Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL | |
| from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
| from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
| import modal | |
| import random | |
| import io | |
| from config.config import prompts, models # Indirect import | |
| import os | |
| import sentencepiece | |
| from huggingface_hub import login | |
| from transformers import AutoTokenizer | |
| from datetime import datetime | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| CACHE_DIR = "/model_cache" | |
| image = ( | |
| modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") | |
| .pip_install_from_requirements("requirements.txt") | |
| .env({ | |
| "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR | |
| }) | |
| ) | |
| app = modal.App("img-gen-modal-live", image=image) | |
| with image.imports(): | |
| import os | |
| flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) | |
| def infer(prompt, seed=42, randomize_seed=False, width=640, height=360, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
| taef1 = AutoencoderTiny.from_pretrained("/data/taef1", torch_dtype=dtype).to(device) | |
| good_vae = AutoencoderKL.from_pretrained("/data/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device) | |
| pipe = DiffusionPipeline.from_pretrained("/data/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) | |
| torch.cuda.empty_cache() | |
| pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| output_type="pil", | |
| good_vae=good_vae, | |
| ): | |
| yield img, seed | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cat holding a sign that says hello world", | |
| "an anime illustration of a wiener schnitzel", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| hf_token = os.environ["HF_TOKEN"] | |
| print("Initializing HF TOKEN") | |
| print(hf_token) | |
| print("HF TOKEN:") | |
| login(token=hf_token) | |
| with gr.Blocks(css=css) as demo: | |
| f = modal.Function.from_name("img-gen-modal-live", "infer") | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# FLUX.1 [dev] | |
| 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
| [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=640) | |
| height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=360) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5) | |
| num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28) | |
| gr.Examples( | |
| examples=examples, | |
| fn=f.remote, | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=lambda *args: [next(f.remote_gen(*args)), seed], # Adjusted to process generator | |
| inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.launch() | |