Stable Diffusion | |
| "transformers", # For Hugging Face models | |
| "torch", # PyTorch | |
| "accelerate", # For distributed training/inference | |
| "gradio", # For the Gradio interface (updated to latest version) | |
| "safetensors", # For safe model loading | |
| "pillow", # For image processing | |
| "sentencepiece" | |
| ] | |
| for package in packages: | |
| try: | |
| import importlib | |
| module = importlib.import_module(package) | |
| print(f" {package} is installed. Version:") | |
| except ImportError: | |
| print(f" {package} is NOT installed.") | |
| check_dependencies() | |
| # Find the selected prompt and model | |
| try: | |
| prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] | |
| model_name = next(m for m in models if m["alias"] == model_alias)["name"] | |
| except StopIteration: | |
| return None, "ERROR: Invalid prompt or model selected." | |
| # Determine the enemy color | |
| enemy_color = "blue" if team_color.lower() == "red" else "red" | |
| # Print the original prompt and dynamic values for debugging | |
| print("Original Prompt:") | |
| print(prompt) | |
| print(f"Enemy Color: {enemy_color}") | |
| print(f"Team Color: {team_color.lower()}") | |
| prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color) | |
| # Print the formatted prompt for debugging | |
| print("\nFormatted Prompt:") | |
| print(prompt) | |
| # Append the custom prompt (if provided) | |
| if custom_prompt and len(custom_prompt.strip()) > 0: | |
| prompt += " " + custom_prompt.strip() | |
| # Randomize the seed if needed | |
| if seed == -1: | |
| seed = random.randint(0, 1000000) | |
| try: | |
| from diffusers import FluxPipeline | |
| print("Initializing HF TOKEN") | |
| hf_token = os.environ["HF_TOKEN"] | |
| print(hf_token) | |
| print("HF TOKEN:") | |
| login(token=hf_token) | |
| print("model_name:") | |
| print(model_name) | |
| # Use absolute path with leading slash | |
| local_path = f"/data/{model_name}" # Changed from "data/" to "/data/" | |
| print(f"Loading model from local path: {local_path}") | |
| # Debug: Check if the directory exists and list its contents | |
| if os.path.exists(local_path): | |
| print("Directory exists. Contents:") | |
| for item in os.listdir(local_path): | |
| print(f" - {item}") | |
| else: | |
| print(f"Directory does not exist: {local_path}") | |
| print("Contents of /data:") | |
| print(os.listdir("/data")) | |
| # CHECK FOR TORCH USING CUDA | |
| print("CHECK FOR TORCH USING CUDA") | |
| print(f"CUDA available: {torch.cuda.is_available()}") | |
| if torch.cuda.is_available(): | |
| print("inside if") | |
| print(f"CUDA device count: {torch.cuda.device_count()}") | |
| print(f"Current device: {torch.cuda.current_device()}") | |
| print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
| ########## INITIALIZING CPU PIPE ########## | |
| print("-----INITIALIZING PIPE-----") | |
| pipe = FluxPipeline.from_pretrained( | |
| local_path, | |
| torch_dtype=torch.bfloat16, | |
| #torch_dtype=torch.float16, | |
| #torch_dtype=torch.float32, | |
| local_files_only=True | |
| ) | |
| if torch.cuda.is_available(): | |
| print("CUDA available") | |
| print("using gpu") | |
| pipe = pipe.to("cuda") | |
| pipe_message = "CUDA" | |
| else: | |
| print("CUDA not available") | |
| print("using cpu") | |
| pipe = pipe.to("cpu") | |
| pipe_message = "CPU" | |
| # pipe.enable_model_cpu_offload() # Use official recommended method | |
| print(f"-----{pipe_message} PIPE INITIALIZED-----") | |
| print(f"Using device: {pipe.device}") | |
| except Exception as e: | |
| print(f"Detailed error: {str(e)}") | |
| return None, f"ERROR: Failed to initialize PIPE2. Details: {e}" | |
| try: | |
| print("-----SENDING IMG GEN TO PIPE-----") | |
| print("-----HOLD ON-----") | |
| # ################ LIVE PREVIEW TEST 3/3 #################### | |
| # seed = random.randint(0, MAX_SEED) | |
| # generator = torch.Generator().manual_seed(seed) | |
| # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| # prompt=prompt, | |
| # guidance_scale=guidance_scale, | |
| # num_inference_steps=num_inference_steps, | |
| # width=width, | |
| # height=height, | |
| # generator=generator, | |
| # output_type="pil", | |
| # good_vae=good_vae, | |
| # ): | |
| # yield img, seed | |
| # ############################################################ | |
| ########## SENDING IMG GEN TO PIPE - WORKING CODE ########## | |
| image = pipe( | |
| prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| max_sequence_length=512, | |
| # seed=seed | |
| ).images[0] | |
| ############################################################# | |
| print("-----IMAGE GENERATED SUCCESSFULLY!-----") | |
| print(image) | |
| except Exception as e: | |
| return f"ERROR: Failed to initialize InferenceClient. Details: {e}" | |
| try: | |
| print("-----SAVING-----") | |
| print("-----DONE!-----") | |
| print("-----CALL THE BANNERS!-----") | |
| # Save the image with a timestamped filename | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| output_filename = f"/data/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png" | |
| # Save the image using PIL's save method | |
| image.save(output_filename) | |
| print(f"File path: {output_filename}") | |
| except Exception as e: | |
| print(f"ERROR: Failed to save image. Details: {e}") | |
| # Return the filename and success message | |
| return image |